1
|
Zhou L, Zhao S, Xing X. Effects of different signaling pathways on odontogenic differentiation of dental pulp stem cells: a review. Front Physiol 2023; 14:1272764. [PMID: 37929208 PMCID: PMC10622672 DOI: 10.3389/fphys.2023.1272764] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023] Open
Abstract
Dental pulp stem cells (DPSCs) are a type of mesenchymal stem cells that can differentiate into odontoblast-like cells and protect the pulp. The differentiation of DPSCs can be influenced by biomaterials or growth factors that activate different signaling pathways in vitro or in vivo. In this review, we summarized six major pathways involved in the odontogenic differentiation of DPSCs, Wnt signaling pathways, Smad signaling pathways, MAPK signaling pathways, NF-kB signaling pathways, PI3K/AKT/mTOR signaling pathways, and Notch signaling pathways. Various factors can influence the odontogenic differentiation of DPSCs through one or more signaling pathways. By understanding the interactions between these signaling pathways, we can expand our knowledge of the mechanisms underlying the regeneration of the pulp-dentin complex.
Collapse
Affiliation(s)
| | | | - Xianghui Xing
- Department of Pediatric Dentistry, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
2
|
Mitsiadis TA, Pagella P, Capellini TD, Smith MM. The Notch-mediated circuitry in the evolution and generation of new cell lineages: the tooth model. Cell Mol Life Sci 2023; 80:182. [PMID: 37330998 DOI: 10.1007/s00018-023-04831-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/19/2023] [Accepted: 06/09/2023] [Indexed: 06/20/2023]
Abstract
The Notch pathway is an ancient, evolutionary conserved intercellular signaling mechanism that is involved in cell fate specification and proper embryonic development. The Jagged2 gene, which encodes a ligand for the Notch family of receptors, is expressed from the earliest stages of odontogenesis in epithelial cells that will later generate the enamel-producing ameloblasts. Homozygous Jagged2 mutant mice exhibit abnormal tooth morphology and impaired enamel deposition. Enamel composition and structure in mammals are tightly linked to the enamel organ that represents an evolutionary unit formed by distinct dental epithelial cell types. The physical cooperativity between Notch ligands and receptors suggests that Jagged2 deletion could alter the expression profile of Notch receptors, thus modifying the whole Notch signaling cascade in cells within the enamel organ. Indeed, both Notch1 and Notch2 expression are severely disturbed in the enamel organ of Jagged2 mutant teeth. It appears that the deregulation of the Notch signaling cascade reverts the evolutionary path generating dental structures more reminiscent of the enameloid of fishes rather than of mammalian enamel. Loss of interactions between Notch and Jagged proteins may initiate the suppression of complementary dental epithelial cell fates acquired during evolution. We propose that the increased number of Notch homologues in metazoa enabled incipient sister cell types to form and maintain distinctive cell fates within organs and tissues along evolution.
Collapse
Affiliation(s)
- Thimios A Mitsiadis
- Institute of Oral Biology, Centre for Dental Medicine, University of Zurich, Plattenstrasse 11, 8032, Zurich, Switzerland.
| | - Pierfrancesco Pagella
- Institute of Oral Biology, Centre for Dental Medicine, University of Zurich, Plattenstrasse 11, 8032, Zurich, Switzerland
- Wallenberg Center for Molecular Medicine (WCMM) and Department of Biomedical and Clinical Sciences, Linköpings Universitet, 581 85, Linköping, Sweden
| | - Terence D Capellini
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Moya Meredith Smith
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, King's College London, London, UK
| |
Collapse
|
3
|
Notch Signaling Pathway in Tooth Shape Variations throughout Evolution. Cells 2023; 12:cells12050761. [PMID: 36899896 PMCID: PMC10000876 DOI: 10.3390/cells12050761] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Evolutionary changes in vertebrates are linked to genetic alterations that often affect tooth crown shape, which is a criterion of speciation events. The Notch pathway is highly conserved between species and controls morphogenetic processes in most developing organs, including teeth. Epithelial loss of the Notch-ligand Jagged1 in developing mouse molars affects the location, size and interconnections of their cusps that lead to minor tooth crown shape modifications convergent to those observed along Muridae evolution. RNA sequencing analysis revealed that these alterations are due to the modulation of more than 2000 genes and that Notch signaling is a hub for significant morphogenetic networks, such as Wnts and Fibroblast Growth Factors. The modeling of these tooth crown changes in mutant mice, via a three-dimensional metamorphosis approach, allowed prediction of how Jagged1-associated mutations in humans could affect the morphology of their teeth. These results shed new light on Notch/Jagged1-mediated signaling as one of the crucial components for dental variations in evolution.
Collapse
|
4
|
Adam10-dependent Notch signaling establishes dental epithelial cell boundaries required for enamel formation. iScience 2022; 25:105154. [PMID: 36193048 PMCID: PMC9526176 DOI: 10.1016/j.isci.2022.105154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/27/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022] Open
Abstract
The disintegrin and metalloproteinase Adam10 is a membrane-bound sheddase that regulates Notch signaling and ensures epidermal integrity. To address the function of Adam10 in the continuously growing incisors, we used Keratin14Cre/+;Adam10fl/fl transgenic mice, in which Adam10 is conditionally deleted in the dental epithelium. Keratin14Cre/+;Adam10fl/fl mice exhibited severe abnormalities, including defective enamel formation reminiscent of human enamel pathologies. Histological analyses of mutant incisors revealed absence of stratum intermedium, and severe disorganization of enamel-secreting ameloblasts. In situ hybridization and immunostaining analyses in the Keratin14Cre/+;Adam10fl/fl incisors showed strong Notch1 downregulation in dental epithelium and ectopic distribution of enamel-specific molecules, including ameloblastin and amelogenin. Lineage tracing studies using Notch1CreERT2;R26mT/mG mice demonstrated that loss of the stratum intermedium cells was due to their fate switch toward the ameloblast lineage. Overall, our data reveal that in the continuously growing incisors the Adam10/Notch axis controls dental epithelial cell boundaries, cell fate switch and proper enamel formation. ADAM10 deletion in the dental epithelium causes the formation of defective enamel ADAM10 deletion leads to loss of stratum intermedium and Notch1 expression ADAM10 deletion leads to stratum intermedium-to-ameloblast cell fate switch
Collapse
|
5
|
Three-Dimensional Culture Systems for Dissecting Notch Signalling in Health and Disease. Int J Mol Sci 2021; 22:ijms222212473. [PMID: 34830355 PMCID: PMC8618738 DOI: 10.3390/ijms222212473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022] Open
Abstract
Three-dimensional (3D) culture systems opened up new horizons in studying the biology of tissues and organs, modelling various diseases, and screening drugs. Producing accurate in vitro models increases the possibilities for studying molecular control of cell–cell and cell–microenvironment interactions in detail. The Notch signalling is linked to cell fate determination, tissue definition, and maintenance in both physiological and pathological conditions. Hence, 3D cultures provide new accessible platforms for studying activation and modulation of the Notch pathway. In this review, we provide an overview of the recent advances in different 3D culture systems, including spheroids, organoids, and “organ-on-a-chip” models, and their use in analysing the crucial role of Notch signalling in the maintenance of tissue homeostasis, pathology, and regeneration.
Collapse
|
6
|
Pagella P, de Vargas Roditi L, Stadlinger B, Moor AE, Mitsiadis TA. Notch signaling in the dynamics of perivascular stem cells and their niches. Stem Cells Transl Med 2021; 10:1433-1445. [PMID: 34227747 PMCID: PMC8459638 DOI: 10.1002/sctm.21-0086] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/20/2021] [Accepted: 05/02/2021] [Indexed: 12/11/2022] Open
Abstract
The Notch signaling pathway is a fundamental regulator of cell fate determination in homeostasis and regeneration. In this work, we aimed to determine how Notch signaling mediates the interactions between perivascular stem cells and their niches in human dental mesenchymal tissues, both in homeostatic and regenerative conditions. By single cell RNA sequencing analysis, we showed that perivascular cells across the dental pulp and periodontal human tissues all express NOTCH3, and that these cells are important for the response to traumatic injuries in vivo in a transgenic mouse model. We further showed that the behavior of perivascular NOTCH3‐expressing stem cells could be modulated by cellular and molecular cues deriving from their microenvironments. Taken together, the present studies, reinforced by single‐cell analysis, reveal the pivotal importance of Notch signaling in the crosstalk between perivascular stem cells and their niches in tissue homeostasis and regeneration.
Collapse
Affiliation(s)
- Pierfrancesco Pagella
- Orofacial Development and Regeneration, Institute of Oral Biology, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Laura de Vargas Roditi
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland.,Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Bernd Stadlinger
- Clinic of Cranio-Maxillofacial and Oral Surgery, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Andreas E Moor
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland.,Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Thimios A Mitsiadis
- Orofacial Development and Regeneration, Institute of Oral Biology, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Exploiting teeth as a model to study basic features of signaling pathways. Biochem Soc Trans 2020; 48:2729-2742. [DOI: 10.1042/bst20200514] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 12/21/2022]
Abstract
Teeth constitute a classical model for the study of signaling pathways and their roles in mediating interactions between cells and tissues in organ development, homeostasis and regeneration. Rodent teeth are mostly used as experimental models. Rodent molars have proved fundamental in the study of epithelial–mesenchymal interactions and embryonic organ morphogenesis, as well as to faithfully model human diseases affecting dental tissues. The continuously growing rodent incisor is an excellent tool for the investigation of the mechanisms regulating stem cells dynamics in homeostasis and regeneration. In this review, we discuss the use of teeth as a model to investigate signaling pathways, providing an overview of the many unique experimental approaches offered by this organ. We discuss how complex networks of signaling pathways modulate the various aspects of tooth biology, and the models used to obtain this knowledge. Finally, we introduce new experimental approaches that allow the study of more complex interactions, such as the crosstalk between dental tissues, innervation and vascularization.
