1
|
Morikawa M, Yoshizaki H, Yasui Y, Nishida S, Saikawa Y, Kohno M, Okajima H. Mesenchymal cells regulate enteric neural crest cell migration via RET-GFRA1b trans-signaling. Biochem Biophys Res Commun 2024; 710:149861. [PMID: 38581949 DOI: 10.1016/j.bbrc.2024.149861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/07/2024] [Accepted: 03/27/2024] [Indexed: 04/08/2024]
Abstract
During early development, the enteric nervous system forms from the migration of enteric neural crest cells (ENCCs) from the foregut to the hindgut, where they undergo proliferation and differentiation facilitated by interactions with enteric mesenchymal cells (EMCs). This study investigates the impact on ENCC migration of EMC-ENCC communication mediated by GFRA1b expressed in EMCs. GFRA1-expressing cells in day 11-12 (E11-12) mouse embryos differentiated into smooth muscle cells from E12 onwards. Observations at E12-13.5 revealed high levels of GFRA1 expression on the anti-mesenteric side of the hindgut, correlating with enhanced ENCC migration. This indicates that GFRA1 in EMCs plays a role in ENCC migration during development. Examining GFRA1 isoforms, we found high levels of GFRA1b, which lacks amino acids 140-144, in EMCs. To assess the impact of GFRA1 isoforms on EMC-ENCC communication, we conducted neurosphere drop assays. This revealed that GFRA1b-expressing cells promoted GDNF-dependent extension and increased neurite density in ENCC neurospheres. Co-culture of ENCC mimetic cells expressing RET and GFRA1a with EMC mimetic cells expressing GFRA1a, GFRA1b, or vector alone showed that only GFRA1b-expressing co-cultured cells sustained RET phosphorylation in ENCC-mimetic cells for over 120 min upon GDNF stimulation. Our study provides evidence that GFRA1b-mediated cell-to-cell communication plays a critical role in ENCC motility in enteric nervous system development. These findings contribute to understanding the cellular interactions and signaling mechanisms that underlie enteric nervous system formation and highlight potential therapeutic targets for gastrointestinal motility disorders.
Collapse
Affiliation(s)
- Mari Morikawa
- Department of Pediatrics, Kanazawa Medical University, Ishikawa 920-0293, Japan
| | - Hisayoshi Yoshizaki
- Department of Pediatric Surgery, Kanazawa Medical University, Ishikawa 920-0293, Japan.
| | - Yoshitomo Yasui
- Department of Pediatric Surgery, Kanazawa Medical University, Ishikawa 920-0293, Japan
| | - Shoichi Nishida
- Department of Pediatric Surgery, Kanazawa Medical University, Ishikawa 920-0293, Japan
| | - Yutaka Saikawa
- Department of Pediatrics, Kanazawa Medical University, Ishikawa 920-0293, Japan
| | - Miyuki Kohno
- Department of Pediatric Surgery, Kanazawa Medical University, Ishikawa 920-0293, Japan
| | - Hideaki Okajima
- Department of Pediatric Surgery, Kanazawa Medical University, Ishikawa 920-0293, Japan
| |
Collapse
|
2
|
Reawakening GDNF's regenerative past in mice and humans. Regen Ther 2022; 20:78-85. [PMID: 35509264 PMCID: PMC9043678 DOI: 10.1016/j.reth.2022.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/18/2022] [Accepted: 03/31/2022] [Indexed: 11/22/2022] Open
Abstract
The ability of an animal to regenerate lost tissue and body parts has obviously life-saving implications. Understanding how this ability became restricted or active in specific animal lineages will help us understand our own regeneration. According to phylogenic analysis, the glial cell line-derived neurotrophic factor (GDNF) signaling pathway, but not other family members, is conserved in axolotls, a salamander with remarkable regenerative capacity. Furthermore, comparing the pro-regenerative Spiny mouse to its less regenerative descendant, the House mouse, revealed that the GDNF signaling pathway, but not other family members, was induced in regenerating Spiny mice. According to GDNF receptor expression analysis, GDNF may promote hair follicle neogenesis – an important feature of skin regeneration – by determining the fate of dermal fibroblasts as part of new hair follicles. These findings support the idea that GDNF treatment will promote skin regeneration in humans by demonstrating the GDNF signaling pathway's ancestral and cellular nature. In pro-regenerative axolotls, the GDNF-GFR□1 signaling system is conserved. In pro-regenerative Spiny mice, the GDNF-GFR□1 signaling system is activated. In mice, GDNF targets upper-regeneration-competent dermal fibroblasts. GDNF-GFR□1 activation may promote skin regeneration in mice and humans.
Collapse
|
3
|
Vishlaghi N, Rieger S, McGaughey V, Lisse TS. GDNF neurotrophic factor signaling determines the fate of dermal fibroblasts in wound-induced hair neogenesis and skin regeneration. Exp Dermatol 2022; 31:577-581. [PMID: 35020233 PMCID: PMC9306530 DOI: 10.1111/exd.14526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/24/2021] [Accepted: 01/08/2022] [Indexed: 11/27/2022]
Abstract
We propose that GDNF, a glial cell line‐derived neurotrophic factor, can promote hair follicle neogenesis and skin regeneration after wounding by directing the fate of dermal fibroblasts. Our hypothesis is largely based on detailed GDNF and receptor analysis during skin regenerative stages, as well as the induction of GDNF receptors after wounding between the pro‐regenerative spiny mouse (genus Acomys) and its less‐regenerative descendant, the house mouse (Mus musculus). To characterize the GDNF‐target cells, we will conduct a series of lineage‐tracing experiments in conjunction with single‐cell RNA and assay for transposase‐accessible chromatin sequencing experiments. The heterogenetic dynamics of skin regeneration have yet to be fully defined, and this research will help to advance the fields of regenerative medicine and biology. Finally, we believe that stimulating the GDNF signalling pathway in fibroblasts from less‐regenerative animals, such as humans, will promote skin regeneration, morphogenesis and scarless wound healing.
Collapse
Affiliation(s)
- Neda Vishlaghi
- University of Miami, Biology Department, 1301 Memorial Drive, Cox Science Center, Coral Gables, FL, USA
| | - Sandra Rieger
- University of Miami, Biology Department, 1301 Memorial Drive, Cox Science Center, Coral Gables, FL, USA.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Vanessa McGaughey
- University of Miami, Biology Department, 1301 Memorial Drive, Cox Science Center, Coral Gables, FL, USA
| | - Thomas S Lisse
- University of Miami, Biology Department, 1301 Memorial Drive, Cox Science Center, Coral Gables, FL, USA.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
4
|
GDNF requires HIF-1α and RET activation for suppression of programmed cell death of enteric neurons by metabolic challenge. Mol Cell Neurosci 2021; 115:103655. [PMID: 34273501 DOI: 10.1016/j.mcn.2021.103655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/24/2021] [Accepted: 07/11/2021] [Indexed: 01/21/2023] Open
Abstract
Intestinal inflammation challenges both function and structure of the enteric nervous system (ENS). In the animal model of TNBS-induced colitis, an influx of immune cells causes early neuron death in the neuromuscular layers, followed by axonal outgrowth from surviving neurons associated with upregulation of the neurotrophin GDNF (glial cell line-derived neurotrophic factor). Inflammation could involve ischemia and metabolic inhibition leading to neuronal damage, which might be countered by a protective action of GDNF. This was examined in a primary co-culture model of rat myenteric neurons and smooth muscle, where metabolic challenge was caused by dinitrophenol (DNP), O-methyl glucose (OMG) or hypoxia. These caused the specific loss of 50% of neurons by 24 h that was blocked by GDNF both in vitro and in whole mounts. Neuroprotection was lost with RET inhibition by vandetanib or GSK3179106, which also caused neuron loss in untreated controls. Thus, both basal and upregulated GDNF levels signal via RET for neuronal survival. This includes a key role for upregulation of HIF-1α, which was detected in neurons in colitis, since the inhibitor chetomin blocked rescue by GDNF or ischemic pre-conditioning in vitro. In DNP-treated co-cultures, neuron death was not inhibited by zVAD, necrosulfonamide or GSK872, and cleaved caspase-3 or - 8 were undetectable. However, combinations of inhibitors or the RIP1kinase inhibitor Nec-1 prevented neuronal death, evidence for RIPK1-dependent necroptosis. Therefore, inflammation challenges enteric neurons via ischemia, while GDNF is neuroprotective, activating RET and HIF-1α to limit programmed cell death. This may support novel strategies to address recurrent inflammation in IBD.
Collapse
|
5
|
RET-independent signaling by GDNF ligands and GFRα receptors. Cell Tissue Res 2020; 382:71-82. [PMID: 32737575 PMCID: PMC7529620 DOI: 10.1007/s00441-020-03261-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/15/2020] [Indexed: 12/19/2022]
Abstract
The discovery in the late 1990s of the partnership between the RET receptor tyrosine kinase and the GFRα family of GPI-anchored co-receptors as mediators of the effects of GDNF family ligands galvanized the field of neurotrophic factors, firmly establishing a new molecular framework besides the ubiquitous neurotrophins. Soon after, however, it was realized that many neurons and brain areas expressed GFRα receptors without expressing RET. These observations led to the formulation of two new concepts in GDNF family signaling, namely, the non-cell-autonomous functions of GFRα molecules, so-called trans signaling, as well as cell-autonomous functions mediated by signaling receptors distinct from RET, which became known as RET-independent signaling. To date, the best studied RET-independent signaling pathway for GDNF family ligands involves the neural cell adhesion molecule NCAM and its association with GFRα co-receptors. Among the many functions attributed to this signaling system are neuronal migration, neurite outgrowth, dendrite branching, spine formation, and synaptogenesis. This review summarizes our current understanding of this and other mechanisms of RET-independent signaling by GDNF family ligands and GFRα receptors, as well as their physiological importance.
