1
|
Sahli C, Kenry. The Journey and Modes of Action of Therapeutic Nanomaterials in Cells. Bioconjug Chem 2025; 36:914-929. [PMID: 40213918 DOI: 10.1021/acs.bioconjchem.4c00584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Over past decades, a wide range of nanomaterials have been synthesized and exploited to augment the efficacy and biocompatibility of disease theranostics and nanomedicine. The unique physicochemical properties of nanomaterials, such as high specific surface area, tunable size and shape, and versatile surface chemistry, enable the controlled modulation of nanomaterial-biosystem interactions and, consequently, more precise interventions, particularly at the cellular level. The selective modulation of nanomaterial-cell interactions can be leveraged to regulate cellular internalization, intracellular trafficking and localization, and cellular clearance of nanomaterials to enhance the disease therapeutic efficacy and minimize potential cytotoxicity. Herein, we provide an overview of our recent understanding of the journey and modes of action of therapeutic nanomaterials in cells. Specifically, we highlight the various pathways of cellular internalization, trafficking, and excretion of these nanomaterials. The different modes of action of therapeutic nanomaterials, especially controlled release and delivery, photothermal and photodynamic effects, and immunomodulation, are also discussed. We conclude our review by offering some perspectives on the current challenges and potential opportunities in this field.
Collapse
Affiliation(s)
- Célia Sahli
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Kenry
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
- Clinical and Translational Oncology Program and Skin Cancer Institute, University of Arizona Cancer Center, University of Arizona, Tucson, Arizona 85721, United States
- BIO5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
2
|
Goldmann O, Medina E. Revisiting Pathogen Exploitation of Clathrin-Independent Endocytosis: Mechanisms and Implications. Cells 2025; 14:731. [PMID: 40422234 DOI: 10.3390/cells14100731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 05/04/2025] [Accepted: 05/13/2025] [Indexed: 05/28/2025] Open
Abstract
Endocytosis is a specialized transport mechanism in which the cell membrane folds inward to enclose large molecules, fluids, or particles, forming vesicles that are transported within the cell. It plays a crucial role in nutrient uptake, immune responses, and cellular communication. However, many pathogens exploit the endocytic pathway to invade and survive within host cells, allowing them to evade the immune system and establish infection. Endocytosis can be classified as clathrin-mediated (CME) or clathrin-independent (CIE), based on the mechanism of vesicle formation. Unlike CME, which involves the formation of clathrin-coated vesicles that bud from the plasma membrane, CIE does not rely on clathrin-coated vesicles. Instead, other mechanisms facilitate membrane invagination and vesicle formation. CIE encompasses a variety of pathways, including caveolin-mediated, Arf6-dependent, and flotillin-dependent pathways. In this review, we discuss key features of CIE pathways, including cargo selection, vesicle formation, routes taken by internalized cargo, and the regulatory mechanisms governing CIE. Many viruses and bacteria hijack host cell CIE mechanisms to facilitate intracellular trafficking and persistence. We also revisit the exploitation of CIE by bacterial and viral pathogens, highlighting recent discoveries in entry mechanisms, intracellular fate, and host-pathogen interactions. Understanding how pathogens manipulate CIE in host cells can inform the development of novel antimicrobial and immunomodulatory interventions, offering new avenues for disease prevention and treatment.
Collapse
Affiliation(s)
- Oliver Goldmann
- Infection Immunology Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Eva Medina
- Infection Immunology Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| |
Collapse
|
3
|
Mushtaq A, Li L, A A, Grøndahl L. Chitosan-Based Nanoparticles for Twist1 Knockdown in 4T1 Cells. Macromol Biosci 2025:e2400627. [PMID: 40205959 DOI: 10.1002/mabi.202400627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/17/2025] [Indexed: 04/11/2025]
Abstract
Bone metastasized breast cancer reduces the quality of life and median survival. Targeted delivery of twist1-siRNA using nanoparticles (NPs) is a promising strategy to overcome current limitations in treating such metastatic breast cancers. This research evaluates two types of chitosan (CHI)-based NPs for the delivery of twist1-siRNA. Alendronate conjugated PEG functionalized chitosan (ALD-PEG-CHI) NPs are developed for active targeting while PEG functionalized CHI (mPEG-CHI) NPs are fabricated for passive targeting. The size of twist1-siRNA-loaded NPs is below 70 nm and the zeta potential is near neutral for both types of NPs. Based on gel retardation assay, complete encapsulation of twist1-siRNA is achieved in both NP systems. The ALD-PEG-CHI-siRNA and mPEG-CHI-siRNA NPs display serum protection for 6 and 4 h, respectively, compared to the immediate degradation of naked twist1-siRNA. The NPs can knockdown twist1 in 4T1 cells as demonstrated through protein expression as well as by phenotypic change in directional cell migration by wound healing assay. Overall, these in vitro results illustrate the potential of the NPs as an effective therapeutic system for bone metastasized breast cancer.
