1
|
Brar HK, Chen E, Chang F, Lu SA, Longowal DK, Moon KM, Foster LJ, Reiner N, Nandan D. Leishmania regulates host YY1: Comparative proteomic analysis identifies infection modulated YY1 dependent proteins. PLoS One 2025; 20:e0323227. [PMID: 40373059 PMCID: PMC12080872 DOI: 10.1371/journal.pone.0323227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 04/04/2025] [Indexed: 05/17/2025] Open
Abstract
The protein Yin-Yang 1 (YY1) is a ubiquitous multifunctional transcription factor. Interestingly, there are several cellular functions controlled by YY1 that could play a role in Leishmania pathogenesis. Leishmaniasis is a human disease caused by protozoan parasites of the genus Leishmania. This study examined the potential role of macrophage YY1 in promoting Leishmania intracellular survival. Deliberate knockdown of YY1 resulted in attenuated survival of Leishmania in infected macrophages, suggesting a role of YY1 in Leishmania persistence. Biochemical fractionation studies revealed Leishmania infection caused redistribution of YY1 to the cytoplasm from the nucleus where it is primarily located. Inhibition of nuclear transport by leptomycin B attenuates infection-mediated YY1 redistribution and reduces Leishmania survival. This suggests that Leishmania induces the translocation of YY1 from the nucleus to the cytoplasm of infected cells, where it may regulate host molecules to favour parasite survival. A label-free quantitative whole proteome approach showed that the expression of a large number of macrophage proteins was dependent on the YY1 level. Interestingly, several of these proteins were modulated in Leishmania-infected cells, revealing YY1-dependent host response and suggesting their potential role in Leishmania pathogenesis. Together, this study identifies YY1 as a novel virulence factor that promotes Leishmania survival inside host macrophages.
Collapse
Affiliation(s)
- Harsimran Kaur Brar
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Eleanor Chen
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Fabian Chang
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shawna Angel Lu
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dilraj Kaur Longowal
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kyung-Mee Moon
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Leonard J. Foster
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Neil Reiner
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Devki Nandan
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Rodríguez-Campuzano AG, Castelán F, Hernández-Kelly LC, Felder-Schmittbuhl MP, Ortega A. Yin Yang 1: Function, Mechanisms, and Glia. Neurochem Res 2025; 50:96. [PMID: 39904836 PMCID: PMC11794380 DOI: 10.1007/s11064-025-04345-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/06/2025]
Abstract
Yin Yang 1 is a ubiquitously expressed transcription factor that has been extensively studied given its particular dual transcriptional regulation. Yin Yang 1 is involved in various cellular processes like cell cycle progression, cell differentiation, DNA repair, cell survival and apoptosis among others. Its malfunction or alteration leads to disease and even to malignant transformation. This transcription factor is essential for the proper central nervous system development and function. The activity of Yin Yang 1 depends on its interacting partners, promoter environment and chromatin structure, however, its mechanistic activity is not completely understood. In this review, we briefly discuss the Yin Yang 1 structure, post-translational modifications, interactions, mechanistic functions and its participation in neurodevelopment. We also discuss its expression and critical involvement in the physiology and physiopathology of glial cells, summarizing the contribution of Yin Yang 1 on different aspects of cellular function.
Collapse
Affiliation(s)
- Ada G Rodríguez-Campuzano
- Departamento de Biología Celular y Fisiología, Unidad Foránea Tlaxcala, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlaxcala, Tlaxcala, Mexico
| | - Francisco Castelán
- Departamento de Biología Celular y Fisiología, Unidad Foránea Tlaxcala, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlaxcala, Tlaxcala, Mexico
| | - Luisa C Hernández-Kelly
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacantenco, G.A. Madero, 07360, Ciudad de Mexico, Mexico
| | - Marie-Paule Felder-Schmittbuhl
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives (UPR 3212), Université de Strasbourg, Strasbourg, France
| | - Arturo Ortega
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacantenco, G.A. Madero, 07360, Ciudad de Mexico, Mexico.
| |
Collapse
|
3
|
Shao ZY, Yang WD, Qiu H, He ZH, Lu MR, Shen Q, Ding J, Zheng JN, Bai J. The role of USP7-YY1 interaction in promoting colorectal cancer growth and metastasis. Cell Death Dis 2024; 15:347. [PMID: 38769122 PMCID: PMC11106261 DOI: 10.1038/s41419-024-06740-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024]
Abstract
Colorectal cancer (CRC) remains a significant global health issue with high incidence and mortality. Yin Yang 1 (YY1) is a powerful transcription factor that acts dual roles in gene activation and repression. High expression level of YY1 has been reported in CRC, indicating the existence of stable factors of YY1 in CRC cells. We aimed to identify the key molecules and underlying mechanisms responsible for stabilizing YY1 expression in CRC. Mass spectrometry analysis was utilized to identify USP7 as a potential molecule that interacted with YY1. Mechanically, USP7 stabilizes YY1 expression at the protein level by interfering its K63 linkage ubiquitination. YY1 exerts its oncogenic function through transcriptionally activating TRIAP1 but suppressing LC3B. In addition, at the pathological level, there is a positive correlation between the expression of YY1 and the budding of CRC. This study has revealed the intricate interplay between YY1 and USP7 in CRC, suggesting that they could serve as novel therapeutic targets or predictive biomarkers for CRC patients.
Collapse
Affiliation(s)
- Zhi-Ying Shao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Clinical Trial, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Wen-Dong Yang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hui Qiu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhi-Hong He
- Department of Obstetrics and Gynecology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Meng-Ru Lu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qi Shen
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jin Ding
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China.
| | - Jun-Nian Zheng
- Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Jin Bai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
4
|
Nassar A, Kodi T, Satarker S, Gurram PC, Fayaz SM, Nampoothiri M. Astrocytic transcription factors REST, YY1, and putative microRNAs in Parkinson's disease and advanced therapeutic strategies. Gene 2024; 892:147898. [PMID: 37832803 DOI: 10.1016/j.gene.2023.147898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/10/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
Transcription factors (TF) and microRNAs are regulatory factors in astrocytes and are linked to several Parkinson's disease (PD) progression causes, such as disruption of glutamine transporters in astrocytes and concomitant disrupted glutamine uptake and inflammation. REST, a crucial TF, has been documented as an epigenetic repressor that limits the expression of neuronal genes in non-neural cells. REST activity is significantly linked to its corepressors in astrocytes, specifically histone deacetylases (HDACs), CoREST, and MECP2. Another REST-regulating TF, YY1, has been studied in astrocytes, and its interaction with REST has been investigated. In this review, the molecular processes that support the astrocytic control of REST and YY1 in terms of the regulation of glutamate transporter EAAT2 were addressed in a more detailed and comprehensive manner. Both TFs' function in astrocytes and how astrocyte abnormalities cause PD is still a mystery. Moreover, microRNAs (short non-coding RNAs) are key regulators that have been correlated to the expression and regulation of numerous genes linked to PD. The identification of numerous miRs that are engaged in astrocyte dysfunction that triggers PD has been shown. The term "Gut-brain axis" refers to the two systems' mutual communication. Gut microbial dysbiosis, which mediates an imbalance of the gut-brain axis, might contribute to neurodegenerative illnesses through altered astrocytic regulation. New treatment approaches to modify the gut-brain axis and prevent astrocytic repercussions have also been investigated in this review.
Collapse
Affiliation(s)
- Ajmal Nassar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Triveni Kodi
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Sairaj Satarker
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Prasada Chowdari Gurram
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - S M Fayaz
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
5
|
Dao FY, Lv H, Fullwood MJ, Lin H. Accurate Identification of DNA Replication Origin by Fusing Epigenomics and Chromatin Interaction Information. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9780293. [PMID: 36405252 PMCID: PMC9667886 DOI: 10.34133/2022/9780293] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/30/2022] [Indexed: 07/29/2023]
Abstract
DNA replication initiation is a complex process involving various genetic and epigenomic signatures. The correct identification of replication origins (ORIs) could provide important clues for the study of a variety of diseases caused by replication. Here, we design a computational approach named iORI-Epi to recognize ORIs by incorporating epigenome-based features, sequence-based features, and 3D genome-based features. The iORI-Epi displays excellent robustness and generalization ability on both training datasets and independent datasets of K562 cell line. Further experiments confirm that iORI-Epi is highly scalable in other cell lines (MCF7 and HCT116). We also analyze and clarify the regulatory role of epigenomic marks, DNA motifs, and chromatin interaction in DNA replication initiation of eukaryotic genomes. Finally, we discuss gene enrichment pathways from the perspective of ORIs in different replication timing states and heuristically dissect the effect of promoters on replication initiation. Our computational methodology is worth extending to ORI identification in other eukaryotic species.
Collapse
Affiliation(s)
- Fu-Ying Dao
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
- School of Biological Sciences, Nanyang Technological University, Singapore 639798, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Dr, Singapore 117599, Singapore
| | - Hao Lv
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Melissa J. Fullwood
- School of Biological Sciences, Nanyang Technological University, Singapore 639798, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Dr, Singapore 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), Singapore 138673, Singapore
| | - Hao Lin
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
6
|
YY1 Oligomerization Is Regulated by Its OPB Domain and Competes with Its Regulation of Oncoproteins. Cancers (Basel) 2022; 14:cancers14071611. [PMID: 35406384 PMCID: PMC8996997 DOI: 10.3390/cancers14071611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary YY1 regulates various cancer-related genes and activates key oncoproteins. In this study, we discovered that the oncoprotein binding (OPB) domain of YY1 is both necessary and stimulatory to its oligomerization. The hydrophobic residues, especially F219, in the OPB are essential to YY1 intermolecular interaction. Strikingly, the mutations of the hydrophobic residues showed better ability than wild-type YY1 in promote breast cancer cell proliferation and migration. Our further study revealed that YY1 proteins with mutated hydrophobic residues in the OPB domain showed improved binding affinity to EZH2. Overall, our data support the model of a mutually exclusive process between oligomerization of YY1 and its regulation of the oncoproteins EZH2, AKT and MDM2. Abstract Yin Yang 1 (YY1) plays an oncogenic role through regulating the expression of various cancer-related genes and activating key oncoproteins. Previous research reported that YY1 protein formed dimers or oligomers without definite biological implications. In this study, we first demonstrated the oncoprotein binding (OPB) and zinc finger (ZF) domains of YY1 as the regions involved in its intermolecular interactions. ZFs are well-known for protein dimerization, so we focused on the OPB domain. After mutating three hydrophobic residues in the OPB to alanines, we discovered that YY1(F219A) and YY1(3A), three residues simultaneously replaced by alanines, were defective of intermolecular interaction. Meanwhile, the OPB peptide could robustly facilitate YY1 protein oligomerization. When expressed in breast cancer cells with concurrent endogenous YY1 knockdown, YY1(F219A) and (3A) mutants showed better capacity than wt in promoting cell proliferation and migration, while their interactions with EZH2, AKT and MDM2 showed differential alterations, especially with improved EZH2 binding affinity. Our study revealed a crucial role of the OPB domain in facilitating YY1 oligomerization and suggested a mutually exclusive regulation between YY1-mediated enhancer formation and its activities in promoting oncoproteins.
Collapse
|
7
|
Pabian-Jewuła S, Bragiel-Pieczonka A, Rylski M. Ying Yang 1 engagement in brain pathology. J Neurochem 2022; 161:236-253. [PMID: 35199341 DOI: 10.1111/jnc.15594] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/10/2022] [Accepted: 02/17/2022] [Indexed: 11/27/2022]
Abstract
Herein, we discuss data concerning the involvement of transcription factor Yin Yang 1 (YY1) in the development of brain diseases, highlighting mechanisms of its pathological actions. YY1 plays an important role in the developmental and adult pathology of the nervous system. YY1 is essential for neurulation as well as maintenance and differentiation of neuronal progenitor cells and oligodendrocytes regulating both neural and glial tissues of the brain. Lack of a YY1 gene causes many developmental abnormalities and anatomical malformations of the central nervous system (CNS). Once dysregulated, YY1 exerts multiple neuropathological actions being involved in the induction of many brain disorders like stroke, epilepsy, Alzheimer's and Parkinson's diseases, autism spectrum disorder, dystonia, and brain tumors. Better understanding of YY1's dysfunction in the nervous system may lead to the development of novel therapeutic strategies related to YY1's actions.
