1
|
Zeng R, Chen X, Chen Y, Dong J. FGFR4 inhibition augments paclitaxel-induced cell death in ovarian cancer. Int Immunopharmacol 2025; 155:114626. [PMID: 40245772 DOI: 10.1016/j.intimp.2025.114626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/21/2025] [Accepted: 04/05/2025] [Indexed: 04/19/2025]
Abstract
OBJECTIVES Epithelial ovarian cancer (EOC) is the most lethal gynecological malignancy, which has a high mortality rate due to frequent tumor recurrence. The development of drug resistance against the first-line chemotherapeutic agent, such as paclitaxel/Taxol®, represents a critical reason. The mechanisms of paclitaxel resistance remain largely unknown, and druggable drivers which can be targeted to prevent or revert paclitaxel resistance also need to be identified. METHODS Phos-tag-based screens in cells treated with paclitaxel were used to identify key regulators involved in paclitaxel resistance, such as fibroblast growth factor receptor 4 (FGFR4). The functional role of FGFR4 in regulating paclitaxel resistance was further identified using apoptosis assays, which included the identification of apoptotic marker levels and activities. The involvement of FGFR4 downstream signaling pathways involved in paclitaxel resistance were identified through western blotting and quantitative PCR. Their roles in regulating paclitaxel resistance were also validated using apoptosis assays. Immunofluorescent staining was performed to identify the synergy of paclitaxel and FGFR4 inhibition. RESULTS Functional in vitro and in vivo studies demonstrate that FGFR4 depletion suppresses ovarian cancer cell proliferation, migration, and tumor growth. Importantly, FGFR4 silencing or specific inhibition can sensitize ovarian cancer cells to paclitaxel, whereas FGFR4 overexpression confers paclitaxel resistance. Mechanistically, FGFR4 regulates paclitaxel sensitivity in EOC cells through modulating the expression of the anti-apoptotic protein B-cell lymphoma-extra large (Bcl-xL) via MEK-ERK-RSK signaling pathway. The inhibition of Bcl-xL or MEK-ERK-RSK signaling can also enhance paclitaxel-stimulated cytotoxicity. CONCLUSION These findings indicate that targeting FGFR4 can be a promising novel strategy to overcome paclitaxel resistance and improve the outcomes of EOC patients.
Collapse
MESH Headings
- Humans
- Paclitaxel/pharmacology
- Paclitaxel/therapeutic use
- Female
- Receptor, Fibroblast Growth Factor, Type 4/antagonists & inhibitors
- Receptor, Fibroblast Growth Factor, Type 4/genetics
- Receptor, Fibroblast Growth Factor, Type 4/metabolism
- Ovarian Neoplasms/drug therapy
- Ovarian Neoplasms/pathology
- Ovarian Neoplasms/metabolism
- Cell Line, Tumor
- Drug Resistance, Neoplasm/drug effects
- Animals
- Apoptosis/drug effects
- Cell Proliferation/drug effects
- Carcinoma, Ovarian Epithelial/drug therapy
- Mice
- Mice, Nude
- Signal Transduction/drug effects
- Antineoplastic Agents, Phytogenic/pharmacology
- Antineoplastic Agents, Phytogenic/therapeutic use
Collapse
Affiliation(s)
- Renya Zeng
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.; Department of Cancer Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China..
| | - Xingcheng Chen
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Yuanhong Chen
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jixin Dong
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA..
| |
Collapse
|
2
|
Harrison EN, Jay AN, Kent MR, Sukienik TP, LaVigne CA, Kendall GC. Engineering an fgfr4 knockout zebrafish to study its role in development and disease. PLoS One 2024; 19:e0310100. [PMID: 39576839 PMCID: PMC11584112 DOI: 10.1371/journal.pone.0310100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/20/2024] [Indexed: 11/24/2024] Open
Abstract
Fibroblast growth factor receptor 4 (FGFR4) has a role in many biological processes, including lipid metabolism, tissue repair, and vertebrate development. In recent years, FGFR4 overexpression and activating mutations have been associated with numerous adult and pediatric cancers. As such, FGFR4 presents an opportunity for therapeutic targeting which is being pursued in clinical trials. To understand the role of FGFR4 signaling in disease and development, we generated and characterized three alleles of fgfr4 knockout zebrafish strains using CRISPR/Cas9. To generate fgfr4 knockout crispants, we injected single-cell wildtype zebrafish embryos with fgfr4 targeting guide RNA and Cas9 proteins, identified adult founders, and outcrossed to wildtype zebrafish to create an F1 generation. The generated mutations introduce a stop codon within the second Ig-like domain of Fgfr4, resulting in a truncated 215, 223, or 228 amino acid Fgfr4 protein compared to 922 amino acids in the full-length protein. All mutant strains exhibited significantly decreased fgfr4 mRNA expression during development, providing evidence for successful knockout of fgfr4 in mutant zebrafish. We found that, consistent with other Fgfr4 knockout animal models, the fgfr4 mutant fish developed normally; however, homozygous fgfr4 mutant zebrafish were significantly smaller than wildtype fish at three months post fertilization. These fgfr4 knockout zebrafish lines are a valuable tool to study the role of FGFR4 in vertebrate development and its viability as a potential therapeutic target in pediatric and adult cancers, as well as other diseases.
Collapse
Affiliation(s)
- Emma N. Harrison
- Center for Childhood Cancer, Nationwide Children’s Hospital, Columbus, OH, United States of America
| | - Amanda N. Jay
- Center for Childhood Cancer, Nationwide Children’s Hospital, Columbus, OH, United States of America
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, United States of America
| | - Matthew R. Kent
- Center for Childhood Cancer, Nationwide Children’s Hospital, Columbus, OH, United States of America
| | - Talia P. Sukienik
- Center for Childhood Cancer, Nationwide Children’s Hospital, Columbus, OH, United States of America
| | - Collette A. LaVigne
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, United States of America
| | - Genevieve C. Kendall
- Center for Childhood Cancer, Nationwide Children’s Hospital, Columbus, OH, United States of America
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States of America
| |
Collapse
|
3
|
Li H, Dong X, Wang L, Wen H, Qi X, Zhang K, Li Y. Genome-wide identification of Fgfr genes and function analysis of Fgfr4 in myoblasts differentiation of Lateolabrax maculatus. Gene 2024; 927:148717. [PMID: 38908457 DOI: 10.1016/j.gene.2024.148717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/29/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Fibroblast growth factor receptors (Fgfrs) are involved in cell proliferation, differentiation, and migration via complex signaling pathways in different tissues. Our previous studies showed that fibroblast growth factor receptor 4 (fgfr4) was detected in the most significant quantitative trait loci (QTL) for growth traits. However, studies focusing on the function of fgfr4 on the growth of bony fish are still limited. In this study, we identified seven fgfr genes in spotted sea bass (Lateolabrax maculatus) genome, namely fgfr1a, fgfr1b, fgfr2, fgfr3, fgfr4, fgfr5a, and fgfr5b. Phylogenetic analysis, syntenic analysis and gene structure analysis were conducted to further support the accuracy of our annotation and classification results. Additionally, fgfr4 showed the highest expression levels among fgfrs during the proliferation and differentiation stages of spotted sea bass myoblasts. To further study the function of fgfr4 in myogenesis, dual-fluorescence in situ hybridization (ISH) assay was conducted, and the results showed co-localization of fgfr4 with marker gene of skeletal muscle satellite cells. By treating differentiating myoblasts cultured in vitro with BLU-554, the mRNA expressions of myogenin (myog) and the numbers of myotubes formed by myoblasts increased significantly compared to negative control group. These results indicated that Fgfr4 inhibits the differentiation of myoblasts in spotted sea bass. Our findings contributed to filling a research gap on fgfr4 in bony fish myogenesis and the theoretical understanding of growth trait regulation of spotted sea bass.
Collapse
Affiliation(s)
- Hao Li
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003, China
| | - Ximeng Dong
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003, China
| | - Lingyu Wang
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003, China
| | - Haishen Wen
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003, China
| | - Xin Qi
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003, China
| | - Kaiqiang Zhang
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003, China
| | - Yun Li
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003, China; Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China.
| |
Collapse
|
4
|
Carvalho MBD, Jorge GMCP, Zanardo LW, Hamada LM, Izabel LDS, Santoro S, Magdalon J. The role of FGF19 in metabolic regulation: insights from preclinical models to clinical trials. Am J Physiol Endocrinol Metab 2024; 327:E279-E289. [PMID: 39017679 DOI: 10.1152/ajpendo.00156.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/24/2024] [Accepted: 07/12/2024] [Indexed: 07/18/2024]
Abstract
Fibroblast growth factor 19 (FGF19) is a hormone synthesized in enterocytes in response to bile acids. This review explores the pivotal role of FGF19 in metabolism, addressing the urgent global health concern of obesity and its associated pathologies, notably type 2 diabetes. The intriguing inverse correlation between FGF19 and body mass or visceral adiposity, as well as its rapid increase following bariatric surgery, emphasizes its potential as a therapeutic target. This article meticulously examines the impact of FGF19 on metabolism by gathering evidence primarily derived from studies conducted in animal models or cell lines, using both FGF19 treatment and genetic modifications. Overall, these studies demonstrate that FGF19 has antidiabetic and antiobesogenic effects. A thorough examination across metabolic tissues, including the liver, adipose tissue, skeletal muscle, and the central nervous system, is conducted, unraveling the intricate interplay of FGF19 across diverse organs. Moreover, we provide a comprehensive overview of clinical trials involving an FGF19 analog called aldafermin, emphasizing promising results in diseases such as nonalcoholic steatohepatitis and diabetes. Therefore, we aim to foster a deeper understanding of FGF19 role and encourage further exploration of its clinical applications, thereby advancing the field and offering innovative approaches to address the escalating global health challenge of obesity and related metabolic conditions.
Collapse
Affiliation(s)
- Marcela Botelho de Carvalho
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | | - Luiza Wolf Zanardo
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Leticia Miho Hamada
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Larissa Dos Santos Izabel
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | | - Juliana Magdalon
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, Brazil
| |
Collapse
|
5
|
Lan Y, Yan D, Li X, Zhou C, Bai Y, Dong X. Muscle growth differences in Lijiang pigs revealed by ATAC-seq multi-omics. Front Vet Sci 2024; 11:1431248. [PMID: 39253524 PMCID: PMC11381499 DOI: 10.3389/fvets.2024.1431248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/07/2024] [Indexed: 09/11/2024] Open
Abstract
As one of the largest tissues in the animal body, skeletal muscle plays a pivotal role in the production and quality of pork. Consequently, it is of paramount importance to investigate the growth and developmental processes of skeletal muscle. Lijiang pigs, which naturally have two subtypes, fast-growing and slow-growing, provide an ideal model for such studies by eliminating breed-related influences. In this study, we selected three fast-growing and three slow-growing 6-month-old Lijiang pigs as subjects. We utilized assay for transposase-accessible chromatin with sequencing (ATAC-seq) combined with genomics, RNA sequencing, and proteomics to screen for differentially expressed genes and transcription factors linked to increased longissimus dorsi muscle volume in Lijiang pigs. We identified 126 genes through ATAC-seq, including PPARA, TNRC6B, NEDD1, and FKBP5, that exhibited differential expression patterns during muscle growth. Additionally, we identified 59 transcription factors, including Foxh1, JunB, Mef2 family members (Mef2a/b/c/d), NeuroD1, and TEAD4. By examining open chromatin regions (OCRs) with significant genetic differentiation, genes such as SAV1, CACNA1H, PRKCG, and FGFR4 were found. Integrating ATAC-seq with transcriptomics and transcriptomics with proteomics, we identified differences in open chromatin regions, transcription, and protein levels of FKBP5 and SCARB2 genes in fast-growing and slow-growing Lijiang pigs. Utilizing multi-omics analysis with R packages, we jointed ATAC-seq, transcriptome, and proteome datasets, identifying enriched pathways related to glycogen metabolism and skeletal muscle cell differentiation. We pinpointed genes such as MYF6 and HABP2 that exhibit strong correlations across these diverse data types. This study provides a multi-faceted understanding of the molecular mechanisms that lead to differences in pig muscle fiber growth.
Collapse
Affiliation(s)
- Yi Lan
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Dawei Yan
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Xinpeng Li
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Chunlu Zhou
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Ying Bai
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, Hebei, China
| | - Xinxing Dong
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
6
|
Miwa S, Hayashi K, Taniguchi Y, Asano Y, Demura S. What are the Optimal Systemic Treatment Options for Rhabdomyosarcoma? Curr Treat Options Oncol 2024; 25:784-797. [PMID: 38750399 DOI: 10.1007/s11864-024-01206-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2024] [Indexed: 07/04/2024]
Abstract
OPINION STATEMENT Rhabdomyosarcoma, a soft tissue sarcoma commonly observed in childhood, requires multidisciplinary treatment, including surgical tumor resection, chemotherapy, and radiation therapy. Although long-term survival can be expected in patients with localized rhabdomyosarcoma, the clinical outcomes in patients with metastatic or unresectable rhabdomyosarcoma remain unsatisfactory. To improve the outcomes of rhabdomyosarcoma, it is important to explore effective systemic treatments for metastatic rhabdomyosarcoma. Currently, multiagent chemotherapy comprising vincristine, actinomycin D, and ifosfamide/cyclophosphamide remains standard systemic treatment for rhabdomyosarcoma. On the other hand, new treatment, such as immune checkpoint inhibitors and molecular targeted drugs, have demonstrated superior clinical outcomes compared to those of standard treatments in various type of malignancies. Therefore, it is necessary to assess the efficacies of these treatments in patients with rhabdomyosarcoma. Recent clinical studies have shown efficacies and safeties of temozolomide combined with vincristine/irinotecan, olaratumab combined with doxorubicin or vincristine/irinotecan, and long-term maintenance therapy. Furthermore, basic researches demonstrated new therapeutic targets. Future studies using these approaches are required to assess their clinical significances.
