1
|
Brennan PG, Mota L, Aridi T, Patel N, Liang P, Ferran C. Advancements in Omics and Breakthrough Gene Therapies: A Glimpse into the Future of Peripheral Artery Disease. Ann Vasc Surg 2024; 107:229-246. [PMID: 38582204 DOI: 10.1016/j.avsg.2024.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 01/01/2024] [Indexed: 04/08/2024]
Abstract
Peripheral artery disease (PAD), a highly prevalent global disease, associates with significant morbidity and mortality in affected patients. Despite progress in endovascular and open revascularization techniques for advanced PAD, these interventions grapple with elevated rates of arterial restenosis and vein graft failure attributed to intimal hyperplasia (IH). Novel multiomics technologies, coupled with sophisticated analyses tools recently powered by advances in artificial intelligence, have enabled the study of atherosclerosis and IH with unprecedented single-cell and spatial precision. Numerous studies have pinpointed gene hubs regulating pivotal atherogenic and atheroprotective signaling pathways as potential therapeutic candidates. Leveraging advancements in viral and nonviral gene therapy (GT) platforms, gene editing technologies, and cutting-edge biomaterial reservoirs for delivery uniquely positions us to develop safe, efficient, and targeted GTs for PAD-related diseases. Gene therapies appear particularly fitting for ex vivo genetic engineering of IH-resistant vein grafts. This manuscript highlights currently available state-of-the-art multiomics approaches, explores promising GT-based candidates, and details GT delivery modalities employed by our laboratory and others to thwart mid-term vein graft failure caused by IH, as well as other PAD-related conditions. The potential clinical translation of these targeted GTs holds the promise to revolutionize PAD treatment, thereby enhancing patients' quality of life and life expectancy.
Collapse
Affiliation(s)
- Phillip G Brennan
- Division of Vascular and Endovascular Surgery, and Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Lucas Mota
- Division of Vascular and Endovascular Surgery, and Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Tarek Aridi
- Division of Vascular and Endovascular Surgery, and Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Nyah Patel
- Division of Vascular and Endovascular Surgery, and Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Patric Liang
- Division of Vascular and Endovascular Surgery, and Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Christiane Ferran
- Division of Vascular and Endovascular Surgery, and Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Division of Nephrology and the Transplant Institute, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.
| |
Collapse
|
2
|
Conley HE, Brown CF, Westerman TL, Elfenbein JR, Sheats MK. MARCKS Inhibition Alters Bovine Neutrophil Responses to Salmonella Typhimurium. Biomedicines 2024; 12:442. [PMID: 38398044 PMCID: PMC10886653 DOI: 10.3390/biomedicines12020442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Neutrophils are innate immune cells that respond quickly to sites of bacterial infection and play an essential role in host defense. Interestingly, some bacterial pathogens benefit from exuberant neutrophil inflammation. Salmonella is one such pathogen that can utilize the toxic mediators released by neutrophils to colonize the intestine and cause enterocolitis. Because neutrophils can aid gut colonization during Salmonella infection, neutrophils represent a potential host-directed therapeutic target. Myristoylated alanine-rich C-kinase substrate (MARCKS) is an actin-binding protein that plays an essential role in many neutrophil effector responses. We hypothesized that inhibition of MARCKS protein would alter bovine neutrophil responses to Salmonella Typhimurium (STm) ex vivo. We used a MARCKS inhibitor peptide to investigate the role of MARCKS in neutrophil responses to STm. This study demonstrates that MARCKS inhibition attenuated STm-induced neutrophil adhesion and chemotaxis. Interestingly, MARCKS inhibition also enhanced neutrophil phagocytosis and respiratory burst in response to STm. This is the first report describing the role of MARCKS protein in neutrophil antibacterial responses.
Collapse
Affiliation(s)
- Haleigh E Conley
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| | - Chalise F Brown
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Trina L Westerman
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Johanna R Elfenbein
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - M Katie Sheats
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| |
Collapse
|
3
|
Phosphorylation-dependent proteome of Marcks in ependyma during aging and behavioral homeostasis in the mouse forebrain. GeroScience 2022; 44:2077-2094. [DOI: 10.1007/s11357-022-00517-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 01/13/2022] [Indexed: 11/04/2022] Open
|
4
|
Amino Acids and IGF1 Regulation of Fish Muscle Growth Revealed by Transcriptome and microRNAome Integrative Analyses of Pacu ( Piaractus mesopotamicus) Myotubes. Int J Mol Sci 2022; 23:ijms23031180. [PMID: 35163102 PMCID: PMC8835699 DOI: 10.3390/ijms23031180] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 12/04/2022] Open
Abstract
Amino acids (AA) and IGF1 have been demonstrated to play essential roles in protein synthesis and fish muscle growth. The myoblast cell culture is useful for studying muscle regulation, and omics data have contributed enormously to understanding its molecular biology. However, to our knowledge, no study has performed the large-scale sequencing of fish-cultured muscle cells stimulated with pro-growth signals. In this work, we obtained the transcriptome and microRNAome of pacu (Piaractus mesopotamicus)-cultured myotubes treated with AA or IGF1. We identified 1228 and 534 genes differentially expressed by AA and IGF1. An enrichment analysis showed that AA treatment induced chromosomal changes, mitosis, and muscle differentiation, while IGF1 modulated IGF/PI3K signaling, metabolic alteration, and matrix structure. In addition, potential molecular markers were similarly modulated by both treatments. Muscle-miRNAs (miR-1, -133, -206 and -499) were up-regulated, especially in AA samples, and we identified molecular networks with omics integration. Two pairs of genes and miRNAs demonstrated a high-level relationship, and involvement in myogenesis and muscle growth: marcksb and miR-29b in AA, and mmp14b and miR-338-5p in IGF1. Our work helps to elucidate fish muscle physiology and metabolism, highlights potential molecular markers, and creates a perspective for improvements in aquaculture and in in vitro meat production.
Collapse
|
5
|
Chen Z, Zhang W, Selmi C, Ridgway WM, Leung PS, Zhang F, Gershwin ME. The myristoylated alanine-rich C-kinase substrates (MARCKS): A membrane-anchored mediator of the cell function. Autoimmun Rev 2021; 20:102942. [PMID: 34509657 PMCID: PMC9746065 DOI: 10.1016/j.autrev.2021.102942] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 06/26/2021] [Indexed: 12/15/2022]
Abstract
The myristoylated alanine-rich C-kinase substrate (MARCKS) and the MARCKS-related protein (MARCKSL1) are ubiquitous, highly conserved membrane-associated proteins involved in the structural modulation of the actin cytoskeleton, chemotaxis, motility, cell adhesion, phagocytosis, and exocytosis. MARCKS includes an N-terminal myristoylated domain for membrane binding, a highly conserved MARCKS Homology 2 (MH2) domain, and an effector domain (which is the phosphorylation site). MARCKS can sequester phosphatidylinositol-4, 5-diphosphate (PIP2) at lipid rafts in the plasma membrane of quiescent cells, an action reversed by protein kinase C (PKC), ultimately modulating the immune function. Being expressed mostly in innate immune cells, MARCKS promotes the inflammation-driven migration and adhesion of cells and the secretion of cytokines such as tumor necrosis factor (TNF). From a clinical point of view, MARCKS is overexpressed in patients with schizophrenia and bipolar disorders, while the brain level of MARCKS phosphorylation is associated with Alzheimer's disease. Furthermore, MARCKS is associated with the development and progression of numerous types of cancers. Data in autoimmune diseases are limited to rheumatoid arthritis models in which a connection between MARCKS and the JAK-STAT pathway is mediated by miRNAs. We provide a comprehensive overview of the structure of MARCKS, its molecular characteristics and functions from a biological and pathogenetic standpoint, and will discuss the clinical implications of this pathway.
Collapse
Affiliation(s)
- Zhilei Chen
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California Davis, Davis, CA 95616, United States,Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Weici Zhang
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California Davis, Davis, CA 95616, United States,Corresponding authors. (W. Zhang), (F. Zhang)
| | - Carlo Selmi
- Humanitas Research Hospital - IRCCS, Rozzano, Milan, Italy
| | - William M. Ridgway
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California Davis, Davis, CA 95616, United States
| | - Patrick S.C. Leung
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California Davis, Davis, CA 95616, United States
| | - Fengchun Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China,Corresponding authors. (W. Zhang), (F. Zhang)
| | - M. Eric Gershwin
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California Davis, Davis, CA 95616, United States
| |
Collapse
|
6
|
Cilleros-Mañé V, Just-Borràs L, Polishchuk A, Durán M, Tomàs M, Garcia N, Tomàs JM, Lanuza MA. M 1 and M 2 mAChRs activate PDK1 and regulate PKC βI and ε and the exocytotic apparatus at the NMJ. FASEB J 2021; 35:e21724. [PMID: 34133802 DOI: 10.1096/fj.202002213r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 05/07/2021] [Accepted: 05/24/2021] [Indexed: 01/14/2023]
Abstract
Neuromuscular junctions (NMJ) regulate cholinergic exocytosis through the M1 and M2 muscarinic acetylcholine autoreceptors (mAChR), involving the crosstalk between receptors and downstream pathways. Protein kinase C (PKC) regulates neurotransmission but how it associates with the mAChRs remains unknown. Here, we investigate whether mAChRs recruit the classical PKCβI and the novel PKCε isoforms and modulate their priming by PDK1, translocation and activity on neurosecretion targets. We show that each M1 and M2 mAChR activates the master kinase PDK1 and promotes a particular priming of the presynaptic PKCβI and ε isoforms. M1 recruits both primed-PKCs to the membrane and promotes Munc18-1, SNAP-25, and MARCKS phosphorylation. In contrast, M2 downregulates PKCε through a PKA-dependent pathway, which inhibits Munc18-1 synthesis and PKC phosphorylation. In summary, our results discover a co-dependent balance between muscarinic autoreceptors which orchestrates the presynaptic PKC and their action on ACh release SNARE-SM mechanism. Altogether, this molecular signaling explains previous functional studies at the NMJ and guide toward potential therapeutic targets.
