1
|
Williams RM. Leveraging chicken embryos for studying human enhancers. Dev Biol 2025; 524:123-131. [PMID: 40368318 DOI: 10.1016/j.ydbio.2025.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 04/30/2025] [Accepted: 05/12/2025] [Indexed: 05/16/2025]
Abstract
The dynamic activity of complex gene regulatory networks stands at the core of all cellular functions that define cell identity and behaviour. Gene regulatory networks comprise transcriptional enhancers, acted upon by cell-specific transcription factors to control gene expression in a spatial and temporal specific manner. Enhancers are found in the non-coding genome; pathogenic variants can disrupt enhancer activity and lead to disease. Correlating non-coding variants with aberrant enhancer activity remains a significant challenge. Due to their clinical significance, there is a longstanding interest in understanding enhancer function during early embryogenesis. With the onset of the omics era, it is now feasible to identify putative tissue-specific enhancers from epigenome data. However, such predictions in vivo require validation. The early stages of chick embryogenesis closely parallel those of human, offering an accessible in vivo model in which to assess the activity of putative human enhancer sequences. This review explores the unique advantages and recent advancements in employing chicken embryos to elucidate the activity of human transcriptional enhancers and the potential implications of these findings in human disease.
Collapse
Affiliation(s)
- Ruth M Williams
- University of Manchester, Faculty of Biology, Medicine and Health, Michael Smith Building, Oxford Road, Manchester, United Kingdom.
| |
Collapse
|
2
|
Demler C, Lawlor JC, Yelin R, Llivichuzcha-Loja D, Shaulov L, Kim D, Stewart M, Lee FK, Shylo N, Trainor PA, Schultheiss TM, Kurpios NA. An atypical basement membrane forms a midline barrier during left-right asymmetric gut development in the chicken embryo. eLife 2025; 12:RP89494. [PMID: 40298919 PMCID: PMC12040318 DOI: 10.7554/elife.89494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025] Open
Abstract
Correct intestinal morphogenesis depends on the early embryonic process of gut rotation, an evolutionarily conserved program in which a straight gut tube elongates and forms into its first loops. However, the gut tube requires guidance to loop in a reproducible manner. The dorsal mesentery (DM) connects the gut tube to the body and directs the lengthening gut into stereotypical loops via left-right (LR) asymmetric cellular and extracellular behavior. The LR asymmetry of the DM also governs blood and lymphatic vessel formation for the digestive tract, which is essential for prenatal organ development and postnatal vital functions including nutrient absorption. Although the genetic LR asymmetry of the DM has been extensively studied, a divider between the left and right DM has yet to be identified. Setting up LR asymmetry for the entire body requires a Lefty1+ midline barrier to separate the two sides of the embryo, without it, embryos have lethal or congenital LR patterning defects. Individual organs including the brain, heart, and gut also have LR asymmetry, and while the consequences of left and right signals mixing are severe or even lethal, organ-specific mechanisms for separating these signals remain poorly understood. Here, we uncover a midline structure composed of a transient double basement membrane, which separates the left and right halves of the embryonic chick DM during the establishment of intestinal and vascular asymmetries. Unlike other basement membranes of the DM, the midline is resistant to disruption by intercalation of Netrin4 (Ntn4). We propose that this atypical midline forms the boundary between left and right sides and functions as a barrier necessary to establish and protect organ asymmetry.
Collapse
Affiliation(s)
- Cora Demler
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell UniversityIthacaUnited States
| | - John C Lawlor
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell UniversityIthacaUnited States
| | - Ronit Yelin
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion – Israel Institute of TechnologyHaifaIsrael
| | - Dhana Llivichuzcha-Loja
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell UniversityIthacaUnited States
| | - Lihi Shaulov
- Rappaport Faculty of Medicine, Technion – Israel Institute of TechnologyHaifaIsrael
| | - David Kim
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell UniversityIthacaUnited States
| | - Megan Stewart
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell UniversityIthacaUnited States
| | - Frank K Lee
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell UniversityIthacaUnited States
| | - Natalia Shylo
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Paul A Trainor
- Stowers Institute for Medical ResearchKansas CityUnited States
- Department of Anatomy and Cell Biology, University of Kansas Medical CenterKansas CityUnited States
| | - Thomas M Schultheiss
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion – Israel Institute of TechnologyHaifaIsrael
| | - Natasza A Kurpios
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell UniversityIthacaUnited States
| |
Collapse
|
3
|
Barajaa MA, Ghosh D, Laurencin CT. Decellularized Extracellular Matrix-Derived Hydrogels: a Powerful Class of Biomaterials for Skeletal Muscle Regenerative Engineering Applications. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2025; 11:39-63. [PMID: 40201194 PMCID: PMC11978403 DOI: 10.1007/s40883-023-00328-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/18/2023] [Accepted: 11/28/2023] [Indexed: 04/10/2025]
Abstract
Purpose The extracellular matrix (ECM) is a complicated milieu consisting of structural and functional molecules secreted by the resident cells that provides an optimal microenvironmental niche for enhanced cell adhesion, growth, differentiation, and tissue formation and maturation. For decades, ECM bio-scaffolds prepared from decellularized tissues have been used to promote skeletal muscle regeneration; however, it was recently discovered that these decellularized ECM (dECM) materials can be further processed into hydrogels, thus expanding the potential applications of dECM materials in skeletal muscle regenerative engineerisng (SMRE). This review article highlights the recent advances in dECM-derived hydrogels toward skeletal muscle regeneration and repair. Method We screened articles in PubMed and bibliographic search using a combination of keywords. Relevant and high-cited articles were chosen for inclusion in this narrative review. Results Here, we discuss the skeletal muscle ECM's structure, function, and biochemical composition with emphasis on the role of the ECM during skeletal muscle embryogenesis, growth, development, and repair. Furthermore, we review various hydrogels used to promote skeletal muscle regeneration. We also review the current applications of dECM-derived hydrogels toward SMRE. Finally, we discuss the clinical translation potential of dECM-derived hydrogels for skeletal muscle regeneration and repair and their potential clinical considerations in the future. Conclusion Although much progress has been made in the field of dECM-derived hydrogels toward SMRE, it is still in its nascent stage. We believe improving and standardizing the methods of decellularization, lowering the immunogenicity of dECMs, and carrying out in vivo investigations in large animal models would advance their future clinical applications. Lay Summary Researchers have discovered an effective way to turn tissue materials into jelly-like substances known as extracellular matrix (ECM)-derived hydrogels. These ECM-derived hydrogels can help muscles heal better after serious injuries. They can be injected into gaps or used to guide muscle growth in the lab or body. This review article explains how these ECM-derived hydrogels are made and how they can be used to improve muscle healing. It also discusses their possible use in clinics and what needs to be considered before using them for medical treatments.
Collapse
Affiliation(s)
- Mohammed A. Barajaa
- Department of Biomedical Engineering, College of Engineering, Imam Abdulrahman Bin Faisal University, 34212 Dammam, Saudi Arabia
| | - Debolina Ghosh
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, 263 Farmington Avenue, Farmington, CT 06030-3711, USA
| | - Cato T. Laurencin
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, 263 Farmington Avenue, Farmington, CT 06030-3711, USA
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT 06030, USA
- Department of Materials Science & Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Chemical & Bimolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
4
|
Zaher M, Yelin R, Arraf AA, Jadon J, Asleh MA, Goltzman S, Shaulov L, Reinhardt DP, Schultheiss TM. Stored elastic bending tension as a mediator of embryonic body folding. Cell Rep 2025; 44:115200. [PMID: 39798089 DOI: 10.1016/j.celrep.2024.115200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 11/18/2024] [Accepted: 12/20/2024] [Indexed: 01/15/2025] Open
Abstract
During development, amniote vertebrate embryos transform from a flat sheet into a three-dimensional cylindrical form through ventral folding of the lateral sides of the sheet (the lateral plate [LP]) and their fusion in the ventral midline. Using a chick embryo slice system, we find that the flat stage is actually a poised balance of opposing dorsal and ventral elastic bending tensions. An intact extracellular matrix (ECM) is required for generating tension, as localized digestion of ECM dissipates tension, while removal of endoderm or ectoderm layers has no significant effect. As development proceeds, dorsal bending tension dissipates coincident with epithelial-mesenchymal transition in the dorsal LP while ventral tension is maintained, changing the balance of forces to promote ventral folding. Interference with the elastic ECM component fibrillin reduces ventral bending tension and perturbs body folding in vivo. A model is presented for the accumulation and harnessing of LP bending tension to drive body folding.
Collapse
Affiliation(s)
- Mira Zaher
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Ronit Yelin
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Alaa A Arraf
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Julian Jadon
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Manar Abboud Asleh
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Sivan Goltzman
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Lihi Shaulov
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Dieter P Reinhardt
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada; Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada
| | - Thomas M Schultheiss
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel.
| |
Collapse
|
5
|
Murcia-Belmonte V, Chauvin G, Coca Y, Escalante A, Klein R, Herrera E. EphA4 Mediates EphrinB1-Dependent Adhesion in Retinal Ganglion Cells. J Neurosci 2025; 45:e0043242024. [PMID: 39622649 PMCID: PMC11756631 DOI: 10.1523/jneurosci.0043-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 10/04/2024] [Accepted: 11/11/2024] [Indexed: 01/24/2025] Open
Abstract
Eph/ephrin signaling is crucial for organizing retinotopic maps in vertebrates. Unlike other EphAs, which are expressed in the embryonic ventral retina, EphA4 is found in the retinal ganglion cell (RGC) layer at perinatal stages, and its role in mammalian visual system development remains unclear. Using classic in vitro stripe assays, we demonstrate that, while RGC axons are repelled by ephrinB2, they grow on ephrinB1 stripes through EphA4-mediated adhesion. In vivo, retinal axons from EphA4-deficient mice from either sex show impaired arborization in the medial, but not lateral, regions of the superior colliculus that express ephrinB1. Gain-of-function experiments further reveal that ephrinB1-mediated adhesion depends on EphA4 tyrosine kinase activity but it is independent of its sterile alpha motif. Together, our findings suggest that EphA4/ephrinB1 forward signaling likely facilitates adhesion between retinal axon terminals and cells in the medial colliculus, contributing to the establishment of proper connectivity within the visual system.
Collapse
Affiliation(s)
- Verónica Murcia-Belmonte
- Instituto de Neurociencias de Alicante (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH), Campus San Juan, Alicante 03550, Spain
| | - Géraud Chauvin
- Instituto de Neurociencias de Alicante (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH), Campus San Juan, Alicante 03550, Spain
| | - Yaiza Coca
- Instituto de Neurociencias de Alicante (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH), Campus San Juan, Alicante 03550, Spain
| | - Augusto Escalante
- Instituto de Neurociencias de Alicante (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH), Campus San Juan, Alicante 03550, Spain
| | - Rüdiger Klein
- Department 'Molecules - Signals - Development', Max Planck Institute for Biological Intelligence, Martinsried 82152, Germany
| | - Eloísa Herrera
- Instituto de Neurociencias de Alicante (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH), Campus San Juan, Alicante 03550, Spain
| |
Collapse
|
6
|
Zhao C, Ikeya M. Novel insights from human induced pluripotent stem cells on origins and roles of fibro/adipogenic progenitors as heterotopic ossification precursors. Front Cell Dev Biol 2024; 12:1457344. [PMID: 39286484 PMCID: PMC11402712 DOI: 10.3389/fcell.2024.1457344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Fibro/adipogenic progenitors (FAPs) that reside in muscle tissue are crucial for muscular homeostasis and regeneration as they secrete signaling molecules and components of the extracellular matrix. During injury or disease, FAPs differentiate into different cell types and significantly modulate muscular function. Recent advances in lineage tracing and single-cell transcriptomics have proven that FAPs are heterogeneous both in resting and post-injury or disease states. Their heterogeneity may be owing to the varied tissue microenvironments and their diverse developmental origins. Therefore, understanding FAPs' developmental origins can help predict their characteristics and behaviors under different conditions. FAPs are thought to be the major cell populations in the muscle connective tissue (MCT). During embryogenesis, the MCT directs muscular development throughout the body and serves as a prepattern for muscular morphogenesis. The developmental origins of FAPs as stromal cells in the MCT were studied previously. In adult tissues, FAPs are important precursors for heterotopic ossification, especially in the context of the rare genetic disorder fibrodysplasia ossificans progressiva. A new developmental origin for FAPs have been suggested that differs from conventional developmental perspectives. In this review, we summarize the developmental origins and functions of FAPs as stromal cells of the MCT and present novel insights obtained by using patient-derived induced pluripotent stem cells and mouse models of heterotopic ossification. This review broadens the current understanding of FAPs and suggests potential avenues for further investigation.
