1
|
Almeida M, Silva T, Solstad RG, Lillebø AI, Calado R, Vieira H. How Significant Are Marine Invertebrate Collagens? Exploring Trends in Research and Innovation. Mar Drugs 2024; 23:2. [PMID: 39852504 PMCID: PMC11766948 DOI: 10.3390/md23010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/17/2024] [Accepted: 12/21/2024] [Indexed: 01/26/2025] Open
Abstract
This review is focused on the research, innovation and technological breakthroughs on marine invertebrate collagens and their applications. The findings reveal that research dates back to the 1970s, and after a period of reduced activity, interest in collagens from several marine invertebrate groups was renewed around 2008, likely driven by the increased commercial interest in these biomolecules of marine origin. Research and development are predominantly reported from China and Japan, highlighting significant research interest in cnidarians (jellyfish), echinoderms (sea cucumbers, sea urchins and starfish), molluscs (squid and cuttlefish) and sponges. Co-word analysis of the literature highlights applications in regenerative medicine, the properties of hydrolysates, and biology and biochemistry studies. Innovation and the technological landscape, however, focus on fewer taxonomic groups, possibly reflecting the challenge of sustainably sourcing raw materials, with a higher number of patents coming from Asia. Globally, jellyfish collagen is the most prominent marine invertebrate source, while Asia also emphasizes the use of collagens derived from molluscs and sea cucumbers. Europe, despite fewer patents, explores a broader range of taxonomic groups. Globally, key applications registered are mostly in medical, dental and toiletry areas, with peptide preparations spanning multiple animal groups. The food domain is notably relevant for molluscs and sea cucumbers. Market trends show a strong presence of cosmetic and supplement products, aligning with market reports that predict a growing demand for marine collagens in cosmetics and personalized nutrition, particularly in targeted health supplements.
Collapse
Affiliation(s)
- Mariana Almeida
- CESAM—Centre for Environmental and Marine Studies, Department of Environment and Planning, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Tiago Silva
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, 4805-694 Guimarães, Portugal;
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Runar Gjerp Solstad
- Nofima, Norwegian Institute of Food Fisheries and Aquaculture Research, Muninbakken 9-13, 9019 Tromsø, Norway;
| | - Ana I. Lillebø
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM—Centre for Environmental and Marine Studies, Department of Biology, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal; (A.I.L.); (R.C.)
| | - Ricardo Calado
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM—Centre for Environmental and Marine Studies, Department of Biology, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal; (A.I.L.); (R.C.)
| | - Helena Vieira
- CESAM—Centre for Environmental and Marine Studies, Department of Environment and Planning, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
2
|
Holstein TW. The Hydra stem cell system - Revisited. Cells Dev 2023; 174:203846. [PMID: 37121433 DOI: 10.1016/j.cdev.2023.203846] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/12/2023] [Accepted: 04/25/2023] [Indexed: 05/02/2023]
Abstract
Cnidarians are >600 million years old and are considered the sister group of Bilateria based on numerous molecular phylogenetic studies. Apart from Hydra, the genomes of all major clades of Cnidaria have been uncovered (e.g. Aurelia, Clytia, Nematostella and Acropora) and they reveal a remarkable completeness of the metazoan genomic toolbox. Of particular interest is Hydra, a model system of aging research, regenerative biology, and stem cell biology. With the knowledge gained from scRNA research, it is now possible to characterize the expression profiles of all cell types with great precision. In functional studies, our picture of the Hydra stem cell biology has changed, and we are in the process of obtaining a clear picture of the homeostasis and properties of the different stem cell populations. Even though Hydra is often compared to plant systems, the new data on germline and regeneration, but also on the dynamics and plasticity of the nervous system, show that Hydra with its simple body plan represents in a nutshell the prototype of an animal with stem cell lineages, whose properties correspond in many ways to Bilateria. This review provides an overview of the four stem cell lineages, the two epithelial lineages that constitute the ectoderm and the endoderm, as well as the multipotent somatic interstitial lineage (MPSC) and the germline stem cell lineage (GSC), also known as the interstitial cells of Hydra.
Collapse
Affiliation(s)
- Thomas W Holstein
- Heidelberg University, Centre for Organismal Studies (COS), Molecular Evolution and Genomics, Im Neuenheimer Feld 230, D-69120 Heidelberg, Germany.
| |
Collapse
|
3
|
Smith IP, Domingos M, Richardson SM, Bella J. Characterization of the Biophysical Properties and Cell Adhesion Interactions of Marine Invertebrate Collagen from Rhizostoma pulmo. Mar Drugs 2023; 21:59. [PMID: 36827101 PMCID: PMC9966395 DOI: 10.3390/md21020059] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Collagen is the most ubiquitous biomacromolecule found in the animal kingdom and is commonly used as a biomaterial in regenerative medicine therapies and biomedical research. The collagens used in these applications are typically derived from mammalian sources which poses sociological issues due to widespread religious constraints, rising ethical concern over animal rights and the continuous risk of zoonotic disease transmission. These issues have led to increasing research into alternative collagen sources, of which marine collagens, in particular from jellyfish, have emerged as a promising resource. This study provides a characterization of the biophysical properties and cell adhesion interactions of collagen derived from the jellyfish Rhizostoma pulmo (JCol). Circular dichroism spectroscopy and atomic force microscopy were used to observe the triple-helical conformation and fibrillar morphology of JCol. Heparin-affinity chromatography was also used to demonstrate the ability of JCol to bind to immobilized heparin. Cell adhesion assays using integrin blocking antibodies and HT-1080 human fibrosarcoma cells revealed that adhesion to JCol is primarily performed via β1 integrins, with the exception of α2β1 integrin. It was also shown that heparan sulfate binding plays a much greater role in fibroblast and mesenchymal stromal cell adhesion to JCol than for type I mammalian collagen (rat tail collagen). Overall, this study highlights the similarities and differences between collagens from mammalian and jellyfish origins, which should be considered when utilizing alternative collagen sources for biomedical research.
Collapse
Affiliation(s)
- Ian P. Smith
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Marco Domingos
- Department of Mechanical, Aerospace and Civil Engineering, Faculty of Science and Engineering and Henry Royce Institute, University of Manchester, Manchester M13 9PY, UK
| | - Stephen M. Richardson
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Jordi Bella
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
4
|
Vogg MC, Buzgariu W, Suknovic NS, Galliot B. Cellular, Metabolic, and Developmental Dimensions of Whole-Body Regeneration in Hydra. Cold Spring Harb Perspect Biol 2021; 13:a040725. [PMID: 34230037 PMCID: PMC8635000 DOI: 10.1101/cshperspect.a040725] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Here we discuss the developmental and homeostatic conditions necessary for Hydra regeneration. Hydra is characterized by populations of adult stem cells paused in the G2 phase of the cell cycle, ready to respond to injury signals. The body column can be compared to a blastema-like structure, populated with multifunctional epithelial stem cells that show low sensitivity to proapoptotic signals, and high inducibility of autophagy that promotes resistance to stress and starvation. Intact Hydra polyps also exhibit a dynamic patterning along the oral-aboral axis under the control of homeostatic organizers whose activity results from regulatory loops between activators and inhibitors. As in bilaterians, injury triggers the immediate production of reactive oxygen species (ROS) signals that promote wound healing and contribute to the reactivation of developmental programs via cell death and the de novo formation of new organizing centers from somatic tissues. In aging Hydra, regeneration is rapidly lost as homeostatic conditions are no longer pro-regenerative.