Collapse
|
8
|
Physiology, Pathology and Regeneration of Salivary Glands. Cells 2019; 8:cells8090976. [PMID: 31455013 PMCID: PMC6769486 DOI: 10.3390/cells8090976] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 08/16/2019] [Accepted: 08/17/2019] [Indexed: 01/03/2023] Open
Abstract
Salivary glands are essential structures in the oral cavity. A variety of diseases, such as cancer, autoimmune diseases, infections and physical traumas, can alter the functionality of these glands, greatly impacting the quality of life of patients. To date, no definitive therapeutic approach can compensate the impairment of salivary glands, and treatment are purely symptomatic. Understanding the cellular and molecular control of salivary glands function is, therefore, highly relevant for therapeutic purposes. In this review, we provide a starting platform for future studies in basic biology and clinical research, reporting classical ideas on salivary gland physiology and recently developed technology to guide regeneration, reconstruction and substitution of the functional organs.
Collapse
|
9
|
Mitsiadis TA. Emerging Trends and Promises in Orofacial Cancers. Front Physiol 2019; 10:679. [PMID: 31191362 PMCID: PMC6549536 DOI: 10.3389/fphys.2019.00679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/13/2019] [Indexed: 12/11/2022] Open
Affiliation(s)
- Thimios A Mitsiadis
- Orofacial Development and Regeneration, Institute of Oral Biology, Centre for Dental Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Rostampour N, Appelt CM, Abid A, Boughner JC. Expression of new genes in vertebrate tooth development and p63 signaling. Dev Dyn 2019; 248:744-755. [PMID: 30875130 DOI: 10.1002/dvdy.26] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 02/15/2019] [Accepted: 03/11/2019] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND p63 is an evolutionarily ancient transcription factor essential to vertebrate tooth development. Our recent gene expression screen comparing wild-type and "toothless" p63-/- mouse embryos implicated in tooth development several new genes that we hypothesized act downstream of p63 in dental epithelium, where p63 is also expressed. RESULTS Via in situ hybridization and immunohistochemistry, we probed mouse embryos (embryonic days 10.5-14.5) and spotted gar fish embryos (14 days postfertilization) for these newly linked genes, Cbln1, Cldn23, Fermt1, Krt15, Pltp and Prss8, which were expressed in mouse and gar dental epithelium. Loss of p63 altered expression levels but not domains. Expression was comparable between murine upper and lower tooth organs, implying conserved gene functions in maxillary and mandibular dentitions. Our meta-analysis of gene expression databases supported that these genes act within a p63-driven gene regulatory network important to tooth development in mammals and more evolutionary ancient vertebrates (fish, amphibians). CONCLUSIONS Cbln1, Cldn23, Fermt1, Krt15, Pltp, and Prss8 were expressed in mouse and fish dental epithelium at placode, bud, and/or cap stages. We theorize that these genes participate in cell-cell adhesion, cell polarity, and extracellular matrix signaling to support dental epithelium integrity, folding, and epithelial-mesenchymal cross talk during tooth development.
Collapse
Affiliation(s)
- Nasim Rostampour
- Department of Anatomy & Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Cassy M Appelt
- Department of Anatomy & Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Aunum Abid
- Department of Anatomy & Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Julia C Boughner
- Department of Anatomy & Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
11
|
Altered Notch Signaling in Developing Molar Teeth of Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP)-Deficient Mice. J Mol Neurosci 2018; 68:377-388. [PMID: 30094580 DOI: 10.1007/s12031-018-1146-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/27/2018] [Indexed: 10/28/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide with neuroprotective and neurotrophic effects. This suggests its influence on the development of teeth, which are, similarly to the nervous system, ectoderm and neural crest derivatives. Our earlier studies have shown morphological differences between wild-type (WT) and PACAP-deficient mice, with upregulated sonic hedgehog (SHH) signaling in the lack of PACAP. Notch signaling is a key element of proper tooth development by regulating apoptosis and cell proliferation. In this study, our main goal was to evaluate the possible effects of PACAP on Notch signaling pathway. Immunohistochemical staining was performed of Notch receptors (Notch1, 2, 3, 4), their ligands [delta-like protein (DLL)1, 3, 4, Jagged1, 2], and intracellular target molecules [CSL (CBF1 humans/Su (H) Drosophila/LAG1 Caenorhabditis elegans transcription factor); TACE (TNF-α converting enzyme), NUMB] in molar teeth of 5-day-old WT, and homozygous and heterozygous PACAP-deficient mice. We measured immunopositivity in the enamel-producing ameloblasts and dentin-producing odontoblasts. Notch2 receptor and DLL1 expression were elevated in ameloblasts of PACAP-deficient mice compared to those in WT ones. The expression of CSL showed similar results both in the ameloblasts and odontoblasts. Jagged1 ligand expression was elevated in the odontoblasts of homozygous PACAP-deficient mice compared to WT mice. Other Notch pathway elements did not show significant differences between the genotype groups. The lack of PACAP leads to upregulation of Notch pathway elements in the odontoblast and ameloblast cells. The underlying molecular mechanisms are yet to be elucidated; however, we propose SHH-dependent and independent processes. We hypothesize that this compensatory upregulation of Notch signaling by the lack of PACAP could represent a salvage pathway in PACAP-deficient animals.
Collapse
|
12
|
Favarolo MB, López SL. Notch signaling in the division of germ layers in bilaterian embryos. Mech Dev 2018; 154:122-144. [PMID: 29940277 DOI: 10.1016/j.mod.2018.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/08/2018] [Accepted: 06/18/2018] [Indexed: 01/09/2023]
Abstract
Bilaterian embryos are triploblastic organisms which develop three complete germ layers (ectoderm, mesoderm, and endoderm). While the ectoderm develops mainly from the animal hemisphere, there is diversity in the location from where the endoderm and the mesoderm arise in relation to the animal-vegetal axis, ranging from endoderm being specified between the ectoderm and mesoderm in echinoderms, and the mesoderm being specified between the ectoderm and the endoderm in vertebrates. A common feature is that part of the mesoderm segregates from an ancient bipotential endomesodermal domain. The process of segregation is noisy during the initial steps but it is gradually refined. In this review, we discuss the role of the Notch pathway in the establishment and refinement of boundaries between germ layers in bilaterians, with special focus on its interaction with the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- María Belén Favarolo
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis" (IBCN), Facultad de Medicina, Laboratorio de Embriología Molecular "Prof. Dr. Andrés E. Carrasco", Buenos Aires, Argentina
| | - Silvia L López
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis" (IBCN), Facultad de Medicina, Laboratorio de Embriología Molecular "Prof. Dr. Andrés E. Carrasco", Buenos Aires, Argentina.
| |
Collapse
|
13
|
Teng CS, Yen HY, Barske L, Smith B, Llamas J, Segil N, Go J, Sanchez-Lara PA, Maxson RE, Crump JG. Requirement for Jagged1-Notch2 signaling in patterning the bones of the mouse and human middle ear. Sci Rep 2017; 7:2497. [PMID: 28566723 PMCID: PMC5451394 DOI: 10.1038/s41598-017-02574-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 04/12/2017] [Indexed: 11/18/2022] Open
Abstract
Whereas Jagged1-Notch2 signaling is known to pattern the sensorineural components of the inner ear, its role in middle ear development has been less clear. We previously reported a role for Jagged-Notch signaling in shaping skeletal elements derived from the first two pharyngeal arches of zebrafish. Here we show a conserved requirement for Jagged1-Notch2 signaling in patterning the stapes and incus middle ear bones derived from the equivalent pharyngeal arches of mammals. Mice lacking Jagged1 or Notch2 in neural crest-derived cells (NCCs) of the pharyngeal arches display a malformed stapes. Heterozygous Jagged1 knockout mice, a model for Alagille Syndrome (AGS), also display stapes and incus defects. We find that Jagged1-Notch2 signaling functions early to pattern the stapes cartilage template, with stapes malformations correlating with hearing loss across all frequencies. We observe similar stapes defects and hearing loss in one patient with heterozygous JAGGED1 loss, and a diversity of conductive and sensorineural hearing loss in nearly half of AGS patients, many of which carry JAGGED1 mutations. Our findings reveal deep conservation of Jagged1-Notch2 signaling in patterning the pharyngeal arches from fish to mouse to man, despite the very different functions of their skeletal derivatives in jaw support and sound transduction.