Collapse
|
6
|
Wang S, Fan Y, Xu Y, Zhang L, Cai L, Lv B. GDNFOS1 knockdown decreases the invasion and viability of glioblastoma cells. Exp Ther Med 2019; 18:1315-1322. [PMID: 31316623 DOI: 10.3892/etm.2019.7670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 05/10/2019] [Indexed: 01/12/2023] Open
Abstract
Glioblastoma multiforme is the most aggressive primary brain cancer in adults. Therefore, it is important to investigate the mechanisms associated with cell viability and invasion ability of the cells in glioblastoma multiforme. The opposite strand of the glial cell line-derived neurotrophic factor (GDNF) gene is used to transcribe the cis-antisense GDNF opposite strand (GDNFOS) gene, which belongs to the long noncoding RNAs. The current study assessed the effects of GDNFOS1 overexpression and interference on GDNF expression, cell viability and invasion ability in U87 and U251 MG glioblastoma cells. Overexpression and interference were performed using constructed lentiviral vectors, including long non-coding RNA GDNFOS1 overexpression vector, pL-short hairpin RNA (shRNA)-GDNFOS1-9, pL-shRNA-GDNFOS1-49, pL-shRNA-GDNFOS1-248, pL-shRNA-GDNFOS1-9+49, pL-shRNA-GDNFOS1-9+248 and pL-shRNA-GDNFOS1-49+248. Reverse transcription-quantitative PCR was used to determine the efficiency of interference and overexpression of GDNFOS1 in U87 and U251 MG cells. GDNF protein expression in U87 and U251 MG cells was detected using western blot analysis. In addition, cell viability was detected using a cell counting kit-8 assay at 24, 48 and 72 h after GDNFOS1 overexpression or interference. A transwell invasion assay was used to detect invasion ability. Different shRNA sequences were tested and the results revealed that a combination (pL-shRNA-GDNFOS1-49+248) was most effective in the knock-down GDNFOS1. Compared with the control group, GDNF expression in U87 MG cells was significantly increased in the GDNFOS1 overexpression group and decreased in the shRNA-GDNFOS1-248 group. U87 MG cell viability was significantly increased in the GDNFOS1 overexpression group at 24, 48 and 72 h compared with the negative control group. The viability of U87 MG cells was decreased in the GDNFOS1 interference group at 72 h when compared with the control group. The relative invasive ability was significantly increased in the GDNFOS1 overexpression group when compared with the negative control group. The invasive ability was significantly decreased in the GDNFOS1 interference group when compared with the negative control group. Similar results were exhibited by the U251 MG cells. Overall, GDNF expression, cell viability and invasion ability of glioblastoma cells significantly increased with GDNFOS1 overexpression and decreased with GDNFOS1 interference.
Collapse
Affiliation(s)
- Shiyi Wang
- Department of Gastroenterology, Ningbo Hospital of TCM Affiliated to Zhejiang Chinese Medical University, Ningbo, Zhejiang 315000, P.R. China.,Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Yihong Fan
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Yi Xu
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Lu Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Lijun Cai
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Bin Lv
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
7
|
Vergnolle N, Cirillo C. Neurons and Glia in the Enteric Nervous System and Epithelial Barrier Function. Physiology (Bethesda) 2019; 33:269-280. [PMID: 29897300 DOI: 10.1152/physiol.00009.2018] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The intestinal epithelial barrier is the largest exchange surface between the body and the external environment. Its functions are regulated by luminal, and also internal, components including the enteric nervous system. This review summarizes current knowledge about the role of the digestive "neuronal-glial-epithelial unit" on epithelial barrier function.
Collapse
Affiliation(s)
- Nathalie Vergnolle
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse , France.,Department of Physiology and Pharmacology, Faculty of Medicine, University of Calgary , Calgary, Alberta , Canada
| | - Carla Cirillo
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse , France.,Laboratory for Enteric Neuroscience, TARGID, University of Leuven , Leuven , Belgium
| |
Collapse
|
8
|
Porokuokka LL, Virtanen HT, Lindén J, Sidorova Y, Danilova T, Lindahl M, Saarma M, Andressoo JO. Gfra1 Underexpression Causes Hirschsprung's Disease and Associated Enterocolitis in Mice. Cell Mol Gastroenterol Hepatol 2018; 7:655-678. [PMID: 30594740 PMCID: PMC6444303 DOI: 10.1016/j.jcmgh.2018.12.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 12/19/2018] [Accepted: 12/19/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS RET, the receptor for the glial cell line-derived neurotrophic factor (GDNF) family ligands, is the most frequently mutated gene in congenital aganglionic megacolon or Hirschsprung's disease (HSCR). The leading cause of mortality in HSCR is HSCR-associated enterocolitis (HAEC), which is characterized by altered mucin composition, mucin retention, bacterial adhesion to enterocytes, and epithelial damage, although the order of these events is obscure. In mice, loss of GDNF signaling leads to a severely underdeveloped enteric nervous system and neonatally fatal kidney agenesis, thereby precluding the use of these mice for modeling postnatal HSCR and HAEC. Our aim was to generate a postnatally viable mouse model for HSCR/HAEC and analyze HAEC etiology. METHODS GDNF family receptor alpha-1 (GFRa1) hypomorphic mice were generated by placing a selectable marker gene in the sixth intron of the Gfra1 locus using gene targeting in mouse embryonic stem cells. RESULTS We report that 70%-80% reduction in GDNF co-receptor GFRa1 expression levels in mice results in HSCR and HAEC, leading to death within the first 25 postnatal days. These mice mirror the disease progression and histopathologic findings in children with untreated HSCR/HAEC. CONCLUSIONS In GFRa1 hypomorphic mice, HAEC proceeds from goblet cell dysplasia, with abnormal mucin production and retention, to epithelial damage. Microbial enterocyte adherence and tissue invasion are late events and therefore unlikely to be the primary cause of HAEC. These results suggest that goblet cells may be a potential target for preventative treatment and that reduced expression of GFRa1 may contribute to HSCR susceptibility.
Collapse
Affiliation(s)
| | - Heikki T Virtanen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Jere Lindén
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Yulia Sidorova
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Tatiana Danilova
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Maria Lindahl
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Mart Saarma
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
9
|
Fielder GC, Yang TWS, Razdan M, Li Y, Lu J, Perry JK, Lobie PE, Liu DX. The GDNF Family: A Role in Cancer? Neoplasia 2018; 20:99-117. [PMID: 29245123 PMCID: PMC5730419 DOI: 10.1016/j.neo.2017.10.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 10/31/2017] [Accepted: 10/31/2017] [Indexed: 02/07/2023]
Abstract
The glial cell line-derived neurotrophic factor (GDNF) family of ligands (GFLs) comprising of GDNF, neurturin, artemin, and persephin plays an important role in the development and maintenance of the central and peripheral nervous system, renal morphogenesis, and spermatogenesis. Here we review our current understanding of GFL biology, and supported by recent progress in the area, we examine their emerging role in endocrine-related and other non-hormone-dependent solid neoplasms. The ability of GFLs to elicit actions that resemble those perturbed in an oncogenic phenotype, alongside mounting evidence of GFL involvement in tumor progression, presents novel opportunities for therapeutic intervention.
Collapse
Affiliation(s)
| | | | - Mahalakshmi Razdan
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Yan Li
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Jun Lu
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Jo K Perry
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Peter E Lobie
- Cancer Science Institute of Singapore and Department of Pharmacology, National University of Singapore, Singapore; Tsinghua Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, Guangdong, P. R. China
| | - Dong-Xu Liu
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand.
| |
Collapse
|
10
|
Uribe RA, Hong SS, Bronner ME. Retinoic acid temporally orchestrates colonization of the gut by vagal neural crest cells. Dev Biol 2018; 433:17-32. [PMID: 29108781 PMCID: PMC5722660 DOI: 10.1016/j.ydbio.2017.10.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 10/23/2017] [Indexed: 02/06/2023]
Abstract
The enteric nervous system arises from neural crest cells that migrate as chains into and along the primitive gut, subsequently differentiating into enteric neurons and glia. Little is known about the mechanisms governing neural crest migration en route to and along the gut in vivo. Here, we report that Retinoic Acid (RA) temporally controls zebrafish enteric neural crest cell chain migration. In vivo imaging reveals that RA loss severely compromises the integrity and migration of the chain of neural crest cells during the window of time window when they are moving along the foregut. After loss of RA, enteric progenitors accumulate in the foregut and differentiate into enteric neurons, but subsequently undergo apoptosis resulting in a striking neuronal deficit. Moreover, ectopic expression of the transcription factor meis3 and/or the receptor ret, partially rescues enteric neuron colonization after RA attenuation. Collectively, our findings suggest that retinoic acid plays a critical temporal role in promoting enteric neural crest chain migration and neuronal survival upstream of Meis3 and RET in vivo.
Collapse
Affiliation(s)
- Rosa A Uribe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Department of Biosciences, Rice University, Houston, TX 77005, USA.
| | - Stephanie S Hong
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
11
|
Bolon B, Jing S, Asuncion F, Scully S, Pisegna M, Van GY, Hu Z, Yu YB, Min H, Wild K, Rosenfeld RD, Tarpley J, Carnahan J, Duryea D, Hill D, Kaufman S, Yan XQ, Juan T, Christensen K, McCabe J, Simonet WS. The Candidate Neuroprotective Agent Artemin Induces Autonomic Neural Dysplasia without Preventing Peripheral Nerve Dysfunction. Toxicol Pathol 2016; 32:275-94. [PMID: 15204970 DOI: 10.1080/01926230490431475] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Artemin (ART) signals through the GFR α—3/RET receptor complex to support sympathetic neuron development. Here we show that ART also influences autonomic elements in adrenal medulla and enteric and pelvic ganglia. Transgenic mice over-expressing Art throughout development exhibited systemic autonomic neural lesions including fusion of adrenal medullae with adjacent paraganglia, adrenal medullary dysplasia, and marked enlargement of sympathetic (superior cervical and sympathetic chain ganglia) and parasympathetic (enteric, pelvic) ganglia. Changes began by gestational day 12.5 and formed progressively larger masses during adulthood. Art supplementation in wild type adult mice by administering recombinant protein or an Art-bearing retroviral vector resulted in hyperplasia or neuronal metaplasia at the adrenal corticomedullary junction. Expression data revealed that Gfr α—3 is expressed during development in the adrenal medulla, sensory and autonomic ganglia and their projections, while Art is found in contiguous mesenchymal domains (especially skeleton) and in certain nerves. Intrathecal Art therapy did not reduce hypalgesia in rats following nerve ligation. These data (1) confirm that ART acts as a differentiation factor for autonomic (chiefly sympathoadrenal but also parasympathetic) neurons, (2) suggest a role for ART overexpression in the genesis of pheochromocytomas and paragangliomas, and (3) indicate that ART is not a suitable therapy for peripheral neuropathy.
