1
|
Wang C, Lei B, Liu Y. An Analysis of a Transposable Element Expression Atlas during 27 Developmental Stages in Porcine Skeletal Muscle: Unveiling Molecular Insights into Pork Production Traits. Animals (Basel) 2023; 13:3581. [PMID: 38003198 PMCID: PMC10668843 DOI: 10.3390/ani13223581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
The development and growth of porcine skeletal muscle determine pork quality and yield. While genetic regulation of porcine skeletal muscle development has been extensively studied using various omics data, the role of transposable elements (TEs) in this context has been less explored. To bridge this gap, we constructed a comprehensive atlas of TE expression throughout the developmental stages of porcine skeletal muscle. This was achieved by integrating porcine TE genomic coordinates with whole-transcriptome RNA-Seq data from 27 developmental stages. We discovered that in pig skeletal muscle, active Tes are closely associated with active epigenomic marks, including low levels of DNA methylation, high levels of chromatin accessibility, and active histone modifications. Moreover, these TEs include 6074 self-expressed TEs that are significantly enriched in terms of muscle cell development and myofibril assembly. Using the TE expression data, we conducted a weighted gene co-expression network analysis (WGCNA) and identified a module that is significantly associated with muscle tissue development as well as genome-wide association studies (GWAS) of the signals of pig meat and carcass traits. Within this module, we constructed a TE-mediated gene regulatory network by adopting a unique multi-omics integration approach. This network highlighted several established candidate genes associated with muscle-relevant traits, including HES6, CHRNG, ACTC1, CHRND, MAMSTR, and PER2, as well as novel genes like ENSSSCG00000005518, ENSSSCG00000033601, and PIEZO2. These novel genes hold promise for regulating muscle-related traits in pigs. In summary, our research not only enhances the TE-centered dissection of the genetic basis underlying pork production traits, but also offers a general approach for constructing TE-mediated regulatory networks to study complex traits or diseases.
Collapse
Affiliation(s)
- Chao Wang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (C.W.); (B.L.)
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Bowen Lei
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (C.W.); (B.L.)
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Yuwen Liu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (C.W.); (B.L.)
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Kunpeng Institute of Modern Agriculture at Foshan, Chinese Academy of Agricultural Sciences, Foshan 528226, China
| |
Collapse
|
2
|
Wang J, Broer T, Chavez T, Zhou CJ, Tran S, Xiang Y, Khodabukus A, Diao Y, Bursac N. Myoblast deactivation within engineered human skeletal muscle creates a transcriptionally heterogeneous population of quiescent satellite-like cells. Biomaterials 2022; 284:121508. [PMID: 35421801 PMCID: PMC9289780 DOI: 10.1016/j.biomaterials.2022.121508] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 03/18/2022] [Accepted: 04/01/2022] [Indexed: 12/19/2022]
Abstract
Satellite cells (SCs), the adult Pax7-expressing stem cells of skeletal muscle, are essential for muscle repair. However, in vitro investigations of SC function are challenging due to isolation-induced SC activation, loss of native quiescent state, and differentiation to myoblasts. In the present study, we optimized methods to deactivate in vitro expanded human myoblasts within a 3D culture environment of engineered human skeletal muscle tissues ("myobundles"). Immunostaining and gene expression analyses revealed that a fraction of myoblasts within myobundles adopted a quiescent phenotype (3D-SCs) characterized by increased Pax7 expression, cell cycle exit, and activation of Notch signaling. Similar to native SCs, 3D-SC quiescence is regulated by Notch and Wnt signaling while loss of quiescence and reactivation of 3D-SCs can be induced by growth factors including bFGF. Myobundle injury with a bee toxin, melittin, induces robust myofiber fragmentation, functional decline, and 3D-SC proliferation. By applying single cell RNA-sequencing (scRNA-seq), we discover the existence of two 3D-SC subpopulations (quiescent and activated), identify deactivation-associated gene signature using trajectory inference between 2D myoblasts and 3D-SCs, and characterize the transcriptomic changes within reactivated 3D-SCs in response to melittin-induced injury. These results demonstrate the ability of an in vitro engineered 3D human skeletal muscle environment to support the formation of a quiescent and heterogeneous SC population recapitulating several aspects of the native SC phenotype, and provide a platform for future studies of human muscle regeneration and disease-associated SC dysfunction.
Collapse
Affiliation(s)
- Jason Wang
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Torie Broer
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Taylor Chavez
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Chris J Zhou
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Sabrina Tran
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Yu Xiang
- Department of Cell Biology, Duke University, Durham, NC, USA
| | | | - Yarui Diao
- Department of Cell Biology, Duke University, Durham, NC, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
3
|
Homodimeric and Heterodimeric Interactions among Vertebrate Basic Helix-Loop-Helix Transcription Factors. Int J Mol Sci 2021; 22:ijms222312855. [PMID: 34884664 PMCID: PMC8657788 DOI: 10.3390/ijms222312855] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 01/01/2023] Open
Abstract
The basic helix–loop–helix transcription factor (bHLH TF) family is involved in tissue development, cell differentiation, and disease. These factors have transcriptionally positive, negative, and inactive functions by combining dimeric interactions among family members. The best known bHLH TFs are the E-protein homodimers and heterodimers with the tissue-specific TFs or ID proteins. These cooperative and dynamic interactions result in a complex transcriptional network that helps define the cell’s fate. Here, the reported dimeric interactions of 67 vertebrate bHLH TFs with other family members are summarized in tables, including specifications of the experimental techniques that defined the dimers. The compilation of these extensive data underscores homodimers of tissue-specific bHLH TFs as a central part of the bHLH regulatory network, with relevant positive and negative transcriptional regulatory roles. Furthermore, some sequence-specific TFs can also form transcriptionally inactive heterodimers with each other. The function, classification, and developmental role for all vertebrate bHLH TFs in four major classes are detailed.
Collapse
|
4
|
Yartseva V, Goldstein LD, Rodman J, Kates L, Chen MZ, Chen YJJ, Foreman O, Siebel CW, Modrusan Z, Peterson AS, Jovičić A. Heterogeneity of Satellite Cells Implicates DELTA1/NOTCH2 Signaling in Self-Renewal. Cell Rep 2021; 30:1491-1503.e6. [PMID: 32023464 DOI: 10.1016/j.celrep.2019.12.100] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 09/27/2019] [Accepted: 12/30/2019] [Indexed: 12/20/2022] Open
Abstract
How satellite cells and their progenitors balance differentiation and self-renewal to achieve sustainable tissue regeneration is not well understood. A major roadblock to understanding satellite cell fate decisions has been the difficulty of studying this process in vivo. By visualizing expression dynamics of myogenic transcription factors during early regeneration in vivo, we identify the time point at which cells undergo decisions to differentiate or self-renew. Single-cell RNA sequencing reveals heterogeneity of satellite cells, including a subpopulation enriched in Notch2 receptor expression, during both muscle homeostasis and regeneration. Furthermore, we reveal that differentiating cells express the Dll1 ligand. Using antagonistic antibodies, we demonstrate that the DLL1 and NOTCH2 signaling pair is required for satellite cell self-renewal. Thus, differentiating cells provide the self-renewing signal during regeneration, enabling proportional regeneration in response to injury while maintaining the satellite cell pool. These findings have implications for therapeutic control of muscle regeneration.
Collapse
Affiliation(s)
- Valeria Yartseva
- Department of Molecular Biology, Genentech Inc., South San Francisco, CA 94080, USA; Department of Neuroscience, Genentech Inc., South San Francisco, CA 94080, USA
| | - Leonard D Goldstein
- Department of Molecular Biology, Genentech Inc., South San Francisco, CA 94080, USA; Department of Bioinformatics & Computational Biology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Julia Rodman
- Department of Molecular Biology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Lance Kates
- Department of Molecular Biology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Mark Z Chen
- Department of Molecular Biology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Ying-Jiun J Chen
- Department of Molecular Biology, Genentech Inc., South San Francisco, CA 94080, USA; Department of Protein Chemistry, Genentech Inc., South San Francisco, CA 94080, USA
| | - Oded Foreman
- Department of Pathology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Christian W Siebel
- Department of Discovery Oncology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Zora Modrusan
- Department of Molecular Biology, Genentech Inc., South San Francisco, CA 94080, USA; Department of Protein Chemistry, Genentech Inc., South San Francisco, CA 94080, USA
| | - Andrew S Peterson
- Department of Molecular Biology, Genentech Inc., South San Francisco, CA 94080, USA; Seven Rivers Genomic Medicines, MedGenome, Foster City, CA, USA
| | - Ana Jovičić
- Department of Molecular Biology, Genentech Inc., South San Francisco, CA 94080, USA; Department of Neuroscience, Genentech Inc., South San Francisco, CA 94080, USA.
| |
Collapse
|
5
|
Shu Y, Xia J, Yu Q, Wang G, Zhang J, He J, Wang H, Zhang L, Wu H. Integrated analysis of mRNA and miRNA expression profiles reveals muscle growth differences between adult female and male Chinese concave-eared frogs (Odorrana tormota). Gene 2018; 678:241-251. [PMID: 30103010 DOI: 10.1016/j.gene.2018.08.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 07/24/2018] [Accepted: 08/02/2018] [Indexed: 02/07/2023]
Abstract
The Chinese concave-eared torrent frog (Odorrana tormota) is the first known non-mammalian vertebrate that can communicate using ultrasound. In this species, females are approximately four times as large as males, in which the female growth rate is obviously higher than that of male. Until now, the molecular mechanisms underlying muscle growth development differences between male and female frogs have not been reported. Here, we integrated mRNA and miRNA expression profiles to reveal growth differences in the hindlimb muscles of 2-year-old frogs. Among 569 differentially expressed genes (DEGs), 69 were associated with muscle growth and regeneration. Fifty-one up-regulated genes in females were potentially involved in promoting muscle growth and regeneration, whereas 18 up-regulated genes in males may lead to muscle growth inhibition and fast-twitch muscle fiber contraction. 244 DEGs were enriched in mTOR and other protein synthesis signaling pathways, and protein degradation pathways, including lysosomal protease, calpain, caspase, and ubiquitin-proteasome system pathways. It may interpret why female muscles grow faster than males. Based on expression differences of genes involved in glycolysis and oxidative metabolism, we speculated that the proportion of slow muscle fiber was higher and that of fast muscle fiber was lower in female compared with male muscle. Additionally, 767 miRNAs were identified, including 217 new miRNAs, and 6248 miRNA-negatively regulated mRNAs were predicted. The miRNA target genes were enriched in pathways related to muscle growth, protein synthesis, and degradation. Thus, in addition to the identified mRNA differential expressions, miRNAs may play other important roles in the differential regulation of hindlimb muscle growth between female and male O. tormota.