Collapse
Affiliation(s)
- Asim Mushtaq
- School of Chemistry and Molecular Biosciences, The University of Queensland, Cooper Road, Brisbane, Queensland, 4072, Australia
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Corner of College and Cooper Road, Brisbane, Queensland, 4072, Australia
| | - Anitha A
- School of Chemistry and Molecular Biosciences, The University of Queensland, Cooper Road, Brisbane, Queensland, 4072, Australia
| | - Lisbeth Grøndahl
- School of Chemistry and Molecular Biosciences, The University of Queensland, Cooper Road, Brisbane, Queensland, 4072, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Corner of College and Cooper Road, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
4
|
Zhang Y, Jia X, Wang Y, Zheng Q. Caveolin-1-mediated LDL transcytosis across endothelial cells in atherosclerosis. Atherosclerosis 2025; 402:119113. [PMID: 39914325 DOI: 10.1016/j.atherosclerosis.2025.119113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/20/2024] [Accepted: 01/26/2025] [Indexed: 03/09/2025]
Abstract
Atherosclerosis is widely recognized as a chronic inflammatory disease of the arterial wall characterized by the progressive accumulation of lipids, inflammatory cells, and fibrous material in the subendothelial space of large arteries. The occurrence and pathogenesis of atherosclerosis are intricately linked to the deposition of low-density lipoprotein (LDL) in the arterial wall. LDL must cross the intact endothelium to reach the subendothelial space, with caveolin-1 assuming a crucial role in this process. Caveolin-1 is a 21-24 kDa membrane protein located in caveolae and highly expressed in endothelial cells. Previous investigations have demonstrated the pivotal role of caveolin-1 in fostering atherosclerosis through its modulation of membrane trafficking, cholesterol metabolism, and cellular signaling. However, how caveolin-1 regulates LDL transcytosis across endothelial cells in atherosclerosis remains unclear. We provide a comprehensive overview of recent research on the interplay between caveolin-1 and atherosclerosis, with a specific focus on elucidating the role of caveolin-1 in mediating LDL transcytosis across endothelial cells. This review furnishes theoretical foundations supporting the pivotal role of caveolin-1 in both the inception and progression of atherosclerosis. It underscores the prospective viability of caveolin-1 as a new therapeutic target for atherosclerosis and introduces novel perspectives for treatment strategies in the early stages of atherosclerosis.
Collapse
Affiliation(s)
- Yifei Zhang
- Department of Cardiovascular Surgery, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China
| | - Xiong Jia
- Department of Cardiovascular Surgery, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Yayu Wang
- Department of Cardiovascular Surgery, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Qijun Zheng
- Department of Cardiovascular Surgery, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China.
| |
Collapse
|
5
|
Candor K, Ding L, Balchand S, Hammonds JE, Spearman P. The CLIC/GEEC pathway regulates particle uptake and formation of the virus-containing compartment (VCC) in HIV-1-infected macrophages. PLoS Pathog 2025; 21:e1012564. [PMID: 40067817 PMCID: PMC11925468 DOI: 10.1371/journal.ppat.1012564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 03/20/2025] [Accepted: 02/12/2025] [Indexed: 03/22/2025] Open
Abstract
HIV-1 particles are captured by the immunoglobulin superfamily member Siglec-1 on the surface of macrophages and dendritic cells, leading to particle internalization and facilitating trans-infection of CD4+ T cells. HIV-1-infected macrophages develop a unique intracellular compartment termed the virus-containing compartment (VCC) that exhibits characteristic markers of the late endosome and is enriched in components of the plasma membrane (PM). The VCC has been proposed as the major site of particle assembly in macrophages. Depleting Siglec-1 from macrophages significantly reduces VCC formation, implying a link between the capture and uptake of external HIV-1 particles and the development of VCCs within HIV-infected cells. We found that internalization of particles to the VCC was independent of clathrin, but required dynamin-2. CD98 and CD44, classical markers of the CLIC/GEEC pathway, colocalized with Siglec-1 and HIV-1 particles within the VCC. Virus-like particles (VLPs) were taken up within CD98 and Siglec-1-enriched tubular membranes that migrated centripetally over time to form VCC-like structures. Inhibition of CLIC/GEEC-mediated endocytosis resulted in the arrest of captured HIV-1 particles on the macrophage cell surface, prevented VCC formation, and significantly reduced the efficiency of trans-infection of T cells. These findings indicate that following capture of virus by Siglec-1, particles follow an endocytic route to the VCC that requires both the CLIC/GEEC pathway and dynamin-2. We propose a model in which internalization of HIV-1 particles together with CLIC/GEEC membranes leads to the formation of the VCC in HIV-infected macrophages, creating an intracellular platform that facilitates further particle assembly and budding.