Collapse
Affiliation(s)
- Brad Bolon
- Department of Pathology, Amgen Inc., Thousand Oaks, California 91320-1799, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Adly MA, Assaf HA, Hussein MRA. Age-associated decrease in GDNF and its cognate receptor GFRα-1 protein expression in human skin. Int J Exp Pathol 2016; 97:248-56. [PMID: 27346872 DOI: 10.1111/iep.12175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 01/15/2016] [Indexed: 11/28/2022] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF) and its cognate receptor (GFRα-1) are expressed in normal human skin. They are involved in murine hair follicle morphogenesis and cycling control. We hypothesize that 'GDNF and GFRα-1 protein expression in human skin undergoes age-associated alterations. To test our hypothesis, the expression of these proteins was examined in human skin specimens obtained from 30 healthy individuals representing three age groups: children (5-18 years), adults (19-60 years) and the elderly (61-81 years). Immunofluorescent and light microscopic immunohistologic analyses were performed using tyramide signal amplification and avidin-biotin complex staining methods respectively. GDNF mRNA expression was examined by RT-PCR analysis. GDNF mRNA and protein as well as GFRα-1 protein expressions were detected in normal human skin. We found significantly reduced epidermal expression of these proteins with ageing. In the epidermis, the expression was strong in the skin of children and declined gradually with ageing, being moderate in adults and weak in the elderly. In children and adults, the expression of both GDNF and GFRα-1 proteins was strongest in the stratum basale and decreased gradually towards the surface layers where it was completely absent in the stratum corneum. In the elderly, GDNF and GFRα-1 protein expression was confined to the stratum basale. In the dermis, both GDNF and GFRα-1 proteins had strong expressions in the fibroblasts, sweat glands, sebaceous glands, hair follicles and blood vessels regardless of the age. Thus there is a decrease in epidermal GDNF and GFRα-1 protein expression in normal human skin with ageing. Our findings suggest that the consequences of this is that GFRα-1-mediated signalling is altered during the ageing process. The clinical and therapeutic ramifications of these observations mandate further investigations.
Collapse
Affiliation(s)
- Mohamed A Adly
- Department of Zoology, Faculty of Science, Sohag University, Sohag, Egypt
| | - Hanan A Assaf
- Department of Dermatology and Venereology, Faculty of Medicine, Sohag University, Sohag, Egypt
| | | |
Collapse
|
13
|
Uesaka T, Young HM, Pachnis V, Enomoto H. Development of the intrinsic and extrinsic innervation of the gut. Dev Biol 2016; 417:158-67. [PMID: 27112528 DOI: 10.1016/j.ydbio.2016.04.016] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/09/2016] [Accepted: 04/21/2016] [Indexed: 12/16/2022]
Abstract
The gastrointestinal (GI) tract is innervated by intrinsic enteric neurons and by extrinsic efferent and afferent nerves. The enteric (intrinsic) nervous system (ENS) in most regions of the gut consists of two main ganglionated layers; myenteric and submucosal ganglia, containing numerous types of enteric neurons and glial cells. Axons arising from the ENS and from extrinsic neurons innervate most layers of the gut wall and regulate many gut functions. The majority of ENS cells are derived from vagal neural crest cells (NCCs), which proliferate, colonize the entire gut, and first populate the myenteric region. After gut colonization by vagal NCCs, the extrinsic nerve fibers reach the GI tract, and Schwann cell precursors (SCPs) enter the gut along the extrinsic nerves. Furthermore, a subpopulation of cells in myenteric ganglia undergoes a radial (inward) migration to form the submucosal plexus, and the intrinsic and extrinsic innervation to the mucosal region develops. Here, we focus on recent progress in understanding the developmental processes that occur after the gut is colonized by vagal ENS precursors, and provide an up-to-date overview of molecular mechanisms regulating the development of the intrinsic and extrinsic innervation of the GI tract.
Collapse
Affiliation(s)
- Toshihiro Uesaka
- Division of Neural Differentiation and Regeneration, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan; Laboratory for Neuronal Differentiation and Regeneration, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan.
| | - Heather M Young
- Department of Anatomy and Neuroscience, University of Melbourne, 3010 VIC, Australia
| | - Vassilis Pachnis
- Division of Molecular Neurobiology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom
| | - Hideki Enomoto
- Division of Neural Differentiation and Regeneration, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan; Laboratory for Neuronal Differentiation and Regeneration, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan
| |
Collapse
|
14
|
Abstract
PURPOSE Hirschsprung's disease (HSCR) is a developmental disorder of the enteric nervous system, which occurs due to the failure of neural crest cell migration. Rodent animal models of aganglionosis have contributed greatly to our understanding of the genetic basis of HSCR. Several natural or target mutations in specific genes have been reported to produce developmental defects in neural crest migration, differentiation or survival. The aim of this study was to review the currently available knockout models of HSCR to better understand the molecular basis of HSCR. METHODS A review of the literature using the keywords "Hirschsprung's disease", "aganglionosis", "megacolon" and "knockout mice model" was performed. Resulting publications were reviewed for relevant mouse models of human aganglionosis. Reference lists were screened for additional relevant studies. RESULTS 16 gene knockout mouse models were identified as relevant rodent models of human HSCR. Due to the deletion of a specific gene, the phenotypes of these knockout models are diverse and range from small bowel dilatation and muscular hypertrophy to total intestinal aganglionosis. CONCLUSIONS Mouse models of aganglionosis have been instrumental in the discovery of the causative genes of HSCR. Although important advances have been made in understanding the genetic basis of HSCR, animal models of aganglionosis in future should further help to identify the unknown susceptibility genes in HSCR.
Collapse
Affiliation(s)
- J Zimmer
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | | |
Collapse
|
15
|
Kelamangalath L, Tang X, Bezik K, Sterling N, Son YJ, Smith GM. Neurotrophin selectivity in organizing topographic regeneration of nociceptive afferents. Exp Neurol 2015; 271:262-78. [PMID: 26054884 DOI: 10.1016/j.expneurol.2015.06.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/22/2015] [Accepted: 06/03/2015] [Indexed: 01/28/2023]
Abstract
Neurotrophins represent some of the best candidates to enhance regeneration. In the current study, we investigated the effects of artemin, a member of the glial derived neurotrophic factor (GDNF) family, on sensory axon regeneration following a lumbar dorsal root injury and compared these effects with that observed after either NGF or GDNF expression in the rat spinal cord. Unlike previously published data, artemin failed to induce regeneration of large-diameter myelinated sensory afferents when expressed within either the spinal cord or DRG. However, artemin or NGF induced regeneration of calcitonin gene related peptide positive (CGRP(+)) axons only when expressed within the spinal cord. Accordingly, artemin or NGF enhanced recovery of only nociceptive behavior and showed a cFos distribution similar to the topography of regenerating axons. Artemin and GDNF signaling requires binding to different co-receptors (GFRα3 or GFRα1, respectively) prior to binding to the signaling receptor, cRet. Approximately 70% of DRG neurons express cRet, but only 35% express either co-receptor. To enhance artemin-induced regeneration, we co-expressed artemin with either GFRα3 or GDNF. Co-expression of artemin and GFRα3 only slightly enhanced regeneration of IB4(+) non-peptidergic nociceptive axons, but not myelinated axons. Interestingly, this co-expression also disrupted the ability of artemin to produce topographic targeting and lead to significant increases in cFos immunoreactivity within the deep dorsal laminae. This study failed to demonstrate artemin-induced regeneration of myelinated axons, even with co-expression of GFRα3, which only promoted mistargeted regeneration.
Collapse
Affiliation(s)
- Lakshmi Kelamangalath
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Xiaoqing Tang
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Kathleen Bezik
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Noelle Sterling
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Young-Jin Son
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - George M Smith
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| |
Collapse
|
16
|
Fleming MS, Vysochan A, Paixão S, Niu J, Klein R, Savitt JM, Luo W. Cis and trans RET signaling control the survival and central projection growth of rapidly adapting mechanoreceptors. eLife 2015; 4:e06828. [PMID: 25838128 PMCID: PMC4408446 DOI: 10.7554/elife.06828] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/01/2015] [Indexed: 01/26/2023] Open
Abstract
RET can be activated in cis or trans by its co-receptors and ligands in vitro, but the physiological roles of trans signaling are unclear. Rapidly adapting (RA) mechanoreceptors in dorsal root ganglia (DRGs) express Ret and the co-receptor Gfrα2 and depend on Ret for survival and central projection growth. Here, we show that Ret and Gfrα2 null mice display comparable early central projection deficits, but Gfrα2 null RA mechanoreceptors recover later. Loss of Gfrα1, the co-receptor implicated in activating RET in trans, causes no significant central projection or cell survival deficit, but Gfrα1;Gfrα2 double nulls phenocopy Ret nulls. Finally, we demonstrate that GFRα1 produced by neighboring DRG neurons activates RET in RA mechanoreceptors. Taken together, our results suggest that trans and cis RET signaling could function in the same developmental process and that the availability of both forms of activation likely enhances but not diversifies outcomes of RET signaling.
Collapse
Affiliation(s)
- Michael S Fleming
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Anna Vysochan
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Sόnia Paixão
- Molecules - Signals - Development, Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Jingwen Niu
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Rüdiger Klein
- Molecules - Signals - Development, Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Joseph M Savitt
- Parkinson's Disease and Movement Disorder Center of Maryland, Elkridge, United States
| | - Wenqin Luo
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
17
|
Abstract
The myenteric plexus of the enteric nervous system controls the movement of smooth muscles in the gastrointestinal system. They extend their axons between two peripheral smooth muscle layers to form a tubular meshwork arborizing the gut wall. How a tubular axonal meshwork becomes established without invading centrally toward the gut epithelium has not been addressed. We provide evidence here that sonic hedgehog (Shh) secreted from the gut epithelium prevents central projections of enteric axons, thereby forcing their peripheral tubular distribution. Exclusion of enteric central projections by Shh requires its binding partner growth arrest specific gene 1 (Gas1) and its signaling component smoothened (Smo) in enteric neurons. Using enteric neurons differentiated from neurospheres in vitro, we show that enteric axon growth is not inhibited by Shh. Rather, when Shh is presented as a point source, enteric axons turn away from it in a Gas1-dependent manner. Of the Gαi proteins that can couple with Smo, G protein α Z (Gnaz) is found in enteric axons. Knockdown and dominant negative inhibition of Gnaz dampen the axon-repulsive response to Shh, and Gnaz mutant intestines contain centrally projected enteric axons. Together, our data uncover a previously unsuspected mechanism underlying development of centrifugal tubular organization and identify a previously unidentified effector of Shh in axon guidance.