Collapse
Affiliation(s)
- Sylwia Pabian-Jewuła
- Department of Clinical Cytology, Centre of Postgraduate Medical Education, 99/103 Marymoncka Street, 01-813, Warsaw, Poland
| | - Aneta Bragiel-Pieczonka
- Department of Clinical Cytology, Centre of Postgraduate Medical Education, 99/103 Marymoncka Street, 01-813, Warsaw, Poland
| | - Marcin Rylski
- Department of Radiology, Institute of Psychiatry and Neurology, 9 Sobieski Street, Warsaw, Poland
| |
Collapse
|
8
|
Hu M, Gao T, Du Y. MiR-98-3p regulates ovarian granulosa cell proliferation and apoptosis in polycystic ovary syndrome by targeting YY1. Med Mol Morphol 2021; 55:47-59. [PMID: 34796378 DOI: 10.1007/s00795-021-00307-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/30/2021] [Indexed: 11/24/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrinopathy related to female infertility. We investigated the function of the microRNA-98-3p (miR-98-3p)/Yin-Yang-1 (YY1) axis to the pathophysiological processes in PCOS mice. A mouse model of PCOS was established using dehydroepiandrosterone (DHEA). Hematoxylin and eosin (HE) staining was used to assess morphologic changes of the ovaries. Hormonal serum levels were measured by ELISA. Estrogen synthesis in OGCs was measured using chemiluminescence immunoassay. The viability, cell cycle, and apoptosis of ovarian granulosa cells (OGCs) were assessed by CCK-8, flow cytometry, and western blot. Luciferase reporter assays were conducted to examine the binding of miR-98-3p to YY1. YY1 was upregulated, while miR-98-3p was downregulated both in the ovarian tissues of PCOS mice and OGCs separated from PCOS mice and patients. YY1 Knockdown promoted OGC proliferation and inhibited apoptosis as well as increased estrogen production in OGCs. YY1 was verified to be targeted by miR-98-3p. Additionally, YY1 overexpression prevented the effects of miR-98-3p overexpression on the proliferation and apoptosis of OGCs. Importantly, miR-98-3p attenuated ovarian injury in PCOS mice. MiR-98-3p targets and downregulates YY1 expression, thereby affecting the proliferation and apoptosis of OGCs in PCOS.
Collapse
Affiliation(s)
- Min Hu
- Reproductive Medicine Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Tian Gao
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China.
| | - Ying Du
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| |
Collapse
|
9
|
Huang J, Xie P, Dong Y, An W. Inhibition of Drp1 SUMOylation by ALR protects the liver from ischemia-reperfusion injury. Cell Death Differ 2021; 28:1174-1192. [PMID: 33110216 PMCID: PMC8027887 DOI: 10.1038/s41418-020-00641-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 10/08/2020] [Accepted: 10/08/2020] [Indexed: 01/30/2023] Open
Abstract
Hepatic ischemic reperfusion injury (IRI) is a common complication of liver surgery. Although an imbalance between mitochondrial fission and fusion has been identified as the cause of IRI, the detailed mechanism remains unclear. Augmenter of liver regeneration (ALR) was reported to prevent mitochondrial fission by inhibiting dynamin-related protein 1 (Drp1) phosphorylation, contributing partially to its liver protection. Apart from phosphorylation, Drp1 activity is also regulated by small ubiquitin-like modification (SUMOylation), which accelerates mitochondrial fission. This study aimed to investigate whether ALR-mediated protection from hepatic IRI might be associated with an effect on Drp1 SUMOylation. Liver tissues were harvested from both humans and from heterozygous ALR knockout mice, which underwent IRI. The SUMOylation and phosphorylation of Drp1 and their modulation by ALR were investigated. Hepatic Drp1 SUMOylation was significantly increased in human transplanted livers and IRI-livers of mice. ALR-transfection significantly decreased Drp1 SUMOylation, attenuated the IRI-induced mitochondrial fission and preserved mitochondrial stability and function. This study showed that the binding of transcription factor Yin Yang-1 (YY1) to its downstream target gene UBA2, a subunit of SUMO-E1 enzyme heterodimer, was critical to control Drp1 SUMOylation. By interacting with YY1, ALR inhibits its nuclear import and dramatically decreases the transcriptional level of UBA2. Consequently, mitochondrial fission was significantly reduced, and mitochondrial function was maintained. This study showed that the regulation of Drp1 SUMOylation by ALR protects mitochondria from fission, rescuing hepatocytes from IRI-induced apoptosis. These new findings provide a potential target for clinical intervention to reduce the effects of IRI during hepatic surgery.
Collapse
Affiliation(s)
- Jing Huang
- grid.24696.3f0000 0004 0369 153XDepartment of Cell Biology, Capital Medical University and the Municipal Key Laboratory for Liver Protection and Regulation of Regeneration, Beijing, China
| | - Ping Xie
- grid.24696.3f0000 0004 0369 153XDepartment of Cell Biology, Capital Medical University and the Municipal Key Laboratory for Liver Protection and Regulation of Regeneration, Beijing, China
| | - Yuan Dong
- grid.24696.3f0000 0004 0369 153XDepartment of Cell Biology, Capital Medical University and the Municipal Key Laboratory for Liver Protection and Regulation of Regeneration, Beijing, China
| | - Wei An
- grid.24696.3f0000 0004 0369 153XDepartment of Cell Biology, Capital Medical University and the Municipal Key Laboratory for Liver Protection and Regulation of Regeneration, Beijing, China
| |
Collapse
|
10
|
Morales-Martinez M, Vega GG, Neri N, Nambo MJ, Alvarado I, Cuadra I, Duran-Padilla MA, Huerta-Yepez S, Vega MI. MicroRNA-7 Regulates Migration and Chemoresistance in Non-Hodgkin Lymphoma Cells Through Regulation of KLF4 and YY1. Front Oncol 2020; 10:588893. [PMID: 33194748 PMCID: PMC7654286 DOI: 10.3389/fonc.2020.588893] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022] Open
Abstract
The discovery and description of the role of microRNAs has become very important, specifically due to their participation in the regulation of proteins and transcription factors involved in the development of cancer. microRNA-7 (miR-7) has been described as a negative regulator of several proteins involved in cancer, such as YY1 and KLF4. We have recently reported that YY1 and KLF4 play a role in non-Hodgkin lymphoma (NHL) and that the expression of KLF4 is regulated by YY1. Therefore, in this study we analyzed the role of miR-7 in NHL through the negative regulation of YY1 and KLF4. qRT-PCR showed that there is an inverse expression of miR-7 in relation to the expression of YY1 and KLF4 in B-NHL cell lines. The possible regulation of YY1 and KLF4 by miR-7 was analyzed using the constitutive expression or inhibition of miR-7, as well as using reporter plasmids containing the 3 'UTR region of YY1 or KLF4. The role of miR-7 in NHL, through the negative regulation of YY1 and KLF4 was determined by chemoresistance and migration assays. We corroborated our results in cell lines, in a TMA from NHL patients including DLBCL and follicular lymphoma subtypes, in where we analyzed miR-7 by ISH and YY1 and KLF4 using IHC. All tumors expressing miR-7 showed a negative correlation with YY1 and KLF4 expression. In addition, expression of miR-7 was analyzed using the GEO Database; miR-7 downregulated expression was associated with pour overall-survival. Our results show for the first time that miR-7 is implicate in the cell migration and chemoresistance in NHL, through the negative regulation of YY1 and KLF4. That also support the evidence that YY1 and KLF4 can be a potential therapeutic target in NHL.
Collapse
Affiliation(s)
- Mario Morales-Martinez
- Molecular Signal Pathway in Cancer Laboratory, Unidad de Investigación Medica en Enfermedades Oncologicas (UIMEO), Oncology Hospital, Siglo XXI National Medical Center, Instituto Méxicano del Seguro Social (IMSS), Mexico City, Mexico
- Unidad de Posgrado, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gabriel G. Vega
- Molecular Signal Pathway in Cancer Laboratory, Unidad de Investigación Medica en Enfermedades Oncologicas (UIMEO), Oncology Hospital, Siglo XXI National Medical Center, Instituto Méxicano del Seguro Social (IMSS), Mexico City, Mexico
- Unidad de Posgrado, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Natividad Neri
- Department of Hematology, Oncology Hospital, National Medical Center, IMSS, Mexico City, Mexico
| | - M. J Nambo
- Department of Hematology, Oncology Hospital, National Medical Center, IMSS, Mexico City, Mexico
| | - Isabel Alvarado
- Servicio de Anatomía Patológica, Hospital de Oncología, Centro Médico Nacional Siglo XXI, IMSS, Mexico City, Mexico
| | - Ivonne Cuadra
- Servicio de Anatomía Patológica, Hospital de Oncología, Centro Médico Nacional Siglo XXI, IMSS, Mexico City, Mexico
| | - M. A. Duran-Padilla
- Servicio de Patología, Hospital General de México “Eduardo Liceaga”, Facultad de Medicina de la UNAM, Mexico City, Mexico
| | - Sara Huerta-Yepez
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México Federico Gómez S.S.A, Mexico City, Mexico
| | - Mario I. Vega
- Molecular Signal Pathway in Cancer Laboratory, Unidad de Investigación Medica en Enfermedades Oncologicas (UIMEO), Oncology Hospital, Siglo XXI National Medical Center, Instituto Méxicano del Seguro Social (IMSS), Mexico City, Mexico
- Department of Medicine, Hematology-Oncology Division, Greater Los Angeles VA Healthcare Center, UCLA Medical Center, Jonsson Comprehensive Cancer Center, Los Angeles, CA, United States
| |
Collapse
|
11
|
Liu S, Yuan S, Gao X, Tao X, Yu W, Li X, Chen S, Xu A. Functional regulation of an ancestral RAG transposon ProtoRAG by a trans-acting factor YY1 in lancelet. Nat Commun 2020; 11:4515. [PMID: 32908127 PMCID: PMC7481187 DOI: 10.1038/s41467-020-18261-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 08/09/2020] [Indexed: 01/04/2023] Open
Abstract
The discovery of ancestral RAG transposons in early deuterostomia reveals the origin of vertebrate V(D)J recombination. Here, we analyze the functional regulation of a RAG transposon, ProtoRAG, in lancelet. We find that a specific interaction between the cis-acting element within the TIR sequences of ProtoRAG and a trans-acting factor, lancelet YY1-like (bbYY1), is important for the transcriptional regulation of lancelet RAG-like genes (bbRAG1L and bbRAG2L). Mechanistically, bbYY1 suppresses the transposition of ProtoRAG; meanwhile, bbYY1 promotes host DNA rejoins (HDJ) and TIR-TIR joints (TTJ) after TIR-dependent excision by facilitating the binding of bbRAG1L/2 L to TIR-containing DNA, and by interacting with the bbRAG1L/2 L complex. Our data thus suggest that bbYY1 has dual functions in fine-tuning the activity of ProtoRAG and maintaining the genome stability of the host.
Collapse
Affiliation(s)
- Song Liu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, People's Republic of China
| | - Shaochun Yuan
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, People's Republic of China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 266237, Qingdao, People's Republic of China.
| | - Xiaoman Gao
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, People's Republic of China
| | - Xin Tao
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, People's Republic of China
| | - Wenjuan Yu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, People's Republic of China
| | - Xu Li
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, People's Republic of China
| | - Shangwu Chen
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, People's Republic of China
| | - Anlong Xu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, People's Republic of China.
