1
|
Inoue S, Nosetani M, Nakajima Y, Sakaki S, Kato H, Saba R, Takeshita N, Nishikawa K, Ueyama A, Matsuo K, Shigeta M, Kobayashi D, Iehara T, Yashiro K. Sonic Hedgehog signaling regulates the optimal differentiation pace from early-stage mesoderm to cardiogenic mesoderm in mice. Dev Growth Differ 2025; 67:75-84. [PMID: 39783159 PMCID: PMC11842887 DOI: 10.1111/dgd.12955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/06/2024] [Accepted: 12/15/2024] [Indexed: 01/12/2025]
Abstract
Sonic Hedgehog (Shh), encoding an extracellular signaling molecule, is vital for heart development. Shh null mutants show congenital heart disease due to left-right asymmetry defects stemming from functional anomaly in the midline structure in mice. Shh signaling is also known to affect cardiomyocyte differentiation, endocardium development, and heart morphogenesis, particularly in second heart field (SHF) cardiac progenitor cells that contribute to the right ventricle, outflow tract, and parts of the atrium. Despite extensive studies, our understanding remains incomplete. Notably, Shh signaling is suggested to promote cardiac differentiation, while paradoxically preventing premature differentiation of SHF progenitors. In this study, we elucidate the role of Shh signaling in the earliest phase of cardiac differentiation. Our meta-analysis of single-cell RNA sequencing suggests that cardiogenic nascent mesoderm cells expressing the bHLH transcription factor Mesp1 interact with axial mesoderm via Hh signaling. Activation of Hh signaling using a Smoothened agonist delayed or suppressed the differentiation of primitive streak cells expressing T-box transcription factor T to Mesp1+ nascent mesoderm cells both in vitro and ex vivo. Conversely, inhibition of Hh signaling by cyclopamine facilitated cardiac differentiation. The reduction of Eomes, an inducer of Mesp1, by Hh signaling appears to be the underlying mechanism of this phenomenon. Our data suggest that SHH secreted from axial mesoderm inhibits premature differentiation of T+ cells to Mesp1+ nascent mesoderm cells, thereby regulating the pace of cardiac differentiation. These findings enhance our comprehension of Shh signaling in cardiac development, underscoring its crucial role in early cardiac differentiation.
Collapse
Affiliation(s)
- Satoshi Inoue
- Division of Anatomy and Developmental Biology, Department of Anatomy, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
- Department of Pediatrics, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Moe Nosetani
- Division of Anatomy and Developmental Biology, Department of Anatomy, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Yoshiro Nakajima
- Division of Anatomy and Developmental Biology, Department of Anatomy, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Shinichiro Sakaki
- Division of Anatomy and Developmental Biology, Department of Anatomy, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
- Department of Pediatrics, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Hiroki Kato
- Division of Anatomy and Developmental Biology, Department of Anatomy, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Rie Saba
- Division of Anatomy and Developmental Biology, Department of Anatomy, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
- Department of Radiology, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Naoki Takeshita
- Division of Anatomy and Developmental Biology, Department of Anatomy, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
- Department of Pediatrics, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Kosuke Nishikawa
- Division of Anatomy and Developmental Biology, Department of Anatomy, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
- Department of Pediatrics, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Atsuko Ueyama
- Division of Anatomy and Developmental Biology, Department of Anatomy, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
- Department of Pediatrics, Graduate School of MedicineOsaka UniversityOsakaJapan
| | - Kazuhiko Matsuo
- Division of Anatomy and Developmental Biology, Department of Anatomy, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Masaki Shigeta
- Division of Anatomy and Developmental Biology, Department of Anatomy, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Daisuke Kobayashi
- Division of Anatomy and Developmental Biology, Department of Anatomy, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Tomoko Iehara
- Department of Pediatrics, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Kenta Yashiro
- Division of Anatomy and Developmental Biology, Department of Anatomy, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| |
Collapse
|
2
|
Brumm AS, McCarthy A, Gerri C, Fallesen T, Woods L, McMahon R, Papathanasiou A, Elder K, Snell P, Christie L, Garcia P, Shaikly V, Taranissi M, Serhal P, Odia RA, Vasilic M, Osnato A, Rugg-Gunn PJ, Vallier L, Hill CS, Niakan KK. Initiation and maintenance of the pluripotent epiblast in pre-implantation human development is independent of NODAL signaling. Dev Cell 2025; 60:174-185.e5. [PMID: 39561779 DOI: 10.1016/j.devcel.2024.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 03/05/2024] [Accepted: 10/25/2024] [Indexed: 11/21/2024]
Abstract
The human blastocyst contains the pluripotent epiblast from which human embryonic stem cells (hESCs) can be derived. ACTIVIN/NODAL signaling maintains expression of the transcription factor NANOG and in vitro propagation of hESCs. It is unknown whether this reflects a functional requirement for epiblast development in human embryos. Here, we characterized NODAL signaling activity during pre-implantation human development. We showed that NANOG is an early molecular marker restricted to the nascent human pluripotent epiblast and was initiated prior to the onset of NODAL signaling. We further demonstrated that expression of pluripotency-associated transcription factors NANOG, SOX2, OCT4, and KLF17 were maintained in the epiblast in the absence of NODAL signaling activity. Genome-wide transcriptional analysis showed that NODAL signaling inhibition did not decrease NANOG transcription or impact the wider pluripotency-associated gene regulatory network. These data suggest differences in the signaling requirements regulating pluripotency in the pre-implantation human epiblast compared with existing hESC culture.
Collapse
Affiliation(s)
- A Sophie Brumm
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Afshan McCarthy
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Claudia Gerri
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Todd Fallesen
- Crick Advanced Light Microscopy, The Francis Crick Institute, London NW1 1AT, UK
| | - Laura Woods
- Loke Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Riley McMahon
- Loke Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | | | - Kay Elder
- Bourn Hall Clinic, Bourn, Cambridge CB23 2TN, UK
| | - Phil Snell
- Bourn Hall Clinic, Bourn, Cambridge CB23 2TN, UK
| | | | - Patricia Garcia
- Assisted Reproduction and Gynaecology Centre, London W1G 6LP, UK
| | - Valerie Shaikly
- Assisted Reproduction and Gynaecology Centre, London W1G 6LP, UK
| | | | - Paul Serhal
- Centre for Reproductive and Genetic Health, London W1W 5QS, UK
| | - Rabi A Odia
- Centre for Reproductive and Genetic Health, London W1W 5QS, UK
| | - Mina Vasilic
- Centre for Reproductive and Genetic Health, London W1W 5QS, UK
| | - Anna Osnato
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK; Department of Development and Regeneration, University of Leuven, Leuven 3000, Belgium
| | - Peter J Rugg-Gunn
- Loke Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Ludovic Vallier
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Caroline S Hill
- Developmental Signalling Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Kathy K Niakan
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Loke Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK.
| |
Collapse
|
3
|
Sandomenico A, Ruvo M. Targeting Nodal and Cripto-1: Perspectives Inside Dual Potential Theranostic Cancer Biomarkers. Curr Med Chem 2019; 26:1994-2050. [PMID: 30207211 DOI: 10.2174/0929867325666180912104707] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND Elucidating the mechanisms of recurrence of embryonic signaling pathways in tumorigenesis has led to the discovery of onco-fetal players which have physiological roles during normal development but result aberrantly re-activated in tumors. In this context, Nodal and Cripto-1 are recognized as onco-developmental factors, which are absent in normal tissues but are overexpressed in several solid tumors where they can serve as theranostic agents. OBJECTIVE To collect, review and discuss the most relevant papers related to the involvement of Nodal and Cripto-1 in the development, progression, recurrence and metastasis of several tumors where they are over-expressed, with a particular attention to their occurrence on the surface of the corresponding sub-populations of cancer stem cells (CSC). RESULTS We have gathered, rationalized and discussed the most interesting findings extracted from some 370 papers related to the involvement of Cripto-1 and Nodal in all tumor types where they have been detected. Data demonstrate the clear connection between Nodal and Cripto-1 presence and their multiple oncogenic activities across different tumors. We have also reviewed and highlighted the potential of targeting Nodal, Cripto-1 and the complexes that they form on the surface of tumor cells, especially of CSC, as an innovative approach to detect and suppress tumors with molecules that block one or more mechanisms that they regulate. CONCLUSION Overall, Nodal and Cripto-1 represent two innovative and effective biomarkers for developing potential theranostic anti-tumor agents that target normal as well as CSC subpopulations and overcome both pharmacological resistance and tumor relapse.
Collapse
Affiliation(s)
- Annamaria Sandomenico
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche (IBB-CNR), via Mezzocannone, 16, 80134, Napoli, Italy
| | - Menotti Ruvo
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche (IBB-CNR), via Mezzocannone, 16, 80134, Napoli, Italy
| |
Collapse
|
4
|
Gudbergsson JM, Duroux M. An evaluation of different Cripto-1 antibodies and their variable results. J Cell Biochem 2019; 121:545-556. [PMID: 31310365 DOI: 10.1002/jcb.29293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 06/27/2019] [Indexed: 12/14/2022]
Abstract
Cripto-1 is a protein expressed during embryonal development and has been linked to several malignant processes in cancer. Since the discovery of cripto-1 in the late 1980s, it has become a subject of biomarker investigation in several types of cancer which in many cases relies on immunolocalization of cripto-1 using antibodies. Investigating cripto-1 expression and localization in primary glioblastoma cells, we discovered nonspecific binding of cripto-1 antibody to the extracellular matrix Geltrex. A panel of four cripto-1 antibodies was investigated with respect to their binding to the Geltrex matrix and to the cripto-1 positive control cells NTERA2. The cripto-1 expression was varied for the different antibodies with respect to cellular localization and fixation methods. To further elaborate on these findings, we present a systematic review of cripto-1 antibodies found in the literature and highlight some possible cross reactants with data on sequence alignments and structural comparison of EGF domains.