Collapse
Affiliation(s)
- Kathleen Candor
- Immunology Graduate Program, University of Cincinnati, and Infectious Diseases Division, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Infectious Diseases Division, Cincinnati Children’s Hospital Medical Center and University of Cincinnati, Cincinnati, Ohio United States of America
| | - Lingmei Ding
- Infectious Diseases Division, Cincinnati Children’s Hospital Medical Center and University of Cincinnati, Cincinnati, Ohio United States of America
| | - Sai Balchand
- Infectious Diseases Division, Cincinnati Children’s Hospital Medical Center and University of Cincinnati, Cincinnati, Ohio United States of America
| | - Jason E. Hammonds
- Infectious Diseases Division, Cincinnati Children’s Hospital Medical Center and University of Cincinnati, Cincinnati, Ohio United States of America
| | - Paul Spearman
- Infectious Diseases Division, Cincinnati Children’s Hospital Medical Center and University of Cincinnati, Cincinnati, Ohio United States of America
| |
Collapse
|
6
|
Yuan S, Yu Q, Chen T, Li T, Li Y, Deng X, Chen N, You J, Li R, Liu Y, Zheng Y, Luo M, Lv H, Wu J, Wang L. Mitsugumin 53 Inhibits Angiogenesis Through Regulating Focal Adhesion Turnover and Tip Cell Formation. J Cell Mol Med 2025; 29:e70439. [PMID: 39993956 PMCID: PMC11850094 DOI: 10.1111/jcmm.70439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 01/16/2025] [Accepted: 02/12/2025] [Indexed: 02/26/2025] Open
Abstract
Our previous studies have identified mitsugumin 53 (MG53) as a novel regulator for angiogenesis by directly entering endothelial cells and modulating focal adhesion kinase (FAK) activation, but little is known about how rhMG53 is taken up by cells and how rhMG53 mediates cell movement. In the present study, we demonstrated that the knockdown of caveolin-1 and the clathrin inhibitor, pitstop-2, both significantly reduced the entry of rhMG53 into endothelial cells, indicating caveolae-dependent and clathrin-dependent endocytosis during this process. The internalised rhMG53 remarkably inhibited the phosphorylation of FAK and the downstream signalling molecule paxillin, consequently resulting in a significant decrease in focal adhesion turnover during endothelial cell spreading and migration. Using a 3D collagen culture model, we further found that rhMG53 significantly inhibited tip cell formation and tubulogenesis. Furthermore, rhMG53 also remarkably prevented alkaline injury-induced corneal neovascularization in vivo. Taken together, these results indicate that rhMG53 inhibits angiogenesis through regulating focal adhesion turnover and tip cell formation. This may elucidate novel molecular mechanisms involved in rhMG53 uptake and rhMG53-modulated endothelial cell function and provide evidence for the potential utility of rhMG53 in treating diseases with excessive angiogenesis.