Collapse
Affiliation(s)
- Camilla S Teng
- Eli and Edythe Broad CIRM Center for Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, 90033, USA.,Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Hai-Yun Yen
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.,Fulgent Diagnostics, Temple City, CA, 91780, USA
| | - Lindsey Barske
- Eli and Edythe Broad CIRM Center for Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Bea Smith
- Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA
| | - Juan Llamas
- Eli and Edythe Broad CIRM Center for Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, 90033, USA.,USC Caruso Department of Otolaryngology - Head and Neck Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Neil Segil
- Eli and Edythe Broad CIRM Center for Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, 90033, USA.,USC Caruso Department of Otolaryngology - Head and Neck Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - John Go
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Pedro A Sanchez-Lara
- Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA.,Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, 90033, USA
| | - Robert E Maxson
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| | - J Gage Crump
- Eli and Edythe Broad CIRM Center for Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
14
|
Delfino-Machín M, Madelaine R, Busolin G, Nikaido M, Colanesi S, Camargo-Sosa K, Law EWP, Toppo S, Blader P, Tiso N, Kelsh RN. Sox10 contributes to the balance of fate choice in dorsal root ganglion progenitors. PLoS One 2017; 12:e0172947. [PMID: 28253350 PMCID: PMC5333849 DOI: 10.1371/journal.pone.0172947] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 02/12/2017] [Indexed: 11/19/2022] Open
Abstract
The development of functional peripheral ganglia requires a balance of specification of both neuronal and glial components. In the developing dorsal root ganglia (DRGs), these components form from partially-restricted bipotent neuroglial precursors derived from the neural crest. Work in mouse and chick has identified several factors, including Delta/Notch signaling, required for specification of a balance of these components. We have previously shown in zebrafish that the Sry-related HMG domain transcription factor, Sox10, plays an unexpected, but crucial, role in sensory neuron fate specification in vivo. In the same study we described a novel Sox10 mutant allele, sox10baz1, in which sensory neuron numbers are elevated above those of wild-types. Here we investigate the origin of this neurogenic phenotype. We demonstrate that the supernumerary neurons are sensory neurons, and that enteric and sympathetic neurons are almost absent just as in classical sox10 null alleles; peripheral glial development is also severely abrogated in a manner similar to other sox10 mutant alleles. Examination of proliferation and apoptosis in the developing DRG reveals very low levels of both processes in wild-type and sox10baz1, excluding changes in the balance of these as an explanation for the overproduction of sensory neurons. Using chemical inhibition of Delta-Notch-Notch signaling we demonstrate that in embryonic zebrafish, as in mouse and chick, lateral inhibition during the phase of trunk DRG development is required to achieve a balance between glial and neuronal numbers. Importantly, however, we show that this mechanism is insufficient to explain quantitative aspects of the baz1 phenotype. The Sox10(baz1) protein shows a single amino acid substitution in the DNA binding HMG domain; structural analysis indicates that this change is likely to result in reduced flexibility in the HMG domain, consistent with sequence-specific modification of Sox10 binding to DNA. Unlike other Sox10 mutant proteins, Sox10(baz1) retains an ability to drive neurogenin1 transcription. We show that overexpression of neurogenin1 is sufficient to produce supernumerary DRG sensory neurons in a wild-type background, and can rescue the sensory neuron phenotype of sox10 morphants in a manner closely resembling the baz1 phenotype. We conclude that an imbalance of neuronal and glial fate specification results from the Sox10(baz1) protein's unique ability to drive sensory neuron specification whilst failing to drive glial development. The sox10baz1 phenotype reveals for the first time that a Notch-dependent lateral inhibition mechanism is not sufficient to fully explain the balance of neurons and glia in the developing DRGs, and that a second Sox10-dependent mechanism is necessary. Sox10 is thus a key transcription factor in achieving the balance of sensory neuronal and glial fates.
Collapse
Affiliation(s)
- Mariana Delfino-Machín
- Department of Biology and Biochemistry and Centre for Regenerative Medicine, University of Bath, Bath, United Kingdom
| | - Romain Madelaine
- Centre de Biologie du Développement (CBD, UMR5547), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | | | - Masataka Nikaido
- Department of Biology and Biochemistry and Centre for Regenerative Medicine, University of Bath, Bath, United Kingdom
| | - Sarah Colanesi
- Department of Biology and Biochemistry and Centre for Regenerative Medicine, University of Bath, Bath, United Kingdom
| | - Karen Camargo-Sosa
- Department of Biology and Biochemistry and Centre for Regenerative Medicine, University of Bath, Bath, United Kingdom
| | - Edward W. P. Law
- Department of Biology and Biochemistry and Centre for Regenerative Medicine, University of Bath, Bath, United Kingdom
| | - Stefano Toppo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Patrick Blader
- Centre de Biologie du Développement (CBD, UMR5547), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Natascia Tiso
- Department of Biology, University of Padova, Padova, Italy
| | - Robert N. Kelsh
- Department of Biology and Biochemistry and Centre for Regenerative Medicine, University of Bath, Bath, United Kingdom
| |
Collapse
|
15
|
Jin Y, Wang C, Cheng S, Zhao Z, Li J. MicroRNA control of tooth formation and eruption. Arch Oral Biol 2017; 73:302-310. [DOI: 10.1016/j.archoralbio.2016.08.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 08/20/2016] [Accepted: 08/22/2016] [Indexed: 01/01/2023]
|
16
|
Competition between Jagged-Notch and Endothelin1 Signaling Selectively Restricts Cartilage Formation in the Zebrafish Upper Face. PLoS Genet 2016; 12:e1005967. [PMID: 27058748 PMCID: PMC4825933 DOI: 10.1371/journal.pgen.1005967] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 03/09/2016] [Indexed: 11/25/2022] Open
Abstract
The intricate shaping of the facial skeleton is essential for function of the vertebrate jaw and middle ear. While much has been learned about the signaling pathways and transcription factors that control facial patterning, the downstream cellular mechanisms dictating skeletal shapes have remained unclear. Here we present genetic evidence in zebrafish that three major signaling pathways − Jagged-Notch, Endothelin1 (Edn1), and Bmp − regulate the pattern of facial cartilage and bone formation by controlling the timing of cartilage differentiation along the dorsoventral axis of the pharyngeal arches. A genomic analysis of purified facial skeletal precursors in mutant and overexpression embryos revealed a core set of differentiation genes that were commonly repressed by Jagged-Notch and induced by Edn1. Further analysis of the pre-cartilage condensation gene barx1, as well as in vivo imaging of cartilage differentiation, revealed that cartilage forms first in regions of high Edn1 and low Jagged-Notch activity. Consistent with a role of Jagged-Notch signaling in restricting cartilage differentiation, loss of Notch pathway components resulted in expanded barx1 expression in the dorsal arches, with mutation of barx1 rescuing some aspects of dorsal skeletal patterning in jag1b mutants. We also identified prrx1a and prrx1b as negative Edn1 and positive Bmp targets that function in parallel to Jagged-Notch signaling to restrict the formation of dorsal barx1+ pre-cartilage condensations. Simultaneous loss of jag1b and prrx1a/b better rescued lower facial defects of edn1 mutants than loss of either pathway alone, showing that combined overactivation of Jagged-Notch and Bmp/Prrx1 pathways contribute to the absence of cartilage differentiation in the edn1 mutant lower face. These findings support a model in which Notch-mediated restriction of cartilage differentiation, particularly in the second pharyngeal arch, helps to establish a distinct skeletal pattern in the upper face. The exquisite functions of the vertebrate face require the precise formation of its underlying bones. Remarkably, many of the genes required to shape the facial skeleton are the same from fish to man. In this study, we use the powerful zebrafish system to understand how the skeletal components of the face acquire different shapes during development. To do so, we analyze a series of mutants that disrupt patterning of the facial skeleton, and then assess how the genes affected in these mutants control cell fate in skeletal progenitor cells. From these genetic studies, we found that several pathways converge to control when and where progenitor cells commit to a cartilage fate, thus controlling the size and shape of cartilage templates for the later-arising bones. Our work thus reveals how regulating the timing of when progenitor cells make skeleton helps to shape the bones of the zebrafish face. As mutations in many of the genes studied are implicated in human craniofacial defects, differences in the timing of progenitor cell differentiation may also explain the wonderful diversity of human faces.
Collapse
|
17
|
Sukarawan W, Peetiakarawach K, Pavasant P, Osathanon T. Effect of Jagged-1 and Dll-1 on osteogenic differentiation by stem cells from human exfoliated deciduous teeth. Arch Oral Biol 2016; 65:1-8. [PMID: 26826998 DOI: 10.1016/j.archoralbio.2016.01.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 01/18/2016] [Accepted: 01/19/2016] [Indexed: 02/09/2023]
Abstract
OBJECTIVE The aim of the present study was to determine the influence of Notch ligands, Jagged-1 and Dll-1, on osteogenic differentiation by stem cells from human exfoliated deciduous teeth. DESIGN Notch ligands were immobilized on tissue culture surface using an indirect affinity immobilization technique. Cells from the remaining of dental pulp tissues from human deciduous teeth were isolated and characterized using flow cytometry and differentiation assay. Alkaline phosphatase (ALP) enzymatic activity, osteogenic marker gene expression, and mineralization were determined using ALP assay, real-time polymerase chain reaction, and alizarin red staining, respectively. RESULTS The isolated cells exhibited CD44, CD90, and CD105 expression but lack of CD45 expression. Further, these cells were able to differentiate toward osteogenic lineage. The upregulation of HES-1 and HEY-1 was observed in those cells on Dll-1 and Jagged-1 coated surface. The significant increase of ALP activity and mineralization was noted in those cells seeded on Jagged-1 surface and these results were attenuated when cells were pretreated with gamma secretase inhibitor. The significant upregulation of ALP and collagen type I gene expression was also observed in those cells seeded on Jagged-1 surface. The inconsistent Dll-1 induced osteogenic differentiation was found and high Dll-1 immobilized dose (50 nM) slightly enhanced alkaline phosphatase enzymatic activity. However, the statistical significant difference was not obtained as compared to the hFc control. CONCLUSION The surface immobilization of Notch ligands, Jagged-1 and Dll-1, likely to enhance osteogenic differentiation of SHEDs. However, Jagged-1 had more ability in enhancing osteogenic differentiation than Dll-1 in our model.