Collapse
Affiliation(s)
- Matthias Christian Vogg
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (iGE3), Faculty of Sciences, University of Geneva, Geneva 4, Switzerland
| | - Wanda Buzgariu
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (iGE3), Faculty of Sciences, University of Geneva, Geneva 4, Switzerland
| | - Nenad Slavko Suknovic
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (iGE3), Faculty of Sciences, University of Geneva, Geneva 4, Switzerland
| | - Brigitte Galliot
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (iGE3), Faculty of Sciences, University of Geneva, Geneva 4, Switzerland
| |
Collapse
|
5
|
Moneer J, Siebert S, Krebs S, Cazet J, Prexl A, Pan Q, Juliano C, Böttger A. Differential gene regulation in DAPT-treated Hydra reveals candidate direct Notch signalling targets. J Cell Sci 2021; 134:jcs258768. [PMID: 34346482 PMCID: PMC8353520 DOI: 10.1242/jcs.258768] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/03/2021] [Indexed: 11/20/2022] Open
Abstract
In Hydra, Notch inhibition causes defects in head patterning and prevents differentiation of proliferating nematocyte progenitor cells into mature nematocytes. To understand the molecular mechanisms by which the Notch pathway regulates these processes, we performed RNA-seq and identified genes that are differentially regulated in response to 48 h of treating the animals with the Notch inhibitor DAPT. To identify candidate direct regulators of Notch signalling, we profiled gene expression changes that occur during subsequent restoration of Notch activity and performed promoter analyses to identify RBPJ transcription factor-binding sites in the regulatory regions of Notch-responsive genes. Interrogating the available single-cell sequencing data set revealed the gene expression patterns of Notch-regulated Hydra genes. Through these analyses, a comprehensive picture of the molecular pathways regulated by Notch signalling in head patterning and in interstitial cell differentiation in Hydra emerged. As prime candidates for direct Notch target genes, in addition to Hydra (Hy)Hes, we suggest Sp5 and HyAlx. They rapidly recovered their expression levels after DAPT removal and possess Notch-responsive RBPJ transcription factor-binding sites in their regulatory regions.
Collapse
Affiliation(s)
- Jasmin Moneer
- Ludwig Maximilians-University Munich, Germany, Biocenter, 82152 Planegg-Martinsried, Großhaderner Str. 2, Germany
| | - Stefan Siebert
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Stefan Krebs
- Ludwig-Maximilians-University Munich, Gene Center Munich, Feodor-Lynen-Str. 25 81377 Munich, Germany
| | - Jack Cazet
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Andrea Prexl
- Ludwig Maximilians-University Munich, Germany, Biocenter, 82152 Planegg-Martinsried, Großhaderner Str. 2, Germany
| | - Qin Pan
- Ludwig Maximilians-University Munich, Germany, Biocenter, 82152 Planegg-Martinsried, Großhaderner Str. 2, Germany
| | - Celina Juliano
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Angelika Böttger
- Ludwig Maximilians-University Munich, Germany, Biocenter, 82152 Planegg-Martinsried, Großhaderner Str. 2, Germany
| |
Collapse
|
6
|
Fassini D, Wilkie IC, Pozzolini M, Ferrario C, Sugni M, Rocha MS, Giovine M, Bonasoro F, Silva TH, Reis RL. Diverse and Productive Source of Biopolymer Inspiration: Marine Collagens. Biomacromolecules 2021; 22:1815-1834. [PMID: 33835787 DOI: 10.1021/acs.biomac.1c00013] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Marine biodiversity is expressed through the huge variety of vertebrate and invertebrate species inhabiting intertidal to deep-sea environments. The extraordinary variety of "forms and functions" exhibited by marine animals suggests they are a promising source of bioactive molecules and provides potential inspiration for different biomimetic approaches. This diversity is familiar to biologists and has led to intensive investigation of metabolites, polysaccharides, and other compounds. However, marine collagens are less well-known. This review will provide detailed insight into the diversity of collagens present in marine species in terms of their genetics, structure, properties, and physiology. In the last part of the review the focus will be on the most common marine collagen sources and on the latest advances in the development of innovative materials exploiting, or inspired by, marine collagens.
Collapse
Affiliation(s)
- Dario Fassini
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Iain C Wilkie
- Institute of Biodiversity Animal Health & Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, Scotland
| | - Marina Pozzolini
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy
| | - Cinzia Ferrario
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milano, Italy, Center for Complexity & Biosystems, Dipartimento di Fisica, Università degli Studi di Milano, 20122 Milano, Italy
| | - Michela Sugni
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milano, Italy, Center for Complexity & Biosystems, Dipartimento di Fisica, Università degli Studi di Milano, 20122 Milano, Italy
| | - Miguel S Rocha
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Marco Giovine
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy
| | - Francesco Bonasoro
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milano, Italy, Center for Complexity & Biosystems, Dipartimento di Fisica, Università degli Studi di Milano, 20122 Milano, Italy
| | - Tiago H Silva
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
7
|
Naik S, Unni M, Sinha D, Rajput SS, Reddy PC, Kartvelishvily E, Solomonov I, Sagi I, Chatterji A, Patil S, Galande S. Differential tissue stiffness of body column facilitates locomotion of Hydra on solid substrates. J Exp Biol 2020; 223:jeb232702. [PMID: 32958523 PMCID: PMC7116704 DOI: 10.1242/jeb.232702] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/03/2020] [Indexed: 11/20/2022]
Abstract
The bell-shaped members of the Cnidaria typically move around by swimming, whereas the Hydra polyp can perform locomotion on solid substrates in an aquatic environment. To address the biomechanics of locomotion on rigid substrates, we studied the 'somersaulting' locomotion in Hydra We applied atomic force microscopy to measure the local mechanical properties of Hydra's body column and identified the existence of differential Young's modulus between the shoulder region versus rest of the body column at 3:1 ratio. We show that somersaulting primarily depends on differential tissue stiffness of the body column and is explained by computational models that accurately recapitulate the mechanics involved in this process. We demonstrate that perturbation of the observed stiffness variation in the body column by modulating the extracellular matrix polymerization impairs the 'somersault' movement. These results provide a mechanistic basis for the evolutionary significance of differential extracellular matrix properties and tissue stiffness.
Collapse
Affiliation(s)
- Suyash Naik
- Department of Biology, Indian Institute of Science Education and Research, Pune 411008, India
- Department of Physics, Indian Institute of Science Education and Research, Pune 411008, India
| | - Manu Unni
- Department of Biology, Indian Institute of Science Education and Research, Pune 411008, India
| | - Devanshu Sinha
- Department of Physics, Indian Institute of Science Education and Research, Pune 411008, India
| | - Shatruhan Singh Rajput
- Department of Physics, Indian Institute of Science Education and Research, Pune 411008, India
| | - Puli Chandramouli Reddy
- Department of Biology, Indian Institute of Science Education and Research, Pune 411008, India
| | - Elena Kartvelishvily
- Electron Microscopy Unit, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Inna Solomonov
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Apratim Chatterji
- Department of Physics, Indian Institute of Science Education and Research, Pune 411008, India
| | - Shivprasad Patil
- Department of Physics, Indian Institute of Science Education and Research, Pune 411008, India
| | - Sanjeev Galande
- Department of Biology, Indian Institute of Science Education and Research, Pune 411008, India
| |
Collapse
|
8
|
Extracellular matrix and morphogenesis in cnidarians: a tightly knit relationship. Essays Biochem 2019; 63:407-416. [PMID: 31462530 DOI: 10.1042/ebc20190021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/01/2019] [Accepted: 08/05/2019] [Indexed: 12/14/2022]
Abstract
Cnidarians, members of an early-branching metazoan phylum, possess an extracellular matrix (ECM) between their two epithelial cell layers, called the mesoglea. The cnidarian ECM, which is best studied in Hydra, contains matrix components reflective of both interstitial matrix and basement membrane. The identification of core matrisome components in cnidarian genomes has led to the notion that the basic composition of vertebrate ECM is of highly conserved nature and can be traced back to pre-bilaterians. While in vertebrate classes ECM factors have often diverged and acquired specialized functions in the context of organ development, cnidarians with their simple body plan retained direct links between ECM and morphogenesis. Recent advances in genetic manipulation techniques have provided tools for systematically studying cnidarian ECM function in body axis patterning and regeneration.