Collapse
Affiliation(s)
- Shuangshuang Yuan
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of PharmacySouthwest Medical UniversityLuzhouChina
- Anshun Xixiu District People's HospitalAnshunChina
| | - Qin Yu
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of PharmacySouthwest Medical UniversityLuzhouChina
| | - Tangting Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular ResearchSouthwest Medical UniversityLuzhouChina
| | - Tian Li
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of PharmacySouthwest Medical UniversityLuzhouChina
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, the Affiliated HospitalSouthwest Medical UniversityLuzhouChina
| | - Yongjie Li
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of PharmacySouthwest Medical UniversityLuzhouChina
| | - Xin Deng
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of PharmacySouthwest Medical UniversityLuzhouChina
| | - Ni Chen
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of PharmacySouthwest Medical UniversityLuzhouChina
| | - Jingcan You
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of PharmacySouthwest Medical UniversityLuzhouChina
| | - Rong Li
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of PharmacySouthwest Medical UniversityLuzhouChina
| | - Yan Liu
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of PharmacySouthwest Medical UniversityLuzhouChina
| | - Youkun Zheng
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of PharmacySouthwest Medical UniversityLuzhouChina
| | - Mao Luo
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of PharmacySouthwest Medical UniversityLuzhouChina
| | - Hongbin Lv
- Department of Ophthalmology, the Affiliated HospitalSouthwest Medical UniversityLuzhouChina
| | - Jianbo Wu
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of PharmacySouthwest Medical UniversityLuzhouChina
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, the Affiliated HospitalSouthwest Medical UniversityLuzhouChina
| | - Liqun Wang
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of PharmacySouthwest Medical UniversityLuzhouChina
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, the Affiliated HospitalSouthwest Medical UniversityLuzhouChina
| |
Collapse
|
7
|
Kelly H, Inada M, Itoh Y. The Diverse Pathways for Cell Surface MT1-MMP Localization in Migratory Cells. Cells 2025; 14:209. [PMID: 39937000 PMCID: PMC11816416 DOI: 10.3390/cells14030209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/26/2025] [Accepted: 01/30/2025] [Indexed: 02/13/2025] Open
Abstract
Controlled cell migration is an essential biological process in health, while uncontrolled cell migration contributes to disease progression. For cells to migrate through tissue, they must first degrade the extracellular matrix (ECM), which acts as a physical barrier to cell migration. A type I transmembrane-type matrix metalloproteinase, MT1-MMP, is the key enzyme involved in this process. It has been extensively shown that MT1-MMP promotes the migration of different cell types in tissue, including fibroblasts, epithelial cells, endothelial cells, macrophages, mesenchymal stem cells, and cancer cells. MT1-MMP is tightly regulated at different levels, and its localization to leading-edge membrane structures is an essential process for MT1-MMP to promote cellular invasion. Different cells display different motility-associated membrane structures, which contribute to their invasive ability, and there are diverse mechanisms of MT1-MMP localization to these structures. In this article, we will discuss the current understanding of MT1-MMP regulation, in particular, localization mechanisms to these different motility-associated membrane structures.
Collapse
Affiliation(s)
- Hannah Kelly
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, UK;
| | - Masaki Inada
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan;
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Yoshifumi Itoh
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, UK;
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
8
|
Thamizhchelvan AM, Ma H, Wu T, Nguyen D, Padelford J, Whitworth TJ, Li Y, Yang L, Mao H. Shape-dependent cellular uptake of iron oxide nanorods: mechanisms of endocytosis and implications on cell labeling and cellular delivery. NANOSCALE 2024; 16:21398-21415. [PMID: 39329423 PMCID: PMC11429166 DOI: 10.1039/d4nr02408g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024]
Abstract
The effects of nanoparticle morphology, especially size and shape, on their interactions with cells are of great interest in understanding the fate of nanoparticles in biological systems and designing them for biomedical applications. While size and shape-dependent cell behavior, endocytosis mechanism, and subcellular distribution of nanoparticles have been investigated extensively with gold and other nanoparticles, studies on iron oxide nanoparticles (IONP), one of the most promising and well-thought-of nanomaterials in biomedical applications, were limited. In this study, we synthesized oligosaccharide-coated water-soluble iron oxide nanorods (IONR) with different core sizes (nm) and different aspect ratios (i.e., length/width), such as IONR(L) at 140/6 nm and IONR(S) at 50/7 nm as well as spherical IONP (20 nm). We investigated how their sizes and shapes affect uptake mechanisms, localization, and cell viability in different cell lines. The results of transmission electron microscopy (TEM) and confocal fluorescence microscopic imaging confirmed the internalization of these nanoparticles in different types of cells and subsequent accumulation in the subcellular compartments, such as the endosomes, and into the cytosol. Specifically, IONR(L) exhibited the highest cellular uptake compared to IONR(S) and spherical IONP, 1.36-fold and 1.17-fold higher than that of spherical IONP in macrophages and pediatric brain tumor medulloblastoma cells, respectively. To examine the cellular uptake mechanisms preferred by the different IONR and IONP, we used different endocytosis inhibitors to block specific cellular internalization pathways when cells were treated with different nanoparticles. The results from these blocking experiments showed that IONR(L) enter macrophages and normal kidney cells through clathrin-mediated, dynamin-dependent, and macropinocytosis/phagocytosis pathways, while they are internalized in cancer cells primarily via clathrin/caveolae-mediated and phagocytosis mechanisms. Overall, our findings provide new insights into further development of magnetic IONR-based imaging probes and drug delivery systems for biomedical applications.