Collapse
Affiliation(s)
- Shinji Miwa
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa, 920-8640, Japan.
| | - Katsuhiro Hayashi
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa, 920-8640, Japan
| | - Yuta Taniguchi
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa, 920-8640, Japan
| | - Yohei Asano
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa, 920-8640, Japan
| | - Satoru Demura
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa, 920-8640, Japan
| |
Collapse
|
7
|
Harrison EN, Jay AN, Kent MR, Sukienik TP, LaVigne CA, Kendall GC. Engineering an fgfr4 knockout zebrafish to study its role in development and disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.593184. [PMID: 38766056 PMCID: PMC11100669 DOI: 10.1101/2024.05.08.593184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Fibroblast growth factor receptor 4 (FGFR4) has a role in many biological processes, including lipid metabolism, tissue repair, and vertebrate development. In recent years, FGFR4 overexpression and activating mutations have been associated with numerous adult and pediatric cancers. As such, FGFR4 presents an opportunity for therapeutic targeting which is being pursued in clinical trials. To understand the role of FGFR4 signaling in disease and development, we generated and characterized three alleles of fgfr4 knockout zebrafish strains using CRISPR/Cas9. To generate fgfr4 knockout crispants, we injected single-cell wildtype zebrafish embryos with fgfr4 targeting guide RNA and Cas9 proteins, identified adult founders, and outcrossed to wildtype zebrafish to create an F1 generation. The generated mutations introduce a stop codon within the second Ig-like domain of Fgfr4, resulting in a truncated 215, 223, or 228 amino acid Fgfr4 protein compared to 922 amino acids in the full-length protein. All mutant strains exhibited significantly decreased fgfr4 mRNA expression during development, providing evidence for successful knockout of fgfr4 in mutant zebrafish. We found that, consistent with other Fgfr4 knockout animal models, the fgfr4 mutant fish developed normally; however, homozygous fgfr4 mutant zebrafish were significantly smaller than wildtype fish at three months post fertilization. These fgfr4 knockout zebrafish lines are a valuable tool to study the role of FGFR4 in vertebrate development and its viability as a potential therapeutic target in pediatric and adult cancers, as well as other diseases.
Collapse
|
8
|
Yang J, Dong X, Wen H, Li Y, Wang X, Yan S, Zuo C, Lyu L, Zhang K, Qi X. FGFs function in regulating myoblasts differentiation in spotted sea bass (Lateolabrax maculatus). Gen Comp Endocrinol 2024; 347:114426. [PMID: 38103843 DOI: 10.1016/j.ygcen.2023.114426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Fibroblast growth factors (FGFs) are a family of structurally related peptides that regulate processes such as cell proliferation, differentiation, and damage repair. In our previous study, fibroblast growth factor receptor 4 (fgfr4) was detected in the most significant quantitative trait loci (QTL), when identified of QTLs and genetic markers for growth-related traits in spotted sea bass. However, knowledge of the function of fgfr4 is lacking, even the legends to activate the receptor is unknown in fish. To remedy this problem, in the present study, a total of 33 fgfs were identified from the genomic and transcriptomic databases of spotted sea bass, of which 10 were expressed in the myoblasts. According to the expression pattern during myoblasts proliferation and differentiation, fgf6a, fgf6b and fgf18 were selected for further prokaryotic expression and purification. The recombinant proteins FGF6a, FGF6b and FGF18 were found to inhibit myoblast differentiation. Overall, our results provide a theoretical basis for the molecular mechanisms of growth regulation in economic fish such as spotted sea bass.
Collapse
Affiliation(s)
- Jing Yang
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003
| | - Ximeng Dong
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003
| | - Haishen Wen
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003
| | - Yun Li
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003
| | - Xiaojie Wang
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003
| | - Shaojing Yan
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003
| | - Chenpeng Zuo
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003
| | - Likang Lyu
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003
| | - Kaiqiang Zhang
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003
| | - Xin Qi
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003.
| |
Collapse
|
9
|
Wu JT, Cheuk A, Isanogle K, Robinson C, Zhang X, Ceribelli M, Beck E, Shinn P, Klumpp-Thomas C, Wilson KM, McKnight C, Itkin Z, Sotome H, Hirai H, Calleja E, Wacheck V, Gouker B, Peer CJ, Corvalan N, Milewski D, Kim YY, Figg WD, Edmondson EF, Thomas CJ, Difilippantonio S, Wei JS, Khan J. Preclinical Evaluation of the FGFR-Family Inhibitor Futibatinib for Pediatric Rhabdomyosarcoma. Cancers (Basel) 2023; 15:4034. [PMID: 37627061 PMCID: PMC10452847 DOI: 10.3390/cancers15164034] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common pediatric soft tissue sarcoma. Despite decades of clinical trials, the overall survival rate for patients with relapsed and metastatic disease remains below 30%, underscoring the need for novel treatments. FGFR4, a receptor tyrosine kinase that is overexpressed in RMS and mutationally activated in 10% of cases, is a promising target for treatment. Here, we show that futibatinib, an irreversible pan-FGFR inhibitor, inhibits the growth of RMS cell lines in vitro by inhibiting phosphorylation of FGFR4 and its downstream targets. Moreover, we provide evidence that the combination of futibatinib with currently used chemotherapies such as irinotecan and vincristine has a synergistic effect against RMS in vitro. However, in RMS xenograft models, futibatinib monotherapy and combination treatment have limited efficacy in delaying tumor growth and prolonging survival. Moreover, limited efficacy is only observed in a PAX3-FOXO1 fusion-negative (FN) RMS cell line with mutationally activated FGFR4, whereas little or no efficacy is observed in PAX3-FOXO1 fusion-positive (FP) RMS cell lines with FGFR4 overexpression. Alternative treatment modalities such as combining futibatinib with other kinase inhibitors or targeting FGFR4 with CAR T cells or antibody-drug conjugate may be more effective than the approaches tested in this study.
Collapse
Affiliation(s)
- Jerry T. Wu
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (J.T.W.); (A.C.); (D.M.); (Y.Y.K.); (J.S.W.)
| | - Adam Cheuk
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (J.T.W.); (A.C.); (D.M.); (Y.Y.K.); (J.S.W.)
| | - Kristine Isanogle
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; (K.I.); (C.R.); (S.D.)
| | - Christina Robinson
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; (K.I.); (C.R.); (S.D.)
| | - Xiaohu Zhang
- National Center for Advancing Translational Sciences, Rockville, MD 20850, USA; (X.Z.); (M.C.); (E.B.); (P.S.); (C.K.-T.); (K.M.W.); (C.M.); (Z.I.); (C.J.T.)
| | - Michele Ceribelli
- National Center for Advancing Translational Sciences, Rockville, MD 20850, USA; (X.Z.); (M.C.); (E.B.); (P.S.); (C.K.-T.); (K.M.W.); (C.M.); (Z.I.); (C.J.T.)
| | - Erin Beck
- National Center for Advancing Translational Sciences, Rockville, MD 20850, USA; (X.Z.); (M.C.); (E.B.); (P.S.); (C.K.-T.); (K.M.W.); (C.M.); (Z.I.); (C.J.T.)
| | - Paul Shinn
- National Center for Advancing Translational Sciences, Rockville, MD 20850, USA; (X.Z.); (M.C.); (E.B.); (P.S.); (C.K.-T.); (K.M.W.); (C.M.); (Z.I.); (C.J.T.)
| | - Carleen Klumpp-Thomas
- National Center for Advancing Translational Sciences, Rockville, MD 20850, USA; (X.Z.); (M.C.); (E.B.); (P.S.); (C.K.-T.); (K.M.W.); (C.M.); (Z.I.); (C.J.T.)
| | - Kelli M. Wilson
- National Center for Advancing Translational Sciences, Rockville, MD 20850, USA; (X.Z.); (M.C.); (E.B.); (P.S.); (C.K.-T.); (K.M.W.); (C.M.); (Z.I.); (C.J.T.)
| | - Crystal McKnight
- National Center for Advancing Translational Sciences, Rockville, MD 20850, USA; (X.Z.); (M.C.); (E.B.); (P.S.); (C.K.-T.); (K.M.W.); (C.M.); (Z.I.); (C.J.T.)
| | - Zina Itkin
- National Center for Advancing Translational Sciences, Rockville, MD 20850, USA; (X.Z.); (M.C.); (E.B.); (P.S.); (C.K.-T.); (K.M.W.); (C.M.); (Z.I.); (C.J.T.)
| | - Hiroshi Sotome
- Taiho Pharmaceutical Co., Ltd., Tsukuba 300-0034, Japan; (H.S.); (H.H.)
| | - Hiroshi Hirai
- Taiho Pharmaceutical Co., Ltd., Tsukuba 300-0034, Japan; (H.S.); (H.H.)
| | | | - Volker Wacheck
- Taiho Oncology, Princeton, NJ 08540, USA; (E.C.); (V.W.)
| | - Brad Gouker
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; (K.I.); (C.R.); (S.D.)
| | - Cody J. Peer
- Clinical Pharmacology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA (N.C.)
| | - Natalia Corvalan
- Clinical Pharmacology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA (N.C.)
| | - David Milewski
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (J.T.W.); (A.C.); (D.M.); (Y.Y.K.); (J.S.W.)
| | - Yong Y. Kim
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (J.T.W.); (A.C.); (D.M.); (Y.Y.K.); (J.S.W.)
| | - William D. Figg
- Clinical Pharmacology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA (N.C.)
| | - Elijah F. Edmondson
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; (K.I.); (C.R.); (S.D.)
| | - Craig J. Thomas
- National Center for Advancing Translational Sciences, Rockville, MD 20850, USA; (X.Z.); (M.C.); (E.B.); (P.S.); (C.K.-T.); (K.M.W.); (C.M.); (Z.I.); (C.J.T.)
| | - Simone Difilippantonio
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; (K.I.); (C.R.); (S.D.)
| | - Jun S. Wei
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (J.T.W.); (A.C.); (D.M.); (Y.Y.K.); (J.S.W.)
| | - Javed Khan
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (J.T.W.); (A.C.); (D.M.); (Y.Y.K.); (J.S.W.)
| |
Collapse
|
10
|
Mancin L, Wu GD, Paoli A. Gut microbiota-bile acid-skeletal muscle axis. Trends Microbiol 2023; 31:254-269. [PMID: 36319506 DOI: 10.1016/j.tim.2022.10.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 01/13/2023]
Abstract
The gut microbiota represents a 'metabolic organ' that can regulate human metabolism. Intact gut microbiota contributes to host homeostasis, whereas compositional perturbations, termed dysbiosis, are associated with a wide range of diseases. Recent evidence demonstrates that dysbiosis, and the accompanying loss of microbiota-derived metabolites, results in a substantial alteration of skeletal muscle metabolism. As an example, bile acids, produced in the liver and further metabolized by intestinal microbiota, are of considerable interest since they regulate several host metabolic pathways by activating nuclear receptors, including the farnesoid X receptor (FXR). Indeed, alteration of gut microbiota may lead to skeletal muscle atrophy via a bile acid-FXR pathway. This Review aims to suggest a new pathway that connects different mechanisms, involving the gut-muscle axis, that are often seen as unrelated, and, starting from preclinical studies, we hypothesize new strategies aimed at optimizing skeletal muscle functionality.