Collapse
|
9
|
Shoemark DK, Ziegler B, Watanabe H, Strompen J, Tucker RP, Özbek S, Adams JC. Emergence of a Thrombospondin Superfamily at the Origin of Metazoans. Mol Biol Evol 2019; 36:1220-1238. [PMID: 30863851 PMCID: PMC6526912 DOI: 10.1093/molbev/msz060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Extracellular matrix (ECM) is considered central to the evolution of metazoan multicellularity; however, the repertoire of ECM proteins in nonbilaterians remains unclear. Thrombospondins (TSPs) are known to be well conserved from cnidarians to vertebrates, yet to date have been considered a unique family, principally studied for matricellular functions in vertebrates. Through searches utilizing the highly conserved C-terminal region of TSPs, we identify undisclosed new families of TSP-related proteins in metazoans, designated mega-TSP, sushi-TSP, and poriferan-TSP, each with a distinctive phylogenetic distribution. These proteins share the TSP C-terminal region domain architecture, as determined by domain composition and analysis of molecular models against known structures. Mega-TSPs, the only form identified in ctenophores, are typically >2,700 aa and are also characterized by N-terminal leucine-rich repeats and central cadherin/immunoglobulin domains. In cnidarians, which have a well-defined ECM, Mega-TSP was expressed throughout embryogenesis in Nematostella vectensis, with dynamic endodermal expression in larvae and primary polyps and widespread ectodermal expression in adult Nematostella vectensis and Hydra magnipapillata polyps. Hydra Mega-TSP was also expressed during regeneration and siRNA-silencing of Mega-TSP in Hydra caused specific blockade of head regeneration. Molecular phylogenetic analyses based on the conserved TSP C-terminal region identified each of the TSP-related groups to form clades distinct from the canonical TSPs. We discuss models for the evolution of the newly defined TSP superfamily by gene duplications, radiation, and gene losses from a debut in the last metazoan common ancestor. Together, the data provide new insight into the evolution of ECM and tissue organization in metazoans.
Collapse
Affiliation(s)
| | - Berenice Ziegler
- Centre for Organismal Studies, Department of Molecular Evolution and Genomics, University of Heidelberg, Heidelberg, Germany
| | - Hiroshi Watanabe
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Jennifer Strompen
- Centre for Organismal Studies, Department of Molecular Evolution and Genomics, University of Heidelberg, Heidelberg, Germany
| | - Richard P Tucker
- Department of Cell Biology and Human Anatomy, University of California at Davis, Davis, CA
| | - Suat Özbek
- Centre for Organismal Studies, Department of Molecular Evolution and Genomics, University of Heidelberg, Heidelberg, Germany
| | - Josephine C Adams
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
10
|
Lommel M, Strompen J, Hellewell AL, Balasubramanian GP, Christofidou ED, Thomson AR, Boyle AL, Woolfson DN, Puglisi K, Hartl M, Holstein TW, Adams JC, Özbek S. Hydra Mesoglea Proteome Identifies Thrombospondin as a Conserved Component Active in Head Organizer Restriction. Sci Rep 2018; 8:11753. [PMID: 30082916 PMCID: PMC6079037 DOI: 10.1038/s41598-018-30035-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 07/23/2018] [Indexed: 02/06/2023] Open
Abstract
Thrombospondins (TSPs) are multidomain glycoproteins with complex matricellular functions in tissue homeostasis and remodeling. We describe a novel role of TSP as a Wnt signaling target in the basal eumetazoan Hydra. Proteome analysis identified Hydra magnipapillata TSP (HmTSP) as a major component of the cnidarian mesoglea. In general, the domain organization of cnidarian TSPs is related to the pentameric TSPs of bilaterians, and in phylogenetic analyses cnidarian TSPs formed a separate clade of high sequence diversity. HmTSP expression in polyps was restricted to the hypostomal tip and tentacle bases that harbor Wnt-regulated organizer tissues. In the hypostome, HmTSP- and Wnt3-expressing cells were identical or in close vicinity to each other, and regions of ectopic tentacle formation induced by pharmacological β-Catenin activation (Alsterpaullone) corresponded to foci of HmTSP expression. Chromatin immunoprecipitation (ChIP) confirmed binding of Hydra TCF to conserved elements in the HmTSP promotor region. Accordingly, β-Catenin knockdown by siRNAs reduced normal HmTSP expression at the head organizer. In contrast, knockdown of HmTSP expression led to increased numbers of ectopic organizers in Alsterpaullone-treated animals, indicating a negative regulatory function. Our data suggest an unexpected role for HmTSP as a feedback inhibitor of Wnt signaling during Hydra body axis patterning and maintenance.
Collapse
Affiliation(s)
- Mark Lommel
- University of Heidelberg, Centre for Organismal Studies, Department of Molecular Evolution and Genomics, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Jennifer Strompen
- University of Heidelberg, Centre for Organismal Studies, Department of Molecular Evolution and Genomics, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Andrew L Hellewell
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Gnana Prakash Balasubramanian
- University of Heidelberg, Centre for Organismal Studies, Department of Molecular Evolution and Genomics, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany.,G200 Division of Applied Bioinformatics, German Cancer Research Institute (DKFZ) and National Center for Tumor Diseases (NCT) Heidelberg, Im Neuenheimer Feld 580, D-69120, Heidelberg, Germany
| | - Elena D Christofidou
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Andrew R Thomson
- School of Chemistry, Cantock's Close, University of Bristol, Bristol, BS8 1TS, UK.,School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow, G12 8QQ, Scotland
| | - Aimee L Boyle
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK.,School of Chemistry, Cantock's Close, University of Bristol, Bristol, BS8 1TS, UK.,Leiden Institute of Chemistry, Leiden University, POB 9502, NL-2300, RA Leiden, Netherlands
| | - Derek N Woolfson
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK.,School of Chemistry, Cantock's Close, University of Bristol, Bristol, BS8 1TS, UK
| | - Kane Puglisi
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80-82, A-6020, Innsbruck, Austria
| | - Markus Hartl
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80-82, A-6020, Innsbruck, Austria
| | - Thomas W Holstein
- University of Heidelberg, Centre for Organismal Studies, Department of Molecular Evolution and Genomics, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Josephine C Adams
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK.
| | - Suat Özbek
- University of Heidelberg, Centre for Organismal Studies, Department of Molecular Evolution and Genomics, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany.
| |
Collapse
|
11
|
Rodriguez-Pascual F, Slatter DA. Collagen cross-linking: insights on the evolution of metazoan extracellular matrix. Sci Rep 2016; 6:37374. [PMID: 27876853 PMCID: PMC5120351 DOI: 10.1038/srep37374] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 10/28/2016] [Indexed: 12/15/2022] Open
Abstract
Collagens constitute a large family of extracellular matrix (ECM) proteins that play a fundamental role in supporting the structure of various tissues in multicellular animals. The mechanical strength of fibrillar collagens is highly dependent on the formation of covalent cross-links between individual fibrils, a process initiated by the enzymatic action of members of the lysyl oxidase (LOX) family. Fibrillar collagens are present in a wide variety of animals, therefore often being associated with metazoan evolution, where the emergence of an ancestral collagen chain has been proposed to lead to the formation of different clades. While LOX-generated collagen cross-linking metabolites have been detected in different metazoan families, there is limited information about when and how collagen acquired this particular modification. By analyzing telopeptide and helical sequences, we identified highly conserved, potential cross-linking sites throughout the metazoan tree of life. Based on this analysis, we propose that they have importantly contributed to the formation and further expansion of fibrillar collagens.
Collapse
Affiliation(s)
- Fernando Rodriguez-Pascual
- Centro de Biología Molecular “Severo Ochoa” Consejo Superior de Investigaciones Científicas (C.S.I.C.)/Universidad Autónoma de Madrid (Madrid), Madrid, Spain
| | | |
Collapse
|
12
|
Wilkie IC, Fassini D, Cullorà E, Barbaglio A, Tricarico S, Sugni M, Del Giacco L, Candia Carnevali MD. Mechanical properties of the compass depressors of the sea-urchin Paracentrotus lividus (Echinodermata, Echinoidea) and the effects of enzymes, neurotransmitters and synthetic tensilin-like protein. PLoS One 2015; 10:e0120339. [PMID: 25786033 PMCID: PMC4365025 DOI: 10.1371/journal.pone.0120339] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 01/22/2015] [Indexed: 01/08/2023] Open
Abstract
The compass depressors (CDs) of the sea-urchin lantern are ligaments consisting mainly of discontinuous collagen fibrils associated with a small population of myocytes. They are mutable collagenous structures, which can change their mechanical properties rapidly and reversibly under nervous control. The aims of this investigation were to characterise the baseline (i.e. unmanipulated) static mechanical properties of the CDs of Paracentrotus lividus by means of creep tests and incremental force-extension tests, and to determine the effects on their mechanical behaviour of a range of agents. Under constant load the CDs exhibited a three-phase creep curve, the mean coefficient of viscosity being 561±365 MPa.s. The stress-strain curve showed toe, linear and yield regions; the mean strain at the toe-linear inflection was 0.86±0.61; the mean Young's modulus was 18.62±10.30 MPa; and the mean tensile strength was 8.14±5.73 MPa. Hyaluronidase from Streptomyces hyalurolyticus had no effect on creep behaviour, whilst chondroitinase ABC prolonged primary creep but had no effect on secondary creep or on any force-extension parameters; it thus appears that neither hyaluronic acid nor sulphated glycosaminoglycans have an interfibrillar load transfer function in the CD. Acetylcholine, the muscarinic agonists arecoline and methacholine, and the nicotinic agonists nicotine and 1-[1-(3,4-dimethyl-phenyl)-ethyl]-piperazine produced an abrupt increase in CD viscosity; the CDs were not differentially sensitive to muscarinic or nicotinic agonists. CDs showed either no, or no consistent, response to adrenaline, L-glutamic acid, 5-hydroxytryptamine and γ-aminobutyric acid. Synthetic echinoid tensilin-like protein had a weak and inconsistent stiffening effect, indicating that, in contrast to holothurian tensilins, the echinoid molecule may not be involved in the regulation of collagenous tissue tensility. We compare in detail the mechanical behaviour of the CD with that of mammalian tendon and highlight its potential as a model system for investigating poorly understood aspects of the ontogeny and phylogeny of vertebrate collagenous tissues.