Collapse
Affiliation(s)
- Yilin Shu
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu 241000, China; College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Jinquan Xia
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu 241000, China; College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Qiang Yu
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu 241000, China; College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Gang Wang
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu 241000, China; College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Jihui Zhang
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu 241000, China; College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Jun He
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu 241000, China; College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Huan Wang
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu 241000, China; College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Ling Zhang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University of Science and Technology, China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, China.
| | - Hailong Wu
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu 241000, China; College of Life Sciences, Anhui Normal University, Wuhu 241000, China.
| |
Collapse
|
6
|
The histone code reader Spin1 controls skeletal muscle development. Cell Death Dis 2017; 8:e3173. [PMID: 29168801 PMCID: PMC5775400 DOI: 10.1038/cddis.2017.468] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/12/2017] [Accepted: 07/28/2017] [Indexed: 01/06/2023]
Abstract
While several studies correlated increased expression of the histone code reader Spin1 with tumor formation or growth, little is known about physiological functions of the protein. We generated Spin1M5 mice with ablation of Spin1 in myoblast precursors using the Myf5-Cre deleter strain. Most Spin1M5 mice die shortly after birth displaying severe sarcomere disorganization and necrosis. Surviving Spin1M5 mice are growth-retarded and exhibit the most prominent defects in soleus, tibialis anterior, and diaphragm muscle. Transcriptome analyses of limb muscle at embryonic day (E) 15.5, E16.5, and at three weeks of age provided evidence for aberrant fetal myogenesis and identified deregulated skeletal muscle (SkM) functional networks. Determination of genome-wide chromatin occupancy in primary myoblast revealed direct Spin1 target genes and suggested that deregulated basic helix-loop-helix transcription factor networks account for developmental defects in Spin1M5 fetuses. Furthermore, correlating histological and transcriptome analyses, we show that aberrant expression of titin-associated proteins, abnormal glycogen metabolism, and neuromuscular junction defects contribute to SkM pathology in Spin1M5 mice. Together, we describe the first example of a histone code reader controlling SkM development in mice, which hints at Spin1 as a potential player in human SkM disease.
Collapse
|
7
|
Nam SM, Kim YN, Kim JW, Kyeong DS, Lee SH, Son Y, Shin JH, Kim J, Yi SS, Yoon YS, Seong JK. Hairy and Enhancer of Split 6 (Hes6) Deficiency in Mouse Impairs Neuroblast Differentiation in Dentate Gyrus Without Affecting Cell Proliferation and Integration into Mature Neurons. Cell Mol Neurobiol 2016; 36:57-67. [PMID: 26105991 PMCID: PMC11482492 DOI: 10.1007/s10571-015-0220-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 06/01/2015] [Indexed: 11/29/2022]
Abstract
Hes6 is a member of the hairy-enhancer of split homolog (Hes) family of transcription factors and interacts with other Hes family genes. During development, Hes genes are expressed in neural stem cells and progenitor cells. However, the role of Hes6 in adult hippocampal neurogenesis remains unclear. We therefore investigated the effects of Hes6 on adult hippocampal neurogenesis, by comparing Hes6 knockout and wild-type mice. To this end, we immunostained for markers of neural stem cells and progenitor cells (nestin), proliferating cells (Ki67), post-mitotic neuroblasts and immature neurons (doublecortin, DCX), mature neuronal cells (NeuN), and astrocyte (S100β). We also injected 5-bromo-2'-deoxyuridine (BrdU) to trace the fate of mitotic cells. Nestin- and Ki67-positive proliferating cells did now show any significant differences between wild and knockout groups. Hes6 knockout negatively affects neuroblast differentiation based on DCX immunohistochemistry. On the contrary, the ratio of the BrdU and NeuN double-positive cells did not show any significance, even though it was slightly higher in the knockout group. These results suggest that Hes6 is involved in the regulation of neuroblast differentiation during adult neurogenesis, but does not influence integration into mature neurons.
Collapse
Affiliation(s)
- Sung Min Nam
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Seoul National University, Seoul, 151-742, South Korea
- BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, Seoul National University, Seoul, 151-742, South Korea
- KMPC (Korea Mouse Phenotyping Center), Seoul National University, Seoul, 151-742, South Korea
| | - Yo Na Kim
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Seoul National University, Seoul, 151-742, South Korea
- BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, Seoul National University, Seoul, 151-742, South Korea
- KMPC (Korea Mouse Phenotyping Center), Seoul National University, Seoul, 151-742, South Korea
| | - Jong Whi Kim
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Seoul National University, Seoul, 151-742, South Korea
- BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, Seoul National University, Seoul, 151-742, South Korea
- KMPC (Korea Mouse Phenotyping Center), Seoul National University, Seoul, 151-742, South Korea
| | - Dong Soo Kyeong
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Seoul National University, Seoul, 151-742, South Korea
- BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, Seoul National University, Seoul, 151-742, South Korea
- KMPC (Korea Mouse Phenotyping Center), Seoul National University, Seoul, 151-742, South Korea
| | - Seo Hyun Lee
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Seoul National University, Seoul, 151-742, South Korea
- BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, Seoul National University, Seoul, 151-742, South Korea
- KMPC (Korea Mouse Phenotyping Center), Seoul National University, Seoul, 151-742, South Korea
| | - Yeri Son
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Seoul National University, Seoul, 151-742, South Korea
- BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, Seoul National University, Seoul, 151-742, South Korea
- KMPC (Korea Mouse Phenotyping Center), Seoul National University, Seoul, 151-742, South Korea
| | - Jae Hoon Shin
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Seoul National University, Seoul, 151-742, South Korea
- BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, Seoul National University, Seoul, 151-742, South Korea
- KMPC (Korea Mouse Phenotyping Center), Seoul National University, Seoul, 151-742, South Korea
| | - Jaesang Kim
- Department of Life Sciences and Ewha Research Center for Systems Biology, Ewha Womans University, Seoul, 120-750, South Korea
| | - Sun Shin Yi
- Department of Biomedical Laboratory Science, College of Biomedical Sciences, Soonchunhyang University, Asan, 336-745, South Korea
| | - Yeo Sung Yoon
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Seoul National University, Seoul, 151-742, South Korea.
- BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, Seoul National University, Seoul, 151-742, South Korea.
- KMPC (Korea Mouse Phenotyping Center), Seoul National University, Seoul, 151-742, South Korea.
| | - Je Kyung Seong
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Seoul National University, Seoul, 151-742, South Korea.
- BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, Seoul National University, Seoul, 151-742, South Korea.
- KMPC (Korea Mouse Phenotyping Center), Seoul National University, Seoul, 151-742, South Korea.
- Interdisciplinary Program for Bioinformatics, Program for Cancer Biology and BIO-MAX Institute, Seoul National University, Seoul, 151-742, South Korea.
| |
Collapse
|
8
|
Westermark P, Herzel H. Mechanism for 12 Hr Rhythm Generation by the Circadian Clock. Cell Rep 2013; 3:1228-38. [DOI: 10.1016/j.celrep.2013.03.013] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 01/25/2013] [Accepted: 03/12/2013] [Indexed: 11/30/2022] Open
|
9
|
Wickramasinghe CM, Domaschenz R, Amagase Y, Williamson D, Missiaglia E, Shipley J, Murai K, Jones PH. HES6 enhances the motility of alveolar rhabdomyosarcoma cells. Exp Cell Res 2012; 319:103-12. [PMID: 22982728 DOI: 10.1016/j.yexcr.2012.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 08/24/2012] [Accepted: 08/26/2012] [Indexed: 01/12/2023]
Abstract
HES6, a member of the hairy-enhancer-of-split family of transcription factors, plays multiple roles in myogenesis. It is a direct target of the myogenic transcription factor MyoD and has been shown to regulate the formation of the myotome in development, myoblast cell cycle exit and the organization of the actin cytoskeleton during terminal differentiation. Here we investigate the expression and function of HES6 in rhabdomyosarcoma, a soft tissue tumor which expresses myogenic genes but fails to differentiate into muscle. We show that HES6 is expressed at high levels in the subset of alveolar rhabdomyosarcomas expressing PAX/FOXO1 fusion genes (ARMSp). Knockdown of HES6 mRNA in the ARMSp cell line RH30 reduces proliferation and cell motility. This phenotype is rescued by expression of mouse Hes6 which is insensitive to HES6 siRNA. Furthermore, expression microarray analysis indicates that the HES6 knockdown is associated with a decrease in the levels of Transgelin, (TAGLN), a regulator of the actin cytoskeleton. Knockdown of TAGLN decreases cell motility, whilst TAGLN overexpression rescues the motility defect resulting from HES6 knockdown. These findings indicate HES6 contributes to the pathogenesis of ARMSp by enhancing both proliferation and cell motility.
Collapse
|
10
|
Maguire RJ, Isaacs HV, Pownall ME. Early transcriptional targets of MyoD link myogenesis and somitogenesis. Dev Biol 2012; 371:256-68. [PMID: 22954963 DOI: 10.1016/j.ydbio.2012.08.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 07/10/2012] [Accepted: 08/22/2012] [Indexed: 12/20/2022]
Abstract
In order to identify early transcriptional targets of MyoD prior to skeletal muscle differentiation, we have undertaken a transcriptomic analysis on gastrula stage Xenopus embryos in which MyoD has been knocked-down. Our validated list of genes transcriptionally regulated by MyoD includes Esr1 and Esr2, which are known targets of Notch signalling, and Tbx6, mesogenin, and FoxC1; these genes are all are known to be essential for normal somitogenesis but are expressed surprisingly early in the mesoderm. In addition we found that MyoD is required for the expression of myf5 in the early mesoderm, in contrast to the reverse relationship of these two regulators in amniote somites. These data highlight a role for MyoD in the early mesoderm in regulating a set of genes that are essential for both myogenesis and somitogenesis.