- School of Life Sciences, Beijing University of Chinese Medicine, 100029, Beijing, People's Republic of China.
| |
Collapse
|
12
|
Qi Y, Yan T, Chen L, Zhang Q, Wang W, Han X, Li D, Shi J, Sui G. Characterization of YY1 OPB Peptide for its Anticancer Activity. Curr Cancer Drug Targets 2020; 19:504-511. [PMID: 30381079 DOI: 10.2174/1568009618666181031153151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 10/02/2018] [Accepted: 10/18/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND The oncoprotein binding (OPB) domain of Yin Yang 1 (YY1) consists of 26 amino acids between G201 and S226, and is involved in YY1 interaction with multiple oncogene products, including MDM2, AKT, EZH2 and E1A. Through the OPB domain, YY1 promotes the oncogenic or proliferative regulation of these oncoproteins in cancer cells. We previously demonstrated that a peptide with the OPB sequence blocked YY1-AKT interaction and inhibited breast cancer cell proliferation. OBJECTIVE In the current study, we characterized the OPB domain and determined a minimal region for peptide design to suppress cancer cells. METHODS Using alanine-scan method, we identified that the amino acids at OPB C-terminal are essential to YY1 binding to AKT. Further studies suggested that serine and threonine residues, but not lysines, in OPB play a key role in YY1-AKT interaction. We generated GFP fusion expression vectors to express OPB peptides with serially deleted N-terminal and found that OPB1 (i.e. G201-S226) is cytoplasmic, but OPB2 (i.e. E206-S226), OPB3 (i.e. E206-S226) and control peptide were both nuclear and cytoplasmic. RESULTS Both OPB1 and 2 inhibited breast cancer cell proliferation and migration, but OPB3 exhibited similar effects to control. OPB1 and 2 caused cell cycle arrest at G1 phase, increased p53 and p21 expression, and reduced AKT(S473) phosphorylation in MCF-7 cells, but not in MDA-MB-231 cells. CONCLUSION Overall, the serines and threonines of OPB are essential to YY1 binding to oncoproteins, and OPB peptide can be minimized to E206-S226 that maintain inhibitory activity to YY1- promoted cell proliferation.
Collapse
Affiliation(s)
- Yige Qi
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Ting Yan
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Lu Chen
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Qiang Zhang
- College of Life Science, Northeast Forestry University, Harbin, China.,Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States
| | - Weishu Wang
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Xu Han
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Dangdang Li
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Jinming Shi
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Guangchao Sui
- College of Life Science, Northeast Forestry University, Harbin, China.,Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States
| |
Collapse
|
13
|
Yang S, Wang J, Guo S, Huang D, Lorigados IB, Nie X, Lou D, Li Y, Liu M, Kang Y, Zhou W, Song W. Transcriptional activation of USP16 gene expression by NFκB signaling. Mol Brain 2019; 12:120. [PMID: 31888715 PMCID: PMC6937840 DOI: 10.1186/s13041-019-0535-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 12/11/2019] [Indexed: 12/22/2022] Open
Abstract
Ubiquitin Specific Peptidase 16 (USP16) has been reported to contribute to somatic stem-cell defects in Down syndrome. However, how this gene being regulated is largely unknown. To study the mechanism underlying USP16 gene expression, USP16 gene promoter was cloned and analyzed by luciferase assay. We identified that the 5′ flanking region (− 1856 bp ~ + 468 bp) of the human USP16 gene contained the functional promotor to control its transcription. Three bona fide NFκB binding sites were found in USP16 promoter. We showed that p65 overexpression enhanced endogenous USP16 mRNA level. Furthermore, LPS and TNFα, strong activators of the NFκB pathway, upregulated the USP16 transcription. Our data demonstrate that USP16 gene expression is tightly regulated at transcription level. NFκB signaling regulates the human USP16 gene expression through three cis-acting elements. The results provide novel insights into a potential role of dysregulation of USP16 expression in Alzheimer’s dementia in Down Syndrome.
Collapse
Affiliation(s)
- Shou Yang
- Chongqing City Key Lab of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, and Ministry of Education Key Lab of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Juelu Wang
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Shipeng Guo
- Chongqing City Key Lab of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, and Ministry of Education Key Lab of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Daochao Huang
- Chongqing City Key Lab of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, and Ministry of Education Key Lab of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Isabel Bestard Lorigados
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Xing Nie
- Chongqing City Key Lab of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, and Ministry of Education Key Lab of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Dandan Lou
- Chongqing City Key Lab of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, and Ministry of Education Key Lab of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yanhua Li
- Chongqing City Key Lab of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, and Ministry of Education Key Lab of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Mingjing Liu
- Chongqing City Key Lab of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, and Ministry of Education Key Lab of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yu Kang
- Chongqing City Key Lab of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, and Ministry of Education Key Lab of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Weihui Zhou
- Chongqing City Key Lab of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, and Ministry of Education Key Lab of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| | - Weihong Song
- Chongqing City Key Lab of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, and Ministry of Education Key Lab of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China. .,Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
14
|
Zeng YT, Liu XF, Yang WT, Zheng PS. REX1 promotes EMT-induced cell metastasis by activating the JAK2/STAT3-signaling pathway by targeting SOCS1 in cervical cancer. Oncogene 2019; 38:6940-6957. [PMID: 31409905 DOI: 10.1038/s41388-019-0906-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 07/03/2019] [Accepted: 07/05/2019] [Indexed: 12/24/2022]
Abstract
ZFP42 zinc finger protein (REX1), a pluripotency marker in mouse pluripotent stem cells, has been identified as a tumor suppressor in several human cancers. However, the function of REX1 in cervical cancer remains unknown. Both IHC and western blot assays demonstrated that the expression of REX1 protein in cervical cancer tissue was much higher than that in normal cervical tissue. A xenograft assay showed that REX1 overexpression in SiHa and HeLa cells facilitated distant metastasis but did not significantly affect tumor formation in vivo. In addition, in vitro cell migration and invasion capabilities were also promoted by REX1. Mechanistically, REX1 overexpression induced epithelial-to-mesenchymal transition (EMT) by upregulating VIMENTIN and downregulating E-CADHERIN. Furthermore, the JAK2/STAT3-signaling pathway was activated in REX1-overexpressing cells, which also exhibited increased levels of p-STAT3 and p-JAK2, as well as downregulated expression of SOCS1, which is an inhibitor of the JAK2/STAT3-signaling pathway, at both the transcriptional and translational levels. A dual-luciferase reporter assay and qChIP assays confirmed that REX1 trans-suppressed the expression of SOCS1 by binding to two specific regions of the SOCS1 promoter. Therefore, all our data suggest that REX1 overexpression could play a crucial role in the metastasis and invasion of cervical cancer by upregulating the activity of the JAK2/STAT3 pathway by trans-suppressing SOCS1 expression.
Collapse
Affiliation(s)
- Yu-Ting Zeng
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, PR China
| | - Xiao-Fang Liu
- Section of Cancer Stem Cell Research, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of the People's Republic of China, Xi'an, 710061, Shaanxi, PR China
| | - Wen-Ting Yang
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, PR China.
| | - Peng-Sheng Zheng
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, PR China. .,Section of Cancer Stem Cell Research, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of the People's Republic of China, Xi'an, 710061, Shaanxi, PR China.
| |
Collapse
|
15
|
Hays E, Bonavida B. YY1 regulates cancer cell immune resistance by modulating PD-L1 expression. Drug Resist Updat 2019; 43:10-28. [PMID: 31005030 DOI: 10.1016/j.drup.2019.04.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/03/2019] [Accepted: 04/05/2019] [Indexed: 02/08/2023]
Abstract
Recent advances in the treatment of various cancers have resulted in the adaptation of several novel immunotherapeutic strategies. Notably, the recent intervention through immune checkpoint inhibitors has resulted in significant clinical responses and prolongation of survival in patients with several therapy-resistant cancers (melanoma, lung, bladder, etc.). This intervention was mediated by various antibodies directed against inhibitory receptors expressed on cytotoxic T-cells or against corresponding ligands expressed on tumor cells and other cells in the tumor microenvironment (TME). However, the clinical responses were only observed in a subset of the treated patients; it was not clear why the remaining patients did not respond to checkpoint inhibitor therapies. One hypothesis stated that the levels of PD-L1 expression correlated with poor clinical responses to cell-mediated anti-tumor immunotherapy. Hence, exploring the underlying mechanisms that regulate PD-L1 expression on tumor cells is one approach to target such mechanisms to reduce PD-L1 expression and, therefore, sensitize the resistant tumor cells to respond to PD-1/PD-L1 antibody treatments. Various investigations revealed that the overexpression of the transcription factor Yin Yang 1 (YY1) in most cancers is involved in the regulation of tumor cells' resistance to cell-mediated immunotherapies. We, therefore, hypothesized that the role of YY1 in cancer immune resistance may be correlated with PD-L1 overexpression on cancer cells. This hypothesis was investigated and analysis of the reported literature revealed that several signaling crosstalk pathways exist between the regulations of both YY1 and PD-L1 expressions. Such pathways include p53, miR34a, STAT3, NF-kB, PI3K/AKT/mTOR, c-Myc, and COX-2. Noteworthy, many clinical and pre-clinical drugs have been utilized to target these above pathways in various cancers independent of their roles in the regulation of PD-L1 expression. Therefore, the direct inhibition of YY1 and/or the use of the above targeted drugs in combination with checkpoint inhibitors should result in enhancing the cell-mediated anti-tumor cell response and also reverse the resistance observed with the use of checkpoint inhibitors alone.
Collapse
Affiliation(s)
- Emily Hays
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, United States
| | - Benjamin Bonavida
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, United States.
| |
Collapse
|
16
|
Daraiseh SI, Kassardjian A, Alexander KE, Rizkallah R, Hurt MM. c-Abl phosphorylation of Yin Yang 1's conserved tyrosine 254 in the spacer region modulates its transcriptional activity. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1173-1186. [PMID: 29807053 DOI: 10.1016/j.bbamcr.2018.05.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 05/02/2018] [Accepted: 05/24/2018] [Indexed: 12/31/2022]
Abstract
Yin Yang 1 (YY1) is a multifunctional transcription factor that can activate or repress transcription depending on the promotor and/or the co-factors recruited. YY1 is phosphorylated in various signaling pathways and is critical for different biological functions including embryogenesis, apoptosis, proliferation, cell-cycle regulation and tumorigenesis. Here we report that YY1 is a substrate for c-Abl kinase phosphorylation at conserved residue Y254 in the spacer region. Pharmacological inhibition of c-Abl kinase by imatinib, nilotinib and GZD824, knock-down of c-Abl using siRNA, and the use of c-Abl kinase-dead drastically reduces tyrosine phosphorylation of YY1. Both radioactive and non-radioactive in vitro kinase assays, as well as co-immunoprecipitation in different cell lines, show that the target of c-Abl phosphorylation is tyrosine residue 254. c-Abl phosphorylation has little effect on YY1 DNA binding ability or cellular localization in asynchronous cells. However, functional studies reveal that c-Abl mediated phosphorylation of YY1 regulates YY1's transcriptional ability in vivo. In conclusion, we demonstrate the novel role of c-Abl kinase in regulation of YY1's transcriptional activity, linking YY1 regulation with c-Abl tyrosine kinase signaling pathways.