Collapse
|
18
|
Maruccio L, D'Angelo L, de Girolamo P, Lucini C, Castaldo L. GDNF and GFRα co-receptor family in the developing feline gut. Ann Anat 2014; 196:296-302. [PMID: 24834895 DOI: 10.1016/j.aanat.2014.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 03/11/2014] [Accepted: 03/12/2014] [Indexed: 01/19/2023]
Abstract
Glial cell-line derived neurotrophic factor (GDNF) and the GFRα co-receptors play a role in the developing enteric nervous system. The co-receptors elicit their action by binding receptor tyrosine kinase RET. This immunohistochemical study reports the presence of GDNF and its specific co-receptor GFRα1 in the cat gastrointestinal apparatus during development, from stage 9 to 22. At stage 9 and 11, immunoreactivity (IR) to GDNF was observed in the cells of mesenchyme of the anterior gut. From stage 14 to 22, GDNF IR was detected in nervous plexuses; moreover, GDNF and GFRα1 IR appeared localized in gastrointestinal endocrine cells. The presence of GDNF in the enteric nervous system and in the endocrine cells suggests an involvement of this neurotrophic factor in the gastrointestinal development. Moreover, the presence of the co-receptor GFRα1 in endocrine cells and its absence in the enteric nervous system seems to indicate a different mode of transduction of GDNF signal. GFRα2 and GFRα3 co-receptors were not detected.
Collapse
Affiliation(s)
- L Maruccio
- Department of Veterinary Medicine and Animal Productions, University of Naples, Federico II, Naples, Italy.
| | - L D'Angelo
- Department of Veterinary Medicine and Animal Productions, University of Naples, Federico II, Naples, Italy
| | - P de Girolamo
- Department of Veterinary Medicine and Animal Productions, University of Naples, Federico II, Naples, Italy
| | - C Lucini
- Department of Veterinary Medicine and Animal Productions, University of Naples, Federico II, Naples, Italy
| | - L Castaldo
- Department of Veterinary Medicine and Animal Productions, University of Naples, Federico II, Naples, Italy
| |
Collapse
|
19
|
Brun P, Giron MC, Qesari M, Porzionato A, Caputi V, Zoppellaro C, Banzato S, Grillo AR, Spagnol L, De Caro R, Pizzuti D, Barbieri V, Rosato A, Sturniolo GC, Martines D, Zaninotto G, Palù G, Castagliuolo I. Toll-like receptor 2 regulates intestinal inflammation by controlling integrity of the enteric nervous system. Gastroenterology 2013; 145:1323-33. [PMID: 23994200 DOI: 10.1053/j.gastro.2013.08.047] [Citation(s) in RCA: 232] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 08/03/2013] [Accepted: 08/15/2013] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS In the intestines, Toll-like receptor 2 (TLR2) mediates immune responses to pathogens and regulates epithelial barrier function; polymorphisms in TLR2 have been associated with inflammatory bowel disease phenotype. We assessed the effects of TLR2 signaling on the enteric nervous system (ENS) in mice. METHODS TLR2 distribution and function in the ileal neuromuscular layer of mice were determined by immunofluorescence, cytofluorimetric analysis, immunoprecipitation, and immunoblot analyses. We assessed morphology and function of the ENS in Tlr2(-/-) mice and in mice with wild-type Tlr2 (wild-type mice) depleted of intestinal microbiota, using immunofluorescence, immunoblot, and gastrointestinal motility assays. Levels and signaling of glial cell line-derived neurotrophic factor (GDNF) were determined using quantitative reverse transcriptase polymerase chain reaction, immunohistochemistry, and immunoprecipitation analyses. Colitis was induced by administration of dextran sulfate sodium or 2,4 dinitrobenzensulfonic acid to Tlr2(-/-) mice after termination of GDNF administration. RESULTS TLR2 was expressed in enteric neurons, glia, and smooth muscle cells of the intestinal wall. Tlr2(-/-) mice had alterations in ENS architecture and neurochemical profile, intestinal dysmotility, abnormal mucosal secretion, reduced levels of GDNF in smooth muscle cells, and impaired signaling via Ret-GFRα1. ENS structural and functional anomalies were completely corrected by administration of GDNF to Tlr2(-/-) mice. Wild-type mice depleted of intestinal microbiota had ENS defects and GDNF deficiency, similar to Tlr2(-/-) mice; these defects were partially restored by administration of a TLR2 agonist. Tlr2(-/-) mice developed more severe colitis than wild-type mice after administration of dextran sulfate sodium or 2,4 dinitrobenzensulfonic acid; colitis was not more severe if Tlr2(-/-) mice were given GDNF before dextran sulfate sodium or 2,4 dinitrobenzensulfonic acid. CONCLUSIONS In mice, TLR2 signaling regulates intestinal inflammation by controlling ENS structure and neurochemical coding, along with intestinal neuromuscular function. These findings provide information as to how defective TLR2 signaling in the ENS affects inflammatory bowel disease phenotype in humans.
Collapse
Affiliation(s)
- Paola Brun
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Biau S, Jin S, Fan CM. Gastrointestinal defects of the Gas1 mutant involve dysregulated Hedgehog and Ret signaling. Biol Open 2012; 2:144-55. [PMID: 23429478 PMCID: PMC3575649 DOI: 10.1242/bio.20123186] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 10/02/2012] [Indexed: 12/18/2022] Open
Abstract
The gastrointestinal (GI) tract defines the digestive system and is composed of the stomach, intestine and colon. Among the major cell types lining radially along the GI tract are the epithelium, mucosa, smooth muscles and enteric neurons. The Hedgehog (Hh) pathway has been implicated in directing various aspects of the developing GI tract, notably the mucosa and smooth muscle growth, and enteric neuron patterning, while the Ret signaling pathway is selectively required for enteric neuron migration, proliferation, and differentiation. The growth arrest specific gene 1 (Gas1) encodes a GPI-anchored membrane protein known to bind to Sonic Hh (Shh), Indian Hh (Ihh), and Ret. However, its role in the GI tract has not been examined. Here we show that the Gas1 mutant GI tract, compared to the control, is shorter, has thinner smooth muscles, and contains more enteric progenitors that are abnormally distributed. These phenotypes are similar to those of the Shh mutant, supporting that Gas1 mediates most of the Shh activity in the GI tract. Because Gas1 has been shown to inhibit Ret signaling elicited by Glial cell line-derived neurotrophic factor (Gdnf), we explored whether Gas1 mutant enteric neurons displayed any alteration of Ret signaling levels. Indeed, isolated mutant enteric progenitors not only showed increased levels of phospho-Ret and its downstream effectors, phospho-Akt and phospho-Erk, but also displayed altered responses to Gdnf and Shh. We therefore conclude that phenotypes observed in the Gas1 mutant are due to a combination of reduced Hh signaling and increased Ret signaling.
Collapse
Affiliation(s)
- Sandrine Biau
- Department of Embryology, Carnegie Institution of Washington , 3520 San Martin Drive, Baltimore, Maryland 21218 , USA ; 2iE Foundation, International Institute for Water and Environmental Engineering , Rue de la Science, 01 BP 594, Ouagadougou 01 , Burkina Faso
| | | | | |
Collapse
|
21
|
Glial cell line-derived neurotrophic factor enhances human islet posttransplantation survival. Transplantation 2011; 92:745-51. [PMID: 21869742 DOI: 10.1097/tp.0b013e31822bc95a] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Development of pretransplantation islet culture strategies that preserve or enhance β-cell viability would eliminate the requirement for the large numbers of islets needed to restore insulin independence in type 1 diabetes patients. We investigated whether glial cell line-derived neurotrophic factor (GDNF) could improve human islet survival and posttransplantation function in diabetic mice. METHODS Human islets were cultured in medium supplemented with or without GDNF (100 ng/mL) and in vitro islet survival and function assessed by analyzing β-cell apoptosis and glucose stimulated insulin release. In vivo effects of GDNF were assessed in streptozotocin-induced diabetic nude mice transplanted under the kidney capsule with 2000 islet equivalents of human islets precultured in medium supplemented with or without GDNF. RESULTS In vitro, human islets cultured for 2 to 10 days in medium supplemented with GDNF showed lower β-cell death, increased Akt phosphorylation, and higher glucose-induced insulin secretion than islets cultured in vehicle. Human islets precultured in medium supplemented with GDNF restored more diabetic mice to normoglycemia and for a longer period after transplantation than islets cultured in vehicle. CONCLUSIONS Our study shows that GDNF has beneficial effects on human islet survival and could be used to improve islet posttransplantation survival.
Collapse
|
22
|
Mwizerwa O, Das P, Nagy N, Akbareian SE, Mably JD, Goldstein AM. Gdnf is mitogenic, neurotrophic, and chemoattractive to enteric neural crest cells in the embryonic colon. Dev Dyn 2011; 240:1402-11. [PMID: 21465624 PMCID: PMC3092856 DOI: 10.1002/dvdy.22630] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2011] [Indexed: 01/16/2023] Open
Abstract
Glial-derived neurotrophic factor (Gdnf) is required for morphogenesis of the enteric nervous system (ENS) and it has been shown to regulate proliferation, differentiation, and survival of cultured enteric neural crest-derived cells (ENCCs). The goal of this study was to investigate its in vivo role in the colon, the site most commonly affected by intestinal neuropathies such as Hirschsprung's disease. Gdnf activity was modulated in ovo in the distal gut of avian embryos using targeted retrovirus-mediated gene overexpression and retroviral vector-based gene silencing. We find that Gdnf has a pleiotropic effect on colonic ENCCs, promoting proliferation, inducing neuronal differentiation, and acting as a chemoattractant. Down-regulating Gdnf similarly induces premature neuronal differentiation, but also inhibits ENCC proliferation, leading to distal colorectal aganglionosis with severe proximal hypoganglionosis. These results indicate an important role for Gdnf signaling in colonic ENS formation and emphasize the critical balance between proliferation and differentiation in the developing ENS.