Collapse
Affiliation(s)
- V Cilleros-Mañé
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Departament de Ciències Mèdiques Bàsiques, Universitat Rovira i Virgili, Reus, Spain
| | - L Just-Borràs
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Departament de Ciències Mèdiques Bàsiques, Universitat Rovira i Virgili, Reus, Spain
| | - A Polishchuk
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Departament de Ciències Mèdiques Bàsiques, Universitat Rovira i Virgili, Reus, Spain
| | - M Durán
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Departament de Ciències Mèdiques Bàsiques, Universitat Rovira i Virgili, Reus, Spain
| | - M Tomàs
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Departament de Ciències Mèdiques Bàsiques, Universitat Rovira i Virgili, Reus, Spain
| | - N Garcia
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Departament de Ciències Mèdiques Bàsiques, Universitat Rovira i Virgili, Reus, Spain
| | - J M Tomàs
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Departament de Ciències Mèdiques Bàsiques, Universitat Rovira i Virgili, Reus, Spain
| | - M A Lanuza
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Departament de Ciències Mèdiques Bàsiques, Universitat Rovira i Virgili, Reus, Spain
| |
Collapse
|
7
|
Iyer DN, Faruq O, Zhang L, Rastgoo N, Liu A, Chang H. Pathophysiological roles of myristoylated alanine-rich C-kinase substrate (MARCKS) in hematological malignancies. Biomark Res 2021; 9:34. [PMID: 33958003 PMCID: PMC8101130 DOI: 10.1186/s40364-021-00286-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/16/2021] [Indexed: 12/17/2022] Open
Abstract
The myristoylated alanine-rich C-kinase substrate (MARCKS) protein has been at the crossroads of multiple signaling pathways that govern several critical operations in normal and malignant cellular physiology. Functioning as a target of protein kinase C, MARCKS shuttles between the phosphorylated cytosolic form and the unphosphorylated plasma membrane-bound states whilst regulating several molecular partners including, but not limited to calmodulin, actin, phosphatidylinositol-4,5-bisphosphate, and phosphoinositide-3-kinase. As a result of these interactions, MARCKS directly or indirectly modulates a host of cellular functions, primarily including cytoskeletal reorganization, membrane trafficking, cell secretion, inflammatory response, cell migration, and mitosis. Recent evidence indicates that dysregulated expression of MARCKS is associated with the development and progression of hematological cancers. While it is understood that MARCKS impacts the overall carcinogenesis as well as plays a part in determining the disease outcome in blood cancers, we are still at an early stage of interpreting the pathophysiological roles of MARCKS in neoplastic disease. The situation is further complicated by contradictory reports regarding the role of phosphorylated versus an unphosphorylated form of MARCKS as an oncogene versus tumor suppressor in blood cancers. In this review, we will investigate the current body of knowledge and evolving concepts of the physical properties, molecular network, functional attributes, and the likely pathogenic roles of MARCKS in hematological malignancies. Key emphasis will also be laid upon understanding the novel mechanisms by which MARCKS determines the overall disease prognosis by playing a vital role in the induction of therapeutic resistance. Additionally, we will highlight the importance of MARCKS as a valuable therapeutic target in blood cancers and will discuss the potential of existing strategies available to tackle MARCKS-driven blood cancers.
Collapse
Affiliation(s)
- Deepak Narayanan Iyer
- Laboratory medicine program, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada
| | - Omar Faruq
- Laboratory medicine program, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada
| | - Lun Zhang
- Laboratory medicine program, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada
| | - Nasrin Rastgoo
- Laboratory medicine program, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada
| | - Aijun Liu
- Department of Hematology, Beijing Chaoyang Hospital, Capital University, Beijing, China.
| | - Hong Chang
- Laboratory medicine program, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada.
| |
Collapse
|
8
|
Sheats MK, Yin Q, Fang S, Park J, Crews AL, Parikh I, Dickson B, Adler KB. MARCKS and Lung Disease. Am J Respir Cell Mol Biol 2019; 60:16-27. [PMID: 30339463 DOI: 10.1165/rcmb.2018-0285tr] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
MARCKS (myristoylated alanine-rich C kinase substrate) is a prominent PKC substrate expressed in all eukaryotic cells. It is known to bind to and cross-link actin filaments, to serve as a bridge between Ca2+/calmodulin and PKC signaling, and to sequester the signaling molecule phosphatidylinositol 4,5-bisphosphate in the plasma membrane. Since the mid-1980s, this evolutionarily conserved and ubiquitously expressed protein has been associated with regulating cellular events that require dynamic actin reorganization, including cellular adhesion, migration, and exocytosis. More recently, translational studies have implicated MARCKS in the pathophysiology of a number of airway diseases, including chronic obstructive pulmonary disease, asthma, lung cancer, and acute lung injury/acute respiratory distress syndrome. This article summarizes the structure and cellular function of MARCKS (also including MARCKS family proteins and MARCKSL1 [MARCKS-like protein 1]). Evidence for MARCKS's role in several lung diseases is discussed, as are the technological innovations that took MARCKS-targeting strategies from theoretical to therapeutic. Descriptions and updates derived from ongoing clinical trials that are investigating inhalation of a MARCKS-targeting peptide as therapy for patients with chronic bronchitis, lung cancer, and ARDS are provided.
Collapse
Affiliation(s)
| | - Qi Yin
- 2 Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina; and
| | - Shijing Fang
- 2 Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina; and
| | - Joungjoa Park
- 2 Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina; and
| | - Anne L Crews
- 2 Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina; and
| | - Indu Parikh
- 3 BioMarck Pharmaceuticals, Durham, North Carolina
| | | | - Kenneth B Adler
- 2 Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina; and
| |
Collapse
|
9
|
El Amri M, Fitzgerald U, Schlosser G. MARCKS and MARCKS-like proteins in development and regeneration. J Biomed Sci 2018; 25:43. [PMID: 29788979 PMCID: PMC5964646 DOI: 10.1186/s12929-018-0445-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/07/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Myristoylated Alanine-Rich C-kinase Substrate (MARCKS) and MARCKS-like protein 1 (MARCKSL1) have a wide range of functions, ranging from roles in embryonic development to adult brain plasticity and the inflammatory response. Recently, both proteins have also been identified as important players in regeneration. Upon phosphorylation by protein kinase C (PKC) or calcium-dependent calmodulin-binding, MARCKS and MARCKSL1 translocate from the membrane into the cytosol, modulating cytoskeletal actin dynamics and vesicular trafficking and activating various signal transduction pathways. As a consequence, the two proteins are involved in the regulation of cell migration, secretion, proliferation and differentiation in many different tissues. MAIN BODY Throughout vertebrate development, MARCKS and MARCKSL1 are widely expressed in tissues derived from all germ layers, with particularly strong expression in the nervous system. They have been implicated in the regulation of gastrulation, myogenesis, brain development, and other developmental processes. Mice carrying loss of function mutations in either Marcks or Marcksl1 genes die shortly after birth due to multiple deficiencies including detrimental neural tube closure defects. In adult vertebrates, MARCKS and MARCKL1 continue to be important for multiple regenerative processes including peripheral nerve, appendage, and tail regeneration, making them promising targets for regenerative medicine. CONCLUSION This review briefly summarizes the molecular interactions and cellular functions of MARCKS and MARCKSL1 proteins and outlines their vital roles in development and regeneration.
Collapse
Affiliation(s)
- Mohamed El Amri
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Biomedical Sciences Building, Newcastle Road, Galway, Ireland
| | - Una Fitzgerald
- Galway Neuroscience Centre, School of Natural Sciences, Biomedical Sciences Building, National University of Ireland, Newcastle Road, Galway, Ireland
| | - Gerhard Schlosser
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Biomedical Sciences Building, Newcastle Road, Galway, Ireland. .,School of Natural Sciences and Regenerative Medicine Institute (REMEDI), National University of Ireland, Galway, Biomedical Sciences Building, Newcastle Road, Galway, Ireland.
| |
Collapse
|
10
|
Fu X, Liang C, Li F, Wang L, Wu X, Lu A, Xiao G, Zhang G. The Rules and Functions of Nucleocytoplasmic Shuttling Proteins. Int J Mol Sci 2018; 19:ijms19051445. [PMID: 29757215 PMCID: PMC5983729 DOI: 10.3390/ijms19051445] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 12/14/2022] Open
Abstract
Biological macromolecules are the basis of life activities. There is a separation of spatial dimension between DNA replication and RNA biogenesis, and protein synthesis, which is an interesting phenomenon. The former occurs in the cell nucleus, while the latter in the cytoplasm. The separation requires protein to transport across the nuclear envelope to realize a variety of biological functions. Nucleocytoplasmic transport of protein including import to the nucleus and export to the cytoplasm is a complicated process that requires involvement and interaction of many proteins. In recent years, many studies have found that proteins constantly shuttle between the cytoplasm and the nucleus. These shuttling proteins play a crucial role as transport carriers and signal transduction regulators within cells. In this review, we describe the mechanism of nucleocytoplasmic transport of shuttling proteins and summarize some important diseases related shuttling proteins.
Collapse
Affiliation(s)
- Xuekun Fu
- Department of Biology and Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China.
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Chao Liang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Shenzhen Lab of Combinatorial Compounds and Targeted Drug Delivery, HKBU Institute of Research and Continuing Education, Shenzhen 518057, China.
| | - Fangfei Li
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Shenzhen Lab of Combinatorial Compounds and Targeted Drug Delivery, HKBU Institute of Research and Continuing Education, Shenzhen 518057, China.
| | - Luyao Wang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Shenzhen Lab of Combinatorial Compounds and Targeted Drug Delivery, HKBU Institute of Research and Continuing Education, Shenzhen 518057, China.
| | - Xiaoqiu Wu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Shenzhen Lab of Combinatorial Compounds and Targeted Drug Delivery, HKBU Institute of Research and Continuing Education, Shenzhen 518057, China.
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Shenzhen Lab of Combinatorial Compounds and Targeted Drug Delivery, HKBU Institute of Research and Continuing Education, Shenzhen 518057, China.
| | - Guozhi Xiao
- Department of Biology and Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China.
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA.
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Shenzhen Lab of Combinatorial Compounds and Targeted Drug Delivery, HKBU Institute of Research and Continuing Education, Shenzhen 518057, China.
| |
Collapse
|
11
|
Fong LWR, Yang DC, Chen CH. Myristoylated alanine-rich C kinase substrate (MARCKS): a multirole signaling protein in cancers. Cancer Metastasis Rev 2018; 36:737-747. [PMID: 29039083 DOI: 10.1007/s10555-017-9709-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Emerging evidence implicates myristoylated alanine-rich C-kinase substrate (MARCKS), a major substrate of protein kinase C (PKC), in a critical role for cancer development and progression. MARCKS is tethered to the plasma membrane but can shuttle between the cytosol and plasma membrane via the myristoyl-electrostatic switch. Phosphorylation of MARCKS by PKC leads to its translocation from the plasma membrane to the cytosol where it functions in actin cytoskeletal remodeling, Ca2+ signaling through binding to calmodulin, and regulation of exocytic vesicle release in secretory cells such as neurons and airway goblet cells. Although the contribution of MARCKS to various cellular processes has been extensively studied, its roles in neoplastic disease have been conflicting. This review highlights the molecular and functional differences of MARCKS that exist between normal and tumor cells. We also discuss the recent advances in the potential roles of MARCKS in tumorigenesis, metastasis, and resistance to anti-cancer therapies, with a focus on addressing the inconsistent results regarding the function of MARCKS as a promoter or inhibitor of oncogenesis.