Collapse
Affiliation(s)
- Susan I Daraiseh
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Ari Kassardjian
- David Geffen School of Medicine, Department of Pathology and Laboratory Medicine at UCLA, Los Angeles, CA, USA
| | - Karen E Alexander
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Raed Rizkallah
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Myra M Hurt
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
17
|
Belak ZR, Ovsenek N, Eskiw CH. Conserved RNA binding activity of a Yin-Yang 1 homologue in the ova of the purple sea urchin Strongylocentrotus purpuratus. Sci Rep 2018; 8:8061. [PMID: 29795182 PMCID: PMC5966398 DOI: 10.1038/s41598-018-26264-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/09/2018] [Indexed: 11/24/2022] Open
Abstract
Yin-Yang 1 (YY1) is a highly conserved transcription factor possessing RNA-binding activity. A putative YY1 homologue was previously identified in the developmental model organism Strongylocentrotus purpuratus (the purple sea urchin) by genomic sequencing. We identified a high degree of sequence similarity with YY1 homologues of vertebrate origin which shared 100% protein sequence identity over the DNA- and RNA-binding zinc-finger region with high similarity in the N-terminal transcriptional activation domain. SpYY1 demonstrated identical DNA- and RNA-binding characteristics between Xenopus laevis and S. purpuratus indicating that it maintains similar functional and biochemical properties across widely divergent deuterostome species. SpYY1 binds to the consensus YY1 DNA element, and also to U-rich RNA sequences. Although we detected SpYY1 RNA-binding activity in ova lysates and observed cytoplasmic localization, SpYY1 was not associated with maternal mRNA in ova. SpYY1 expressed in Xenopus oocytes was excluded from the nucleus and associated with maternally expressed cytoplasmic mRNA molecules. These data demonstrate the existence of an YY1 homologue in S. purpuratus with similar structural and biochemical features to those of the well-studied vertebrate YY1; however, the data reveal major differences in the biological role of YY1 in the regulation of maternally expressed mRNA in the two species.
Collapse
Affiliation(s)
- Zachery R Belak
- Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Canada.,Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, Canada
| | - Nicholas Ovsenek
- Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, Canada
| | - Christopher H Eskiw
- Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Canada. .,Biochemistry, University of Saskatchewan, Saskatoon, Canada.
| |
Collapse
|
18
|
Arribas Arranz J, Winter DN, Drexler HG, Eberth S. Suitability of Yin Yang 1 transcript and protein levels for biomarker studies in B cell non-Hodgkin lymphoma. Biomark Res 2018; 6:11. [PMID: 29564133 PMCID: PMC5850914 DOI: 10.1186/s40364-018-0126-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/27/2018] [Indexed: 11/11/2022] Open
Abstract
Background Yin Yang 1 (YY1) is a transcription factor that plays an important role during all stages of B cell differentiation. Several studies reported upregulation of YY1 in B cell derived lymphoma, indicating that it might act as an oncogene. Furthermore, aberrant YY1 expression has been associated with survival in some entities of B cell non-Hodgkin lymphoma (B-NHL), suggesting that YY1 could be a valuable biomarker in B-NHL. However, studies are controversial and methodologically disparate, partially because some studies are based on transcript levels while others rely on YY1 protein data. Therefore, we aimed to investigate the dependence of YY1 protein levels on YY1 transcription. Methods A panel of human cell lines representing different B-NHL subtypes was used to test for the correlation of YY1 mRNA and protein levels which were determined by quantitative PCR and immunoblotting. To analyze YY1 mRNA and YY1 protein stability cells were treated with actinomycin-D and cycloheximide, respectively. siRNAs were transfected to knockdown YY1. Kaplan-Meier survival analyses were performed with data from published patient cohorts. Pearson’s correlation analyses were assessed and statistical power was examined by Student’s t-test. Results In the analyzed panel of B-NHL cell lines YY1 transcript levels do not correlate with their cellular protein amounts. YY1 protein levels were unaffected by transient block of transcription or by targeting YY1 mRNA using siRNA. Additionally, global inhibition of translation up to 48 h did not alter protein levels of YY1, indicating that YY1 is a highly stable protein in B-NHL. Furthermore, in a retrospective analysis of two different B-NHL cohorts, YY1 transcript levels had no impact on patients’ survival probabilities. Conclusions Our results point out the necessity to focus on YY1 protein expression to understand the potential role of YY1 as an oncogene and to unravel its suitability as clinical biomarker in B-NHL. Electronic supplementary material The online version of this article (10.1186/s40364-018-0126-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jéssica Arribas Arranz
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7 B, 38124 Braunschweig, Germany
| | - Dalia Nilufar Winter
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7 B, 38124 Braunschweig, Germany
| | - Hans Günter Drexler
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7 B, 38124 Braunschweig, Germany
| | - Sonja Eberth
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7 B, 38124 Braunschweig, Germany
| |
Collapse
|
19
|
Wu XN, Shi TT, He YH, Wang FF, Sang R, Ding JC, Zhang WJ, Shu XY, Shen HF, Yi J, Gao X, Liu W. Methylation of transcription factor YY2 regulates its transcriptional activity and cell proliferation. Cell Discov 2017; 3:17035. [PMID: 29098080 PMCID: PMC5665210 DOI: 10.1038/celldisc.2017.35] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 08/08/2017] [Indexed: 01/05/2023] Open
Abstract
Yin Yang 1 (YY1) is a multifunctional DNA-binding transcription factor shown to be critical in a variety of biological processes, and its activity and function have been shown to be regulated by multitude of mechanisms, which include but are not limited to post-translational modifications (PTMs), its associated proteins and cellular localization. YY2, the paralog of YY1 in mouse and human, has been proposed to function redundantly or oppositely in a context-specific manner compared with YY1. Despite its functional importance, how YY2’s DNA-binding activity and function are regulated, particularly by PTMs, remains completely unknown. Here we report the first PTM with functional characterization on YY2, namely lysine 247 monomethylation (K247me1), which was found to be dynamically regulated by SET7/9 and LSD1 both in vitro and in cultured cells. Functional study revealed that SET7/9-mediated YY2 methylation regulated its DNA-binding activity in vitro and in association with chromatin examined by chromatin immunoprecipitation coupled with sequencing (ChIP-seq) in cultured cells. Knockout of YY2, SET7/9 or LSD1 by CRISPR (clustered, regularly interspaced, short palindromic repeats)/Cas9-mediated gene editing followed by RNA sequencing (RNA-seq) revealed that a subset of genes was positively regulated by YY2 and SET7/9, but negatively regulated by LSD1, which were enriched with genes involved in cell proliferation regulation. Importantly, YY2-regulated gene transcription, cell proliferation and tumor growth were dependent, at least partially, on YY2 K247 methylation. Finally, somatic mutations on YY2 found in cancer, which are in close proximity to K247, altered its methylation, DNA-binding activity and gene transcription it controls. Our findings revealed the first PTM with functional implications imposed on YY2 protein, and linked YY2 methylation with its biological functions.
Collapse
Affiliation(s)
- Xiao-Nan Wu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, China
| | - Tao-Tao Shi
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, China
| | - Yao-Hui He
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, China
| | - Fei-Fei Wang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, China
| | - Rui Sang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, China
| | - Jian-Cheng Ding
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, China
| | - Wen-Juan Zhang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, China
| | - Xing-Yi Shu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, China
| | - Hai-Feng Shen
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, China
| | - Jia Yi
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, China
| | - Xiang Gao
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, China
| | - Wen Liu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, China
| |
Collapse
|
20
|
Alexander KE, Rizkallah R. Aurora A Phosphorylation of YY1 during Mitosis Inactivates its DNA Binding Activity. Sci Rep 2017; 7:10084. [PMID: 28855673 PMCID: PMC5577188 DOI: 10.1038/s41598-017-10935-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/16/2017] [Indexed: 12/16/2022] Open
Abstract
Successful execution of mitotic cell division requires the tight synchronisation of numerous biochemical pathways. The underlying mechanisms that govern chromosome segregation have been thoroughly investigated. However, the mechanisms that regulate transcription factors in coordination with mitotic progression remain poorly understood. In this report, we identify the transcription factor YY1 as a novel mitotic substrate for the Aurora A kinase, a key regulator of critical mitotic events, like centrosome maturation and spindle formation. Using in vitro kinase assays, we show that Aurora A directly phosphorylates YY1 at serine 365 in the DNA-binding domain. Using a new phospho-specific antibody, we show that YY1 phosphorylation at serine 365 occurs during mitosis, and that this phosphorylation is significantly reduced upon inhibition of Aurora A. Furthermore, we show, using electrophoretic mobility shift and chromatin immunoprecipitation assays, that phosphorylation of YY1 at this site abolishes its DNA binding activity in vitro and in vivo. In conformity with this loss of binding activity, phosphorylated YY1 also loses its transctivation ability as demonstrated by a luciferase reporter assay. These results uncover a novel mechanism that implicates Aurora A in the mitotic inactivation of transcription factors.
Collapse
Affiliation(s)
- Karen E Alexander
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, United States of America
| | - Raed Rizkallah
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, United States of America.
| |
Collapse
|
21
|
Zhang WR, Peace KE, Han HJ. YinYang bipolar dynamic organizational modeling for equilibrium-based decision analysis: Logical transformation of an indigenous philosophy to a global science. ASIA PACIFIC JOURNAL OF MANAGEMENT 2016. [DOI: 10.1007/s10490-016-9480-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Zhang Q, Wan M, Shi J, Horita DA, Miller LD, Kute TE, Kridel SJ, Kulik G, Sui G. Yin Yang 1 promotes mTORC2-mediated AKT phosphorylation. J Mol Cell Biol 2016; 8:232-43. [PMID: 26762111 DOI: 10.1093/jmcb/mjw002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 07/21/2015] [Indexed: 01/12/2023] Open
Abstract
Yin Yang 1 (YY1) regulates both gene expression and protein modifications, and has shown a proliferative role in cancers. In this study, we demonstrate that YY1 promotes AKT phosphorylation at S473, a marker of AKT activation. YY1 expression positively correlated with AKT(S473) phosphorylation in a tissue microarray and cultured cells of breast cancer, but negatively associated with the distant metastasis-free survival of 166 breast cancer patients. YY1 promotes AKT phosphorylation at S473 through direct interaction with AKT, and the AKT-binding site is mapped to the residues G201-S226 on YY1. These residues are also involved in YY1 interaction with Mdm2, Ezh2, and E1A, and thus are designated as the oncogene protein binding (OPB) domain. YY1-promoted AKT phosphorylation relies on the OPB domain but is independent of either transcriptional activity of YY1 or the activity of phosphoinositide-3-kinases. We also determine that YY1-promoted mTORC2 access to AKT leads to its phosphorylation at S473. Importantly, a peptide based on the OPB domain blocks YY1 interaction with AKT and reduces AKT phosphorylation and cell proliferation. Thus, we demonstrate for the first time that YY1 promotes mTORC2-mediated AKT activation and disrupting YY1-AKT interaction by OPB domain-based peptide may represent a potential strategy for cancer therapy.