Collapse
Affiliation(s)
- Olive Mwizerwa
- Department of Pediatric Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Pragnya Das
- Department of Pathology, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Nandor Nagy
- Department of Human Morphology and Developmental Biology, Faculty of Medicine, Semmelweis University, Budapest-1094, Hungary
| | - Sophia E. Akbareian
- Department of Pediatric Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - John D. Mably
- Departments of Pediatrics and Genetics, Children's Hospital Boston and Harvard Medical School, Boston, MA 02115
| | - Allan M. Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| |
Collapse
|
23
|
Abstract
Hirschsprung disease (HD) and anorectal malformations (ARMs) result from alterations in hindgut development. It has long been recognized that both recur in families and thus result, at least in part, from genetic factors. Progress in the understanding of the genetic basis of HD has been made by the application of findings from genetic animal models of altered enteric nervous system development to human beings. Several genes have been shown to be important for human enteric nervous system development, and current work is progressing to identify genetic interactions that may explain the variable phenotype of HD. By contrast, understanding of the genetic factors underlying ARMs is much less developed. We and others have shown that genetic factors play an important role in the pathogenesis of ARMs, and many mouse genetic models suggest molecular pathways that may be altered in ARMs.
Collapse
Affiliation(s)
- Erin Mundt
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | | |
Collapse
|
24
|
Abstract
INTRODUCTION The growth factor, 'Glial cell line-Derived Neurotrophic Factor' (GDNF), is involved in the development of enteric ganglia, using the tyrosine kinase receptor 'REarranged during Transfection' (RET) to stimulate the proliferation and differentiation of neural crest-derived precursor cells. To date, the presence of these signalling molecules have not been studied in the developing cloaca, thus the aim of this study was to investigate the distribution of RET and GDNF, and analyse their co-localisation in vagal-derived neurons of the cloaca using quail-chick chimera embryos. MATERIALS AND METHODS Chicken embryos were incubated until the 10-12 somite stage. The vagal neural tube was microsurgically ablated in ovo and replaced with the vagal neural tube from age-matched quail embryos. Quail-chick chimera embryos were harvested at E12, fixed and embedded in paraffin wax, and serially sectioned. Immunohistochemistry was performed using human natural killer-1 (HNK-1), quail-cell-specific perinuclear (QCPN), GDNF and RET antibodies. RESULTS HNK-1 labelled all ganglia in the myenteric and submucosal plexuses of the cloaca, while the quail-specific QCPN antibody labelled all ganglia derived from the transplanted quail vagal neural tube (Fig. 1, a, b). RET and GDNF were found both co-localised and expressed in separate ganglia in the cloaca (Fig. 1, c, d). The majority of QCPN-labelled vagal-derived neurons also expressed RET and GDNF. Fig. 1 HNK-1 (a), QCPN (b), GDNF (c) and RET (d) immunoreactivity in the chick cloaca at E12. Arrows show ganglia displaying co-immunoreactivity for all four antibodies CONCLUSION Results show that GDNF and RET signalling play a major role in ENS development in the chick embryo cloaca. We have shown, for the first time, that the majority of vagal neural crest-derived neurons co-express RET and GDNF, thus highlighting the importance of these signalling factors in cloacal development.
Collapse
|
25
|
Paratcha G, Ledda F. GDNF and GFRalpha: a versatile molecular complex for developing neurons. Trends Neurosci 2008; 31:384-91. [PMID: 18597864 DOI: 10.1016/j.tins.2008.05.003] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 05/08/2008] [Accepted: 05/12/2008] [Indexed: 01/26/2023]
Abstract
The GDNF family ligands (GFLs) signal through the canonical signaling receptor Ret and a glycosyl-phosphatidylinositol-anchored co-receptor, GFRalpha. In recent years, signaling by GFLs has been shown to be more complex than originally assumed. The discrepant expression between GFRalphas and Ret has suggested the existence of additional signal-transducing GDNF receptors, such as NCAM. Here we summarize novel functions and Ret-independent signaling mechanisms for GDNF and GFRalpha, focusing on developing neurons. Emerging evidence indicates a prominent role of GDNF and GFRalpha in the control of neuroblast migration and chemoattraction and in the formation of neuronal synapses by a new mechanism of ligand-induced cell adhesion. Therefore, these data highlight the importance of this versatile molecular complex for nervous system development, function and regeneration.
Collapse
Affiliation(s)
- Gustavo Paratcha
- Laboratory of Molecular and Cellular Neuroscience, Department of Neuroscience, Karolinska Institute, S-17177 Stockholm, Sweden.
| | | |
Collapse
|
26
|
Maruccio L, Lucini C, Russo F, Antonucci R, Castaldo L. The development of avian enteric nervous system: distribution of artemin immunoreactivity. Acta Histochem 2008; 110:163-71. [PMID: 18035402 DOI: 10.1016/j.acthis.2007.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 09/14/2007] [Accepted: 10/01/2007] [Indexed: 10/22/2022]
Abstract
Among the factors that control neural crest cell precursors within the enteric nervous system, the ligands of the glial cell line-derived neurotrophic factor family (GFL) seem to be the most influential. Artemin, a member of the GFLs, was previously described only in the oesophagus and stomach of mouse embryos. In this study, the presence and distribution of artemin is reported in duck embryos and adults. Artemin immunoreactivity was apparent in the intestinal tract at embryonic day 7 (d7), firstly in the myenteric plexus and then in the submucous plexus. Later, artemin immunoreactive nerve fibres were also seen in the longitudinal muscle plexus, the circular muscle plexus, the plexus of the muscularis mucosa and in the mucosal plexus. Furthermore, at d7, weak labeling of artemin was detected in neurons and glial cells in the oesophagus, gastric region and duodenum. Subsequently, artemin was also detected in all other intestinal segments. Moreover, during development of the gut in the domestic duck, artemin immunoreactivity decreased in neuronal cell bodies, whilst it increased in neuronal fibres and glial cells. These findings suggest an involvement of artemin in the development and biology of the gut of the domestic duck.
Collapse
|
27
|
Adly MA, Assaf HA, Pertile P, Hussein MR, Paus R. Expression patterns of the glial cell line–derived neurotrophic factor, neurturin, their cognate receptors GFRα-1, GFRα-2, and a common signal transduction element c-Ret in the human skin hair follicles. J Am Acad Dermatol 2008; 58:238-50. [DOI: 10.1016/j.jaad.2007.10.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Revised: 09/11/2007] [Accepted: 10/09/2007] [Indexed: 01/03/2023]
|
28
|
Esseghir S, Todd SK, Hunt T, Poulsom R, Plaza-Menacho I, Reis-Filho JS, Isacke CM. A role for glial cell derived neurotrophic factor induced expression by inflammatory cytokines and RET/GFR alpha 1 receptor up-regulation in breast cancer. Cancer Res 2007; 67:11732-41. [PMID: 18089803 DOI: 10.1158/0008-5472.can-07-2343] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
By screening a tissue microarray of invasive breast tumors, we have shown that the receptor tyrosine kinase RET (REarranged during Transfection) and its coreceptor GFR alpha 1 (GDNF receptor family alpha-1) are overexpressed in a subset of estrogen receptor-positive tumors. Germ line-activating oncogenic mutations in RET allow this receptor to signal independently of GFR alpha 1 and its ligand glial cell-derived neurotrophic factor (GDNF) to promote a spectrum of endocrine neoplasias. However, it is not known whether tumor progression can also be driven by receptor overexpression and whether expression of GDNF, as has been suggested for other neurotrophic factors, is regulated in response to the inflammatory microenvironment surrounding many epithelial cancers. Here, we show that GDNF stimulation of RET(+)/GFR alpha 1(+) MCF7 breast cancer cells in vitro enhanced cell proliferation and survival, and promoted cell scattering. Moreover, in tumor xenografts, GDNF expression was found to be up-regulated on the infiltrating endogenous fibroblasts and to a lesser extent by the tumor cells themselves. Finally, the inflammatory cytokines tumor necrosis factor-alpha and interleukin-1 beta, which are involved in tumor promotion and development, were found to act synergistically to up-regulate GDNF expression in both fibroblasts and tumor cells. These data indicate that GDNF can act as an important component of the inflammatory response in breast cancers and that its effects are mediated by both paracrine and autocrine stimulation of tumor cells via signaling through the RET and GFR alpha 1 receptors.
Collapse
Affiliation(s)
- Selma Esseghir
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
29
|
Woodall AJ, Richards MA, Turner DJ, Fitzgerald EM. Growth factors differentially regulate neuronal Cav channels via ERK-dependent signalling. Cell Calcium 2007; 43:562-75. [PMID: 17996937 DOI: 10.1016/j.ceca.2007.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Revised: 08/21/2007] [Accepted: 10/02/2007] [Indexed: 10/22/2022]
Abstract
Voltage-gated calcium channels (Ca(v)) are tonically up-regulated via Ras/extracellular signal-regulated kinase (ERK) signalling in sensory neurones. However, the mechanisms underlying the specificity of cellular response to this pathway remain unclear. Neurotrophic factors are attractive candidates to be involved in this process as they are key regulators of ERK signalling and have important roles in neuronal survival, development and plasticity. Here, we report that in rat dorsal root ganglion neurones, endogenous nerve growth factor (NGF), glial derived neurotrophic factor (GDNF) and epidermal growth factor (EGF) are all involved in tonic ERK-dependent up-regulation of Ca(v) channels. Chronic (overnight) deprivation of growth factors inhibits total Ca(v) current according to developmental changes in expression of the cell surface receptors for NGF, GDNF and EGF. Whilst EGF specifically regulates transcriptional expression of Ca(v)s, NGF and GDNF also acutely modulate Ca(v) channels within a rapid ( approximately 10min) time-frame. These acute effects likely involve changes in the biophysical properties of Ca(v)s, including altered channel gating rather than changes in surface expression. Furthermore, NGF, GDNF and EGF differentially regulate specific populations of Ca(v)s. Thus, ERK-dependent regulation of Ca(v) activity provides an elegant and extremely flexible system with which to tailor calcium influx to discrete functional demands.