Collapse
Affiliation(s)
- Richard J Maguire
- Biology Department, University of York, Heslington, York, North Yorkshire YO10 5YW, UK
| | | | | |
Collapse
|
11
|
Zhou M, Yan J, Ma Z, Zhou Y, Abbood NN, Liu J, Su L, Jia H, Guo AY. Comparative and evolutionary analysis of the HES/HEY gene family reveal exon/intron loss and teleost specific duplication events. PLoS One 2012; 7:e40649. [PMID: 22808219 PMCID: PMC3396596 DOI: 10.1371/journal.pone.0040649] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 06/11/2012] [Indexed: 01/16/2023] Open
Abstract
Background HES/HEY genes encode a family of basic helix-loop-helix (bHLH) transcription factors with both bHLH and Orange domain. HES/HEY proteins are direct targets of the Notch signaling pathway and play an essential role in developmental decisions, such as the developments of nervous system, somitogenesis, blood vessel and heart. Despite their important functions, the origin and evolution of this HES/HEY gene family has yet to be elucidated. Methods and Findings In this study, we identified genes of the HES/HEY family in representative species and performed evolutionary analysis to elucidate their origin and evolutionary process. Our results showed that the HES/HEY genes only existed in metazoans and may originate from the common ancestor of metazoans. We identified HES/HEY genes in more than 10 species representing the main lineages. Combining the bHLH and Orange domain sequences, we constructed the phylogenetic trees by different methods (Bayesian, ML, NJ and ME) and classified the HES/HEY gene family into four groups. Our results indicated that this gene family had undergone three expansions, which were along with the origins of Eumetazoa, vertebrate, and teleost. Gene structure analysis revealed that the HES/HEY genes were involved in exon and/or intron loss in different species lineages. Genes of this family were duplicated in bony fishes and doubled than other vertebrates. Furthermore, we studied the teleost-specific duplications in zebrafish and investigated the expression pattern of duplicated genes in different tissues by RT-PCR. Finally, we proposed a model to show the evolution of this gene family with processes of expansion, exon/intron loss, and motif loss. Conclusions Our study revealed the evolution of HES/HEY gene family, the expression and function divergence of duplicated genes, which also provide clues for the research of Notch function in development. This study shows a model of gene family analysis with gene structure evolution and duplication.
Collapse
Affiliation(s)
- Mi Zhou
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Jun Yan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Sino-France Laboratory for Drug Screening, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Zhaowu Ma
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Yang Zhou
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Nibras Najm Abbood
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Jianfeng Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Sino-France Laboratory for Drug Screening, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Li Su
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Sino-France Laboratory for Drug Screening, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Haibo Jia
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
- * E-mail: (A-YG) (HJ); (HJ) (AG)
| | - An-Yuan Guo
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Sino-France Laboratory for Drug Screening, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
- * E-mail: (A-YG) (HJ); (HJ) (AG)
| |
Collapse
|
12
|
Haapa-Paananen S, Kiviluoto S, Waltari M, Puputti M, Mpindi JP, Kohonen P, Tynninen O, Haapasalo H, Joensuu H, Perälä M, Kallioniemi O. HES6 gene is selectively overexpressed in glioma and represents an important transcriptional regulator of glioma proliferation. Oncogene 2012; 31:1299-310. [PMID: 21785461 DOI: 10.1038/onc.2011.316] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Revised: 06/14/2011] [Accepted: 06/21/2011] [Indexed: 12/15/2022]
Abstract
Malignant glioma is the most common brain tumor with 16,000 new cases diagnosed annually in the United States. We performed a systematic large-scale transcriptomics data mining study of 9783 tissue samples from the GeneSapiens database to systematically identify genes that are most glioma-specific. We searched for genes that were highly expressed in 322 glioblastoma multiforme tissue samples and 66 anaplastic astrocytomas as compared with 425 samples from histologically normal central nervous system. Transcription cofactor HES6 (hairy and enhancer of split 6) emerged as the most glioma-specific gene. Immunostaining of a tissue microarray showed HES6 expression in 335 (98.8%) out of the 339 glioma samples. HES6 was expressed in endothelial cells of the normal brain and glioma tissue. Recurrent grade 2 astrocytomas and grade 2 or 3 oligodendrogliomas showed higher levels of HES6 immunoreactivity than the corresponding primary tumors. High HES6 mRNA expression correlated with the proneural subtype that generally has a favorable outcome but is prone to recur. Functional studies suggested an important role for HES6 in supporting survival of glioma cells, as evidenced by reduction of cancer cell proliferation and migration after HES6 silencing. The biological role and consequences of HES6 silencing and overexpression was explored with genome-wide analyses, which implicated a role for HES6 in p53, c-myc and nuclear factor-κB transcriptional networks. We conclude that HES6 is important for glioma cell proliferation and migration, and may have a role in angiogenesis.
Collapse
Affiliation(s)
- S Haapa-Paananen
- Department of Medical Biotechnology, VTT Technical Research Centre of Finland and Centre for Biotechnology, University of Turku, Turku, Finland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Eckalbar WL, Lasku E, Infante CR, Elsey RM, Markov GJ, Allen AN, Corneveaux JJ, Losos JB, DeNardo DF, Huentelman MJ, Wilson-Rawls J, Rawls A, Kusumi K. Somitogenesis in the anole lizard and alligator reveals evolutionary convergence and divergence in the amniote segmentation clock. Dev Biol 2012; 363:308-19. [DOI: 10.1016/j.ydbio.2011.11.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 11/22/2011] [Accepted: 11/29/2011] [Indexed: 12/11/2022]
|
14
|
Makarenkova HP, Meech R. Barx homeobox family in muscle development and regeneration. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 297:117-73. [PMID: 22608559 DOI: 10.1016/b978-0-12-394308-8.00004-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Homeobox transcription factors are key intrinsic regulators of myogenesis. In studies spanning several years, we have characterized the homeobox factor Barx2 as a novel marker for muscle progenitor cells and an important regulator of muscle growth and repair. In this review, we place the expression and function of Barx2 and its paralogue Barx1 in context with other muscle-expressed homeobox factors in both embryonic and adult myogenesis. We also describe the structure and regulation of Barx genes and possible gene/disease associations. The functional domains of Barx proteins, their molecular interactions, and cellular functions are presented with particular emphasis on control of genes and processes involved in myogenic differentiation. Finally, we describe the patterns of Barx gene expression in vivo and the phenotypes of various Barx gene perturbation models including null mice. We focus on the Barx2 null mouse model, which has demonstrated the critical roles of Barx2 in postnatal myogenesis including muscle maintenance during aging, and regeneration of acute and chronic muscle injury.
Collapse
Affiliation(s)
- Helen P Makarenkova
- The Neurobiology Department, Scripps Research Institute, La Jolla, California, USA
| | | |
Collapse
|
15
|
Paul C, Sardet C, Fabbrizio E. The histone- and PRMT5-associated protein COPR5 is required for myogenic differentiation. Cell Death Differ 2011; 19:900-8. [PMID: 22193545 DOI: 10.1038/cdd.2011.193] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Myogenic differentiation requires the coordination between permanent cell cycle withdrawal, mediated by members of the cyclin-dependent kinase inhibitor (CKI) family, and activation of a cascade of myogenic transcription factors, particularly MYOGENIN (MYOG). Recently, it has been reported that the Protein aRginine Methyl Transferase PRMT5 modulates the early phase of induction of MYOG expression. Here, we show that the histone- and PRMT5-associated protein COPR5 (cooperator of PRMT5) is required for myogenic differentiation. C2C12 cells, in which COPR5 had been silenced, could not irreversibly exit the cell cycle and differentiate into muscle cells. This phenotype might be explained by the finding that, in cells in which COPR5 was downregulated, p21 and MYOG induction was strongly reduced and PRMT5 recruitment to the promoters of these genes was also altered. Moreover, we suggest that COPR5 interaction with the Runt-related transcription factor 1 (RUNX1)-core binding factor-β (CBFβ) complex contributes to targeting the COPR5-PRMT5 complex to these promoters. Finally, we present evidence that COPR5 depletion delayed the in vivo regeneration of cardiotoxin-injured mouse skeletal muscles. Altogether, these data extend the role of COPR5 from an adaptor protein required for nuclear functions of PRMT5 to an essential coordinator of myogenic differentiation.
Collapse
Affiliation(s)
- C Paul
- Institut de Génétique Moléculaire de Montpellier, CNRS, UMR5535/IFR122, 1919 route de Mende, 34293 Montpellier cedex 5, France
| | | | | |
Collapse
|
16
|
Hes6 is required for the neurogenic activity of neurogenin and NeuroD. PLoS One 2011; 6:e27880. [PMID: 22114720 PMCID: PMC3218063 DOI: 10.1371/journal.pone.0027880] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 10/27/2011] [Indexed: 11/26/2022] Open
Abstract
In the embryonic neural plate, a subset of precursor cells with neurogenic potential differentiates into neurons. This process of primary neurogenesis requires both the specification of cells for neural differentiation, regulated by Notch signaling, and the activity of neurogenic transcription factors such as neurogenin and NeuroD which drive the program of neural gene expression. Here we study the role of Hes6, a member of the hairy enhancer of split family of transcription factors, in primary neurogenesis in Xenopus embryos. Hes6 is an atypical Hes gene in that it is not regulated by Notch signaling and promotes neural differentiation in mouse cell culture models. We show that depletion of Xenopus Hes6 (Xhes6) by morpholino antisense oligonucleotides results in a failure of neural differentiation, a phenotype rescued by both wild type Xhes6 and a Xhes6 mutant unable to bind DNA. However, an Xhes6 mutant that lacks the ability to bind Groucho/TLE transcriptional co-regulators is only partly able to rescue the phenotype. Further analysis reveals that Xhes6 is essential for the induction of neurons by both neurogenin and NeuroD, acting via at least two distinct mechanisms, the inhibition of antineurogenic Xhairy proteins and by interaction with Groucho/TLE family proteins. We conclude Xhes6 is essential for neurogenesis in vivo, acting via multiple mechanisms to relieve inhibition of proneural transcription factor activity within the neural plate.
Collapse
|
17
|
Malone CMP, Domaschenz R, Amagase Y, Dunham I, Murai K, Jones PH. Hes6 is required for actin cytoskeletal organization in differentiating C2C12 myoblasts. Exp Cell Res 2011; 317:1590-602. [PMID: 21501606 DOI: 10.1016/j.yexcr.2011.03.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 03/29/2011] [Accepted: 03/31/2011] [Indexed: 11/23/2022]
Abstract
Hes6 is a member of the hairy-enhancer-of-split family of transcription factors that regulate proliferating cell fate in development and is known to be expressed in developing muscle. Here we investigate its function in myogenesis in vitro. We show that Hes6 is a direct transcriptional target of the myogenic transcription factors MyoD and Myf5, indicating that it is integral to the myogenic transcriptional program. The localization of Hes6 protein changes during differentiation, becoming predominantly nuclear. Knockdown of Hes6 mRNA levels by siRNA has no effect on cell cycle exit or induction of myosin heavy chain expression in differentiating C2C12 myoblasts, but F-actin filament formation is disrupted and both cell motility and myoblast fusion are reduced. The knockdown phenotype is rescued by expression of Hes6 cDNA resistant to siRNA. These results define a novel role for Hes6 in actin cytoskeletal dynamics in post mitotic myoblasts.