Collapse
Affiliation(s)
- Laura Mancin
- Department of Biomedical Sciences, University of Padua, Padua, Italy; Human Inspired Technology Research Center HIT, University of Padua, Padua, Italy.
| | - Gary D Wu
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Antonio Paoli
- Department of Biomedical Sciences, University of Padua, Padua, Italy; Human Inspired Technology Research Center HIT, University of Padua, Padua, Italy; Research Center for High Performance Sport, UCAM, Catholic University of Murcia, Murcia, Spain
| |
Collapse
|
11
|
Cai S, Hu B, Wang X, Liu T, Lin Z, Tong X, Xu R, Chen M, Duo T, Zhu Q, Liang Z, Li E, Chen Y, Li J, Liu X, Mo D. Integrative single-cell RNA-seq and ATAC-seq analysis of myogenic differentiation in pig. BMC Biol 2023; 21:19. [PMID: 36726129 PMCID: PMC9893630 DOI: 10.1186/s12915-023-01519-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/18/2023] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Skeletal muscle development is a multistep process whose understanding is central in a broad range of fields and applications, from the potential medical value to human society, to its economic value associated with improvement of agricultural animals. Skeletal muscle initiates in the somites, with muscle precursor cells generated in the dermomyotome and dermomyotome-derived myotome before muscle differentiation ensues, a developmentally regulated process that is well characterized in model organisms. However, the regulation of skeletal muscle ontogeny during embryonic development remains poorly defined in farm animals, for instance in pig. Here, we profiled gene expression and chromatin accessibility in developing pig somites and myotomes at single-cell resolution. RESULTS We identified myogenic cells and other cell types and constructed a differentiation trajectory of pig skeletal muscle ontogeny. Along this trajectory, the dynamic changes in gene expression and chromatin accessibility coincided with the activities of distinct cell type-specific transcription factors. Some novel genes upregulated along the differentiation trajectory showed higher expression levels in muscular dystrophy mice than that in healthy mice, suggesting their involvement in myogenesis. Integrative analysis of chromatin accessibility, gene expression data, and in vitro experiments identified EGR1 and RHOB as critical regulators of pig embryonic myogenesis. CONCLUSIONS Collectively, our results enhance our understanding of the molecular and cellular dynamics in pig embryonic myogenesis and offer a high-quality resource for the further study of pig skeletal muscle development and human muscle disease.
Collapse
Affiliation(s)
- Shufang Cai
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
| | - Bin Hu
- Guangdong Key Laboratory of Animal Breeding and Nutrition, State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
| | - Xiaoyu Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| | - Tongni Liu
- Faculty of Forestry, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| | - Zhuhu Lin
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| | - Xian Tong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| | - Rong Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| | - Meilin Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| | - Tianqi Duo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| | - Qi Zhu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| | - Ziyun Liang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| | - Enru Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| | - Jianhao Li
- Guangdong Key Laboratory of Animal Breeding and Nutrition, State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| | - Delin Mo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| |
Collapse
|
12
|
Negah SS, Forouzanfar F. Dual Role of Fibroblast Growth Factor Pathways in Sleep Regulation. Endocr Metab Immune Disord Drug Targets 2023; 23:63-69. [PMID: 35927892 DOI: 10.2174/1871530322666220802161031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/11/2022] [Accepted: 05/20/2022] [Indexed: 11/22/2022]
Abstract
Sleep plays an important function in neuro-immuno-endocrine homeostasis. Sleep disorders have been associated with an increased risk of metabolic and cognitive impairments. Among different factors that have an effect on sleep metabolism, a growing body of literature has investigated growth factors in the course of sleep quality and disorders. A good example of growth factors is fibroblast growth factors (FGFs), which are a large family of polypeptide growth factors. Evidence has shown that FGFs are involved in the modulation of sleep-wake behavior by their receptor subtypes and ligands, e.g., FFG1 plays an important role in the quality of sleep through somnogenic effects, while the high level of FGF23 is associated with secondary disorders in shift workers. Therefore, a controversial effect of FGFs can be seen in the course of sleep in physiologic and pathologic conditions. Further investigation on this topic would help us to understand the role of FGFs in sleep disorders as a therapeutic option and biomarker.
Collapse
Affiliation(s)
- Sajad Sahab Negah
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.,Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
13
|
Zhang M, Guo Y, Su R, Corazzin M, Hou R, Xie J, Zhang Y, Zhao L, Su L, Jin Y. Transcriptome analysis reveals the molecular regulatory network of muscle development and meat quality in Sunit lamb supplemented with dietary probiotic. Meat Sci 2022; 194:108996. [PMID: 36195032 DOI: 10.1016/j.meatsci.2022.108996] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 09/13/2022] [Accepted: 09/23/2022] [Indexed: 11/27/2022]
Abstract
Supplementing animal feed with probiotic additives can promote muscle production and improve meat quality. The study aimed to explore the effects of dietary probiotics supplementation on the performance, meat quality and muscle transcriptome profile in Sunit lamb. Overall, feeding probiotics significantly increased the body length, LT area, pH24h and intramuscular fat (IMF) content, but decreased cooking loss and meat shear force compared to the control group (P < .05). A total of 651 differentially expressed genes (DEGs) were found in probiotic supplemented lambs. Pathway analysis revealed that DEGs were involved in multiple pathways related to muscle development and fat deposition, such as the ECM-receptor interactions, the MAPK signaling pathway and the FoxO signaling pathway. Therefore, dietary probiotic supplementation can improve muscle development and final meat quality in Sunit lambs by altering gene expression profiles associated with key pathways, providing unique insights into the molecular mechanisms by which dietary probiotics regulate muscle development in the lamb industry.
Collapse
Affiliation(s)
- Min Zhang
- College of Food Science and Engineering, Inner Mongolia Agriculture University, China
| | - Yueying Guo
- College of Food Science and Engineering, Inner Mongolia Agriculture University, China
| | - Rina Su
- Inner Mongolia Vocational College of Chemical Engineering, China
| | - Mirco Corazzin
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Italy
| | - Ran Hou
- College of Food Science and Engineering, Inner Mongolia Agriculture University, China
| | - Jingyu Xie
- College of Food Science and Engineering, Inner Mongolia Agriculture University, China
| | - Yue Zhang
- College of Food Science and Engineering, Inner Mongolia Agriculture University, China
| | - Lihua Zhao
- College of Food Science and Engineering, Inner Mongolia Agriculture University, China
| | - Lin Su
- College of Food Science and Engineering, Inner Mongolia Agriculture University, China
| | - Ye Jin
- College of Food Science and Engineering, Inner Mongolia Agriculture University, China.
| |
Collapse
|
14
|
Strategies to inhibit FGFR4 V550L-driven rhabdomyosarcoma. Br J Cancer 2022; 127:1939-1953. [PMID: 36097178 PMCID: PMC9681859 DOI: 10.1038/s41416-022-01973-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 08/17/2022] [Accepted: 08/25/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Rhabdomyosarcoma (RMS) is a paediatric cancer driven either by fusion proteins (e.g., PAX3-FOXO1) or by mutations in key signalling molecules (e.g., RAS or FGFR4). Despite the latter providing opportunities for precision medicine approaches in RMS, there are currently no such treatments implemented in the clinic. METHODS We evaluated biologic properties and targeting strategies for the FGFR4 V550L activating mutation in RMS559 cells, which have a high allelic fraction of this mutation and are oncogenically dependent on FGFR4 signalling. Signalling and trafficking of FGFR4 V550L were characterised by confocal microscopy and proteomics. Drug effects were determined by live-cell imaging, MTS assay, and in a mouse model. RESULTS Among recently developed FGFR4-specific inhibitors, FGF401 inhibited FGFR4 V550L-dependent signalling and cell proliferation at low nanomolar concentrations. Two other FGFR4 inhibitors, BLU9931 and H3B6527, lacked potent activity against FGFR4 V550L. Alternate targeting strategies were identified by RMS559 phosphoproteomic analyses, demonstrating that RAS/MAPK and PI3K/AKT are essential druggable pathways downstream of FGFR4 V550L. Furthermore, we found that FGFR4 V550L is HSP90-dependent, and HSP90 inhibitors efficiently impeded RMS559 proliferation. In a RMS559 mouse xenograft model, the pan-FGFR inhibitor, LY2874455, did not efficiently inhibit growth, whereas FGF401 potently abrogated growth. CONCLUSIONS Our results pave the way for precision medicine approaches against FGFR4 V550L-driven RMS.
Collapse
|
15
|
Du K, Zhao X, Li Y, Wu Z, Sun W, Wang J, Jia X, Chen S, Lai S. Genome-Wide Identification and Characterization of Circular RNAs during Skeletal Muscle Development in Meat Rabbits. Animals (Basel) 2022; 12:ani12172208. [PMID: 36077928 PMCID: PMC9454498 DOI: 10.3390/ani12172208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/14/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Our knowledge of circRNAs regulating skeletal muscle development remains largely unknown in meat rabbits. Therefore, we collected the leg muscle tissues of ZIKA rabbits at three key growth stages. A combination of circRNA assembly from a circRNA-seq library and the whole-transcriptome sequencing data identified credible circRNAs in our samples. We found these circRNAs were more conserved between rabbits and humans than between rabbits and mice. A prediction of circRNA–microRNA–mRNAs networks revealed that circRNAs might be the regulators that mainly functioned in rabbits’ muscle neuron development and metabolic processes. Our work provides a catalog of circRNAs regulating skeletal muscle development at key growth stages in rabbits and might give a new insight into rabbit breeding. Abstract Skeletal muscle development plays a vital role in muscle quality and yield in meat rabbits. Circular RNAs (circRNAs) are a new type of single-stranded endogenous non-coding RNAs involved in different biological processes. However, our knowledge of circRNAs regulating skeletal muscle development remains largely unknown in meat rabbits. In this study, we collected the leg muscle tissues of ZIKA rabbits at three key growth stages. By performing whole-transcriptome sequencing, we found the sequential expression of day 0- (D0-), D35-, and D70-selective mRNAs mainly functioned in muscle development, nervous development, and immune response during skeletal muscle development, respectively. Then, a combination of circRNA assembly from a circRNA-seq library and the whole-transcriptome sequencing data identified 6845 credible circRNAs in our samples. Most circRNAs were transcribed from exons of known genes, contained few exons, and showed short length, and these circRNAs were more conserved between rabbits and humans than between rabbits and mice. The upregulated circRNAs, which were synchronously changed with host genes, primarily played roles in MAPK signaling pathways and fatty acid biosynthesis. The prediction of circRNA–microRNA–mRNAs networks revealed that circRNAs might be the regulators that mainly functioned in rabbits’ muscle neuron development and metabolic processes. Our work provides a catalog of circRNAs regulating skeletal muscle development at key growth stages in rabbits and might give a new insight into rabbit breeding.
Collapse
|
16
|
Chen Q, Zhang W, Cai J, Ni Y, Xiao L, Zhang J. Transcriptome analysis in comparing carcass and meat quality traits of Jiaxing Black Pig and Duroc × Duroc × Berkshire × Jiaxing Black Pig crosses. Gene 2022; 808:145978. [PMID: 34592352 DOI: 10.1016/j.gene.2021.145978] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/31/2021] [Accepted: 09/24/2021] [Indexed: 01/17/2023]
Abstract
This study compares two typical strains: Chinese local excellent meat quality of Jiaxing Black (JXB) Pig and quadratic crossbred pig strain Duroc × Duroc × Berkshire × Jiaxing Black (DDBJ). It was found that between the two pig strains, carcass traits and meat quality traits differed significantly. This is exemplified by the leanness and dressing out percent of DDBJ that were significantly higher than JXB pigs of the same age (P < 0.05) and the better growth rate of DDBJ pigs as to JXB pigs was shown by quantifying muscle proliferation and differentiation of longissimus dorsi muscle employing Hematoxylin and Eosin staining of longissimus dorsi muscle. Nutrients such as inosinic acid, intramuscular fat, and free amino acids in the longissimus dorsi muscle were significantly higher in JXB pigs than DDBJ pigs (p < 0.0001); saturated fatty acids were higher in JXB than in DDBJ pigs (p = 0.0097); essential amino acids and fresh taste amino acids (serine, glutamic acid, proline, glycine, alanine) of JXB pigs was higher than that of DDBJ pigs (p < 0.0001) and amino acids in longissimus dorsi muscle of JXB pigs surpasses the amino acid concentration of DDBJ pigs (p < 0.0001), thus showing the superiority of JXB in terms of meat quality. However, the content of polyunsaturated fatty acids, which is responsible for poor meat quality, was significantly higher in the longissimus dorsi muscle of DDBJ pig than JXB pigs (p < 0.0001); RNA-seq analysis of 5 biological replicates from two of the strains was performed. The screening of 164 up-regulated genes and 183 down-regulated genes found in longissimus dorsi muscle of DDBJ was done and the results identified differentially expressed genes related to muscle development, adipogenesis, amino acid metabolism, fatty acid metabolism and inosine synthesis. In conclusion, the study identified functional genes, elucidated the mechanisms associated with carcass quality traits, meat quality traits and other related traits, and provided means of genetic enhancement to improve meat quality traits and carcass traits in Chinese commercial pigs.
Collapse
Affiliation(s)
- Qiangqiang Chen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Wei Zhang
- Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Jianfeng Cai
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Yifan Ni
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lixia Xiao
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Jinzhi Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
17
|
Degan M, Dalla Valle L, Alibardi L. Gene expression in regenerating and scarring tails of lizard evidences three main key genes (wnt2b, egfl6, and arhgap28) activated during the regulated process of tail regeneration. PROTOPLASMA 2021; 258:3-17. [PMID: 32852660 DOI: 10.1007/s00709-020-01545-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/09/2020] [Indexed: 06/11/2023]
Abstract
We have analyzed the expression of key genes orchestrating tail regeneration in lizard under normal and scarring conditions after cauterization. At 1-day post-cauterization (1 dpc), the injured blastema contains degenerating epithelial and mesenchymal cells, numerous mast cells, and immune cells. At 3 and 7 dpc, a stratified wound epidermis is forming while fibrocytes give rise to a scarring connective tissue. Oncogenes such as wnt2b, egfl6, wnt6, and mycn and the tumor suppressor arhgap28 are much more expressed than other oncogenes (hmga2, rhov, fgf8, fgfr4, tert, shh) and tumor suppressors (apcdd1, p63, rb, fat2, bcl11b) in the normal blastema and at 7 dpc. Blastemas at 3 dpc feature the lowest upregulation of most genes, likely derived from damage after cauterization. Immunomodulator genes nfatc4 and lef1 are more expressed at 7 dpc than in normal blastema and 3 dpc suggesting the induction of immune response favoring scarring. Balanced over-expression of oncogenes, tumor suppressor genes, and immune modulator genes determines regulation of cell proliferation (anti-oncogenic), of movement (anti-metastatic), and immunosuppression in the normal blastema. Significant higher expression of oncogenes wnt2b and egfl6 in normal blastema and higher expression of the tumor suppressor arhgap28 in the 7 dpc blastema indicate that they are among the key/master genes that determine the regulated regeneration of the tail.