Collapse
Affiliation(s)
- Qiang Zhang
- College of Life Science, Northeast Forestry University, Harbin, China Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA Present address: Department of Radiation Oncology, University of Michigan Health System, Ann Arbor, MI 48109, USA
| | - Meimei Wan
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Jinming Shi
- College of Life Science, Northeast Forestry University, Harbin, China
| | - David A Horita
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Lance D Miller
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Timothy E Kute
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Steven J Kridel
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - George Kulik
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA Life Sciences Program, College of Science & General Studies, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Guangchao Sui
- College of Life Science, Northeast Forestry University, Harbin, China Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
23
|
Thoompumkal IJ, Subba Rao MRK, Kumaraswamy A, Krishnan R, Mahalingam S. GNL3L Is a Nucleo-Cytoplasmic Shuttling Protein: Role in Cell Cycle Regulation. PLoS One 2015; 10:e0135845. [PMID: 26274615 PMCID: PMC4537249 DOI: 10.1371/journal.pone.0135845] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/27/2015] [Indexed: 01/01/2023] Open
Abstract
GNL3L is an evolutionarily conserved high molecular weight GTP binding nucleolar protein belonging to HSR1-MMR1 subfamily of GTPases. The present investigation reveals that GNL3L is a nucleo-cytoplasmic shuttling protein and its export from the nucleus is sensitive to Leptomycin B. Deletion mutagenesis reveals that the C-terminal domain (amino acids 501–582) is necessary and sufficient for the export of GNL3L from the nucleus and the exchange of hydrophobic residues (M567, L570 and 572) within the C-terminal domain impairs this process. Results from the protein-protein interaction analysis indicate that GNL3L interaction with CRM1 is critical for its export from the nucleus. Ectopic expression of GNL3L leads to lesser accumulation of cells in the ‘G2/M’ phase of cell cycle whereas depletion of endogenous GNL3L results in ‘G2/M’ arrest. Interestingly, cell cycle analysis followed by BrdU labeling assay indicates that significantly increased DNA synthesis occurs in cells expressing nuclear export defective mutant (GNL3L∆NES) compared to the wild type or nuclear import defective GNL3L. Furthermore, increased hyperphosphorylation of Rb at Serine 780 and the upregulation of E2F1, cyclins A2 and E1 upon ectopic expression of GNL3L∆NES results in faster ‘S’ phase progression. Collectively, the present study provides evidence that GNL3L is exported from the nucleus in CRM1 dependent manner and the nuclear localization of GNL3L is important to promote ‘S’ phase progression during cell proliferation.
Collapse
Affiliation(s)
- Indu Jose Thoompumkal
- Laboratory of Molecular Virology and Cell Biology, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai, 600 036, India
| | - Malireddi Rama Krishna Subba Rao
- Laboratory of Molecular Virology and Cell Biology, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai, 600 036, India
| | - Anbarasu Kumaraswamy
- Laboratory of Molecular Virology and Cell Biology, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai, 600 036, India
- National Cancer Tissue Biobank, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai, 600 036, India
| | - Rehna Krishnan
- Laboratory of Molecular Virology and Cell Biology, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai, 600 036, India
| | - Sundarasamy Mahalingam
- Laboratory of Molecular Virology and Cell Biology, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai, 600 036, India
- National Cancer Tissue Biobank, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai, 600 036, India
- * E-mail:
| |
Collapse
|
24
|
Brandalize APC, Schüler-Faccini L, Hoffmann JS, Caleffi M, Cazaux C, Ashton-Prolla P. A DNA repair variant in POLQ (c.-1060A > G) is associated to hereditary breast cancer patients: a case-control study. BMC Cancer 2014; 14:850. [PMID: 25409685 PMCID: PMC4246548 DOI: 10.1186/1471-2407-14-850] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 11/07/2014] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND One of the hallmarks of cancer is the occurrence of high levels of chromosomal rearrangements as a result of inaccurate repair of double-strand breaks (DSB). Germline mutations in BRCA and RAD51 genes, involved in DSB repair, are strongly associated with hereditary breast cancer. Pol θ, a translesional DNA polymerase specialized in the replication of damaged DNA, has been also shown to contribute to DNA synthesis associated to DSB repair. It is noteworthy that POLQ is highly expressed in breast tumors and this expression is able to predict patient outcome. The objective of this study was to analyze genetic variants related to POLQ as new population biomarkers of risk in hereditary (HBC) and sporadic (SBC) breast cancer. METHODS We analyzed through case-control study nine SNPs of POLQ in hereditary (HBC) and sporadic (SBC) breast cancer patients using Taqman Real Time PCR assays. Polymorphisms were systematically identified through the NCBI database and are located within exons or promoter regions. We recruited 204 breast cancer patients (101 SBC and 103 HBC) and 212 unaffected controls residing in Southern Brazil. RESULTS The rs581553 SNP located in the promoter region was strongly associated with HBC (c.-1060A > G; HBC GG = 15, Control TT = 8; OR = 5.67, CI95% = 2.26-14.20; p < 0.0001). Interestingly, 11 of 15 homozygotes for this polymorphism fulfilled criteria for Hereditary Breast and Ovarian Cancer (HBOC) syndrome. Furthermore, 12 of them developed bilateral breast cancer and one had a familial history of bilateral breast cancer. This polymorphism was also associated with bilateral breast cancer in 67 patients (OR = 9.86, CI95% = 3.81-25.54). There was no statistically significant difference of age at breast cancer diagnosis between SNP carriers and non-carriers. CONCLUSIONS Considering that Pol θ is involved in DBS repair, our results suggest that this polymorphism may contribute to the etiology of HBC, particularly in patients with bilateral breast cancer.
Collapse
Affiliation(s)
- Ana Paula Carneiro Brandalize
- />Laboratory of Medical Genomics, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- />Laboratory of Genomics, Proteomics and DNA Repair, University of Caxias do Sul, Caxias do Sul, Brazil
- />Instituto Nacional de Genética Médica Populacional, INAGEMP, Porto Alegre, Brazil
| | - Lavínia Schüler-Faccini
- />Department of Genetics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- />Instituto Nacional de Genética Médica Populacional, INAGEMP, Porto Alegre, Brazil
| | - Jean-Sébastien Hoffmann
- />Equipe « Labellisée Ligue contre le Cancer 2013 » INSERM Unit 1037; CNRS ERL 5294, CRCT (Cancer Research Center of Toulouse), Toulouse Oncopole, France
- />University of Toulouse; UPS, F-31077 Toulouse, France
| | | | - Christophe Cazaux
- />Equipe « Labellisée Ligue contre le Cancer 2013 » INSERM Unit 1037; CNRS ERL 5294, CRCT (Cancer Research Center of Toulouse), Toulouse Oncopole, France
- />University of Toulouse; UPS, F-31077 Toulouse, France
| | - Patricia Ashton-Prolla
- />Laboratory of Medical Genomics, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- />Department of Genetics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- />Instituto Nacional de Genética Médica Populacional, INAGEMP, Porto Alegre, Brazil
| |
Collapse
|
25
|
Yang XC, Sabath I, Kunduru L, van Wijnen AJ, Marzluff WF, Dominski Z. A conserved interaction that is essential for the biogenesis of histone locus bodies. J Biol Chem 2014; 289:33767-82. [PMID: 25339177 DOI: 10.1074/jbc.m114.616466] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Nuclear protein, ataxia-telangiectasia locus (NPAT) and FLICE-associated huge protein (FLASH) are two major components of discrete nuclear structures called histone locus bodies (HLBs). NPAT is a key co-activator of histone gene transcription, whereas FLASH through its N-terminal region functions in 3' end processing of histone primary transcripts. The C-terminal region of FLASH contains a highly conserved domain that is also present at the end of Yin Yang 1-associated protein-related protein (YARP) and its Drosophila homologue, Mute, previously shown to localize to HLBs in Drosophila cells. Here, we show that the C-terminal domain of human FLASH and YARP interacts with the C-terminal region of NPAT and that this interaction is essential and sufficient to drive FLASH and YARP to HLBs in HeLa cells. Strikingly, only the last 16 amino acids of NPAT are sufficient for the interaction. We also show that the C-terminal domain of Mute interacts with a short region at the end of the Drosophila NPAT orthologue, multi sex combs (Mxc). Altogether, our data indicate that the conserved C-terminal domain shared by FLASH, YARP, and Mute recognizes the C-terminal sequence of NPAT orthologues, thus acting as a signal targeting proteins to HLBs. Finally, we demonstrate that the C-terminal domain of human FLASH can be directly joined with its N-terminal region through alternative splicing. The resulting 190-amino acid MiniFLASH, despite lacking 90% of full-length FLASH, contains all regions necessary for 3' end processing of histone pre-mRNA in vitro and accumulates in HLBs.
Collapse
Affiliation(s)
- Xiao-cui Yang
- From the Department of Biochemistry and Biophysics, Integrative Program in Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 and
| | - Ivan Sabath
- From the Department of Biochemistry and Biophysics, Integrative Program in Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 and
| | - Lalitha Kunduru
- From the Department of Biochemistry and Biophysics, Integrative Program in Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 and
| | - Andre J van Wijnen
- the Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905
| | - William F Marzluff
- From the Department of Biochemistry and Biophysics, Integrative Program in Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 and
| | - Zbigniew Dominski
- From the Department of Biochemistry and Biophysics, Integrative Program in Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 and
| |
Collapse
|
26
|
Atchison ML. Function of YY1 in Long-Distance DNA Interactions. Front Immunol 2014; 5:45. [PMID: 24575094 PMCID: PMC3918653 DOI: 10.3389/fimmu.2014.00045] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 01/27/2014] [Indexed: 11/13/2022] Open
Abstract
During B cell development, long-distance DNA interactions are needed for V(D)J somatic rearrangement of the immunoglobulin (Ig) loci to produce functional Ig genes, and for class switch recombination (CSR) needed for antibody maturation. The tissue-specificity and developmental timing of these mechanisms is a subject of active investigation. A small number of factors are implicated in controlling Ig locus long-distance interactions including Pax5, Yin Yang 1 (YY1), EZH2, IKAROS, CTCF, cohesin, and condensin proteins. Here we will focus on the role of YY1 in controlling these mechanisms. YY1 is a multifunctional transcription factor involved in transcriptional activation and repression, X chromosome inactivation, Polycomb Group (PcG) protein DNA recruitment, and recruitment of proteins required for epigenetic modifications (acetylation, deacetylation, methylation, ubiquitination, sumoylation, etc.). YY1 conditional knock-out indicated that YY1 is required for B cell development, at least in part, by controlling long-distance DNA interactions at the immunoglobulin heavy chain and Igκ loci. Our recent data show that YY1 is also required for CSR. The mechanisms implicated in YY1 control of long-distance DNA interactions include controlling non-coding antisense RNA transcripts, recruitment of PcG proteins to DNA, and interaction with complexes involved in long-distance DNA interactions including the cohesin and condensin complexes. Though common rearrangement mechanisms operate at all Ig loci, their distinct temporal activation along with the ubiquitous nature of YY1 poses challenges for determining the specific mechanisms of YY1 function in these processes, and their regulation at the tissue-specific and B cell stage-specific level. The large numbers of post-translational modifications that control YY1 functions are possible candidates for regulation.
Collapse
Affiliation(s)
- Michael L Atchison
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania , Philadelphia, PA , USA
| |
Collapse
|
27
|
Potluri V, Noothi SK, Vallabhapurapu SD, Yoon SO, Driscoll JJ, Lawrie CH, Vallabhapurapu S. Transcriptional repression of Bim by a novel YY1-RelA complex is essential for the survival and growth of Multiple Myeloma. PLoS One 2013; 8:e66121. [PMID: 23874387 PMCID: PMC3707888 DOI: 10.1371/journal.pone.0066121] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 05/01/2013] [Indexed: 01/19/2023] Open
Abstract
Multiple Myeloma (MM) is an incurable plasma cell cancer that is caused by several chromosomal translocations and gene deletions. Although deregulation of several signaling pathways including the Nuclear Factor-Kappa B (NF-κB) pathway has been reported in MM, the molecular requirement and the crosstalk between NF-κB and its target genes in MM cell survival has been largely unclear. Here, we report that Yin Yang1 (YY1), a target gene for NF-κB, is hyperexpressed in most MM tumor cells obtained from human patients, exhibits constitutive nuclear localization, and is essential for survival of MM cells. Mechanistically, we report a novel YY1-RelA complex formation, which is essential to transcriptionally repress a proapoptotic gene Bim. In line with this, depletion of YY1 or RelA resulted in elevated levels of Bim and apoptosis. Moreover, both YY1 and RelA are recruited to the Bim promoter and are required to repress the Bim promoter. Importantly, depletion of YY1 or RelA almost completely impaired the colony forming ability of MM progenitor cells suggesting that both RelA and YY1 are essential for the survival and growth of MM progenitor cells. Moreover, depletion of either YY1 or RelA completely inhibited MM tumor growth in xenograft models for human myeloma. Thus, a novel RelA-YY1 transcriptional repression complex is an attractive drug target in MM.