Collapse
Affiliation(s)
- Johann Mar Gudbergsson
- Laboratory of Immunology and Cancer Biology, Institute of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Meg Duroux
- Laboratory of Immunology and Cancer Biology, Institute of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
5
|
Exogenous Cripto-1 Suppresses Self-Renewal of Cancer Stem Cell Model. Int J Mol Sci 2018; 19:ijms19113345. [PMID: 30373174 PMCID: PMC6274844 DOI: 10.3390/ijms19113345] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 01/11/2023] Open
Abstract
Cripto-1 is a glycophosphatidylinositol (GPI) anchored signaling protein of epidermal growth factor (EGF)-Cripto-1-FRL1-Cryptic (CFC) family and plays a significant role in the early developmental stages and in the different types of cancer cells, epithelial to mesenchymal transition and tumor angiogenesis. Previously, we have developed cancer stem cells (miPS-LLCcm) from mouse iPSCs by culturing them in the presence of conditioned medium of Lewis Lung Carcinoma (LLC) cells for four weeks. Nodal and Cripto-1 were confirmed to be expressed in miPS-LLCcm cells by quantitative reverse transcription PCR (rt-qPCR) implying that Cr-1 was required in maintaining stemness. To investigate the biological effect of adding exogenous soluble CR-1 to the cancer stem cells, we have prepared a C-terminally truncated soluble form of recombinant human CR-1 protein (rhsfCR-1), in which the GPI anchored moiety was removed by substitution of a stop codon through site-directed mutagenesis. rhsfCR-1 effectively suppressed the proliferation and sphere forming ability of miPS-LLCcm cells in a dose-dependent manner in the range of 0 to 5 µg/mL, due to the suppression of Nodal-Cripto-1/ALK4/Smad2 signaling pathway. Frequency of sphere-forming cells was dropped from 1/40 to 1/69 by rhsfCR-1 at 1 µg/mL. Moreover, rhsfCR-1 in the range of 0 to 1 µg/mL also limited the differentiation of miPS-LLCcm cells into vascular endothelial cells probably due to the suppression of self-renewal, which should reduce the number of cells with stemness property. As demonstrated by a soluble form of exogenous Cripto-1 in this study, the efficient blockade would be an attractive way to study Cripto-1 dependent cancer stem cell properties for therapeutic application.
Collapse
|
6
|
Abstract
TGF-β family ligands function in inducing and patterning many tissues of the early vertebrate embryonic body plan. Nodal signaling is essential for the specification of mesendodermal tissues and the concurrent cellular movements of gastrulation. Bone morphogenetic protein (BMP) signaling patterns tissues along the dorsal-ventral axis and simultaneously directs the cell movements of convergence and extension. After gastrulation, a second wave of Nodal signaling breaks the symmetry between the left and right sides of the embryo. During these processes, elaborate regulatory feedback between TGF-β ligands and their antagonists direct the proper specification and patterning of embryonic tissues. In this review, we summarize the current knowledge of the function and regulation of TGF-β family signaling in these processes. Although we cover principles that are involved in the development of all vertebrate embryos, we focus specifically on three popular model organisms: the mouse Mus musculus, the African clawed frog of the genus Xenopus, and the zebrafish Danio rerio, highlighting the similarities and differences between these species.
Collapse
Affiliation(s)
- Joseph Zinski
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| | - Benjamin Tajer
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| | - Mary C Mullins
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| |
Collapse
|
7
|
Burdine RD, Grimes DT. Antagonistic interactions in the zebrafish midline prior to the emergence of asymmetric gene expression are important for left-right patterning. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0402. [PMID: 27821532 DOI: 10.1098/rstb.2015.0402] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2016] [Indexed: 12/16/2022] Open
Abstract
Left-right (L-R) asymmetry of the internal organs of vertebrates is presaged by domains of asymmetric gene expression in the lateral plate mesoderm (LPM) during somitogenesis. Ciliated L-R coordinators (LRCs) are critical for biasing the initiation of asymmetrically expressed genes, such as nodal and pitx2, to the left LPM. Other midline structures, including the notochord and floorplate, are then required to maintain these asymmetries. Here we report an unexpected role for the zebrafish EGF-CFC gene one-eyed pinhead (oep) in the midline to promote pitx2 expression in the LPM. Late zygotic oep (LZoep) mutants have strongly reduced or absent pitx2 expression in the LPM, but this expression can be rescued to strong levels by restoring oep in midline structures only. Furthermore, removing midline structures from LZoep embryos can rescue pitx2 expression in the LPM, suggesting the midline is a source of an LPM pitx2 repressor that is itself inhibited by oep Reducing lefty1 activity in LZoep embryos mimics removal of the midline, implicating lefty1 in the midline-derived repression. Together, this suggests a model where Oep in the midline functions to overcome a midline-derived repressor, involving lefty1, to allow for the expression of left side-specific genes in the LPM.This article is part of the themed issue 'Provocative questions in left-right asymmetry'.
Collapse
Affiliation(s)
- Rebecca D Burdine
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Daniel T Grimes
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
8
|
Aykul S, Parenti A, Chu KY, Reske J, Floer M, Ralston A, Martinez-Hackert E. Biochemical and Cellular Analysis Reveals Ligand Binding Specificities, a Molecular Basis for Ligand Recognition, and Membrane Association-dependent Activities of Cripto-1 and Cryptic. J Biol Chem 2017; 292:4138-4151. [PMID: 28126904 PMCID: PMC5354514 DOI: 10.1074/jbc.m116.747501] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 01/25/2017] [Indexed: 12/31/2022] Open
Abstract
Transforming growth factor β (TGF-β) pathways are key determinants of cell fate in animals. Their basic mechanism of action is simple. However, to produce cell-specific responses, TGF-β pathways are heavily regulated by secondary factors, such as membrane-associated EGF-CFC family proteins. Cellular activities of EGF-CFC proteins have been described, but their molecular functions, including how the mammalian homologs Cripto-1 and Cryptic recognize and regulate TGF-β family ligands, are less clear. Here we use purified human Cripto-1 and mouse Cryptic produced in mammalian cells to show that these two EGF-CFC homologs have distinct, highly specific ligand binding activities. Cripto-1 interacts with BMP-4 in addition to its known partner Nodal, whereas Cryptic interacts only with Activin B. These interactions depend on the integrity of the protein, as truncated or deglycosylated Cripto-1 lacked BMP-4 binding activity. Significantly, Cripto-1 and Cryptic blocked binding of their cognate ligands to type I and type II TGF-β receptors, indicating that Cripto-1 and Cryptic contact ligands at their receptor interaction surfaces and, thus, that they could inhibit their ligands. Indeed, soluble Cripto-1 and Cryptic inhibited ligand signaling in various cell-based assays, including SMAD-mediated luciferase reporter gene expression, and differentiation of a multipotent stem cell line. But in agreement with previous work, the membrane bound form of Cripto-1 potentiated signaling, revealing a critical role of membrane association for its established cellular activity. Thus, our studies provide new insights into the mechanism of ligand recognition by this enigmatic family of membrane-anchored TGF-β family signaling regulators and link membrane association with their signal potentiating activities.
Collapse
Affiliation(s)
- Senem Aykul
- From the Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319
| | - Anthony Parenti
- From the Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319
| | - Kit Yee Chu
- From the Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319
| | - Jake Reske
- From the Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319
| | - Monique Floer
- From the Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319
| | - Amy Ralston
- From the Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319
| | - Erik Martinez-Hackert
- From the Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319
| |
Collapse
|
9
|
Gupta K, Pilli VSS, Aradhyam GK. Left-right axis asymmetry determining human Cryptic gene is transcriptionally repressed by Snail. BMC DEVELOPMENTAL BIOLOGY 2016; 16:39. [PMID: 27793090 PMCID: PMC5084438 DOI: 10.1186/s12861-016-0141-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 10/24/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND Establishment of the left-right axis is important for positioning organs asymmetrically in the developing vertebrate-embryo. A number of factors like maternally deposited molecules have emerged essential in initiating the specification of the axis; the downstream events, however, are regulated by signal-transduction and gene-expression changes identifying which remains a crucial challenge. The EGF-CFC family member Cryptic, that functions as a co-receptor for some TGF-beta ligands, is developmentally expressed in higher mammals and mutations in the gene cause loss or change in left-right axis asymmetry. Despite the strong phenotype, no transcriptional-regulator of this gene is known till date. RESULTS Using promoter-analyses tools, we found strong evidence that the developmentally essential transcription factor Snail binds to the human Cryptic-promoter. We cloned the promoter-region of human Cryptic in a reporter gene and observed decreased Cryptic-promoter activation upon increasing Snail expression. Further, the expression of Cryptic is down-regulated upon exogenous Snail expression, validating the reporter assays and the previously identified role of Snail as a transcriptional repressor. Finally, we demonstrate using gel-shift assay that Snail in nuclear extract of PANC1 cells interacts with the promoter-construct bearing putative Snail binding sites and confirm this finding using chromatin immunoprecipitation assay. CONCLUSIONS Snail represses the expression of human Cryptic and therefore, might affect the signaling via Nodal that has previously been demonstrated to specify the left-right axis using the EGF-CFC co-receptors.
Collapse
Affiliation(s)
- Kartik Gupta
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Vijaya Satish Sekhar Pilli
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Gopala Krishna Aradhyam
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India.
| |
Collapse
|
10
|
Kokkinopoulos I, Ishida H, Saba R, Ruchaya P, Cabrera C, Struebig M, Barnes M, Terry A, Kaneko M, Shintani Y, Coppen S, Shiratori H, Ameen T, Mein C, Hamada H, Suzuki K, Yashiro K. Single-Cell Expression Profiling Reveals a Dynamic State of Cardiac Precursor Cells in the Early Mouse Embryo. PLoS One 2015; 10:e0140831. [PMID: 26469858 PMCID: PMC4607431 DOI: 10.1371/journal.pone.0140831] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 09/29/2015] [Indexed: 01/07/2023] Open
Abstract
In the early vertebrate embryo, cardiac progenitor/precursor cells (CPs) give rise to cardiac structures. Better understanding their biological character is critical to understand the heart development and to apply CPs for the clinical arena. However, our knowledge remains incomplete. With the use of single-cell expression profiling, we have now revealed rapid and dynamic changes in gene expression profiles of the embryonic CPs during the early phase after their segregation from the cardiac mesoderm. Progressively, the nascent mesodermal gene Mesp1 terminated, and Nkx2-5+/Tbx5+ population rapidly replaced the Tbx5low+ population as the expression of the cardiac genes Tbx5 and Nkx2-5 increased. At the Early Headfold stage, Tbx5-expressing CPs gradually showed a unique molecular signature with signs of cardiomyocyte differentiation. Lineage-tracing revealed a developmentally distinct characteristic of this population. They underwent progressive differentiation only towards the cardiomyocyte lineage corresponding to the first heart field rather than being maintained as a progenitor pool. More importantly, Tbx5 likely plays an important role in a transcriptional network to regulate the distinct character of the FHF via a positive feedback loop to activate the robust expression of Tbx5 in CPs. These data expands our knowledge on the behavior of CPs during the early phase of cardiac development, subsequently providing a platform for further study.