Collapse
Affiliation(s)
- Iain C. Wilkie
- Department of Life Sciences, Glasgow Caledonian University, Glasgow, Scotland, United Kingdom
| | - Dario Fassini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Emanuele Cullorà
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Alice Barbaglio
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Serena Tricarico
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Michela Sugni
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Luca Del Giacco
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | | |
Collapse
|
13
|
Tucker RP, Adams JC. Adhesion networks of cnidarians: a postgenomic view. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 308:323-77. [PMID: 24411175 DOI: 10.1016/b978-0-12-800097-7.00008-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell-extracellular matrix (ECM) and cell-cell adhesion systems are fundamental to the multicellularity of metazoans. Members of phylum Cnidaria were classified historically by their radial symmetry as an outgroup to bilaterian animals. Experimental study of Hydra and jellyfish has fascinated zoologists for many years. Laboratory studies, based on dissection, biochemical isolations, or perturbations of the living organism, have identified the ECM layer of cnidarians (mesoglea) and its components as important determinants of stem cell properties, cell migration and differentiation, tissue morphogenesis, repair, and regeneration. Studies of the ultrastructure and functions of intercellular gap and septate junctions identified parallel roles for these structures in intercellular communication and morphogenesis. More recently, the sequenced genomes of sea anemone Nematostella vectensis, Hydra magnipapillata, and coral Acropora digitifera have opened up a new frame of reference for analyzing the cell-ECM and cell-cell adhesion molecules of cnidarians and examining their conservation with bilaterians. This chapter integrates a review of literature on the structure and functions of cell-ECM and cell-cell adhesion systems in cnidarians with current analyses of genome-encoded repertoires of adhesion molecules. The postgenomic perspective provides a fresh view on fundamental similarities between cnidarian and bilaterian animals and is impelling wider adoption of species from phylum Cnidaria as model organisms.
Collapse
Affiliation(s)
- Richard P Tucker
- Department of Cell Biology and Human Anatomy, University of California, Davis, California, USA.
| | - Josephine C Adams
- School of Biochemistry, University of Bristol, Bristol, United Kingdom.
| |
Collapse
|
14
|
|
15
|
Cubozoan venom-induced cardiovascular collapse is caused by hyperkalemia and prevented by zinc gluconate in mice. PLoS One 2012; 7:e51368. [PMID: 23251508 PMCID: PMC3520902 DOI: 10.1371/journal.pone.0051368] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 11/05/2012] [Indexed: 11/19/2022] Open
Abstract
Chironex fleckeri (Australian box jellyfish) stings can cause acute cardiovascular collapse and death. We developed methods to recover venom with high specific activity, and evaluated the effects of both total venom and constituent porins at doses equivalent to lethal envenomation. Marked potassium release occurred within 5 min and hemolysis within 20 min in human red blood cells (RBC) exposed to venom or purified venom porin. Electron microscopy revealed abundant ∼12-nm transmembrane pores in RBC exposed to purified venom porins. C57BL/6 mice injected with venom showed rapid decline in ejection fraction with progression to electromechanical dissociation and electrocardiographic findings consistent with acute hyperkalemia. Recognizing that porin assembly can be inhibited by zinc, we found that zinc gluconate inhibited potassium efflux from RBC exposed to total venom or purified porin, and prolonged survival time in mice following venom injection. These findings suggest that hyperkalemia is the critical event following Chironex fleckeri envenomation and that rapid administration of zinc could be life saving in human sting victims.
Collapse
|
16
|
Pozzolini M, Bruzzone F, Berilli V, Mussino F, Cerrano C, Benatti U, Giovine M. Molecular characterization of a nonfibrillar collagen from the marine sponge Chondrosia reniformis Nardo 1847 and positive effects of soluble silicates on its expression. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2012; 14:281-293. [PMID: 22072047 DOI: 10.1007/s10126-011-9415-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 09/28/2011] [Indexed: 05/31/2023]
Abstract
We report here the complete cDNA sequence of a nonfibrillar collagen (COLch) isolated from the marine sponge Chondrosia reniformis, Nardo 1847 using a PCR approach. COLch cDNA consists of 2,563 nucleotides and includes a 5' untranslated region (UTR) of 136 nucleotides, a 3' UTR of 198 nucleotides, and an open reading frame encoding for a protein of 743 amino acids with an estimated M (r) of 72.12 kDa. The phylogenetic analysis on the deduced amino acid sequence of C-terminal end shows that the isolated sequence belongs to the short-chain spongin-like collagen subfamily, a nonfibrillar group of invertebrate collagens similar to type IV collagen. In situ hybridization analysis shows higher expression of COLch mRNA in the cortical part than in the inner part of the sponge. Therefore, COLch seems to be involved in the formation of C. reniformis ectosome, where it could play a key role in the attachment to the rocky substrata and in the selective sediment incorporation typical of these organisms. qPCR analysis of COLch mRNA level, performed on C. reniformis tissue culture models (fragmorphs), also demonstrates that this matrix protein is directly involved in sponge healing processes and that soluble silicates positively regulate its expression. These findings confirm the essential role of silicon in the fibrogenesis process also in lower invertebrates, and they should give a tool for a sustainable production of marine collagen in sponge mariculture.
Collapse
Affiliation(s)
- Marina Pozzolini
- Department for the Study of Territory and its Resources, University of Genova, Corso Europa 26, 16132, Genova, Italy
| | | | | | | | | | | | | |
Collapse
|
17
|
Micro- and macrorheology of jellyfish extracellular matrix. Biophys J 2012; 102:1-9. [PMID: 22225792 PMCID: PMC3250689 DOI: 10.1016/j.bpj.2011.11.4004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 11/16/2011] [Accepted: 11/28/2011] [Indexed: 11/21/2022] Open
Abstract
Mechanical properties of the extracellular matrix (ECM) play a key role in tissue organization and morphogenesis. Rheological properties of jellyfish ECM (mesoglea) were measured in vivo at the cellular scale by passive microrheology techniques: microbeads were injected in jellyfish ECM and their Brownian motion was recorded to determine the mechanical properties of the surrounding medium. Microrheology results were compared with macrorheological measurements performed with a shear rheometer on slices of jellyfish mesoglea. We found that the ECM behaved as a viscoelastic gel at the macroscopic scale and as a much softer and heterogeneous viscoelastic structure at the microscopic scale. The fibrous architecture of the mesoglea, as observed by differential interference contrast and scanning electron microscopy, was in accord with these scale-dependent mechanical properties. Furthermore, the evolution of the mechanical properties of the ECM during aging was investigated by measuring microrheological properties at different jellyfish sizes. We measured that the ECM in adult jellyfish was locally stiffer than in juvenile ones. We argue that this stiffening is a consequence of local aggregations of fibers occurring gradually during aging of the jellyfish mesoglea and is enhanced by repetitive muscular contractions of the jellyfish.