Collapse
Affiliation(s)
- Caroline M P Malone
- MRC Cancer Cell Unit, Hutchison-MRC Research Centre, Addenbrooke's Hospital, Cambridge, UK
| | | | | | | | | | | |
Collapse
|
18
|
Jalali A, Bassuk AG, Kan L, Israsena N, Mukhopadhyay A, McGuire T, Kessler JA. HeyL promotes neuronal differentiation of neural progenitor cells. J Neurosci Res 2011; 89:299-309. [PMID: 21259317 PMCID: PMC3079914 DOI: 10.1002/jnr.22562] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 10/09/2010] [Accepted: 10/19/2010] [Indexed: 11/06/2022]
Abstract
Members of the Hes and Hey families of basic helix-loop-helix transcription factors are regarded as Notch target genes that generally inhibit neuronal differentiation of neural progenitor cells. We found that HeyL, contrary to the classic function of Hes and Hey factors, promotes neuronal differentiation of neural progenitor cells both in culture and in the embryonic brain in vivo. Furthermore, null mutation of HeyL decreased the rate of neuronal differentiation of cultured neural progenitor cells. HeyL binds to and activates the promoter of the proneural gene neurogenin2, which is inhibited by other Hes and Hey family members, and HeyL is a weak inhibitor of the Hes1 promoter. HeyL is able to bind other Hes and Hey family members, but it cannot bind the Groucho/Tle1 transcriptional corepressor, which mediates the inhibitory effects of the Hes family of factors. Furthermore, although HeyL expression is only weakly augmented by Notch signaling, we found that bone morphogenic protein signaling increases HeyL expression by neural progenitor cells. These observations suggest that HeyL promotes neuronal differentiation of neural progenitor cells by activating proneural genes and by inhibiting the actions of other Hes and Hey family members.
Collapse
Affiliation(s)
- Ali Jalali
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Lixin Kan
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Nipan Israsena
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Abhishek Mukhopadhyay
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Tammy McGuire
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - John A. Kessler
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
19
|
Kiparissides A, Koutinas M, Moss T, Newman J, Pistikopoulos EN, Mantalaris A. Modelling the Delta1/Notch1 pathway: in search of the mediator(s) of neural stem cell differentiation. PLoS One 2011; 6:e14668. [PMID: 21346804 PMCID: PMC3035613 DOI: 10.1371/journal.pone.0014668] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 01/14/2011] [Indexed: 11/18/2022] Open
Abstract
The Notch1 signalling pathway has been shown to control neural stem cell fate through lateral inhibition of mash1, a key promoter of neuronal differentiation. Interaction between the Delta1 ligand of a differentiating cell and the Notch1 protein of a neighbouring cell results in cleavage of the trans-membrane protein, releasing the intracellular domain (NICD) leading to the up regulation of hes1. Hes1 homodimerisation leads to down regulation of mash1. Most mathematical models currently represent this pathway up to the formation of the HES1 dimer. Herein, we present a detailed model ranging from the cleavage of the NICD and how this signal propagates through the Delta1/Notch1 pathway to repress the expression of the proneural genes. Consistent with the current literature, we assume that cells at the self renewal state are represented by a stable limit cycle and through in silico experimentation we conclude that a drastic change in the main pathway is required in order for the transition from self-renewal to differentiation to take place. Specifically, a model analysis based approach is utilised in order to generate hypotheses regarding potential mediators of this change. Through this process of model based hypotheses generation and testing, the degradation rates of Hes1 and Mash1 mRNA and the dissociation constant of Mash1-E47 heterodimers are identified as the most potent mediators of the transition towards neural differentiation.
Collapse
Affiliation(s)
- Alexandros Kiparissides
- Biological Systems Engineering Laboratory, Department of Chemical Engineering, Centre for Process Systems Engineering, Imperial College, London, United Kingdom
| | - Michalis Koutinas
- Biological Systems Engineering Laboratory, Department of Chemical Engineering, Centre for Process Systems Engineering, Imperial College, London, United Kingdom
| | - Toby Moss
- Biological Systems Engineering Laboratory, Department of Chemical Engineering, Centre for Process Systems Engineering, Imperial College, London, United Kingdom
| | - John Newman
- Biological Systems Engineering Laboratory, Department of Chemical Engineering, Centre for Process Systems Engineering, Imperial College, London, United Kingdom
| | - Efstratios N. Pistikopoulos
- Biological Systems Engineering Laboratory, Department of Chemical Engineering, Centre for Process Systems Engineering, Imperial College, London, United Kingdom
| | - Athanasios Mantalaris
- Biological Systems Engineering Laboratory, Department of Chemical Engineering, Centre for Process Systems Engineering, Imperial College, London, United Kingdom
- * E-mail:
| |
Collapse
|
20
|
Ciemerych MA, Archacka K, Grabowska I, Przewoźniak M. Cell cycle regulation during proliferation and differentiation of mammalian muscle precursor cells. Results Probl Cell Differ 2011; 53:473-527. [PMID: 21630157 DOI: 10.1007/978-3-642-19065-0_20] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Proliferation and differentiation of muscle precursor cells are intensively studied not only in the developing mouse embryo but also using models of skeletal muscle regeneration or analyzing in vitro cultured cells. These analyses allowed to show the universality of the cell cycle regulation and also uncovered tissue-specific interplay between major cell cycle regulators and factors crucial for the myogenic differentiation. Examination of the events accompanying proliferation and differentiation leading to the formation of functional skeletal muscle fibers allows understanding the molecular basis not only of myogenesis but also of skeletal muscle regeneration. This chapter presents the basis of the cell cycle regulation in proliferating and differentiating muscle precursor cells during development and after muscle injury. It focuses at major cell cycle regulators, myogenic factors, and extracellular environment impacting on the skeletal muscle.
Collapse
Affiliation(s)
- Maria A Ciemerych
- Department of Cytology, Institute of Zoology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.
| | | | | | | |
Collapse
|
21
|
HES6-1 and HES6-2 function through different mechanisms during neuronal differentiation. PLoS One 2010; 5:e15459. [PMID: 21151987 PMCID: PMC2996300 DOI: 10.1371/journal.pone.0015459] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 10/01/2010] [Indexed: 01/19/2023] Open
Abstract
Background Notch signalling plays a central role in the mechanisms regulating neuronal differentiation in the vertebrate nervous system. The transcriptional repressors encoded by Hes genes are the main effectors of this pathway, acting in neural progenitors during the lateral inhibition process to repress proneural genes and inhibit differentiation. However, Hes6 genes seem to behave differently: they are expressed in differentiating neurons and facilitate the activity of proneural genes in promoting neurogenesis. Still, the molecular mechanisms underlying this unique function of Hes6 genes are not yet understood. Methodology/Principal Findings Here, we identify two subgroups of Hes6 genes that seem conserved in most vertebrate species and characterize a novel Hes6 gene in chicken: cHes6-1. The embryonic expression pattern of cHes6-1 suggests roles for this gene in the formation of the pancreas, nervous system and in the generation of body asymmetry. We show that cHes6-1 is negatively regulated by Notch signalling in the developing embryonic spinal cord and in pancreatic progenitors, but requires Notch for the observed asymmetric expression at the lateral mesoderm. Functional studies by ectopic expression in the chick embryonic neural tube revealed that cHES6-1 up-regulates the expression of cDelta1 and cHes5 genes, in contrast with overexpression of cHES6-2, which represses the same genes. We show that this activity of cHES6-2 is dependent on its capacity to bind DNA and repress transcription, while cHES6-1 seems to function by sequestering other HES proteins and inhibit their activity as transcriptional repressors. Conclusions/Significance Our results indicate that the two chick HES6 proteins act at different phases of neuronal differentiation, contributing to the progression of neurogenesis by different mechanisms: while cHES6-2 represses the transcription of Hes genes, cHES6-1 acts later, sequestering HES proteins. Together, the two cHES6 proteins progressively shut down the Notch-mediated progenitor program and ensure that neuronal differentiation can proceed.
Collapse
|
22
|
Jalouli M, Lapierre LR, Guérette D, Blais K, Lee JA, Cole GJ, Vincent M. Transitin is required for the differentiation of avian QM7 myoblasts into myotubes. Dev Dyn 2010; 239:3038-47. [DOI: 10.1002/dvdy.22448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
23
|
Meech R, Gomez M, Woolley C, Barro M, Hulin JA, Walcott EC, Delgado J, Makarenkova HP. The homeobox transcription factor Barx2 regulates plasticity of young primary myofibers. PLoS One 2010; 5:e11612. [PMID: 20657655 PMCID: PMC2904708 DOI: 10.1371/journal.pone.0011612] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 06/23/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Adult mammalian muscle retains incredible plasticity. Muscle growth and repair involves the activation of undifferentiated myogenic precursors called satellite cells. In some circumstances, it has been proposed that existing myofibers may also cleave and produce a pool of proliferative cells that can re-differentiate into new fibers. Such myofiber dedifferentiation has been observed in the salamander blastema where it may occur in parallel with satellite cell activation. Moreover, ectopic expression of the homeodomain transcription factor Msx1 in differentiated C2C12 myotubes has been shown to induce their dedifferentiation. While it remains unclear whether dedifferentiation and redifferentiaton occurs endogenously in mammalian muscle, there is considerable interest in induced dedifferentiation as a possible regenerative tool. METHODOLOGY/PRINCIPAL FINDINGS We previously showed that the homeobox protein Barx2 promotes myoblast differentiation. Here we report that ectopic expression of Barx2 in young immature myotubes derived from cell lines and primary mouse myoblasts, caused cleavage of the syncytium and downregulation of differentiation markers. Microinjection of Barx2 cDNA into immature myotubes derived from primary cells led to cleavage and formation of mononucleated cells that were able to proliferate. However, injection of Barx2 cDNA into mature myotubes did not cause cleavage. Barx2 expression in C2C12 myotubes increased the expression of cyclin D1, which may promote cell cycle re-entry. We also observed differential muscle gene regulation by Barx2 at early and late stages of muscle differentiation which may be due to differential recruitment of transcriptional activator or repressor complexes to muscle specific genes by Barx2. CONCLUSIONS/SIGNIFICANCE We show that Barx2 regulates plasticity of immature myofibers and might act as a molecular switch controlling cell differentiation and proliferation.