Collapse
Affiliation(s)
- Chengzhu Zhao
- Laboratory of Skeletal Development and Regeneration, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Makoto Ikeya
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| |
Collapse
|
7
|
Demler C, Lawlor JC, Yelin R, Llivichuzcha-Loja D, Shaulov L, Kim D, Stewart M, Lee F, Shylo NA, Trainor PA, Schultheiss T, Kurpios NA. An atypical basement membrane forms a midline barrier during left-right asymmetric gut development in the chicken embryo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.15.553395. [PMID: 37645918 PMCID: PMC10461973 DOI: 10.1101/2023.08.15.553395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Correct intestinal morphogenesis depends on the early embryonic process of gut rotation, an evolutionarily conserved program in which a straight gut tube elongates and forms into its first loops. However, the gut tube requires guidance to loop in a reproducible manner. The dorsal mesentery (DM) connects the gut tube to the body and directs the lengthening gut into stereotypical loops via left-right (LR) asymmetric cellular and extracellular behavior. The LR asymmetry of the DM also governs blood and lymphatic vessel formation for the digestive tract, which is essential for prenatal organ development and postnatal vital functions including nutrient absorption. Although the genetic LR asymmetry of the DM has been extensively studied, a divider between the left and right DM has yet to be identified. Setting up LR asymmetry for the entire body requires a Lefty1+ midline barrier to separate the two sides of the embryo, without it, embryos have lethal or congenital LR patterning defects. Individual organs including the brain, heart, and gut also have LR asymmetry, and while the consequences of left and right signals mixing are severe or even lethal, organ-specific mechanisms for separating these signals are poorly understood. Here, we uncover a midline structure composed of a transient double basement membrane, which separates the left and right halves of the embryonic chick DM during the establishment of intestinal and vascular asymmetries. Unlike other basement membranes of the DM, the midline is resistant to disruption by intercalation of Netrin4 (Ntn4). We propose that this atypical midline forms the boundary between left and right sides and functions as a barrier necessary to establish and protect organ asymmetry.
Collapse
Affiliation(s)
- Cora Demler
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - John Coates Lawlor
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Ronit Yelin
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Dhana Llivichuzcha-Loja
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Lihi Shaulov
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - David Kim
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Megan Stewart
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | | - Paul A. Trainor
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Missouri, USA
| | - Thomas Schultheiss
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Natasza A. Kurpios
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
8
|
Huang R, Chen J, Dong X, Zhang X, Luo W. Transcriptome Data Revealed the circRNA-miRNA-mRNA Regulatory Network during the Proliferation and Differentiation of Myoblasts in Shitou Goose. Animals (Basel) 2024; 14:576. [PMID: 38396545 PMCID: PMC10885906 DOI: 10.3390/ani14040576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
CircRNA, a recently characterized non-coding RNA (ncRNA) variant, functions as a molecular sponge, exerting regulatory control by binding to microRNA (miRNA) and modulating the expression of downstream proteins, either promoting or inhibiting their expression. Among poultry species, geese hold significant importance, prized by consumers for their delectable taste and rich nutritional content. Despite the prominence of geese, research on the growth and development of goose muscle, particularly the regulatory role of circRNAs in goose muscle formation, remains insufficiently explored. In this study, we constructed comprehensive expression profiles of circRNAs and messenger RNAs (mRNAs) within the myoblasts and myotubes of Shitou geese. We identified a total of 96 differentially expressed circRNAs (DEcircRNAs) and 880 differentially expressed mRNAs (DEmRNAs). Notably, the parental genes of DEcircRNAs and DEmRNAs exhibited enrichment in the Wnt signaling pathway, highlighting its potential impact on the proliferation and differentiation of goose myoblasts. Employing RNAhybrid and miRDB, we identified circRNA-miRNA pairs and mRNA-miRNA pairs that may play a role in regulating myogenic differentiation or muscle growth. Subsequently, utilizing Cytoscape, we constructed a circRNA-miRNA-mRNA interaction network aimed at unraveling the intricate regulatory mechanisms involved in goose muscle growth and development, which comprises 93 circRNAs, 351 miRNAs, and 305 mRNAs. Moreover, the identification of 10 hub genes (ACTB, ACTN1, BDNF, PDGFRA, MYL1, EFNA5, MYSM1, THBS1, ITGA8, and ELN) potentially linked to myogenesis, along with the exploration of their circRNA-miRNA-hub gene regulatory axis, was also conducted. These competitive endogenous RNA (ceRNA) regulatory networks elucidate the molecular regulatory mechanisms associated with muscle growth in Shitou geese, providing deeper insights into the reciprocal regulation of circRNA, miRNA, and mRNA in the context of goose muscle formation.
Collapse
Affiliation(s)
- Rongqin Huang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (R.H.)
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Jiahui Chen
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (R.H.)
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Xu Dong
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (R.H.)
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Xiquan Zhang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (R.H.)
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Wen Luo
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (R.H.)
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| |
Collapse
|
9
|
Abboud Asleh M, Zaher M, Asleh J, Jadon J, Shaulov L, Yelin R, Schultheiss TM. A morphogenetic wave in the chick embryo lateral mesoderm generates mesenchymal-epithelial transition through a 3D-rosette intermediate. Dev Cell 2023:S1534-5807(23)00133-8. [PMID: 37080204 DOI: 10.1016/j.devcel.2023.03.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 02/24/2023] [Accepted: 03/24/2023] [Indexed: 04/22/2023]
Abstract
Formation of epithelia through mesenchymal-epithelial transition (MET) is essential for embryonic development and for many physiological and pathological processes. This study investigates MET in vivo in the chick embryo lateral mesoderm, where a multilayered mesenchyme transforms into two parallel epithelial sheets that constitute the coelomic lining of the embryonic body cavity. Prior to MET initiation, mesenchymal cells exhibit non-polarized distribution of multiple polarity markers, albeit not aPKC. We identified an epithelializing wave that sweeps across the lateral mesoderm, the wavefront of which is characterized by the accumulation of basal fibronectin and a network of 3D rosettes composed of polarized, wedge-shaped cells surrounding a central focus of apical markers, now including aPKC. Initiation of the MET process is dependent on extracellular matrix-integrin signaling acting through focal adhesion kinase and talin, whereas progression through the rosette phase requires aPKC function. We present a stepwise model for MET, comprising polarization, 3D-rosette, and epithelialization stages.
Collapse
Affiliation(s)
- Manar Abboud Asleh
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Mira Zaher
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Jad Asleh
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Julian Jadon
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Lihi Shaulov
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Ronit Yelin
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Thomas M Schultheiss
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel.
| |
Collapse
|
10
|
Jadon J, Yelin R, Arraf AA, Asleh MA, Zaher M, Schultheiss TM. Regulation of aortic morphogenesis and VE-cadherin dynamics by VEGF. Dev Biol 2023; 497:1-10. [PMID: 36841503 DOI: 10.1016/j.ydbio.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 02/04/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
In amniote vertebrates, the definitive dorsal aorta is formed by the fusion of two primordial aortic endothelial tubes. Formation of the definitive dorsal aorta requires extensive cellular migrations and rearrangements of the primordial tubes in order to generate a single vessel located at the embryonic ventral midline. This study examines the role of VEGF signaling in the generation of the definitive dorsal aorta. Through gain- and loss-of-function studies in vivo in the chick embryo, we document a requirement for VEGF signaling in growth and remodeling of the paired primordia. We find that regions of the aorta are differentially sensitive to levels of VEGF signaling, and present evidence that areas of low blood flow are more sensitive to the loss of VEGF signaling. We also find that VEGF signaling regulates the intracellular distribution between membrane and cytoplasm of the cell-cell adhesion molecule VE-cadherin in aortic endothelial cells in vivo. Together, these finding identify mechanisms that likely contribute to the dynamic behavior of endothelial cells during aorta morphogenesis.
Collapse
Affiliation(s)
- Julian Jadon
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096, Israel
| | - Ronit Yelin
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096, Israel
| | - Alaa A Arraf
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096, Israel
| | - Manar Abboud Asleh
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096, Israel
| | - Mira Zaher
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096, Israel
| | - Thomas M Schultheiss
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096, Israel.
| |
Collapse
|
11
|
Sanketi BD, Zuela-Sopilniak N, Bundschuh E, Gopal S, Hu S, Long J, Lammerding J, Hopyan S, Kurpios NA. Pitx2 patterns an accelerator-brake mechanical feedback through latent TGFβ to rotate the gut. Science 2022; 377:eabl3921. [PMID: 36137018 PMCID: PMC10089252 DOI: 10.1126/science.abl3921] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The vertebrate intestine forms by asymmetric gut rotation and elongation, and errors cause lethal obstructions in human infants. Rotation begins with tissue deformation of the dorsal mesentery, which is dependent on left-sided expression of the Paired-like transcription factor Pitx2. The conserved morphogen Nodal induces asymmetric Pitx2 to govern embryonic laterality, but organ-level regulation of Pitx2 during gut asymmetry remains unknown. We found Nodal to be dispensable for Pitx2 expression during mesentery deformation. Intestinal rotation instead required a mechanosensitive latent transforming growth factor-β (TGFβ), tuning a second wave of Pitx2 that induced reciprocal tissue stiffness in the left mesentery as mechanical feedback with the right side. This signaling regulator, an accelerator (right) and brake (left), combines biochemical and biomechanical inputs to break gut morphological symmetry and direct intestinal rotation.
Collapse
Affiliation(s)
- Bhargav D Sanketi
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Noam Zuela-Sopilniak
- Weill Institute for Cell and Molecular Biology and Department of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Elizabeth Bundschuh
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Sharada Gopal
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Shing Hu
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Joseph Long
- Weill Institute for Cell and Molecular Biology and Department of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Jan Lammerding
- Weill Institute for Cell and Molecular Biology and Department of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Sevan Hopyan
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Natasza A Kurpios
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
12
|
Luria V, Laufer E. The Geometry of Limb Motor Innervation is Controlled by the Dorsal-Ventral Compartment Boundary in the Chick Limbless Mutant. Neuroscience 2020; 450:29-47. [PMID: 33038447 PMCID: PMC9922539 DOI: 10.1016/j.neuroscience.2020.09.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 11/29/2022]
Abstract
Precise control of limb muscles, and ultimately of limb movement, requires accurate motor innervation. Motor innervation of the vertebrate limb is established by sequential selection of trajectories at successive decision points. Motor axons of the lateral motor column (LMC) segregate at the base of the limb into two groups that execute a choice between dorsal and ventral tissue: medial LMC axons innervate the ventral limb, whereas lateral LMC axons innervate the dorsal limb. We investigated how LMC axons are targeted to the limb using the chick mutant limbless (ll), which has a dorsal transformation of the ventral limb mesenchyme. In ll the spatial pattern of motor projections to the limb is abnormal while their targeting is normal. While extensive, the dorsal transformation of the ll ventral limb mesenchyme is incomplete whereas the generation, specification and targeting of spinal motor neurons are apparently unaffected. Thus, the dorsal-ventral motor axon segregation is an active choice that is independent of the ratio between dorsal and ventral tissue but dependent on the presence of both tissues. Therefore, the fidelity of the motor projections to the limb depends on the presence of both dorsal and ventral compartments, while the geometry of motor projections is controlled by the position of limb dorsal-ventral compartment boundary.