Collapse
|
18
|
Aufschnaiter R, Zamir EA, Little CD, Özbek S, Münder S, David CN, Li L, Sarras MP, Zhang X. In vivo imaging of basement membrane movement: ECM patterning shapes Hydra polyps. J Cell Sci 2011; 124:4027-38. [PMID: 22194305 PMCID: PMC3244984 DOI: 10.1242/jcs.087239] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2011] [Indexed: 11/20/2022] Open
Abstract
Growth and morphogenesis during embryonic development, asexual reproduction and regeneration require extensive remodeling of the extracellular matrix (ECM). We used the simple metazoan Hydra to examine the fate of ECM during tissue morphogenesis and asexual budding. In growing Hydra, epithelial cells constantly move towards the extremities of the animal and into outgrowing buds. It is not known, whether these tissue movements involve epithelial migration relative to the underlying matrix or whether cells and ECM are displaced as a composite structure. Furthermore, it is unclear, how the ECM is remodeled to adapt to the shape of developing buds and tentacles. To address these questions, we used a new in vivo labeling technique for Hydra collagen-1 and laminin, and tracked the fate of ECM in all body regions of the animal. Our results reveal that Hydra 'tissue movements' are largely displacements of epithelial cells together with associated ECM. By contrast, during the evagination of buds and tentacles, extensive movement of epithelial cells relative to the matrix is observed, together with local ECM remodeling. These findings provide new insights into the nature of growth and morphogenesis in epithelial tissues.
Collapse
Affiliation(s)
- Roland Aufschnaiter
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Evan A. Zamir
- Georgia Institute of Technology, George W. Woodruff School of Mechanical Engineering, Georgia, 30332, USA
| | - Charles D. Little
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Suat Özbek
- Center for Organismal Studies, Department of Molecular Evolution and Genomics, University of Heidelberg, 69120 Heidelberg, Germany
| | - Sandra Münder
- Department of Biology 2, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany
| | - Charles N. David
- Department of Biology 2, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany
| | - Li Li
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Michael P. Sarras
- Department of Cell Biology and Anatomy, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Xiaoming Zhang
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| |
Collapse
|
19
|
Matveev IV, Adonin LS, Shaposhnikova TG, Podgornaya OI. Aurelia aurita-Cnidarian with a prominent medusiod stage. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2011; 318:1-12. [PMID: 22081514 DOI: 10.1002/jez.b.21440] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 05/02/2011] [Accepted: 08/08/2011] [Indexed: 11/11/2022]
Abstract
Aurelia aurita has a complex life cycle that consists of several stages including alternating generations of medusa and polyps, huge sexual, and tiny asexual stages. Cnidarian is thought to possess two tissue layers: endoderm (gastroderm) and ectoderm, which are separated by mesoglea in medusa. The determination of the composition of the A. aurita jellyfish mesoglea was performed. New protein "mesoglein" was determined as one of the main components of mesoglea. Mesoglein is synthesized by mesogleal cells (Mc), which are populated A. aurita mesoglea as a high molecular mass precursor. Mc are involved in the formation of noncollagenous "elastic" fibers. Deduced amino acid sequence of mesoglein contains Zona Pellucida (ZP) domain and Delta/Serrate/Lag-2 domain. According to reverse transcription PCR, mesoglein is expressed in the mature medusa exclusively in the Mc. The sperm binding to the ZP is particularly important for successful fertilization. Antibodies against mesoglein stain the plate in the place of contact of germinal epithelium and oocyte. The structure found was named the "contact plate." The contact plate could be the precursor of the ZP. All our data suggest that Mc and, probably, the whole mesoglea originate from the epidermis (ectoderm). Computer search for mesoglein relatives reveals Nematostella and Trichoplax proteins as predicted ORFs, indicating that ZP proteins are quite ancient purchase in the evolution.
Collapse
|
20
|
Calejo MT, Morais ZB, Fernandes AI. Isolation and biochemical characterisation of a novel collagen from Catostylus tagi. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2010; 20:2073-87. [PMID: 19874678 DOI: 10.1163/156856208x399125] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A preliminary biochemical approach to the study of collagen isolated from the medusa Catostylus tagi is reported and results are discussed in view of its use as a natural matrix for biomedical applications. Collagen from the jellyfish umbrella was isolated by pepsin digestion and purified by dialysis and salt precipitation. As expected, glycine represented almost one-third of the total amino acids. Aromatic amino-acid content was very low and imino acids were fewer than in collagens from fish and mammalian sources. Results from SDS-PAGE, ion-exchange chromatography and N-terminal amino-acid sequencing revealed an alpha1alpha2alpha3 heterotrimer, similar to vertebrate type V/XI. The molecular mass of two of the polypeptide chains was close to 85 kDa and 100 kDa for the third. However, the two chains presenting similar molecular mass, showed differences in charge and primary structure. Further characterisation showed a glycosylated protein with the carbohydrate moiety comprising almost 7% of the total mass, a denaturation temperature of 29.9 degrees C and multiple isoelectric points. Incubation with glutamyl endopeptidase resulted in significant digestion, in agreement with the protein's high content of Asp and Glu.
Collapse
Affiliation(s)
- M T Calejo
- Centro de Polímeros Biomédicos, Instituto Superior de Ciências da Saúde Egas Moniz, Monte de Caparica, Caparica, Portugal
| | | | | |
Collapse
|
21
|
Abstract
Major advances in the molecular genetics, paleobiology, and the evolutionary developmental biology of vertebrate skeletogenesis have improved our understanding of the early evolution and development of the vertebrate skeleton. These studies have involved genetic analysis of model organisms, human genetics, comparative developmental studies of basal vertebrates and nonvertebrate chordates, and both cladistic and histological analyses of fossil vertebrates. Integration of these studies has led to renaissance in the area of skeletal development and evolution. Among the major findings that have emerged is the discovery of an unexpectedly deep origin of the gene network that regulates chondrogenesis. In this chapter, we discuss recent progress in each these areas and identify a number of questions that need to be addressed in order to fill key gaps in our knowledge of early skeletal evolution.
Collapse
|
22
|
McCauley DW. SoxE, Type II collagen, and Evolution of the Chondrogenic Neural Crest. Zoolog Sci 2008; 25:982-9. [DOI: 10.2108/zsj.25.982] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Exposito JY, Larroux C, Cluzel C, Valcourt U, Lethias C, Degnan BM. Demosponge and sea anemone fibrillar collagen diversity reveals the early emergence of A/C clades and the maintenance of the modular structure of type V/XI collagens from sponge to human. J Biol Chem 2008; 283:28226-35. [PMID: 18697744 DOI: 10.1074/jbc.m804573200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Collagens are often considered a metazoan hallmark, with the fibril-forming fibrillar collagens present from sponges to human. From evolutionary studies, three fibrillar collagen clades (named A, B, and C) have been defined and shown to be present in mammals, whereas the emergence of the A and B clades predates the protostome/deuterostome split. Moreover, several C clade fibrillar collagen chains are present in some invertebrate deuterostome genomes but not in protostomes whose genomes have been sequenced. The newly sequenced genomes of the choanoflagellate Monosiga brevicollis, the demosponge Amphimedon queenslandica, and the cnidarians Hydra magnipapillata (Hydra) and Nematostella vectensis (sea anemone) allow us to have a better understanding of the origin and evolution of fibrillar collagens. Analysis of these genomes suggests that an ancestral fibrillar collagen gene arose at the dawn of the Metazoa, before the divergence of sponge and eumetazoan lineages. The duplication events leading to the formation of the three fibrillar collagen clades (A, B, and C) occurred before the eumetazoan radiation. Interestingly, only the B clade fibrillar collagens preserved their characteristic modular structure from sponge to human. This observation is compatible with the suggested primordial function of type V/XI fibrillar collagens in the initiation of the formation of the collagen fibrils.