Collapse
Affiliation(s)
- Robyn Meech
- The Scripps Research Institute, La Jolla, California, United States of America
- The Flinders University of South Australia, Beford Park, South Australia, Australia
| | - Mariana Gomez
- The Scripps Research Institute, La Jolla, California, United States of America
| | - Christopher Woolley
- The Scripps Research Institute, La Jolla, California, United States of America
| | - Marietta Barro
- The Scripps Research Institute, La Jolla, California, United States of America
| | - Julie-Ann Hulin
- The Scripps Research Institute, La Jolla, California, United States of America
| | | | - Jary Delgado
- The Neurosciences Institute, San Diego, California, United States of America
| | - Helen P. Makarenkova
- The Scripps Research Institute, La Jolla, California, United States of America
- The Neurosciences Institute, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
24
|
Liu Y, Chu A, Chakroun I, Islam U, Blais A. Cooperation between myogenic regulatory factors and SIX family transcription factors is important for myoblast differentiation. Nucleic Acids Res 2010; 38:6857-71. [PMID: 20601407 PMCID: PMC2978361 DOI: 10.1093/nar/gkq585] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Precise regulation of gene expression is crucial to myogenesis and is thought to require the cooperation of various transcription factors. On the basis of a bioinformatic analysis of gene regulatory sequences, we hypothesized that myogenic regulatory factors (MRFs), key regulators of skeletal myogenesis, cooperate with members of the SIX family of transcription factors, known to play important roles during embryonic skeletal myogenesis. To this day little is known regarding the exact molecular mechanism by which SIX factors regulate muscle development. We have conducted a functional genomic study of the role played by SIX1 and SIX4 during the differentiation of skeletal myoblasts, a model of adult muscle regeneration. We report that SIX factors cooperate with the members of the MRF family to activate gene expression during myogenic differentiation, and that their function is essential to this process. Our findings also support a model where SIX factors function not only ‘upstream’ of the MRFs during embryogenesis, but also ‘in parallel’ to them during myoblast differentiation. We have identified new essential nodes that depend on SIX factor function, in the myogenesis regulatory network, and have uncovered a novel way by which MRF function is modulated during differentiation.
Collapse
Affiliation(s)
- Yubing Liu
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Faculty of Medicine, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | | | | | | | | |
Collapse
|
25
|
Eun B, Cho B, Moon Y, Kim SY, Kim K, Kim H, Sun W. Induction of neuronal apoptosis by expression of Hes6 via p53-dependent pathway. Brain Res 2009; 1313:1-8. [PMID: 19968968 DOI: 10.1016/j.brainres.2009.11.078] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2009] [Revised: 11/23/2009] [Accepted: 11/30/2009] [Indexed: 01/22/2023]
Abstract
Hes6 is a member of hairy/enhancer of split (Hes) family that plays a role in the cell proliferation and differentiation. Recently, we found that Hes6 is involved in the regulation of cell proliferation via p53-dependent pathway. In addition to the proliferating regions, brain regions where early post-mitotic neurons are enriched also exhibited Hes6 and p53 mRNA expression. Because p53 is involved in the post-mitotic neuronal apoptosis, here we investigated whether Hes6 can influence the neuronal survival/death. Overexpression of wild-type Hes6 and its mutants induced the apoptosis of primary cultured cortical neurons. In addition, neuronal apoptosis by Hes6 overexpression was markedly blunted in p53(-/-) or Bax(-/-) cortical neurons, suggesting that these pro-apoptotic effects are mediated by p53- and Bax-dependent pathway. However, transactivation-defective mutants of Hes6 also enhanced neuronal apoptosis, suggesting that apoptogenic activity of Hes6 is not directly related to its role in the transcriptional regulation. We propose that Hes6 may play a significant role in the neuronal cell death and/or pathological neurodegeneration via activation of p53 signaling.
Collapse
Affiliation(s)
- Bokkee Eun
- Department of Anatomy, Brain Korea 21, Korea University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
26
|
Janot M, Audfray A, Loriol C, Germot A, Maftah A, Dupuy F. Glycogenome expression dynamics during mouse C2C12 myoblast differentiation suggests a sequential reorganization of membrane glycoconjugates. BMC Genomics 2009; 10:483. [PMID: 19843320 PMCID: PMC2772862 DOI: 10.1186/1471-2164-10-483] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Accepted: 10/20/2009] [Indexed: 11/10/2022] Open
Abstract
Background Several global transcriptomic and proteomic approaches have been applied in order to obtain new molecular insights on skeletal myogenesis, but none has generated any specific data on glycogenome expression, and thus on the role of glycan structures in this process, despite the involvement of glycoconjugates in various biological events including differentiation and development. In the present study, a quantitative real-time RT-PCR technology was used to profile the dynamic expression of 375 glycogenes during the differentiation of C2C12 myoblasts into myotubes. Results Of the 276 genes expressed, 95 exhibited altered mRNA expression when C2C12 cells differentiated and 37 displayed more than 4-fold up- or down-regulations. Principal Component Analysis and Hierarchical Component Analysis of the expression dynamics identified three groups of coordinately and sequentially regulated genes. The first group included 12 down-regulated genes, the second group four genes with an expression peak at 24 h of differentiation, and the last 21 up-regulated genes. These genes mainly encode cell adhesion molecules and key enzymes involved in the biosynthesis of glycosaminoglycans and glycolipids (neolactoseries, lactoseries and ganglioseries), providing a clearer indication of how the plasma membrane and extracellular matrix may be modified prior to cell fusion. In particular, an increase in the quantity of ganglioside GM3 at the cell surface of myoblasts is suggestive of its potential role during the initial steps of myogenic differentiation. Conclusion For the first time, these results provide a broad description of the expression dynamics of glycogenes during C2C12 differentiation. Among the 37 highly deregulated glycogenes, 29 had never been associated with myogenesis. Their biological functions suggest new roles for glycans in skeletal myogenesis.
Collapse
Affiliation(s)
- Mathilde Janot
- INRA, UMR 1061 Unité de Génétique Moléculaire Animale, Université de Limoges, Faculté des Sciences et Techniques, 123 Avenue A, Thomas, 87060 Limoges, France.
| | | | | | | | | | | |
Collapse
|
27
|
Mukhopadhyay A, Jarrett J, Chlon T, Kessler JA. HeyL regulates the number of TrkC neurons in dorsal root ganglia. Dev Biol 2009; 334:142-51. [PMID: 19631204 PMCID: PMC2744851 DOI: 10.1016/j.ydbio.2009.07.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 07/06/2009] [Accepted: 07/10/2009] [Indexed: 01/02/2023]
Abstract
The basic-helix-loop-helix transcription factor HeyL is expressed at high levels by neural crest progenitor cells (NCPs) that give rise to neurons and glia in dorsal root ganglia (DRG). Since HeyL expression was observed in these NCPs during the period of neurogenesis, we generated HeyL null mutants to help examine the factor's role in ganglion neuronal specification. Homozygous null mutation of HeyL reduced the number of TrkC(+) neurons in DRG at birth including the subpopulation that expresses the ETS transcription factor ER81. Conversely, null mutation of the Hey paralog, Hey1, increased the number of TrkC(+) neurons. Null mutation of HeyL increased expression of the Hey paralogs Hey1 and Hey2, suggesting that HeyL normally inhibits their expression. Double null mutation of both Hey1 and HeyL rescued TrkC(+) neuron numbers to control levels. Thus, the balance between HeyL and Hey1 expression regulates the differentiation of a subpopulation of TrkC(+) neurons in the DRG.
Collapse
Affiliation(s)
- Abhishek Mukhopadhyay
- Department of Neurology, Northwestern University's Feinberg School of Medicine, Chicago, IL 60611, USA.
| | | | | | | |
Collapse
|
28
|
Old Wares and New: Five Decades of Investigation of Somitogenesis in Xenopus laevis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 638:73-94. [DOI: 10.1007/978-0-387-09606-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Eun B, Lee Y, Hong S, Kim J, Lee HW, Kim K, Sun W, Kim H. Hes6 controls cell proliferation via interaction with cAMP-response element-binding protein-binding protein in the promyelocytic leukemia nuclear body. J Biol Chem 2007; 283:5939-49. [PMID: 18160400 DOI: 10.1074/jbc.m707683200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Hes6 is a basic helix-loop-helix transcription factor that functions in the differentiation of pluripotent progenitor cells and during tumorigenesis. However, the molecular mechanism for its function is largely unknown. Here we show that Hes6 is a component of the promyelocytic leukemia nuclear body (PML-NB) complex in the nuclei and that Hes6 inhibits cell proliferation through induction of p21 cyclin-dependent kinase inhibitor. We further show that Hes6 directly interacts with CREB-binding protein (CBP), one of the key components of PML-NB, via its basic domain. This association is critical for p21 induction through multiple mechanisms, including chromatin remodeling and p53 acetylation. Taken together, these results suggest that the Hes6-CBP complex in PML-NB may influence the proliferation of cells via p53-dependent and -independent pathways.
Collapse
Affiliation(s)
- Bokkee Eun
- College of Medicine, Brain Korea 21, Korea University, Seoul 136-705, Korea
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Murai K, Vernon AE, Philpott A, Jones P. Hes6 is required for MyoD induction during gastrulation. Dev Biol 2007; 312:61-76. [PMID: 17950722 DOI: 10.1016/j.ydbio.2007.09.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 08/22/2007] [Accepted: 09/05/2007] [Indexed: 11/24/2022]
Abstract
The specification of mesoderm into distinct compartments sharing the same lineage restricted fates is a crucial step occurring during gastrulation, and is regulated by morphogenic signals such as the FGF/MAPK and activin pathways. One target of these pathways is the transcription factor XmyoD, which in early gastrulation is expressed in the lateral and ventral mesoderm. Expression of the hairy/enhancer of split transcription factor hes6, is also restricted to lateral and ventral mesoderm in gastrula stage Xenopus embryos, leading us to investigate whether it has a role in XmyoD regulation. In vivo, Xhes6 is required for FGF-mediated induction of XmyoD expression but not for induction of early mesoderm. The WRPW domain of Xhes6, which binds Groucho family transcriptional co-regulators, is essential for the XmyoD-inducing activity of Xhes6. Two Groucho proteins, Xgrg2 and Xgrg4, are expressed in lateral and ventral mesoderm, and inhibit expression of XmyoD. Xhes6 binds both Xgrg2 and Xgrg4 and relieves their inhibition of XmyoD expression. We also find that lowering Xhes6 expression levels blocks normal myogenic differentiation at tail bud stage. We conclude that Xhes6 is essential for XmyoD induction and acts by relieving Groucho-mediated repression of gene expression.
Collapse
Affiliation(s)
- Kasumi Murai
- MRC Cancer Cell Unit, Hutchison-MRC Research Centre, Addenbrooke's Hospital, Cambridge CB2 0XZ, UK
| | | | | | | |
Collapse
|
31
|
Belanger-Jasmin S, Llamosas E, Tang Y, Joachim K, Osiceanu AM, Jhas S, Stifani S. Inhibition of cortical astrocyte differentiation by Hes6 requires amino- and carboxy-terminal motifs important for dimerization and phosphorylation. J Neurochem 2007; 103:2022-34. [PMID: 17868320 DOI: 10.1111/j.1471-4159.2007.04902.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hairy/Enhancer of split (Hes) 6 is a basic helix-loop-helix protein that interacts with the transcriptional co-repressor, Groucho, and antagonizes the neural functions of the Notch pathway. More specifically, mouse Hes6 regulates cerebral corticogenesis by promoting neurogenesis and suppressing astrocyte differentiation. The molecular mechanisms underlying the anti-astrogenic function of Hes6 are poorly defined. Here we describe studies aimed at testing whether Hes6 inhibits astrocyte differentiation by antagonizing the transcription repression activity of Notch-activated Hes family members like Hes1. It is reported that Hes6 preferentially forms homodimers. Heterodimerization with Hes1 is antagonized in part by a conserved N-terminal patch of negatively charged residues. Mutation of this motif enhances heterodimerization with Hes1 and increases Hes6 ability to antagonize Hes1-mediated transcriptional repression. However, this mutation does not increase, but instead decreases, the anti-astrogenic activity of Hes6. It is shown further that Hes6 harbors a second conserved sequence, a C-terminal SPXXSP motif. This sequence is phosphorylated by the mitogen activated protein kinase pathway and its mutation disrupts the anti-astrogenic activity of Hes6 without affecting its ability to suppress Hes1. Together, these observations suggest that Hes6 homodimers regulate astrocyte differentiation through mechanisms that depend on the phosphorylation of Hes6 C-terminal domain but are independent of its ability to suppress Hes1-mediated transcriptional repression.