Collapse
Affiliation(s)
- Lon Wolf R Fong
- Department of Experimental Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David C Yang
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine and Center for Comparative Respiratory Biology and Medicine, University of California Davis, Davis, CA, USA.,Division of Nephrology, Department of Internal Medicine, University of California Davis, Davis, CA, 95616, USA
| | - Ching-Hsien Chen
- Division of Nephrology, Department of Internal Medicine, University of California Davis, Davis, CA, 95616, USA. .,Comprehensive Cancer Center, University of California Davis, Davis, CA, USA.
| |
Collapse
|
12
|
Sosa LJ, Malter JS, Hu J, Bustos Plonka F, Oksdath M, Nieto Guil AF, Quiroga S, Pfenninger KH. Protein interacting with NIMA (never in mitosis A)-1 regulates axonal growth cone adhesion and spreading through myristoylated alanine-rich C kinase substrate isomerization. J Neurochem 2016; 137:744-55. [DOI: 10.1111/jnc.13612] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 01/20/2016] [Accepted: 03/03/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Lucas J. Sosa
- Department of Pediatrics and Colorado Intellectual and Developmental Disabilities Research Center; University of Colorado School of Medicine; Aurora Colorado USA
| | - James S. Malter
- Department of Pathology; University of Texas Southwestern Medical Center; Dallas Texas USA
| | - Jie Hu
- Department of Pathology; University of Texas Southwestern Medical Center; Dallas Texas USA
| | - Florentyna Bustos Plonka
- Departamento de Química Biológica-CIQUIBIC; Facultad de Ciencias Químicas; Universidad Nacional de Córdoba-CONICET; Córdoba Argentina
| | - Mariana Oksdath
- Departamento de Química Biológica-CIQUIBIC; Facultad de Ciencias Químicas; Universidad Nacional de Córdoba-CONICET; Córdoba Argentina
| | - Alvaro F. Nieto Guil
- Departamento de Química Biológica-CIQUIBIC; Facultad de Ciencias Químicas; Universidad Nacional de Córdoba-CONICET; Córdoba Argentina
| | - Santiago Quiroga
- Departamento de Química Biológica-CIQUIBIC; Facultad de Ciencias Químicas; Universidad Nacional de Córdoba-CONICET; Córdoba Argentina
| | - Karl H. Pfenninger
- Department of Pediatrics and Colorado Intellectual and Developmental Disabilities Research Center; University of Colorado School of Medicine; Aurora Colorado USA
| |
Collapse
|
13
|
Attachment, Growth, and Detachment of Human Mesenchymal Stem Cells in a Chemically Defined Medium. Stem Cells Int 2016; 2016:5246584. [PMID: 27006663 PMCID: PMC4781990 DOI: 10.1155/2016/5246584] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 01/18/2016] [Accepted: 01/26/2016] [Indexed: 11/17/2022] Open
Abstract
The manufacture of human mesenchymal stem cells (hMSCs) for clinical applications requires an appropriate growth surface and an optimized, preferably chemically defined medium (CDM) for expansion. We investigated a new protein/peptide-free CDM that supports the adhesion, growth, and detachment of an immortalized hMSC line (hMSC-TERT) as well as primary cells derived from bone marrow (bm-hMSCs) and adipose tissue (ad-hMSCs). We observed the rapid attachment and spreading of hMSC-TERT cells and ad-hMSCs in CDM concomitant with the expression of integrin and actin fibers. Cell spreading was promoted by coating the growth surface with collagen type IV and fibronectin. The growth of hMSC-TERT cells was similar in CDM and serum-containing medium whereas the lag phase of bm-hMSCs was prolonged in CDM. FGF-2 or surface coating with collagen type IV promoted the growth of bm-hMSCs, but laminin had no effect. All three cell types retained their trilineage differentiation capability in CDM and were detached by several enzymes (but not collagenase in the case of hMSC-TERT cells). The medium and coating did not affect detachment efficiency but influenced cell survival after detachment. CDM combined with cell-specific surface coatings and/or FGF-2 supplements is therefore as effective as serum-containing medium for the manufacture of different hMSC types.
Collapse
|
14
|
In Vitro Neutrophil Migration Requires Protein Kinase C-Delta (δ-PKC)-Mediated Myristoylated Alanine-Rich C-Kinase Substrate (MARCKS) Phosphorylation. Inflammation 2016; 38:1126-41. [PMID: 25515270 DOI: 10.1007/s10753-014-0078-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Dysregulated release of neutrophil reactive oxygen species and proteolytic enzymes contributes to both acute and chronic inflammatory diseases. Therefore, molecular regulators of these processes are potential targets for new anti-inflammatory therapies. We have shown previously that myristoylated alanine-rich C-kinase substrate (MARCKS), a well-known actin binding protein and protein kinase C (PKC) substrate, is a key regulator of neutrophil functions. In the current study, we investigate the role of PKC-mediated MARCKS phosphorylation in neutrophil migration and adhesion in vitro. We report that treatment of human neutrophils with the δ-PKC inhibitor rottlerin significantly attenuates f-Met-Leu-Phe (fMLF)-induced MARCKS phosphorylation (IC50=5.709 μM), adhesion (IC50=8.4 μM), and migration (IC50=6.7 μM), while α-, β-, and ζ-PKC inhibitors had no significant effect. We conclude that δ-PKC-mediated MARCKS phosphorylation is essential for human neutrophil migration and adhesion in vitro. These results implicate δ-PKC-mediated MARCKS phosphorylation as a key step in the inflammatory response of neutrophils.
Collapse
|
15
|
Yu D, Makkar G, Strickland DK, Blanpied TA, Stumpo DJ, Blackshear PJ, Sarkar R, Monahan TS. Myristoylated Alanine-Rich Protein Kinase Substrate (MARCKS) Regulates Small GTPase Rac1 and Cdc42 Activity and Is a Critical Mediator of Vascular Smooth Muscle Cell Migration in Intimal Hyperplasia Formation. J Am Heart Assoc 2015; 4:e002255. [PMID: 26450120 PMCID: PMC4845127 DOI: 10.1161/jaha.115.002255] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Transcription of the myristoylated alanine-rich C kinase substrate (MARCKS) is upregulated in animal models of intimal hyperplasia. MARCKS knockdown inhibits vascular smooth muscle cell (VSMC) migration in vitro; however, the mechanism is as yet unknown. We sought to elucidate the mechanism of MARCKS-mediated motility and determine whether MARCKS knockdown reduces intimal hyperplasia formation in vivo. METHODS AND RESULTS MARCKS knockdown blocked platelet-derived growth factor (PDGF)-induced translocation of cortactin to the cell cortex, impaired both lamellipodia and filopodia formation, and attenuated motility of human coronary artery smooth muscle cells (CASMCs). Activation of the small GTPases, Rac1 and Cdc42, was prevented by MARCKS knockdown. Phosphorylation of MARCKS resulted in a transient shift of MARCKS from the plasma membrane to the cytosol. MARCKS knockdown significantly decreased membrane-associated phosphatidylinositol 4,5-bisphosphate (PIP2) levels. Cotransfection with an intact, unphosphorylated MARCKS, which has a high binding affinity for PIP2, restored membrane-associated PIP2 levels and was indispensable for activation of Rac1 and Cdc42 and, ultimately, VSMC migration. Overexpression of MARCKS in differentiated VSMCs increased membrane PIP2 abundance, Rac1 and Cdc42 activity, and cell motility. MARCKS protein was upregulated early in the development of intimal hyperplasia in the murine carotid ligation model. Decreased MARKCS expression, but not total knockdown, attenuated intimal hyperplasia formation. CONCLUSIONS MARCKS upregulation increases VSMC motility by activation of Rac1 and Cdc42. These effects are mediated by MARCKS sequestering PIP2 at the plasma membrane. This study delineates a novel mechanism for MARCKS-mediated VSMC migration and supports the rational for MARCKS knockdown to prevent intimal hyperplasia.
Collapse
Affiliation(s)
- Dan Yu
- Department of Surgery, Veterans Affairs Medical Center, Baltimore, MD (D.Y., T.S.M.) Department of Surgery, University of Maryland School of Medicine, Baltimore, MD (D.Y., G.M., D.K.S., R.S., T.S.M.) Center for Vascular and Inflammatory Disease, University of Maryland School of Medicine, Baltimore, MD (D.Y., D.K.S., R.S., T.S.M.)
| | - George Makkar
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD (D.Y., G.M., D.K.S., R.S., T.S.M.)
| | - Dudley K Strickland
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD (D.Y., G.M., D.K.S., R.S., T.S.M.) Department of Physiology, University of Maryland School of Medicine, Baltimore, MD (D.K.S., T.A.B., R.S.) Center for Vascular and Inflammatory Disease, University of Maryland School of Medicine, Baltimore, MD (D.Y., D.K.S., R.S., T.S.M.)
| | - Thomas A Blanpied
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD (D.K.S., T.A.B., R.S.)
| | - Deborah J Stumpo
- The Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC (D.J.S., P.J.B.)
| | - Perry J Blackshear
- The Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC (D.J.S., P.J.B.)
| | - Rajabrata Sarkar
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD (D.Y., G.M., D.K.S., R.S., T.S.M.) Department of Physiology, University of Maryland School of Medicine, Baltimore, MD (D.K.S., T.A.B., R.S.) Center for Vascular and Inflammatory Disease, University of Maryland School of Medicine, Baltimore, MD (D.Y., D.K.S., R.S., T.S.M.)
| | - Thomas S Monahan
- Department of Surgery, Veterans Affairs Medical Center, Baltimore, MD (D.Y., T.S.M.) Department of Surgery, University of Maryland School of Medicine, Baltimore, MD (D.Y., G.M., D.K.S., R.S., T.S.M.) Center for Vascular and Inflammatory Disease, University of Maryland School of Medicine, Baltimore, MD (D.Y., D.K.S., R.S., T.S.M.)
| |
Collapse
|
16
|
Rohrbach TD, Jarboe JS, Anderson JC, Trummell HQ, Hicks PH, Weaver AN, Yang ES, Oster RA, Deshane JS, Steele C, Siegal GP, Bonner JA, Willey CD. Targeting the effector domain of the myristoylated alanine rich C-kinase substrate enhances lung cancer radiation sensitivity. Int J Oncol 2014; 46:1079-88. [PMID: 25524703 DOI: 10.3892/ijo.2014.2799] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/07/2014] [Indexed: 11/06/2022] Open
Abstract
Lung cancer is the leading cause of cancer related deaths. Common molecular drivers of lung cancer are mutations in receptor tyrosine kinases (RTKs) leading to activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pro-growth, pro-survival signaling pathways. Myristoylated alanine rich C-kinase substrate (MARCKS) is a protein that has the ability to mitigate this signaling cascade by sequestering the target of PI3K, phosphatidylinositol (4,5)-bisphosphate (PIP2). As such, MARCKS has been implicated as a tumor suppressor, though there is some evidence that MARCKS may be tumor promoting in certain cancer types. Since the MARCKS function depends on its phosphorylation status, which impacts its subcellular location, MARCKS role in cancer may depend highly on the signaling context. Currently, the importance of MARCKS in lung cancer biology is limited. Thus, we investigated MARCKS in both clinical specimens and cell culture models. Immunohistochemistry scoring of MARCKS protein expression in a diverse lung tumor tissue array revealed that the majority of squamous cell carcinomas stained positive for MARCKS while other histologies, such as adenocarcinomas, had lower levels. To study the importance of MARCKS in lung cancer biology, we used inducible overexpression of wild-type (WT) and non-phosphorylatable (NP)-MARCKS in A549 lung cancer cells that had a low level of endogenous MARCKS. We found that NP-MARCKS expression, but not WT-MARCKS, enhanced the radiosensitivity of A549 cells in part by inhibiting DNA repair as evidenced by prolonged radiation-induced DNA double strand breaks. We confirmed the importance of MARCKS phosphorylation status by treating several lung cancer cell lines with a peptide mimetic of the phosphorylation domain, the effector domain (ED), which effectively attenuated cell growth as measured by cell index. Thus, the MARCKS ED appears to be an important target for lung cancer therapeutic development.