Collapse
Affiliation(s)
- Ioannis Kokkinopoulos
- Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Hidekazu Ishida
- Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Rie Saba
- Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Prashant Ruchaya
- Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Physiology and Pathology, University of São Paulo State – UNESP, Araraquara School of Dentistry, Araraquara, São Paulo, Brazil
| | - Claudia Cabrera
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Genome Centre, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- NIHR Barts Cardiovascular Biomedical Research Unit, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Monika Struebig
- Genome Centre, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Michael Barnes
- Genome Centre, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Anna Terry
- Genome Centre, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Masahiro Kaneko
- Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Yasunori Shintani
- Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Steven Coppen
- Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Hidetaka Shiratori
- Department of Developmental Genetics, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Torath Ameen
- Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Charles Mein
- Genome Centre, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Hiroshi Hamada
- Department of Developmental Genetics, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Ken Suzuki
- Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Kenta Yashiro
- Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- * E-mail:
| |
Collapse
|
11
|
The multifaceted role of the embryonic gene Cripto-1 in cancer, stem cells and epithelial-mesenchymal transition. Semin Cancer Biol 2014; 29:51-8. [PMID: 25153355 DOI: 10.1016/j.semcancer.2014.08.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 08/07/2014] [Indexed: 01/04/2023]
Abstract
Cripto-1 (CR-1)/Teratocarcinoma-derived growth factor1 (TDGF-1) is a cell surface glycosylphosphatidylinositol (GPI)-linked glycoprotein that can function either in cis (autocrine) or in trans (paracrine). The cell membrane cis form is found in lipid rafts and endosomes while the trans acting form lacking the GPI anchor is soluble. As a member of the epidermal growth factor (EGF)/Cripto-1-FRL-1-Cryptic (CFC) family, CR-1 functions as an obligatory co-receptor for the transforming growth factor-β (TGF-β) family members, Nodal and growth and differentiation factors 1 and 3 (GDF1/3) by activating Alk4/Alk7 signaling pathways that involve Smads 2, 3 and 4. In addition, CR-1 can activate non-Smad-dependent signaling elements such as PI3K, Akt and MAPK. Both of these pathways depend upon the 78kDa glucose regulated protein (GRP78). Finally, CR-1 can facilitate signaling through the canonical Wnt/β-catenin and Notch/Cbf-1 pathways by functioning as a chaperone protein for LRP5/6 and Notch, respectively. CR-1 is essential for early embryonic development and maintains embryonic stem cell pluripotentiality. CR-1 performs an essential role in the etiology and progression of several types of human tumors where it is expressed in a population of cancer stem cells (CSCs) and facilitates epithelial-mesenchymal transition (EMT). In this context, CR-1 can significantly enhance tumor cell migration, invasion and angiogenesis. Collectively, these facts suggest that CR-1 may be an attractive target in the diagnosis, prognosis and therapy of several types of human cancer.
Collapse
|
12
|
Fuller K, O'Connell JT, Gordon J, Mauti O, Eggenschwiler J. Rab23 regulates Nodal signaling in vertebrate left-right patterning independently of the Hedgehog pathway. Dev Biol 2014; 391:182-95. [PMID: 24780629 DOI: 10.1016/j.ydbio.2014.04.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 03/14/2014] [Accepted: 04/18/2014] [Indexed: 11/28/2022]
Abstract
Asymmetric fluid flow in the node and Nodal signaling in the left lateral plate mesoderm (LPM) drive left-right patterning of the mammalian body plan. However, the mechanisms linking fluid flow to asymmetric gene expression in the LPM remain unclear. Here we show that the small GTPase Rab23, known for its role in Hedgehog signaling, plays a separate role in Nodal signaling and left-right patterning in the mouse embryo. Rab23 is not required for initial symmetry breaking in the node, but it is required for expression of Nodal and Nodal target genes in the LPM. Microinjection of Nodal protein and transfection of Nodal cDNA in the embryo indicate that Rab23 is required for the production of functional Nodal signals, rather than the response to them. Using gain- and loss-of function approaches, we show that Rab23 plays a similar role in zebrafish, where it is required in the teleost equivalent of the mouse node, Kupffer׳s vesicle. Collectively, these data suggest that Rab23 is an essential component of the mechanism that transmits asymmetric patterning information from the node to the LPM.
Collapse
Affiliation(s)
- Kimberly Fuller
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States
| | - Joyce T O'Connell
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States
| | - Julie Gordon
- Department of Genetics, University of Georgia, Athens, GA 30602, United States
| | - Olivier Mauti
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States
| | | |
Collapse
|
13
|
Jin JZ, Ding J. Cripto is required for mesoderm and endoderm cell allocation during mouse gastrulation. Dev Biol 2013; 381:170-8. [PMID: 23747598 DOI: 10.1016/j.ydbio.2013.05.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 05/28/2013] [Accepted: 05/29/2013] [Indexed: 10/26/2022]
Abstract
During mouse gastrulation, cells in the primitive streak undergo epithelial-mesenchymal transformation and the resulting mesenchymal cells migrate out laterally to form mesoderm and definitive endoderm across the entire embryonic cylinder. The mechanisms underlying mesoderm and endoderm specification, migration, and allocation are poorly understood. In this study, we focused on the function of mouse Cripto, a member of the EGF-CFC gene family that is highly expressed in the primitive streak and migrating mesoderm cells on embryonic day 6.5. Conditional inactivation of Cripto during gastrulation leads to varied defects in mesoderm and endoderm development. Mutant embryos display accumulation of mesenchymal cells around the shortened primitive streak indicating a functional requirement of Cripto during the formation of mesoderm layer in gastrulation. In addition, some mutant embryos showed poor formation and abnormal allocation of definitive endoderm cells on embryonic day 7.5. Consistently, many mutant embryos that survived to embryonic day 8.5 displayed defects in ventral closure of the gut endoderm causing cardia bifida. Detailed analyses revealed that both the Fgf8-Fgfr1 pathway and p38 MAP kinase activation are partially affected by the loss of Cripto function. These results demonstrate a critical role for Cripto during mouse gastrulation, especially in mesoderm and endoderm formation and allocation.
Collapse
Affiliation(s)
- Jiu-Zhen Jin
- Department of Molecular, Cellular & Craniofacial Biology, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | | |
Collapse
|
14
|
Protogenin prevents premature apoptosis of rostral cephalic neural crest cells by activating the α5β1-integrin. Cell Death Dis 2013; 4:e651. [PMID: 23744351 PMCID: PMC3698544 DOI: 10.1038/cddis.2013.177] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The bones and connective tissues of the murine jaws and skull are partly derived from cephalic neural crest cells (CNCCs). Here, we report that mice deficient of protogenin (Prtg) protein, an immunoglobulin domain-containing receptor expressed in the developing nervous system, have impairments of the palatine and skull. Data from lineage tracing experiments, expression patterns of neural crest cell (NCC) marker genes and detection of apoptotic cells indicate that the malformation of bones in Prtg-deficient mice is due to increased apoptosis of rostral CNCCs (R-CNCCs). Using a yeast two-hybrid screening, we found that Prtg interacts with Radil, a protein previously shown to affect the migration and survival of NCCs in zebrafish with unknown mechanism. Overexpression of Prtg induces translocation of Radil from cytoplasm to cell membrane in cultured AD293 cells. In addition, overexpression of Prtg and Radil activates α5β1-integrins to high-affinity conformational forms, which is further enhanced by the addition of Prtg ligand ERdj3 into cultured cells. Blockage of Radil by RNA interference abolishes the effect of ERdj3 and Prtg on the α5β1-integrin, suggesting that Radil acts downstream of Prtg. Prtg-deficient R-CNCCs display fewer activated α5β1-integrins in embryos, and these cells show reduced migratory ability in in vitro transwell assay. These results suggest that the inside-out activation of the α5β1-integrin mediated by ERdj3/Prtg/Radil signaling is crucial for proper functions of R-CNCCs, and the deficiency of this pathway causes premature apoptosis of a subset of R-CNCCs and malformation of craniofacial structures.
Collapse
|
15
|
Saund RS, Kanai-Azuma M, Kanai Y, Kim I, Lucero MT, Saijoh Y. Gut endoderm is involved in the transfer of left-right asymmetry from the node to the lateral plate mesoderm in the mouse embryo. Development 2012; 139:2426-35. [PMID: 22627279 DOI: 10.1242/dev.079921] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In the mouse, the initial signals that establish left-right (LR) asymmetry are determined in the node by nodal flow. These signals are then transferred to the lateral plate mesoderm (LPM) through cellular and molecular mechanisms that are not well characterized. We hypothesized that endoderm might play a role in this process because it is tightly apposed to the node and covers the outer surface of the embryo, and, just after nodal flow is established, higher Ca(2+) flux has been reported on the left side near the node, most likely in the endoderm cells. Here we studied the role of endoderm cells in the transfer of the LR asymmetry signal by analyzing mouse Sox17 null mutant embryos, which possess endoderm-specific defects. Sox17(-/-) embryos showed no expression or significantly reduced expression of LR asymmetric genes in the left LPM. In Sox17 mutant endoderm, the localization of connexin proteins on the cell membrane was greatly reduced, resulting in defective gap junction formation, which appeared to be caused by incomplete development of organized epithelial structures. Our findings suggest an essential role of endoderm cells in the signal transfer step from the node to the LPM, possibly using gap junction communication to establish the LR axis of the mouse.
Collapse
Affiliation(s)
- Ranajeet S Saund
- Department of Neurobiology and Anatomy, University of Utah Medical School, Salt Lake City, UT 84132-3401, USA
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
BACKGROUND Heterotaxy syndrome is caused by left-right asymmetry disturbances and is associated with abnormal lateralisation of the abdominal and thoracic organs. The heart is frequently involved and the severity of the abnormality usually determines the outcome. METHODS We performed a direct sequence analysis of the coding sequence of genes including Zinc Finger Protein of the Cerebellum 3, Left-Right Determination Factor 2, Activin A Receptor Type IIB, and Cryptic in 47 patients with laterality defects and congenital cardiac disease. RESULTS Of the 47 patients, 31 (66%) had atrioventricular septal defects, 34 (72%) had abnormal systemic venous return, 25 (53%) had transposed or malposed great arteries, and 20 (43%) had pulmonary venous abnormalities. We identified two novel genetic changes in Zinc Finger Protein of the Cerebellum 3, and these variants were not present in 100 ethnically matched control samples. One previously reported missense mutation in Activin A Receptor Type IIB was identified in two unrelated subjects. The genetic changes identified in this study are all located in conserved regions and are predicted to affect protein function in left-right axis formation and cardiovascular development. CONCLUSIONS Mutations in Zinc Finger Protein of the Cerebellum 3 and Activin A Receptor Type IIB were identified in 4 of the 47 patients with heterotaxy syndrome for a yield of approximately 8.5%. Our results expand the mutation spectrum of monogenic heterotaxy syndrome with associated cardiac anomalies and suggest that there are other causes of heterotaxy yet to be identified.