Collapse
Affiliation(s)
- Victor Luria
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA; Center for Motor Neuron Biology and Disease, Columbia University Medical Center, New York, NY 10032, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| | - Ed Laufer
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA; Center for Motor Neuron Biology and Disease, Columbia University Medical Center, New York, NY 10032, USA; Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
13
|
Helmbacher F, Stricker S. Tissue cross talks governing limb muscle development and regeneration. Semin Cell Dev Biol 2020; 104:14-30. [PMID: 32517852 DOI: 10.1016/j.semcdb.2020.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 12/14/2022]
Abstract
For decades, limb development has been a paradigm of three-dimensional patterning. Moreover, as the limb muscles and the other tissues of the limb's musculoskeletal system arise from distinct developmental sources, it has been a prime example of integrative morphogenesis and cross-tissue communication. As the limbs grow, all components of the musculoskeletal system (muscles, tendons, connective tissue, nerves) coordinate their growth and differentiation, ultimately giving rise to a functional unit capable of executing elaborate movement. While the molecular mechanisms governing global three-dimensional patterning and formation of the skeletal structures of the limbs has been a matter of intense research, patterning of the soft tissues is less understood. Here, we review the development of limb muscles with an emphasis on their interaction with other tissue types and the instructive roles these tissues play. Furthermore, we discuss the role of adult correlates of these embryonic accessory tissues in muscle regeneration.
Collapse
Affiliation(s)
| | - Sigmar Stricker
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195, Berlin, Germany.
| |
Collapse
|
14
|
Arraf AA, Yelin R, Reshef I, Jadon J, Abboud M, Zaher M, Schneider J, Vladimirov FK, Schultheiss TM. Hedgehog Signaling Regulates Epithelial Morphogenesis to Position the Ventral Embryonic Midline. Dev Cell 2020; 53:589-602.e6. [PMID: 32437643 DOI: 10.1016/j.devcel.2020.04.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 02/23/2020] [Accepted: 04/22/2020] [Indexed: 01/20/2023]
Abstract
Despite much progress toward understanding how epithelial morphogenesis is shaped by intra-epithelial processes including contractility, polarity, and adhesion, much less is known regarding how such cellular processes are coordinated by extra-epithelial signaling. During embryogenesis, the coelomic epithelia on the two sides of the chick embryo undergo symmetrical lengthening and thinning, converging medially to generate and position the dorsal mesentery (DM) in the embryonic midline. We find that Hedgehog signaling, acting through downstream effectors Sec5 (ExoC2), an exocyst complex component, and RhoU (Wrch-1), a small GTPase, regulates coelomic epithelium morphogenesis to guide DM midline positioning. These effects are accompanied by changes in epithelial cell-cell alignment and N-cadherin and laminin distribution, suggesting Hedgehog regulation of cell organization within the coelomic epithelium. These results indicate a role for Hedgehog signaling in regulating epithelial morphology and provide an example of how transcellular signaling can modulate specific cellular processes to shape tissue morphogenesis.
Collapse
Affiliation(s)
- Alaa A Arraf
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Ronit Yelin
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Inbar Reshef
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Julian Jadon
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Manar Abboud
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Mira Zaher
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Jenny Schneider
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Fanny K Vladimirov
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Thomas M Schultheiss
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel.
| |
Collapse
|
15
|
Talbot JC, Teets EM, Ratnayake D, Duy PQ, Currie PD, Amacher SL. Muscle precursor cell movements in zebrafish are dynamic and require Six family genes. Development 2019; 146:dev171421. [PMID: 31023879 PMCID: PMC6550023 DOI: 10.1242/dev.171421] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 04/16/2019] [Indexed: 01/09/2023]
Abstract
Muscle precursors need to be correctly positioned during embryonic development for proper body movement. In zebrafish, a subset of hypaxial muscle precursors from the anterior somites undergo long-range migration, moving away from the trunk in three streams to form muscles in distal locations such as the fin. We mapped long-distance muscle precursor migrations with unprecedented resolution using live imaging. We identified conserved genes necessary for normal precursor motility (six1a, six1b, six4a, six4b and met). These genes are required for movement away from somites and later to partition two muscles within the fin bud. During normal development, the middle muscle precursor stream initially populates the fin bud, then the remainder of this stream contributes to the posterior hypaxial muscle. When we block fin bud development by impairing retinoic acid synthesis or Fgfr function, the entire stream contributes to the posterior hypaxial muscle indicating that muscle precursors are not committed to the fin during migration. Our findings demonstrate a conserved muscle precursor motility pathway, identify dynamic cell movements that generate posterior hypaxial and fin muscles, and demonstrate flexibility in muscle precursor fates.
Collapse
Affiliation(s)
- Jared C Talbot
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
- Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, OH 43210, USA
| | - Emily M Teets
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Dhanushika Ratnayake
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
- EMBL Australia, Monash University, Clayton, VIC, 3800, Australia
| | - Phan Q Duy
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
- EMBL Australia, Monash University, Clayton, VIC, 3800, Australia
| | - Sharon L Amacher
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
- Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, OH 43210, USA
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
16
|
Simkin JE, Zhang D, Stamp LA, Newgreen DF. Fine scale differences within the vagal neural crest for enteric nervous system formation. Dev Biol 2019; 446:22-33. [DOI: 10.1016/j.ydbio.2018.11.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 11/13/2018] [Indexed: 12/24/2022]
|
17
|
Zhang X, Wang L, Qiu K, Xu D, Yin J. Dynamic membrane proteome of adipogenic and myogenic precursors in skeletal muscle highlights EPHA2 may promote myogenic differentiation through ERK signaling. FASEB J 2019; 33:5495-5509. [PMID: 30668921 PMCID: PMC6436648 DOI: 10.1096/fj.201801907r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The balance of myogenic and adipogenic differentiation is crucial for skeletal muscle homeostasis. Given the vital role of membrane proteins (MBPs) in cell signal perception, membrane proteomics was conducted to delineate mechanisms regulating differentiation of adipogenic and myogenic precursors in skeletal muscle. Adipogenic and myogenic precursors with divergent differentiation potential were isolated from the longissimus dorsi muscle of neonatal pigs by the preplate method. A total of 85 differentially expressed MBPs (P < 0.05 and fold change ≥1.2 or ≤0.83) between 2 precursors were detected via isobaric tags for relative and absolute quantitation (iTRAQ) assay, including 67 up-regulated and 18 down-regulated in myogenic precursors. Functional enrichment analysis uncovered that myogenic and adipogenic precursors showed significant differences in cytoskeleton organization, syncytium formation, environmental information processing, and organismal systems. Furthermore, key MBPs in regulating cell differentiation were also characterized, including ITGB3, ITGAV, ITPR3, and EPHA2. Noteworthily, EPHA2 was required for myogenic differentiation, and it may promote myogenic differentiation through ERK signaling. Collectively, our study provided an insight into the distinct MBP profile between myogenic and adipogenic precursors in skeletal muscle and served as a solid basis for supporting the role of MBPs in regulating differentiation.—Zhang, X., Wang, L., Qiu, K., Xu, D., Yin, J. Dynamic membrane proteome of adipogenic and myogenic precursors in skeletal muscle highlights EPHA2 may promote myogenic differentiation through ERK signaling.
Collapse
Affiliation(s)
- Xin Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Liqi Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Kai Qiu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Doudou Xu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jingdong Yin
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
18
|
Sefton EM, Kardon G. Connecting muscle development, birth defects, and evolution: An essential role for muscle connective tissue. Curr Top Dev Biol 2019; 132:137-176. [PMID: 30797508 DOI: 10.1016/bs.ctdb.2018.12.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Skeletal muscle powers all movement of the vertebrate body and is distributed in multiple regions that have evolved distinct functions. Axial muscles are ancestral muscles essential for support and locomotion of the whole body. The evolution of the head was accompanied by development of cranial muscles essential for eye movement, feeding, vocalization, and facial expression. With the evolution of paired fins and limbs and their associated muscles, vertebrates gained increased locomotor agility, populated the land, and acquired fine motor skills. Finally, unique muscles with specialized functions have evolved in some groups, and the diaphragm which solely evolved in mammals to increase respiratory capacity is one such example. The function of all these muscles requires their integration with the other components of the musculoskeletal system: muscle connective tissue (MCT), tendons, bones as well as nerves and vasculature. MCT is muscle's closest anatomical and functional partner. Not only is MCT critical in the adult for muscle structure and function, but recently MCT in the embryo has been found to be crucial for muscle development. In this review, we examine the important role of the MCT in axial, head, limb, and diaphragm muscles for regulating normal muscle development, discuss how defects in MCT-muscle interactions during development underlie the etiology of a range of birth defects, and explore how changes in MCT development or communication with muscle may have led to the modification and acquisition of new muscles during vertebrate evolution.
Collapse
Affiliation(s)
- Elizabeth M Sefton
- Department of Human Genetics, University of Utah, Salt Lake City, UT, United States
| | - Gabrielle Kardon
- Department of Human Genetics, University of Utah, Salt Lake City, UT, United States.
| |
Collapse
|
19
|
Regulation of axonal EphA4 forward signaling is involved in the effect of EphA3 on chicken retinal ganglion cell axon growth during retinotectal mapping. Exp Eye Res 2019; 178:46-60. [DOI: 10.1016/j.exer.2018.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 09/06/2018] [Accepted: 09/16/2018] [Indexed: 12/22/2022]
|
20
|
Adachi N, Pascual-Anaya J, Hirai T, Higuchi S, Kuroda S, Kuratani S. Stepwise participation of HGF/MET signaling in the development of migratory muscle precursors during vertebrate evolution. ZOOLOGICAL LETTERS 2018; 4:18. [PMID: 29946484 PMCID: PMC6004694 DOI: 10.1186/s40851-018-0094-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/11/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND The skeletal musculature of gnathostomes, which is derived from embryonic somites, consists of epaxial and hypaxial portions. Some hypaxial muscles, such as tongue and limb muscles, undergo de-epithelialization and migration during development. Delamination and migration of these myoblasts, or migratory muscle precursors (MMPs), is generally thought to be regulated by hepatocyte growth factor (HGF) and receptor tyrosine kinase (MET) signaling. However, the prevalence of this mechanism and the expression patterns of the genes involved in MMP development across different vertebrate species remain elusive. RESULTS We performed a comparative analysis of Hgf and Met gene expression in several vertebrates, including mouse, chicken, dogfish (Scyliorhinus torazame), and lamprey (Lethenteron camtschaticum). While both Hgf and Met were expressed during development in the mouse tongue muscle, and in limb muscle formation in the mouse and chicken, we found no clear evidence for the involvement of HGF/MET signaling in MMP development in shark or lamprey embryos. CONCLUSIONS Our results indicate that the expressions and functions of both Hgf and Met genes do not represent shared features of vertebrate MMPs, suggesting a stepwise participation of HGF/MET signaling in MMP development during vertebrate evolution.
Collapse
Affiliation(s)
- Noritaka Adachi
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047 Japan
- Present address: Aix-Marseille Université, CNRS, IBDM UMR 7288, 13288 Marseille, France
| | - Juan Pascual-Anaya
- Laboratory for Evolutionary Morphology, RIKEN Cluster for Pioneering Research, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047 Japan
| | - Tamami Hirai
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047 Japan
- Laboratory for Evolutionary Morphology, RIKEN Cluster for Pioneering Research, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047 Japan
| | - Shinnosuke Higuchi
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047 Japan
- Laboratory for Evolutionary Morphology, RIKEN Cluster for Pioneering Research, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047 Japan
- Department of Biology, Graduate School of Science, Kobe University, Kobe, 657-8501 Japan
| | - Shunya Kuroda
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047 Japan
- Laboratory for Evolutionary Morphology, RIKEN Cluster for Pioneering Research, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047 Japan
- Department of Biology, Graduate School of Science, Kobe University, Kobe, 657-8501 Japan
| | - Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047 Japan
- Laboratory for Evolutionary Morphology, RIKEN Cluster for Pioneering Research, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047 Japan
| |
Collapse
|
21
|
Hirasawa T, Kuratani S. Evolution of the muscular system in tetrapod limbs. ZOOLOGICAL LETTERS 2018; 4:27. [PMID: 30258652 PMCID: PMC6148784 DOI: 10.1186/s40851-018-0110-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/04/2018] [Indexed: 05/16/2023]
Abstract
While skeletal evolution has been extensively studied, the evolution of limb muscles and brachial plexus has received less attention. In this review, we focus on the tempo and mode of evolution of forelimb muscles in the vertebrate history, and on the developmental mechanisms that have affected the evolution of their morphology. Tetrapod limb muscles develop from diffuse migrating cells derived from dermomyotomes, and the limb-innervating nerves lose their segmental patterns to form the brachial plexus distally. Despite such seemingly disorganized developmental processes, limb muscle homology has been highly conserved in tetrapod evolution, with the apparent exception of the mammalian diaphragm. The limb mesenchyme of lateral plate mesoderm likely plays a pivotal role in the subdivision of the myogenic cell population into individual muscles through the formation of interstitial muscle connective tissues. Interactions with tendons and motoneuron axons are involved in the early and late phases of limb muscle morphogenesis, respectively. The mechanism underlying the recurrent generation of limb muscle homology likely resides in these developmental processes, which should be studied from an evolutionary perspective in the future.