Collapse
Affiliation(s)
- A J Woodall
- Faculty of Life Sciences, The University of Manchester, Manchester M13 9NT, UK
| | | | | | | |
Collapse
|
30
|
Anderson RB, Newgreen DF, Young HM. Neural crest and the development of the enteric nervous system. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 589:181-96. [PMID: 17076282 DOI: 10.1007/978-0-387-46954-6_11] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The formation of the enteric nervous system (ENS) is a particularly interesting example of the migratory ability of the neural crest and of the complexity of structures to which neural crest cells contribute. The distance that neural crest cells migrate to colonize the entire length of the gastrointestinal tract exceeds that of any other neural crest cell population. Furthermore, this migration takes a long time--over 25% of the gestation period for mice and around 3 weeks in humans. After colonizing the gut, neural crest-derived cells within the gut wall then differentiate into glial cells plus many different types of neurons, and generate the most complex part of the peripheral nervous system.
Collapse
Affiliation(s)
- Richard B Anderson
- Department of Anatomy and Cell Biology, University of Melbourne, 3010, VIC, Australia
| | | | | |
Collapse
|
31
|
Hara K, Matsukawa N, Yasuhara T, Xu L, Yu G, Maki M, Kawase T, Hess DC, Kim SU, Borlongan CV. Transplantation of post-mitotic human neuroteratocarcinoma-overexpressing Nurr1 cells provides therapeutic benefits in experimental stroke: in vitro evidence of expedited neuronal differentiation and GDNF secretion. J Neurosci Res 2007; 85:1240-51. [PMID: 17335085 DOI: 10.1002/jnr.21234] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Nurr1 has been implicated as a transcription factor mediating the endogenous neuroprotective mechanism against stroke. We examined the in vivo and in vitro properties of a new human embryonic carcinoma Ntera-2 cell line carrying the human Nurr1 gene (NT2N.Nurr1). Adult Sprague-Dawley rats underwent experimental stroke initially and 14 days later were assigned randomly to receive stereotaxic transplantation of NT2N.Nurr1 cells or infusion of vehicle into their ischemic striatum. Transplantation of NT2N.Nurr1 cells promoted significant attenuation of behavioral impairments over a 56-day period after stroke, characterized by decreased hyperactivity, biased swing activity, and neurologic deficits, as well as significant reduction in ischemic striatal cell loss compared to vehicle-infused stroke animals. Transplanted NT2N.Nurr1 cells survived and expressed neuronal phenotypic markers in the ischemic striatum. In vitro results showed that cultured NT2.Nurr1 cells were already negative for nestin even before retinoic acid treatment, despite strong nestin immunoreactivity in NT2 cells. This indicates Nurr1 triggered a rapid commitment of NT2 cells into a neuronal lineage. Indeed, NT2.Nurr1 cells, at 4 weeks into RA treatment, displayed more abundant tyrosine hydroxylase positive cells than NT2 cells. Parallel ELISA studies showed further that cultured NT2N.Nurr1, but not NT2N cells, secreted glial cell derived neurotrophic factor. The present study shows efficacy of NT2N.Nurr1 cell grafts in ischemic stroke, with in vitro evidence suggesting the cells' excellent neuronal differentiation capability and ability to secrete GDNF as likely mechanisms mediating the observed therapeutic benefits.
Collapse
Affiliation(s)
- Koichi Hara
- Department of Neurology, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Estrada-Mondaca S, Carreón-Rodríguez A, Belkind-Gerson J. Biology of the adult enteric neural stem cell. Dev Dyn 2007; 236:20-32. [PMID: 16972279 DOI: 10.1002/dvdy.20954] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
An increasing body of evidence has accumulated in recent years supporting the existence of neural stem cells in the adult gut. There are at least three groups that have obtained them using different methodologies and have described them in vitro. There is a growing amount of knowledge on their biology, but many questions are yet unanswered. Among these questions is whether these cells are part of a permanent undifferentiated pool or are recruited in a regular basis; in addition, the factors and genes involved in their survival, proliferation, migration, and differentiation are largely unknown. Finally, with between 10 and 20% of adults suffering from diseases involving the enteric nervous system, most notably irritable bowel syndrome and gastroesophageal reflux, what is the possible role of enteric nervous stem cells in health and disease?
Collapse
Affiliation(s)
- Sandino Estrada-Mondaca
- Grupo de Medicina Regenerativa, Unidad de Ingeniería de Tejidos y Terapia Celular, Instituto Nacional de Rehabilitación, Secretaría de Salud, Tlalpan, Mexico City, Mexico
| | | | | |
Collapse
|
33
|
Abstract
ENS consists of a complex network of neurons, organised in several plexuses, which interact by means of numerous neurotransmitters. It is capable of modulating the intestinal motility, exocrine and endocrine secretions, microcirculation and immune and inflammatory responses within the gastrointestinal tract, independent of the central nervous system. Though the embryological development of various plexuses are completed by mid-way of gestation, the maturation of neurons and nerve plexuses appear to continue well after birth. Therefore, any histological or functional abnormalities related to the gastrointestinal function must be investigated with the ongoing maturational processes in mind.
Collapse
Affiliation(s)
- Thambipillai Sri Paran
- Children's Research Centre, Our Lady's Children's Hospital, University College Dublin, Crumlin, Dublin 12, Ireland
| | | | | |
Collapse
|
34
|
Lundgren TK, Scott RP, Smith M, Pawson T, Ernfors P. Engineering the Recruitment of Phosphotyrosine Binding Domain-containing Adaptor Proteins Reveals Distinct Roles for RET Receptor-mediated Cell Survival. J Biol Chem 2006; 281:29886-96. [PMID: 16847065 DOI: 10.1074/jbc.m600473200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The RET receptor tyrosine kinase is important for several different biological functions during development. The recruitment at the phosphorylated Tyr(1062) site in RET of a number of different phosphotyrosine binding (PTB) domain-containing adaptor proteins, including Shc and Frs2, plays a dominant role for the multiple different biological functions of the RET receptor during development, including stimulation of cell survival. Here, we demonstrate that a competitive recruitment of Shc as opposed to Frs2 mediates the survival signaling arising from RET activation. Based on results from a peptide array, we have genetically engineered the PTB domain binding site of RET to rewire its recruitment of the PTB proteins Shc and Frs2. An engineered RET that has a competitive interaction with Shc at the expense of Frs2, but not a RET receptor that only recruits Frs2, activates cell survival signaling pathways and is protective from cell death in neuronal SK-N-MC cells. Thus, cell type-specific functions involve a competitive recruitment of different PTB adaptor molecules by RET that activate selective signaling pathways.
Collapse
Affiliation(s)
- T Kalle Lundgren
- Unit of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
35
|
Affiliation(s)
- A Mortell
- Children's Research Centre, Our Lady's Hospital for Sick Children, Crumlin, Dublin 12, Ireland
| | | | | |
Collapse
|
36
|
Vargas-Leal V, Bruno R, Derfuss T, Krumbholz M, Hohlfeld R, Meinl E. Expression and function of glial cell line-derived neurotrophic factor family ligands and their receptors on human immune cells. THE JOURNAL OF IMMUNOLOGY 2005; 175:2301-8. [PMID: 16081799 DOI: 10.4049/jimmunol.175.4.2301] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
There is increasing evidence that factors originally identified due to their neurotrophic activity also function within the immune system. This study focused on the related molecules glial cell line-derived neurotrophic factor (GDNF) and neurturin (NTN) as well as their receptors. GDNF and NTN signaling is mediated by a two-component receptor: a signal-transducing component, RET, which is shared by both ligands, and a ligand-specific binding component, GFR alpha-1 (higher GDNF affinity) or GFR alpha-2 (higher NTN affinity). We report that human T cells, B cells, and monocytes produce NTN but not GDNF, as seen by RT-PCR and immunocytochemistry. RET was expressed by B cells, T cells, and monocytes. Exons 2-5 of RET encoding the cadherin-like domains 1-3 in the extracellular part and exons 16-19 encoding a section of the second tyrosine kinase domain were transcribed in CD4+ T cells, CD8+ T cells, B cells, and monocytes. Different splice variants encoding the C-terminal intracellular part (exons 19-21) of RET were detected. The ligand-binding receptors GFR alpha-1 and GFR alpha-2 were transcribed in all immune cell subsets. Quantitative PCR showed that GFR alpha-2 is by far the dominant ligand binding chain in T cells, B cells, and monocytes. Addition of GDNF or NTN to activated PBMCs reduced the amount of detectable TNF protein without altering its transcription. Together, this suggests that immune cells communicate with each other via NTN. Production of NTN by immune cells might also contribute to the neuroprotective immunity in the CNS observed in different model systems.
Collapse
Affiliation(s)
- Vivian Vargas-Leal
- Department of Neuroimmunology, Max-Planck-Institute of Neurobiology, Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
37
|
Arighi E, Borrello MG, Sariola H. RET tyrosine kinase signaling in development and cancer. Cytokine Growth Factor Rev 2005; 16:441-67. [PMID: 15982921 DOI: 10.1016/j.cytogfr.2005.05.010] [Citation(s) in RCA: 320] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The variety of diseases caused by mutations in RET receptor tyrosine kinase provides a classic example of phenotypic heterogeneity. Gain-of-function mutations of RET are associated with human cancer. Gene rearrangements juxtaposing the tyrosine kinase domain to heterologous gene partners have been found in sporadic papillary carcinomas of the thyroid (PTC). These rearrangements generate chimeric RET/PTC oncogenes. In the germline, point mutations of RET are responsible for multiple endocrine neoplasia type 2 (MEN 2A and 2B) and familial medullary thyroid carcinoma (FMTC). Both MEN 2 mutations and PTC gene rearrangements potentiate the intrinsic tyrosine kinase activity of RET and, ultimately, activate the RET downstream targets. Loss-of-function mutations of RET cause Hirschsprung's disease (HSCR) or colonic aganglionosis. A deeper understanding of the molecular signaling of normal versus abnormal RET activity in cancer will enable the development of potential new treatments for patients with sporadic and inherited thyroid cancer or MEN 2 syndrome. We now review the role and mechanisms of RET signaling in development and carcinogenesis.