Collapse
Affiliation(s)
- Veena Potluri
- Department of Cancer and Cell Biology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | | | | | | | | | | | | |
Collapse
|
28
|
Kassardjian A, Rizkallah R, Riman S, Renfro SH, Alexander KE, Hurt MM. The transcription factor YY1 is a novel substrate for Aurora B kinase at G2/M transition of the cell cycle. PLoS One 2012; 7:e50645. [PMID: 23226345 PMCID: PMC3511337 DOI: 10.1371/journal.pone.0050645] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 10/22/2012] [Indexed: 01/01/2023] Open
Abstract
Yin Yang 1 (YY1) is a ubiquitously expressed and highly conserved multifunctional transcription factor that is involved in a variety of cellular processes. Many YY1-regulated genes have crucial roles in cell proliferation, differentiation, apoptosis, and cell cycle regulation. Numerous mechanisms have been shown to regulate the function of YY1, such as DNA binding affinity, subcellular localization, and posttranslational modification including phosphorylation. Polo-like kinase 1(Plk1) and Casein kinase 2α (CK2 α) were the first two kinases identified to phosphorylate YY1. In this study, we identify a third kinase. We report that YY1 is a novel substrate of the Aurora B kinase both in vitro and in vivo. Serine 184 phosphorylation of YY1 by Aurora B is cell cycle regulated and peaks at G2/M and is rapidly dephosphorylated, likely by protein phosphatase 1 (PP1) as the cells enter G1. Aurora A and Aurora C can also phosphorylate YY1 in vitro, but at serine/threonine residues other than serine 184. We present evidence that phosphorylation of YY1 in the central glycine/alanine (G/A)-rich region is important for DNA binding activity, with a potential phosphorylation/acetylation interplay regulating YY1 function. Given their importance in mitosis and overexpression in human cancers, Aurora kinases have been identified as promising therapeutic targets. Increasing our understanding of Aurora substrates will add to the understanding of their signaling pathways.
Collapse
Affiliation(s)
- Ari Kassardjian
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, United States of America
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States of America
| | - Raed Rizkallah
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, United States of America
| | - Sarah Riman
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, United States of America
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, United States of America
| | - Samuel H. Renfro
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, United States of America
| | - Karen E. Alexander
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, United States of America
| | - Myra M. Hurt
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, United States of America
- * E-mail:
| |
Collapse
|
29
|
Zardo G, Ciolfi A, Vian L, Billi M, Racanicchi S, Grignani F, Nervi C. Transcriptional targeting by microRNA-polycomb complexes: a novel route in cell fate determination. Cell Cycle 2012; 11:3543-9. [PMID: 22895111 PMCID: PMC3478304 DOI: 10.4161/cc.21468] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Advances in the understanding of the epigenetic events underlying the regulation of developmental genes expression and cell lineage commitment are revealing novel regulatory networks. These also involve distinct components of the epigenetic pathways, including chromatin histone modification, DNA methylation, repression by polycomb complexes and microRNAs. Changes in chromatin structure, DNA methylation status and microRNA expression levels represent flexible, reversible and heritable mechanisms for the maintenance of stem cell states and cell fate decisions. We recently provided novel evidence showing that microRNAs, besides determining the post-transcriptional gene silencing of their targets, also bind to evolutionarily conserved complementary genomic seed-matches present on target gene promoters. At these sites, microRNAs can function as a critical interface between chromatin remodeling complexes and the genome for transcriptional gene silencing. Here, we discuss our novel findings supporting a role of the transcriptional chromatin targeting by polycomb-microRNA complexes in lineage fate determination of human hematopoietic cells.
Collapse
Affiliation(s)
- Giuseppe Zardo
- Department of Cellular Biotechnologies and Hematology, University La Sapienza, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
30
|
Deng Z, Cao P, Wan MM, Sui G. Yin Yang 1: a multifaceted protein beyond a transcription factor. Transcription 2012; 1:81-4. [PMID: 21326896 DOI: 10.4161/trns.1.2.12375] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 05/13/2010] [Accepted: 05/14/2010] [Indexed: 11/19/2022] Open
Abstract
As a transcription factor, Yin Yang 1 (YY1) regulates the transcription of a dazzling list of genes and the number of its targets still mounts. Recent studies revealed that YY1 possesses functions independent of its DNA binding activity and its regulatory role in tumorigenesis has started to emerge.
Collapse
Affiliation(s)
- Zhiyong Deng
- Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | | | | | |
Collapse
|
31
|
Potula HHSK, Morel L. Genetic variation at a Yin-Yang 1 response site regulates the transcription of cyclin-dependent kinase inhibitor p18INK4C transcript in lupus-prone mice. THE JOURNAL OF IMMUNOLOGY 2012; 188:4992-5002. [PMID: 22504641 DOI: 10.4049/jimmunol.1101992] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have previously shown that a novel -74 C-to-T mutation in the promoter of the cyclin-dependent kinase inhibitor p18(Ink4c) (p18) gene was associated with a reduced p18 expression in B cells from mice carrying the Sle2c1 lupus susceptibility locus. To determine the function of the -74 C/T single nucleotide polymorphism, we have characterized the proximal promoter of the mouse p18 gene. Functional analysis of the 5' flanking region by sequential deletions revealed crucial elements between -300 and +1, confirming the in silico prediction that the -74 T allele created a novel Yin-Yang 1 (YY-1) binding site adjacent to an existing one common to both alleles. Moreover, we found that YY-1, E2F1, and Sp-1 can synergistically enhance the activity of the p18 promoter. Mutational inactivation revealed that YY-1 binding regulates the p18 activity in an allele-dependent fashion. EMSAs with splenic B cell extracts directly demonstrated that YY-1 binds to the p18 promoter with differences between the C and the T alleles. We also determined in vivo by chromatin immunoprecipitation that the T allele resulted in increased YY-1 and decreased Nrf-2 binding to the p18 promoter as compared with the C allele in B cells. Thus, YY-1 is a direct regulator of p18 gene expression in an allele-dependent fashion that is consistent with the lupus-associated T allele, inducing a lower p18 transcriptional activity by increasing YY-1 binding. These results establish the p18 -74 C/T mutation as the leading causal variant for the B1a cell expansion that characterizes the NZB and NZM2410 lupus-prone strains.
Collapse
Affiliation(s)
- Hari-Hara S K Potula
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | | |
Collapse
|
32
|
Abstract
Yin Yang 1 (YY1) is a transcription factor with diverse and complex biological functions. YY1 either activates or represses gene transcription, depending on the stimuli received by the cells and its association with other cellular factors. Since its discovery, a biological role for YY1 in tumor development and progression has been suggested because of its regulatory activities toward multiple cancer-related proteins and signaling pathways and its overexpression in most cancers. In this review, we primarily focus on YY1 studies in cancer research, including the regulation of YY1 as a transcription factor, its activities independent of its DNA binding ability, the functions of its associated proteins, and mechanisms regulating YY1 expression and activities. We also discuss the correlation of YY1 expression with clinical outcomes of cancer patients and its target potential in cancer therapy. Although there is not a complete consensus about the role of YY1 in cancers based on its activities of regulating oncogene and tumor suppressor expression, most of the currently available evidence supports a proliferative or oncogenic role of YY1 in tumorigenesis.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | | | | |
Collapse
|
33
|
Polycombs and microRNA-223 regulate human granulopoiesis by transcriptional control of target gene expression. Blood 2012; 119:4034-46. [PMID: 22327224 DOI: 10.1182/blood-2011-08-371344] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Epigenetic modifications regulate developmental genes involved in stem cell identity and lineage choice. NFI-A is a posttranscriptional microRNA-223 (miR-223) target directing human hematopoietic progenitor lineage decision: NFI-A induction or silencing boosts erythropoiesis or granulopoiesis, respectively. Here we show that NFI-A promoter silencing, which allows granulopoiesis, is guaranteed by epigenetic events, including the resolution of opposing chromatin "bivalent domains," hypermethylation, recruitment of polycomb (PcG)-RNAi complexes, and miR-223 promoter targeting activity. During granulopoiesis, miR-223 localizes inside the nucleus and targets the NFI-A promoter region containing PcGs binding sites and miR-223 complementary DNA sequences, evolutionarily conserved in mammalians. Remarkably, both the integrity of the PcGs-RNAi complex and DNA sequences matching the seed region of miR-223 are required to induce NFI-A transcriptional silencing. Moreover, ectopic miR-223 expression in human myeloid progenitors causes heterochromatic repression of NFI-A gene and channels granulopoiesis, whereas its stable knockdown produces the opposite effects. Our findings indicate that, besides the regulation of translation of mRNA targets, endogenous miRs can affect gene expression at the transcriptional level, functioning in a critical interface between chromatin remodeling complexes and the genome to direct fate lineage determination of hematopoietic progenitors.
Collapse
|
34
|
YY1 controls immunoglobulin class switch recombination and nuclear activation-induced deaminase levels. Mol Cell Biol 2012; 32:1542-54. [PMID: 22290437 DOI: 10.1128/mcb.05989-11] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Activation-induced deaminase (AID) is an enzyme required for class switch recombination (CSR) and somatic hypermutation (SHM), processes that ensure antibody maturation and expression of different immunoglobulin isotypes. AID function is tightly regulated by tissue- and stage-specific expression, nuclear localization, and protein stability. Transcription factor YY1 is crucial for early B cell development, but its function at late B cell stages is unknown. Here, we show that YY1 conditional knockout in activated splenic B cells interferes with CSR. Knockout of YY1 did not affect B cell proliferation, transcription of the AID and IgM genes, or levels of various switch region germ line transcripts. However, we show that YY1 physically interacts with AID and controls the accumulation of nuclear AID, at least in part, by increasing nuclear AID stability. We show for the first time that YY1 plays a novel role in CSR and controls nuclear AID protein levels.
Collapse
|
35
|
Phosphorylation of the transcription factor YY1 by CK2α prevents cleavage by caspase 7 during apoptosis. Mol Cell Biol 2011; 32:797-807. [PMID: 22184066 DOI: 10.1128/mcb.06466-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In this report, we describe the phosphorylation of Yin Yang 1 (YY1) in vitro and in vivo by CK2α (casein kinase II), a multifunctional serine/threonine protein kinase. YY1 is a ubiquitously expressed multifunctional zinc finger transcription factor implicated in regulation of many cellular and viral genes. The products of these genes are associated with cell growth, the cell cycle, development, and differentiation. Numerous studies have linked YY1 to tumorigenesis and apoptosis. YY1 is a target for cleavage by caspases in vitro and in vivo as well, but very little is known about the mechanisms that regulate its cleavage during apoptosis. Here, we identify serine 118 in the transactivation domain of YY1 as the site of CK2α phosphorylation, proximal to a caspase 7 cleavage site. CK2α inhibitors, as well as knockdown of CK2α by small interfering RNA, reduce S118 phosphorylation in vivo and enhance YY1 cleavage under apoptotic conditions, whereas increased CK2α activity by overexpression in vivo elevates S118 phosphorylation. A serine-to-alanine substitution at serine 118 also increases the cleavage of YY1 during apoptosis compared to wild-type YY1. Taken together, we have discovered a regulatory link between YY1 phosphorylation at serine 118 and regulation of its cleavage during programmed cell death.