Collapse
Affiliation(s)
- Stephanie Belanger-Jasmin
- Center for Neuronal Survival, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
32
|
Scheffer D, Sage C, Corey DP, Pingault V. Gene expression profiling identifies Hes6 as a transcriptional target of ATOH1 in cochlear hair cells. FEBS Lett 2007; 581:4651-6. [PMID: 17826772 DOI: 10.1016/j.febslet.2007.08.059] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 08/08/2007] [Accepted: 08/27/2007] [Indexed: 11/21/2022]
Abstract
ATOH1 is a basic Helix-Loop-Helix transcription factor crucial for hair cell (HC) differentiation in the inner ear. In order to identify ATOH1 target genes, we performed a genome-wide expression profiling analysis in cells expressing ATOH1 under the control of a tetracycline-off system and found that HES6 expression is induced by ATOH1. We performed in situ hybridisation and showed that the rise and fall of Hes6 expression closely follow that of Atoh1 in cochlear HC. Moreover, electrophoretic mobility shift assays and luciferase assays show that ATOH1 activates HES6 transcription through binding to three clustered E boxes of its promoter.
Collapse
|
33
|
Blumenberg M, Gao S, Dickman K, Grollman AP, Bottinger EP, Zavadil J. Chromatin Structure Regulation in Transforming Growth Factor-β-Directed Epithelial-Mesenchymal Transition. Cells Tissues Organs 2007; 185:162-74. [PMID: 17587822 DOI: 10.1159/000101317] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Epithelial-mesenchymal transitions (EMTs) occur in organogenesis throughout embryonic development and are recapitulated during epithelial tissue injury and in carcinoma progression. EMTs are regulated by complex, precisely orchestrated cell signaling and gene expression networks, with the participation of key developmental pathways. Here we review context-dependent modules of gene regulation by hairy/enhancer-of-split-related (H/E(spl)) repressors downstream of transforming growth factor-beta (TGF-beta)/Smad and Notch signals in EMT and in other phenotype transitions such as differentiation and cancer. Based on multiple models of disease-related EMT, we propose that Polycomb group epigenetic silencers and histone-lysine methyl-transferases EZH1 and EZH2 are candidate targets of H/E(spl)-mediated transcriptional repression, in a process accompanied by replacement of modified core histone H3 with de novo synthesized histone variant H3.3B. Finally, we discuss the potential significance of this scenario for EMT in the light of recent findings on gene regulation by histone modifications and chromatin structure changes.
Collapse
Affiliation(s)
- Miroslav Blumenberg
- Department of Dermatology, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | |
Collapse
|
34
|
Chen J, Crabbe A, Van Duppen V, Vankelecom H. The Notch Signaling System Is Present in the Postnatal Pituitary: Marked Expression and Regulatory Activity in the Newly Discovered Side Population. Mol Endocrinol 2006; 20:3293-307. [PMID: 16959876 DOI: 10.1210/me.2006-0293] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Recently, we discovered in the adult anterior pituitary a subset of cells with side population (SP) phenotype, enriched for expression of stem/progenitor cell-associated factors like Sca1, and of Notch1 and Hes (hairy and enhancer of split) 1, components of the classically developmental Notch pathway. In the present study, we elaborated the expression of the Notch signaling system in the postnatal pituitary, and examined its functional significance within the SP compartment. Using RT-PCR, we detected in the anterior pituitary of adult mouse the expression of all four vertebrate Notch receptors, as well as of Hes1, 5, and 6, key downstream targets and effectors of Notch. All Notch receptors, Hes1 and Hes5 were measured at higher mRNA levels in the Sca1(high) SP than in the main population (MP) of differentiated hormonal cells. In contrast, Hes6, known as an inhibitor of Hes1, was more abundant in the MP. Cells with SP phenotype, enriched for Sca1(high) expression, were detected throughout postnatal life. Their proportion was higher in immature mice, but did not change from adult (8 wk old) to much older age (1 yr old). Notch pathway expression was higher in the Sca1(high) SP than in the MP at all postnatal ages analyzed. Functional implication of Notch signaling in the SP was investigated in reaggregate cultures of adult mouse anterior pituitary cells. Treatment with the gamma-secretase inhibitor DAPT down-regulated Notch activity and reduced the proportion of SP cells. Activation of Notch signaling with the conserved DSL motif of Notch ligands, or with a soluble ligand, caused a rise in SP cell number, at least in part due to a proliferative effect. The SP also expanded in proportion when aggregates were treated with leukemia-inhibitory factor, basic fibroblast growth factor, and epidermal growth factor, again at least partly accounted for by a mitogenic action. These intrapituitary growth factors all activated Notch signaling, and DAPT abrogated the expansion of the SP by basic fibroblast growth factor and leukemia-inhibitory factor, thus exposing a possible cross talk. In conclusion, we show that the Notch pathway, typically situated in embryogenesis, is also present and active in the postnatal pituitary, that it is particularly expressed within the SP independent of age, and that it plays a role in the regulation of SP abundance. Whether our data indicate that Notch regulates renewal and fate decisions of putative stem/progenitor cells within the pituitary SP as found in other tissues, remains open for further exploration.
Collapse
Affiliation(s)
- Jianghai Chen
- Laboratory of Cell Pharmacology, Department of Molecular Cell Biology, University of Leuven (K.U.Leuven), Campus Gasthuisberg O&N1, Herestraat 49, B-3000 Leuven, Belgium
| | | | | | | |
Collapse
|
35
|
Luo D, Renault VM, Rando TA. The regulation of Notch signaling in muscle stem cell activation and postnatal myogenesis. Semin Cell Dev Biol 2006; 16:612-22. [PMID: 16087370 DOI: 10.1016/j.semcdb.2005.07.002] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The Notch signaling pathway is an evolutionarily conserved pathway that is critical for tissue morphogenesis during development, but is also involved in tissue maintenance and repair in the adult. In skeletal muscle, regulation of Notch signaling is involved in somitogenesis, muscle development, and the proliferation and cell fate determination of muscle stems cells during regeneration. During each of these processes, the spatial and temporal control of Notch signaling is essential for proper tissue formation. That control is mediated by a series of regulatory proteins and protein complexes that enhance or inhibit Notch signaling by regulating protein processing, localization, activity, and stability. In this review, we focus on the regulation of Notch signaling during postnatal muscle regeneration when muscle stem cells ("satellite cells") must activate, proliferate, progress along a myogenic lineage pathway, and ultimately differentiate to form new muscle. We review the regulators of Notch signaling, such as Numb and Deltex, that have documented roles in myogenesis as well as other regulators that may play a role in modulating Notch signaling during satellite cell activation and postnatal myogenesis.
Collapse
Affiliation(s)
- Dan Luo
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305-5235, USA
| | | | | |
Collapse
|
36
|
Qian D, Radde-Gallwitz K, Kelly M, Tyrberg B, Kim J, Gao WQ, Chen P. Basic helix-loop-helix gene Hes6 delineates the sensory hair cell lineage in the inner ear. Dev Dyn 2006; 235:1689-700. [PMID: 16534784 PMCID: PMC2810659 DOI: 10.1002/dvdy.20736] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The basic helix-loop-helix (bHLH) gene Hes6 is known to promote neural differentiation in vitro. Here, we report the expression and functional studies of Hes6 in the inner ear. The expression of Hes6 appears to be parallel to that of Math1 (also known as Atoh1), a bHLH gene necessary and sufficient for hair cell differentiation. Hes6 is expressed initially in the presumptive hair cell precursors in the cochlea. Subsequently, the expression of Hes6 is restricted to morphologically differentiated hair cells. Similarly, the expression of Hes6 in the vestibule is in the hair cell lineage. Hes6 is dispensable for hair cell differentiation, and its expression in inner ear hair cells is abolished in the Math1-null animals. Furthermore, the introduction of Hes6 into the cochlea in vitro is not sufficient to promote sensory or neuronal differentiation. Therefore, Hes6 is downstream of Math1 and its expression in the inner ear delineates the sensory lineage. However, the role of Hes6 in the inner ear remains elusive.
Collapse
Affiliation(s)
- Dong Qian
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
| | | | - Michael Kelly
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
| | | | - Jaesang Kim
- Division of Molecular Life Sciences, Ewha Womans University, Seoul, Korea
| | - Wei-Qiang Gao
- Department of Molecular Biology Genentech South San Francisco, CA 94080
| | - Ping Chen
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
37
|
Gajewski M, Elmasri H, Girschick M, Sieger D, Winkler C. Comparative analysis of her genes during fish somitogenesis suggests a mouse/chick-like mode of oscillation in medaka. Dev Genes Evol 2006; 216:315-32. [PMID: 16544152 DOI: 10.1007/s00427-006-0059-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Accepted: 12/29/2005] [Indexed: 11/25/2022]
Abstract
Somitogenesis is the key developmental step, which divides the vertebrate body axis into segmentally repeated structures. It requires an intricate process of pre-patterning, which is driven by an oscillator mechanism consisting of the Delta-Notch pathway and various hairy- and Enhancer of split-related (her) genes. The subset of her genes, which are necessary to set up the segmentation clock, reveal a complex scenario of interactions. To understand which her genes are essential core players in this process, we compared the expression patterns of somitogenesis-relevant her genes in zebrafish and medaka (Oryzias latipes). Most of the respective medaka genes (Ol-her) are duplicated like what has been shown for zebrafish (Dr-her) and pufferfish genes (Fr-her). However, zebrafish genes show some additional copies and significant differences in expression patterns. For the paralogues Dr-her1 and Dr-her11, only one copy exists in the medaka (Ol-her1/11), which combines the expression patterns found for both zebrafish genes. In contrast to Dr-her5, the medaka orthologue appears to play a role in somitogenesis because it is expressed in the presomitic mesoderm (PSM). PSM expression also suggests a role for both Ol-her13 genes, homologues of mouse Hes6 (mHes6), in this process, which would be consistent with a conserved mHes6 homologue gear in the segmentation clock exclusively in lower vertebrates. Members of the mHes5 homologue group seem to be involved in somite formation in all vertebrates (e.g. Dr- and Ol-her12), although different paralogues are additionally recruited in zebrafish (e.g. Dr-her15) and medaka (e.g. Ol-her4). We found that the linkage between duplicates is strongly conserved between pufferfish and medaka and less well conserved in zebrafish. Nevertheless, linkage and orientation of several her duplicates are identical in all three species. Therefore, small-scale duplications must have happened before whole genome duplication occurred in a fish ancestor. Expression of multiple stripes in the intermediate PSM, characteristic for the zebrafish orthologues, is absent in all somitogenesis-related her genes of the medaka. In fact, the expression mode of Ol-her1/11 and Ol-her5 indicates dynamism similar to the hairy clock genes in chicken and mouse. This suggests that Danio rerio shows a rather derived clock mode when compared to other fish species and amniotes or that, alternatively, the clock mode evolved independently in zebrafish, medaka and mouse or chicken.