Collapse
Affiliation(s)
- Timothy D Rohrbach
- Department of Radiation Oncology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - John S Jarboe
- Department of Radiation Oncology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Joshua C Anderson
- Department of Radiation Oncology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hoa Q Trummell
- Department of Radiation Oncology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Patricia H Hicks
- Department of Radiation Oncology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alice N Weaver
- Department of Radiation Oncology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Eddy S Yang
- Department of Radiation Oncology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert A Oster
- Division of Preventive Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jessy S Deshane
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chad Steele
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gene P Siegal
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - James A Bonner
- Department of Radiation Oncology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Christopher D Willey
- Department of Radiation Oncology, The University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
17
|
Sheats MK, Pescosolido KC, Hefner EM, Sung EJ, Adler KB, Jones SL. Myristoylated Alanine Rich C Kinase Substrate (MARCKS) is essential to β2-integrin dependent responses of equine neutrophils. Vet Immunol Immunopathol 2014; 160:167-76. [PMID: 24857637 DOI: 10.1016/j.vetimm.2014.04.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/24/2014] [Accepted: 04/25/2014] [Indexed: 01/13/2023]
Abstract
Neutrophil infiltration is a prominent feature in a number of pathologic conditions affecting horses including recurrent airway obstruction, ischemia-reperfusion injury, and laminitis. Cell signaling components involved in neutrophil migration represent targets for novel anti-inflammatory therapies. In order to migrate into tissue, neutrophils must respond to chemoattractant signals in their external environment through activation of adhesion receptors (i.e. integrins) and reorganization of the actin cytoskeleton. Myristoylated Alanine-Rich C-Kinase Substrate (MARCKS), a highly conserved actin-binding protein, has a well demonstrated role in cytoskeletal dependent cellular functions (i.e. adhesion, spreading, and migration), but the details of MARCKS involvement in these processes remain vague. We hypothesized that MARCKS serves as a link between the actin cytoskeleton and integrin function in neutrophils. Using a MARCKS-specific inhibitor peptide known as MANS on equine neutrophils in vitro, we demonstrate that inhibition of MARCKS function significantly attenuates β2-integrin-dependent neutrophil functions including migration, adhesion, and immune complex-mediated respiratory burst. The MANS peptide did not, however, inhibit the β2-integrin-independent PMA mediated respiratory burst. These results attest to the essential role of MARCKS function in regulating neutrophil responses, and strongly implicate MARCKS as a potential regulator of β2-integrins in neutrophils.
Collapse
Affiliation(s)
- Mary K Sheats
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, United States; Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, United States.
| | - Kimberly C Pescosolido
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, United States
| | - Ethan M Hefner
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, United States
| | - Eui Jae Sung
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, United States
| | - Kenneth B Adler
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, United States
| | - Samuel L Jones
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, United States; Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, United States
| |
Collapse
|
18
|
Orecchia A, Mettouchi A, Uva P, Simon GC, Arcelli D, Avitabile S, Ragone G, Meneguzzi G, Pfenninger KH, Zambruno G, Failla CM. Endothelial cell adhesion to soluble vascular endothelial growth factor receptor‐1 triggers a cell dynamic and angiogenic phenotype. FASEB J 2013; 28:692-704. [DOI: 10.1096/fj.12-225771] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Angela Orecchia
- Molecular and Cell Biology LaboratoryIstituto Dermopatico dell'Immacolata (IDI)–Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)RomeItaly
| | - Amel Mettouchi
- Institut National de la Santé et de la Recherche Médicale (INSERM) U634NiceFrance
| | - Paolo Uva
- Center for Advanced Studies, Research, and Development in Sardinia (CRS4)Bioinformatics LaboratoryCagliariItaly
| | - Glenn C. Simon
- Department of PediatricsUniversity of ColoradoAuroraColoradoUSA
| | - Diego Arcelli
- Molecular Oncology LaboratoryIstituto Dermopatico dell'Immacolata (IDI)–Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)RomeItaly
| | - Simona Avitabile
- Molecular and Cell Biology LaboratoryIstituto Dermopatico dell'Immacolata (IDI)–Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)RomeItaly
| | - Gianluca Ragone
- Molecular Oncology LaboratoryIstituto Dermopatico dell'Immacolata (IDI)–Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)RomeItaly
| | - Guerrino Meneguzzi
- Institut National de la Santé et de la Recherche Médicale (INSERM) U634NiceFrance
| | | | - Giovanna Zambruno
- Molecular and Cell Biology LaboratoryIstituto Dermopatico dell'Immacolata (IDI)–Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)RomeItaly
| | - Cristina Maria Failla
- Molecular and Cell Biology LaboratoryIstituto Dermopatico dell'Immacolata (IDI)–Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)RomeItaly
| |
Collapse
|
19
|
Ott LE, Sung EJ, Melvin AT, Sheats MK, Haugh JM, Adler KB, Jones SL. Fibroblast Migration Is Regulated by Myristoylated Alanine-Rich C-Kinase Substrate (MARCKS) Protein. PLoS One 2013; 8:e66512. [PMID: 23840497 PMCID: PMC3686679 DOI: 10.1371/journal.pone.0066512] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 05/10/2013] [Indexed: 01/10/2023] Open
Abstract
Myristoylated alanine-rich C-kinase substrate (MARCKS) is a ubiquitously expressed substrate of protein kinase C (PKC) that is involved in reorganization of the actin cytoskeleton. We hypothesized that MARCKS is involved in regulation of fibroblast migration and addressed this hypothesis by utilizing a unique reagent developed in this laboratory, the MANS peptide. The MANS peptide is a myristoylated cell permeable peptide corresponding to the first 24-amino acids of MARCKS that inhibits MARCKS function. Treatment of NIH-3T3 fibroblasts with the MANS peptide attenuated cell migration in scratch wounding assays, while a myristoylated, missense control peptide (RNS) had no effect. Neither MANS nor RNS peptide treatment altered NIH-3T3 cell proliferation within the parameters of the scratch assay. MANS peptide treatment also resulted in inhibited NIH-3T3 chemotaxis towards the chemoattractant platelet-derived growth factor-BB (PDGF-BB), with no effect observed with RNS treatment. Live cell imaging of PDGF-BB induced chemotaxis demonstrated that MANS peptide treatment resulted in weak chemotactic fidelity compared to RNS treated cells. MANS and RNS peptides did not affect PDGF-BB induced phosphorylation of MARCKS or phosphoinositide 3-kinase (PI3K) signaling, as measured by Akt phosphorylation. Further, no difference in cell migration was observed in NIH-3T3 fibroblasts that were transfected with MARCKS siRNAs with or without MANS peptide treatment. Genetic structure-function analysis revealed that MANS peptide-mediated attenuation of NIH-3T3 cell migration does not require the presence of the myristic acid moiety on the amino-terminus. Expression of either MANS or unmyristoylated MANS (UMANS) C-terminal EGFP fusion proteins resulted in similar levels of attenuated cell migration as observed with MANS peptide treatment. These data demonstrate that MARCKS regulates cell migration and suggests that MARCKS-mediated regulation of fibroblast migration involves the MARCKS amino-terminus. Further, this data demonstrates that MANS peptide treatment inhibits MARCKS function during fibroblast migration and that MANS mediated inhibition occurs independent of myristoylation.
Collapse
Affiliation(s)
- Laura E. Ott
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
- Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Eui Jae Sung
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
- Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Adam T. Melvin
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Mary K. Sheats
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
- Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Jason M. Haugh
- Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, North Carolina, United States of America
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Kenneth B. Adler
- Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, North Carolina, United States of America
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Samuel L. Jones
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
- Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
20
|
Iorio R, Bennato F, Mancini F, Colonna RC. ELF-MF transiently increases skeletal myoblast migration: possible role of calpain system. Int J Radiat Biol 2013; 89:548-61. [PMID: 23367877 DOI: 10.3109/09553002.2013.771825] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE Cell migration is crucial for myogenesis since it is required for the alignment and fusion of myoblast. Ca(2+) signals are involved in regulating myoblast migration and an extremely low frequency (ELF) magnetic field (MF) increases intracellular calcium levels in C2C12 myoblast. This study was aimed at investigating whether ELF-MF could affect myoblast migration. As calpains contribute to the regulation of myoblast motility, the effect of ELF-MF on μ- and m-calpain was also investigated. MATERIALS AND METHODS The effect of ELF-MF (1 mT; 50 Hz) on C2C12 cell motility was observed by wound-healing assay. Protein expression of calpains, calpastatin, myristoylated alanine-rich C-kinase substrate (MARCKS) and vinculin were examined by Western blot analysis. Casein zymography and immunofluorescence analysis were carried out to evaluate, respectively, activity levels of calpains and intracellular distribution of calpains, calpastatin and actin. RESULTS Exposure to ELF-MF resulted in a transient but significant increase of myoblast migration. This stimulatory effect was associated with a marked increase of μ- and m-calpain activity followed by the concomitant variation in their subcellular localization. No significant changes in intracellular distribution and protein levels of calpastatin were detected. Finally, a significant decrease of MARCKS expression and modifications of actin dynamics were reported. CONCLUSIONS This study clearly outlines an involvement of calpains in ELF-MF-mediated myoblast migration.
Collapse
Affiliation(s)
- Roberto Iorio
- Departments of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, 67100 Italy.
| | | | | | | |
Collapse
|
21
|
Zheng D, Decker KF, Zhou T, Chen J, Qi Z, Jacobs K, Weilbaecher KN, Corey E, Long F, Jia L. Role of WNT7B-induced noncanonical pathway in advanced prostate cancer. Mol Cancer Res 2013; 11:482-93. [PMID: 23386686 DOI: 10.1158/1541-7786.mcr-12-0520] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Advanced prostate cancer is characterized by incurable castration-resistant progression and osteoblastic bone metastasis. While androgen deprivation therapy remains the primary treatment for advanced prostate cancer, resistance inevitably develops. Importantly, mounting evidence indicates that androgen receptor (AR) signaling continues to play a critical role in the growth of advanced prostate cancer despite androgen deprivation. While the mechanisms of aberrant AR activation in advanced prostate cancer have been extensively studied, the downstream AR target genes involved in the progression of castration resistance are largely unknown. Here, we identify WNT7B as a direct AR target gene highly expressed in castration-resistant prostate cancer (CRPC) cells. Our results show that expression of WNT7B is necessary for the growth of prostate cancer cells and that this effect is enhanced under androgen-deprived conditions. Further analyses reveal that WNT7B promotes androgen-independent growth of CRPC cells likely through the activation of protein kinase C isozymes. Our results also show that prostate cancer-produced WNT7B induces osteoblast differentiation in vitro through a direct cell-cell interaction, and that WNT7B is upregulated in human prostate cancer xenografts that cause an osteoblastic reaction when grown in bone. Taken together, these results suggest that AR-regulated WNT7B signaling is critical for the growth of CRPC and development of the osteoblastic bone response characteristic of advanced prostate cancer.