Collapse
|
17
|
Wang B, Wang J, Liu S, Han X, Xie X, Tao Y, Yan J, Ma X. CFC1 mutations in Chinese children with congenital heart disease. Int J Cardiol 2011; 146:86-8. [DOI: 10.1016/j.ijcard.2009.07.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 07/25/2009] [Indexed: 11/28/2022]
|
18
|
Chu J, Shen MM. Functional redundancy of EGF-CFC genes in epiblast and extraembryonic patterning during early mouse embryogenesis. Dev Biol 2010; 342:63-73. [PMID: 20346354 DOI: 10.1016/j.ydbio.2010.03.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 02/25/2010] [Accepted: 03/16/2010] [Indexed: 12/01/2022]
Abstract
During early mouse embryogenesis, multiple patterning and differentiation events require the activity of Nodal, a ligand of the transforming growth factor-beta (TGFbeta) family. Although Nodal signaling is known to require activity of EGF-CFC co-receptors in many contexts, it has been unclear whether all Nodal signaling in the early mouse embryo is EGF-CFC dependent. We have investigated the double null mutant phenotypes for the EGF-CFC genes Cripto and Cryptic, which encode co-receptors for Nodal, and have found that they have partially redundant functions in early mouse development. Expression of Cripto and Cryptic is non-overlapping prior to gastrulation, since Cripto is expressed solely in the epiblast whereas Cryptic is expressed in the primitive endoderm of the late blastocyst and the visceral endoderm after implantation. Despite these non-overlapping expression patterns, Cripto; Cryptic double mutants display severe defects in epiblast, extraembryonic ectoderm, and anterior visceral endoderm (AVE), resulting in phenotypes that are highly similar to those of Nodal null mutants. Our results indicate that both Cripto and Cryptic function non-cell-autonomously during normal development, and that most if not all Nodal activity in early mouse embryogenesis is EGF-CFC-dependent.
Collapse
Affiliation(s)
- Jianhua Chu
- Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | | |
Collapse
|
19
|
Natale DRC, Hemberger M, Hughes M, Cross JC. Activin promotes differentiation of cultured mouse trophoblast stem cells towards a labyrinth cell fate. Dev Biol 2009; 335:120-31. [PMID: 19716815 DOI: 10.1016/j.ydbio.2009.08.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 08/18/2009] [Indexed: 10/20/2022]
Abstract
Prolonged maintenance of trophoblast stem (TS) cells requires fibroblast growth factor (FGF) 4 and embryonic fibroblast feeder cells or feeder cell-conditioned medium. Previous studies have shown that TGF-beta and Activin are sufficient to replace embryonic fibroblast-conditioned medium. Nodal, a member of the TGF-beta superfamily, is also known to be important in vivo for the maintenance of TS cells in the developing placenta. Our current studies indicate that TS cells do not express the Nodal co-receptor, Cripto, and do not respond directly to active Nodal in culture. Conversely, Activin subunits and their receptors are expressed in the placenta and TS cell cultures, with Activin predominantly expressed by trophoblast giant cells (TGCs). Differentiation of TS cells in the presence of TGC-conditioned medium or exogenous Activin results in a reduction in the expression of TGC markers. In line with TGC-produced Activin representing the active component in TGC-conditioned medium, this differentiation-inhibiting effect can be reversed by the addition of follistatin. Additional experiments in which TS cells were differentiated in the presence or absence of exogenous Activin or TGF-beta show that Activin but not TGF-beta results in the maintenance of expression of TS cell markers, prolongs the expression of syncytiotrophoblast markers, and significantly delays the expression of spongiotrophoblast and TGC markers. These results suggest that Activin rather than TGF-beta (or Nodal) acts directly on TS cells influencing both TS cell maintenance and cell fate, depending on whether the cells are also exposed to FGF4.
Collapse
Affiliation(s)
- David R C Natale
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, The University of Calgary, Calgary, AB, Canada T2N 4N1.
| | | | | | | |
Collapse
|
20
|
Mohapatra B, Casey B, Li H, Ho-Dawson T, Smith L, Fernbach SD, Molinari L, Niesh SR, Jefferies JL, Craigen WJ, Towbin JA, Belmont JW, Ware SM. Identification and functional characterization of NODAL rare variants in heterotaxy and isolated cardiovascular malformations. Hum Mol Genet 2008; 18:861-71. [PMID: 19064609 DOI: 10.1093/hmg/ddn411] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
NODAL and its signaling pathway are known to play a key role in specification and patterning of vertebrate embryos. Mutations in several genes encoding components of the NODAL signaling pathway have previously been implicated in the pathogenesis of human left-right (LR) patterning defects. Therefore, NODAL, a member of TGF-beta superfamily of developmental regulators, is a strong candidate to be functionally involved in congenital LR axis patterning defects or heterotaxy. Here we have investigated whether variants in NODAL are present in patients with heterotaxy and/or isolated cardiovascular malformations (CVM) thought to be caused by abnormal heart tube looping. Analysis of a large cohort of cases (n = 269) affected with either classic heterotaxy or looping CVM revealed four different missense variants, one in-frame insertion/deletion and two conserved splice site variants in 14 unrelated subjects (14/269, 5.2%). Although similar with regard to other associated defects, individuals with the NODAL mutations had a significantly higher occurrence of pulmonary valve atresia (P = 0.001) compared with cases without a detectable NODAL mutation. Functional analyses demonstrate that the missense variant forms of NODAL exhibit significant impairment of signaling as measured by decreased Cripto (TDGF-1) co-receptor-mediated activation of artificial reporters. Expression of these NODAL proteins also led to reduced induction of Smad2 phosphorylation and impaired Smad2 nuclear import. Taken together, these results support a role for mutations and rare deleterious variants in NODAL as a cause for sporadic human LR patterning defects.
Collapse
Affiliation(s)
- Bhagyalaxmi Mohapatra
- Department of Pediatrics (Cardiology), Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Tanaka C, Sakuma R, Nakamura T, Hamada H, Saijoh Y. Long-range action of Nodal requires interaction with GDF1. Genes Dev 2008; 21:3272-82. [PMID: 18079174 DOI: 10.1101/gad.1623907] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
GDF1 (growth/differentiation factor 1), a Vg1-related member of the transforming growth factor-beta superfamily, is required for left-right patterning in the mouse, but the precise function of GDF1 has remained largely unknown. In contrast to previous observations, we now show that GDF1 itself is not an effective ligand but rather functions as a coligand for Nodal. GDF1 directly interacts with Nodal and thereby greatly increases its specific activity. Gdf1 expression in the node was found necessary and sufficient for initiation of asymmetric Nodal expression in the lateral plate of mouse embryos. Coexpression of GDF1 with Nodal in frog embryos increased the range of the Nodal signal. Introduction of Nodal alone into the lateral plate of Gdf1 knockout mouse embryos did not induce Lefty1 expression at the midline, whereas introduction of both Nodal and GDF1 did, showing that GDF1 is required for long-range Nodal signaling from the lateral plate to the midline. These results suggest that GDF1 regulates the activity and signaling range of Nodal through direct interaction.
Collapse
Affiliation(s)
- Chinatsu Tanaka
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, and CREST, Japan Science and Technology Corporation (JST), Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
22
|
D'Andrea D, Liguori GL, Le Good JA, Lonardo E, Andersson O, Constam DB, Persico MG, Minchiotti G. Cripto promotes A-P axis specification independently of its stimulatory effect on Nodal autoinduction. ACTA ACUST UNITED AC 2008; 180:597-605. [PMID: 18268105 PMCID: PMC2234230 DOI: 10.1083/jcb.200709090] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The EGF-CFC gene cripto governs anterior-posterior (A-P) axis specification in the vertebrate embryo. Existing models suggest that Cripto facilitates binding of Nodal to an ActRII-activin-like kinase (ALK) 4 receptor complex. Cripto also has a crucial function in cellular transformation that is independent of Nodal and ALK4. However, how ALK4-independent Cripto pathways function in vivo has remained unclear. We have generated cripto mutants carrying the amino acid substitution F78A, which blocks the Nodal-ALK4-Smad2 signaling both in embryonic stem cells and cell-based assays. In cripto(F78A/F78A) mouse embryos, Nodal fails to expand its own expression domain and that of cripto, indicating that F78 is essential in vivo to stimulate Smad-dependent Nodal autoinduction. In sharp contrast to cripto-null mutants, cripto(F78A/F78A) embryos establish an A-P axis and initiate gastrulation movements. Our findings provide in vivo evidence that Cripto is required in the Nodal-Smad2 pathway to activate an autoinductive feedback loop, whereas it can promote A-P axis formation and initiate gastrulation movements independently of its stimulatory effect on the canonical Nodal-ALK4-Smad2 signaling pathway.
Collapse
Affiliation(s)
- Daniela D'Andrea
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics A. Buzzati-Traverso, Consiglio Nazionale delle Ricerche, 80131 Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Cripto-independent Nodal signaling promotes positioning of the A–P axis in the early mouse embryo. Dev Biol 2008; 315:280-9. [DOI: 10.1016/j.ydbio.2007.12.027] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Revised: 12/04/2007] [Accepted: 12/05/2007] [Indexed: 11/20/2022]
|
24
|
Rasl11b knock down in zebrafish suppresses one-eyed-pinhead mutant phenotype. PLoS One 2008; 3:e1434. [PMID: 18197245 PMCID: PMC2186344 DOI: 10.1371/journal.pone.0001434] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2007] [Accepted: 12/09/2007] [Indexed: 11/25/2022] Open
Abstract
The EGF-CFC factor Oep/Cripto1/Frl1 has been implicated in embryogenesis and several human cancers. During vertebrate development, Oep/Cripto1/Frl1 has been shown to act as an essential coreceptor in the TGFβ/Nodal pathway, which is crucial for germ layer formation. Although studies in cell cultures suggest that Oep/Cripto1/Frl1 is also implicated in other pathways, in vivo it is solely regarded as a Nodal coreceptor. We have found that Rasl11b, a small GTPase belonging to a Ras subfamily of putative tumor suppressor genes, modulates Oep function in zebrafish independently of the Nodal pathway. rasl11b down regulation partially rescues endodermal and prechordal plate defects of zygotic oep−/− mutants (Zoep). Rasl11b inhibitory action was only observed in oep-deficient backgrounds, suggesting that normal oep expression prevents Rasl11b function. Surprisingly, rasl11b down regulation does not rescue mesendodermal defects in other Nodal pathway mutants, nor does it influence the phosphorylation state of the downstream effector Smad2. Thus, Rasl11b modifies the effect of Oep on mesendoderm development independently of the main known Oep output: the Nodal signaling pathway. This data suggests a new branch of Oep signaling that has implications for germ layer development, as well as for studies of Oep/Frl1/Cripto1 dysfunction, such as that found in tumors.