Collapse
|
36
|
ZHANG WENRAN, ZHANG JANEH, SHI YONG, CHEN SUSHING. BIPOLAR LINEAR ALGEBRA AND YINYANG-N-ELEMENT CELLULAR NETWORKS FOR EQUILIBRIUM-BASED BIOSYSTEM SIMULATION AND REGULATION. J BIOL SYST 2011. [DOI: 10.1142/s0218339009002958] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bipolar linear algebra (BLA) and YinYang-N-Element bipolar cellular networks (BCNs) are presented for equilibrium-based biological simulation and regulation at the system, molecular, and genetic levels. Bipolar fusion, interaction, oscillation, and quantum entanglement with growing, aging, degenerating, equilibrium, and non-equilibrium properties are mathematically characterized; bipolar dynamic equations with metabolic nourishing and regulating relations are formulated; global and local equilibrium conditions are established and proved. Two families of YinYang-N-Element BCNs are compared and analyzed: one family has predefined nourishing and regulation cycles following the classical YinYang-5-Element protocol in Traditional Chinese Medicine (TCM); another family has random connectivity and link weights. Applicability of the theory is illustrated in equilibrium and non-equilibrium simulation of bio-agent interaction and regulation. The significance of this work is two-fold: (1) BLA provides a unique and unifying mathematical foundation for bipolar fusion, interaction, and oscillation in biophysics and bioeconomics; (2) YinYang-N-Element BCNs provide a unique and unifying architecture for modeling equilibrium and non-equilibrium processes at the system, molecular, and genetic levels.
Collapse
Affiliation(s)
- WEN-RAN ZHANG
- Department of Computer Sciences, Georgia Southern University, 1100 I. T. Drive, Statesboro, GA 30460-7998, USA
| | - JANE H. ZHANG
- Department of Mathematical Sciences, Georgia Southern University, 1100 I. T. Drive, Statesboro, GA 30460-7998, USA
| | - YONG SHI
- Research Center on Fictitious Economy and Data Science, The Chinese Academy of Sciences, Beijing 100080, China
- College of Information Science and Technology, University of Nebraska at Omaha, Omaha, NE 68118, USA
| | - SU-SHING CHEN
- CAS-MPG Partner Institute of Computational Biology, Shanghai Institutes of Biological Sciences, The Chinese Academy of Sciences, 320 YueYang Road, Shanghai 200031, China
| |
Collapse
|
37
|
Efficient overexpression and purification of active full-length human transcription factor Yin Yang 1 in Escherichia coli. Protein Expr Purif 2011; 77:198-206. [DOI: 10.1016/j.pep.2011.01.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 01/28/2011] [Accepted: 01/30/2011] [Indexed: 11/18/2022]
|
38
|
Lu P, Hankel IL, Hostager BS, Swartzendruber JA, Friedman AD, Brenton JL, Rothman PB, Colgan JD. The developmental regulator protein Gon4l associates with protein YY1, co-repressor Sin3a, and histone deacetylase 1 and mediates transcriptional repression. J Biol Chem 2011; 286:18311-9. [PMID: 21454521 PMCID: PMC3093903 DOI: 10.1074/jbc.m110.133603] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 03/14/2011] [Indexed: 11/06/2022] Open
Abstract
Genetic studies involving zebrafish and mice have demonstrated that the protein Gon4l (Gon4-like) is essential for hematopoiesis. These studies also suggested that Gon4l regulates gene expression during hematopoietic development, yet the biochemical function of Gon4l has not been defined. Here, we describe the identification of factors that interact with Gon4l and may cooperate with this protein to regulate gene expression. As predicted by polypeptide sequence conservation, Gon4l interacted and co-localized with the DNA-binding protein YY1 (Yin Yang 1). Density gradient sedimentation analysis of protein lysates from mouse M12 B cells showed that Gon4l and YY1 co-sediment with the transcriptional co-repressor Sin3a and its functional partner histone deacetylase (HDAC) 1. Consistent with these results, immunoprecipitation studies showed that Gon4l associates with Sin3a, HDAC1, and YY1 as a part of complexes that form in M12 cells. Sequential immunoprecipitation studies demonstrated that Gon4l, YY1, Sin3a, and HDAC1 could all associate as components of a single complex and that a conserved domain spanning the central portion of Gon4l was required for formation of this complex. When targeted to DNA, Gon4l repressed the activity of a nearby promoter, which correlated with the ability to interact with Sin3a and HDAC1. Our data suggest that Sin3a, HDAC1, and YY1 are co-factors for Gon4l and that Gon4l may function as a platform for the assembly of complexes that regulate gene expression.
Collapse
Affiliation(s)
- Ping Lu
- From the Interdisciplinary Immunology Graduate Program and
| | - Isaiah L. Hankel
- Anatomy and Cell Biology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | | | | | | | | | - Paul B. Rothman
- From the Interdisciplinary Immunology Graduate Program and
- the Departments of Internal Medicine and
| | - John D. Colgan
- From the Interdisciplinary Immunology Graduate Program and
- the Departments of Internal Medicine and
- Anatomy and Cell Biology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
39
|
Rizkallah R, Alexander KE, Kassardjian A, Lüscher B, Hurt MM. The transcription factor YY1 is a substrate for Polo-like kinase 1 at the G2/M transition of the cell cycle. PLoS One 2011; 6:e15928. [PMID: 21253604 PMCID: PMC3017090 DOI: 10.1371/journal.pone.0015928] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 12/01/2010] [Indexed: 12/13/2022] Open
Abstract
Yin-Yang 1 (YY1) is an essential multifunctional zinc-finger protein. It has been shown over the past two decades to be a critical regulator of a vast array of biological processes, including development, cell proliferation and differentiation, DNA repair, and apoptosis. YY1 exerts its functions primarily as a transcription factor that can activate or repress gene expression, dependent on its spatial and temporal context. YY1 regulates a large number of genes involved in cell cycle transitions, many of which are oncogenes and tumor-suppressor genes. YY1 itself has been classified as an oncogene and was found to be upregulated in many cancer types. Unfortunately, our knowledge of what regulates YY1 is very minimal. Although YY1 has been shown to be a phosphoprotein, no kinase has ever been identified for the phosphorylation of YY1. Polo-like kinase 1 (Plk1) has emerged in the past few years as a major cell cycle regulator, particularly for cell division. Plk1 has been shown to play important roles in the G/M transition into mitosis and for the proper execution of cytokinesis, processes that YY1 has been shown to regulate also. Here, we present evidence that Plk1 directly phosphorylates YY1 in vitro and in vivo at threonine 39 in the activation domain. We show that this phosphorylation is cell cycle regulated and peaks at G2/M. This is the first report identifying a kinase for which YY1 is a substrate.
Collapse
Affiliation(s)
- Raed Rizkallah
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, United States of America
| | - Karen E. Alexander
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, United States of America
| | - Ari Kassardjian
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, United States of America
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States of America
| | - Bernhard Lüscher
- Institut für Biochemie und Molekularbiologie, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| | - Myra M. Hurt
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, United States of America
| |
Collapse
|
40
|
Transcription factor YY1 interacts with retroviral integrases and facilitates integration of moloney murine leukemia virus cDNA into the host chromosomes. J Virol 2010; 84:8250-61. [PMID: 20519390 DOI: 10.1128/jvi.02681-09] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Retroviral integrases associate during the early viral life cycle with preintegration complexes that catalyze the integration of reverse-transcribed viral cDNA into the host chromosomes. Several cellular and viral proteins have been reported to be incorporated in the preintegration complex. This study demonstrates that transcription factor Yin Yang 1 binds to Moloney murine leukemia virus, human immunodeficiency virus type 1, and avian sarcoma virus integrases. The results of coimmunoprecipitation and in vitro pulldown assays revealed that Yin Yang 1 interacted with the catalytic core and C-terminal domains of Moloney murine leukemia virus and human immunodeficiency virus type 1 integrases, while the transcriptional repression and DNA-binding domains of the Yin Yang 1 molecule interacted with Moloney murine leukemia virus integrase. Immunoprecipitation of the cytoplasmic fraction of virus-infected cells followed by Southern blotting and chromatin immunoprecipitation demonstrated that Yin Yang 1 associated with Moloney murine leukemia virus cDNA in virus-infected cells. Yin Yang 1 enhanced the in vitro integrase activity of Moloney murine leukemia virus, human immunodeficiency virus type 1, and avian sarcoma virus integrases. Furthermore, knockdown of Yin Yang 1 in host cells by small interfering RNA reduced Moloney murine leukemia virus cDNA integration in vivo, although viral cDNA synthesis was increased, suggesting that Yin Yang 1 facilitates integration events in vivo. Taking these results together, Yin Yang 1 appears to be involved in integration events during the early viral life cycle, possibly as an enhancer of integration.
Collapse
|
41
|
Lace MJ, Yamakawa Y, Ushikai M, Anson JR, Haugen TH, Turek LP. Cellular factor YY1 downregulates the human papillomavirus 16 E6/E7 promoter, P97, in vivo and in vitro from a negative element overlapping the transcription-initiation site. J Gen Virol 2009; 90:2402-2412. [PMID: 19553391 DOI: 10.1099/vir.0.012708-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Cellular factors that bind to cis sequences in the human papillomavirus 16 (HPV-16) upstream regulatory region (URR) positively and negatively regulate the viral E6 and E7 oncogene promoter, P97. DNase I footprinting has revealed the binding of cellular proteins to two previously undetected cis elements overlapping and 3′ of the transcription-initiation site of the P97 promoter. Mutations within homologous motifs found in both of these cis elements abolished their negative function in vivo and the binding of the same cellular complex in vitro. This factor was identified as YY1 by complex mobility and binding specificity in comparison with vaccinia virus-expressed, purified recombinant YY1 protein and by antigenic reactivity with YY1 antisera. Cis mutations in the ‘initiator’ YY1 site activated the P97 promoter in vivo and in vitro. P97 was also activated threefold in vitro by depletion of endogenous YY1 with wild-type, but not mutant, YY1 oligonucleotides from the IgH kappa E3′ enhancer. Furthermore, increasing concentrations of exogenous, purified recombinant YY1 repressed wild-type P97 transcript levels by up to threefold, but did not influence the P97 promoter mutated in the ‘initiator’ YY1 site. Thus, the promoter-proximal YY1 site was not necessary for correct transcription initiation at the P97 promoter, but was found to be required for downregulation of P97 transcription in vivo and in vitro. In contrast to other viral and cellular promoters, where YY1 is thought to function as a positive transcription-‘initiator’ factor, HPV-16 P97 transcription is downregulated by YY1 from a critical motif overlapping the transcription start site.
Collapse
Affiliation(s)
- Michael J. Lace
- Department of Pathology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA
- Veterans Affairs Medical Center, 601 Highway 6 West, Iowa City, IA 52246, USA
| | - Yasushi Yamakawa
- Veterans Affairs Medical Center, 601 Highway 6 West, Iowa City, IA 52246, USA
| | - Masato Ushikai
- Veterans Affairs Medical Center, 601 Highway 6 West, Iowa City, IA 52246, USA
| | - James R. Anson
- Veterans Affairs Medical Center, 601 Highway 6 West, Iowa City, IA 52246, USA
| | - Thomas H. Haugen
- Department of Pathology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA
- Veterans Affairs Medical Center, 601 Highway 6 West, Iowa City, IA 52246, USA
| | - Lubomir P. Turek
- Department of Pathology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA
- Veterans Affairs Medical Center, 601 Highway 6 West, Iowa City, IA 52246, USA
| |
Collapse
|
42
|
Rizkallah R, Hurt MM. Regulation of the transcription factor YY1 in mitosis through phosphorylation of its DNA-binding domain. Mol Biol Cell 2009; 20:4766-76. [PMID: 19793915 DOI: 10.1091/mbc.e09-04-0264] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Yin-Yang 1 (YY1) is a ubiquitously expressed zinc finger transcription factor. It regulates a vast array of genes playing critical roles in development, differentiation, and cell cycle. Very little is known about the mechanisms that regulate the functions of YY1. It has long been proposed that YY1 is a phosphoprotein; however, a direct link between phosphorylation and the function of YY1 has never been proven. Investigation of the localization of YY1 during mitosis shows that it is distributed to the cytoplasm during prophase and remains excluded from DNA until early telophase. Immunostaining studies show that YY1 is distributed equally between daughter cells and rapidly associates with decondensing chromosomes in telophase, suggesting a role for YY1 in early marking of active and repressed genes. The exclusion of YY1 from DNA in prometaphase HeLa cells correlated with an increase in the phosphorylation of YY1 and loss of DNA-binding activity that can be reversed by dephosphorylation. We have mapped three phosphorylation sites on YY1 during mitosis and show that phosphorylation of two of these sites can abolish the DNA-binding activity of YY1. These results demonstrate a novel mechanism for the inactivation of YY1 through phosphorylation of its DNA-binding domain.