Collapse
Affiliation(s)
- Massimo Degan
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | | | - Lorenzo Alibardi
- Comparative Histolab Padova, Padua, Italy.
- Department of Biology, University of Bologna, Via Semi 3, 40126, Bologna, Italy.
| |
Collapse
|
18
|
Ossipova O, Itoh K, Radu A, Ezan J, Sokol SY. Pinhead signaling regulates mesoderm heterogeneity via the FGF receptor-dependent pathway. Development 2020; 147:dev188094. [PMID: 32859582 PMCID: PMC7502591 DOI: 10.1242/dev.188094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 08/04/2020] [Indexed: 12/29/2022]
Abstract
Among the three embryonic germ layers, the mesoderm plays a central role in the establishment of the vertebrate body plan. The mesoderm is specified by secreted signaling proteins from the FGF, Nodal, BMP and Wnt families. No new classes of extracellular mesoderm-inducing factors have been identified in more than two decades. Here, we show that the pinhead (pnhd) gene encodes a secreted protein that is essential for the activation of a subset of mesodermal markers in the Xenopus embryo. RNA sequencing revealed that many transcriptional targets of Pnhd are shared with those of the FGF pathway. Pnhd activity was accompanied by Erk phosphorylation and required FGF and Nodal but not Wnt signaling. We propose that during gastrulation Pnhd acts in the marginal zone to contribute to mesoderm heterogeneity via an FGF receptor-dependent positive feedback mechanism.
Collapse
Affiliation(s)
- Olga Ossipova
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Keiji Itoh
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Aurelian Radu
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jerome Ezan
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sergei Y Sokol
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
19
|
Liu Y, Wang H, Wen H, Shi Y, Zhang M, Qi X, Zhang K, Gong Q, Li J, He F, Hu Y, Li Y. First High-Density Linkage Map and QTL Fine Mapping for Growth-Related Traits of Spotted Sea bass (Lateolabrax maculatus). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:526-538. [PMID: 32424479 DOI: 10.1007/s10126-020-09973-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
Possessing powerful adaptive capacity and a pleasant taste, spotted sea bass (Lateolabrax maculatus) has a broad natural distribution and is one of the most popular mariculture fish in China. However, the genetic improvement program for this fish is still in its infancy. Growth is the most economically important trait and is controlled by quantitative trait loci (QTL); thus, the identification of QTLs and genetic markers for growth-related traits is an essential step for the establishment of marker-assisted selection (MAS) breeding programs. In this study, we report the first high-density linkage map of spotted sea bass constructed by sequencing 333 F1 generation individuals in a full-sib family using 2b-RAD technology. A total of 6883 SNP markers were anchored onto 24 linkage groups, spanning 2189.96 cM with an average marker interval of 0.33 cM. Twenty-four growth-related QTLs, including 13 QTLs for body weight and 11 QTLs for body length, were successfully detected, with phenotypic variance explained (PVE) ranging from 5.1 to 8.6%. Thirty potential candidate growth-related genes surrounding the associated SNPs were involved in cell adhesion, cell proliferation, cytoskeleton reorganization, calcium channels, and neuromodulation. Notably, the fgfr4 gene was detected in the most significant QTL; this gene plays a pivotal role in myogenesis and bone growth. The results of this study may facilitate marker-assisted selection for breeding populations and establish the foundation for further genomic and genetic studies investigating spotted sea bass.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Haolong Wang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Haishen Wen
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Yue Shi
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Meizhao Zhang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Xin Qi
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Kaiqiang Zhang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Qingli Gong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Jifang Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Feng He
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Yanbo Hu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Yun Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
20
|
Agarwal M, Sharma A, Kumar P, Kumar A, Bharadwaj A, Saini M, Kardon G, Mathew SJ. Myosin heavy chain-embryonic regulates skeletal muscle differentiation during mammalian development. Development 2020; 147:dev184507. [PMID: 32094117 PMCID: PMC7157585 DOI: 10.1242/dev.184507] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 02/12/2020] [Indexed: 12/12/2022]
Abstract
Myosin heavy chain-embryonic (MyHC-emb) is a skeletal muscle-specific contractile protein expressed during muscle development. Mutations in MYH3, the gene encoding MyHC-emb, lead to Freeman-Sheldon and Sheldon-Hall congenital contracture syndromes. Here, we characterize the role of MyHC-emb during mammalian development using targeted mouse alleles. Germline loss of MyHC-emb leads to neonatal and postnatal alterations in muscle fiber size, fiber number, fiber type and misregulation of genes involved in muscle differentiation. Deletion of Myh3 during embryonic myogenesis leads to the depletion of the myogenic progenitor cell pool and an increase in the myoblast pool, whereas fetal myogenesis-specific deletion of Myh3 causes the depletion of both myogenic progenitor and myoblast pools. We reveal that the non-cell-autonomous effect of MyHC-emb on myogenic progenitors and myoblasts is mediated by the fibroblast growth factor (FGF) signaling pathway, and exogenous FGF rescues the myogenic differentiation defects upon loss of MyHC-emb function in vitro Adult Myh3 null mice exhibit scoliosis, a characteristic phenotype exhibited by individuals with Freeman-Sheldon and Sheldon-Hall congenital contracture syndrome. Thus, we have identified MyHC-emb as a crucial myogenic regulator during development, performing dual cell-autonomous and non-cell-autonomous functions.This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Megha Agarwal
- Developmental Genetics Laboratory, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001 Haryana, India
- Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Akashi Sharma
- Developmental Genetics Laboratory, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001 Haryana, India
- KIIT University, Patia, Bhubaneswar, 751024, Odisha, India
| | - Pankaj Kumar
- Developmental Genetics Laboratory, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001 Haryana, India
- Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Amit Kumar
- Developmental Genetics Laboratory, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001 Haryana, India
| | - Anushree Bharadwaj
- Developmental Genetics Laboratory, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001 Haryana, India
| | - Masum Saini
- Developmental Genetics Laboratory, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001 Haryana, India
| | - Gabrielle Kardon
- Department of Human Genetics, University of Utah, 15 N 2030 E, Salt Lake City, UT 84112, USA
| | - Sam J Mathew
- Developmental Genetics Laboratory, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001 Haryana, India
- Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
- KIIT University, Patia, Bhubaneswar, 751024, Odisha, India
| |
Collapse
|
21
|
Guo X, Zhang W, Li M, Gao P, Hei W, He Z, Wu Y, Liu J, Cai C, Li B, Cao G. Transcriptome profile of skeletal muscle at different developmental stages in Large White and Mashen pigs. CANADIAN JOURNAL OF ANIMAL SCIENCE 2019. [DOI: 10.1139/cjas-2019-0002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
From the perspectives of promoting individual growth and development, increasing pork yield, and improving feed utilization, it is desirable to screen candidate genes underlying pig muscle growth and regulation. In this study, we investigated transcriptome differences at 1, 90, and 180 d of age in Large White and Mashen pigs, characterized differentially expressed genes (DEGs), and screened candidate genes affecting skeletal muscle growth and development. RNA-seq was applied to analyze the transcriptome of the longissimus dorsi (LD) in the two breeds. In LD samples from the two breeds at three growth stages, 7215, 6332, 237, 3935, 3404, and 846 DEGs were obtained for L01 vs. L90, L01 vs. L180, L90 vs. L180, MS01 vs. MS90, MS01 vs. MS180, and MS90 vs. MS180, respectively. Significant tendencies in DEG expression could be grouped into eight profiles. Based on the functional analysis of DEGs, 16 candidate genes related to skeletal muscle growth and development were identified, including PCK2, GNAS, ADCY2, PRKAB1, PRKAB2, PRKAG1, PRKAG2, PHKA1, PHKA2, PHKG1, PHKG2, ITPR3, IGF1R, FGFR4, FGF1, and FGF18. The results of this study thus provide a theoretical basis for the mechanisms and candidate genes underlying skeletal muscle development in pigs.
Collapse
Affiliation(s)
- Xiaohong Guo
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, People’s Republic of China
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, People’s Republic of China
| | - Wanfeng Zhang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, People’s Republic of China
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, People’s Republic of China
| | - Meng Li
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, People’s Republic of China
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, People’s Republic of China
| | - Pengfei Gao
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, People’s Republic of China
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, People’s Republic of China
| | - Wei Hei
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, People’s Republic of China
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, People’s Republic of China
| | - Zhiqiang He
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, People’s Republic of China
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, People’s Republic of China
| | - Yiqi Wu
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, People’s Republic of China
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, People’s Republic of China
| | - Juan Liu
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, People’s Republic of China
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, People’s Republic of China
| | - Chunbo Cai
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, People’s Republic of China
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, People’s Republic of China
| | - Bugao Li
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, People’s Republic of China
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, People’s Republic of China
| | - Guoqing Cao
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, People’s Republic of China
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, People’s Republic of China
| |
Collapse
|
22
|
Wu C, Chen X, Chen D, Xia Q, Liu Z, Li F, Yan Y, Cai Y. Insight into ponatinib resistance mechanisms in rhabdomyosarcoma caused by the mutations in FGFR4 tyrosine kinase using molecular modeling strategies. Int J Biol Macromol 2019; 135:294-302. [DOI: 10.1016/j.ijbiomac.2019.05.138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/15/2019] [Accepted: 05/21/2019] [Indexed: 01/03/2023]
|
23
|
Somm E, Jornayvaz FR. Fibroblast Growth Factor 15/19: From Basic Functions to Therapeutic Perspectives. Endocr Rev 2018; 39:960-989. [PMID: 30124818 DOI: 10.1210/er.2018-00134] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/10/2018] [Indexed: 12/11/2022]
Abstract
Discovered 20 years ago, fibroblast growth factor (FGF)19, and its mouse ortholog FGF15, were the first members of a new subfamily of FGFs able to act as hormones. During fetal life, FGF15/19 is involved in organogenesis, affecting the development of the ear, eye, heart, and brain. At adulthood, FGF15/19 is mainly produced by the ileum, acting on the liver to repress hepatic bile acid synthesis and promote postprandial nutrient partitioning. In rodents, pharmacologic doses of FGF19 induce the same antiobesity and antidiabetic actions as FGF21, with these metabolic effects being partly mediated by the brain. However, activation of hepatocyte proliferation by FGF19 has long been a challenge to its therapeutic use. Recently, genetic reengineering of the molecule has resolved this issue. Despite a global overlap in expression pattern and function, murine FGF15 and human FGF19 exhibit several differences in terms of regulation, molecular structure, signaling, and biological properties. As most of the knowledge originates from the use of FGF19 in murine models, differences between mice and humans in the biology of FGF15/19 have to be considered for a successful translation from bench to bedside. This review summarizes the basic knowledge concerning FGF15/19 in mice and humans, with a special focus on regulation of production, morphogenic properties, hepatocyte growth, bile acid homeostasis, as well as actions on glucose, lipid, and energy homeostasis. Moreover, implications and therapeutic perspectives concerning FGF19 in human diseases (including obesity, type 2 diabetes, hepatic steatosis, biliary disorders, and cancer) are also discussed.
Collapse
Affiliation(s)
- Emmanuel Somm
- Service of Endocrinology, Diabetes, Hypertension, and Nutrition, Geneva University Hospitals, University of Geneva Medical School, Geneva, Switzerland
| | - François R Jornayvaz
- Service of Endocrinology, Diabetes, Hypertension, and Nutrition, Geneva University Hospitals, University of Geneva Medical School, Geneva, Switzerland
| |
Collapse
|
24
|
Tang S, Hao Y, Yuan Y, Liu R, Chen Q. Role of fibroblast growth factor receptor 4 in cancer. Cancer Sci 2018; 109:3024-3031. [PMID: 30070748 PMCID: PMC6172014 DOI: 10.1111/cas.13759] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/29/2018] [Accepted: 07/30/2018] [Indexed: 02/05/2023] Open
Abstract
Fibroblast growth factor receptors (FGFR) play a significant role in both embryonic development and in adults. Upon binding with ligands, FGFR signaling is activated and triggers various downstream signal cascades that are implicated in diverse biological processes. Aberrant regulations of FGFR signaling are detected in numerous cancers. Although FGFR4 was discovered later than other FGFR, information on the involvement of FGFR4 in cancers has significantly increased in recent years. In this review, the recent findings in FGFR4 structure, signaling transduction, physiological function, aberrant regulations, and effects in cancers as well as its potential applications as an anticancer therapeutic target are summarized.