Collapse
|
25
|
Zhou W, Xiang T, Walker S, Farrar V, Hwang E, Findeisen B, Sadeghieh S, Arenivas F, Abruzzese RV, Polejaeva I. Global gene expression analysis of bovine blastocysts produced by multiple methods. Mol Reprod Dev 2008; 75:744-58. [PMID: 17886272 DOI: 10.1002/mrd.20797] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Reproductive efficiency using somatic cell nuclear transfer (SCNT) technology remains suboptimal. Of the various efforts to improve the efficiency, chromatin transfer (CT) and clone-clone aggregation (NTagg) have been reported to produce live cloned animals. To better understand the molecular mechanisms of somatic cell reprogramming during SCNT and assess the various SCNT methods on the molecular level, we performed gene expression analysis on bovine blastocysts produced via standard nuclear transfer (NT), CT, NTagg, in vitro fertilization (IVF), and artificial insemination (AI), as well as on somatic donor cells, using bovine genome arrays. The expression profiles of SCNT (NT, CT, NTagg) embryos were compared with IVF and AI embryos as well as donor cells. NT and CT embryos have indistinguishable gene expression patterns. In comparison to IVF or AI embryos, the number of differentially expressed genes in NTagg embryos is significantly higher than in NT and CT embryos. Genes that were differentially expressed between all the SCNT embryos and IVF or AI embryos are identified. Compared to AI embryos, more than half of the genes found deregulated between SCNT and AI embryos appear to be the result of in vitro culture alone. The results indicate that although SCNT methods have altered differentiated somatic nuclei gene expression to more closely resemble that of embryonic nuclei, combination of insufficient reprogramming and in vitro culture condition compromise the developmental potential of SCNT embryos. This is the first set of comprehensive data for analyzing the molecular impact of various nuclear transfer methods on bovine pre-implantation embryos.
Collapse
|
26
|
Westmoreland JJ, Takahashi S, Wright CVE. Xenopus Lefty requires proprotein cleavage but not N-linked glycosylation to inhibit nodal signaling. Dev Dyn 2007; 236:2050-61. [PMID: 17584861 DOI: 10.1002/dvdy.21210] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The Nodal and Nodal-related morphogens are utilized for the specification of distinct cellular identity throughout development by activating discrete target genes in a concentration-dependant manner. Lefty is a principal extracellular antagonist involved in the spatiotemporal regulation of the Nodal morphogen gradient during mesendoderm induction. The Xenopus Lefty proprotein contains a single N-linked glycosylation motif in the mature domain and two potential cleavage sites that would be expected to produce long (Xlefty(L)) and short (Xlefty(S)) isoforms. Here we demonstrate that both isoforms were secreted from Xenopus oocytes, but that Xlefty(L) is the only isoform detected when embryonic tissue was analyzed. In mesoderm induction assays, Xlefty(L) is the functional blocker of Xnr signaling. When secreted from oocytes, vertebrate Lefty molecules were N-linked glycosylated. However, glycan addition was not required to inhibit Xnr signaling and did not influence its movement through the extracellular space. These findings demonstrate that Lefty molecules undergo post-translational modifications and that some of these modifications are required for the Nodal inhibitory function.
Collapse
Affiliation(s)
- Joby J Westmoreland
- Vanderbilt University Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | |
Collapse
|
27
|
Distinct and cooperative roles of mammalian Vg1 homologs GDF1 and GDF3 during early embryonic development. Dev Biol 2007; 311:500-11. [PMID: 17936261 DOI: 10.1016/j.ydbio.2007.08.060] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Revised: 08/18/2007] [Accepted: 08/29/2007] [Indexed: 11/24/2022]
Abstract
Vg1, a member of the TGF-beta superfamily of ligands, has been implicated in the induction of mesoderm, formation of primitive streak, and left-right patterning in Xenopus and chick embryos. In mice, GDF1 and GDF3 - two TGF-beta superfamily ligands that share high sequence identity with Vg1 - have been shown to independently mimic distinct aspects of Vg1's functions. However, the extent to which the developmental processes controlled by GDF1 and GDF3 and the underlying signaling mechanisms are evolutionarily conserved remains unclear. Here we show that phylogenetic and genomic analyses indicate that Gdf1 is the true Vg1 ortholog in mammals. In addition, and similar to GDF1, we find that GDF3 signaling can be mediated by the type I receptor ALK4, type II receptors ActRIIA and ActRIIB, and the co-receptor Cripto to activate Smad-dependent reporter genes. When expressed in heterologous cells, the native forms of either GDF1 or GDF3 were incapable of inducing downstream signaling. This could be circumvented by using chimeric constructs carrying heterologous prodomains, or by co-expression with the Furin pro-protein convertase, indicating poor processing of the native GDF1 and GDF3 precursors. Unexpectedly, co-expression with Nodal - another TGF-beta superfamily ligand involved in mesoderm formation - could also expose the activities of native GDF1 and GDF3, suggesting a potentially novel mode of cooperation between these ligands. Functional complementarity between GDF1 and GDF3 during embryonic development was investigated by analyzing genetic interactions between their corresponding genes. This analysis showed that Gdf1(-/-);Gdf3(-/-) compound mutants are more severely affected than either Gdf1(-/-) or Gdf3(-/-) single mutants, with defects in the formation of anterior visceral endoderm and mesoderm that recapitulate Vg1 loss of function, suggesting that GDF1 and GDF3 together represent the functional mammalian homologs of Vg1.
Collapse
|
28
|
Chen YH, Ishii M, Sun J, Sucov HM, Maxson RE. Msx1 and Msx2 regulate survival of secondary heart field precursors and post-migratory proliferation of cardiac neural crest in the outflow tract. Dev Biol 2007; 308:421-37. [PMID: 17601530 DOI: 10.1016/j.ydbio.2007.05.037] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 05/21/2007] [Accepted: 05/29/2007] [Indexed: 11/29/2022]
Abstract
Msx1 and Msx2 are highly conserved, Nk-related homeodomain transcription factors that are essential for a variety of tissue-tissue interactions during vertebrate organogenesis. Here we show that combined deficiencies of Msx1 and Msx2 cause conotruncal anomalies associated with malalignment of the cardiac outflow tract (OFT). Msx1 and Msx2 play dual roles in outflow tract morphogenesis by both protecting secondary heart field (SHF) precursors against apoptosis and inhibiting excessive proliferation of cardiac neural crest, endothelial and myocardial cells in the conotruncal cushions. During incorporation of SHF precursors into the OFT myocardium, ectopic apoptosis in the Msx1-/-; Msx2-/- mutant SHF is associated with reduced expression of Hand1 and Hand2, which from work on Hand1 and Hand2 mutants may be functionally important in the inhibition of apoptosis in Msx1/2 mutants. Later during aorticopulmonary septation, excessive proliferation in the OFT cushion mesenchyme and myocardium of Msx1-/-; Msx2-/- mutants is associated with premature down-regulation of p27(KIP1), an inhibitor of cyclin-dependent kinases. Diminished accretion of SHF precursors to the elongating OFT myocardium and excessive accumulation of mesenchymal cells in the conotruncal cushions may work together to perturb the rotation of the truncus arteriosus, leading to OFT malalignment defects including double-outlet right ventricle, overriding aorta and pulmonary stenosis.
Collapse
Affiliation(s)
- Yi-Hui Chen
- Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center and Hospital, University of Southern California Keck School of Medicine, 1441 Eastlake Avenue, Los Angeles, CA 90033, USA
| | | | | | | | | |
Collapse
|
29
|
Chen SH, Wu PS, Chou CH, Yan YT, Liu H, Weng SY, Yang-Yen HF. A knockout mouse approach reveals that TCTP functions as an essential factor for cell proliferation and survival in a tissue- or cell type-specific manner. Mol Biol Cell 2007; 18:2525-32. [PMID: 17475776 PMCID: PMC1924818 DOI: 10.1091/mbc.e07-02-0188] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Translationally controlled Tumor Protein (TCTP) is an evolutionally highly conserved protein which has been implicated in many cellular functions that are related to cell growth, death, and even the allergic response of the host. To address the physiological roles of TCTP, we generated TCTP knockout mice by targeted gene disruption. Heterozygous mutants appeared to be developmentally normal. However, homozygous mutants (TCTP(-/-)) were embryonic lethal. TCTP(-/-) embryos were smaller in size than the control littermates at all postimplantation stages examined. Although TCTP is widely expressed in both extraembryonic and embryonic tissues, the most prominent defect of the TCTP(-/-) embryo at embryonic stage day 5.5 (E5.5) was in its epiblast, which had a reduced number of cells compared with wild-type controls. The knockout embryos also suffered a higher incidence of apoptosis in epiblast starting about E6.5 and subsequently died around E9.5-10.5 with a severely disorganized structure. Last, we demonstrated that TCTP(-/-) and control mouse embryonic fibroblasts manifested similar proliferation activities and apoptotic sensitivities to various death stimuli. Taken together, our results suggest that despite that TCTP is widely expressed in many tissues or cell types, it appears to regulate cell proliferation and survival in a tissue- or cell type-specific manner.
Collapse
Affiliation(s)
| | - Peih-Shan Wu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan; and
| | | | - Yu-Ting Yan
- Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Hsuan Liu
- Institutes of *Molecular Biology and
| | - Shih-Yen Weng
- Institute of Molecular Medicine, National Taiwan University Medical School, Taipei 100, Taiwan
| | - Hsin-Fang Yang-Yen
- Institutes of *Molecular Biology and
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan; and
- Institute of Molecular Medicine, National Taiwan University Medical School, Taipei 100, Taiwan
| |
Collapse
|
30
|
Russo J, Balogh GA, Heulings R, Mailo DA, Moral R, Russo PA, Sheriff F, Vanegas J, Russo IH. Molecular basis of pregnancy-induced breast cancer protection. Eur J Cancer Prev 2007; 15:306-42. [PMID: 16835503 DOI: 10.1097/00008469-200608000-00006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We have postulated that the lifetime protective effect of an early pregnancy against breast cancer is due to the complete differentiation of the mammary gland characterized by a specific genomic signature imprinted by the physiological process of pregnancy. In the present work, we show evidence that the breast tissue of postmenopausal parous women has had a shifting of stem cell 1 to stem cell 2 with a genomic signature different from similar structures derived from postmenopausal nulliparous women that have stem cell 1. Those genes that are significantly different are grouped in major categories on the basis of their putative functional significance. Among them are those gene transcripts related to immune surveillance, DNA repair, transcription, chromatin structure/activators/co-activators, growth factor and signal transduction pathway, transport and cell trafficking, cell proliferation, differentiation, cell adhesion, protein synthesis and cell metabolism. From these data, it was concluded that during pregnancy there are significant genomic changes that reflect profound alterations in the basic physiology of the mammary gland that explain the protective effect against carcinogenesis. The implication of this knowledge is that when the genomic signature of protection or refractoriness to carcinogenesis is acquired by the shifting of stem cell 1 to stem cell 2, the hormonal milieu induced by pregnancy or pregnancy-like conditions is no longer required. This is a novel concept that challenges the current knowledge that a chemopreventive agent needs to be given for a long period to suppress a metabolic pathway or abrogate the function of an organ.