Collapse
Affiliation(s)
- Waleerat Sukarawan
- Department of Pediatric Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330 Thailand; Mineralized Tissue Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330 Thailand.
| | - Karnnapas Peetiakarawach
- Department of Pediatric Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330 Thailand; Mineralized Tissue Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330 Thailand
| | - Prasit Pavasant
- Mineralized Tissue Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330 Thailand; Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330 Thailand
| | - Thanaphum Osathanon
- Mineralized Tissue Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330 Thailand; Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330 Thailand.
| |
Collapse
|
18
|
Jheon AH, Prochazkova M, Meng B, Wen T, Lim YJ, Naveau A, Espinoza R, Sone ED, Ganss B, Siebel CW, Klein OD. Inhibition of Notch Signaling During Mouse Incisor Renewal Leads to Enamel Defects. J Bone Miner Res 2016; 31:152-62. [PMID: 26179131 PMCID: PMC4840178 DOI: 10.1002/jbmr.2591] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 06/18/2015] [Accepted: 07/02/2015] [Indexed: 12/13/2022]
Abstract
The continuously growing rodent incisor is an emerging model for the study of renewal of mineralized tissues by adult stem cells. Although the Bmp, Fgf, Shh, and Wnt pathways have been studied in this organ previously, relatively little is known about the role of Notch signaling during incisor renewal. Notch signaling components are expressed in enamel-forming ameloblasts and the underlying stratum intermedium (SI), which suggested distinct roles in incisor renewal and enamel mineralization. Here, we injected adult mice with inhibitory antibodies against several components of the Notch pathway. This blockade led to defects in the interaction between ameloblasts and the SI cells, which ultimately affected enamel formation. Furthermore, Notch signaling inhibition led to the downregulation of desmosome-specific proteins such as PERP and desmoplakin, consistent with the importance of desmosomes in the integrity of ameloblast-SI attachment and enamel formation. Together, our data demonstrate that Notch signaling is critical for proper enamel formation during incisor renewal, in part by regulating desmosome-specific components, and that the mouse incisor provides a model system to dissect Jag-Notch signaling mechanisms in the context of mineralized tissue renewal.
Collapse
Affiliation(s)
- Andrew H. Jheon
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California San Francisco, San Francisco, USA
| | - Michaela Prochazkova
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California San Francisco, San Francisco, USA
- Department of Anthropology and Human Genetics, Charles University in Prague, Czech Republic
| | - Bo Meng
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California San Francisco, San Francisco, USA
| | - Timothy Wen
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California San Francisco, San Francisco, USA
| | - Young-Jun Lim
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California San Francisco, San Francisco, USA
- Seoul National University, Seoul, South Korea
| | - Adrien Naveau
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California San Francisco, San Francisco, USA
| | - Ruben Espinoza
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California San Francisco, San Francisco, USA
| | - Eli D. Sone
- Institute of Biomaterials and Biomedical Engineering, Department of Materials Science and Engineering, and Faculty of Dentistry, University of Toronto, Ontario, Canada
| | - Bernhard Ganss
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Ontario, Canada
| | | | - Ophir D. Klein
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California San Francisco, San Francisco, USA
- Department of Pediatrics and Institute for Human Genetics, University of California San Francisco, San Francisco, USA
| |
Collapse
|
19
|
Ma L, Wang SC, Tong J, Hu Y, Zhang YQ, Yu Q. Activation and dynamic expression of Notch signalling in dental pulp cells after injury in vitro and in vivo. Int Endod J 2015; 49:1165-1174. [PMID: 26572232 DOI: 10.1111/iej.12580] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 11/06/2015] [Indexed: 01/03/2023]
Abstract
AIM To investigate the expression pattern of Notch signalling in odontoblast-like cells stimulated by lipopolysaccharide (LPS) in vitro, and in injured rat dental pulp in vivo. METHODOLOGY Mouse odontoblast-like cells (MDPC-23) were exposed to LPS. Expression of Notch-related genes was detected by real-time PCR. A rat pulpitis model was established by mechanical injury and LPS plus mechanical injury was followed by the analysis of expression of Notch2 by immunohistochemical staining. One-way analysis of variance (anova) was performed to examine the effect of differing concentrations of LPS on cell proliferation, and least significant difference test was used for paired comparisons. For independent sample, t-test was performed to compare the expression of Notch signalling genes between LPS group and control group in vitro. RESULTS The in vitro study revealed the proliferation of MDPC-23 cells on exposure to 10 ng mL-1 to 1 μg mL-1 LPS. Expression of Notch1 and Notch2 was significantly higher in the LPS group than that in the control group on day 1 and day 3 (P ˂ 0.05). The levels of both Delta1 and Jagged1 were higher in the study group than in the control group on day 3 (P = 0.019 and P = 0.034) and day 5 (P ˂ 0.001 and P = 0.046), respectively. In addition, Hes1 levels were significantly higher in the study group than in the control group on day 5 (P = 0.005). The in vivo study demonstrated positive staining for Notch2, both in the mechanical injury (MI) group and in the LPS plus mechanical injury (LMI) group from day 3 to day 7, which showed very weak or absent staining on day 14, thereby demonstrating the dynamic nature of the change. CONCLUSIONS Both in vitro and in vivo activation and dynamic expression of Notch signalling in dental pulp cells after injury were found. Notch signalling activation by LPS stimulation or mechanical injury showed a similar pattern in vivo.
Collapse
Affiliation(s)
- L Ma
- State Key Laboratory of Military Stomatology, Department of Operative Dentistry & Endodontics, The Fourth Military Medical University, Xi'an, China
| | - S C Wang
- Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - J Tong
- Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Y Hu
- Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Y Q Zhang
- State Key Laboratory of Military Stomatology, Department of Operative Dentistry & Endodontics, The Fourth Military Medical University, Xi'an, China
| | - Q Yu
- State Key Laboratory of Military Stomatology, Department of Operative Dentistry & Endodontics, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
20
|
A WNT1-regulated developmental gene cascade prevents dopaminergic neurodegeneration in adult En1 mice. Neurobiol Dis 2015; 82:32-45. [DOI: 10.1016/j.nbd.2015.05.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/18/2015] [Accepted: 05/27/2015] [Indexed: 11/17/2022] Open
|
21
|
Preuße K, Tveriakhina L, Schuster-Gossler K, Gaspar C, Rosa AI, Henrique D, Gossler A, Stauber M. Context-Dependent Functional Divergence of the Notch Ligands DLL1 and DLL4 In Vivo. PLoS Genet 2015; 11:e1005328. [PMID: 26114479 PMCID: PMC4482573 DOI: 10.1371/journal.pgen.1005328] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 06/01/2015] [Indexed: 11/18/2022] Open
Abstract
Notch signalling is a fundamental pathway that shapes the developing embryo and sustains adult tissues by direct communication between ligand and receptor molecules on adjacent cells. Among the ligands are two Delta paralogues, DLL1 and DLL4, that are conserved in mammals and share a similar structure and sequence. They activate the Notch receptor partly in overlapping expression domains where they fulfil redundant functions in some processes (e.g. maintenance of the crypt cell progenitor pool). In other processes, however, they appear to act differently (e.g. maintenance of foetal arterial identity) raising the questions of how similar DLL1 and DLL4 really are and which mechanism causes the apparent context-dependent divergence. By analysing mice that conditionally overexpress DLL1 or DLL4 from the same genomic locus (Hprt) and mice that express DLL4 instead of DLL1 from the endogenous Dll1 locus (Dll1Dll4ki), we found functional differences that are tissue-specific: while DLL1 and DLL4 act redundantly during the maintenance of retinal progenitors, their function varies in the presomitic mesoderm (PSM) where somites form in a Notch-dependent process. In the anterior PSM, every cell expresses both Notch receptors and ligands, and DLL1 is the only activator of Notch while DLL4 is not endogenously expressed. Transgenic DLL4 cannot replace DLL1 during somitogenesis and in heterozygous Dll1Dll4ki/+ mice, the Dll1Dll4ki allele causes a dominant segmentation phenotype. Testing several aspects of the complex Notch signalling system in vitro, we found that both ligands have a similar trans-activation potential but that only DLL4 is an efficient cis-inhibitor of Notch signalling, causing a reduced net activation of Notch. These differential cis-inhibitory properties are likely to contribute to the functional divergence of DLL1 and DLL4.