Collapse
Affiliation(s)
- Dali Zheng
- Center for Pharmacogenomics, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Green TD, Park J, Yin Q, Fang S, Crews AL, Jones SL, Adler KB. Directed migration of mouse macrophages in vitro involves myristoylated alanine-rich C-kinase substrate (MARCKS) protein. J Leukoc Biol 2012; 92:633-9. [PMID: 22623357 DOI: 10.1189/jlb.1211604] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
A role for MARCKS protein in directed migration of macrophages toward a chemoattractant was investigated. A peptide identical to the N-terminus of MARCKS (the MANS peptide), shown previously to inhibit the function of MARCKS in various cell types, was used. We investigated whether this MARCKS-related peptide could affect migration of macrophages, using the mouse macrophage-like J774A.1 cell line and primary murine macrophages. Both of these cell types migrated in response to the chemoattractants macrophage/MCPs, MCP-1 (25-100 ng/ml) or C5a (5-20 ng/ml). Cells were preincubated (15 min) with MANS or a mis-sense control peptide (RNS), both at 50 μM, and effects on migration determined 3 h after addition of chemoattractants. The movement and interactions of MARCKS and actin also were followed visually via confocal microscopy using a fluorescently labeled antibody to MARCKS and fluorescently tagged phalloidin to identify actin. MANS, but not RNS, attenuated migration of J774A.1 cells and primary macrophages in response to MCP-1 or C5a, implicating MARCKS in the cellular mechanism of directed migration. Exposure of cells to MCP-1 resulted in rapid phosphorylation and translocation of MARCKS from plasma membrane to cytosol, whereas actin appeared to spread through the cell and into cell protrusions; there was visual and biochemical evidence of a transient interaction between MARCKS and actin during the process of migration. These results suggest that MARCKS is involved in directed migration of macrophages via a process involving its phosphorylation, cytoplasmic translocation, and interaction with actin.
Collapse
Affiliation(s)
- Teresa D Green
- Department of Molecular Biomedical Sciences, North Carolina State University, College of Veterinary Medicine, Raleigh, NC, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Ott LE, McDowell ZT, Turner PM, Law JM, Adler KB, Yoder JA, Jones SL. Two myristoylated alanine-rich C-kinase substrate (MARCKS) paralogs are required for normal development in zebrafish. Anat Rec (Hoboken) 2011; 294:1511-24. [PMID: 21809467 DOI: 10.1002/ar.21453] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 05/15/2011] [Indexed: 12/20/2022]
Abstract
Myristoylated alanine-rich C-kinase substrate (MARCKS) is an actin binding protein substrate of protein kinase C (PKC) and critical for mouse and Xenopus development. Herein two MARCKS paralogs, marcksa and marcksb, are identified in zebrafish and the role of these genes in zebrafish development is evaluated. Morpholino-based targeting of either MARCKS protein resulted in increased mortality and a range of gross phenotypic abnormalities. Phenotypic abnormalities were classified as mild, moderate or severe, which is characterized by a slight curve of a full-length tail, a severe curve or twist of a full-length tail and a truncated tail, respectively. All three phenotypes displayed abnormal neural architecture. Histopathology of Marcks targeted embryos revealed abnormalities in retinal layering, gill formation and skeletal muscle morphology. These results demonstrate that Marcksa and Marcksb are required for normal zebrafish development and suggest that zebrafish are a suitable model to further study MARCKS function.
Collapse
Affiliation(s)
- Laura E Ott
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Madaro L, Marrocco V, Fiore P, Aulino P, Smeriglio P, Adamo S, Molinaro M, Bouché M. PKCθ signaling is required for myoblast fusion by regulating the expression of caveolin-3 and β1D integrin upstream focal adhesion kinase. Mol Biol Cell 2011; 22:1409-19. [PMID: 21346196 PMCID: PMC3078083 DOI: 10.1091/mbc.e10-10-0821] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Using both in vivo and in vitro protein kinase C (PKC) θ mutant models, we found that PKCθ, the PKC isoform predominantly expressed in skeletal muscle, is required for myoblast fusion and myofiber growth, by regulating focal adhesion kinase activity and, in turn, the expression of the pro-fusion genes caveolin-3 and β1D-integrin. Fusion of mononucleated myoblasts to form multinucleated myofibers is an essential phase of skeletal myogenesis, which occurs during muscle development as well as during postnatal life for muscle growth, turnover, and regeneration. Many cell adhesion proteins, including integrins, have been shown to be important for myoblast fusion in vertebrates, and recently focal adhesion kinase (FAK), has been proposed as a key mediator of myoblast fusion. Here we focused on the possible role of PKCθ, the PKC isoform predominantly expressed in skeletal muscle, in myoblast fusion. We found that the expression of PKCθ is strongly up-regulated following freeze injury–induced muscle regeneration, as well as during in vitro differentiation of satellite cells (SCs; the muscle stem cells). Using both PKCθ knockout and muscle-specific PKCθ dominant-negative mutant mouse models, we observed delayed body and muscle fiber growth during the first weeks of postnatal life, when compared with wild-type (WT) mice. We also found that myofiber formation, during muscle regeneration after freeze injury, was markedly impaired in PKCθ mutant mice, as compared with WT. This phenotype was associated with reduced expression of the myogenic differentiation program executor, myogenin, but not with that of the SC marker Pax7. Indeed in vitro differentiation of primary muscle-derived SCs from PKCθ mutants resulted in the formation of thinner myotubes with reduced numbers of myonuclei and reduced fusion rate, when compared with WT cells. These effects were associated to reduced expression of the profusion genes caveolin-3 and β1D integrin and to reduced activation/phosphorylation of their up-stream regulator FAK. Indeed the exogenous expression of a constitutively active mutant form of PKCθ in muscle cells induced FAK phosphorylation. Moreover pharmacologically mediated full inhibition of FAK activity led to similar fusion defects in both WT and PKCθ-null myoblasts. We thus propose that PKCθ signaling regulates myoblast fusion by regulating, at least in part, FAK activity, essential for profusion gene expression.
Collapse
Affiliation(s)
- Luca Madaro
- Department of Anatomy, Sapienza University of Rome, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Techasen A, Loilome W, Namwat N, Takahashi E, Sugihara E, Puapairoj A, Miwa M, Saya H, Yongvanit P. Myristoylated alanine-rich C kinase substrate phosphorylation promotes cholangiocarcinoma cell migration and metastasis via the protein kinase C-dependent pathway. Cancer Sci 2010; 101:658-65. [PMID: 20047593 PMCID: PMC11158558 DOI: 10.1111/j.1349-7006.2009.01427.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Myristoylated alanine-rich C kinase substrate (MARCKS), a substrate of protein kinase C (PKC) has been suggested to be implicated in cell adhesion, secretion, and motility through the regulation of the actin cytoskeletal structure. The quantitative real-time-polymerase chain reaction analysis revealed that MARCKS is significantly overexpressed in Opisthorchis viverrini-associated cholangiocarcinoma (CCA) (P = 0.001) in a hamster model, which correlated with the results of mRNA in situ hybridization. An immunohistochemical analysis of 60 CCA patients revealed a significant increase of MARCKS expression. Moreover, the log-rank analysis indicated that CCA patients with a high MARCKS expression have significantly shorter survival times than those with a low MARCKS expression (P = 0.02). This study investigated whether MARCKS overexpression is associated with CCA metastasis. Using a confocal microscopic analysis of CCA cell lines that had been stimulated with the PKC activator, 12-0-tetradecanoyl phorbol-13-acetate (TPA), MARCKS was found to be translocated from the plasma membrane to the perinuclear area. In addition, phosphorylated MARCKS (pMARCKS) became highly concentrated in the perinuclear area. Moreover, an adhesion assay demonstrated that the exogenous overexpression of MARCKS remarkably promoted cell attachment. Interestingly, after TPA stimulation, the CCA cell line-depleted MARCKS showed a decrease in migration and invasion activity. It can be concluded that in non-stimulation, MARCKS promotes cell attachment to the extracellular matrix. After TPA stimulation, PKC phosphorylates MARCKS leading to cell migration or invasion. Taken together, the results of this study reveal a prominent role for MARCKS as one of the key players in the migration of CCA cells and suggest that cycling between MARCKS and pMARCKS can regulate the metastasis of biliary cancer cells.
Collapse
Affiliation(s)
- Anchalee Techasen
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Micallef J, Taccone M, Mukherjee J, Croul S, Busby J, Moran MF, Guha A. Epidermal Growth Factor Receptor Variant III–Induced Glioma Invasion Is Mediated through Myristoylated Alanine-Rich Protein Kinase C Substrate Overexpression. Cancer Res 2009; 69:7548-56. [DOI: 10.1158/0008-5472.can-08-4783] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Estrada-Bernal A, Gatlin JC, Sunpaweravong S, Pfenninger KH. Dynamic adhesions and MARCKS in melanoma cells. J Cell Sci 2009; 122:2300-10. [PMID: 19509053 DOI: 10.1242/jcs.047860] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cell motility necessitates the rapid formation and disassembly of cell adhesions. We have studied adhesions in a highly motile melanoma cell line using various biochemical approaches and microscopic techniques to image close adhesions. We report that WM-1617 melanoma cells contain at least two types of close adhesion: classic focal adhesions and more extensive, irregularly shaped adhesions that tend to occur along lamellipodial edges. In contrast to focal adhesions, these latter adhesions are highly dynamic and can be disassembled rapidly via protein kinase C (PKC) activation (e.g. by eicosanoid) and MARCKS phosphorylation. MARCKS overexpression, however, greatly increases the area of close adhesions and renders them largely refractory to PKC stimulation. This indicates that nonphosphorylated MARCKS is an adhesion stabilizer. Unlike focal adhesions, the dynamic adhesions contain alpha3 integrin and MARCKS, but they do not contain the focal adhesion marker vinculin. Overall, these results begin to define the molecular and functional properties of dynamic close adhesions involved in cell motility.
Collapse
Affiliation(s)
- Adriana Estrada-Bernal
- Department of Pediatrics, University of Colorado School of Medicine, University of Colorado Cancer Center, and Colorado Intellectual and Developmental Disabilities Research Center, Aurora, CO 80045, USA
| | | | | | | |
Collapse
|
28
|
Yan M, Cheng C, Jiang J, Liu Y, Gao Y, Guo Z, Liu H, Shen A. Essential role of SRC suppressed C kinase substrates in Schwann cells adhesion, spreading and migration. Neurochem Res 2009; 34:1002-1010. [PMID: 18979197 DOI: 10.1007/s11064-008-9869-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2008] [Indexed: 11/26/2022]
Abstract
Integrin-mediated substrate adhesion of endothelial cells leads to dynamic rearrangement of the actin cytoskeleton. Protein kinase C (PKC) stimulates reorganization of microfilaments and adhesion, while the responses of Schwann cells during adhesion and migration are unknown, so we examined the expression changes of SSeCKS and F-actin in Schwann cells after exposure to fibronectin. Src (sarcoma) suppressed C kinase substrate (SSeCKS) is a PKC substrate that may play an important role in regulating actin cytoskeleton. We found that SSeCKS was localized to focal adhesion sites soon after Schwann cells adhesion and that SSeCKS increased during the process of cell spreading. Using small interfering RNAs specific to SSeCKS, we showed that Schwann cells in which SSeCKS expression was inhibited reduced cellular adhesion, spreading and promoted cellular migration on fibronectin through reorganization of actin stress fibers and blocking formation of focal adhesions. These results demonstrated SSeCKS modulate Schwann cells adhesion, spreading and migration by reorganization of the actin cytoskeleton.