Collapse
Affiliation(s)
- Martin Gajewski
- Universität zu Köln, Institut für Genetik [corrected] Zülpicher Str., 47, 50674 Köln, Germany.
| | | | | | | | | |
Collapse
|
38
|
Sieger D, Ackermann B, Winkler C, Tautz D, Gajewski M. her1 and her13.2 are jointly required for somitic border specification along the entire axis of the fish embryo. Dev Biol 2006; 293:242-51. [PMID: 16545363 DOI: 10.1016/j.ydbio.2006.02.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Revised: 01/27/2006] [Accepted: 02/03/2006] [Indexed: 11/21/2022]
Abstract
Delta-Notch and FGF signaling are involved in the control of somitogenesis in zebrafish. her genes are generally known as downstream targets of Delta-Notch signaling, but the her13.2 gene from zebrafish has recently been shown to depend on FGF signaling only. We have here studied the functional role of her13.2 in conjunction with her genes that are under Delta-Notch control. We show that joint inactivation of her1 and her13.2 leads to a complete loss of all somitic borders, including the most anterior ones. This somitic phenotype is much stronger than would be expected from the effects of the inactivation of either gene alone. A joint inactivation of her13.2 and her7, which is a paralogue of her1, does not show this enhanced effect. Thus, our results confirm inferences from in vitro studies that her1 and her13.2 form specific heterodimers, which may directly be required for regulating further target genes. These two her genes thus constitute the link between Delta-Notch pathway and FGF signaling during entire somitogenesis. We show that this interaction is conserved in the rice fish medaka, as a joint inactivation of the respective orthologues leads also to the same phenotype as in zebrafish. In addition, our results suggest that the mechanisms for anterior and posterior somite formation are not principally different, although the anterior somites often seem more refractory to genetic perturbations.
Collapse
Affiliation(s)
- Dirk Sieger
- Universität zu Köln, Institut für Genetik, Zuelpicherstr. 47, 50674 Köln, Germany
| | | | | | | | | |
Collapse
|
39
|
Kuure S, Sainio K, Vuolteenaho R, Ilves M, Wartiovaara K, Immonen T, Kvist J, Vainio S, Sariola H. Crosstalk between Jagged1 and GDNF/Ret/GFRalpha1 signalling regulates ureteric budding and branching. Mech Dev 2005; 122:765-80. [PMID: 15905075 DOI: 10.1016/j.mod.2005.03.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2005] [Revised: 03/23/2005] [Accepted: 03/23/2005] [Indexed: 10/25/2022]
Abstract
Glial-Cell-Line-Derived Neurotrophic Factor (GDNF) is the major mesenchyme-derived regulator of ureteric budding and branching during nephrogenesis. The ligand activates on the ureteric bud epithelium a receptor complex composed of Ret and GFRalpha1. The upstream regulators of the GDNF receptors are poorly known. A Notch ligand, Jagged1 (Jag1), co-localises with GDNF and its receptors during early kidney morphogenesis. In this study we utilized both in vitro and in vivo models to study the possible regulatory relationship of Ret and Notch pathways. Urogenital blocks were exposed to exogenous GDNF, which promotes supernumerary ureteric budding from the Wolffian duct. GDNF-induced ectopic buds expressed Jag1, which suggests that GDNF can, directly or indirectly, up-regulate Jag1 through Ret/GFRalpha1 signalling. We then studied the role of Jag1 in nephrogenesis by transgenic mice constitutively expressing human Jag1 in Wolffian duct and its derivatives under HoxB7 promoter. Jag1 transgenic mice showed a spectrum of renal defects ranging from aplasia to hypoplasia. Ret and GFRalpha1 are normally downregulated in the Wolffian duct, but they were persistently expressed in the entire transgenic duct. Simultaneously, GDNF expression remained unexpectedly low in the metanephric mesenchyme. In vitro, exogenous GDNF restored the budding and branching defects in transgenic urogenital blocks. Renal differentiation apparently failed because of perturbed stimulation of primary ureteric budding and subsequent branching. Thus, the data provide evidence for a novel crosstalk between Notch and Ret/GFRalpha1 signalling during early nephrogenesis.
Collapse
Affiliation(s)
- Satu Kuure
- Developmental Biology, Institute of Biomedicine, P.O. Box 63, Haartmaninkatu 8, University of Helsinki, Helsinki FIN-00014, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Woodman R, Yeh JTH, Laurenson S, Ko Ferrigno P. Design and Validation of a Neutral Protein Scaffold for the Presentation of Peptide Aptamers. J Mol Biol 2005; 352:1118-33. [PMID: 16139842 DOI: 10.1016/j.jmb.2005.08.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Accepted: 08/03/2005] [Indexed: 10/25/2022]
Abstract
Peptide aptamers are peptides constrained and presented by a scaffold protein that are used to study protein function in cells. They are able to disrupt protein-protein interactions and to constitute recognition modules that allow the creation of a molecular toolkit for the intracellular analysis of protein function. The success of peptide aptamer technology is critically dependent on the performance of the scaffold. Here, we describe a rational approach to the design of a new peptide aptamer scaffold. We outline the qualities that an ideal scaffold would need to possess to be broadly useful for in vitro and in vivo studies and apply these criteria to the design of a new scaffold, called STM. Starting from the small, stable intracellular protease inhibitor stefin A, we have engineered a biologically neutral scaffold that retains the stable conformation of the parent protein. We show that STM is able to present peptides that bind to targets of interest, both in the context of known interactors and in library screens. Molecular tools based on our scaffold are likely to be used in a wide range of studies of biological pathways, and in the validation of drug targets.
Collapse
Affiliation(s)
- Robbie Woodman
- MRC Cancer Cell Unit Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 2 XZ, UK
| | | | | | | |
Collapse
|
41
|
Venters SJ, Ordahl CP. Asymmetric cell divisions are concentrated in the dermomyotome dorsomedial lip during epaxial primary myotome morphogenesis. ACTA ACUST UNITED AC 2005; 209:449-60. [PMID: 15891908 DOI: 10.1007/s00429-005-0461-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2005] [Indexed: 10/25/2022]
Abstract
To determine if somitic stem cell pools could be identified by an intrinsic difference in mitotic behaviour, the orientation of mitoses in the dermomyotome epithelium was analysed. We describe a concentration of apico-basal mitoses within the dermomyotome dorsomedial lip (DML). The occurrence of apico-basal divisions is closely associated with asymmetric localisation of the notch pathway factor numb, allowing description of such divisions as asymmetric. In contrast, planar divisions, occurring in the plane of the epithelium, are symmetric. Further, we show that the DML environmental niche is sufficient to promote numb expression in epaxial dermomyotome tissue that does not normally express this factor. These data provide, for the first time, a non-retrospective tracing analysis of the mechanism by which the DML fulfils the stem-cell pool role it plays during epaxial primary myotome morphogenesis.
Collapse
Affiliation(s)
- Sara J Venters
- Department of Anatomy and Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94143, USA
| | | |
Collapse
|
42
|
Zhang SX, Garcia-Gras E, Wycuff DR, Marriot SJ, Kadeer N, Yu W, Olson EN, Garry DJ, Parmacek MS, Schwartz RJ. Identification of Direct Serum-response Factor Gene Targets during Me2SO-induced P19 Cardiac Cell Differentiation. J Biol Chem 2005; 280:19115-26. [PMID: 15699019 DOI: 10.1074/jbc.m413793200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Serum-response factor (SRF) is an obligatory transcription factor, required for the formation of vertebrate mesoderm leading to the origin of the cardiovascular system. Protein A-TEV-tagged chromatin immunoprecipitation technology was used to collect direct SRF-bound gene targets from pluripotent P19 cells, induced by Me2SO treatment into an enriched cardiac cell population. From 242 sequenced DNA fragments, we identified 188 genomic DNA fragments as potential direct SRF targets that contain CArG boxes and CArG-like boxes. Of the 92 contiguous genes that were identified, a subgroup of 43 SRF targets was then further validated by co-transfection assays with SRF. Expression patterns of representative candidate genes were compared with the LacZ reporter expression activity of the endogenous SRF gene. According to the Unigene data base, 84% of the SRF target candidates were expressed, at least, in the heart. In SRF null embryonic stem cells, 81% of these SRF target candidates were greatly affected by the absence of SRF. Among these SRF-regulated genes, Raf1, Map4k4, and Bicc1 have essential roles in mesoderm formation. The 12 regulated SRF target genes, Mapk10 (JNK3), Txnl2, Azi2, Tera, Sema3a, Lrp4, Actc1, Myl3, Hspg2, Pgm2, Hif3a, and Asb5, have been implicated in cardiovascular formation, and the Ski and Hes6 genes have roles in muscle differentiation. SRF target genes related to cell mitosis and cycle, E2f5, Npm1, Cenpb, Rbbp6, and Scyl1, expressed in the heart tissue were differentially regulated in SRF null ES cells.
Collapse
Affiliation(s)
- Shu Xing Zhang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Salama-Cohen P, Arévalo MA, Meier J, Grantyn R, Rodríguez-Tébar A. NGF controls dendrite development in hippocampal neurons by binding to p75NTR and modulating the cellular targets of Notch. Mol Biol Cell 2004; 16:339-47. [PMID: 15496460 PMCID: PMC539177 DOI: 10.1091/mbc.e04-05-0438] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Notch and neurotrophins control neuronal shape, but it is not known whether their signaling pathways intersect. Here we report results from hippocampal neuronal cultures that are in support of this possibility. We found that low cell density or blockade of Notch signaling by a soluble Delta-Fc ligand decreased the mRNA levels of the nuclear targets of Notch, the homologues of enhancer-of-split 1 and 5 (Hes1/5). This effect was associated with enhanced sprouting of new dendrites or dendrite branches. In contrast, high cell density or exposure of low-density cultures to NGF increased the Hes1/5 mRNA, reduced the number of primary dendrites and promoted dendrite elongation. The NGF effects on both Hes1/5 expression and dendrite morphology were prevented by p75-antibody (a p75NTR-blocking antibody) or transfection with enhancer-of-split 6 (Hes6), a condition known to suppress Hes activity. Nuclear translocation of NF-kappaB was identified as a link between p75NTR and Hes1/5 because it was required for the up-regulation of these two genes. The convergence of the Notch and p75NTR signaling pathways at the level of Hes1/5 illuminates an unexpected mechanism through which a diffusible factor (NGF) could regulate dendrite growth when cell-cell interaction via Notch is not in action.