Collapse
Affiliation(s)
- Shuya Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yilong Hao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yao Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Rui Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
25
|
Zhang W, Xu Y, Zhang L, Wang S, Yin B, Zhao S, Li X. Synergistic effects of TGFβ2, WNT9a, and FGFR4 signals attenuate satellite cell differentiation during skeletal muscle development. Aging Cell 2018; 17:e12788. [PMID: 29869452 PMCID: PMC6052404 DOI: 10.1111/acel.12788] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2018] [Indexed: 11/28/2022] Open
Abstract
Satellite cells play a key role in the aging, generation, and damage repair of skeletal muscle. The molecular mechanism of satellite cells in these processes remains largely unknown. This study systematically investigated for the first time the characteristics of mouse satellite cells at ten different ages. Results indicated that the number and differentiation capacity of satellite cells decreased with age during skeletal muscle development. Transcriptome analysis revealed that 2,907 genes were differentially expressed at six time points at postnatal stage. WGCNA and GO analysis indicated that 1,739 of the 2,907 DEGs were mainly involved in skeletal muscle development processes. Moreover, the results of WGCNA and protein interaction analysis demonstrated that Tgfβ2, Wnt9a, and Fgfr4 were the key genes responsible for the differentiation of satellite cells. Functional analysis showed that TGFβ2 and WNT9a inhibited, whereas FGFR4 promoted the differentiation of satellite cells. Furthermore, each two of them had a regulatory relationship at the protein level. In vivo study also confirmed that TGFβ2 could regulate the regeneration of skeletal muscle, as well as the expression of WNT9a and FGFR4. Therefore, we concluded that the synergistic effects of TGFβ2, WNT9a, and FGFR4 were responsible for attenuating of the differentiation of aging satellite cells during skeletal muscle development. This study provided new insights into the molecular mechanism of satellite cell development. The target genes and signaling pathways investigated in this study would be useful for improving the muscle growth of livestock or treating muscle diseases in clinical settings.
Collapse
Affiliation(s)
- Weiya Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture; Huazhong Agricultural University; Wuhan China
| | - Yueyuan Xu
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture; Huazhong Agricultural University; Wuhan China
| | - Lu Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture; Huazhong Agricultural University; Wuhan China
| | - Sheng Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture; Huazhong Agricultural University; Wuhan China
| | - Binxu Yin
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture; Huazhong Agricultural University; Wuhan China
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture; Huazhong Agricultural University; Wuhan China
- The Cooperative Innovation Center for Sustainable Pig Production; Wuhan China
| | - Xinyun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture; Huazhong Agricultural University; Wuhan China
- The Cooperative Innovation Center for Sustainable Pig Production; Wuhan China
| |
Collapse
|
26
|
Row RH, Pegg A, Kinney BA, Farr GH, Maves L, Lowell S, Wilson V, Martin BL. BMP and FGF signaling interact to pattern mesoderm by controlling basic helix-loop-helix transcription factor activity. eLife 2018; 7:31018. [PMID: 29877796 PMCID: PMC6013256 DOI: 10.7554/elife.31018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 05/26/2018] [Indexed: 02/06/2023] Open
Abstract
The mesodermal germ layer is patterned into mediolateral subtypes by signaling factors including BMP and FGF. How these pathways are integrated to induce specific mediolateral cell fates is not well understood. We used mesoderm derived from post-gastrulation neuromesodermal progenitors (NMPs), which undergo a binary mediolateral patterning decision, as a simplified model to understand how FGF acts together with BMP to impart mediolateral fate. Using zebrafish and mouse NMPs, we identify an evolutionarily conserved mechanism of BMP and FGF-mediated mediolateral mesodermal patterning that occurs through modulation of basic helix-loop-helix (bHLH) transcription factor activity. BMP imparts lateral fate through induction of Id helix loop helix (HLH) proteins, which antagonize bHLH transcription factors, induced by FGF signaling, that specify medial fate. We extend our analysis of zebrafish development to show that bHLH activity is responsible for the mediolateral patterning of the entire mesodermal germ layer.
Collapse
Affiliation(s)
- Richard H Row
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, United States
| | - Amy Pegg
- MRC Center for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Brian A Kinney
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, United States
| | - Gist H Farr
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, United States
| | - Lisa Maves
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, United States.,Division of Cardiology, Department of Pediatrics, University of Washington, Seattle, United States
| | - Sally Lowell
- MRC Center for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Valerie Wilson
- MRC Center for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Benjamin L Martin
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, United States
| |
Collapse
|
27
|
McKinnon T, Venier R, Yohe M, Sindiri S, Gryder BE, Shern JF, Kabaroff L, Dickson B, Schleicher K, Chouinard-Pelletier G, Menezes S, Gupta A, Zhang X, Guha R, Ferrer M, Thomas CJ, Wei Y, Davani D, Guidos CJ, Khan J, Gladdy RA. Functional screening of FGFR4-driven tumorigenesis identifies PI3K/mTOR inhibition as a therapeutic strategy in rhabdomyosarcoma. Oncogene 2018; 37:2630-2644. [PMID: 29487419 PMCID: PMC8054765 DOI: 10.1038/s41388-017-0122-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/03/2017] [Accepted: 12/05/2017] [Indexed: 11/08/2022]
Abstract
Rhabdomyosarcoma (RMS) is the most common pediatric soft tissue sarcoma and outcomes have stagnated, highlighting a need for novel therapies. Genomic analysis of RMS has revealed that alterations in the receptor tyrosine kinase (RTK)/RAS/PI3K axis are common and that FGFR4 is frequently mutated or overexpressed. Although FGFR4 is a potentially druggable receptor tyrosine kinase, its functions in RMS are undefined. This study tested FGFR4-activating mutations and overexpression for the ability to generate RMS in mice. Murine tumor models were subsequently used to discover potential therapeutic targets and to test a dual PI3K/mTOR inhibitor in a preclinical setting. Specifically, we provide the first mechanistic evidence of differential potency in the most common human RMS mutations, V550E or N535K, compared to FGFR4wt overexpression as murine myoblasts expressing FGFR4V550E undergo higher rates of cellular transformation, engraftment into mice, and rapidly form sarcomas that highly resemble human RMS. Murine tumor cells overexpressing FGFR4V550E were tested in an in vitro dose-response drug screen along with human RMS cell lines. Compounds were grouped by target class, and potency was determined using average percentage of area under the dose-response curve (AUC). RMS cells were highly sensitive to PI3K/mTOR inhibitors, in particular, GSK2126458 (omipalisib) was a potent inhibitor of FGFR4V550E tumor-derived cell and human RMS cell viability. FGFR4V550E-overexpressing myoblasts and tumor cells had low nanomolar GSK2126458 EC50 values. Mass cytometry using mouse and human RMS cell lines validated GSK2126458 specificity at single-cell resolution, decreasing the abundance of phosphorylated Akt as well as decreasing phosphorylation of the downstream mTOR effectors 4ebp1, Eif4e, and S6. Moreover, PI3K/mTOR inhibition also robustly decreased the growth of RMS tumors in vivo. Thus, by developing a preclinical platform for testing novel therapies, we identified PI3K/mTOR inhibition as a promising new therapy for this devastating pediatric cancer.
Collapse
Affiliation(s)
- Timothy McKinnon
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Rosemarie Venier
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Marielle Yohe
- Genetics Branch, Oncogenomics Section, Center for Cancer Research, National Cancer Institute, Gaithersburg, MD, USA
| | - Sivasish Sindiri
- Genetics Branch, Oncogenomics Section, Center for Cancer Research, National Cancer Institute, Gaithersburg, MD, USA
| | - Berkley E Gryder
- Genetics Branch, Oncogenomics Section, Center for Cancer Research, National Cancer Institute, Gaithersburg, MD, USA
| | - Jack F Shern
- Genetics Branch, Oncogenomics Section, Center for Cancer Research, National Cancer Institute, Gaithersburg, MD, USA
| | - Leah Kabaroff
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Brendan Dickson
- Department of Pathology, Mount Sinai Hospital, Toronto, ON, Canada
| | - Krista Schleicher
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | | | - Serena Menezes
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Abha Gupta
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Xiaohu Zhang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Rajarashi Guha
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Marc Ferrer
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Craig J Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yuhong Wei
- Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Dariush Davani
- Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Cynthia J Guidos
- Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Javed Khan
- Genetics Branch, Oncogenomics Section, Center for Cancer Research, National Cancer Institute, Gaithersburg, MD, USA
| | - Rebecca A Gladdy
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.
- Ontario Institute for Cancer Research, Toronto, ON, Canada.
- Department of Surgery, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
28
|
McKinnon T, Venier R, Yohe M, Sindiri S, Gryder BE, Shern JF, Kabaroff L, Dickson B, Schleicher K, Chouinard-Pelletier G, Menezes S, Gupta A, Zhang X, Guha R, Ferrer M, Thomas CJ, Wei Y, Davani D, Guidos CJ, Khan J, Gladdy RA. Functional screening of FGFR4-driven tumorigenesis identifies PI3K/mTOR inhibition as a therapeutic strategy in rhabdomyosarcoma. Oncogene 2018. [PMID: 29487419 DOI: 10.1038/s41388‐017‐0122‐y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Rhabdomyosarcoma (RMS) is the most common pediatric soft tissue sarcoma and outcomes have stagnated, highlighting a need for novel therapies. Genomic analysis of RMS has revealed that alterations in the receptor tyrosine kinase (RTK)/RAS/PI3K axis are common and that FGFR4 is frequently mutated or overexpressed. Although FGFR4 is a potentially druggable receptor tyrosine kinase, its functions in RMS are undefined. This study tested FGFR4-activating mutations and overexpression for the ability to generate RMS in mice. Murine tumor models were subsequently used to discover potential therapeutic targets and to test a dual PI3K/mTOR inhibitor in a preclinical setting. Specifically, we provide the first mechanistic evidence of differential potency in the most common human RMS mutations, V550E or N535K, compared to FGFR4wt overexpression as murine myoblasts expressing FGFR4V550E undergo higher rates of cellular transformation, engraftment into mice, and rapidly form sarcomas that highly resemble human RMS. Murine tumor cells overexpressing FGFR4V550E were tested in an in vitro dose-response drug screen along with human RMS cell lines. Compounds were grouped by target class, and potency was determined using average percentage of area under the dose-response curve (AUC). RMS cells were highly sensitive to PI3K/mTOR inhibitors, in particular, GSK2126458 (omipalisib) was a potent inhibitor of FGFR4V550E tumor-derived cell and human RMS cell viability. FGFR4V550E-overexpressing myoblasts and tumor cells had low nanomolar GSK2126458 EC50 values. Mass cytometry using mouse and human RMS cell lines validated GSK2126458 specificity at single-cell resolution, decreasing the abundance of phosphorylated Akt as well as decreasing phosphorylation of the downstream mTOR effectors 4ebp1, Eif4e, and S6. Moreover, PI3K/mTOR inhibition also robustly decreased the growth of RMS tumors in vivo. Thus, by developing a preclinical platform for testing novel therapies, we identified PI3K/mTOR inhibition as a promising new therapy for this devastating pediatric cancer.
Collapse
Affiliation(s)
- Timothy McKinnon
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Rosemarie Venier
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Marielle Yohe
- Genetics Branch, Oncogenomics Section, Center for Cancer Research, National Cancer Institute, Gaithersburg, MD, USA
| | - Sivasish Sindiri
- Genetics Branch, Oncogenomics Section, Center for Cancer Research, National Cancer Institute, Gaithersburg, MD, USA
| | - Berkley E Gryder
- Genetics Branch, Oncogenomics Section, Center for Cancer Research, National Cancer Institute, Gaithersburg, MD, USA
| | - Jack F Shern
- Genetics Branch, Oncogenomics Section, Center for Cancer Research, National Cancer Institute, Gaithersburg, MD, USA
| | - Leah Kabaroff
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Brendan Dickson
- Department of Pathology, Mount Sinai Hospital, Toronto, ON, Canada
| | - Krista Schleicher
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | | | - Serena Menezes
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Abha Gupta
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Xiaohu Zhang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Rajarashi Guha
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Marc Ferrer
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Craig J Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yuhong Wei
- Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Dariush Davani
- Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Cynthia J Guidos
- Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Javed Khan
- Genetics Branch, Oncogenomics Section, Center for Cancer Research, National Cancer Institute, Gaithersburg, MD, USA
| | - Rebecca A Gladdy
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada. .,Ontario Institute for Cancer Research, Toronto, ON, Canada. .,Department of Surgery, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
29
|
Effects of insulin like growth factors on early embryonic chick limb myogenesis. PLoS One 2017; 12:e0185775. [PMID: 28972999 PMCID: PMC5626492 DOI: 10.1371/journal.pone.0185775] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 09/19/2017] [Indexed: 11/19/2022] Open
Abstract
Limb muscles derive from pax3 expressing precursor cells that migrate from the hypaxial somite into the developing limb bud. Once there they begin to differentiate and express muscle determination genes such as MyoD. This process is regulated by a combination of inductive or inhibitory signals including Fgf18, retinoic acid, HGF, Notch and IGFs. IGFs are well known to affect late stages of muscle development and to promote both proliferation and differentiation. We examined their roles in early stage limb bud myogenesis using chicken embryos as an experimental model. Grafting beads soaked in purified recombinant IGF-I, IGF-II or small molecule inhibitors of specific signaling pathways into developing chick embryo limbs showed that both IGF-I and IGF-II induce expression of the early stage myogenic markers pax3 and MyoD as well as myogenin. Their effects on pax3 and MyoD expression were blocked by inhibitors of both the IGF type I receptor (picropodophyllotoxin, PPP) and MEK (U0126). The PI3K inhibitor LY294002 blocked IGF-II, but not IGF-I, induction of pax3 mRNA as well as the IGF-I, but not IGF-II, induction of MyoD mRNA. In addition SU5402, an FGFR/ VEGFR inhibitor, blocked the induction of MyoD by both IGFs but had no effect on pax3 induction, suggesting a role for FGF or VEGF signaling in their induction of MyoD. This was confirmed by in situ hybridization showing that FGF18, a known regulator of MyoD in limb myoblasts, was induced by IGF-I. In addition to their well-known effects on later stages of myogenesis via their induction of myogenin expression, both IGF-I and IGF-II induced pax3 and MyoD expression in developing chick embryos, indicating that they also regulate early stages of myogenesis. The data suggests that the IGFs may have slightly different effects on IGF1R signal transduction via PI3K and that their stimulatory effects on MyoD expression may be indirect, possibly via induction of FGF18 expression.