Collapse
Affiliation(s)
- Tatsuya Hirasawa
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-minami, Chuo-ku, Kobe, Hyogo 650-0047 Japan
| | - Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-minami, Chuo-ku, Kobe, Hyogo 650-0047 Japan
- Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), 2-2-3 Minatojima-minami, Chuo-ku, Kobe, Hyogo 650-0047 Japan
| |
Collapse
|
22
|
Mukaigasa K, Sakuma C, Okada T, Homma S, Shimada T, Nishiyama K, Sato N, Yaginuma H. Motor neurons with limb-innervating character in the cervical spinal cord are sculpted by apoptosis based on the Hox code in chick embryo. Development 2017; 144:4645-4657. [PMID: 29061638 DOI: 10.1242/dev.158873] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 10/16/2017] [Indexed: 12/13/2022]
Abstract
In the developing chick embryo, a certain population of motor neurons (MNs) in the non-limb-innervating cervical spinal cord undergoes apoptosis between embryonic days 4 and 5. However, the characteristics of these apoptotic MNs remain undefined. Here, by examining the spatiotemporal profiles of apoptosis and MN subtype marker expression in normal or apoptosis-inhibited chick embryos, we found that this apoptotic population is distinguishable by Foxp1 expression. When apoptosis was inhibited, the Foxp1+ MNs survived and showed characteristics of lateral motor column (LMC) neurons, which are of a limb-innervating subtype, suggesting that cervical Foxp1+ MNs are the rostral continuation of the LMC. Knockdown and misexpression of Foxp1 did not affect apoptosis progression, but revealed the role of Foxp1 in conferring LMC identity on the cervical MNs. Furthermore, ectopic expression of Hox genes that are normally expressed in the brachial region prevented apoptosis, and directed Foxp1+ MNs to LMC neurons at the cervical level. These results indicate that apoptosis in the cervical spinal cord plays a role in sculpting Foxp1+ MNs committed to LMC neurons, depending on the Hox expression pattern.
Collapse
Affiliation(s)
- Katsuki Mukaigasa
- Department of Neuroanatomy and Embryology, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Chie Sakuma
- Department of Neuroanatomy and Embryology, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Tomoaki Okada
- Department of Neuroanatomy and Embryology, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Shunsaku Homma
- Department of Neuroanatomy and Embryology, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Takako Shimada
- Department of Neuroanatomy and Embryology, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Keiji Nishiyama
- Department of Neuroanatomy and Embryology, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Noboru Sato
- Division of Gross Anatomy and Morphogenesis, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Hiroyuki Yaginuma
- Department of Neuroanatomy and Embryology, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan
| |
Collapse
|
23
|
Ahmed MU, Maurya AK, Cheng L, Jorge EC, Schubert FR, Maire P, Basson MA, Ingham PW, Dietrich S. Engrailed controls epaxial-hypaxial muscle innervation and the establishment of vertebrate three-dimensional mobility. Dev Biol 2017; 430:90-104. [PMID: 28807781 DOI: 10.1016/j.ydbio.2017.08.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 11/16/2022]
Abstract
Chordates are characterised by contractile muscle on either side of the body that promotes movement by side-to-side undulation. In the lineage leading to modern jawed vertebrates (crown group gnathostomes), this system was refined: body muscle became segregated into distinct dorsal (epaxial) and ventral (hypaxial) components that are separately innervated by the medial and hypaxial motors column, respectively, via the dorsal and ventral ramus of the spinal nerves. This allows full three-dimensional mobility, which in turn was a key factor in their evolutionary success. How the new gnathostome system is established during embryogenesis and how it may have evolved in the ancestors of modern vertebrates is not known. Vertebrate Engrailed genes have a peculiar expression pattern as they temporarily demarcate a central domain of the developing musculature at the epaxial-hypaxial boundary. Moreover, they are the only genes known with this particular expression pattern. The aim of this study was to investigate whether Engrailed genes control epaxial-hypaxial muscle development and innervation. Investigating chick, mouse and zebrafish as major gnathostome model organisms, we found that the Engrailed expression domain was associated with the establishment of the epaxial-hypaxial boundary of muscle in all three species. Moreover, the outgrowing epaxial and hypaxial nerves orientated themselves with respect to this Engrailed domain. In the chicken, loss and gain of Engrailed function changed epaxial-hypaxial somite patterning. Importantly, in all animals studied, loss and gain of Engrailed function severely disrupted the pathfinding of the spinal motor axons, suggesting that Engrailed plays an evolutionarily conserved role in the separate innervation of vertebrate epaxial-hypaxial muscle.
Collapse
Affiliation(s)
- Mohi U Ahmed
- King's College London, Dept. of Craniofacial Development and Stem Cell Biology, Floor 27, Guy's Hospital Tower Wing, London SE1 9RT, UK
| | - Ashish K Maurya
- Institute of Molecular&Cell Biology, Proteos, 61 Biopolis Drive, Singapore 138673, Republic of Singapore
| | - Louise Cheng
- King's College London, Dept. of Craniofacial Development and Stem Cell Biology, Floor 27, Guy's Hospital Tower Wing, London SE1 9RT, UK; Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Erika C Jorge
- King's College London, Dept. of Craniofacial Development and Stem Cell Biology, Floor 27, Guy's Hospital Tower Wing, London SE1 9RT, UK; Universidade Federal de Minas Gerais - Departamento de Morfologia, Av Antônio Carlos, 6627, Belo Horizonte, MG 31270-901, Brazil
| | - Frank R Schubert
- Institute of Biomedical and Biomolecular Science, School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK
| | - Pascal Maire
- Institut Cochin, INSERM U567, CNRS UMR 8104, Univ. Paris Descartes, Département Génétique et Développement, Equipegénétique et développement du systèmeneuromusculaire, 24 Rue du Fg St Jacques, 75014 Paris, France
| | - M Albert Basson
- King's College London, Dept. of Craniofacial Development and Stem Cell Biology, Floor 27, Guy's Hospital Tower Wing, London SE1 9RT, UK
| | - Philip W Ingham
- Institute of Molecular&Cell Biology, Proteos, 61 Biopolis Drive, Singapore 138673, Republic of Singapore; Dept. of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Republic of Singapore
| | - Susanne Dietrich
- King's College London, Dept. of Craniofacial Development and Stem Cell Biology, Floor 27, Guy's Hospital Tower Wing, London SE1 9RT, UK; Institute of Biomedical and Biomolecular Science, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK.
| |
Collapse
|
24
|
Nassari S, Duprez D, Fournier-Thibault C. Non-myogenic Contribution to Muscle Development and Homeostasis: The Role of Connective Tissues. Front Cell Dev Biol 2017; 5:22. [PMID: 28386539 PMCID: PMC5362625 DOI: 10.3389/fcell.2017.00022] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/07/2017] [Indexed: 12/22/2022] Open
Abstract
Skeletal muscles belong to the musculoskeletal system, which is composed of bone, tendon, ligament and irregular connective tissue, and closely associated with motor nerves and blood vessels. The intrinsic molecular signals regulating myogenesis have been extensively investigated. However, muscle development, homeostasis and regeneration require interactions with surrounding tissues and the cellular and molecular aspects of this dialogue have not been completely elucidated. During development and adult life, myogenic cells are closely associated with the different types of connective tissue. Connective tissues are defined as specialized (bone and cartilage), dense regular (tendon and ligament) and dense irregular connective tissue. The role of connective tissue in muscle morphogenesis has been investigated, thanks to the identification of transcription factors that characterize the different types of connective tissues. Here, we review the development of the various connective tissues in the context of the musculoskeletal system and highlight their important role in delivering information necessary for correct muscle morphogenesis, from the early step of myoblast differentiation to the late stage of muscle maturation. Interactions between muscle and connective tissue are also critical in the adult during muscle regeneration, as impairment of the regenerative potential after injury or in neuromuscular diseases results in the progressive replacement of the muscle mass by fibrotic tissue. We conclude that bi-directional communication between muscle and connective tissue is critical for a correct assembly of the musculoskeletal system during development as well as to maintain its homeostasis in the adult.
Collapse
Affiliation(s)
- Sonya Nassari
- Developmental Biology Laboratory, IBPS, Centre National de la Recherche Scientifique UMR7622, Institut National de la Santé Et de la Recherche Médicale U1156, Université Pierre et Marie Curie, Sorbonne Universités Paris, France
| | - Delphine Duprez
- Developmental Biology Laboratory, IBPS, Centre National de la Recherche Scientifique UMR7622, Institut National de la Santé Et de la Recherche Médicale U1156, Université Pierre et Marie Curie, Sorbonne Universités Paris, France
| | - Claire Fournier-Thibault
- Developmental Biology Laboratory, IBPS, Centre National de la Recherche Scientifique UMR7622, Institut National de la Santé Et de la Recherche Médicale U1156, Université Pierre et Marie Curie, Sorbonne Universités Paris, France
| |
Collapse
|
25
|
Barrecheguren PJ, Ros O, Cotrufo T, Kunz B, Soriano E, Ulloa F, Stoeckli ET, Araújo SJ. SNARE proteins play a role in motor axon guidance in vertebrates and invertebrates. Dev Neurobiol 2017; 77:963-974. [DOI: 10.1002/dneu.22481] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 12/02/2016] [Accepted: 12/02/2016] [Indexed: 01/17/2023]
Affiliation(s)
- Pablo José Barrecheguren
- Department of Cell Biology, Faculty of Biology; University of Barcelona; Barcelona 08028 Spain
- Institut de Recerca Biomèdica de Barcelona (IRB Barcelona), The Barcelona Institute of Science and Technology; Barcelona 08028 Spain
| | - Oriol Ros
- Department of Cell Biology, Faculty of Biology; University of Barcelona; Barcelona 08028 Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII; Madrid 28031 Spain
| | - Tiziana Cotrufo
- Department of Cell Biology, Faculty of Biology; University of Barcelona; Barcelona 08028 Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII; Madrid 28031 Spain
| | - Beat Kunz
- Institute of Molecular Life Sciences, University of Zurich; Zurich 8057 Switzerland
| | - Eduardo Soriano
- Department of Cell Biology, Faculty of Biology; University of Barcelona; Barcelona 08028 Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII; Madrid 28031 Spain
- Vall d'Hebron Institute of Research (VHIR); Barcelona 08035 Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA); Barcelona 08010 Spain
| | - Fausto Ulloa
- Department of Cell Biology, Faculty of Biology; University of Barcelona; Barcelona 08028 Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII; Madrid 28031 Spain
| | - Esther T. Stoeckli
- Institute of Molecular Life Sciences, University of Zurich; Zurich 8057 Switzerland
| | - Sofia J. Araújo
- Institut de Recerca Biomèdica de Barcelona (IRB Barcelona), The Barcelona Institute of Science and Technology; Barcelona 08028 Spain
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC); Barcelona 08028 Spain
- Department of Genetics, Microbiology and Statistics, Faculty of Biology; University of Barcelona; Barcelona 08028 Spain
| |
Collapse
|
26
|
Deries M, Thorsteinsdóttir S. Axial and limb muscle development: dialogue with the neighbourhood. Cell Mol Life Sci 2016; 73:4415-4431. [PMID: 27344602 PMCID: PMC11108464 DOI: 10.1007/s00018-016-2298-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/03/2016] [Accepted: 06/21/2016] [Indexed: 11/29/2022]
Abstract
Skeletal muscles are part of the musculoskeletal system which also includes nerves, tendons, connective tissue, bones and blood vessels. Here we review the development of axial and limb muscles in amniotes within the context of their surrounding tissues in vivo. We highlight the reciprocal dialogue mediated by signalling factors between cells of these adjacent tissues and developing muscles and also demonstrate its importance from the onset of muscle cell differentiation well into foetal development. Early embryonic tissues secrete factors which are important regulators of myogenesis. However, later muscle development relies on other tissue collaborators, such as developing nerves and connective tissue, which are in turn influenced by the developing muscles themselves. We conclude that skeletal muscle development in vivo is a compelling example of the importance of reciprocal interactions between developing tissues for the complete and coordinated development of a functional system.