Collapse
Affiliation(s)
- Jose Russo
- Breast Cancer Research Laboratory, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Russo J, Balogh G, Mailo D, Russo PA, Heulings R, Russo IH. The genomic signature of breast cancer prevention. Recent Results Cancer Res 2007; 174:131-50. [PMID: 17302192 DOI: 10.1007/978-3-540-37696-5_12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Early pregnancy imprints in the breast permanent genomic changes or a signature that reduces the susceptibility of this organ to cancer. The breast attains its maximum development during pregnancy and lactation. After menopause, the breast regresses in both nulliparous and parous women containing lobular structures designated Lob.1. The Lob 1 found in the breast of nulliparous women and of parous women with breast cancer never went through the process of differentiation, retaining a high concentration of epithelial cells that are targets for carcinogens and therefore susceptible to undergoing neoplastic transformation, these cell are called Stem cells 1, whereas Lob 1 structures found in the breast of early parous postmenopausal women free of mammary pathology, on the other hand, are composed of an epithelial cell population that is refractory to transformation called Stem cells 2. The degree of differentiation acquired through early pregnancy has changed the genomic signature that differentiates the Lob 1 from the early parous women from that of the nulliparous women by shifting the Stem cell 1 to a Stem cell 2, making this the postulated mechanism of protection conferred by early full-term pregnancy. The identification of a putative breast stem cell (Stem cell 1) has reached in the last decade a significant impulse and several markers also reported for other tissues have been found in the mammary epithelial cells of both rodents and humans. The data obtained thus far is supporting the concept that the lifetime protective effect of an early pregnancy against breast cancer is due to the complete differentiation of the mammary gland, which results in the replacement of the Stem cell 1 that is a component of the nulliparous breast epithelium with a new stem cell, called Stem cell 2, which is characterized by a specific genomic signature. The pattern of gene expression of the stem cell 2 could potentially be used as useful intermediate end points for evaluating the degree of mammary gland differentiation and for evaluating preventive agents such as human chorionic gonadotropin.
Collapse
Affiliation(s)
- Jose Russo
- Breast Cancer Research Laboratory, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | | | | | | | |
Collapse
|
32
|
Stephens EB, Jackson M, Cui L, Pacyniak E, Choudhuri R, Liverman CS, Salomon DS, Berman NEJ. Early dysregulation of cripto-1 and immunomodulatory genes in the cerebral cortex in a macaque model of neuroAIDS. Neurosci Lett 2006; 410:94-9. [PMID: 17084529 DOI: 10.1016/j.neulet.2006.07.066] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2006] [Revised: 06/15/2006] [Accepted: 07/03/2006] [Indexed: 11/18/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) and related primate lentiviruses are known to enter the central nervous system (CNS) during the primary phase of infection. Neuroinvasion by simian immunodeficiency virus and simian human immunodeficiency virus (SHIV) is characterized by transient meningitis and astrocytosis. In this report, we used targeted cytokine cDNA arrays to analyze cortical brain tissue from four pig-tailed macaques inoculated for 2 weeks with pathogenic SHIV(50OLNV) and a normal age-matched pig-tailed macaque. Our results revealed that eight genes were significantly upregulated in all four macaques. These included: leukocyte interferon inducible peptide, corticotrophin releasing factor receptor 1, interleukin 6, CDW40 antigen, cysteine-rich fibroblast growth factor, neurotrophin 3, ciliary neurotrophin factor receptor and cripto-1. The upregulation of three of these genes was confirmed by reverse transcriptase PCR (RT-PCR). Since cripto-1 had not been previously identified within specific cell types within the primate central nervous system, we performed immunohistochemical studies, which revealed the presence of cripto-1 in neurons. RT-PCR studies demonstrated that cripto-1 mRNA was widely expressed in the CNS. These results indicate that immunomodulatory genes are upregulated during the primary phase of infection of the central nervous system. Cripto-1, which acts as a survival factor in tumor cells and may be neuroprotective, is expressed in neurons within the CNS and is upregulated during viral invasion.
Collapse
Affiliation(s)
- Edward B Stephens
- University of Kansas Medical Center, Anatomy & Cell Biology, 3901 Rainbow Blvd., Kansas City, KS 66160, United States
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Lim Y, Golden JA. Patterning the developing diencephalon. ACTA ACUST UNITED AC 2006; 53:17-26. [PMID: 16876871 DOI: 10.1016/j.brainresrev.2006.06.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Revised: 06/06/2006] [Accepted: 06/09/2006] [Indexed: 12/22/2022]
Abstract
The diencephalon is the embryonic precursor to the caudal forebrain. The major diencephalic derivative is the thalamus, which functions as a relay station between the cortex and lower nervous system structures. Although the diencephalon has been recognized as a vital brain region, our understanding of its development remains superficial. In this review, we discuss recent progresses in understanding one essential aspect of diencephalic development, diencephalic patterning. Signaling centers identified in the zona limitans intrathalamica and along the dorsal and ventral midlines have emerged as essential organizers in diencephalic patterning. The cumulative data reveal that the diencephalon shares some developmental principles with more caudal brain regions, whereas other mechanisms are unique to this region.
Collapse
Affiliation(s)
- Youngshin Lim
- Department of Pathology and Laboratory Medicine, Abramson Research Center, Rm. 516h, Children's Hospital of Philadelphia, 34th and Civic Center Boulevard, Philadelphia, PA 19104, United States
| | | |
Collapse
|
34
|
Mas C, Guimiot-Maloum I, Guimiot F, Khelfaoui M, Nepote V, Bourgeois F, Boda B, Levacher B, Galat A, Moalic JM, Simonneau M. Molecular cloning and expression pattern of the Fkbp25 gene during cerebral cortical neurogenesis. Gene Expr Patterns 2005; 5:577-85. [PMID: 15908283 DOI: 10.1016/j.modgep.2005.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2004] [Revised: 03/22/2005] [Accepted: 03/22/2005] [Indexed: 11/18/2022]
Abstract
Neocortical neurons are generated predominantly from the cells that proliferate in the ventricular zone of the telencephalon. In order to understand the nature of these expanding cortical neuronal progenitor cells, we selected by differential display some transcripts that were enriched in the telencephalon as compared to the more caudal regions (diencephalon/mesencephalon). This systematic screening revealed one of the differentially expressed transcripts, namely the Fkbp25 mRNA that encodes a member of the FK506 binding proteins (FKBPs). Northern blot analysis showed that the expression of the single 1.4kb Fkbp25 transcript reached a maximum level on embryonic day 11.5 at the start of cortical neurogenesis in the mouse and was followed by a weak basal expression in the adult brain. In the embryo, Fkbp25 gene was strongly expressed in the telencephalon ventricular zone but also in areas active in myogenesis (walls of the ventricle and the atrium) and chondrogenesis (the cartilage of the rib and the hindlimb). An increase in the transcript levels of the Fkbp25 gene was also observed during the two successive proliferation waves of the cerebellum development. Immunostaining on primary cultures of embryonic day 10.5 telencephalon stem cells showed that the Fkbp25 protein was present in the cytoplasm and nuclei of cells cultured for 6h but exclusively in the nuclei of the Tuj-1 immunoreactive neurons obtained after 3 days of culture (The sequence data reported here have been submitted to GenBank under accession no. AF135595.).
Collapse
Affiliation(s)
- Christophe Mas
- Neurogénétique INSERM E9935, Hôpital Robert Debré, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Strizzi L, Bianco C, Normanno N, Salomon D. Cripto-1: a multifunctional modulator during embryogenesis and oncogenesis. Oncogene 2005; 24:5731-41. [PMID: 16123806 DOI: 10.1038/sj.onc.1208918] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
It is increasingly evident that genes known to perform critical roles during early embryogenesis, particularly during stem cell renewal, pluripotentiality and survival, are also expressed during the development of cancer. In this regard, oncogenesis may be considered as the recapitulation of embryogenesis in an inappropriate temporal and spatial manner. The epidermal growth factor-Cripto-1/FRL1/cryptic family of proteins consists of extracellular and cell-associated proteins that have been identified in several vertebrate species. During early embryogenesis, epidermal growth factor-Cripto-1/FRL1/cryptic proteins perform an obligatory role as coreceptors for the transforming growth factor-beta subfamily of proteins, which includes Nodal. Cripto-1 has also been shown to function as a ligand through a Nodal/Alk4-independent signaling pathway that involves binding to glypican-1 and the subsequent activation through src of phosphoinositol-3 kinase/Akt and ras/mitogen-activated protein kinase intracellular pathways. Expression of Cripto-1 is increased in several human cancers and its overexpression is associated with the development of mammary tumors in mice. Here, we review the role of Cripto-1 during embryogenesis, cell migration, invasion and angiogenesis and how these activities may relate to cellular transformation and tumorigenesis. We also briefly discuss evidence suggesting that Cripto-1 may be involved in stem cell maintenance.
Collapse
Affiliation(s)
- Luigi Strizzi
- Mammary Biology & Tumorigenesis Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
36
|
Abstract
Embryonic stem (ES) cells have provided a valid model to understand early events of mammalian lineage specification and differentiation, leading to important insights into the mechanisms that control embryogenesis at the molecular and cellular levels. Furthermore, ES cells have recently evoked great scientific interest as ideal candidates for the generation of tissues for transplantation therapies. In this respect, particular attention has been paid to the molecules and signaling pathways triggering ES cell differentiation. The EGF-CFC Cripto protein is a key regulator of ES cells fate. The cripto gene is expressed both in ES cells and during the early phases of embryo development, while, in the adult, it is reactivated in a wide range of epithelial cancers. This review will discuss recent findings on the molecular basis of Cripto signaling in ES cell differentiation, providing an intriguing link between stem cell and tumor biology.