Collapse
|
30
|
Hwang SY, Kang YJ, Sung B, Jang JY, Hwang NL, Oh HJ, Ahn YR, Kim HJ, Shin JH, Yoo MA, Kim CM, Chung HY, Kim ND. Folic acid is necessary for proliferation and differentiation of C2C12 myoblasts. J Cell Physiol 2017; 233:736-747. [PMID: 28471487 DOI: 10.1002/jcp.25989] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 05/03/2017] [Indexed: 02/04/2023]
Abstract
Folic acid, a water soluble B vitamin, plays an important role in cellular metabolic activities, such as functioning as a cofactor in one-carbon metabolism for DNA and RNA synthesis as well as nucleotide and amino acid biosynthesis in the body. A lack of dietary folic acid can lead to folic acid deficiency and result in several health problems, including macrocytic anemia, elevated plasma homocysteine, cardiovascular disease, birth defects, carcinogenesis, muscle weakness, and walking difficulty. However, the effect of folic acid deficiency on skeletal muscle development and its molecular mechanisms are unknown. We, therefore, investigated the effect of folic acid deficiency on myogenesis in skeletal muscle cells and found that folic acid deficiency induced proliferation inhibition and cell cycle breaking as well as cellular senescence in C2C12 myoblasts, implying that folic acid deficiency influences skeletal muscle development. Folic acid deficiency also inhibited differentiation of C2C12 myoblasts and induced deregulation of the cell cycle exit and many cell cycle regulatory genes. It inhibited expression of muscle-specific marker MyHC as well as myogenic regulatory factor (myogenin). Moreover, immunocytochemistry and Western blot analyses revealed that DNA damage was more increased in folic acid-deficient medium-treated differentiating C2C12 cells. Furthermore, we found that folic acid resupplementation reverses the effect on the cell cycle and senescence in folic acid-deficient C2C12 myoblasts but does not reverse the differentiation of C2C12 cells. Altogether, the study results suggest that folic acid is necessary for normal development of skeletal muscle cells.
Collapse
Affiliation(s)
- Seong Y Hwang
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Yong J Kang
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Bokyung Sung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Jung Y Jang
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Na L Hwang
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Hye J Oh
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Yu R Ahn
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Hong J Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Jin H Shin
- Department of Neurology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Mi-Ae Yoo
- Department of Molecular Biology, Pusan National University, Busan, Republic of Korea
| | - Cheol M Kim
- Research Center for Anti-Aging Technology Development, Pusan National University, Busan, Republic of Korea.,Department of Biochemistry, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Hae Y Chung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Republic of Korea.,Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan, Republic of Korea
| | - Nam D Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Republic of Korea.,Research Center for Anti-Aging Technology Development, Pusan National University, Busan, Republic of Korea.,Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
31
|
Cavanaugh E, DiMario JX. Sp3 controls fibroblast growth factor receptor 4 gene activity during myogenic differentiation. Gene 2017; 617:24-31. [PMID: 28359915 DOI: 10.1016/j.gene.2017.03.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/20/2016] [Accepted: 03/25/2017] [Indexed: 11/17/2022]
Abstract
Fibroblast growth factor/fibroblast growth factor receptor (FGF/FGFR) signaling is a critical component in the regulation of myoblast proliferation and differentiation. The transient FGFR4 gene expression during the transition from proliferating myoblasts to differentiated myotubes indicates that FGFR4 regulates this critical phase of myogenesis. The Specificity Protein (SP) family of transcription factors controls FGFR family member gene activity. We sought to determine if members of the Sp family regulate mouse FGFR4 gene activity during myogenic differentiation. RT-PCR and western blot analysis of FGFR4 mRNA and protein revealed transient expression over 72h, with peak expression between 24 and 36h after addition of differentiation medium to C2C12 myogenic cultures. Sp3 also displayed a transient expression pattern with peak expression occurring after 6h of differentiation. We cloned a 1527bp fragment of the mouse FGFR4 promoter into a luciferase reporter. This FGFR4 promoter contains eight putative Sp binding sites and directed luciferase gene activity comparable to native FGFR4 expression. Overexpression of Sp1 and Sp3 showed that Sp1 repressed FGFR4 gene activity, and Sp3 activated FGFR4 gene activity during myogenic differentiation. Mutational analyses of multiple Sp binding sites within the FGFR4 promoter revealed that three of these sites were transcriptionally active. Electromobility shift assays and chromatin immunoprecipitation of the area containing the activator sites showed that Sp3 bound to this promoter location.
Collapse
Affiliation(s)
- Eric Cavanaugh
- School of Graduate and Postdoctoral Studies and Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, Illinois 60064, United States
| | - Joseph X DiMario
- School of Graduate and Postdoctoral Studies and Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, Illinois 60064, United States.
| |
Collapse
|
32
|
Deries M, Thorsteinsdóttir S. Axial and limb muscle development: dialogue with the neighbourhood. Cell Mol Life Sci 2016; 73:4415-4431. [PMID: 27344602 PMCID: PMC11108464 DOI: 10.1007/s00018-016-2298-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/03/2016] [Accepted: 06/21/2016] [Indexed: 11/29/2022]
Abstract
Skeletal muscles are part of the musculoskeletal system which also includes nerves, tendons, connective tissue, bones and blood vessels. Here we review the development of axial and limb muscles in amniotes within the context of their surrounding tissues in vivo. We highlight the reciprocal dialogue mediated by signalling factors between cells of these adjacent tissues and developing muscles and also demonstrate its importance from the onset of muscle cell differentiation well into foetal development. Early embryonic tissues secrete factors which are important regulators of myogenesis. However, later muscle development relies on other tissue collaborators, such as developing nerves and connective tissue, which are in turn influenced by the developing muscles themselves. We conclude that skeletal muscle development in vivo is a compelling example of the importance of reciprocal interactions between developing tissues for the complete and coordinated development of a functional system.
Collapse
Affiliation(s)
- Marianne Deries
- Centro de Ecologia, Evolução e Alterações Ambientais, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.
| | - Sólveig Thorsteinsdóttir
- Centro de Ecologia, Evolução e Alterações Ambientais, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
33
|
Saera-Vila A, Kish PE, Kahana A. Fgf regulates dedifferentiation during skeletal muscle regeneration in adult zebrafish. Cell Signal 2016; 28:1196-1204. [PMID: 27267062 DOI: 10.1016/j.cellsig.2016.06.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 05/22/2016] [Accepted: 06/02/2016] [Indexed: 10/21/2022]
Abstract
Fibroblast growth factors (Fgfs) regulate critical biological processes such as embryonic development, tissue homeostasis, wound healing, and tissue regeneration. In zebrafish, Fgf signaling plays an important role in the regeneration of the spinal cord, liver, heart, fin, and photoreceptors, although its exact mechanism of action is not fully understood. Utilizing an adult zebrafish extraocular muscle (EOM) regeneration model, we demonstrate that blocking Fgf receptor function using either a chemical inhibitor (SU5402) or a dominant-negative transgenic construct (dnFGFR1a:EGFP) impairs muscle regeneration. Adult zebrafish EOMs regenerate through a myocyte dedifferentiation process, which involves a muscle-to-mesenchyme transition and cell cycle reentry by differentiated myocytes. Blocking Fgf signaling reduced cell proliferation and active caspase 3 levels in the regenerating muscle with no detectable levels of apoptosis, supporting the hypothesis that Fgf signaling is involved in the early steps of dedifferentiation. Fgf signaling in regenerating myocytes involves the MAPK/ERK pathway: inhibition of MEK activity with U0126 mimicked the phenotype of the Fgf receptor inhibition on both muscle regeneration and cell proliferation, and activated ERK (p-ERK) was detected in injured muscles by immunofluorescence and western blot. Interestingly, following injury, ERK2 expression is specifically induced and activated by phosphorylation, suggesting a key role in muscle regeneration. We conclude that the critical early steps of myocyte dedifferentiation in EOM regeneration are dependent on Fgf signaling.
Collapse
Affiliation(s)
- Alfonso Saera-Vila
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA
| | - Phillip E Kish
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA
| | - Alon Kahana
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
34
|
Teerapornpuntakit J, Wongdee K, Krishnamra N, Charoenphandhu N. Expression of osteoclastogenic factor transcripts in osteoblast-like UMR-106 cells after exposure to FGF-23 or FGF-23 combined with parathyroid hormone. Cell Biol Int 2016; 40:329-40. [PMID: 26694880 DOI: 10.1002/cbin.10573] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 12/19/2015] [Indexed: 12/15/2022]
Abstract
As a bone-derived hormone, fibroblast growth factor-23 (FGF-23) negatively regulates phosphate and calcium metabolism, while retaining growth-promoting action for mesenchymal cell differentiation. Elevated FGF-23 levels, together with hyperparathyroidism, are often observed in chronic kidney disease, which is associated with impaired bone mineralization and enhanced bone resorption. Although overexpression of osteoblast-derived osteoclastogenic cytokines might contribute to this metabolic bone disease, whether FGF-23 alone and FGF-23 plus parathyroid hormone (PTH) directly modulated the expression of osteoblast-derived osteoclastogenic genes remained elusive. Herein, we demonstrated the direct effects of FGF-23 on proliferation and mRNA expression of osteoblast-specific differentiation and osteoclastogenic markers in rat osteoblast-like UMR-106 cells in the presence or absence of PTH. FGF-23 was found to suppress UMR-106 cell proliferation, while increasing FGF-23 expression, the latter of which suggested the presence of positive feedback regulation of FGF-23 expression in osteoblasts. FGF-23 also upregulated the mRNA expression of osteoblast differentiation markers (e.g., Runx2, osterix, AJ18, Dlx5, alkaline phosphatase, and osteopontin), osteoclastogenic factors (e.g., MCSF, MCP-1, IL-6, and TNF-α), and bone resorption regulators (RANKL and osteoprotegerin). However, combined PTH and FGF-23 exposure did not alter the levels of FGF-23-induced transcripts, suggesting that both hormones had no additive effect. In conclusion, FGF-23 directly suppressed osteoblast proliferation, while inducing osteoclastogenic gene expression in UMR-106 cells, and the FGF-23-induced transcripts were not altered by long-standing PTH exposure.
Collapse
Affiliation(s)
- Jarinthorn Teerapornpuntakit
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand.,Microarray Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Kannikar Wongdee
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand.,Office of Academic Management, Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand
| | - Nateetip Krishnamra
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Narattaphol Charoenphandhu
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
35
|
Endo T. Molecular mechanisms of skeletal muscle development, regeneration, and osteogenic conversion. Bone 2015; 80:2-13. [PMID: 26453493 DOI: 10.1016/j.bone.2015.02.028] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 02/18/2015] [Accepted: 02/28/2015] [Indexed: 12/21/2022]
Abstract
Both skeletal muscle and bone are of mesodermal origin and derived from somites during embryonic development. Somites differentiate into the dorsal dermomyotome and the ventral sclerotome, which give rise to skeletal muscle and bone, respectively. Extracellular signaling molecules, such as Wnt and Shh, secreted from the surrounding environment, determine the developmental fate of skeletal muscle. Dermomyotome cells are specified as trunk muscle progenitor cells by transcription factor networks involving Pax3. These progenitor cells delaminate and migrate to form the myotome, where they are determined as myoblasts that differentiate into myotubes or myofibers. The MyoD family of transcription factors plays pivotal roles in myogenic determination and differentiation. Adult skeletal muscle regenerates upon exercise, muscle injury, or degeneration. Satellite cells are muscle-resident stem cells and play essential roles in muscle growth and regeneration. Muscle regeneration recapitulates the process of muscle development in many aspects. In certain muscle diseases, ectopic calcification or heterotopic ossification, as well as fibrosis and adipogenesis, occurs in skeletal muscle. Muscle-resident mesenchymal progenitor cells, which may be derived from vascular endothelial cells, are responsible for the ectopic osteogenesis, fibrogenesis, and adipogenesis. The small GTPase M-Ras is likely to participate in the ectopic calcification and ossification, as well as in osteogenesis during development. This article is part of a Special Issue entitled "Muscle Bone Interactions".