Collapse
Affiliation(s)
- Marianne Deries
- Centro de Ecologia, Evolução e Alterações Ambientais, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.
| | - Sólveig Thorsteinsdóttir
- Centro de Ecologia, Evolução e Alterações Ambientais, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
27
|
Saller MM, Huettl RE, Hanuschick P, Amend AL, Alberton P, Aszodi A, Huber AB. The role of Sema3-Npn-1 signaling during diaphragm innervation and muscle development. J Cell Sci 2016; 129:3295-308. [PMID: 27466379 PMCID: PMC5047703 DOI: 10.1242/jcs.186015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 07/20/2016] [Indexed: 11/20/2022] Open
Abstract
Correct innervation of the main respiratory muscle in mammals, namely the thoracic diaphragm, is a crucial pre-requisite for the functionality of this muscle and the viability of the entire organism. Systemic impairment of Sema3A-Npn-1 (Npn-1 is also known as NRP1) signaling causes excessive branching of phrenic nerves in the diaphragm and into the central tendon region, where the majority of misguided axons innervate ectopic musculature. To elucidate whether these ectopic muscles are a result of misguidance of myoblast precursors due to the loss of Sema3A-Npn-1 signaling, we conditionally ablated Npn-1 in somatic motor neurons, which led to a similar phenotype of phrenic nerve defasciculation and, intriguingly, also formation of innervated ectopic muscles. We therefore hypothesize that ectopic myocyte fusion is caused by additional factors released by misprojecting growth cones. Slit2 and its Robo receptors are expressed by phrenic motor axons and migrating myoblasts, respectively, during innervation of the diaphragm. In vitro analyses revealed a chemoattractant effect of Slit2 on primary diaphragm myoblasts. Thus, we postulate that factors released by motor neuron growth cones have an influence on the migration properties of myoblasts during establishment of the diaphragm.
Collapse
Affiliation(s)
- Maximilian Michael Saller
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig-Maximilians-University (LMU), Nußbaumstraße 20, Munich 80336, Germany Institute of Developmental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, Neuherberg 85764, Germany
| | - Rosa-Eva Huettl
- Institute of Developmental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, Neuherberg 85764, Germany Institute of Physiology, Department of Physiological Genomics, Ludwig-Maximilians-University (LMU), Schillerstraße 46, Munich 80336, Germany
| | - Philipp Hanuschick
- Institute of Developmental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, Neuherberg 85764, Germany
| | - Anna-Lena Amend
- Institute of Developmental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, Neuherberg 85764, Germany
| | - Paolo Alberton
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig-Maximilians-University (LMU), Nußbaumstraße 20, Munich 80336, Germany
| | - Attila Aszodi
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig-Maximilians-University (LMU), Nußbaumstraße 20, Munich 80336, Germany
| | - Andrea B Huber
- Institute of Developmental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, Neuherberg 85764, Germany Bernstein Network for Computational Neuroscience, Albert-Ludwigs-University, Freiburg, Germany
| |
Collapse
|
28
|
Guo X, Fang Q, Ma C, Zhou B, Wan Y, Jiang R. Whole-genome resequencing of Xishuangbanna fighting chicken to identify signatures of selection. Genet Sel Evol 2016; 48:62. [PMID: 27565441 PMCID: PMC5000499 DOI: 10.1186/s12711-016-0239-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 08/05/2016] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Selective breeding for genetic improvement is expected to leave distinctive selection signatures within genomes. The identification of selection signatures can help to elucidate the mechanisms of selection and accelerate genetic improvement. Fighting chickens have undergone extensive artificial selection, resulting in modifications to their morphology, physiology and behavior compared to wild species. Comparing the genomes of fighting chickens and wild species offers a unique opportunity for identifying signatures of artificial selection. RESULTS We identified selection signals in 100-kb windows sliding in 10-kb steps by using two approaches: the pooled heterozygosity [Formula: see text] and the fixation index [Formula: see text] between Xishuangbanna fighting chicken (YNLC) and Red Jungle Fowl. A total of 413 candidate genes were found to be putatively under selection in YNLC. These genes were related to traits such as growth, disease resistance, aggressive behavior and energy metabolism, as well as the morphogenesis and homeostasis of many tissues and organs. CONCLUSIONS This study reveals mechanisms and targets of artificial selection, which will contribute to improve our knowledge about the evolution of fighting chickens and facilitate future quantitative trait loci mapping.
Collapse
Affiliation(s)
- Xing Guo
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036 People’s Republic of China
| | - Qi Fang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036 People’s Republic of China
| | - Chendong Ma
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036 People’s Republic of China
| | - Bangyuan Zhou
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036 People’s Republic of China
| | - Yi Wan
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036 People’s Republic of China
| | - Runshen Jiang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036 People’s Republic of China
| |
Collapse
|
29
|
Bond SR, Abramyan J, Fu K, Naus CC, Richman JM. Pannexin 3 is required for late stage bone growth but not for initiation of ossification in avian embryos. Dev Dyn 2016; 245:913-24. [PMID: 27295565 DOI: 10.1002/dvdy.24425] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 05/23/2016] [Accepted: 05/29/2016] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Pannexin 3 (PANX3) is a channel-forming protein capable of stimulating osteogenesis in vitro. Here, we studied the in vivo roles of PANX3 in the chicken embryo using the RCAS retroviral system to over-express and knockdown expression during endochondral bone formation. RESULTS In the limbs, PANX3 RNA was first detected in the cartilage condensations and became restricted to the prehypertrophic cartilage of the epiphyses, diaphysis, and perichondrium. The increase in PANX3 was not sufficient to alter osteogenesis; however, knockdown with a virus containing an interference RNA construct caused a 20% reduction in bone volume. The control virus containing an shEGFP cassette did not affect development. Interestingly, the phenotype was restricted to later stages rather than to proliferation of the skeletogenic mesenchyme, formation of the cartilage condensation, or creation of the hypertrophic zones. In addition, there was also no change in readouts of Hedgehog, WNT, fibroblast growth factor, or bone morphogenetic protein signaling using either quantitative real-time polymerase chain reaction or radioactive in situ hybridization. CONCLUSIONS Based on the normal expression domains of PANX3 and the relatively late manifestation of the phenotype, it is possible that PANX3 hemichannels may be required to facilitate the transition of hypertrophic chondrocytes to osteoblasts, thereby achieving final bone size. Developmental Dynamics 245:913-924, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Stephen R Bond
- Department of Cellular and Physiological Science, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - John Abramyan
- Faculty of Dentistry, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kathy Fu
- Faculty of Dentistry, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christian C Naus
- Department of Cellular and Physiological Science, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Joy M Richman
- Faculty of Dentistry, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
30
|
|
31
|
An NF-κB--EphrinA5-Dependent Communication between NG2(+) Interstitial Cells and Myoblasts Promotes Muscle Growth in Neonates. Dev Cell 2016; 36:215-24. [PMID: 26777211 DOI: 10.1016/j.devcel.2015.12.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 11/04/2015] [Accepted: 12/16/2015] [Indexed: 01/05/2023]
Abstract
Skeletal muscle growth immediately following birth is critical for proper body posture and locomotion. However, compared with embryogenesis and adulthood, the processes regulating the maturation of neonatal muscles is considerably less clear. Studies in the 1960s predicted that neonatal muscle growth results from nuclear accretion of myoblasts preferentially at the tips of myofibers. Remarkably, little information has been added since then to resolve how myoblasts migrate to the ends of fibers. Here, we provide insight into this process by revealing a unique NF-κB-dependent communication between NG2(+) interstitial cells and myoblasts. NF-κB in NG2(+) cells promotes myoblast migration to the tips of myofibers through cell-cell contact. This occurs through expression of ephrinA5 from NG2(+) cells, which we further deduce is an NF-κB target gene. Together, these results suggest that NF-κB plays an important role in the development of newborn muscles to ensure proper myoblast migration for fiber growth.
Collapse
|
32
|
Popov C, Kohler J, Docheva D. Activation of EphA4 and EphB2 Reverse Signaling Restores the Age-Associated Reduction of Self-Renewal, Migration, and Actin Turnover in Human Tendon Stem/Progenitor Cells. Front Aging Neurosci 2016; 7:246. [PMID: 26779014 PMCID: PMC4701947 DOI: 10.3389/fnagi.2015.00246] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 12/14/2015] [Indexed: 12/23/2022] Open
Abstract
Tendon tissues, due to their composition and function, are prone to suffer age-related degeneration and diseases as well as to respond poorly to current repair strategies. It has been suggested that local stem cells, named tendon stem/progenitor cells (TSPCs), play essential roles in tendon maintenance and healing. Recently, we have shown that TSPC exhibit a distinct age-related phenotype involving transcriptomal shift, poor self-renewal, and elevated senescence coupled with reduced cell migration and actin dynamics. Here, we report for the first time the significant downregulation of the ephrin receptors EphA4, EphB2 and B4 and ligands EFNB1 in aged-TSPC (A-TSPC). Rescue experiments, by delivery of target-specific clustered proteins, revealed that activation of EphA4- or EphB2-dependent reverse signaling could restore the migratory ability and normalize the actin turnover of A-TSPC. However, only EphA4-Fc stimulation improved A-TSPC cell proliferation to levels comparable to young-TSPC (Y-TSPC). Hence, our novel data suggests that decreased expression of ephrin receptors during tendon aging and degeneration limits the establishment of appropriate cell-cell interactions between TSPC and significantly diminished their proliferation, motility, and actin turnover. Taken together, we could propose that this mechanism might be contributing to the inferior and delayed tendon healing common for aged individuals.
Collapse
Affiliation(s)
- Cvetan Popov
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig Maximilians University Munich, Germany
| | - Julia Kohler
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig Maximilians University Munich, Germany
| | - Denitsa Docheva
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig Maximilians University Munich, Germany
| |
Collapse
|
33
|
Klafke R, Prem Anand AA, Wurst W, Prakash N, Wizenmann A. Differences in the spatiotemporal expression and epistatic gene regulation of the mesodiencephalic dopaminergic precursor marker PITX3 during chicken and mouse development. Development 2016; 143:691-702. [DOI: 10.1242/dev.126748] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 01/05/2016] [Indexed: 11/20/2022]
Abstract
Mesodiencephalic dopaminergic (mdDA) neurons are located in the ventral mesencephalon and caudal diencephalon of all tetrapod species studied so far. They are the most prominent DA neuronal population and are implicated in control and modulation of motor, cognitive and rewarding/affective behaviors. Their degeneration or dysfunction is intimately linked to several neurological and neuropsychiatric human diseases. To gain further insights into their generation, we studied spatiotemporal expression patterns and epistatic interactions in chick embryos of selected marker genes and signaling pathways associated with mdDA neuron development in mouse. We detected striking differences in the expression patterns of the chick orthologs of the mouse mdDA marker genes Pitx3 and Aldh1a1, which suggests important differences between the species in the generation/generating of these cells. We also discovered that the Sonic hedgehog signaling pathway is both, necessary and sufficient for the induction of ectopic PITX3 expression in chick mesencephalon downstream of WNT9A induced LMX1a transcription. These aspects of early chicken development resemble the ontogeny of zebrafish diencephalic DA neuronal populations, and suggest a divergence between birds and mammals during evolution.