Collapse
Affiliation(s)
- Raed Rizkallah
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306-4300, USA
| | | |
Collapse
|
43
|
Transcriptional control of occludin expression in vascular endothelia: Regulation by Sp3 and YY1. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2009; 1789:175-84. [DOI: 10.1016/j.bbagrm.2009.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Matsumura N, Huang Z, Baba T, Lee PS, Barnett JC, Mori S, Chang JT, Kuo WL, Gusberg AH, Whitaker RS, Gray JW, Fujii S, Berchuck A, Murphy SK. Yin yang 1 modulates taxane response in epithelial ovarian cancer. Mol Cancer Res 2009; 7:210-20. [PMID: 19208743 PMCID: PMC2675878 DOI: 10.1158/1541-7786.mcr-08-0255] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Survival of ovarian cancer patients is largely dictated by their response to chemotherapy, which depends on underlying molecular features of the malignancy. We previously identified YIN YANG 1 (YY1) as a gene whose expression is positively correlated with ovarian cancer survival. Herein, we investigated the mechanistic basis of this association. Epigenetic and genetic characteristics of YY1 in serous epithelial ovarian cancer were analyzed along with YY1 mRNA and protein. Patterns of gene expression in primary serous epithelial ovarian cancer and in the NCI60 database were investigated using computational methods. YY1 function and modulation of chemotherapeutic response in vitro was studied using small interfering RNA knockdown. Microarray analysis showed strong positive correlation between expression of YY1 and genes with YY1 and transcription factor E2F binding motifs in ovarian cancer and in the NCI60 cancer cell lines. Clustering of microarray data for these genes revealed that high YY1/E2F3 activity positively correlates with survival of patients treated with the microtubule-stabilizing drug paclitaxel. Increased sensitivity to taxanes, but not to DNA cross-linking platinum agents, was also characteristic of NCI60 cancer cell lines with a high YY1/E2F signature. YY1 knockdown in ovarian cancer cell lines results in inhibition of anchorage-independent growth, motility, and proliferation but also increases resistance to taxanes, with no effect on cisplatin sensitivity. These results, together with the prior demonstration of augmentation of microtubule-related genes by E2F3, suggest that enhanced taxane sensitivity in tumors with high YY1/E2F activity may be mediated by modulation of putative target genes with microtubule function.
Collapse
Affiliation(s)
- Noriomi Matsumura
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
- Department of Gynecology and Obstetrics, Kyoto University, Japan
| | - Zhiqing Huang
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | - Tsukasa Baba
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
- Department of Gynecology and Obstetrics, Kyoto University, Japan
| | - Paula S. Lee
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | - Jason C. Barnett
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | - Seiichi Mori
- Duke Institute for Genome Sciences and Policy, Duke University, USA
| | - Jeffrey T. Chang
- Duke Institute for Genome Sciences and Policy, Duke University, USA
| | - Wen-Lin Kuo
- Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Alison H. Gusberg
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | - Regina S. Whitaker
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | - Joe W. Gray
- Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Shingo Fujii
- Department of Gynecology and Obstetrics, Kyoto University, Japan
| | - Andrew Berchuck
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
- Duke Institute for Genome Sciences and Policy, Duke University, USA
| | - Susan K. Murphy
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
- Duke Institute for Genome Sciences and Policy, Duke University, USA
- Department of Pathology, Duke University Medical Center, Durham, NC USA
| |
Collapse
|
45
|
Beyrouthy MJ, Alexander KE, Baldwin A, Whitfield ML, Bass HW, McGee D, Hurt MM. Identification of G1-regulated genes in normally cycling human cells. PLoS One 2008; 3:e3943. [PMID: 19079774 PMCID: PMC2600614 DOI: 10.1371/journal.pone.0003943] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2008] [Accepted: 11/18/2008] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Obtaining synchronous cell populations is essential for cell-cycle studies. Methods such as serum withdrawal or use of drugs which block cells at specific points in the cell cycle alter cellular events upon re-entry into the cell cycle. Regulatory events occurring in early G1 phase of a new cell cycle could have been overlooked. METHODOLOGY AND FINDINGS We used a robotic mitotic shake-off apparatus to select cells in late mitosis for genome-wide gene expression studies. Two separate microarray experiments were conducted, one which involved isolation of RNA hourly for several hours from synchronous cell populations, and one experiment which examined gene activity every 15 minutes from late telophase of mitosis into G1 phase. To verify synchrony of the cell populations under study, we utilized methods including BrdU uptake, FACS, and microarray analyses of histone gene activity. We also examined stress response gene activity. Our analysis enabled identification of 200 early G1-regulated genes, many of which currently have unknown functions. We also confirmed the expression of a set of genes candidates (fos, atf3 and tceb) by qPCR to further validate the newly identified genes. CONCLUSION AND SIGNIFICANCE Genome-scale expression analyses of the first two hours of G1 in naturally cycling cells enabled the discovery of a unique set of G1-regulated genes, many of which currently have unknown functions, in cells progressing normally through the cell division cycle. This group of genes may contain future targets for drug development and treatment of human disease.
Collapse
Affiliation(s)
- Maroun J. Beyrouthy
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States of America
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, New Hampshire, United States of America
| | - Karen E. Alexander
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States of America
| | - Amy Baldwin
- The Channing Laboratory, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michael L. Whitfield
- Department of Genetics, Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, New Hampshire, United States of America
| | - Hank W. Bass
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Dan McGee
- Department of Statistics, Florida State University, Tallahassee, Florida, United States of America
| | - Myra M. Hurt
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States of America
| |
Collapse
|
46
|
Abstract
The transcription factor Yin Yang 1 (YY1) is a multifunctional protein that can activate or repress gene expression depending on the cellular context. YY1 is ubiquitously expressed and highly conserved between species. However, its role varies in diverse cell types and includes proliferation, differentiation, and apoptosis. This review will focus on the function of YY1 in the nervous system including its role in neural development, neuronal function, developmental myelination, and neurological disease. The multiple functions of YY1 in distinct cell types are reviewed and the possible mechanisms underlying the cell specificity for these functions are discussed.
Collapse
Affiliation(s)
- Ye He
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, NJ 08854, USA
| | - Patrizia Casaccia-Bonnefil
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
47
|
Rylski M, Amborska R, Zybura K, Konopacki FA, Wilczynski GM, Kaczmarek L. Yin Yang 1 Expression in the Adult Rodent Brain. Neurochem Res 2008; 33:2556-64. [DOI: 10.1007/s11064-008-9757-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2007] [Accepted: 05/19/2008] [Indexed: 11/24/2022]
|
48
|
Jacob E, Hod-Dvorai R, Schif-Zuck S, Avni O. Unconventional association of the polycomb group proteins with cytokine genes in differentiated T helper cells. J Biol Chem 2008; 283:13471-81. [PMID: 18285333 DOI: 10.1074/jbc.m709886200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The cytokine transcription profiles of developing T helper 1 and T helper 2 cells are imprinted and induced appropriately following stimulation of differentiated cells. Epigenetic regulation combines several mechanisms to ensure the inheritance of transcriptional programs. We found that the expression of the polycomb group proteins, whose role in maintaining gene silencing is well documented, was induced during development in both T helper lineages. Nevertheless, the polycomb proteins, YY1, Mel-18, Ring1A, Ezh2, and Eed, bound to the Il4 and Ifng loci in a differential pattern. In contrast to the prevailing dogma, the binding activity of the polycomb proteins in differentiated T helper cells was associated with cytokine transcription. The polycomb proteins bound to the cytokine genes under resting conditions, and their binding was induced dynamically following stimulation. The recruitment of the polycomb proteins Mel-18 and Ezh2 to the cytokine promoters was inhibited in the presence of cyclosporine A, suggesting the involvement of NFAT. Considering their binding pattern at the cytokine genes and their known function in higher order folding of regulatory elements, we propose a model whereby the polycomb proteins, in some contexts, positively regulate gene expression by mediating long-distance chromosomal interactions.
Collapse
Affiliation(s)
- Eyal Jacob
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | | | | | | |
Collapse
|
49
|
Bernard M, Voisin P. Photoreceptor-specific expression, light-dependent localization, and transcriptional targets of the zinc-finger protein Yin Yang 1 in the chicken retina. J Neurochem 2007; 105:595-604. [PMID: 18047560 DOI: 10.1111/j.1471-4159.2007.05150.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The zinc-finger transcription factor Yin Yang 1 (YY1) is a multifunctional protein that plays a critical role in embryonic development. Although it has been shown to play a role in eye development, its expression in the retina was not previously described. Here, we investigated YY1 expression in chicken tissues and we identified the neural retina as one of the tissues with highest YY1 protein levels. Immunohistochemical detection of YY1 in the retina revealed a clear-cut photoreceptor specificity and day/night differences in the cytoplasmic localization of the protein. YY1 was also present at high concentration in the nuclei of some photoreceptors. Gel-shift assays indicated YY1 bound to regulatory regions of several genes specifically expressed in photoreceptors. One of these genes, hydroxyindole-O-methyltransferase (EC 2.1.1.4), encodes the last enzyme of the melatonin synthesis pathway. Although over-expression of chicken YY1 was not sufficient to activate the chicken hydroxyindole-O-methyltransferase promoter in HEK293 cells, the YY1-binding site contained in this promoter was clearly required for full transcriptional activity in chicken embryonic retinal cells. These results suggest a role of YY1 in regulating the melatoninergic function of retinal photoreceptors.
Collapse
Affiliation(s)
- Marianne Bernard
- Institut de Physiologie et Biologie Cellulaires, Université de Poitiers, CNRS, Poitiers, France.
| | | |
Collapse
|
50
|
Belak ZR, Ovsenek N. Assembly of the Yin Yang 1 transcription factor into messenger ribonucleoprotein particles requires direct RNA binding activity. J Biol Chem 2007; 282:37913-20. [PMID: 17974562 DOI: 10.1074/jbc.m708057200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The early stages of vertebrate development depend heavily on control of maternally transcribed mRNAs that are stored for long periods in complexes termed messenger ribonucleoprotein particles (mRNPs) and utilized selectively following maturation and fertilization. The transcription factor Yin Yang 1 (YY1) is associated with cytoplasmic mRNPs in vertebrate oocytes; however, the mechanism by which any of the mRNP proteins associate with mRNA in the oocyte is unknown. Here we demonstrate the mechanism by which YY1 associates with mRNPs depends on its direct RNA binding activity. High affinity binding for U-rich single-stranded RNA and A:U RNA duplexes was observed in the nanomolar range, similar to the affinity for the cognate double-stranded DNA-binding element. Similar RNA binding affinity was observed with endogenous YY1 isolated from native mRNP complexes. In vivo expression experiments reveal epitope-tagged YY1 assembled into high molecular mass mRNPs, and assembly was blocked by microinjection of high affinity RNA substrate competitor. These findings present the first clues to how mRNPs assemble during early development.
Collapse
Affiliation(s)
- Zachery R Belak
- Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | |
Collapse
|