Collapse
Affiliation(s)
- Jean-Yves Exposito
- Institut de Biologie et Chimie des Protéines (IBCP), 7 passage du Vercors, Lyon, F69367, France, CNRS, UMR 5086.
| | | | | | | | | | | |
Collapse
|
24
|
Shimizu H, Aufschnaiter R, Li L, Sarras MP, Borza DB, Abrahamson DR, Sado Y, Zhang X. The extracellular matrix of hydra is a porous sheet and contains type IV collagen. ZOOLOGY 2008; 111:410-418. [PMID: 18602803 PMCID: PMC2560992 DOI: 10.1016/j.zool.2007.11.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 11/13/2007] [Accepted: 11/14/2007] [Indexed: 11/19/2022]
Abstract
Hydra, as an early diploblastic metazoan, has a well-defined extracellular matrix (ECM) called mesoglea. It is organized in a tri-laminar pattern with one centrally located interstitial matrix that contains type I collagen and two sub-epithelial zones that resemble a basal lamina containing laminin and possibly type IV collagen. This study used monoclonal antibodies to the three hydra mesoglea components (type I, type IV collagens and laminin) and immunofluorescent staining to visualize hydra mesoglea structure and the relationship between these mesoglea components. In addition, hydra mesoglea was isolated free of cells and studied with immunofluorescence and scanning electron microscopy (SEM). Our results show that type IV collagen co-localizes with laminin in the basal lamina whereas type I collagen forms a grid pattern of fibers in the interstitial matrix. The isolated mesoglea can maintain its structural stability without epithelial cell attachment. Hydra mesoglea is porous with multiple trans-mesoglea pores ranging from 0.5 to 1 microm in diameter and about six pores per 100 microm(2) in density. We think these trans-mesoglea pores provide a structural base for epithelial cells on both sides to form multiple trans-mesoglea cell-cell contacts. Based on these findings, we propose a new model of hydra mesoglea structure.
Collapse
Affiliation(s)
- Hiroshi Shimizu
- National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Roland Aufschnaiter
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
- Institute of Zoology and Center for Molecular Biosciences, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Li Li
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Michael P. Sarras
- Department of Cell Biology and Anatomy, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064, USA
| | - Dorin-Bogdan Borza
- Division of Nephrology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Dale R. Abrahamson
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Yoshikazu Sado
- Shigei Medical Research Institute, Yamada, Okayama 701-0202, Japan
| | - Xiaoming Zhang
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| |
Collapse
|
25
|
Zhang X, Boot-Handford RP, Huxley-Jones J, Forse LN, Mould AP, Robertson DL, Athiyal M, Sarras MP. The collagens of hydra provide insight into the evolution of metazoan extracellular matrices. J Biol Chem 2007; 282:6792-802. [PMID: 17204477 DOI: 10.1074/jbc.m607528200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A collagen-based extracellular matrix is one defining feature of all Metazoa. The thick sheet-like extracellular matrix (mesoglia) of the diploblast, hydra, has characteristics of both a basement membrane and an interstitial matrix. Several genes associated with mesoglea have been cloned including a basement membrane and fibrillar collagen and an A and B chain of laminin. Here we report the characterization of a further three fibrillar collagen genes (Hcol2, Hcol3, and Hcol5) and the partial sequence of a collagen gene with a unique structural organization consisting of multiple von Willebrand factor A domains interspersed with interrupted collagenous triple helices (Hcol6) from Hydra vulgaris. Hcol2 and -5 have major collagenous domains of classical length ( approximately 1020 amino acid residues), whereas the equivalent domain in Hcol3 is shorter (969 residues). The N-propeptide of Hcol2 contains a whey acid protein four-cysteine repeat (WAP) domain, and the equivalent domain of Hcol3 contains two WAP and two von Willebrand factor A domains. Phylogenetic analyses reveal that the hydra fibrillar collagen genes form a distinct clade that appears related to the protostome/deuterostome A clade of fibrillar collagens. Data base searches reveal Hcol2, -5, and -6 are highly conserved in Hydra magnipapillata, which also provided preliminary evidence for the expression of a B-clade fibrillar collagen. All four of the H. vulgaris collagens are expressed specifically by the ectoderm. The expression pattern for Hcol2 is similar to that previously reported for Hcol1 (Deutzmann, R., Fowler, S., Zhang, X., Boone, K., Dexter, S., Boot-Handford, R. P., Rachel, R., and Sarras, M. P., Jr. (2000) Development 127, 4669-4680) but distinct from the pattern shared by Hcol3 and Hcol5. The characterization of multiple collagen genes in relatively simple diploblastic organisms provides new insights into the molecular evolution of collagens and the origins of the collagen-based extracellular matrix found throughout the multicellular animal kingdom.
Collapse
Affiliation(s)
- Xiaoming Zhang
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Bosch TCG. Why polyps regenerate and we don't: towards a cellular and molecular framework for Hydra regeneration. Dev Biol 2006; 303:421-33. [PMID: 17234176 DOI: 10.1016/j.ydbio.2006.12.012] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 11/30/2006] [Accepted: 12/06/2006] [Indexed: 11/27/2022]
Abstract
The basis for Hydra's enormous regeneration capacity is the "stem cellness" of its epithelium which continuously undergoes self-renewing mitotic divisions and also has the option to follow differentiation pathways. Now, emerging molecular tools have shed light on the molecular processes controlling these pathways. In this review I discuss how the modular tissue architecture may allow continuous replacement of cells in Hydra. I also describe the discovery and regulation of factors controlling the transition from self-renewing epithelial stem cells to differentiated cells.
Collapse
Affiliation(s)
- Thomas C G Bosch
- Zoological Institute, Christian-Albrechts-University Kiel, Olshausenstrasse 40, 24098 Kiel, Germany.
| |
Collapse
|
27
|
Huxley-Jones J, Robertson DL, Boot-Handford RP. On the origins of the extracellular matrix in vertebrates. Matrix Biol 2006; 26:2-11. [PMID: 17055232 DOI: 10.1016/j.matbio.2006.09.008] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Revised: 08/30/2006] [Accepted: 09/06/2006] [Indexed: 11/27/2022]
Abstract
Extracellular matrix (ECM) is a key metazoan characteristic. In addition to providing structure and orientation to tissues, it is involved in many cellular processes such as adhesion, migration, proliferation and differentiation. Here we provide a comprehensive analysis of ECM molecules focussing on when vertebrate specific matrices evolved. We identify 60 ECM genes and 20 associated processing enzymes in the genome of the urochordate Ciona intestinalis. A comparison with vertebrate and protostome genomes has permitted the identification of both a core set of metazoan matrix genes and vertebrate-specific innovations in the ECM. We have identified a few potential cases of de novo vertebrate ECM gene innovation, but the majority of ECM genes have resulted from duplication of pre-existing genes present in the ancestral vertebrate. In conclusion, the modern complexity we see in vertebrate ECM has come about largely by duplication and modification of pre-existing matrix molecules. Extracellular matrix genes and their processing enzymes appear to be over-represented in the vertebrate genome suggesting that these genes played an active role enabling and underpinning the evolution of vertebrates.
Collapse
Affiliation(s)
- Julie Huxley-Jones
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| | | | | |
Collapse
|
28
|
Galliot B, Miljkovic-Licina M, de Rosa R, Chera S. Hydra, a niche for cell and developmental plasticity. Semin Cell Dev Biol 2006; 17:492-502. [PMID: 16807002 DOI: 10.1016/j.semcdb.2006.05.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The silencing of genes whose expression is restricted to specific cell types and/or specific regeneration stages opens avenues to decipher the molecular control of the cellular plasticity underlying head regeneration in hydra. In this review, we highlight recent studies that identified genes involved in the immediate cytoprotective function played by gland cells after amputation; the early dedifferentiation of digestive cells into blastema-like cells during head regeneration, and the early late proliferation of neuronal progenitors required for head patterning. Hence, developmental plasticity in hydra relies on spatially restricted and timely orchestrated cellular modifications, where the functions played by stem cells remain to be characterized.
Collapse
Affiliation(s)
- Brigitte Galliot
- Department of Zoology and Animal Biology, University of Geneva, Sciences III, 30 Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland.
| | | | | | | |
Collapse
|
29
|
Boulègue C, Milbradt AG, Renner C, Moroder L. Single Proline Residues can Dictate the Oxidative Folding Pathways of Cysteine-rich Peptides. J Mol Biol 2006; 358:846-56. [PMID: 16530224 DOI: 10.1016/j.jmb.2006.02.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2005] [Accepted: 02/08/2006] [Indexed: 10/25/2022]
Abstract
The cysteine-rich N and C-terminal domains of minicollagen-1 from Hydra nematocysts fold with excesses of oxidized/reduced glutathione (10:1) into globular structures with distinct cystine frameworks despite their identical cysteine sequence pattern. An additional main difference is the cis conformation of a conserved proline residue in the N-terminal and the trans conformation of this residue in the C-terminal domain. Comparative analysis of the oxidative folding revealed for the C-terminal domain a fast and highly cooperative formation of a single disulfide isomer. Conversely, oxidation of the N-terminal domain proceeds mainly via an intermediate that results from the fast quasi-stochastic disulfide formation according to the proximity rule. The rate of conversion of the bead-like isomer into the globular end-product is largely dominated by the trans-to-cis isomerization of the critical proline residue as well assessed by its replacement with (4R)- and (4S)-fluoroproline known to exhibit distinct propensities for the trans and cis conformation, respectively. Independently, whether the trans or cis conformation is favored by these substitutions, both analogues retain sufficient sequence-encoded information to fold almost quantitatively into the identical cystine framework and thus spatial structure of the parent peptide with the critical proline residue as cis isomer, but at rates significantly lower for the (4R) than for the (4S)-fluoroproline analogue. Correspondingly, other sequence-encoded structural elements have to act as a driving force for these unidirectional folding pathways despite the rather simple sequence composition consisting only of aliphatic residues, some proline and only one aromatic residue (tyrosine) in the core parts of the C and N-terminal domains. The two cysteine-rich domains of minicollagen-1 may well represent ideal targets for ab initio structure calculations in order to learn more about the elementary information encoded in such primordial molecules.