Collapse
Affiliation(s)
- Ruth Klafke
- Institute of Developmental Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - A. Alwin Prem Anand
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Oesterbergstrasse 3, 72074 Tuebingen, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
- Technische Universität München-Weihenstephan, Lehrstuhl für Entwicklungsgenetik c/o Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Standort München, Schillerstr. 44, 80336 München, Germany
- Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität München, Schillerstrasse 44, 80336 München, Germany
| | - Nilima Prakash
- Institute of Developmental Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
- Technische Universität München-Weihenstephan, Lehrstuhl für Entwicklungsgenetik c/o Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Andrea Wizenmann
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Oesterbergstrasse 3, 72074 Tuebingen, Germany
| |
Collapse
|
34
|
Stark DA, Coffey NJ, Pancoast HR, Arnold LL, Walker JPD, Vallée J, Robitaille R, Garcia ML, Cornelison DDW. Ephrin-A3 promotes and maintains slow muscle fiber identity during postnatal development and reinnervation. J Cell Biol 2015; 211:1077-91. [PMID: 26644518 PMCID: PMC4674275 DOI: 10.1083/jcb.201502036] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 10/22/2015] [Indexed: 11/28/2022] Open
Abstract
Each adult mammalian skeletal muscle has a unique complement of fast and slow myofibers, reflecting patterns established during development and reinforced via their innervation by fast and slow motor neurons. Existing data support a model of postnatal "matching" whereby predetermined myofiber type identity promotes pruning of inappropriate motor axons, but no molecular mechanism has yet been identified. We present evidence that fiber type-specific repulsive interactions inhibit innervation of slow myofibers by fast motor axons during both postnatal maturation of the neuromuscular junction and myofiber reinnervation after injury. The repulsive guidance ligand ephrin-A3 is expressed only on slow myofibers, whereas its candidate receptor, EphA8, localizes exclusively to fast motor endplates. Adult mice lacking ephrin-A3 have dramatically fewer slow myofibers in fast and mixed muscles, and misexpression of ephrin-A3 on fast myofibers followed by denervation/reinnervation promotes their respecification to a slow phenotype. We therefore conclude that Eph/ephrin interactions guide the fiber type specificity of neuromuscular interactions during development and adult life.
Collapse
Affiliation(s)
- Danny A Stark
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211 Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
| | - Nathan J Coffey
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211
| | - Hannah R Pancoast
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211
| | - Laura L Arnold
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211 Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
| | - J Peyton D Walker
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
| | - Joanne Vallée
- Département de Neurosciences, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Richard Robitaille
- Département de Neurosciences, Université de Montréal, Montréal, Québec H3C 3J7, Canada Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Michael L Garcia
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211 Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
| | - D D W Cornelison
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211 Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
| |
Collapse
|
35
|
Bourgeois A, Esteves de Lima J, Charvet B, Kawakami K, Stricker S, Duprez D. Stable and bicistronic expression of two genes in somite- and lateral plate-derived tissues to study chick limb development. BMC DEVELOPMENTAL BIOLOGY 2015; 15:39. [PMID: 26518454 PMCID: PMC4628273 DOI: 10.1186/s12861-015-0088-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 10/22/2015] [Indexed: 12/02/2022]
Abstract
Background Components of the limb musculoskeletal system have distinct mesoderm origins. Limb skeletal muscles originate from somites, while the skeleton and attachments (tendons and connective tissues) derive from limb lateral plate. Despite distinct mesoderm origins, the development of muscle, skeleton and attachments is highly coordinated both spatially and temporally to ensure complete function of the musculoskeletal system. A system to study molecular interactions between somitic-derived tissues (muscles) and lateral-plate-derived tissues (skeletal components and attachments) during limb development is missing. Results We designed a gene delivery system in chick embryos with the ultimate aim to study the interactions between the components of the musculoskeletal system during limb development. We combined the Tol2 genomic integration system with the viral T2A system and developed new vectors that lead to stable and bicistronic expression of two proteins at comparable levels in chick cells. Combined with limb somite and lateral plate electroporation techniques, two fluorescent reporter proteins were co-expressed in stoichiometric proportion in the muscle lineage (somitic-derived) or in skeleton and their attachments (lateral-plate-derived). In addition, we designed three vectors with different promoters to target muscle cells at different steps of the differentiation process. Conclusion Limb somite electroporation technique using vectors containing these different promoters allowed us to target all myogenic cells, myoblasts or differentiated muscle cells. These stable and promoter-specific vectors lead to bicistronic expression either in somitic-derived myogenic cells or lateral plate-derived cells, depending on the electroporation sites and open new avenues to study the interactions between myogenic cells and tendon or connective tissue cells during limb development.
Collapse
Affiliation(s)
- Adeline Bourgeois
- CNRS UMR 7622, IBPS-Developmental Biology Laboratory, F-75005, Paris, France. .,Sorbonne Universités, UPMC Univ Paris 06, IBPS-Developmental Biology Laboratory, F-75005, Paris, France. .,Inserm U1156, F-75005, Paris, France.
| | - Joana Esteves de Lima
- CNRS UMR 7622, IBPS-Developmental Biology Laboratory, F-75005, Paris, France. .,Sorbonne Universités, UPMC Univ Paris 06, IBPS-Developmental Biology Laboratory, F-75005, Paris, France. .,Inserm U1156, F-75005, Paris, France.
| | - Benjamin Charvet
- CNRS UMR 7622, IBPS-Developmental Biology Laboratory, F-75005, Paris, France. .,Sorbonne Universités, UPMC Univ Paris 06, IBPS-Developmental Biology Laboratory, F-75005, Paris, France.
| | - Koichi Kawakami
- Division of Molecular and Developmental Biology, National Institute of Genetics, and Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima, Shizuoka, Japan.
| | - Sigmar Stricker
- Institue for Chemistry and Biochemistry, Freie Universitaet Berlin, 14195, Berlin, Germany.
| | - Delphine Duprez
- CNRS UMR 7622, IBPS-Developmental Biology Laboratory, F-75005, Paris, France. .,Sorbonne Universités, UPMC Univ Paris 06, IBPS-Developmental Biology Laboratory, F-75005, Paris, France. .,Inserm U1156, F-75005, Paris, France.
| |
Collapse
|
36
|
Engrailed 1 mediates correct formation of limb innervation through two distinct mechanisms. PLoS One 2015; 10:e0118505. [PMID: 25710467 PMCID: PMC4340014 DOI: 10.1371/journal.pone.0118505] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 01/19/2015] [Indexed: 12/24/2022] Open
Abstract
Engrailed-1 (En1) is expressed in the ventral ectoderm of the developing limb where it plays an instructive role in the dorsal-ventral patterning of the forelimb. Besides its well-described role as a transcription factor in regulating gene expression through its DNA-binding domain, En1 may also be secreted to form an extracellular gradient, and directly impact on the formation of the retinotectal map. We show here that absence of En1 causes mispatterning of the forelimb and thus defects in the dorsal-ventral pathfinding choice of motor axons in vivo. In addition, En1 but not En2 also has a direct and specific repulsive effect on motor axons of the lateral aspect of the lateral motor column (LMC) but not on medial LMC projections. Moreover, an ectopic dorsal source of En1 pushes lateral LMC axons to the ventral limb in vivo. Thus, En1 controls the establishment of limb innervation through two distinct molecular mechanisms.
Collapse
|
37
|
Schneider J, Arraf AA, Grinstein M, Yelin R, Schultheiss TM. Wnt signaling orients the proximal-distal axis of kidney nephrons. Development 2015; 142:2686-95. [DOI: 10.1242/dev.123968] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 06/18/2015] [Indexed: 01/03/2023]
Abstract
The nephron is the fundamental structural and functional unit of the kidney. Each mature nephron is patterned along a proximal-distal axis, with blood filtered at the proximal end and urine emerging from the distal end. In order to filter the blood and produce urine, specialized structures are formed at specific proximal-distal locations along the nephron, including the glomerulus at the proximal end, the tubule in the middle, and the collecting duct at the distal end. The developmental processes that specify these different nephron segments are very incompletely understood. Wnt ligands, which are expressed in the nephric duct and later in the nascent nephron itself, are well-characterized inducers of nephrons, being both required and sufficient for initiation of nephron formation from nephrogenic mesenchyme. Here we present evidence that Wnt signaling also patterns the proximal-distal nephron axis. Using the chick mesonephros as a model system, a Wnt ligand was ectopically expressed in the coelomic lining, thereby introducing a source of Wnt signaling that is at right angles to the endogenous Wnt signal of the nephric duct. Under these conditions, the nephron axis was re-oriented, such that the glomerulus was always located at a position farthest from the Wnt sources. This re-orientation occurred within hours of exposure to ectopic Wnt signaling, and was accompanied initially by a repression of the early glomerular podocyte markers Wt1 and Pod1, followed by their re-emergence at a position distant from the Wnt signals. In parallel, an increase in the number of tubules was observed, and some tubules were seen fusing with the Wnt-expressing coelomic epithelium instead of their normal target, the nephric duct. Activation of the Wnt signaling pathway in mesonephric explant cultures resulted in strong and specific repression of early and late glomerular markers. Together, these data indicate that Wnt signaling patterns the proximal-distal axis of the nephron, with glomeruli differentiating in regions of lowest Wnt signaling.
Collapse
Affiliation(s)
- Jenny Schneider
- Department of Anatomy and Cell Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Alaa A. Arraf
- Department of Anatomy and Cell Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Mor Grinstein
- Department of Anatomy and Cell Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Ronit Yelin
- Department of Anatomy and Cell Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Thomas M. Schultheiss
- Department of Anatomy and Cell Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| |
Collapse
|
38
|
Attia L, Schneider J, Yelin R, Schultheiss TM. Collective cell migration of the nephric duct requires FGF signaling. Dev Dyn 2014; 244:157-67. [PMID: 25516335 DOI: 10.1002/dvdy.24241] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 12/04/2014] [Accepted: 12/08/2014] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND During the course of development, the vertebrate nephric duct (ND) extends and migrates from the place of its initial formation, adjacent to the anterior somites, until it inserts into the bladder or cloaca in the posterior region of the embryo. The molecular mechanisms that guide ND migration are poorly understood. RESULTS A novel Gata3-enhancer-Gfp-based chick embryo live imaging system was developed that permits documentation of ND migration at the individual cell level for the first time. FGF Receptors and FGF response genes are expressed in the ND, and FGF ligands are expressed in surrounding tissues. FGF receptor inhibition blocked nephric duct migration. Individual inhibitors of the Erk, p38, or Jnk pathways did not affect duct migration, but inhibition of all three pathways together did inhibit migration of the duct. A localized source of FGF8 placed adjacent to the nephric duct did not affect the duct migration path. CONCLUSIONS FGF signaling acts as a "motor" that is required for duct migration, but other signals are needed to determine the directionality of the duct migration pathway. Developmental Dynamics 244:157-167, 2015. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lital Attia
- Department of Anatomy and Cell Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | |
Collapse
|
39
|
Heude É, Bellessort B, Fontaine A, Hamazaki M, Treier AC, Treier M, Levi G, Narboux-Nême N. Etiology of craniofacial malformations in mouse models of blepharophimosis, ptosis and epicanthus inversus syndrome. Hum Mol Genet 2014; 24:1670-81. [PMID: 25416281 DOI: 10.1093/hmg/ddu579] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Blepharophimosis, ptosis, epicanthus-inversus syndrome (BPES) is an autosomal dominant genetic disorder characterized by narrow palpebral fissures and eyelid levator muscle defects. BPES is often associated to premature ovarian insufficiency (BPES type I). FOXL2, a member of the forkhead transcription factor family, is the only gene known to be mutated in BPES. Foxl2 is essential for maintenance of ovarian identity, but the developmental origin of the facial malformations of BPES remains, so far, unexplained. In this study, we provide the first detailed account of the developmental processes leading to the craniofacial malformations associated to Foxl2. We show that, during development, Foxl2 is expressed both by Cranial Neural Crest Cells (CNCCs) and by Cranial Mesodermal Cells (CMCs), which give rise to skeletal (CNCCs and CMCs) and muscular (CMCs) components of the head. Using mice in which Foxl2 is selectively inactivated in either CNCCs or CMCs, we reveal that expression of Foxl2 in CNCCs is essential for the development of extraocular muscles. Indeed, inactivation of Foxl2 in CMCs has only minor effects on muscle development, whereas its inactivation in CNCCs provokes a severe hypoplasia of the levator palpabrae superioris and of the superior and inferior oblique muscles. We further show that Foxl2 deletion in either CNCCs or CMCs prevents eyelid closure and induces subtle skeletal developmental defects. Our results provide new insights in the complex developmental origin of human BPES and could help to understand the origin of other ocular anomalies associated to this syndrome.