Collapse
Affiliation(s)
- Gabriella Minchiotti
- Institute of Genetics and Biophysics A Buzzati-Traverso, CNR, Via Pietro Castellino 111, 80131 Naples, Italy.
| |
Collapse
|
37
|
Wechselberger C, Strizzi L, Kenney N, Hirota M, Sun Y, Ebert A, Orozco O, Bianco C, Khan NI, Wallace-Jones B, Normanno N, Adkins H, Sanicola M, Salomon DS. Human Cripto-1 overexpression in the mouse mammary gland results in the development of hyperplasia and adenocarcinoma. Oncogene 2005; 24:4094-105. [PMID: 15897912 DOI: 10.1038/sj.onc.1208417] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Human Cripto-1 (CR-1) is overexpressed in approximately 80% of human breast, colon and lung carcinomas. Mouse Cr-1 upregulation is also observed in a number of transgenic (Tg) mouse mammary tumors. To determine whether CR-1 can alter mammary gland development and/or may contribute to tumorigenesis in vivo, we have generated Tg mouse lines that express human CR-1 under the transcriptional control of the mouse mammary tumor virus (MMTV). Stable Tg MMTV/CR-1 FVB/N lines expressing different levels of CR-1 were analysed. Virgin female MMTV/CR-1 Tg mice exhibited enhanced ductal branching, dilated ducts, intraductal hyperplasia, hyperplastic alveolar nodules and condensation of the mammary stroma. Virgin aged MMTV/CR-1 Tg mice also possessed persistent end buds. In aged multiparous MMTV/CR-1 mice, the hyperplastic phenotype was most pronounced with multifocal hyperplasias. In the highest CR-1-expressing subline, G4, 38% (12/31) of the multiparous animals aged 12-20 months developed hyperplasias and approximately 33% (11/31) developed papillary adenocarcinomas. The long latency period suggests that additional genetic alterations are required to facilitate mammary tumor formation in conjunction with CR-1. This is the first in vivo study that shows hyperplasia and tumor growth in CR-1-overexpressing animals.
Collapse
Affiliation(s)
- Christian Wechselberger
- Tumor Growth Factor Section, Mammary Biology and Tumorigenesis Laboratory, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Mukhopadhyay P, Greene RM, Zacharias W, Weinrich MC, Singh S, Young WW, Pisano MM. Developmental gene expression profiling of mammalian, fetal orofacial tissue. ACTA ACUST UNITED AC 2005; 70:912-26. [PMID: 15578713 DOI: 10.1002/bdra.20095] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND The embryonic orofacial region is an excellent developmental paradigm that has revealed the centrality of numerous genes encoding proteins with diverse and important biological functions in embryonic growth and morphogenesis. DNA microarray technology presents an efficient means of acquiring novel and valuable information regarding the expression, regulation, and function of a panoply of genes involved in mammalian orofacial development. METHODS To identify differentially expressed genes during mammalian orofacial ontogenesis, the transcript profiles of GD-12, GD-13, and GD-14 murine orofacial tissue were compared utilizing GeneChip arrays from Affymetrix. Changes in gene expression were verified by TaqMan quantitative real-time PCR. Cluster analysis of the microarray data was done with the GeneCluster 2.0 Data Mining Tool and the GeneSpring software. RESULTS Expression of >50% of the approximately 12,000 genes and expressed sequence tags examined in this study was detected in GD-12, GD-13, and GD-14 murine orofacial tissues and the expression of several hundred genes was up- and downregulated in the developing orofacial tissue from GD-12 to GD-13, as well as from GD-13 to GD-14. Such differential gene expression represents changes in the expression of genes encoding growth factors and signaling molecules; transcription factors; and proteins involved in epithelial-mesenchymal interactions, extracellular matrix synthesis, cell adhesion, proliferation, differentiation, and apoptosis. Following cluster analysis of the microarray data, eight distinct patterns of gene expression during murine orofacial ontogenesis were selected for graphic presentation of gene expression patterns. CONCLUSIONS This gene expression profiling study identifies a number of potentially unique developmental participants and serves as a valuable aid in deciphering the complex molecular mechanisms crucial for mammalian orofacial development.
Collapse
Affiliation(s)
- Partha Mukhopadhyay
- University of Louisville Birth Defects Center, Department of Molecular Cellular and Craniofacial Biology, University of Louisville School of Dentistry, Louisville, Kentucky, KY 40292, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
One of the key organizers in the CNS is the floor plate - a group of cells that is responsible for instructing neural cells to acquire distinctive fates, and that has an important role in establishing the elaborate neuronal networks that underlie the function of the brain and spinal cord. In recent years, considerable controversy has arisen over the mechanism by which floor plate cells form. Here, we describe recent evidence that indicates that discrete populations of floor plate cells, with characteristic molecular properties, form in different regions of the neuraxis, and we discuss data that imply that the mode of floor plate induction varies along the anteroposterior axis.
Collapse
Affiliation(s)
- Marysia Placzek
- Centre for Developmental and Biomedical Genetics, Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK.
| | | |
Collapse
|
40
|
Bianco C, Strizzi L, Normanno N, Khan N, Salomon DS. Cripto-1: an oncofetal gene with many faces. Curr Top Dev Biol 2005; 67:85-133. [PMID: 15949532 DOI: 10.1016/s0070-2153(05)67003-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Human Cripto-1 (CR-1), a member of the epidermal growth factor (EGF)-CFC family, has been implicated in embryogenesis and in carcinogenesis. During early vertebrate development, CR-1 functions as a co-receptor for Nodal, a transforming growth factor beta (TGFbeta) family member and is essential for mesoderm and endoderm formation and anterior-posterior and left-right axis establishment. In adult tissues, CR-1 is expressed at a low level in all stages of mammary gland development and expression increases during pregnancy and lactation. Overexpression of CR-1 in mouse mammary epithelial cells leads to their transformation in vitro and, when injected into mammary glands, produces ductal hyperplasias. CR-1 can also enhance migration, invasion, branching morphogenesis and epithelial to mesenchymal transition (EMT) of several mouse mammary epithelial cell lines. Furthermore, transgenic mouse studies have shown that overexpression of a human CR-1 transgene in the mammary gland under the transcriptional control of the mouse mammary tumor virus (MMTV) promoter results in mammary hyperplasias and papillary adenocarcinomas. Finally, CR-1 is expressed at high levels in approximately 50 to 80% of different types of human carcinomas, including breast, cervix, colon, stomach, pancreas, lung, ovary, and testis. In conclusion, EGF-CFC proteins play dual roles as embryonic pattern formation genes and as oncogenes. While during embryogenesis EGF-CFC proteins perform specific and regulatory functions related to cell and tissue patterning, inappropriate expression of these molecules in adult tissues can lead to cellular proliferation and transformation and therefore may be important in the etiology and/or progression of cancer.
Collapse
Affiliation(s)
- Caterina Bianco
- Tumor Growth Factor Section, Mammary Biology & Tumorigenesis Laboratory Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
41
|
Bamforth SD, Bragança J, Farthing CR, Schneider JE, Broadbent C, Michell AC, Clarke K, Neubauer S, Norris D, Brown NA, Anderson RH, Bhattacharya S. Cited2 controls left-right patterning and heart development through a Nodal-Pitx2c pathway. Nat Genet 2004; 36:1189-1196. [PMID: 15475956 DOI: 10.1038/ng1446] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Accepted: 09/07/2004] [Indexed: 12/18/2022]
Abstract
Malformations of the septum, outflow tract and aortic arch are the most common congenital cardiovascular defects and occur in mice lacking Cited2, a transcriptional coactivator of TFAP2. Here we show that Cited2(-/-) mice also develop laterality defects, including right isomerism, abnormal cardiac looping and hyposplenia, which are suppressed on a mixed genetic background. Cited2(-/-) mice lack expression of the Nodal target genes Pitx2c, Nodal and Ebaf in the left lateral plate mesoderm, where they are required for establishing laterality and cardiovascular development. CITED2 and TFAP2 were detected at the Pitx2c promoter in embryonic hearts, and they activate Pitx2c transcription in transient transfection assays. We propose that an abnormal Nodal-Pitx2c pathway represents a unifying mechanism for the cardiovascular malformations observed in Cited2(-/-) mice, and that such malformations may be the sole manifestation of a laterality defect.
Collapse
Affiliation(s)
- Simon D Bamforth
- Department of Cardiovascular Medicine, University of Oxford, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Bamforth SD, Bragança J, Farthing CR, Schneider JE, Broadbent C, Michell AC, Clarke K, Neubauer S, Norris D, Brown NA, Anderson RH, Bhattacharya S. Cited2 controls left-right patterning and heart development through a Nodal-Pitx2c pathway. Nat Genet 2004; 36:1189-1196. [DOI: https:/doi.org/10.1038/ng1446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
43
|
Annerén C, Cowan CA, Melton DA. The Src family of tyrosine kinases is important for embryonic stem cell self-renewal. J Biol Chem 2004; 279:31590-8. [PMID: 15148312 DOI: 10.1074/jbc.m403547200] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
cYes, a member of the Src family of non-receptor tyrosine kinases, is highly expressed in mouse and human embryonic stem (ES) cells. We demonstrate that cYes kinase activity is regulated by leukemia inhibitory factor (LIF) and serum and is down-regulated when cells differentiate. Moreover, selective chemical inhibition of Src family kinases decreases growth and expression of stem cell genes that mark the undifferentiated state, including Oct3/4, alkaline phosphatase, fibroblast growth factor 4, and Nanog. A synergistic effect on differentiation is observed when ES cells are cultured with an Src family inhibitor and low levels of retinoic acid. Src family kinase inhibition does not interfere with LIF-induced JAK/STAT3 (Janus-associated tyrosine kinases/signal transducer and activator of transcription 3) or p42/p44 MAPK (mitogen-activated protein kinase) phosphorylation. Together the results suggest that the activation of the Src family is important for maintaining mouse and human ES in an undifferentiated state and may represent a third, independent pathway, downstream of LIF in mouse ES cells.