Collapse
Affiliation(s)
- Meijuan Yan
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Putnam AJ, Schulz VV, Freiter EM, Bill HM, Miranti CK. Src, PKCalpha, and PKCdelta are required for alphavbeta3 integrin-mediated metastatic melanoma invasion. Cell Commun Signal 2009; 7:10. [PMID: 19400942 PMCID: PMC2683837 DOI: 10.1186/1478-811x-7-10] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2008] [Accepted: 04/28/2009] [Indexed: 01/05/2023] Open
Abstract
Background Integrins, cell-surface receptors that mediate adhesive interactions between cells and the extracellular matrix (ECM), play an important role in cancer progression. Expression of the vitronectin receptor αvβ3 integrin correlates with increased invasive and metastatic capacity of malignant melanomas, yet it remains unclear how expression of this integrin triggers melanoma invasion and metastasis. Results Two melanoma cell lines C8161.9 and M14 both express high levels of αvβ3 integrin and adhere to vitronectin. However, only the highly metastatic C8161.9 cells are capable of invading vitronectin-enriched Matrigel in an αvβ3-depenent manner. Elevated levels of PKCα and PKCδ, and activated Src were detected specifically in the highly metastatic melanoma cells, but not in the low metastatic M14 cells. Inhibition of Src or PKC activity suppressed αvβ3-dependent invasion. Furthermore, over expression of Src or PKCα and PKCδ was sufficient to confer αvβ3-dependent invasiveness to M14 cells. Stress fiber formation and focal adhesion formation were almost completely absent in C8161.9 cells compared to M14 cells. Inhibition of Src signaling was sufficient to restore normal actin architecture, and resulted in decreased p190RhoGAP phosphorylation and enhanced RhoA activity. Src had no effect on Rac activity. Loss of PKCα expression, but not PKCδ, by siRNA inhibited Rac and PAK activity as well as invasiveness. Loss of PKCα restored focal adhesion formation and partially restored stress fiber formation, while loss of PKCδ primarily restored stress fibers. Conclusion The misregulated expression of PKCα and PKCδ and elevated Src activity in metastatic melanoma cells is required for efficient αvβ3-mediated invasion. PKCα and Src enhance αvβ3-mediated invasion in part by increasing the GTPase activity of Rac relative to RhoA. PKCα influences focal adhesion formation, while PKCδ controls stress fibers.
Collapse
Affiliation(s)
- Andrew J Putnam
- Laboratory of Integrin Signaling and Tumorigenesis, Van Andel Research Institute, Grand Rapids, Michigan 49503, USA.
| | | | | | | | | |
Collapse
|
30
|
Stensman H, Larsson C. Protein kinase Cepsilon is important for migration of neuroblastoma cells. BMC Cancer 2008; 8:365. [PMID: 19077250 PMCID: PMC2615448 DOI: 10.1186/1471-2407-8-365] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Accepted: 12/11/2008] [Indexed: 11/17/2022] Open
Abstract
Background Migration is important for the metastatic capacity and thus for the malignancy of cancer cells. There is limited knowledge on regulatory factors that promote the migration of neuroblastoma cells. This study investigates the hypothesis that protein kinase C (PKC) isoforms regulate neuroblastoma cell motility. Methods PKC isoforms were downregulated with siRNA or modulated with activators and inhibitors. Migration was analyzed with scratch and transwell assays. Protein phosphorylation and expression levels were measured with Western blot. Results Stimulation with 12-O-tetradecanoylphorbol-13-acetate (TPA) induced migration of SK-N-BE(2)C neuroblastoma cells. Treatment with the general protein kinase C (PKC) inhibitor GF109203X and the inhibitor of classical isoforms Gö6976 inhibited migration while an inhibitor of PKCβ isoforms did not have an effect. Downregulation of PKCε, but not of PKCα or PKCδ, with siRNA led to a suppression of both basal and TPA-stimulated migration. Experiments using PD98059 and LY294002, inhibitors of the Erk and phosphatidylinositol 3-kinase (PI3K) pathways, respectively, showed that PI3K is not necessary for TPA-induced migration. The Erk pathway might be involved in TPA-induced migration but not in migration driven by PKCε. TPA induced phosphorylation of the PKC substrate myristoylated alanine-rich C kinase substrate (MARCKS) which was suppressed by the PKC inhibitors. Treatment with siRNA oligonucleotides against different PKC isoforms before stimulation with TPA did not influence the phosphorylation of MARCKS. Conclusion PKCε is important for migration of SK-N-BE(2)C neuroblastoma cells. Neither the Erk pathway nor MARCKS are critical downstream targets of PKCε but they may be involved in TPA-mediated migration.
Collapse
Affiliation(s)
- Helena Stensman
- Lund University, Center for Molecular Pathology, Dept of Laboratory Medicine, Malmö University Hospital, Malmö, Sweden.
| | | |
Collapse
|
31
|
Weiser DC, St. Julien KR, Lang JS, Kimelman D. Cell shape regulation by Gravin requires N-terminal membrane effector domains. Biochem Biophys Res Commun 2008; 375:512-516. [PMID: 18725198 PMCID: PMC2602957 DOI: 10.1016/j.bbrc.2008.08.063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Accepted: 08/05/2008] [Indexed: 12/11/2022]
Abstract
Gravin (AKAP12, SSeCKS) is a scaffolding protein that acts as a potent inhibitor of tumor metastasis in vivo and in vitro, and regulates morphogenesis during vertebrate gastrulation. Despite being implicated in many cellular processes, surprisingly little is known about the mechanism by which Gravin elicits cell shape changes. In this work, we use in vitro cell spreading assays to demonstrate that the Gravin N-terminus containing the three MARCKS-like basic regions (BRs) is necessary and sufficient to regulate cell shape in vitro. We show that the conserved phosphorylation sites in the BRs are essential for their function in these assays. We further demonstrate that the Gravin BRs are necessary for in vivo function during gastrulation in zebrafish. Together, these results provide an important step forward in understanding the mechanism of Gravin function in cell shape regulation and provide valuable insight into how Gravin acts as a cytoskeletal regulator.
Collapse
Affiliation(s)
| | | | | | - David Kimelman
- Department of Biochemistry, University of Washington, Seattle WA 98195
| |
Collapse
|
32
|
Monahan TS, Andersen ND, Martin MC, Malek JY, Shrikhande GV, Pradhan L, Ferran C, LoGerfo FW. MARCKS silencing differentially affects human vascular smooth muscle and endothelial cell phenotypes to inhibit neointimal hyperplasia in saphenous vein. FASEB J 2008; 23:557-64. [PMID: 18940893 DOI: 10.1096/fj.08-114173] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Intimal hyperplasia (IH) limits the patency of all cardiovascular vein bypass grafts. We previously found the myristoylated alanine-rich C kinase substrate (MARCKS), a key protein kinase C (PKC) substrate, to be up-regulated in canine models of IH. Here, we further characterize the role of MARCKS in IH and examine the phenotypic consequences of MARCKS silencing by small interfering RNA (siRNA) transfection in human vascular smooth muscle cells (VSMCs) and endothelial cells (ECs) in vitro and use a rapid 10-min nonviral siRNA transfection technique to determine the effects of MARCKS silencing in human saphenous vein cultured ex vivo. We demonstrate MARCKS silencing attenuates VSMC migration and arrests VSMC proliferation in part through the up-regulation of the cyclin-dependent kinase inhibitor p27(kip1). Conversely, MARCKS silencing had little or no effect on EC migration or proliferation. These phenotypic changes culminated in reduced neointimal formation in cultured human saphenous vein. These data identify MARCKS as a pathogenic contributor to IH and indicate therapeutic MARCKS silencing could selectively suppress the "atherogenic," proliferative phenotype of VSMCs without collateral harm to the endothelium. This approach could be readily translated to the clinic to silence MARCKS in vein bypass grafts prior to implantation.
Collapse
Affiliation(s)
- Thomas S Monahan
- Department of Surgery, Division of Vascular Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Meller R, Thompson SJ, Lusardi TA, Ordonez AN, Ashley MD, Jessick V, Wang W, Torrey DJ, Henshall DC, Gafken PR, Saugstad JA, Xiong ZG, Simon RP. Ubiquitin proteasome-mediated synaptic reorganization: a novel mechanism underlying rapid ischemic tolerance. J Neurosci 2008; 28:50-9. [PMID: 18171922 PMCID: PMC2946223 DOI: 10.1523/jneurosci.3474-07.2008] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 10/22/2007] [Accepted: 11/01/2007] [Indexed: 11/21/2022] Open
Abstract
Ischemic tolerance is an endogenous neuroprotective mechanism in brain and other organs, whereby prior exposure to brief ischemia produces resilience to subsequent normally injurious ischemia. Although many molecular mechanisms mediate delayed (gene-mediated) ischemic tolerance, the mechanisms underlying rapid (protein synthesis-independent) ischemic tolerance are relatively unknown. Here we describe a novel mechanism for the induction of rapid ischemic tolerance mediated by the ubiquitin-proteasome system. Rapid ischemic tolerance is blocked by multiple proteasome inhibitors [carbobenzoxy-L-leucyl-L-leucyl-L-leucinal (MG132), MG115 (carbobenzoxy-L-leucyl-L-leucyl-L-norvalinal), and clasto-lactacystin-beta-lactone]. A proteomics strategy was used to identify ubiquitinated proteins after preconditioning ischemia. We focused our studies on two actin-binding proteins of the postsynaptic density that were ubiquitinated after rapid preconditioning: myristoylated, alanine-rich C-kinase substrate (MARCKS) and fascin. Immunoblots confirm the degradation of MARCKS and fascin after preconditioning ischemia. The loss of actin-binding proteins promoted actin reorganization in the postsynaptic density and transient retraction of dendritic spines. This rapid and reversible synaptic remodeling reduced NMDA-mediated electrophysiological responses and renders the cells refractory to NMDA receptor-mediated toxicity. The dendritic spine retraction and NMDA neuroprotection after preconditioning ischemia are blocked by actin stabilization with jasplakinolide, as well as proteasome inhibition with MG132. Together these data suggest that rapid tolerance results from changes to the postsynaptic density mediated by the ubiquitin-proteasome system, rendering neurons resistant to excitotoxicity.