Collapse
Affiliation(s)
- Églantine Heude
- Évolution des Régulations Endocriniennes, CNRS UMR 7221, Muséum National d'Histoire Naturelle, Paris 75005, France
| | - Brice Bellessort
- Évolution des Régulations Endocriniennes, CNRS UMR 7221, Muséum National d'Histoire Naturelle, Paris 75005, France
| | - Anastasia Fontaine
- Évolution des Régulations Endocriniennes, CNRS UMR 7221, Muséum National d'Histoire Naturelle, Paris 75005, France
| | - Manatsu Hamazaki
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Anna-Corina Treier
- Max-Delbrück Center for Molecular Medicine (MDC) - Genetics of Metabolic and Reproductive Disorders, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Mathias Treier
- Max-Delbrück Center for Molecular Medicine (MDC) - Genetics of Metabolic and Reproductive Disorders, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Giovanni Levi
- Évolution des Régulations Endocriniennes, CNRS UMR 7221, Muséum National d'Histoire Naturelle, Paris 75005, France
| | - Nicolas Narboux-Nême
- Évolution des Régulations Endocriniennes, CNRS UMR 7221, Muséum National d'Histoire Naturelle, Paris 75005, France,
| |
Collapse
|
40
|
Jacques-Fricke BT, Gammill LS. Neural crest specification and migration independently require NSD3-related lysine methyltransferase activity. Mol Biol Cell 2014; 25:4174-86. [PMID: 25318671 PMCID: PMC4263458 DOI: 10.1091/mbc.e13-12-0744] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Nuclear receptor–binding, SET-domain containing 3 (NSD3) is the first protein methyltransferase essential for early neural crest development. NSD3 is required for neural crest gene expression but not for H3K36 dimethylation of most neural crest genes. NSD3-related methyltransferase activity independently regulates neural crest migration. Neural crest precursors express genes that cause them to become migratory, multipotent cells, distinguishing them from adjacent stationary neural progenitors in the neurepithelium. Histone methylation spatiotemporally regulates neural crest gene expression; however, the protein methyltransferases active in neural crest precursors are unknown. Moreover, the regulation of methylation during the dynamic process of neural crest migration is unclear. Here we show that the lysine methyltransferase NSD3 is abundantly and specifically expressed in premigratory and migratory neural crest cells. NSD3 expression commences before up-regulation of neural crest genes, and NSD3 is necessary for expression of the neural plate border gene Msx1, as well as the key neural crest transcription factors Sox10, Snail2, Sox9, and FoxD3, but not gene expression generally. Nevertheless, only Sox10 histone H3 lysine 36 dimethylation requires NSD3, revealing unexpected complexity in NSD3-dependent neural crest gene regulation. In addition, by temporally limiting expression of a dominant negative to migratory stages, we identify a novel, direct requirement for NSD3-related methyltransferase activity in neural crest migration. These results identify NSD3 as the first protein methyltransferase essential for neural crest gene expression during specification and show that NSD3-related methyltransferase activity independently regulates migration.
Collapse
Affiliation(s)
- Bridget T Jacques-Fricke
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Laura S Gammill
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
41
|
The role of ephrin-A2 and ephrin-A5 in sensorimotor control and gating. Behav Brain Res 2014; 275:225-33. [PMID: 25200515 DOI: 10.1016/j.bbr.2014.08.061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 08/28/2014] [Accepted: 08/30/2014] [Indexed: 12/16/2022]
Abstract
Many factors influence neurodevelopment. However, their contribution to adult neural function is often unclear. This is often due to complex expression profiles, cell signalling, neuroanatomy, and a lack of effective tests to assess the function of neural circuits in vivo. Ephrin-A2 and ephrin-A5 are cell surface proteins implicated in multiple aspects of neurodevelopment. While the role of ephrin-As in visual, auditory and learning behaviours has been explored, little is known about their role in dopaminergic and neuromotor pathways, despite expression in associated brain regions. Here we probe the function of ephrin-A2 and ephrin-A5 in the development of the dopaminergic and neuromotor pathways using counts of tyrosine hydroxylase (TH) positive cells in the substantia nigra pars compacta (SNpc) and the ventral tegmental area (VTA), the acoustic startle reflex (ASR), and a measure of sensorimotor gating, prepulse inhibition (PPI). Analysis of the ASR and PPI in ephrin-A2 and/or ephrin-A5 knock-out mice revealed that both genes play distinct roles in mediating ASR circuits, but are unlikely to play a role in PPI. Knock-out of either gene resulted in robust changes in startle response magnitude and measures of startle onset and peak latencies. However, ephrin-A2 and ephrin-A5 regulate aspects of the ASR differently: ephrin-A2 KO mice have increased startle amplitude, increased sensitivity and reduced latency to startle, whilst ephrin-A5 KO mice show opposite effects. Neither of the gene knock outs affected PPI, despite ephrin-A5 KO mice showing changes in dopamine cell numbers in nuclei thought to regulate PPI. We propose that majority of the changes observed ephrin-A2 and ephrin-A5 KO mice appear to be mediated by the effects on motor neurons and their muscle targets, rather than changes in auditory sensitivity.
Collapse
|
42
|
Chiappalupi S, Riuzzi F, Fulle S, Donato R, Sorci G. Defective RAGE activity in embryonal rhabdomyosarcoma cells results in high PAX7 levels that sustain migration and invasiveness. Carcinogenesis 2014; 35:2382-92. [PMID: 25123133 DOI: 10.1093/carcin/bgu176] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Rhabdomyosarcoma is a muscle-derived malignant tumor mainly affecting children. The most frequent variant, embryonal rhabdomyosarcoma (ERMS) is characterized by overexpression of the transcription factor, PAX7 which prevents ERMS cells from exiting the cell cycle and terminally differentiating. However, a role for PAX7 in the invasive properties of ERMS cells has not been investigated in detail thus far. Here we show that ectopic expression of receptor for advanced glycation end-products (RAGE) in human ERMS cells results in the activation of a RAGE/myogenin axis which downregulates PAX7 by transcriptional and post-translational mechanisms, as in normal myoblasts, and reduces metastasis formation. High PAX7 sustains migration and invasiveness in ERMS cells by upregulating EPHA3 and EFNA1 and downregulating NCAM1 thus decreasing the neural cell adhesion molecule (NCAM)/polysialylated-NCAM ratio. Microarray gene expression analysis shows that compared with the RAGE(-ve) TE671/WT cells and similarly to primary human myoblasts, TE671/RAGE cells show upregulation of genes involved in muscle differentiation and cell adhesion, and downregulation of cell migration related and major histocompatibility complex class I genes. Our data reveal a link between PAX7 and metastasis occurrence in ERMSs, and support a role for the RAGE/myogenin axis in metastasis suppression. Thus, low RAGE expression in ERMS primary tumors may be predictive of metastatic behavior.
Collapse
MESH Headings
- Animals
- CD56 Antigen/genetics
- Cell Line, Tumor/drug effects
- Cell Movement/genetics
- Ephrin-A1/genetics
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Leupeptins/pharmacology
- Mice
- Mice, Mutant Strains
- Mice, Nude
- Myoblasts/pathology
- Myogenin/metabolism
- PAX7 Transcription Factor/genetics
- PAX7 Transcription Factor/metabolism
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor for Advanced Glycation End Products
- Receptor, EphA3
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Rhabdomyosarcoma, Embryonal/drug therapy
- Rhabdomyosarcoma, Embryonal/genetics
- Rhabdomyosarcoma, Embryonal/metabolism
- Rhabdomyosarcoma, Embryonal/pathology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Sara Chiappalupi
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy, Interuniversity Institute of Myology (IIM), Italy and
| | - Francesca Riuzzi
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy, Interuniversity Institute of Myology (IIM), Italy and
| | - Stefania Fulle
- Interuniversity Institute of Myology (IIM), Italy and Department of Neuroscience and Imaging, CeSI, University G. d'Annunzio Chieti-Pescara, 66013 Chieti, Italy
| | - Rosario Donato
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy, Interuniversity Institute of Myology (IIM), Italy and
| | - Guglielmo Sorci
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy, Interuniversity Institute of Myology (IIM), Italy and
| |
Collapse
|
43
|
Yang J, Luo X, Huang X, Ning Q, Xie M, Wang W. Ephrin-A3 reverse signaling regulates hippocampal neuronal damage and astrocytic glutamate transport after transient global ischemia. J Neurochem 2014; 131:383-94. [PMID: 25040798 DOI: 10.1111/jnc.12819] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 07/01/2014] [Accepted: 07/03/2014] [Indexed: 12/01/2022]
Abstract
Increasing evidence indicates that the Eph receptors and their ephrin ligands are involved in the regulation of interactions between neurons and astrocytes. Moreover, astrocytic ephrin-A3 reverse signaling mediated by EphA4 receptors is necessary for controlling the abundance of glial glutamate transporters. However, the role of ephrin-A3 reverse signaling in astrocytic function and neuronal death under ischemic conditions remains unclear. In the present study, we found that the EphA4 receptor and its ephrin-A3 ligand, which were distributed in neurons and astrocytes, respectively, in the hippocampus showed a coincident up-regulation of protein expression in the early stage of ischemia. Application of clustered EphA4 decreased the expressions of astrocytic glutamate transporters together with astrocytic glutamate uptake capacity through activating ephrin-A3 reverse signaling. In consequence, neuronal loss was aggravated in the CA1 region of the hippocampus accompanied by impaired hippocampus-dependent spatial memory when clustered EphA4 treatment was administered prior to transient global ischemia. These findings indicate that EphA4-mediated ephrin-A3 reverse signaling is a crucial mechanism for astrocytes to control glial glutamate transporters and prevent glutamate excitotoxicity under pathological conditions. Astrocytic ephrin-A3 reverse signaling mediated by EphA4 receptor is necessary for controlling the abundance of glial glutamate transporters under physiological conditions. However, the role of ephrin-A3 reverse signaling in astrocytic function and neuronal death under ischemic conditions remains unclear. We found EphA4-mediated ephrin-A3 reverse signaling to be a crucial mechanism for astrocytes to control glial glutamate transporters and protect hippocampal neurons from glutamate excitotoxicity under ischemic conditions, this cascade representing a potential therapeutic target for stroke.
Collapse
Affiliation(s)
- Jinshan Yang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | |
Collapse
|
44
|
Stiffel V, Amoui M, Sheng MHC, Mohan S, Lau KHW. EphA4 receptor is a novel negative regulator of osteoclast activity. J Bone Miner Res 2014; 29:804-19. [PMID: 23983218 DOI: 10.1002/jbmr.2084] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 08/07/2013] [Accepted: 08/20/2013] [Indexed: 11/11/2022]
Abstract
Of the ephrin (Eph) receptors, mature osteoclasts express predominantly EphA4. This study sought to determine if EphA4 has a regulatory role in osteoclasts. Treatment of RAW/C4 cells with Epha4 small interfering RNAs (siRNAs) increased average size, Ctsk mRNA expression level, and bone resorption activity of the derived osteoclast-like cells. Activation of the EphA4 signaling in osteoclast precursors with EfnA4-fc chimeric protein reduced cell size and resorption activity of the derived osteoclasts. Homozygous Epha4 null mice had substantially less trabecular bone in femur and vertebra compared to wild-type controls. The bone loss was due to a decrease in trabecular number and an increase in trabecular spacing, but not to an increase in osteoclast-lined bone surface or an increase in the number of osteoclasts on bone surface. Dynamic histomorphometry and serum biomarker analyses indicate that bone formation in Epha4 null mice was reduced slightly but not significantly. Osteoclasts of Epha4 null mice were also larger, expressed higher levels of Mmp3 and Mmp9 mRNAs, and exhibited greater bone resorption activity than wild-type osteoclasts in vitro. Deficient Epha4 expression had no effects on the total number of osteoclast formed in response to receptor activator of NF-κB ligand nor on apoptosis of osteoclasts in vitro. It also did not affect the protein-tyrosine phosphorylation status of its ligands, EfnB2, EfnA2, and EfnA4, in osteoclasts. Deficient Epha4 expression in Epha4 null osteoclasts activated the β3 -integrin signaling through reduced phosphorylation of the tyr-747 residue, which led to increased binding of the stimulatory talin and reduced binding of the inhibitory Dok1 to β3 -integrin. This in turn activated Vav3 and the bone resorption activity of osteoclasts. In conclusion, we demonstrate for the first time that EphA4 is a potent negative regulator of osteoclastic activity, mediated in part through increased Dok1 binding to β3 -integrin via an increase in EphA4-dependent tyr-747 phosphorylation.