Collapse
Affiliation(s)
- Kristina Preuße
- Institut für Molekularbiologie OE5250, Medizinische Hochschule Hannover, Hannover, Germany
| | - Lena Tveriakhina
- Institut für Molekularbiologie OE5250, Medizinische Hochschule Hannover, Hannover, Germany
| | - Karin Schuster-Gossler
- Institut für Molekularbiologie OE5250, Medizinische Hochschule Hannover, Hannover, Germany
| | - Cláudia Gaspar
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Alexandra Isabel Rosa
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Domingos Henrique
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Achim Gossler
- Institut für Molekularbiologie OE5250, Medizinische Hochschule Hannover, Hannover, Germany
| | - Michael Stauber
- Institut für Molekularbiologie OE5250, Medizinische Hochschule Hannover, Hannover, Germany
| |
Collapse
|
22
|
Polychronis G, Halazonetis DJ. Shape covariation between the craniofacial complex and first molars in humans. J Anat 2014; 225:220-31. [PMID: 24916927 PMCID: PMC4111929 DOI: 10.1111/joa.12202] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2014] [Indexed: 12/31/2022] Open
Abstract
The occurrence of mutual genetic loci in morphogenesis of the face and teeth implies shape covariation between these structures. However, teeth finalize their shape at an early age, whereas the face grows and is subjected to environmental influences for a prolonged period; it is therefore conceivable that covariation might modulate with age. Here we investigate the extent of this covariation in humans by measuring the 3D shape of the occlusal surface of the permanent first molars and the shape of the craniofacial complex from lateral radiographs, at two maturations stages. A sample of Greek subjects was divided into two groups (110 adult, 110 prepubertal) with equally distributed gender. The occlusal surfaces of the right first molars were 3D scanned from dental casts; 265 and 274 landmarks (including surface and curve semilandmarks) were digitized on the maxillary and mandibular molars, respectively. The corresponding lateral cephalometric radiographs were digitized with 71 landmarks. Geometric morphometric methods were used to assess shape variation and covariation. The vertical dimension of the craniofacial complex was the main parameter of shape variation, followed by anteroposterior deviations. The male craniofacial complex was larger (4.0-5.7%) and was characterized by a prominent chin and clockwise rotation of the cranial base (adult group only). Allometry was weak and statistically significant only when examined for the sample as a whole (percent variance explained: 2.1%, P = 0.0002). Covariation was statistically significant only between the lower first molar and the craniofacial complex (RV = 14.05%, P = 0.0099, and RV = 12.31%, P = 0.0162, for the prepubertal and adult groups, respectively). Subtle age-related covariation differences were noted, indicating that environmental factors may influence the pattern and strength of covariation. However, the main pattern was similar in both groups: a class III skeletal pattern (relative maxillary retrusion and mandibular protrusion), hyperdivergency, forward rotation of the posterior cranial base and upward rotation of the anterior cranial base were associated with mesiodistal elongation of the lower molars and height reduction of their distal cusps. This pattern mimics phylogeny in humans, where flexion and counterclockwise rotation of the cranial base, considered advantageous to survival, co-occur with tooth reductions that cannot be easily explained in evolutionary terms. The similarity of the phylogenetic and covariation patterns seems to support the pleiotropic gene hypothesis.
Collapse
Affiliation(s)
- Georgios Polychronis
- Department of Orthodontics, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| | | |
Collapse
|
23
|
Sun F, Wan M, Xu X, Gao B, Zhou Y, Sun J, Cheng L, Klein OD, Zhou X, Zheng L. Crosstalk between miR-34a and Notch Signaling Promotes Differentiation in Apical Papilla Stem Cells (SCAPs). J Dent Res 2014; 93:589-95. [PMID: 24710391 DOI: 10.1177/0022034514531146] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Accepted: 03/19/2014] [Indexed: 02/05/2023] Open
Abstract
Stem cells from the apical papilla (SCAPs) are important for the formation and regeneration of root dentin. Here, we examined the expression of Notch signaling components in SCAPs and investigated crosstalk between microRNA miR-34aand Notch signaling during cell differentiation. We found that human SCAPs express NOTCH2, NOTCH3, JAG2, DLL3, and HES1, and we tested the relationship between Notch signaling and both cell differentiation and miR-34a expression. NOTCH activation in SCAPs inhibited cell differentiation and up-regulated the expression of miR-34a, whereas miR-34a inhibited Notch signaling in SCAPs by directly targeting the 3'UTR of NOTCH2 and HES1 mRNA and suppressing the expression of NOTCH2, N2ICD, and HES1. DSPP, RUNX2, OSX, and OCN expression was consequently up-regulated. Thus, Notch signaling in human SCAPs plays a vital role in maintenance of these cells. miR-34a interacts with Notch signaling and promotes both odontogenic and osteogenic differentiation of SCAPs.
Collapse
Affiliation(s)
- F Sun
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China, 610041 West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China, 610041
| | - M Wan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China, 610041 West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China, 610041 Program in Craniofacial and Mesenchymal Biology and Departments of Orofacial Sciences and Pediatrics, University of California, San Francisco, CA 94143, USA
| | - X Xu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China, 610041
| | - B Gao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China, 610041
| | - Y Zhou
- West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China, 610041
| | - J Sun
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China, 610041 West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China, 610041
| | - L Cheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China, 610041 West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China, 610041
| | - O D Klein
- Program in Craniofacial and Mesenchymal Biology and Departments of Orofacial Sciences and Pediatrics, University of California, San Francisco, CA 94143, USA
| | - X Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China, 610041 West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China, 610041
| | - L Zheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China, 610041 West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China, 610041
| |
Collapse
|
24
|
Wang X, He H, Wu X, Hu J, Tan Y. Promotion of dentin regeneration via CCN3 modulation on Notch and BMP signaling pathways. Biomaterials 2014; 35:2720-9. [PMID: 24406215 DOI: 10.1016/j.biomaterials.2013.12.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 12/13/2013] [Indexed: 12/18/2022]
Abstract
Dentin regeneration remains a great challenge in clinic. Dental pulp stem cells (DPSCs) actively contribute to dentinogenesis, which is orchestrated by a spectrum of signaling factors. However, the exact mechanism underlying the reparative dentin regeneration process is largely unknown and the application of DPSCs in the repair of dentin defect is thus limited. Here, using a rat reparative dentin regeneration model, we observed that DPSCs underwent a proliferation phase followed by a differentiation phase after dental injury. A transient elevation of nephroblastoma overexpressed (NOV, or CCN3) expression correlated with this progressive dental tissue restoration process. Further studies revealed that over-expression of CCN3 promoted human DPSCs proliferation via activation of Notch. Moreover, using cocultured cells (DPSCs/CCN3 and DPSCs) in vitro and the cocultured cells-poly (lactic-co-glycolic acid) (PLGA) scaffold complex in vivo, we demonstrated that CCN3 was capable of promoting mineralization in a non-cell autonomous manner through promoting secretion of BMP2. CCN3 can promote dentinogenesis by coordinating proliferation and odontoblastic differentiation of DPSCs via modulating Notch and BMP2 signaling pathways and CCN3 is a promising therapeutic target in dentin tissue engineering.
Collapse
Affiliation(s)
- Xuefei Wang
- Department of Stomatology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, PR China
| | - Haitao He
- Department of Maxillofacial and Head-Neck Surgery, Daping Hospital, Third Military Medical University, Chongqing 400037, PR China
| | - Xi Wu
- Department of Stomatology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, PR China
| | - Jiang Hu
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yinghui Tan
- Department of Oral and Maxillofacial Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, PR China.
| |
Collapse
|
25
|
Matsuoka K, Matsuzaka K, Yoshinari M, Inoue T. Tenascin-C promotes differentiation of rat dental pulp cellsin vitro. Int Endod J 2012; 46:30-9. [DOI: 10.1111/j.1365-2591.2012.02089.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 05/27/2012] [Indexed: 01/09/2023]
Affiliation(s)
| | | | - M. Yoshinari
- Oral Health Science Center HRC7; Tokyo Dental College; Chiba, Tokyo; and; Japan
| | | |
Collapse
|
26
|
Cai X, Gong P, Huang Y, Lin Y. Notch signalling pathway in tooth development and adult dental cells. Cell Prolif 2011; 44:495-507. [PMID: 21973022 DOI: 10.1111/j.1365-2184.2011.00780.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Notch signalling is a highly conserved intercellular signal transfer mechanism that includes canonical and non-canonical pathways. It regulates differentiation and proliferation of stem/progenitor cells by means of para-inducing effects. Expression and activation of Notch signalling factors (receptors and ligands) are critical not only for development of the dental germ but also for regeneration of injured tissue associated with mature teeth. Notch signalling plays key roles in differentiation of odontoblasts and osteoblasts, calcification of tooth hard tissue, formation of cusp patterns and generation of tooth roots. After tooth eruption, Notch signalling can also be triggered in dental stem cells of the pulp, where it induces them to differentiate into odontoblasts, thus generating fresh dentine tissue. Other signalling pathways, such as TGFβ, NF-κB, Wnt, Fgf and Shh also interact with Notch signalling during tooth development.
Collapse
Affiliation(s)
- X Cai
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu
| | | | | | | |
Collapse
|
27
|
Mitsiadis TA, Luder HU. Genetic basis for tooth malformations: from mice to men and back again. Clin Genet 2011; 80:319-29. [DOI: 10.1111/j.1399-0004.2011.01762.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
28
|
Notch induces cyclin-D1-dependent proliferation during a specific temporal window of neural differentiation in ES cells. Dev Biol 2010; 348:153-66. [PMID: 20887720 DOI: 10.1016/j.ydbio.2010.09.018] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 09/06/2010] [Accepted: 09/21/2010] [Indexed: 12/26/2022]
Abstract
The Notch signaling pathway controls cell fate choices at multiple steps during cell lineage progression. To produce the cell fate choice appropriate for a particular stage in the cell lineage, Notch signaling needs to interpret the cell context information for each stage and convert it into the appropriate cell fate instruction. The molecular basis for this temporal context-dependent Notch signaling output is poorly understood, and to study this, we have engineered a mouse embryonic stem (ES) cell line, in which short pulses of activated Notch can be produced at different stages of in vitro neural differentiation. Activation of Notch signaling for 6h specifically at day 3 during neural induction in the ES cells led to significantly enhanced cell proliferation, accompanied by Notch-mediated activation of cyclin D1 expression. A reduction of cyclin-D1-expressing cells in the developing CNS of Notch signaling-deficient mouse embryos was also observed. Expression of a dominant negative form of cyclin D1 in the ES cells abrogated the Notch-induced proliferative response, and, conversely, a constitutively active form of cyclin D1 mimicked the effect of Notch on cell proliferation. In conclusion, the data define a novel temporal context-dependent function of Notch and a critical role for cyclin D1 in the Notch-induced proliferation in ES cells.