Collapse
Affiliation(s)
- Robert Meller
- Robert S. Dow Neurobiology Laboratories, Legacy Research, Portland, Oregon 97232, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Morgan MR, Humphries MJ, Bass MD. Synergistic control of cell adhesion by integrins and syndecans. Nat Rev Mol Cell Biol 2007; 8:957-69. [PMID: 17971838 PMCID: PMC3329926 DOI: 10.1038/nrm2289] [Citation(s) in RCA: 443] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The ability of cells to adhere to each other and to their surrounding extracellular matrices is essential for a multicellular existence. Adhesion provides physical support for cells, regulates cell positioning and enables microenvironmental sensing. The integrins and the syndecans are two adhesion receptor families that mediate adhesion, but their relative and functional contributions to cell-extracellular matrix interactions remain obscure. Recent advances have highlighted connections between the signalling networks that are controlled by these families of receptors. Here we survey the evidence that synergistic signalling is involved in controlling adhesive function and the regulation of cell behaviour in response to the external environment.
Collapse
Affiliation(s)
- Mark R. Morgan
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Martin J. Humphries
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Mark D. Bass
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, United Kingdom
| |
Collapse
|
35
|
van den Bout I, van Rheenen J, van Angelen AA, de Rooij J, Wilhelmsen K, Jalink K, Divecha N, Sonnenberg A. Investigation into the mechanism regulating MRP localization. Exp Cell Res 2007; 314:330-41. [PMID: 17897642 DOI: 10.1016/j.yexcr.2007.08.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 08/21/2007] [Accepted: 08/23/2007] [Indexed: 11/15/2022]
Abstract
The major PKC substrates MARCKS and MacMARCKS (MRP) are membrane-binding proteins implicated in cell spreading, integrin activation and exocytosis. According to the myristoyl-electrostatic switch model the co-operation between the myristoyl moiety and the positively charged effector domain (ED) is an essential mechanism by which proteins bind to membranes. Loss of the electrostatic interaction between the ED and phospholipids, such as Ptdins(4,5)P2, results in the translocation of such proteins to the cytoplasm. While this model has been extensively tested for the binding of MARCKS far less is known about the mechanisms regulating MRP localization. We demonstrate that after phosphorylation, MRP is relocated to the intracellular membranes of late endosomes and lysosomes. MRP binds to all membranes via its myristoyl moiety, but for its localization at the plasma membrane the ED is also required. Although the ED of MRP can bind to Ptdins(4,5)P2 in vitro, this binding is not essential for its retention at or targeting to the plasma membrane. We conclude that the co-operation between the myristoyl moiety and the ED is not required for the binding to membranes in general but that it is essential for the targeting of MRP to the plasma membrane in a Ptdins(4,5)P2-independent manner.
Collapse
Affiliation(s)
- Iman van den Bout
- Division of Cell Biology, Netherlands Cancer Institute, 121 Plesmanlaan, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Cheng C, Liu H, Ge H, Qian J, Qin J, Sun L, Shen A. Essential role of Src suppressed C kinase substrates in endothelial cell adhesion and spreading. Biochem Biophys Res Commun 2007; 358:342-8. [PMID: 17482576 DOI: 10.1016/j.bbrc.2007.04.147] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Accepted: 04/23/2007] [Indexed: 01/28/2023]
Abstract
Integrin-mediated substrate adhesion of endothelial cells leads to dynamic rearrangement of the actin cytoskeleton. Protein kinase C (PKC) stimulates reorganization of microfilaments and adhesion, but the mechanism by which this occurs is unknown. Src suppressed C kinase substrate (SSeCKS) is a PKC substrate that may play an important role in regulating actin cytoskeleton. We found that SSeCKS was localized to focal adhesion sites soon after cell adhesion and that SSeCKS translocated from the membrane to the cytosol during the process of cell spreading. Using small interfering RNAs specific to SSeCKS, we show that RPMVEC cells in which SSeCKS expression was inhibited reduce adhesion and spread on LN through blocking the formation of actin stress fibers and focal adhesions. These results demonstrated SSeCKS modulate endothelial cells adhesion and spreading by reorganization of the actin cytoskeleton.
Collapse
Affiliation(s)
- Chun Cheng
- Institute of Nautical Medicine, Nantong University, Nantong 226001, China
| | | | | | | | | | | | | |
Collapse
|
37
|
Shiraishi M, Tanabe A, Saito N, Sasaki Y. Unphosphorylated MARCKS is involved in neurite initiation induced by insulin-like growth factor-I in SH-SY5Y cells. J Cell Physiol 2007; 209:1029-38. [PMID: 16941482 DOI: 10.1002/jcp.20814] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Myristoylated alanine-rich C kinase substrate (MARCKS) has been suggested to be involved in various aspects of neuronal cell differentiation, including neurite outgrowth. However, the precise mechanisms by which MARCKS phosphorylation is regulated, and how MARCKS contributes to neurite outgrowth, are poorly understood. Here, we found that treatment of SH-SY5Y cells with insulin-like growth factor-I (IGF-I) induced a rapid and transient decrease in the level of phosphorylated MARCKS (P-MARCKS) to below the basal level. The decrease in P-MARCKS induced by IGF-I was blocked by pretreatment of cells with phosphoinositide 3-kinase (PI3K) inhibitors, LY294002 and wortmannin. A decrease in P-MARCKS was also observed in cells treated with a Rho-dependent kinase (ROCK) inhibitor, Y27632. Furthermore, IGF-I induced transient inactivation of RhoA, an upstream effector of ROCK. We showed that MARCKS was translocated to the membrane and colocalized with F-actin at the lamellipodia and the tips of neurites in the cells stimulated with IGF-I. Finally, overexpression of wild-type MARCKS or an unphosphorylatable mutant of MARCKS enhanced the number of neurite-bearing cells relative to vector-transfected cells. Taken together, these findings suggest that unphosphorylated MARCKS is involved in neurite initiation, and highlight the important role played by MARCKS in organization of the actin cytoskeleton.
Collapse
Affiliation(s)
- Mitsuya Shiraishi
- Laboratory of Pharmacology, School of Pharmaceutical Science, Kitasato University, Shirokane 5-9-1, Minato-ku, Tokyo 108-8641, Japan.
| | | | | | | |
Collapse
|
38
|
Brandman R, Disatnik MH, Churchill E, Mochly-Rosen D. Peptides Derived from the C2 Domain of Protein Kinase Cϵ (ϵPKC) Modulate ϵPKC Activity and Identify Potential Protein-Protein Interaction Surfaces. J Biol Chem 2007; 282:4113-23. [PMID: 17142835 DOI: 10.1074/jbc.m608521200] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Peptides derived from protein kinase C (PKC) modulate its activity by interfering with critical protein-protein interactions within PKC and between PKC and PKC-binding proteins (Souroujon, M. C., and Mochly-Rosen, D. (1998) Nat. Biotechnol. 16, 919-924). We previously demonstrated that the C2 domain of PKC plays a critical role in these interactions. By focusing on epsilonPKC and using a rational approach, we then identified one C2-derived peptide that acts as an isozyme-selective activator and another that acts as a selective inhibitor of epsilonPKC. These peptides were used to identify the role of epsilonPKC in protection from cardiac and brain ischemic damage, in prevention of complications from diabetes, in reducing pain, and in protecting transplanted hearts. The efficacy of these two peptides led us to search for additional C2-derived peptides with PKC-modulating activities. Here we report on the activity of a series of 5-9-residue peptides that are derived from regions that span the length of the C2 domain of epsilonPKC. These peptides were tested for their effect on PKC activity in cells in vivo and in an ex vivo model of acute ischemic heart disease. Most of the peptides acted as activators of PKC, and a few peptides acted as inhibitors. PKC-dependent myristoylated alanine-rich C kinase substrate phosphorylation in epsilonPKC knock-out cells revealed that only a subset of the peptides were selective for epsilonPKC over other PKC isozymes. These epsilonPKC-selective peptides were also protective of the myocardium from ischemic injury, an epsilonPKC-dependent function (Liu, G. S., Cohen, M. V., Mochly-Rosen, D., and Downey, J. M. (1999) J. Mol. Cell. Cardiol. 31, 1937-1948), and caused selective translocation of epsilonPKC over other isozymes when injected systemically into mice. Examination of the structure of the C2 domain from epsilonPKC revealed that peptides with similar activities clustered into discrete regions within the domain. We propose that these regions represent surfaces of protein-protein interactions within epsilonPKC and/or between epsilonPKC and other partner proteins; some of these interactions are unique to epsilonPKC, and others are common to other PKC isozymes.
Collapse
Affiliation(s)
- Relly Brandman
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | |
Collapse
|
39
|
Heidkamp MC, Iyengar R, Szotek EL, Cribbs LL, Samarel AM. Protein kinase Cepsilon-dependent MARCKS phosphorylation in neonatal and adult rat ventricular myocytes. J Mol Cell Cardiol 2006; 42:422-31. [PMID: 17157309 PMCID: PMC1810205 DOI: 10.1016/j.yjmcc.2006.10.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 10/20/2006] [Accepted: 10/24/2006] [Indexed: 11/25/2022]
Abstract
The myristoylated, alanine-rich protein kinase C substrate (MARCKS) is a cytoskeletal protein implicated in the regulation of cell spreading, stress fiber formation, and focal adhesion assembly in nonmuscle cells. However, its precise role in cardiomyocyte growth, and its PKC-dependent regulation have not been fully explored. In this report, we show that MARCKS is expressed and phosphorylated under basal conditions in cultured neonatal and adult rat ventricular myocytes (NRVM and ARVM, respectively). The PKC activators phenylephrine, angiotensin II, and endothelin-1 (ET) further increased MARCKS phosphorylation, with ET inducing the greatest response. To determine which PKC isoenzyme was responsible for agonist-induced MARCKS phosphorylation, NRVM and ARVM were infected with replication-defective adenoviruses (Adv) encoding wildtype (wt) and constitutively active (ca) mutants of PKCepsilon, PKCdelta, and PKCalpha. Only PKCepsilon increased phosphorylated MARCKS (pMARCKS). In contrast, Adv-mediated overexpression of a dominant-negative (dn) mutant of PKCepsilon reduced basal and ET-stimulated pMARCKS. dnPKCepsilon overexpression also prevented ET-induced, apparent co-localization of pMARCKS with f-actin staining structures. Adv-mediated overexpression of GFP-tagged, wtMARCKS (wtMARCKS-GFP) increased phosphorylation of focal adhesion kinase (FAK) and also increased NRVM surface area. In contrast, overexpression of a GFP-tagged, non-phosphorylatable (np) MARCKS mutant (npMARCKS-GFP) decreased basal and ET-induced endogenous MARCKS and FAK phosphorylation, and blocked the ET-induced increase in NRVM surface area. We conclude that MARCKS is expressed in cardiomyocytes, is phosphorylated by PKCepsilon, and participates in the regulation of FAK phosphorylation and cell spreading.