Collapse
Affiliation(s)
- Virginia Stiffel
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, CA, USA
| | | | | | | | | |
Collapse
|
45
|
Masyuk M, Morosan-Puopolo G, Brand-Saberi B, Theiss C. Combination of in ovo electroporation and time-lapse imaging to study migrational events in chicken embryos. Dev Dyn 2014; 243:690-8. [PMID: 24375914 DOI: 10.1002/dvdy.24109] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 12/16/2013] [Accepted: 12/21/2013] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND During embryonic development cell migration plays a principal role in several processes. In past decades, many studies were performed to investigate migrational events, occurring during embryonic organogenesis, neurogenesis, gliogenesis or myogenesis, just to name a few. Although different common techniques are already used for this purpose, one of their major limitations is the static character. However, cell migration is a sophisticated and highly dynamic process, wherefore new appropriate technologies are required to investigate this event in all its complexity. RESULTS AND CONCLUSIONS Here we report a novel approach for dynamic analysis of cell migration within embryonic tissue. We combine the modern transfection method of in ovo electroporation with the use of tissue slice culture and state-of-the-art imaging techniques, such as confocal laser scanning microscopy or spinning disc confocal microscopy, and thus, develop a method to study live the migration of myogenic precursors in chicken embryos. The conditions and parameters used in this study allow long-term imaging for up to 24 hr. Our protocol can be easily adapted for investigations of a variety of other migrational events and provides a novel conception for dynamic analysis of migration during embryonic development.
Collapse
Affiliation(s)
- Maryna Masyuk
- Institute of Anatomy, Department of Anatomy and Molecular Embryology, Ruhr-University Bochum, Bochum, Germany
| | | | | | | |
Collapse
|
46
|
Fleming BM, Yelin R, James RG, Schultheiss TM. A role for Vg1/Nodal signaling in specification of the intermediate mesoderm. Development 2013; 140:1819-29. [PMID: 23533180 PMCID: PMC3621495 DOI: 10.1242/dev.093740] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2013] [Indexed: 11/20/2022]
Abstract
The intermediate mesoderm (IM) is the embryonic source of all kidney tissue in vertebrates. The factors that regulate the formation of the IM are not yet well understood. Through investigations in the chick embryo, the current study identifies and characterizes Vg1/Nodal signaling (henceforth referred to as 'Nodal-like signaling') as a novel regulator of IM formation. Excess Nodal-like signaling at gastrulation stages resulted in expansion of the IM at the expense of the adjacent paraxial mesoderm, whereas inhibition of Nodal-like signaling caused repression of IM gene expression. IM formation was sensitive to levels of the Nodal-like pathway co-receptor Cripto and was inhibited by a truncated form of the secreted molecule cerberus, which specifically blocks Nodal, indicating that the observed effects are specific to the Nodal-like branch of the TGFβ signaling pathway. The IM-promoting effects of Nodal-like signaling were distinct from the known effects of this pathway on mesoderm formation and left-right patterning, a finding that can be attributed to specific time windows for the activities of these Nodal-like functions. Finally, a link was observed between Nodal-like and BMP signaling in the induction of IM. Activation of IM genes by Nodal-like signaling required an active BMP signaling pathway, and Nodal-like signals induced phosphorylation of Smad1/5/8, which is normally associated with activation of BMP signaling pathways. We postulate that Nodal-like signaling regulates IM formation by modulating the IM-inducing effects of BMP signaling.
Collapse
Affiliation(s)
- Britannia M. Fleming
- Department of Anatomy and Cell Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ronit Yelin
- Department of Anatomy and Cell Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Richard G. James
- Department of Pharmacology, University of Washington, Seattle, WA, 98195, USA
| | - Thomas M. Schultheiss
- Department of Anatomy and Cell Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
47
|
Fairchild CL, Gammill LS. Tetraspanin18 is a FoxD3-responsive antagonist of cranial neural crest epithelial-to-mesenchymal transition that maintains cadherin-6B protein. J Cell Sci 2013; 126:1464-76. [PMID: 23418345 PMCID: PMC3644144 DOI: 10.1242/jcs.120915] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2013] [Indexed: 01/06/2023] Open
Abstract
During epithelial-to-mesenchymal transition (EMT), tightly associated, polarized epithelial cells become individual mesenchymal cells capable of migrating. Here, we investigate the role of the transmembrane protein tetraspanin18 (Tspan18) in chick cranial neural crest EMT. Tspan18 mRNA is expressed in premigratory cranial neural crest cells, but is absent from actively migrating neural crest cells. Tspan18 knockdown leads to a concomitant loss of cadherin-6B (Cad6B) protein, whereas Cad6B protein persists when Tspan18 expression is extended. The temporal profile of Cad6B mRNA downregulation is unaffected in these embryos, which indicates that Tspan18 maintains Cad6B protein levels and reveals that Cad6B is regulated by post-translational mechanisms. Although downregulation of Tspan18 is necessary, it is not sufficient for neural crest migration: the timing of neural crest emigration, basal lamina breakdown and Cad7 upregulation proceed normally in Tspan18-deficient cells. This emphasizes the need for coordinated transcriptional and post-translational regulation of Cad6B during EMT and illustrates that Tspan18-antagonized remodeling of cell-cell adhesions is only one step in preparation for cranial neural crest migration. Unlike Cad6B, which is transcriptionally repressed by Snail2, Tspan18 expression is downstream of the winged-helix transcription factor FoxD3, providing a new transcriptional input into cranial neural crest EMT. Together, our data reveal post-translational regulation of Cad6B protein levels by Tspan18 that must be relieved by a FoxD3-dependent mechanism in order for cranial neural crest cells to migrate. These results offer new insight into the molecular mechanisms of cranial neural crest EMT and expand our understanding of tetraspanin function relevant to metastasis.
Collapse
Affiliation(s)
| | - Laura S. Gammill
- Department of Genetics, Cell Biology, and Development, 6-160 Jackson Hall, 321 Church Street SE, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
48
|
Li J, Johnson SE. Ephrin-A5 promotes bovine muscle progenitor cell migration before mitotic activation. J Anim Sci 2013; 91:1086-93. [PMID: 23296833 DOI: 10.2527/jas.2012-5728] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Satellite cells are the resident stem cell population of adult skeletal muscle tissue that is responsible for growth and regeneration. The cells typically congregate near the tips of the muscle fibers and in close proximity to the neural muscular junction (NMJ). Ephrin-A5 is a chemotactic molecule that participates in the correct positioning and formation of the NMJ. The objective of the experiment was to examine the effects of ephrin-A5 signaling on bovine satellite cell (BSC) biology. Primary cultures of BSC demonstrate changes in velocity with time in culture that is unique to the Paired box protein 7 (Pax7):Myogenic factor 5 (Myf5) subpopulation. Treatment of the BSC with ephrin-A5 causes a reduction (P < 0.05) in velocity with a concomitant increase (P < 0.05) in directed migration. The chemoattractant properties of ephrin-A5 occur before myogenic differentiation 1 (MyoD) expression in the myogenic precursors and are abrogated after their differentiation to committed myoblasts. Ephrin-A5 induced migration appears to require components of the Ras homolog gene family member A (RhoA) and Rho-associated protein kinase (ROCK) signaling machinery. Supplementation of culture media with a chemical ROCK inhibitor suppressed (P < 0.05) ephrin-A5 initiated BSC migration. These results contrast with treatment of BSC with hepatocyte growth factor (HGF), a key modulator of myogenic and motogenic activity. Treatment of BSC with HGF had no effect on cell motility or migration immediately after culture establishment. Twenty-four hours after culture establishment, BSC demonstrated an increase (P < 0.05) in transwell migration toward HGF. These results document that temporal and spatial gradients of chemokines and growth factors participate in the localization of BSC within the niche.
Collapse
Affiliation(s)
- J Li
- Department of Animal Sciences, University of Florida, Gainesville 32611, USA
| | | |
Collapse
|
49
|
Attia L, Yelin R, Schultheiss TM. Analysis of nephric duct specification in the avian embryo. Development 2012; 139:4143-51. [PMID: 23034630 DOI: 10.1242/dev.085258] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Vertebrate kidney tissue exhibits variable morphology that in general increases in complexity when moving from anterior to posterior along the body axis. The nephric duct, a simple unbranched epithelial tube, is derived in the avian embryo from a rudiment located in the anterior intermediate mesoderm (IM) adjacent to somites 8 to 10. Using quail-chick chimeric embryos, the current study finds that competence to form nephric duct is fixed when IM precursor cells are still located in the primitive streak, significantly before the onset of duct differentiation. In the primitive streak, expression of the gene HoxB4 is associated with prospective duct IM, whereas expression of the more posterior Hox gene HoxA6 is associated with more posterior, non-duct-forming IM. Misexpression of HoxA6, but not of HoxB4, in prospective duct-forming regions of the IM resulted in repression of duct formation, suggesting a mechanism for the restriction of duct formation to the anterior-most IM. The results are discussed with respect to their implications for anterior-posterior patterning of kidney tissue and of mesoderm in general, and for the loss of duct-forming ability in more posterior regions of the IM that has occurred during vertebrate evolution.
Collapse
Affiliation(s)
- Lital Attia
- Department of Anatomy and Cell Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | |
Collapse
|
50
|
Roffers-Agarwal J, Hutt KJ, Gammill LS. Paladin is an antiphosphatase that regulates neural crest cell formation and migration. Dev Biol 2012; 371:180-90. [PMID: 22926139 DOI: 10.1016/j.ydbio.2012.08.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 08/05/2012] [Accepted: 08/15/2012] [Indexed: 12/31/2022]
Abstract
Although a network of transcription factors that specifies neural crest identity in the ectoderm has been defined, expression of neural crest transcription factors does not guarantee eventual migration as a neural crest cell. While much work has gone into determining regulatory relationships within the transcription factor network, the ability of protein modifications like phosphorylation to modulate the function of neural crest regulatory factors and determine when and where they are active also has crucial implications. Paladin, which was previously classified as a phosphatase based on sequence similarity, is expressed in chick neural crest precursors and is maintained throughout their epithelial to mesenchymal transition and migration. Loss of Paladin delays the expression of transcription factors Snail2 and Sox10 in premigratory neural crest cells, but does not affect accumulation of FoxD3, Cad6B or RhoB, indicating that Paladin differentially modulates the expression of genes previously thought to be coregulated within the neural crest gene regulatory network. Both gain and loss of Paladin function result in disrupted neural crest migration, reinforcing the importance of precisely regulated phosphorylation for neural crest migration. Mutation of critical, catalytic cysteine residues within Paladin's predicted phosphatase active site motifs did not abolish the function of Paladin in the neural crest. Collectively, these data indicate that Paladin is an antiphosphatase that modulates the activity of specific neural crest regulatory factors during neural crest development. Our work identifies a novel regulator of phosphorylation status that provides an additional layer of regulation in the neural crest.
Collapse
Affiliation(s)
- Julaine Roffers-Agarwal
- Department of Genetics, Cell Biology and Development, 6-160 Jackson Hall, 321 Church Street SE, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|