Collapse
|
29
|
Mitsiadis TA, Graf D, Luder H, Gridley T, Bluteau G. BMPs and FGFs target Notch signalling via jagged 2 to regulate tooth morphogenesis and cytodifferentiation. Development 2010; 137:3025-35. [PMID: 20685737 DOI: 10.1242/dev.049528] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The Notch signalling pathway is an evolutionarily conserved intercellular signalling mechanism that is essential for cell fate specification and proper embryonic development. We have analysed the expression, regulation and function of the jagged 2 (Jag2) gene, which encodes a ligand for the Notch family of receptors, in developing mouse teeth. Jag2 is expressed in epithelial cells that give rise to the enamel-producing ameloblasts from the earliest stages of tooth development. Tissue recombination experiments showed that its expression in epithelium is regulated by mesenchyme-derived signals. In dental explants cultured in vitro, the local application of fibroblast growth factors upregulated Jag2 expression, whereas bone morphogenetic proteins provoked the opposite effect. Mice homozygous for a deletion in the Notch-interaction domain of Jag2 presented a variety of severe dental abnormalities. In molars, the crown morphology was misshapen, with additional cusps being formed. This was due to alterations in the enamel knot, an epithelial signalling structure involved in molar crown morphogenesis, in which Bmp4 expression and apoptosis were altered. In incisors, cytodifferentiation and enamel matrix deposition were inhibited. The expression of Tbx1 in ameloblast progenitors, which is a hallmark for ameloblast differentiation and enamel formation, was dramatically reduced in Jag2(-/-) teeth. Together, these results demonstrate that Notch signalling mediated by Jag2 is indispensable for normal tooth development.
Collapse
Affiliation(s)
- Thimios A Mitsiadis
- Institute of Oral Biology, ZZMK, Faculty of Medicine, University of Zurich, 8032 Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
30
|
Siar CH, Nagatsuka H, Chuah KS, Rivera RS, Nakano K, Ng KH, Kawakami T. Notch4 overexpression in ameloblastoma correlates with the solid/multicystic phenotype. ACTA ACUST UNITED AC 2010; 110:224-33. [PMID: 20659700 DOI: 10.1016/j.tripleo.2010.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 02/12/2010] [Accepted: 03/08/2010] [Indexed: 10/19/2022]
|
31
|
Zuniga E, Stellabotte F, Crump JG. Jagged-Notch signaling ensures dorsal skeletal identity in the vertebrate face. Development 2010; 137:1843-52. [PMID: 20431122 DOI: 10.1242/dev.049056] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The development of the vertebrate face relies on the regionalization of neural crest-derived skeletal precursors along the dorsoventral (DV) axis. Here we show that Jagged-Notch signaling ensures dorsal identity within the hyoid and mandibular components of the facial skeleton by repressing ventral fates. In a genetic screen in zebrafish, we identified a loss-of-function mutation in jagged 1b (jag1b) that results in dorsal expansion of ventral gene expression and partial transformation of the dorsal hyoid skeleton to a ventral morphology. Conversely, misexpression of human jagged 1 (JAG1) represses ventral gene expression and dorsalizes the ventral hyoid and mandibular skeletons. We further show that jag1b is expressed specifically in dorsal skeletal precursors, where it acts through the Notch2 receptor to activate hey1 expression. Whereas Jagged-Notch positive feedback propagates jag1b expression throughout the dorsal domain, Endothelin 1 (Edn1) inhibits jag1b and hey1 expression in the ventral domain. Strikingly, reduction of Jag1b or Notch2 function partially rescues the ventral defects of edn1 mutants, indicating that Edn1 promotes facial skeleton development in part by inhibiting Jagged-Notch signaling in ventral skeletal precursors. Together, these results indicate a novel function of Jagged-Notch signaling in ensuring dorsal identity within broad fields of facial skeletal precursors.
Collapse
Affiliation(s)
- Elizabeth Zuniga
- Eli and Edythe Broad Institute for Regenerative Medicine and Stem Cell Research, Department of Cell and Neurobiology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | | | | |
Collapse
|
32
|
Siar CH, Nakano K, Han PP, Nagatsuka H, Ng KH, Kawakami T. Differential expression of Notch receptors and their ligands in desmoplastic ameloblastoma. J Oral Pathol Med 2010; 39:552-8. [PMID: 20337864 DOI: 10.1111/j.1600-0714.2009.00871.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chong Huat Siar
- Department of Oral Pathology, Oral Medicine & Periodontology, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia.
| | | | | | | | | | | |
Collapse
|
33
|
Araújo R, Fernandes M, Cavaco-Paulo A, Gomes A. Biology of human hair: know your hair to control it. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2010; 125:121-43. [PMID: 21072698 DOI: 10.1007/10_2010_88] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hair can be engineered at different levels--its structure and surface--through modification of its constituent molecules, in particular proteins, but also the hair follicle (HF) can be genetically altered, in particular with the advent of siRNA-based applications. General aspects of hair biology are reviewed, as well as the most recent contributions to understanding hair pigmentation and the regulation of hair development. Focus will also be placed on the techniques developed specifically for delivering compounds of varying chemical nature to the HF, indicating methods for genetic/biochemical modulation of HF components for the treatment of hair diseases. Finally, hair fiber structure and chemical characteristics will be discussed as targets for keratin surface functionalization.
Collapse
Affiliation(s)
- Rita Araújo
- CBMA-Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal
| | | | | | | |
Collapse
|
34
|
Mitsiadis TA, Graf D. Cell fate determination during tooth development and regeneration. ACTA ACUST UNITED AC 2009; 87:199-211. [PMID: 19750524 DOI: 10.1002/bdrc.20160] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Teeth arise from sequential and reciprocal interactions between the oral epithelium and the underlying cranial neural crest-derived mesenchyme. Their formation involves a precisely orchestrated series of molecular and morphogenetic events, and gives us the opportunity to discover and understand the nature of the signals that direct cell fates and patterning. For that reason, it is important to elucidate how signaling factors work together in a defined number of cells to generate the diverse and precise patterned structures of the mature functional teeth. Over the last decade, substantial research efforts have been directed toward elucidating the molecular mechanisms that control cell fate decisions during tooth development. These efforts have contributed toward the increased knowledge on dental stem cells, and observation of the molecular similarities that exist between tooth development and regeneration.
Collapse
Affiliation(s)
- Thimios A Mitsiadis
- Institute of Oral Biology, ZZMK, Faculty of Medicine, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland.
| | | |
Collapse
|
35
|
Behesti H, Papaioannou VE, Sowden JC. Loss of Tbx2 delays optic vesicle invagination leading to small optic cups. Dev Biol 2009; 333:360-72. [PMID: 19576202 PMCID: PMC2735611 DOI: 10.1016/j.ydbio.2009.06.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 06/19/2009] [Accepted: 06/22/2009] [Indexed: 01/05/2023]
Abstract
Tbx2 is a T-box transcription factor gene that is dynamically expressed in the presumptive retina during optic vesicle invagination. Several findings implicate Tbx2 in cell cycle regulation, including its overexpression in tumours and regulation of proliferation during heart development. We investigated the role of Tbx2 in optic cup formation by analysing mice with a targeted homozygous mutation in Tbx2. Loss of Tbx2 caused a reduced presumptive retinal volume due to increased apoptosis, and a delay in ventral optic vesicle invagination leading to the formation of small and abnormally shaped optic cups. Tbx2 is essential for maintenance, but not induction of expression of the dorsal retinal determinant, Tbx5, and acts downstream of Bmp4, a dorsally expressed gene implicated in human microphthalmia. The small retina showed a hypocellular ventral region, loss of Fgf15, normally expressed in proliferating central retinal cells, and increased numbers of mitotic cells in the dorsal region, indicating that Tbx2 is required for normal growth and development across the D-V axis. Dorsal expression of potential regulators of retinal growth, Cyp1b1 and Cx43, and the topographic guidance molecule ephrinB2, was increased, and intraretinal axons were disorganised resulting in a failure of optic nerve formation. Our data provide evidence that Tbx2 is required for proper optic cup formation and plays a critical early role in regulating regional retinal growth and the acquisition of shape during optic vesicle invagination.
Collapse
Affiliation(s)
- Hourinaz Behesti
- Developmental Biology Unit, UCL Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH
- Department of Genetics and Development, College of Physicians and Surgeons of Columbia University, 701 West 168th Street, New York, NY 10032
| | - Virginia E. Papaioannou
- Department of Genetics and Development, College of Physicians and Surgeons of Columbia University, 701 West 168th Street, New York, NY 10032
| | - Jane C. Sowden
- Developmental Biology Unit, UCL Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH
| |
Collapse
|
36
|
Golson ML, Le Lay J, Gao N, Brämswig N, Loomes KM, Oakey R, May CL, White P, Kaestner KH. Jagged1 is a competitive inhibitor of Notch signaling in the embryonic pancreas. Mech Dev 2009; 126:687-99. [PMID: 19501159 PMCID: PMC2728177 DOI: 10.1016/j.mod.2009.05.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 05/26/2009] [Accepted: 05/27/2009] [Indexed: 01/30/2023]
Abstract
Pancreatic endocrine cells originate from precursors that express the transcription factor Neurogenin3 (Ngn3). Ngn3 expression is repressed by active Notch signaling. Accordingly, mice with Notch signaling pathway mutations display increased Ngn3 expression and endocrine cell lineage allocation. To determine how the Notch ligand Jagged1 (Jag1) functions during pancreas development, we deleted Jag1 in foregut endoderm and examined postnatal and embryonic endocrine cells and precursors. Postnatal Jag1 mutants display increased Ngn3 expression, alpha-cell mass, and endocrine cell percentage, similar to the early embryonic phenotype of Dll1 and Rbpj mutants. However, in sharp contrast to postnatal animals, Jag1-deficient embryos display increased expression of Notch transcriptional targets and decreased Ngn3 expression, resulting in reduced endocrine lineage allocation. Jag1 acts as an inhibitor of Notch signaling during embryonic pancreas development but an activator of Notch signaling postnatally. Expression of the Notch modifier Manic Fringe (Mfng) is limited to endocrine precursors, providing a possible explanation for the inhibition of Notch signaling by Jag1 during mid-gestation embryonic pancreas development.