Collapse
Affiliation(s)
- Cecilia Annerén
- Howard Hughes Medical Institute and Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | |
Collapse
|
44
|
Chen C, Shen MM. Two Modes by which Lefty Proteins Inhibit Nodal Signaling. Curr Biol 2004; 14:618-24. [PMID: 15062104 DOI: 10.1016/j.cub.2004.02.042] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2003] [Revised: 02/04/2004] [Accepted: 02/18/2004] [Indexed: 12/29/2022]
Abstract
During vertebrate embryogenesis, members of the Lefty subclass of Transforming Growth Factor-beta (TGFbeta) proteins act as extracellular antagonists of the signaling pathway for Nodal, a TGFbeta-related ligand essential for mesendoderm formation and left-right patterning. Genetic and biochemical analyses have shown that Nodal signaling is mediated by activin receptors but also requires EGF-CFC coreceptors, such as mammalian Cripto or Cryptic. Misexpression experiments in zebrafish and frogs have suggested that Lefty proteins can act as long-range inhibitors for Nodal, possibly through competition for binding to activin receptors. Here we demonstrate two distinct and unexpected mechanisms by which Lefty proteins can antagonize Nodal activity. In particular, using a novel assay for Lefty activity in mammalian cell culture, we find that Lefty can inhibit signaling by Nodal but not by Activin or TGFbeta1, which are EGF-CFC independent. We show that Lefty can interact with Nodal in solution and thereby block Nodal from binding to activin receptors. Furthermore, Lefty can also interact with EGF-CFC proteins and prevent their ability to form part of a Nodal receptor complex. Our results provide mechanistic insights into how Lefty proteins can achieve efficient and stringent regulation of a potent signaling factor.
Collapse
Affiliation(s)
- Canhe Chen
- Center for Advanced Biotechnology and Medicine, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | |
Collapse
|
45
|
Cheng SK, Olale F, Brivanlou AH, Schier AF. Lefty blocks a subset of TGFbeta signals by antagonizing EGF-CFC coreceptors. PLoS Biol 2004; 2:E30. [PMID: 14966532 PMCID: PMC340941 DOI: 10.1371/journal.pbio.0020030] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2003] [Accepted: 11/24/2003] [Indexed: 01/09/2023] Open
Abstract
Members of the EGF-CFC family play essential roles in embryonic development and have been implicated in tumorigenesis. The TGFβ signals Nodal and Vg1/GDF1, but not Activin, require EGF-CFC coreceptors to activate Activin receptors. We report that the TGFβ signaling antagonist Lefty also acts through an EGF-CFC-dependent mechanism. Lefty inhibits Nodal and Vg1 signaling, but not Activin signaling. Lefty genetically interacts with EGF-CFC proteins and competes with Nodal for binding to these coreceptors. Chimeras between Activin and Nodal or Vg1 identify a 14 amino acid region that confers independence from EGF-CFC coreceptors and resistance to Lefty. These results indicate that coreceptors are targets for both TGFβ agonists and antagonists and suggest that subtle sequence variations in TGFβ signals result in greater ligand diversity. TGFβ family members and their receptors are involved in setting up the left-right body axis early in development. This article clarifies the role of Lefty and elucidates the molecular basis for signaling diversity between the family members
Collapse
Affiliation(s)
- Simon K Cheng
- 1Developmental Genetics Program, Skirball Institute of Biomolecular Medicineand Department of Cell Biology, New York University School of Medicine, New York, New YorkUnited States of America
| | - Felix Olale
- 1Developmental Genetics Program, Skirball Institute of Biomolecular Medicineand Department of Cell Biology, New York University School of Medicine, New York, New YorkUnited States of America
| | - Ali H Brivanlou
- 2Laboratory of Molecular Vertebrate Embryology, The Rockefeller UniversityNew York, New YorkUnited States of America
| | - Alexander F Schier
- 1Developmental Genetics Program, Skirball Institute of Biomolecular Medicineand Department of Cell Biology, New York University School of Medicine, New York, New YorkUnited States of America
| |
Collapse
|
46
|
Abstract
In vertebrates, EGF-CFC factors are essential for Nodal signaling. Here, we show that the zygotic function of one-eyed pinhead, the zebrafish EGF-CFC factor, is necessary for cell movement throughout the blastoderm of the early embryo. During the blastula and gastrula stages, mutant cells are more cohesive and migrate slower than wild-type cells. Chimeric analysis reveals that these early motility defects are cell-autonomous; later, one-eyed pinhead mutant cells have a cell-autonomous tendency to acquire ectodermal rather than mesendodermal fates. Moreover, wild-type cells transplanted into the axial region of mutant hosts tend to form isolated aggregates of notochord tissue adjacent to the mutant notochord. Upon misexpressing the Nodal-like ligand Activin in whole embryos, which rescues aspects of the mutant phenotype, cell behavior retains the one-eyed pinhead motility phenotype. However, in squint;cyclops double mutants, which lack Nodal function and possess a more severe phenotype than zygotic one-eyed pinhead mutants, cells of the dorsal margin exhibit a marked tendency to widely disperse rather than cohere together. Elsewhere in the double mutants, for cells of the blastoderm and for rare cells of the gastrula that involute into the hypoblast, motility appears wild-type. Notably, cells at the animal pole, which are not under direct regulation by the Nodal pathway, behave normal in squint;cyclops mutants but exhibit defective motility in one-eyed pinhead mutants. We conclude that, in addition to a role in Nodal signaling, One-eyed pinhead is required for aspects of cell movement, possibly by regulating cell adhesion.
Collapse
Affiliation(s)
- Rachel M Warga
- Department of Biology, University of Rochester, Rochester, NY 14627, USA.
| | | |
Collapse
|
47
|
Foley SF, van Vlijmen HWT, Boynton RE, Adkins HB, Cheung AE, Singh J, Sanicola M, Young CN, Wen D. The CRIPTO/FRL-1/CRYPTIC (CFC) domain of human Cripto. Functional and structural insights through disulfide structure analysis. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:3610-8. [PMID: 12919325 DOI: 10.1046/j.1432-1033.2003.03749.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The disulfide structure of the CRIPTO/FRL-1/CRYPTIC (CFC) domain of human Cripto protein was determined by a combination of enzymatic and chemical fragmentation, followed by chromatographic separation of the fragments, and characterization by mass spectrometry and N-terminal sequencing. These studies showed that Cys115 forms a disulfide bond with Cys133, Cys128 with Cys149, and Cys131 with Cys140. Protein database searching and molecular modeling revealed that the pattern of disulfide linkages in the CFC domain of Cripto is the same as that in PARS intercerebralis major Peptide C (PMP-C), a serine protease inhibitor, and that the EGF-CFC domains of Cripto are predicted to be structurally homologous to the EGF-VWFC domains of the C-terminal extracellular portions of Jagged 1 and Jagged 2. Biochemical studies of the interactions of ALK4 with the CFC domain of Cripto by fluorescence-activated cell sorter analysis indicate that the CFC domain binds to ALK4 independent of the EGF domain. A molecular model of the CFC domain of Cripto was constructed based on the nuclear magnetic resonance structure of PMP-C. This model reveals a hydrophobic patch in the domain opposite to the presumed ALK4 binding site. This hydrophobic patch may be functionally important for the formation of intra or intermolecular complexes.
Collapse
Affiliation(s)
- Susan F Foley
- Biogen, Inc., Cambridge Center, Cambridge, MA 02142, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Saijoh Y, Oki S, Ohishi S, Hamada H. Left-right patterning of the mouse lateral plate requires nodal produced in the node. Dev Biol 2003; 256:160-72. [PMID: 12654299 DOI: 10.1016/s0012-1606(02)00121-5] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Initial determination of left-right (L-R) polarity in mammalian embryos takes place in the node. However, it is not known how asymmetric signals are generated in the node and transferred to the lateral plate mesoderm (LPM). Mice homozygous for a hypomorphic Nodal allele (Nodal(neo)) were generated and found to exhibit L-R defects, including right isomerism. Although the mutant embryos express Nodal at gastrulation stages, the subsequent expression of this gene in the node and left LPM is lost. A transgene that conferred Nodal expression specifically in the node rescued the L-R defects of the Nodal(neo/neo) embryos. Conversely, ectopic expression of the Nodal inhibitor Lefty2 in the node of Nodal(neo/+) embryos resulted in a phenotype similar to that of the Nodal(neo/neo) mutant. These results indicate that Nodal produced in the node is required for expression of Nodal and other left side-specific genes in the LPM.
Collapse
Affiliation(s)
- Yukio Saijoh
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Osaka 565-0871, Suita, Japan.
| | | | | | | |
Collapse
|
49
|
Cheng SK, Olale F, Bennett JT, Brivanlou AH, Schier AF. EGF-CFC proteins are essential coreceptors for the TGF-beta signals Vg1 and GDF1. Genes Dev 2003; 17:31-6. [PMID: 12514096 PMCID: PMC195969 DOI: 10.1101/gad.1041203] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The TGF-beta signals Nodal, Activin, GDF1, and Vg1 have been implicated in mesoderm induction and left-right patterning. Nodal and Activin both activate Activin receptors, but only Nodal requires EGF-CFC coreceptors for signaling. We report that Vg1 and GDF1 signaling in zebrafish also depends on EGF-CFC proteins, but not on Nodal signals. Correspondingly, we find that in Xenopus Vg1 and GDF1 bind to and signal through Activin receptors only in the presence of EGF-CFC proteins. These results establish that multiple TGF-beta signals converge on Activin receptor/EGF-CFC complexes and suggest a more widespread requirement for coreceptors in TGF-beta signaling than anticipated previously.
Collapse
Affiliation(s)
- Simon K Cheng
- Developmental Genetics Program, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | |
Collapse
|
50
|
Yan YT, Liu JJ, Luo Y, E C, Haltiwanger RS, Abate-Shen C, Shen MM. Dual roles of Cripto as a ligand and coreceptor in the nodal signaling pathway. Mol Cell Biol 2002; 22:4439-49. [PMID: 12052855 PMCID: PMC133918 DOI: 10.1128/mcb.22.13.4439-4449.2002] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The EGF-CFC gene Cripto encodes an extracellular protein that has been implicated in the signaling pathway for the transforming growth factor beta (TGF beta) ligand Nodal. Although recent findings in frog and fish embryos have suggested that EGF-CFC proteins function as coreceptors for Nodal, studies in cell culture have implicated Cripto as a growth factor-like signaling molecule. Here we reconcile these apparently disparate models of Cripto function by using a mammalian cell culture assay to investigate the signaling activities of Nodal and EGF-CFC proteins. Using a luciferase reporter assay, we found that Cripto has activities consistent with its being a coreceptor for Nodal. However, Cripto can also function as a secreted signaling factor in cell coculture assays, suggesting that it may also act as a coligand for Nodal. Furthermore, we found that the ability of Cripto to bind to Nodal and mediate Nodal signaling requires the addition of an O-linked fucose monosaccharide to a conserved site within EGF-CFC proteins. We propose a model in which Cripto has dual roles as a coreceptor as well as a coligand for Nodal and that this signaling interaction with Nodal is regulated by an unusual form of glycosylation. Our findings highlight the significance of extracellular modulation of ligand activity as an important means of regulating TGF beta signaling pathways during vertebrate development.
Collapse
Affiliation(s)
- Yu-Ting Yan
- Center for Advanced Biotechnology and Medicine and Department of Pediatric, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | | | |
Collapse
|