Collapse
Affiliation(s)
- Patricia Salama-Cohen
- Instituto Cajal de Neurobiología, Consejo Superior de Investigaciones Científicas, E28002 Madrid, Spain
| | | | | | | | | |
Collapse
|
44
|
Azmi S, Ozog A, Taneja R. Sharp-1/DEC2 inhibits skeletal muscle differentiation through repression of myogenic transcription factors. J Biol Chem 2004; 279:52643-52. [PMID: 15448136 DOI: 10.1074/jbc.m409188200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Skeletal muscle differentiation is regulated by the basic-helix-loop-helix (bHLH) family of transcription factors. The myogenic bHLH factors form heterodimers with the ubiquitously expressed bHLH E-proteins and bind E-box (CANNTG) sites present in the promoters of several muscle-specific genes. Our previous studies have shown that the bHLH factor Sharp-1 is expressed in skeletal muscle and interacts with MyoD and E-proteins. However, its role in regulation of myogenic differentiation remains unknown. We report here that endogenous Sharp-1 is expressed in proliferating C2C12 myoblasts and is down-regulated during myogenic differentiation. Constitutive expression of Sharp-1 in C2C12 myoblasts promotes cell cycle exit causing a decrease in cyclin D1 expression but blocks terminal differentiation. Although MyoD expression is not inhibited, the induction of differentiation-specific genes such as myogenin, MEF2C, and myosin heavy chain is impaired by Sharp-1 overexpression. We demonstrate that the interaction of Sharp-1 with MyoD and E-proteins results in reduced DNA binding and transactivation from MyoD-dependent E-box sites. Re-expression of MyoD approximately E47 rescues the differentiation defect imposed by Sharp-1, suggesting that myogenic bHLH factors function downstream of Sharp-1. Our data suggest that protein-protein interactions between Sharp-1, MyoD, and E47 resulting in interference with MyoD function underlies Sharp-1-mediated repression of myogenic differentiation.
Collapse
Affiliation(s)
- Sameena Azmi
- Brookdale Department of Molecular, Cell, and Developmental Biology, Mount Sinai School of Medicine, New York, New York 10029-6574, USA
| | | | | |
Collapse
|
45
|
Raetzman LT, Ross SA, Cook S, Dunwoodie SL, Camper SA, Thomas PQ. Developmental regulation of Notch signaling genes in the embryonic pituitary: Prop1 deficiency affects Notch2 expression. Dev Biol 2004; 265:329-40. [PMID: 14732396 DOI: 10.1016/j.ydbio.2003.09.033] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Normal development of the pituitary gland requires coordination between the maintenance of a progenitor cell pool and the selection of progenitor cells for differentiation. As Notch signaling controls progenitor cell differentiation in many embryonic tissues, we investigated the involvement of this important developmental pathway in the embryonic pituitary. We report that expression of Notch signaling genes is spatially and temporally regulated in pituitary embryogenesis and implicate Notch2 in the differentiation of several cell lineages. Notch2, Notch3, and Dll1 are initially expressed by most cells within the pituitary primordium and become restricted to a subset of the progenitor cell pool as differentiated pituitary cells begin to appear. Mutations in the transcription factor Prop1 interfere with pituitary growth and cell specification, although the mechanism is unknown. Notch2 expression is nearly absent in the developing pituitaries of Prop1 mutant mice, but unaltered in some other panhypopituitary mutants, revealing that Prop1 is directly or indirectly required for normal Notch2 expression. Transgenic overexpression of Prop1 is not sufficient for enhancement of endogenous Notch2 expression, indicating that there are multiple inputs into this pathway. Dll3 is expressed only in the presumptive corticotrope and melanotrope cells. Analysis of Dll3 null mutants indicates that Dll3 is not required for specification of these two cell types, although there may be functional overlap with Dll1. The spatial and temporal expression patterns of Notch signaling genes in the pituitary suggest overlapping roles in pituitary growth and cell specification.
Collapse
Affiliation(s)
- L T Raetzman
- Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109-0638, USA
| | | | | | | | | | | |
Collapse
|
46
|
Gratton MO, Torban E, Jasmin SB, Theriault FM, German MS, Stifani S. Hes6 promotes cortical neurogenesis and inhibits Hes1 transcription repression activity by multiple mechanisms. Mol Cell Biol 2003; 23:6922-35. [PMID: 12972610 PMCID: PMC193938 DOI: 10.1128/mcb.23.19.6922-6935.2003] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hes1 is a mammalian basic helix-loop-helix transcriptional repressor that inhibits neuronal differentiation together with corepressors of the Groucho (Gro)/Transducin-like Enhancer of split (TLE) family. The interaction of Hes1 with Gro/TLE is mediated by a WRPW tetrapeptide present in all Hairy/Enhancer of split (Hes) family members. In contrast to Hes1, the related protein Hes6 promotes neuronal differentiation. Little is known about the molecular mechanisms that underlie the neurogenic activity of Hes6. It is shown here that Hes6 antagonizes Hes1 function by two mechanisms. Hes6 inhibits the interaction of Hes1 with its transcriptional corepressor Gro/TLE. Moreover, it promotes proteolytic degradation of Hes1. This effect is maximal when both Hes1 and Hes6 contain the WRPW motif and is reduced when Hes6 is mutated to eliminate a conserved site (Ser183) that can be phosphorylated by protein kinase CK2. Consistent with these findings, Hes6 inhibits Hes1-mediated transcriptional repression in cortical neural progenitor cells and promotes the differentiation of cortical neurons, a process that is normally inhibited by Hes1. Mutation of Ser183 impairs the neurogenic ability of Hes6. Taken together, these findings clarify the molecular events underlying the neurogenic function of Hes6 and suggest that this factor can antagonize Hes1 activity by multiple mechanisms.
Collapse
Affiliation(s)
- Michel-Olivier Gratton
- Center for Neuronal Survival, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | | | | | | | | | | |
Collapse
|
47
|
Iso T, Kedes L, Hamamori Y. HES and HERP families: multiple effectors of the Notch signaling pathway. J Cell Physiol 2003; 194:237-55. [PMID: 12548545 DOI: 10.1002/jcp.10208] [Citation(s) in RCA: 968] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Notch signaling dictates cell fate and critically influences cell proliferation, differentiation, and apoptosis in metazoans. Multiple factors at each step-ligands, receptors, signal transducers and effectors-play critical roles in executing the pleiotropic effects of Notch signaling. Ligand-binding results in proteolytic cleavage of Notch receptors to release the signal-transducing Notch intracellular domain (NICD). NICD migrates into the nucleus and associates with the nuclear proteins of the RBP-Jkappa family (also known as CSL or CBF1/Su(H)/Lag-1). RBP-Jkappa, when complexed with NICD, acts as a transcriptional activator, and the RBP-Jkappa-NICD complex activates expression of primary target genes of Notch signaling such as the HES and enhancer of split [E(spl)] families. HES/E(spl) is a basic helix-loop-helix (bHLH) type of transcriptional repressor, and suppresses expression of downstream target genes such as tissue-specific transcriptional activators. Thus, HES/E(spl) directly affects cell fate decisions as a primary Notch effector. HES/E(spl) had been the only known effector of Notch signaling until a recent discovery of a related but distinct bHLH protein family, termed HERP (HES-related repressor protein, also called Hey/Hesr/HRT/CHF/gridlock). In this review, we summarize the recent data supporting the idea of HERP being a new Notch effector, and provide an overview of the similarities and differences between HES and HERP in their biochemical properties as well as their tissue distribution. One key observation derived from identification of HERP is that HES and HERP form a heterodimer and cooperate for transcriptional repression. The identification of the HERP family as a Notch effector that cooperates with HES/E(spl) family has opened a new avenue to our understanding of the Notch signaling pathway.
Collapse
Affiliation(s)
- Tatsuya Iso
- Institute for Genetic Medicine, Department of Biochemistry and Molecular Biology, Keck School of Medicine of the University of Southern California, Los Angeles, California 90089, USA
| | | | | |
Collapse
|
48
|
Shen X, Collier JM, Hlaing M, Zhang L, Delshad EH, Bristow J, Bernstein HS. Genome-wide examination of myoblast cell cycle withdrawal during differentiation. Dev Dyn 2003; 226:128-38. [PMID: 12508234 DOI: 10.1002/dvdy.10200] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Skeletal and cardiac myocytes cease division within weeks of birth. Although skeletal muscle retains limited capacity for regeneration through recruitment of satellite cells, resident populations of adult myocardial stem cells have not been identified. Because cell cycle withdrawal accompanies myocyte differentiation, we hypothesized that C2C12 cells, a mouse myoblast cell line previously used to characterize myocyte differentiation, also would provide a model for studying cell cycle withdrawal during differentiation. C2C12 cells were differentiated in culture medium containing horse serum and harvested at various time points to characterize the expression profiles of known cell cycle and myogenic regulatory factors by immunoblot analysis. BrdU incorporation decreased dramatically in confluent cultures 48 hr after addition of horse serum, as cells started to form myotubes. This finding was preceded by up-regulation of MyoD, followed by myogenin, and activation of Bcl-2. Cyclin D1 was expressed in proliferating cultures and became undetectable in cultures containing 40% fused myotubes, as levels of p21(WAF1/Cip1) increased and alpha-actin became detectable. Because C2C12 myoblasts withdraw from the cell cycle during myocyte differentiation following a course that recapitulates this process in vivo, we performed a genome-wide screen to identify other gene products involved in this process. Using microarrays containing approximately 10,000 minimally redundant mouse sequences that map to the UniGene database of the National Center for Biotechnology Information, we compared gene expression profiles between proliferating, differentiating, and differentiated C2C12 cells and verified candidate genes demonstrating differential expression by RT-PCR. Cluster analysis of differentially expressed genes revealed groups of gene products involved in cell cycle withdrawal, muscle differentiation, and apoptosis. In addition, we identified several genes, including DDAH2 and Ly-6A, whose expression specifically was up-regulated during cell cycle withdrawal coincident with early myoblast differentiation.
Collapse
Affiliation(s)
- Xun Shen
- Cardiovascular Research Institute, University of California, San Francisco, California, USA
| | | | | | | | | | | | | |
Collapse
|