Collapse
Affiliation(s)
- Takeshi Endo
- Department of Biology, Graduate School of Science, Chiba University, Yayoicho, Inageku, Chiba, Chiba 263-8522, Japan.
| |
Collapse
|
36
|
Abstract
The developmental mechanisms that control head muscle formation are distinct from those that operate in the trunk. Head and neck muscles derive from various mesoderm populations in the embryo and are regulated by distinct transcription factors and signaling molecules. Throughout the last decade, developmental, and lineage studies in vertebrates and invertebrates have revealed the peculiar nature of the pharyngeal mesoderm that forms certain head muscles and parts of the heart. Studies in chordates, the ancestors of vertebrates, revealed an evolutionarily conserved cardiopharyngeal field that progressively facilitates the development of both heart and craniofacial structures during vertebrate evolution. This ancient regulatory circuitry preceded and facilitated the emergence of myogenic cell types and hierarchies that exist in vertebrates. This chapter summarizes studies related to the origins, signaling circuits, genetics, and evolution of the head musculature, highlighting its heterogeneous characteristics in all these aspects, with a special focus on the FGF-ERK pathway. Additionally, we address the processes of head muscle regeneration, and the development of stem cell-based therapies for treatment of muscle disorders.
Collapse
Affiliation(s)
- Inbal Michailovici
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Tamar Eigler
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Eldad Tzahor
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
37
|
Andrikou C, Pai CY, Su YH, Arnone MI. Logics and properties of a genetic regulatory program that drives embryonic muscle development in an echinoderm. eLife 2015. [PMID: 26218224 PMCID: PMC4549668 DOI: 10.7554/elife.07343] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Evolutionary origin of muscle is a central question when discussing mesoderm evolution. Developmental mechanisms underlying somatic muscle development have mostly been studied in vertebrates and fly where multiple signals and hierarchic genetic regulatory cascades selectively specify myoblasts from a pool of naive mesodermal progenitors. However, due to the increased organismic complexity and distant phylogenetic position of the two systems, a general mechanistic understanding of myogenesis is still lacking. In this study, we propose a gene regulatory network (GRN) model that promotes myogenesis in the sea urchin embryo, an early branching deuterostome. A fibroblast growth factor signaling and four Forkhead transcription factors consist the central part of our model and appear to orchestrate the myogenic process. The topological properties of the network reveal dense gene interwiring and a multilevel transcriptional regulation of conserved and novel myogenic genes. Finally, the comparison of the myogenic network architecture among different animal groups highlights the evolutionary plasticity of developmental GRNs. DOI:http://dx.doi.org/10.7554/eLife.07343.001 Muscles, bones, and blood vessels all develop from a tissue called the mesoderm, which forms early on in the development of an embryo. Networks of genes control which parts of the mesoderm transform into different cell types. The gene networks that control the development of muscle cells from the mesoderm have so far been investigated in flies and several species of animals with backbones. However, these species are complex, which makes it difficult to work out the general principles that control muscle cell development. Sea urchins are often studied in developmental biology as they have many of the same genes as more complex animals, but are much simpler and easier to study in the laboratory. Andrikou et al. therefore investigated the ‘gene regulatory network’ that controls muscle development in sea urchins. This revealed that proteins called Forkhead transcription factors and a process called FGF signaling are crucial for controlling muscle development in sea urchins. These are also important factors for developing muscles in other animals. Andrikou et al. then produced models that show the interactions between the genes that control muscle formation at three different stages of embryonic development. These models reveal several important features of the muscle development gene regulatory network. For example, the network is robust: if one gene fails, the network is connected in a way that allows it to still make muscle. This also allows the network to adapt and evolve without losing the ability to perform any of its existing roles. Comparing the gene regulatory network that controls muscle development in sea urchins with the networks found in other animals showed that many of the same genes are used across different species, but are connected into different network structures. Investigating the similarities and differences of the regulatory networks in different species could help us to understand how muscles have evolved and could ultimately lead to a better understanding of the causes of developmental diseases. DOI:http://dx.doi.org/10.7554/eLife.07343.002
Collapse
Affiliation(s)
- Carmen Andrikou
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Chih-Yu Pai
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Hsien Su
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Maria Ina Arnone
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| |
Collapse
|
38
|
Mok GF, Mohammed RH, Sweetman D. Expression of myogenic regulatory factors in chicken embryos during somite and limb development. J Anat 2015; 227:352-60. [PMID: 26183709 PMCID: PMC4560569 DOI: 10.1111/joa.12340] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2015] [Indexed: 01/24/2023] Open
Abstract
The expression of the myogenic regulatory factors (MRFs), Myf5, MyoD, myogenin (Mgn) and MRF4 have been analysed during the development of chicken embryo somites and limbs. In somites, Myf5 is expressed first in somites and paraxial mesoderm at HH stage 9 followed by MyoD at HH stage 12, and Mgn and MRF4 at HH stage 14. In older somites, Myf5 and MyoD are also expressed in the ventrally extending myotome prior to Mgn and MRF4 expression. In limb muscles a similar temporal sequence is observed with Myf5 expression detected first in forelimbs at HH stage 22, MyoD at HH stage 23, Mgn at HH stage 24 and MRF4 at HH stage 30. This report describes the precise time of onset of expression of each MRF in somites and limbs during chicken embryo development, and provides a detailed comparative timeline of MRF expression in different embryonic muscle groups.
Collapse
Affiliation(s)
- Gi Fay Mok
- School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | | | - Dylan Sweetman
- School of Biosciences, University of Nottingham, Sutton Bonington, UK
| |
Collapse
|
39
|
Abstract
The developmental paths that lead to the formation of skeletal muscles in the head are distinct from those operating in the trunk. Craniofacial muscles are associated with head and neck structures. In the embryo, these structures derive from distinct mesoderm populations. Distinct genetic programs regulate different groups of muscles within the head to generate diverse muscle specifications. Developmental and lineage studies in vertebrates and invertebrates demonstrated an overlap in progenitor populations derived from the pharyngeal mesoderm that contribute to certain head muscles and the heart. These studies reveal that the genetic program controlling pharyngeal muscles overlaps with that of the heart. Indeed cardiac and craniofacial birth defects are often linked. Recent studies suggest that early chordates, the last common ancestor of tunicates and vertebrates, had an ancestral pharyngeal mesoderm lineage that later during evolution gave rise to both heart and craniofacial structures. This chapter summarizes studies related to the origins, signaling, genetics, and evolution of the head musculature, highlighting its heterogeneous characteristics in all these aspects.
Collapse
Affiliation(s)
- Eldad Tzahor
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, 76100, Israel,
| |
Collapse
|
40
|
Abstract
This review will focus on the use of the chicken and quail as model systems to analyze myogenesis and as such will emphasize the experimental approaches that are strongest in these systems-the amenability of the avian embryo to manipulation and in ovo observation. During somite differentiation, a wide spectrum of developmental processes occur such as cellular differentiation, migration, and fusion. Cell lineage studies combined with recent advancements in cell imaging allow these biological phenomena to be readily observed and hypotheses tested extremely rapidly-a strength that is restricted to the avian system. A clear weakness of the chicken in the past has been genetic approaches to modulate gene function. Recent advances in the electroporation of expression vectors, siRNA constructs, and use of tissue specific reporters have opened the door to increasingly sophisticated experiments that address questions of interest not only to the somite/muscle field in particular but also fundamental to biology in general. Importantly, an ever-growing body of evidence indicates that somite differentiation in birds is indistinguishable to that of mammals; therefore, these avian studies complement the complex genetic models of the mouse.
Collapse
Affiliation(s)
- Claire E Hirst
- EMBL Australia, Australian Regenerative Medicine Institute (ARMI), Monash University, Clayton, VIC, 3800, Australia,
| | | |
Collapse
|
41
|
Voelkel JE, Harvey JA, Adams JS, Lassiter RN, Stark MR. FGF and Notch signaling in sensory neuron formation: A multifactorial approach to understanding signaling pathway hierarchy. Mech Dev 2014; 134:55-66. [DOI: 10.1016/j.mod.2014.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/08/2014] [Accepted: 09/21/2014] [Indexed: 10/24/2022]
|
42
|
Mok GF, Cardenas R, Anderton H, Campbell KHS, Sweetman D. Interactions between FGF18 and retinoic acid regulate differentiation of chick embryo limb myoblasts. Dev Biol 2014; 396:214-23. [PMID: 25446536 DOI: 10.1016/j.ydbio.2014.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/25/2014] [Accepted: 10/10/2014] [Indexed: 10/24/2022]
Abstract
During limb development Pax3 positive myoblasts delaminate from the hypaxial dermomyotome of limb level somites and migrate into the limb bud where they form the dorsal and ventral muscle masses. Only then do they begin to differentiate and express markers of myogenic commitment and determination such as Myf5 and MyoD. However the signals regulating this process remain poorly characterised. We show that FGF18, which is expressed in the distal mesenchyme of the limb bud, induces premature expression of both Myf5 and MyoD and that blocking FGF signalling also inhibits endogenous MyoD expression. This expression is mediated by ERK MAP kinase but not PI3K signalling. We also show that retinoic acid (RA) can inhibit the myogenic activity of FGF18 and that blocking RA signalling allows premature induction of MyoD by FGF18 at HH19. We propose a model where interactions between FGF18 in the distal limb and retinoic acid in the proximal limb regulate the timing of myogenic gene expression during limb bud development.
Collapse
Affiliation(s)
- Gi Fay Mok
- Division of Animal Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington LE12 5RD, UK
| | - Ryan Cardenas
- Division of Animal Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington LE12 5RD, UK
| | - Helen Anderton
- Division of Animal Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington LE12 5RD, UK
| | - Keith H S Campbell
- Division of Animal Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington LE12 5RD, UK
| | - Dylan Sweetman
- Division of Animal Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington LE12 5RD, UK.
| |
Collapse
|
43
|
Van Dyke JM, Suzuki M. FGF-2: a critical factor for producing myogenic progenitors and skeletal muscle from pluripotent sources? Regen Med 2014; 9:405-7. [PMID: 25159055 DOI: 10.2217/rme.14.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Jonathan M Van Dyke
- Department of Comparative Biosciences, Stem Cell & Regenerative Medicine Center, University of Wisconsin, Madison, WI 53706, USA
| | | |
Collapse
|
44
|
Michailovici I, Harrington HA, Azogui HH, Yahalom-Ronen Y, Plotnikov A, Ching S, Stumpf MPH, Klein OD, Seger R, Tzahor E. Nuclear to cytoplasmic shuttling of ERK promotes differentiation of muscle stem/progenitor cells. Development 2014; 141:2611-20. [PMID: 24924195 DOI: 10.1242/dev.107078] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The transition between the proliferation and differentiation of progenitor cells is a key step in organogenesis, and alterations in this process can lead to developmental disorders. The extracellular signal-regulated kinase 1/2 (ERK) signaling pathway is one of the most intensively studied signaling mechanisms that regulates both proliferation and differentiation. How a single molecule (e.g. ERK) can regulate two opposing cellular outcomes is still a mystery. Using both chick and mouse models, we shed light on the mechanism responsible for the switch from proliferation to differentiation of head muscle progenitors and implicate ERK subcellular localization. Manipulation of the fibroblast growth factor (FGF)-ERK signaling pathway in chick embryos in vitro and in vivo demonstrated that blockage of this pathway accelerated myogenic differentiation, whereas its activation diminished it. We next examined whether the spatial subcellular localization of ERK could act as a switch between proliferation (nuclear ERK) and differentiation (cytoplasmic ERK) of muscle progenitors. A myristoylated peptide that blocks importin 7-mediated ERK nuclear translocation induced robust myogenic differentiation of muscle progenitor/stem cells in both head and trunk. In the mouse, analysis of Sprouty mutant embryos revealed that increased ERK signaling suppressed both head and trunk myogenesis. Our findings, corroborated by mathematical modeling, suggest that ERK shuttling between the nucleus and the cytoplasm provides a switch-like transition between proliferation and differentiation of muscle progenitors.