Collapse
Affiliation(s)
- Cyril Boulègue
- Max-Planck-Institute of Biochemistry, 82152 Martinsried, Germany
| | | | | | | |
Collapse
|
30
|
Ewan R, Huxley-Jones J, Mould AP, Humphries MJ, Robertson DL, Boot-Handford RP. The integrins of the urochordate Ciona intestinalis provide novel insights into the molecular evolution of the vertebrate integrin family. BMC Evol Biol 2005; 5:31. [PMID: 15892888 PMCID: PMC1145181 DOI: 10.1186/1471-2148-5-31] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Accepted: 05/13/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Integrins are a functionally significant family of metazoan cell surface adhesion receptors. The receptors are dimers composed of an alpha and a beta chain. Vertebrate genomes encode an expanded set of integrin alpha and beta chains in comparison with protostomes such as drosophila or the nematode worm. The publication of the genome of a basal chordate, Ciona intestinalis, provides a unique opportunity to gain further insight into how and when the expanded integrin supergene family found in vertebrates evolved. RESULTS The Ciona genome encodes eleven alpha and five beta chain genes that are highly homologous to their vertebrate homologues. Eight of the alpha chains contain an A-domain that lacks the short alpha helical region present in the collagen-binding vertebrate alpha chains. Phylogenetic analyses indicate the eight A-domain containing alpha chains cluster to form an ascidian-specific clade that is related to but, distinct from, the vertebrate A-domain clade. Two Ciona alpha chains cluster in laminin-binding clade and the remaining chain clusters in the clade that binds the RGD tripeptide sequence. Of the five Ciona beta chains, three form an ascidian-specific clade, one clusters in the vertebrate beta1 clade and the remaining Ciona chain is the orthologue of the vertebrate beta4 chain. CONCLUSION The Ciona repertoire of integrin genes provides new insight into the basic set of these receptors available at the beginning of vertebrate evolution. The ascidian and vertebrate alpha chain A-domain clades originated from a common precursor but radiated separately in each lineage. It would appear that the acquisition of collagen binding capabilities occurred in the chordate lineage after the divergence of ascidians.
Collapse
Affiliation(s)
- Richard Ewan
- Plant Molecular Science Group, University of Glasgow, Bower Building, G12 8QQ, UK.
| | | | | | | | | | | |
Collapse
|
31
|
Koch M, Laub F, Zhou P, Hahn RA, Tanaka S, Burgeson RE, Gerecke DR, Ramirez F, Gordon MK. Collagen XXIV, a vertebrate fibrillar collagen with structural features of invertebrate collagens: selective expression in developing cornea and bone. J Biol Chem 2003; 278:43236-44. [PMID: 12874293 DOI: 10.1074/jbc.m302112200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tissue-specific assembly of fibers composed of the major collagen types I and II depends in part on the formation of heterotypic fibrils, using the quantitatively minor collagens V and XI. Here we report the identification of a new fibrillar-like collagen chain that is related to the fibrillar alpha1(V), alpha1(XI), and alpha2(XI) collagen polypeptides and which is coexpressed with type I collagen in the developing bone and eye. The new collagen was designated the alpha1(XXIV) chain and consists of a long triple helical domain flanked by typical propeptide-like sequences. The carboxyl propeptide is classic, with 8 conserved cysteine residues. The amino-terminal peptide contains a thrombospodin-N-terminal-like (TSP) motif and a highly charged segment interspersed with several tyrosine residues, like the fibril diameter-regulating collagen chains alpha1(V) and alpha1(XI). However, a short imperfection in the triple helix makes alpha1(XXIV) unique from other chains of the vertebrate fibrillar collagen family. The triple helical interruption and additional select features in both terminal peptides are common to the fibrillar chains of invertebrate organisms. Based on these data, we propose that collagen XXIV is an ancient molecule that may contribute to the regulation of type I collagen fibrillogenesis at specific anatomical locations during fetal development.
Collapse
Affiliation(s)
- Manuel Koch
- Institute for Biochemistry II, University of Cologne, Joseph-Stelzmann Strasse 52, Cologne 50931, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Boot-Handford RP, Tuckwell DS, Plumb DA, Rock CF, Poulsom R. A novel and highly conserved collagen (pro(alpha)1(XXVII)) with a unique expression pattern and unusual molecular characteristics establishes a new clade within the vertebrate fibrillar collagen family. J Biol Chem 2003; 278:31067-77. [PMID: 12766169 DOI: 10.1074/jbc.m212889200] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The type XXVII collagen gene codes for a novel vertebrate fibrillar collagen that is highly conserved in man, mouse, and fish (Fugu rubripes). The pro(alpha)1(XXVII) chain has a domain structure similar to that of the type B clade chains (alpha1(V), alpha3(V), alpha1(XI), and alpha2(XI)). However, compared with other vertebrate fibrillar collagens (types I, II, III, V, and XI), type XXVII collagen has unusual molecular features such as no minor helical domain, a major helical domain that is short and interrupted, and a short chain selection sequence within the NC1 domain. Pro(alpha)1(XXVII) mRNA is 9 kb and expressed by chondrocytes but also by a variety of epithelial cell layers in developing tissues including stomach, lung, gonad, skin, cochlear, and tooth. By Western blotting, type XXVII antisera recognized multiple bands of 240-110 kDa in tissue extracts and collagenous bands of 150-140 kDa in the conditioned medium of the differentiating chondrogenic ATDC5 cell line. Phylogenetic analyses revealed that type XXVII, together with the closely related type XXIV collagen gene, form a new, third clade (type C) within the vertebrate fibrillar collagen family. Furthermore, the exon structure of the type XXVII collagen gene is similar to, but distinct from, those of the genes coding for the type A or B clade pro(alpha) chains.
Collapse
Affiliation(s)
- Raymond P Boot-Handford
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, University of Manchester, Manchester M13 9PT, United Kingdom.
| | | | | | | | | |
Collapse
|
33
|
Sarras MP, Yan L, Leontovich A, Zhang JS. Structure, expression, and developmental function of early divergent forms of metalloproteinases in hydra. Cell Res 2003; 12:163-76. [PMID: 12296376 DOI: 10.1038/sj.cr.7290123] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Metalloproteinases have a critical role in a broad spectrum of cellular processes ranging from the breakdown of extracellular matrix to the processing of signal transduction-related proteins. These hydrolytic functions underlie a variety of mechanisms related to developmental processes as well as disease states. Structural analysis of metalloproteinases from both invertebrate and vertebrate species indicates that these enzymes are highly conserved and arose early during metazoan evolution. In this regard, studies from various laboratories have reported that a number of classes of metalloproteinases are found in hydra, a member of Cnidaria, the second oldest of existing animal phyla. These studies demonstrate that the hydra genome contains at least three classes of metalloproteinases to include members of the 1) astacin class, 2) matrix metalloproteinase class, and 3) neprilysin class. Functional studies indicate that these metalloproteinases play diverse and important roles in hydra morphogenesis and cell differentiation as well as specialized functions in adult polyps. This article will review the structure, expression, and function of these metalloproteinases in hydra.