Collapse
Affiliation(s)
- Maria C Heidkamp
- The Cardiovascular Institute, Loyola University Chicago Stritch School of Medicine, 2160 South First Avenue, Maywood, IL 60153, USA
| | | | | | | | | |
Collapse
|
40
|
Gatlin JC, Estrada-Bernal A, Sanford SD, Pfenninger KH. Myristoylated, alanine-rich C-kinase substrate phosphorylation regulates growth cone adhesion and pathfinding. Mol Biol Cell 2006; 17:5115-30. [PMID: 16987960 PMCID: PMC1679677 DOI: 10.1091/mbc.e05-12-1183] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Repellents evoke growth cone turning by eliciting asymmetric, localized loss of actin cytoskeleton together with changes in substratum attachment. We have demonstrated that semaphorin-3A (Sema3A)-induced growth cone detachment and collapse require eicosanoid-mediated activation of protein kinase C epsilon (PKC epsilon) and that the major PKC epsilon target is the myristoylated, alanine-rich C-kinase substrate (MARCKS). Here, we show that PKC activation is necessary for growth cone turning and that MARCKS, while at the membrane, colocalizes with alpha3-integrin in a peripheral adhesive zone of the growth cone. Phosphorylation of MARCKS causes its translocation from the membrane to the cytosol. Silencing MARCKS expression dramatically reduces growth cone spread, whereas overexpression of wild-type MARCKS inhibits growth cone collapse triggered by PKC activation. Expression of phosphorylation-deficient, mutant MARCKS greatly expands growth cone adhesion, and this is characterized by extensive colocalization of MARCKS and alpha3-integrin, resistance to eicosanoid-triggered detachment and collapse, and reversal of Sema3A-induced repulsion into attraction. We conclude that MARCKS is involved in regulating growth cone adhesion as follows: its nonphosphorylated form stabilizes integrin-mediated adhesions, and its phosphorylation-triggered release from adhesions causes localized growth cone detachment critical for turning and collapse.
Collapse
Affiliation(s)
- Jesse C. Gatlin
- Departments of Pediatrics and of Cell and Developmental Biology, University of Colorado School of Medicine, and University of Colorado Cancer Center, Aurora, CO 80045
| | - Adriana Estrada-Bernal
- Departments of Pediatrics and of Cell and Developmental Biology, University of Colorado School of Medicine, and University of Colorado Cancer Center, Aurora, CO 80045
| | - Staci D. Sanford
- Departments of Pediatrics and of Cell and Developmental Biology, University of Colorado School of Medicine, and University of Colorado Cancer Center, Aurora, CO 80045
| | - Karl H. Pfenninger
- Departments of Pediatrics and of Cell and Developmental Biology, University of Colorado School of Medicine, and University of Colorado Cancer Center, Aurora, CO 80045
| |
Collapse
|
41
|
Sisková Z, Baron W, de Vries H, Hoekstra D. Fibronectin impedes "myelin" sheet-directed flow in oligodendrocytes: a role for a beta 1 integrin-mediated PKC signaling pathway in vesicular trafficking. Mol Cell Neurosci 2006; 33:150-9. [PMID: 16935002 DOI: 10.1016/j.mcn.2006.07.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Revised: 06/23/2006] [Accepted: 07/06/2006] [Indexed: 11/18/2022] Open
Abstract
Differentiation of oligodendrocytes results in the formation of the myelin sheath, a dramatic morphological alteration that accompanies cell specialization. Here, we demonstrate that changes in the extracellular microenvironment may regulate these morphological changes by altering intracellular vesicular trafficking of myelin sheet-directed proteins. The data reveal that fibronectin, in contrast to laminin-2, decreased membrane-directed transport of endogenous NCAM 140 and the model viral protein VSV G, both proteins normally residing in the myelin membrane. The underlying mechanism relies on an integrin-mediated activation of PKC, which causes stable phosphorylation of MARCKS. As a result, dynamic reorganization of the cortical actin cytoskeleton necessary for the targeting of vesicular trafficking to the myelin sheet is precluded, a prerequisite for morphological differentiation. These data are discussed in the context of the demyelinating disease multiple sclerosis, i.e., that leakage of fibronectin across the blood-brain barrier may impede myelination by interference with intracellular myelin sheet-directed membrane transport.
Collapse
Affiliation(s)
- Zuzana Sisková
- Department of Membrane Cell Biology, Section Membrane Cell Biology, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | | | | | |
Collapse
|
42
|
Mazères G, Leloup L, Daury L, Cottin P, Brustis JJ. Myoblast attachment and spreading are regulated by different patterns by ubiquitous calpains. ACTA ACUST UNITED AC 2006; 63:193-207. [PMID: 16496301 DOI: 10.1002/cm.20116] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The calcium-dependent proteolytic system is a large family of well-conserved ubiquitous and tissue-specific proteases, known as calpains, and an endogenous inhibitor, calpastatin. Ubiquitous calpains are involved in many physiological phenomena, such as the cell cycle, muscle cell differentiation, and cell migration. This study investigates the regulation of crucial steps of cell motility, myoblast adhesion and spreading, by calpains. Inhibition of each ubiquitous calpain isoform by antisense strategy pinpointed the involvement of each of these proteases in myoblast adhesion and spreading. Moreover, the actin cytoskeleton and microtubules were observed in transfected cells, demonstrating that each ubiquitous calpain could be involved in the actin fiber organization. C2C12 cells with reduced mu- or m-calpain levels have a rounded morphology and disorganized stress fibers, but no modification in the microtubule cytoskeleton. Antisense strategy directed against MARCKS, a calpain substrate during C2C12 migration, showed that this protein could play a role in stress fiber polymerization. A complementary proteomic analysis using C2C12 cells over-expressing calpastatin indicated that two proteins were under-expressed, while six, which are involved in the studied phenomena, were overexpressed after calpain inhibition. The possible role of these proteins in adhesion, spreading, and migration was discussed.
Collapse
Affiliation(s)
- Germain Mazères
- Laboratoire Biosciences de l'Aliment, ISTAB USC-INRA 2009, Talence Cedex, France
| | | | | | | | | |
Collapse
|
43
|
Collazos A, Diouf B, Guérineau NC, Quittau-Prévostel C, Peter M, Coudane F, Hollande F, Joubert D. A spatiotemporally coordinated cascade of protein kinase C activation controls isoform-selective translocation. Mol Cell Biol 2006; 26:2247-61. [PMID: 16508001 PMCID: PMC1430303 DOI: 10.1128/mcb.26.6.2247-2261.2006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Accepted: 12/22/2005] [Indexed: 12/22/2022] Open
Abstract
In pituitary GH3B6 cells, signaling involving the protein kinase C (PKC) multigene family can self-organize into a spatiotemporally coordinated cascade of isoform activation. Indeed, thyrotropin-releasing hormone (TRH) receptor activation sequentially activated green fluorescent protein (GFP)-tagged or endogenous PKCbeta1, PKCalpha, PKCepsilon, and PKCdelta, resulting in their accumulation at the entire plasma membrane (PKCbeta and -delta) or selectively at the cell-cell contacts (PKCalpha and -epsilon). The duration of activation ranged from 20 s for PKCalpha to 20 min for PKCepsilon. PKCalpha and -epsilon selective localization was lost in the presence of Gö6976, suggesting that accumulation at cell-cell contacts is dependent on the activity of a conventional PKC. Constitutively active, dominant-negative PKCs and small interfering RNAs showed that PKCalpha localization is controlled by PKCbeta1 activity and is calcium independent, while PKCepsilon localization is dependent on PKCalpha activity. PKCdelta was independent of the cascade linking PKCbeta1, -alpha, and -epsilon. Furthermore, PKCalpha, but not PKCepsilon, is involved in the TRH-induced beta-catenin relocation at cell-cell contacts, suggesting that PKCepsilon is not the unique functional effector of the cascade. Thus, TRH receptor activation results in PKCbeta1 activation, which in turn initiates a calcium-independent but PKCbeta1 activity-dependent sequential translocation of PKCalpha and -epsilon. These results challenge the current understanding of PKC signaling and raise the question of a functional dependence between isoforms.
Collapse
Affiliation(s)
- Alejandra Collazos
- Institut de Génomique Fonctionnelle, 141 rue de la Cardonille, F-34094 Montpellier Cedex 5, France
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Morash SC, Douglas D, McMaster CR, Cook HW, Byers DM. Expression of MARCKS Effector Domain Mutants Alters Phospholipase D Activity and Cytoskeletal Morphology of SK-N-MC Neuroblastoma Cells. Neurochem Res 2005; 30:1353-64. [PMID: 16341931 DOI: 10.1007/s11064-005-8220-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2005] [Indexed: 11/28/2022]
Abstract
Stable overexpression of myristoylated alanine-rich C-kinase substrate (MARCKS) is known to enhance phorbol ester stimulation of phospholipase D (PLD) activity and protein kinase Calpha (PKCalpha) levels in SK-N-MC neuroblastoma cells. In contrast, expression of MARCKS mutants (S152A or S156A) lacking key PKC phosphorylation sites within the central basic effector domain (ED) had no significant effect on PLD activity or PKCalpha levels relative to vector control cells. Like control cells, those expressing wild type MARCKS were elongated and possessed longitudinally oriented stress fibers, although these cells were more prone to detach from the substratum and undergo cell death upon phorbol ester treatment. However, cells expressing MARCKS ED mutants were irregularly shaped and stress fibers were either shorter or less abundant, and cell adhesion and viability were not affected. These results suggest that intact phosphorylation sites within the MARCKS ED are required for PLD activation and influence both membrane-cytoskeletal organization and cell viability.
Collapse
Affiliation(s)
- Sherry C Morash
- Atlantic Research Centre, Department of Pediatrics, Dalhousie University, Room C-302 CRC, 5849 University Avenue, B3H 4H7, Halifax, NS, Canada
| | | | | | | | | |
Collapse
|
45
|
Larsson C. Protein kinase C and the regulation of the actin cytoskeleton. Cell Signal 2005; 18:276-84. [PMID: 16109477 DOI: 10.1016/j.cellsig.2005.07.010] [Citation(s) in RCA: 291] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Revised: 07/18/2005] [Accepted: 07/18/2005] [Indexed: 01/01/2023]
Abstract
Protein kinase C (PKC) isoforms are central components in intracellular networks that regulate a vast number of cellular processes. It has long been known that in most cell types, one or more PKC isoforms influences the morphology of the F-actin cytoskeleton and thereby regulates processes that are affected by remodelling of the microfilaments. These include cellular migration and neurite outgrowth. This review focuses on the role of classical and novel PKC isoforms in migration and neurite outgrowth, and highlights some regulatory steps that may be of importance in the regulation by PKC of migration and neurite outgrowth. Many studies indicate that integrins are crucial mediators both upstream and downstream of PKC in inducing morphological changes. Furthermore, a number of PKC substrates, directly associated with the microfilaments, such as MARCKS, GAP43, adducin, fascin, ERM proteins and others have been identified. Their potential role in PKC effects on the cytoskeleton is discussed.
Collapse
Affiliation(s)
- Christer Larsson
- Lund University, Dept of Laboratory Medicine, Molecular Medicine, Entrance 78, 3rd floor, UMAS SE-205 02, Malmö University Hospital, Malmö, Sweden.
| |
Collapse
|