Collapse
Affiliation(s)
- Maria L. Golson
- Department of Genetics, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Institute for Diabetes, Obesity and Metabolism, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - John Le Lay
- Department of Genetics, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Institute for Diabetes, Obesity and Metabolism, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Nan Gao
- Department of Genetics, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Institute for Diabetes, Obesity and Metabolism, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Nuria Brämswig
- Department of Genetics, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Institute for Diabetes, Obesity and Metabolism, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Kathleen M. Loomes
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Rebecca Oakey
- King’s College London, Department of Medical and Molecular Genetics, London SE1 9RT, UK
| | - Catherine L. May
- Department of Pathology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Peter White
- Department of Genetics, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Institute for Diabetes, Obesity and Metabolism, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Klaus H. Kaestner
- Department of Genetics, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Institute for Diabetes, Obesity and Metabolism, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
37
|
Kosaka N, Sakamoto H, Terada M, Ochiya T. Pleiotropic function of FGF-4: its role in development and stem cells. Dev Dyn 2009; 238:265-76. [PMID: 18792115 DOI: 10.1002/dvdy.21699] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Fibroblast growth factors (FGFs) were initially recognized as fibroblast-specific growth factor, and it is now apparent that these growth factors regulate multiple biological functions. The diversity of FGFs function is paralleled by the emerging diversity of interactions between FGF ligands and their receptors. FGF-4 is a member of the FGF superfamily and is a mitogen exhibiting strong action on numerous different cell types. It plays a role in various stages of development and morphogenesis, as well as in a variety of biological processes. Recent studies reveal the molecular mechanisms of FGF-4 gene regulation in mammalian cells, which is involved in the developmental process. Furthermore, FGF-4 also acts on the regulation of proliferation and differentiation in embryonic stem cells and tissue stem cells. In this review, we focus on the diverse biological functions of FGF-4 in the developmental process and also discuss its putative roles in stem cell biology.
Collapse
Affiliation(s)
- Nobuyoshi Kosaka
- Section for Studies on Metastasis, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | | | | | | |
Collapse
|
38
|
Bosman EA, Quint E, Fuchs H, Hrabé de Angelis M, Steel KP. Catweasel mice: a novel role for Six1 in sensory patch development and a model for branchio-oto-renal syndrome. Dev Biol 2009; 328:285-96. [PMID: 19389353 PMCID: PMC2682643 DOI: 10.1016/j.ydbio.2009.01.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 01/20/2009] [Accepted: 01/22/2009] [Indexed: 11/18/2022]
Abstract
Large-scale mouse mutagenesis initiatives have provided new mouse mutants that are useful models of human deafness and vestibular dysfunction. Catweasel is a novel N-ethyl-N-nitrosourea (ENU)-induced mutation. Heterozygous catweasel mutant mice exhibit mild headtossing associated with a posterior crista defect. We mapped the catweasel mutation to a critical region of 13 Mb on chromosome 12 containing the Six1, -4 and -6 genes. We identified a basepair substitution in exon 1 of the Six1 gene that changes a conserved glutamic acid (E) at position 121 to a glycine (G) in the Six1 homeodomain. Cwe/Cwe animals lack Preyer and righting reflexes, display severe headshaking and have severely truncated cochlea and semicircular canals. Cwe/Cwe animals had very few hair cells in the utricle, but their ampullae and cochlea were devoid of any hair cells. Bmp4, Jag1 and Sox2 expression were largely absent at early stages of sensory development and NeuroD expression was reduced in the developing vestibulo-acoustic ganglion. Lastly we show that Six1 genetically interacts with Jag1. We propose that the catweasel phenotype is due to a hypomorphic mutation in Six1 and that catweasel mice are a suitable model for branchio-oto-renal syndrome. In addition Six1 has a pivotal role in early sensory patch development and may act in the same genetic pathway as Jag1.
Collapse
Affiliation(s)
- Erika A. Bosman
- The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | | | - Helmut Fuchs
- Helmholtz Zentrum München, GmbH, Ingolstädter Landstraβe 1, D-85764 Neuherberg, Germany
| | | | - Karen P. Steel
- The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| |
Collapse
|
39
|
He F, Yang Z, Tan Y, Yu N, Wang X, Yao N, Zhao J. Effects of Notch ligand Delta1 on the proliferation and differentiation of human dental pulp stem cells in vitro. Arch Oral Biol 2009; 54:216-22. [DOI: 10.1016/j.archoralbio.2008.10.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 09/27/2008] [Accepted: 10/14/2008] [Indexed: 12/12/2022]
|
40
|
Tsao PN, Chen F, Izvolsky KI, Walker J, Kukuruzinska MA, Lu J, Cardoso WV. Gamma-secretase activation of notch signaling regulates the balance of proximal and distal fates in progenitor cells of the developing lung. J Biol Chem 2008; 283:29532-44. [PMID: 18694942 PMCID: PMC2570893 DOI: 10.1074/jbc.m801565200] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 07/17/2008] [Indexed: 01/19/2023] Open
Abstract
Little is known about the mechanisms by which the lung epithelial progenitors are initially patterned and how proximal-distal boundaries are established and maintained when the lung primordium forms and starts to branch. Here we identified a number of Notch pathway components in respiratory progenitors of the early lung, and we investigated the role of Notch in lung pattern formation. By preventing gamma-secretase cleavage of Notch receptors, we have disrupted global Notch signaling in the foregut and in the lung during the initial stages of murine lung morphogenesis. We demonstrate that Notch signaling is not necessary for lung bud initiation; however, Notch is required to maintain a balance of proximal-distal cell fates at these early stages. Disruption of Notch signaling dramatically expands the population of distal progenitors, altering morphogenetic boundaries and preventing formation of proximal structures. Our data suggest a novel mechanism in which Notch and fibroblast growth factor signaling interact to control the proximal-distal pattern of forming airways in the mammalian lung.
Collapse
Affiliation(s)
- Po-Nien Tsao
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Mitsiadis TA, Tucker AS, De Bari C, Cobourne MT, Rice DPC. A regulatory relationship between Tbx1 and FGF signaling during tooth morphogenesis and ameloblast lineage determination. Dev Biol 2008; 320:39-48. [PMID: 18572158 DOI: 10.1016/j.ydbio.2008.04.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Revised: 03/19/2008] [Accepted: 04/03/2008] [Indexed: 11/20/2022]
Abstract
The Tbx1 gene is a transcriptional regulator involved in the DiGeorge syndrome, which affects normal facial and tooth development. Several clinical reports point to a common enamel defect in the teeth of patients with DiGeorge syndrome. Here, we have analyzed the expression, regulation, and function of Tbx1 during mouse molar development. Tbx1 expression is restricted to epithelial cells that give rise to the enamel producing ameloblasts and correlates with proliferative events. Tbx1 expression in epithelium requires mesenchyme-derived signals: dental mesenchyme induces expression of Tbx1 in recombined dental and non-dental epithelia. Bead implantation experiments show that FGF molecules are able to maintain epithelial Tbx1 expression during odontogenesis. Expression of Tbx1 in dental epithelium of FGF receptor 2b(-/-) mutant mice is downregulated, showing a genetic link between FGF signaling and Tbx1 in teeth. Forced expression of Tbx1 in dental explants activates amelogenin expression. These results indicate that Tbx1 expression in developing teeth is under control of FGF signaling and correlates with determination of the ameloblast lineage.
Collapse
Affiliation(s)
- Thimios A Mitsiadis
- Department of Orofacial Development and Structure, Institute of Oral Biology, ZZMK, Faculty of Medicine, University of Zurich, Plattenstrasse 11, CH 8032 Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
42
|
Fujita S, Seki S, Fujiwara M, Ikeda T. Midkine expression correlating with growth activity and tooth morphogenesis in odontogenic tumors. Hum Pathol 2008; 39:694-700. [DOI: 10.1016/j.humpath.2007.09.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Revised: 09/14/2007] [Accepted: 09/18/2007] [Indexed: 02/04/2023]
|
43
|
Zhang C, Chang J, Sonoyama W, Shi S, Wang CY. Inhibition of human dental pulp stem cell differentiation by Notch signaling. J Dent Res 2008; 87:250-5. [PMID: 18296609 DOI: 10.1177/154405910808700312] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Notch signaling plays a critical role in development and cell fate specification. Notch receptors and ligands have been found to be expressed in dental epithelium or mesenchyme in the developing tooth, suggesting that Notch signaling may regulate odontogenesis. Post-natal human dental pulp stem cells (DPSCs) isolated from the dental pulp have characteristics of mesenchymal stem cells and can differentiate into odontoblasts. In this study, we examined whether Notch signaling regulated the odontoblastic differentiation of DPSCs. We found that over-expression of the Notch ligand, Jagged-1, activated the Notch signaling pathway in DPSCs. Jagged-1 inhibited the odontoblastic differentiation of DPSCs in vitro. Jagged-1-expressing DPSCs could not form mineralized tissues in vivo. Moreover, over-expression of the constitutively activated Notch1 intracellular domain (Notch-ICD) also inhibited odontoblastic differentiation of DPSCs. Taken together, our results demonstrate that Notch signaling can inhibit the odontoblastic differentiation of DPSCs.