Collapse
Affiliation(s)
- Michael P Sarras
- Department of Anatomy and Cell Biology, University of Kansas Medical Center Kansas City 66160-7400, USA.
| | | | | | | |
Collapse
|
34
|
Abstract
Hydra, a primitive metazoan, has a simple structure consisting of a head, body column, and foot aligned along a single oral-aboral axis. The body column has a high capacity for regeneration of both the head and foot. Because of the tissue dynamics that take place in adult Hydra, the processes governing axial patterning are continuously active to maintain the form of the animal. Regeneration in hydra is morphallactic and closely related to these axial patterning processes. As might be expected, analysis at the molecular level indicates that the same set of genes are involved in head regeneration and the maintenance of the head in the context of the tissue dynamics of the adult. The genes analyzed so far play roles in axial patterning processes in bilaterians.
Collapse
Affiliation(s)
- Hans R Bode
- Developmental Biology Center and Department of Developmental and Cell Biology, University of California, Irvine, California 92697, USA.
| |
Collapse
|
35
|
Exposito JY, Cluzel C, Garrone R, Lethias C. Evolution of collagens. THE ANATOMICAL RECORD 2002; 268:302-16. [PMID: 12382326 DOI: 10.1002/ar.10162] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The extracellular matrix is often defined as the substance that gives multicellular organisms (from plants to vertebrates) their structural integrity, and is intimately involved in their development. Although the general functions of extracellular matrices are comparable, their compositions are quite distinct. One of the specific components of metazoan extracellular matrices is collagen, which is present in organisms ranging from sponges to humans. By comparing data obtained in diploblastic, protostomic, and deuterostomic animals, we have attempted to trace the evolution of collagens and collagen-like proteins. Moreover, the collagen story is closely involved with the emergence and evolution of metazoa. The collagen triple helix is one of numerous modules that arose during the metazoan radiation which permit the formation of large multimodular proteins. One of the advantages of this module is its involvement in oligomerization, in which it acts as a structural organizer that is not only relatively resistant to proteases but also permits the creation of multivalent supramolecular networks.
Collapse
Affiliation(s)
- Jean-Yves Exposito
- Institut de Biologie et Chimie des Protéines, Université Claude Bernard, Lyon, France.
| | | | | | | |
Collapse
|
36
|
Bosch TC, Khalturin K. Patterning and cell differentiation inHydra: novel genes and the limits to conservation. CAN J ZOOL 2002. [DOI: 10.1139/z02-129] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the last few years more than 100 genes have been identified from Hydra, and well over 80 have been characterized. Since most genes are homologs of genes found in bilaterians, the genetic mechanisms for axial patterning and cell differentiation are evolutionarily conserved. This constitutes something of a paradox. If key developmental-control genes are the same in Hydra and all other organisms, how does one account for the marked differences in development and morphology of the different animal groups? How are taxon-specific features encoded? To examine whether in Hydra, in addition to conserved mechanisms, there are genetic features that control uniquely taxon-specific (Hydra/Hydrozoa/Cnidaria) aspects, we used an experimental strategy that does not require sequence data from related taxa. By means of this unbiased ("knowledge-independent") approach we have identified genes from Hydra encoding signal molecules and effector genes with no sequence similarity to genes in other organisms. When tested functionally, the novel genes were found to be essential for axial patterning and differentiation of Hydra-specific characteristics. Experimental analysis of the cis-regulatory apparatus of these novel genes reveals target sites for novel trans-acting factors. The use of unbiased screening approaches for several other organisms also reveals a large number of novel and taxon-specific genes of as yet unknown function. Thus, comparative data alone may not be sufficient for gaining a full understanding of the development of taxon-specific characteristics.
Collapse
|
37
|
Abstract
Developmental processes in multicellular animals depend on an array of signal transduction pathways. Studies of model organisms have identified a number of such pathways and dissected them in detail. However, these model organisms are all bilaterians. Investigations of the roles of signal transduction pathways in the early-diverging metazoan Hydra have revealed that a number of the well-known developmental signaling pathways were already in place in the last common ancestor of Hydra and bilaterians. In addition to these shared pathways, it appears that developmental processes in Hydra make use of pathways involving a variety of peptides. Such pathways have not yet been identified as developmental regulators in more recently diverged animals. In this review I will summarize work to date on developmental signaling pathways in Hydra and discuss the future directions in which such work will need to proceed to realize the potential that lies in this simple animal.
Collapse
Affiliation(s)
- Robert E Steele
- Department of Biological Chemistry, University of California-Irvine, Irvine, CA 92627-1700, USA.
| |
Collapse
|
38
|
Sarras MP, Deutzmann R. Hydra and Niccolo Paganini (1782-1840)--two peas in a pod? The molecular basis of extracellular matrix structure in the invertebrate, Hydra. Bioessays 2001; 23:716-24. [PMID: 11494320 DOI: 10.1002/bies.1101] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The body wall of Hydra is organized as an epithelial bilayer with an intervening extracellular matrix (ECM). Molecular and biochemical analyses of Hydra ECM have established that it contains components similar to those seen in more complicated vertebrates such as human. In terms of biophysical parameters, Hydra ECM is highly flexible; a property that facilitates continuous movements along the organism's longitudinal and radial axis. A more rigid ECM, as in vertebrates, would not be compatible with this degree of movement. The flexible nature of Hydra ECM can now be explained in part by the unique structure of the organism's collagens. Interestingly, some aspects of the structural features of Hydra collagens mimic what is seen in Ehlers-Danlos syndrome, an inherited condition in humans that results in an abnormally flexible ECM that can be debilitating in extreme cases. This review will focus on structure-function relationships of the ECM of Hydra.
Collapse
Affiliation(s)
- M P Sarras
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City 66160, USA.
| | | |
Collapse
|
39
|
Zhang J, Leontovich A, Sarras MP. Molecular and functional evidence for early divergence of an endothelin-like system during metazoan evolution: analysis of the Cnidarian, hydra. Development 2001; 128:1607-15. [PMID: 11290299 DOI: 10.1242/dev.128.9.1607] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A novel putative endothelin-converting enzyme (ECE) has been cloned from hydra, a freshwater invertebrate that belongs to the second oldest phylum of the animal kingdom. As an integral component of the endothelin system, vertebrate ECE functions in the activation of endothelin (ET) peptides. Vertebrate ETs are (1) the most potent vasoconstrictors known in mammals; and (2) function as essential signaling ligands during development of tissues derived from neural crest cells. To date, only a limited number of immunocytochemical studies have suggested the presence of endothelin-like peptides in invertebrates. Based on structural and functional analyses, we present evidence for a functional endothelin-like system in hydra that is involved in both muscle contraction and developmental processes. These findings indicate the broad use of endothelin systems in metazoans and also indicate that this type of signaling system arose early in evolution even before divergence of protostomes and deuterostomes.
Collapse
Affiliation(s)
- J Zhang
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 666160-7400, USA.
| | | | | |
Collapse
|
40
|
Fowler SJ, Jose S, Zhang X, Deutzmann R, Sarras MP, Boot-Handford RP. Characterization of hydra type IV collagen. Type IV collagen is essential for head regeneration and its expression is up-regulated upon exposure to glucose. J Biol Chem 2000; 275:39589-99. [PMID: 10956657 DOI: 10.1074/jbc.m005871200] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hydra vulgaris mesoglea is a primitive basement membrane that also exhibits some features of an interstitial matrix. We have characterized cDNAs that encode the full-length hydra alpha1(IV) chain. The 5169-base pair transcript encodes a protein of 1723 amino acids, including an interrupted 1455-residue collagenous domain and a 228-residue C-terminal noncollagenous domain. N-terminal sequence analyses of collagen IV peptides suggest the molecule is homotrimeric. Denatured hydra type IV collagen protein occurs as dimers and higher order aggregates held together by nonreducible cross-links. Hydra collagen IV exhibits no functional evidence for the presence of a 7 S domain. Type IV collagen is expressed by the ectoderm along the entire longitudinal axis of the animal but is most intense at the base of the tentacles at the site of battery cell transdifferentiation. Antisense studies show that inhibition of collagen IV translation causes a blockage in head regeneration, indicating its importance in normal hydra development. Exposure of adult hydra to 15 mm glucose resulted in up-regulation of type IV collagen mRNA levels within 48 h and significant thickening of the mesoglea within 14 days, suggesting that basement membrane thickening seen in diabetes may be, in evolutionary terms, an ancient glucose-mediated response.
Collapse
Affiliation(s)
- S J Fowler
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | | | | | | | | | | |
Collapse
|