Collapse
Affiliation(s)
- Elena Arighi
- Developmental Biology, Institute of Biomedicine, Biomedicum Helsinki, University of Helsinki, Finland
| | | | | |
Collapse
|
38
|
Lucini C, Maruccio L, Tafuri S, Bevaqua M, Staiano N, Castaldo L. GDNF family ligand immunoreactivity in the gut of teleostean fish. ACTA ACUST UNITED AC 2005; 210:265-74. [PMID: 16193278 DOI: 10.1007/s00429-005-0046-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2005] [Indexed: 02/01/2023]
Abstract
Glial-derived neurotrophic factor (GDNF), neurturin (NRTN), persephin (PSPN), and artemin (ARTN) are a group of proteins belonging to the GDNF family ligands (GFLs). GDNF, NRTN, and ARTN support the survival of central, peripheral, and autonomic neuron populations, while PSPN supports the survival of only several central neuron populations. A common receptor, RET, modulates the action of this family and a co-receptor, GFRalpha, determines RET ligand specificity. GDNF and NRTN appear to be essential for enteric nervous system (ENS) development in mammals, zebrafish, and other teleostean species. GFLs are also essential for the maintenance and plasticity of adult mammalian ENS. In this study, the distribution pattern of GFLs in the intestine of five adult fish (bass, gilt-head, scorpionfish, trout, and zebrafish) was evaluated by immunochemical and immunocytochemical analysis. The results demonstrated the presence of GDNF, NRTN, and ARTN in the gut of all species studied. They appeared to be spread in the ENS and/or endocrine cells of the intestine. These findings suggest that the presence of GFLs in fish gut is not only limited to developmental period, but could be also involved in the enteric physiology of adult species.
Collapse
Affiliation(s)
- C Lucini
- Dipartimento di Strutture, Funzioni e Tecnologie Biologiche, Via Veterinaria 1, 80137 Napoli, Italy.
| | | | | | | | | | | |
Collapse
|
39
|
Takeda M, Suzuki Y, Obara N, Uchida N, Kawakoshi K. Expression of glial cell line-derived neurotrophic factor (GDNF) and GDNF family receptor alpha1 in mouse taste bud cells after denervation. Anat Sci Int 2005; 80:105-10. [PMID: 15960316 DOI: 10.1111/j.1447-073x.2005.00105.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glial cell line-derived neurotrophic' factor (GDNF) has been isolated as a neurotrophic factor that affects the survival and maintenance of central and peripheral neurons. Using immunocytochemical methods, we examined whether the taste bud cells in mouse circumvallate papillae after transection of the glossopharyngeal nerves expressed GDNF and its receptor, GDNF family receptor alpha1 (GFRalpha1). By 5 and 10 days after denervation, the number of taste buds had decreased markedly; however, the remaining taste bud cells still expressed GDNF and GFRalpha1. By 14 days after denervation, most of the taste buds had disappeared and GDNF- and GFRalpha1-immunoreactive cells were not seen. By 4 weeks after denervation, numerous TrkB-immunoreactive nerve fibers had invaded the papilla and a few taste buds expressing GDNF and GFRalpha1 had regenerated. Thus, GDNF- and GFRalpha1-immunoreactive taste bud cells after denervation vanished following the disappearance of the taste buds and reappeared at the same time as the taste buds reappeared.
Collapse
Affiliation(s)
- Masako Takeda
- Department of Oral Anatomy, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu, Ishikari, Hokkaido, Japan.
| | | | | | | | | |
Collapse
|
40
|
Srinivasan S, Anitha M, Mwangi S, Heuckeroth RO. Enteric neuroblasts require the phosphatidylinositol 3-kinase/Akt/Forkhead pathway for GDNF-stimulated survival. Mol Cell Neurosci 2005; 29:107-19. [PMID: 15866051 DOI: 10.1016/j.mcn.2005.02.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2004] [Revised: 01/19/2005] [Accepted: 02/07/2005] [Indexed: 12/19/2022] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF)/Ret signaling is required for enteric neural crest survival, proliferation, migration and process extension, but signaling pathways that mediate enteric nervous system (ENS) precursor development are poorly understood. We therefore examined GDNF effects on immunoselected ENS precursor survival and neuronal process extension in the presence of phosphatidylinositol 3-kinase and mitogen-activated protein kinase pathway inhibitors. These studies demonstrated that GDNF promotes ENS precursor survival through phosphatidylinositol-3-kinase. Specifically, GDNF induces phosphorylation of Akt and loss of the Akt substrates FOXO1 and FOXO3a from the nucleus of ENS precursors. Furthermore, dominant negative Akt or active FOXO1 constructs promote ENS precursor cell death while a dominant negative FOXO1 construct prevents cell death. In contrast, the MAPK kinase inhibitor PD98059 did not influence ENS precursor survival or neurite extension. These data demonstrate a critical role for PI-3 kinase/Akt/FOXO signaling, but not for MAPK in ENS precursor survival and neurite extension.
Collapse
Affiliation(s)
- Shanthi Srinivasan
- Department of Medicine, Division of Digestive Diseases, Emory University, 615 Michael Street, Whitehead Research Building, Suite 246, Atlanta, GA 30322, USA.
| | | | | | | |
Collapse
|
41
|
Enomoto H. Regulation of neural development by glial cell line-derived neurotrophic factor family ligands. Anat Sci Int 2005; 80:42-52. [PMID: 15794130 DOI: 10.1111/j.1447-073x.2005.00099.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) and its three relatives constitute a novel family of neurotrophic factors, the GDNF family ligands. These factors signal through a multicomponent receptor complex comprising a glycosylphosphatidylinositol-anchored cell surface molecule (GDNF family receptor (GFR) alpha) and RET tyrosine kinase, triggering the activation of multiple signaling pathways in responsive cells. Recent gene-targeting studies have demonstrated that GDNF family ligands are essential for the development of a diverse set of neuronal populations and we have now started to understand how these ligands uniquely regulate the formation and sculpting of the nervous system. Recent studies have also revealed interactions by multiple extracellular signals during neural development. The deciphering of GDNF family ligand signaling in neural cells promises to provide vital new insights into the development and pathology of the nervous system.
Collapse
Affiliation(s)
- Hideki Enomoto
- RIKEN Center for Developmental Biology, Kobe, Hyogo, Japan.
| |
Collapse
|
42
|
Young HM, Turner KN, Bergner AJ. The location and phenotype of proliferating neural-crest-derived cells in the developing mouse gut. Cell Tissue Res 2005; 320:1-9. [PMID: 15714282 DOI: 10.1007/s00441-004-1057-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2004] [Accepted: 11/22/2004] [Indexed: 11/30/2022]
Abstract
Neural crest cells that originate in the caudal hindbrain migrate into and along the developing gastrointestinal tract to form the enteric nervous system. While they are migrating, neural-crest-derived cells are also proliferating. Previous studies have shown that the expression of glial-derived neurotrophic factor (GDNF) and endothelin-3 is highest in the embryonic caecum, and that GDNF alone or in combination with endothelin-3 promotes the proliferation of enteric neural-crest-derived cells in vitro. However, whether neural proliferative zones, like those in the central nervous system, are found along the developing gut is unknown. We used a fluorescent nucleic acid stain to identify dividing cells or BrdU labelling (2 h after administration of BrdU to the mother), combined with antibodies specific to neural crest cells to determine the percentage of proliferating crest-derived cells in various gut regions of embryonic day 11.5 (E11.5) and E12.5 mice. The rate of proliferation of crest-derived cells did not vary significantly in different regions of the gut (including the caecum) or at different distances from the migratory wavefront of vagal crest-derived cells. The phenotype of mitotic enteric crest-derived cells was also examined. Cells expressing the pan-neuronal markers, neurofilament-M and Hu, or the glial marker, S100b, were observed undergoing mitosis. However, no evidence was found for proliferation of cells expressing neuron-type-specific markers, such as nitric oxide synthase (at E12.5) or calcitonin gene-related peptide (at E18.5). Thus, for enteric neurons, exit from the cell cycle appears to occur after the expression of pan-neuronal proteins but prior to the expression of markers of terminally differentiated neurons.
Collapse
Affiliation(s)
- H M Young
- Department of Anatomy and Cell Biology, University of Melbourne, 3010, Melbourne, Victoria, Australia.
| | | | | |
Collapse
|
43
|
Enomoto H, Hughes I, Golden J, Baloh RH, Yonemura S, Heuckeroth RO, Johnson EM, Milbrandt J. GFRalpha1 expression in cells lacking RET is dispensable for organogenesis and nerve regeneration. Neuron 2005; 44:623-36. [PMID: 15541311 DOI: 10.1016/j.neuron.2004.10.032] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Revised: 09/16/2004] [Accepted: 10/07/2004] [Indexed: 02/02/2023]
Abstract
The GDNF family ligands signal through a receptor complex composed of a ligand binding subunit, GFRalpha, and a signaling subunit, the RET tyrosine kinase. GFRalphas are expressed not only in RET-expressing cells, but also in cells lacking RET. A body of evidence suggests that RET-independent GFRalphas are important for (1) modulation of RET signaling in a non-cell-autonomous fashion (trans-signaling) and (2) regulation of NCAM function. To address the physiological significance of these roles, we generated mice specifically lacking RET-independent GFRalpha1. These mice exhibited no deficits in regions where trans-signaling has been implicated in vitro, including enteric neurons, motor neurons, kidney, and regenerating nerves. Furthermore, no abnormalities were found in the olfactory bulb, which requires proper NCAM function for its formation and is putatively a site of GDNF-GFRalpha-NCAM signaling. Thus RET-independent GFRalpha1 is dispensable for organogenesis and nerve regeneration in vivo, indicating that trans-signaling and GFRalpha-dependent NCAM signaling play a minor role physiologically.
Collapse
Affiliation(s)
- Hideki Enomoto
- Department of Pathology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Burns AJ, Delalande JM. Neural crest cell origin for intrinsic ganglia of the developing chicken lung. Dev Biol 2005; 277:63-79. [PMID: 15572140 DOI: 10.1016/j.ydbio.2004.09.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Revised: 09/02/2004] [Accepted: 09/07/2004] [Indexed: 11/26/2022]
Abstract
The development of intrinsic ganglia, comprised of neurons and glia cells that innervate airway smooth muscle, is a recognized component of the growing lung. However, the embryological origin of these neurons and glia is unclear. The lung buds develop as an outgrowth of the foregut, which contains migrating neural crest cells (NCC) that ultimately give rise to the enteric nervous system (ENS) along the entire length of the gut. It has therefore been proposed that the intrinsic ganglia of the lung arise from a subset of NCC that leave the gut and migrate into the lung buds during early development. We have tested this hypothesis using quail-chick interspecies grafting to selectively label the hindbrain-derived neural crest cell population that colonizes the gut. In conjunction with antibody labeling and in situ hybridization, we demonstrate that: (i) lung ganglia arise from vagal NCC that migrate from the foregut into the lung buds; (ii) like ENS precursors, these NCC express the transcription factor Sox10, and the receptors EDNRB and RET; (iii) the co-receptor for RET, GFRalpha1, is expressed in the lung mesenchyme and in ganglia; (iv) ganglia persist within the lung throughout development and contain cells immunopositive for the pan-neuronal markers ANNA-1 and PGP9.5, the inhibitory neurotransmitter NO, as shown by NADPH-diaphorase staining, and the glial marker GFAP.