Collapse
Affiliation(s)
- C Zhang
- Department of Special Dental Service, School and Hospital of Stomatology, Peking University, Beijing, China
| | | | | | | | | |
Collapse
|
44
|
|
45
|
Tummers M, Yamashiro T, Thesleff I. Modulation of epithelial cell fate of the root in vitro. J Dent Res 2007; 86:1063-7. [PMID: 17959897 DOI: 10.1177/154405910708601108] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Mouse molars are normally not capable of continuous growth. We hypothesized that the mouse molar has intrinsic potential to maintain the epithelial stem cell niche and assessed this potential by growth in vitro. Although the tooth germs flattened considerably, they developed a mineralized crown and a root. However, histologically, the root surface was composed of 3 structurally different regions affecting the fate of the dental epithelium. The anterior and posterior aspects maintained the morphological and molecular characteristics of the cervical loop of a continuously growing incisor, with a continuous layer of ameloblasts. The epithelium making contact with the supporting filter resembled Hertwig's epithelial root sheath. The top of the cultured molar exposed to air lacked epithelium altogether. We conclude that the fate of the epithelium is regulated by external cues influenced by culture conditions, and that the molar has the intrinsic capacity to grow continuously.
Collapse
Affiliation(s)
- M Tummers
- Developmental Biology Program, Institute of Biotechnology, Viikki Biocenter, PO Box 56, FIN-00014, Helsinki, Finland.
| | | | | |
Collapse
|
46
|
Zhang YD, Chen Z, Song YQ, Liu C, Chen YP. Making a tooth: growth factors, transcription factors, and stem cells. Cell Res 2007; 15:301-16. [PMID: 15916718 DOI: 10.1038/sj.cr.7290299] [Citation(s) in RCA: 217] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Mammalian tooth development is largely dependent on sequential and reciprocal epithelial-mesenchymal interactions. These processes involve a series of inductive and permissive interactions that result in the determination, differentiation, and organization of odontogenic tissues. Multiple signaling molecules, including BMPs, FGFs, Shh, and Wnt proteins, have been implicated in mediating these tissue interactions. Transcription factors participate in epithelial-mesenchymal interactions via linking the signaling loops between tissue layers by responding to inductive signals and regulating the expression of other signaling molecules. Adult stem cells are highly plastic and multipotent. These cells including dental pulp stem cells and bone marrow stromal cells could be reprogrammed into odontogenic fate and participated in tooth formation. Recent progress in the studies of molecular basis of tooth development, adult stem cell biology, and regeneration will provide fundamental knowledge for the realization of human tooth regeneration in the near future.
Collapse
|
47
|
Mitsiadis TA, Barrandon O, Rochat A, Barrandon Y, De Bari C. Stem cell niches in mammals. Exp Cell Res 2007; 313:3377-85. [PMID: 17764674 DOI: 10.1016/j.yexcr.2007.07.027] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 07/23/2007] [Accepted: 07/24/2007] [Indexed: 12/13/2022]
Abstract
Stem cells safeguard tissue homeostasis and guarantee tissue repair throughout life. The decision between self-renewal and differentiation is influenced by a specialized microenvironment called stem cell niche. Physical and molecular interactions with niche cells and orientation of the cleavage plane during stem cell mitosis control the balance between symmetric and asymmetric division of stem cells. Here we highlight recent progress made on the anatomical and molecular characterization of mammalian stem cell niches, focusing particularly on bone marrow, tooth and hair follicle. The knowledge of the regulation of stem cells within their niches in health and disease will be instrumental to develop novel therapies that target stem cell niches to achieve tissue repair and re-establish tissue homeostasis.
Collapse
Affiliation(s)
- Thimios A Mitsiadis
- Department of Orofacial Development and Structure, Institute of Oral Biology, University of Zurich, Plattenstrasse 11, CH 8032, Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
48
|
Compartmentalised expression of Delta-like 1 in epithelial somites is required for the formation of intervertebral joints. BMC DEVELOPMENTAL BIOLOGY 2007; 7:68. [PMID: 17572911 PMCID: PMC1924847 DOI: 10.1186/1471-213x-7-68] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Accepted: 06/17/2007] [Indexed: 01/23/2023]
Abstract
Background Expression of the mouse Delta-like 1 (Dll1) gene in the presomitic mesoderm and in the caudal halves of somites of the developing embryo is required for the formation of epithelial somites and for the maintenance of caudal somite identity, respectively. The rostro-caudal polarity of somites is initiated early on within the presomitic mesoderm in nascent somites. Here we have investigated the requirement of restricted Dll1 expression in caudal somite compartments for the maintenance of rostro-caudal somite polarity and the morphogenesis of the axial skeleton. We did this by overexpressing a functional copy of the Dll1 gene throughout the paraxial mesoderm, in particular in anterior somite compartments, during somitogenesis in transgenic mice. Results Epithelial somites were generated normally and appeared histologically normal in embryos of two independent Dll1 over-expressing transgenic lines. Gene expression analyses of rostro-caudal marker genes suggested that over-expression of Dll1 without restriction to caudal compartments was not sufficient to confer caudal identity to rostral somite halves in transgenic embryos. Nevertheless, Dll1 over-expression caused dysmorphologies of the axial skeleton, in particular, in morphological structures that derive from the articular joint forming compartment of vertebrae. Accordingly, transgenic animals exhibited missing or reduced intervertebral discs, rostral and caudal articular processes as well as costal heads of ribs. In addition, the midline of the vertebral column did not develop normally. Transgenic mice had open neural arches and split vertebral bodies with ectopic pseudo-growth plates. Endochondral bone formation and ossification in the developing vertebrae were delayed. Conclusion The mice overexpressing Dll1 exhibit skeletal dysmorphologies that are also evident in several mutant mice with defects in somite compartmentalisation. The Dll1 transgenic mice demonstrate that vertebral dysmorphologies such as bony fusions of vertebrae and midline vertebral defects can occur without apparent changes in somitic rostro-caudal marker gene expression. Also, we demonstrate that the over-expression of the Dll1 gene in rostral epithelial somites is not sufficient to confer caudal identity to rostral compartments. Our data suggest that the restricted Dll1 expression in caudal epithelial somites may be particularly required for the proper development of the intervertebral joint forming compartment.
Collapse
|
49
|
Simon YC, Chabre C, Lautrou A, Berdal A. [Known gene interactions as implicated in craniofacial development]. Orthod Fr 2007; 78:25-37. [PMID: 17571530 DOI: 10.1051/orthodfr:2007003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Many genes intervening in development, morphogenesis and craniofacial growth have been identified, primarily by the use of mice mutants. We can distinguish two families: the signalling factors and the transcription factors. The latter interact with DNA to activate or to inhibit the expression of other genes. Some of the transcription factors are called homeogenes because they interact with DNA by a sequence of amino acids known as homeobox that has been carefully conserved throughout the course of evolution. Those factors interact, and signalling cascades have been described. Current research projects seek to discern the exact role of each of these genes in craniofacial growth and to develop a better understanding of the interactions between them.
Collapse
Affiliation(s)
- Yohann c Simon
- Faculté de chirurgie dentaire, Université Paris V, 1 rue Maurice Arnoux, 92120 Montrouge, France.
| | | | | | | |
Collapse
|
50
|
Zhao Z, Wen LY, Jin M, Deng ZH, Jin Y. ADAM28 participates in the regulation of tooth development. Arch Oral Biol 2006; 51:996-1005. [PMID: 16836973 DOI: 10.1016/j.archoralbio.2006.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Revised: 12/30/2005] [Accepted: 05/24/2006] [Indexed: 01/28/2023]
Abstract
Disintegrin and metalloprotease (ADAM) proteins are a family of membrane-anchored glycoproteins with diverse functions in fertilisation, development, neurogenesis and protein ectodomain shedding. ADAM28 is a newly discovered member of the ADAM family in humans and murine with autocatalytic activity. Recently, the authors screened ADAM28 genes from patients with congenital hypoplasia of tooth root, and studied the relationship between ADAM28 and tooth development. A polyclonal antibody (pAb) against ADAM28 was preparared, and the expression and localisation of ADAM28 were detected in tooth germ and dental mesenchymal cells. The results indicated that the prokaryotic expression vector pGEX-4T-ADAM28 was constructed successfully. Glutathione S-transferase-ADAM28 fusion protein was generated after inducement by isopropylthio-beta-d-galactoside and isolated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis. The purified fusion protein was used as an antigen for production of antibody. Western blot and enzyme-linked immunosorbent assay analyses verified that the antibody had a high specificity and titre. Immunohistochemistry and reverse transcriptase-polymerase chain reaction showed that ADAM28 was expressed at each stage of tooth germ development at different levels. Moreover, it was expressed in human dental follicle cells, human dental papilla cells, human dental pulp stem cells, human periodontal ligament cells and human dental cervical loop epithelial cells at transcription level. In conclusion, it is reasonable to suggest that ADAM28 may participate in tooth development and the regulation of odontogenic mesenchymal cells through progressive reciprocal inductive interactions between the epithelium and the mesenchyme.
Collapse
Affiliation(s)
- Zheng Zhao
- Department of Paediatric Dentistry, College of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | | | | | | | | |
Collapse
|