Collapse
Affiliation(s)
- Inbal Michailovici
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Heather A Harrington
- Theoretical Systems Biology, Division of Molecular Biosciences, Imperial College London, London SW7 2AZ, UK
| | - Hadar Hay Azogui
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yfat Yahalom-Ronen
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Alexander Plotnikov
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Saunders Ching
- Department of Orofacial Sciences and Program in Craniofacial and Mesenchymal Biology, University of California San Francisco, San Francisco, CA 94143-0430, USA
| | - Michael P H Stumpf
- Theoretical Systems Biology, Division of Molecular Biosciences, Imperial College London, London SW7 2AZ, UK
| | - Ophir D Klein
- Department of Orofacial Sciences and Program in Craniofacial and Mesenchymal Biology, University of California San Francisco, San Francisco, CA 94143-0430, USA Department of Pediatrics, Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143-0442, USA
| | - Rony Seger
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Eldad Tzahor
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
45
|
ALK5-mediated transforming growth factor β signaling in neural crest cells controls craniofacial muscle development via tissue-tissue interactions. Mol Cell Biol 2014; 34:3120-31. [PMID: 24912677 DOI: 10.1128/mcb.00623-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The development of the craniofacial muscles requires reciprocal interactions with surrounding craniofacial tissues that originate from cranial neural crest cells (CNCCs). However, the molecular mechanism involved in the tissue-tissue interactions between CNCCs and muscle progenitors during craniofacial muscle development is largely unknown. In the current study, we address how CNCCs regulate the development of the tongue and other craniofacial muscles using Wnt1-Cre; Alk5(fl/fl) mice, in which loss of Alk5 in CNCCs results in severely disrupted muscle formation. We found that Bmp4 is responsible for reduced proliferation of the myogenic progenitor cells in Wnt1-Cre; Alk5(fl/fl) mice during early myogenesis. In addition, Fgf4 and Fgf6 ligands were reduced in Wnt1-Cre; Alk5(fl/fl) mice and are critical for differentiation of the myogenic cells. Addition of Bmp4 or Fgf ligands rescues the proliferation and differentiation defects in the craniofacial muscles of Alk5 mutant mice in vitro. Taken together, our results indicate that CNCCs play critical roles in controlling craniofacial myogenic proliferation and differentiation through tissue-tissue interactions.
Collapse
|
46
|
Tu CF, Tsao KC, Lee SJ, Yang RB. SCUBE3 (signal peptide-CUB-EGF domain-containing protein 3) modulates fibroblast growth factor signaling during fast muscle development. J Biol Chem 2014; 289:18928-42. [PMID: 24849601 DOI: 10.1074/jbc.m114.551929] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
SCUBE3 (signal peptide CUB-EGF-like domain-containing protein 3) belongs to a newly identified secreted and cell membrane-associated SCUBE family, which is evolutionarily conserved in vertebrates. Scube3 is predominantly expressed in a variety of developing tissues in mice such as somites, neural tubes, and limb buds. However, its function during development remains unclear. In this study, we first showed that knockdown of SCUBE3 in C2C12 myoblasts inhibited FGF receptor 4 expression and FGF signaling, thus resulting in reduced myogenic differentiation. Furthermore, knockdown of zebrafish scube3 by antisense morpholino oligonucleotides specifically suppressed the expression of the myogenic marker myod1 within the lateral fast muscle precursors, whereas its expression in the adaxial slow muscle precursors was largely unaffected. Consistent with these findings, immunofluorescent staining of fast but not slow muscle myosin was markedly decreased in scube3 morphants. Further genetic studies identified fgf8 as a key regulator in scube3-mediated fast muscle differentiation in zebrafish. Biochemical and molecular analysis showed that SCUBE3 acts as a FGF co-receptor to augment FGF8 signaling. Scube3 may be a critical upstream regulator of fast fiber myogenesis by modulating fgf8 signaling during zebrafish embryogenesis.
Collapse
Affiliation(s)
- Cheng-Fen Tu
- From the Institute of Biomedical Sciences and the, Academia Sinica, Taipei 11529, Taiwan, the Molecular Medicine Program, Taiwan International Graduate Program, Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan, the Institute of Biochemistry and Molecular Biology and
| | - Ku-Chi Tsao
- From the Institute of Biomedical Sciences and the, Academia Sinica, Taipei 11529, Taiwan
| | - Shyh-Jye Lee
- the Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Ruey-Bing Yang
- From the Institute of Biomedical Sciences and the, Academia Sinica, Taipei 11529, Taiwan, the Molecular Medicine Program, Taiwan International Graduate Program, Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan, the Institute of Biochemistry and Molecular Biology and the Institute of Pharmacology, National Yang-Ming University, Taipei 11221, Taiwan,
| |
Collapse
|
47
|
Hosoyama T, McGivern JV, Van Dyke JM, Ebert AD, Suzuki M. Derivation of myogenic progenitors directly from human pluripotent stem cells using a sphere-based culture. Stem Cells Transl Med 2014; 3:564-74. [PMID: 24657962 DOI: 10.5966/sctm.2013-0143] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Using stem cells to replace degenerating muscle cells and restore lost skeletal muscle function is an attractive therapeutic strategy for treating neuromuscular diseases. Myogenic progenitors are a valuable cell type for cell-based therapy and also provide a platform for studying normal muscle development and disease mechanisms in vitro. Human pluripotent stem cells represent a valuable source of tissue for generating myogenic progenitors. Here, we present a novel protocol for deriving myogenic progenitors from human embryonic stem (hES) and induced pluripotent stem (iPS) cells using free-floating spherical culture (EZ spheres) in a defined culture medium. hES cell colonies and human iPS cell colonies were expanded in medium supplemented with high concentrations (100 ng/ml) of fibroblast growth factor-2 (FGF-2) and epidermal growth factor in which they formed EZ spheres and were passaged using a mechanical chopping method. We found myogenic progenitors in the spheres after 6 weeks of culture and multinucleated myotubes following sphere dissociation and 2 weeks of terminal differentiation. A high concentration of FGF-2 plays a critical role for myogenic differentiation and is necessary for generating myogenic progenitors from pluripotent cells cultured as EZ spheres. Importantly, EZ sphere culture produced myogenic progenitors from human iPS cells generated from both healthy donors and patients with neuromuscular disorders (including Becker's muscular dystrophy, spinal muscular atrophy, and familial amyotrophic lateral sclerosis). Taken together, this study demonstrates a simple method for generating myogenic cells from pluripotent sources under defined conditions for potential use in disease modeling or cell-based therapies targeting skeletal muscle.
Collapse
Affiliation(s)
- Tohru Hosoyama
- Department of Comparative Biosciences and The Stem Cell and Regenerative Medicine Center, University of Wisconsin, Madison, Wisconsin, USA; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | | | | | | |
Collapse
|
48
|
Freick M, Behn H, Hardt M, Knobloch S, Eftekharzadeh B, Schütz E, Brenig B. Monozygotic incomplete caudal duplication in a German Holstein calf. VETERINARY RECORD CASE REPORTS 2014. [DOI: 10.1136/vetreccr-2014-000048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- M. Freick
- Veterinary Practice ZettlitzStraße der Jugend 68Zettlitz09306Germany
| | - H. Behn
- Landesuntersuchungsanstalt für das Gesundheits‐und Veterinärwesen SachsenBahnhofstraße 58‐60Leipzig04158Germany
| | - M. Hardt
- Landesuntersuchungsanstalt für das Gesundheits‐und Veterinärwesen SachsenBahnhofstraße 58‐60Leipzig04158Germany
| | - S. Knobloch
- Veterinary Practice HausdorfZollwitzer Ring 1Colditz04680Germany
| | - B. Eftekharzadeh
- Laboratory of Molecular Biophysics, Chemistry and Molecular Pharmacology ProgramInstitute for Research in BiomedicineBaldiri Reixac 10Barcelona08028Spain
| | - E. Schütz
- Institute of Veterinary MedicineBurckhardtweg 2Göttingen37077Germany
| | - B. Brenig
- Institute of Veterinary MedicineBurckhardtweg 2Göttingen37077Germany
| |
Collapse
|
49
|
Starostová M, Cermák V, Dvořáková M, Karafiát V, Kosla J, Dvořák M. The oncoprotein v-Myb activates transcription of Gremlin 2 during in vitro differentiation of the chicken neural crest to melanoblasts. Gene 2014; 540:122-9. [PMID: 24576577 DOI: 10.1016/j.gene.2014.02.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 02/18/2014] [Accepted: 02/21/2014] [Indexed: 01/09/2023]
Abstract
The neural crest (NC) is a transient dynamic structure of ectodermal origin, found in early vertebrate embryos. The multipotential NC cells migrate along well defined routes, differentiate to various cell types including melanocytes and participate in the formation of various permanent tissues. As there is only limited information about the molecular mechanisms controlling early events in melanocyte specification and development, we exploited the AMV v-Myb transcriptional regulator, which directs differentiation of in vitro chicken NC cells to the melanocyte lineage. This activity is strictly dependent on v-Myb specifically binding to the Myb recognition DNA element (MRE). The two tamoxifen-inducible v-Myb alleles were constructed one which recognizes the MRE and one which does not. These were activated in ex ovo NC cells, and the expression profiles of resulting cells were analyzed using Affymetrix microarrays and RT-PCR. These approaches revealed up-regulation of the BMP antagonist Gremlin 2 mRNA, and down-regulation of mRNAs encoding several epithelial genes including KRT19 as very early events following the activation of melanocyte differentiation by v-Myb. The enforced v-Myb expression in neural tubes of chicken embryos resulted in detectable presence of Gremlin 2 mRNA. However, expression of Gremlin 2 in NC cells did not promote formation of melanocytes suggesting that Gremlin 2 is not the master regulator of melanocytic differentiation.
Collapse
Affiliation(s)
- Michaela Starostová
- Institute of Molecular Genetics AS CR, v.v.i., Department of Molecular Virology, Vídeňská 1083, Praha 4 142 20, Czech Republic.
| | - Vladimír Cermák
- Institute of Molecular Genetics AS CR, v.v.i., Department of Molecular Virology, Vídeňská 1083, Praha 4 142 20, Czech Republic.
| | - Marta Dvořáková
- Institute of Molecular Genetics AS CR, v.v.i., Department of Molecular Virology, Vídeňská 1083, Praha 4 142 20, Czech Republic.
| | - Vít Karafiát
- Institute of Molecular Genetics AS CR, v.v.i., Department of Molecular Virology, Vídeňská 1083, Praha 4 142 20, Czech Republic.
| | - Jan Kosla
- Institute of Molecular Genetics AS CR, v.v.i., Department of Molecular Virology, Vídeňská 1083, Praha 4 142 20, Czech Republic.
| | - Michal Dvořák
- Institute of Molecular Genetics AS CR, v.v.i., Department of Molecular Virology, Vídeňská 1083, Praha 4 142 20, Czech Republic.
| |
Collapse
|
50
|
Luo Y, Yang C, Ye M, Jin C, Abbruzzese JL, Lee MH, Yeung SCJ, McKeehan WL. Deficiency of metabolic regulator FGFR4 delays breast cancer progression through systemic and microenvironmental metabolic alterations. Cancer Metab 2013; 1:21. [PMID: 24279986 PMCID: PMC4178208 DOI: 10.1186/2049-3002-1-21] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 11/08/2013] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Endocrine FGF21 and FGF19 target adipocytes and hepatocytes through betaKlotho (KLB) and FGFR tyrosine kinases effecting glucose, lipid and energy metabolism. Both factors alleviate obesity and metabolic abnormalities which are contributing factors to breast tumor progression. Genomic manipulation of hepatic FGFR4 has uncovered roles of endocrine FGF signaling in both metabolic and cellular homeostasis. Here we determined whether systemic and microenvironmental metabolic alterations caused by the FGFR4 deficiency affect tumorigenesis in breast where FGFR4 is negligible. Breast tumors were induced in the bigenic mice with ablation of FGFR4 and overexpression of TGFα that activates Her2 in the ductal and lobular epithelium surrounded by adipocytes. Mammary tumorigenesis and alterations in systemic and breast microenvironmental metabolic parameters and regulatory pathways were analyzed. RESULTS Ablation of FGFR4 had no effect on cellular homeostasis and Her2 activity of normal breast tissue. However, the absence of FGFR4 reduced TGFα-driven breast tumor incidence and progression and improved host survival. Notable increases in hepatic and serum FGF21, ileal FGF15/19, adiponectin and adipsin, and decreases in systemic Fetuin A, IGF-1, IGFBP-1, RBP4 and TIMP1 were observed. The ablation affected adipogenesis and secretory function of adipocytes as well as lipogenesis, glycolysis and energy homeostasis associated with the functions of mitochondria, ER and peroxisomes in the breast and tumor foci. Treatment with a chemical inhibitor of NAMPT involved in the pathways inhibited the growth and survival of breast tumor cells and tumor-initiating cell-containing spheres. The FGFR4 ablation also caused elevation of inflammatory factors in the breast. CONCLUSIONS Although the primary role of FGFR4 in metabolism occurs in hepatocytes, its ablation results in a net inhibitory effect on mammary tumor progression. We suggest that the tumor-delaying effect of FGFR4 deficiency may be in large part due to elevated anti-obesogenic FGF21 that triggers tumor-suppressing signals from both peripheral and breast adipocytes. The predominant changes in metabolic pathways suggested roles of metabolic effects from both peripheral and breast adipocytes on metabolic reprogramming in breast epithelial cells that contribute to the suppression of tumor progression. These results provide new insights into the contribution of systemic and microenvironmental metabolic effects controlled by endocrine FGF signaling to breast carcinogenesis.
Collapse
Affiliation(s)
- Yongde Luo
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, 2121 W, Holcombe Blvd,, Houston, TX 77030-3303, USA.
| | | | | | | | | | | | | | | |
Collapse
|