Collapse
Affiliation(s)
- Alan J Burns
- Neural Development Unit, Institute of Child Health, University College London, London, UK.
| | | |
Collapse
|
45
|
Bohn MC. Motoneurons crave glial cell line-derived neurotrophic factor. Exp Neurol 2004; 190:263-75. [PMID: 15530868 DOI: 10.1016/j.expneurol.2004.08.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Accepted: 08/10/2004] [Indexed: 12/31/2022]
Abstract
This is a commentary on the developmental and therapeutic relevance of recent studies in the glial fibrillary acid protein (GFAP)-glial cell line-derived neurotrophic factor (GDNF) transgenic mouse reported by Zhao et al. (2004). This interesting study demonstrated that increased expression of GDNF in astrocytes increases the number of neighboring motoneurons of certain motoneuron subpopulations by diminishing programmed cell death during development. In addition, astrocyte-derived GDNF was shown to protect facial motoneurons from injury-induced cell death. Since this is the first direct demonstration that secretion of GDNF from astrocytes in the CNS can affect motoneuron development in utero and motoneuron survival after axotomy, novel approaches for motor neuron disease are suggested. The known target neurons that respond to GDNF are reviewed, as are studies using GDNF gene delivery in animal models of amyotrophic lateral sclerosis (ALS). It is postulated that GDNF is a factor to which many motoneurons respond along their whole extent from soma to axon to terminal.
Collapse
Affiliation(s)
- Martha C Bohn
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, USA.
| |
Collapse
|
46
|
Fu M, Lui VCH, Sham MH, Pachnis V, Tam PKH. Sonic hedgehog regulates the proliferation, differentiation, and migration of enteric neural crest cells in gut. ACTA ACUST UNITED AC 2004; 166:673-84. [PMID: 15337776 PMCID: PMC2172437 DOI: 10.1083/jcb.200401077] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Enteric neural crest cells (NCCs) migrate and colonize the entire gut and proliferate and differentiate into neurons and glia of the enteric nervous system in vertebrate embryos. We have investigated the mitogenic and morphogenic functions of Sonic hedgehog (Shh) on enteric NCCs in cell and organ culture. Enteric NCCs expressed Shh receptor Patched and transcripts encoding the Shh signal transducer (Gli1). Shh promoted the proliferation and inhibited the differentiation of NCCs. The pro-neurogenic effect of glial cell line–derived neurotrophic factor (GDNF) on NCCs was abolished by Shh. In gut explants, NCCs migrated from the explants onto the adjacent substratum if GDNF was added, whereas addition of Shh abolished this migration. Neuronal differentiation and coalescence of neural crest–derived cells into myenteric plexuses in explants was repressed by the addition of Shh. Our data suggest that Shh controls the proliferation and differentiation of NCCs and modulates the responsiveness of NCCs toward GDNF inductions.
Collapse
Affiliation(s)
- Ming Fu
- Department of Surgery, The University of Hong Kong, 21 Sassoon Rd., Pokfulam, Hong Kong, HKSAR China
| | | | | | | | | |
Collapse
|
47
|
Yan H, Bergner AJ, Enomoto H, Milbrandt J, Newgreen DF, Young HM. Neural cells in the esophagus respond to glial cell line-derived neurotrophic factor and neurturin, and are RET-dependent. Dev Biol 2004; 272:118-33. [PMID: 15242795 DOI: 10.1016/j.ydbio.2004.04.025] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2004] [Revised: 04/12/2004] [Accepted: 04/12/2004] [Indexed: 11/22/2022]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) is expressed in the gastrointestinal tract of the developing mouse and appears to play an important role in the migration of enteric neuron precursors into and along the small and large intestines. Two other GDNF family members, neurturin and artemin, are also expressed in the developing gut although artemin is only expressed in the esophagus. We examined the effects of GDNF, neurturin, and artemin on neural crest cell migration and neurite outgrowth in explants of mouse esophagus, midgut, and hindgut. Both GDNF and neurturin induced neural crest cell migration and neurite outgrowth in all regions examined. In the esophagus, the effect of GDNF on migration and neurite outgrowth declined with age between E11.5 and E14.5, but neurturin still had a strong neurite outgrowth effect at E14.5. Artemin did not promote neural migration or neurite outgrowth in any region investigated. The effects of GDNF family ligands are mediated by the Ret tyrosine kinase. We examined the density of neurons in the esophagus of Ret-/- mice, which lack neurons in the small and large intestines. The density of esophageal neurons in Ret-/- mice was only about 4% of the density of esophageal neurons in Ret+/- and Ret+/+ mice. These results show that GDNF and neurturin promote migration and neurite outgrowth of crest-derived cells in the esophagus as well as the intestine. Moreover, like intestinal neurons, the development of esophageal neurons is largely Ret-dependent.
Collapse
Affiliation(s)
- Hui Yan
- Department of Anatomy and Cell Biology, University of Melbourne, Parkville, 3010 Victoria, Australia
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
The enteric nervous system (ENS) is a complex network of interconnected neurons within the wall of the intestine that controls intestinal motility, regulates mucosal secretion and blood flow, and also modulates sensation from the gut. The cells that form the ENS in mammals are derived primarily from vagal neural crest cells. During the past decade there has been an explosion of information about genes that control the development of neural crest. Molecular-genetic analysis has identified several genes that have a role in the development of Hirschsprung's disease. The major susceptibility gene is RET, which is also involved in multiple endocrine neoplasia type 2. Recently, genetic studies have provided strong evidence in animal models that intestinal neuronal dysplasia (IND) is a real entity. HOX11L1 knockout mice and endothelin B receptor-deficient rats demonstrated abnormalities of the ENS resembling IND type B in humans. These findings support the concept that IND may be linked to a genetic defect.
Collapse
Affiliation(s)
- Prem Puri
- Children's Research Centre, Our Lady's Hospital for Sick Children, University College Dublin, Ireland
| | | |
Collapse
|
49
|
Barlow A, de Graaff E, Pachnis V. Enteric nervous system progenitors are coordinately controlled by the G protein-coupled receptor EDNRB and the receptor tyrosine kinase RET. Neuron 2004; 40:905-16. [PMID: 14659090 DOI: 10.1016/s0896-6273(03)00730-x] [Citation(s) in RCA: 204] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The enteric nervous system (ENS) in vertebrates is derived mainly from vagal neural crest cells that enter the foregut and colonize the entire wall of the gastrointestinal tract. Failure to completely colonize the gut results in the absence of enteric ganglia (Hirschsprung's disease). Two signaling systems mediated by RET and EDNRB have been identified as critical players in enteric neurogenesis. We demonstrate that interaction between these signaling pathways controls ENS development throughout the intestine. Activation of EDNRB specifically enhances the effect of RET signaling on the proliferation of uncommitted ENS progenitors. In addition, we reveal novel antagonistic roles of these pathways on the migration of ENS progenitors. Protein kinase A is a key component of the molecular mechanisms that integrate signaling by the two receptors. Our data provide strong evidence that the coordinate and balanced interaction between receptor tyrosine kinases and G protein-coupled receptors controls the development of the nervous system in mammals.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Enteric Nervous System/cytology
- Enteric Nervous System/embryology
- Enteric Nervous System/metabolism
- Enteric Nervous System/physiology
- Gene Expression Regulation, Developmental/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Proto-Oncogene Proteins/biosynthesis
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/physiology
- Proto-Oncogene Proteins c-ret
- Receptor Protein-Tyrosine Kinases/biosynthesis
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/physiology
- Receptor, Endothelin B/biosynthesis
- Receptor, Endothelin B/genetics
- Receptor, Endothelin B/physiology
- Receptors, Endothelin/biosynthesis
- Receptors, Endothelin/genetics
- Receptors, G-Protein-Coupled/biosynthesis
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/physiology
- Signal Transduction/physiology
- Stem Cells/metabolism
- Stem Cells/physiology
Collapse
Affiliation(s)
- Amanda Barlow
- Division of Molecular Neurobiology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom
| | | | | |
Collapse
|
50
|
Hirata Y, Kiuchi K. Mitogenic effect of glial cell line-derived neurotrophic factor is dependent on the activation of p70S6 kinase, but independent of the activation of ERK and up-regulation of Ret in SH-SY5Y cells. Brain Res 2003; 983:1-12. [PMID: 12914961 DOI: 10.1016/s0006-8993(03)02837-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) activates c-Ret tyrosine kinase and several downstream intracellular pathways; the biological effects caused by the activation of each of these pathways, however, remain to be elucidated. Here we report the ability of GDNF to induce proliferation, rather than differentiation, of neuroblastoma cells (SH-SY5Y) by targeting the signaling pathway responsible for mediating this proliferative effect. GDNF induces the phosphorylation of Akt and p70S6 kinase (p70S6K) in SH-SY5Y cells in which Ret protein expression is relatively low. Interestingly, treating SH-SY5Y cells with retinoic acid greatly increases Ret protein levels and GDNF-induced Ret tyrosine phosphorylation, but does not affect the mitogenic action of GDNF and the activation of the Akt/p70S6K pathway. In contrast, the activation of the ERK pathway and the resulting induction of immediate-early genes parallel the increases in Ret protein levels. Rapamycin, a specific inhibitor of p70S6K activation by the mammalian target of rapamycin, completely prevents GDNF-induced proliferation and activation of p70S6K. These results suggest that GDNF promotes cell proliferation via the activation of p70S6K, independent of the ERK signaling pathway, and that GDNF activates the Akt/p70S6K pathway more efficiently than the ERK pathway in the cells in which Ret expression is low.
Collapse
Affiliation(s)
- Yoko Hirata
- Department of Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, 501-1193, Gifu, Japan.
| | | |
Collapse
|