Collapse
Affiliation(s)
- Anbu Mozhi Thamizhchelvan
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | - Hedi Ma
- 5M Biomed, LLC, Atlanta, Georgia 30303, USA
| | - Tianhe Wu
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | - Darlene Nguyen
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | - Ted J Whitworth
- Robert P. Apkarian Integrated Electron Microscopy Core, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Yuancheng Li
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
- 5M Biomed, LLC, Atlanta, Georgia 30303, USA
| | - Lily Yang
- Department of Surgery Emory University School of Medicine, Atlanta, Georgia 30322, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Hui Mao
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| |
Collapse
|
9
|
Hegde S, Akbar H, Wellendorf AM, Nestheide S, Johnson JF, Zhao X, Setchell KD, Zheng Y, Cancelas JA. Inhibition of RHOA activity preserves the survival and hemostasis function of long-term cold-stored platelets. Blood 2024; 144:1732-1746. [PMID: 39088777 PMCID: PMC11830982 DOI: 10.1182/blood.2023021453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 05/30/2024] [Accepted: 06/28/2024] [Indexed: 08/03/2024] Open
Abstract
ABSTRACT Patients with thrombocytopenia require platelet transfusion to prevent and stop hemorrhage. Cold storage of platelets results in complex molecular lesions, including changes in membrane microdomains that are recognized by host macrophages and hepatocyte counter-receptors, resulting in phagocytosis and clearance upon transfusion. For this reason, platelets are stored at room temperature, a method that confers increased risk of bacterial contamination. By applying signaling analysis and genetic and pharmacological approaches, we identified that cold-induced activation of RAS homolog family, member A (RHOA) GTPase causes the major hallmarks of platelet cold storage lesions. RHOA deficiency renders murine platelets insensitive to cold storage-induced damage, and pharmacological inhibition by a RHOA activation inhibitor, R-G04, can prevent the cold storage-induced lesions. RHOA inhibition prevents myosin activation and clathrin-independent formation and internalization of lipid rafts enriched in active glycosyltransferases as well as abnormal distribution of GPIbα. RHOA inhibition further prevents the metabolic reprogramming of cold storage-induced lesions and allows the maintenance of glycolytic flux and mitochondria-dependent respiration. Importantly, human platelets transfused in mice after cold storage, in the presence of R-G04 or its more potent enantiomer S-G04, can circulate in vivo at similar levels as room temperature-stored platelets while retaining their hemostatic activity in vivo, as assessed by bleeding time correction in aspirin-treated mice. Our studies provide a mechanism-based translational approach to prevent cold storage-induced damage, which is useful for human platelet transfusion in patients with thrombocytopenia.
Collapse
Affiliation(s)
- Shailaja Hegde
- Hoxworth Blood Center, University of Cincinnati College of Medicine, Cincinnati, OH
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Huzoor Akbar
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH
| | - Ashley M. Wellendorf
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Shawnagay Nestheide
- Hoxworth Blood Center, University of Cincinnati College of Medicine, Cincinnati, OH
| | - James F. Johnson
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Xueheng Zhao
- Division of Pathology and Laboratory Medicine, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Kenneth D. Setchell
- Division of Pathology and Laboratory Medicine, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Jose A. Cancelas
- Hoxworth Blood Center, University of Cincinnati College of Medicine, Cincinnati, OH
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH
- Connell and O’Reilly Families Cell Manipulation Core Facility, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| |
Collapse
|
10
|
Golubeva VA, Das AS, Rabolli CP, Dorn LE, van Berlo JH, Accornero F. YTHDF1 is pivotal for maintenance of cardiac homeostasis. J Mol Cell Cardiol 2024; 193:25-35. [PMID: 38768805 PMCID: PMC11983483 DOI: 10.1016/j.yjmcc.2024.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/30/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024]
Abstract
The YTH-domain family (YTHDF) of RNA binding proteins can control gene expression at the post-transcriptional level by regulating mRNAs with N6-methyladenosine (m6A) modifications. Despite the established importance of m6A in the heart, the cardiac role of specific m6A-binding proteins remains unclear. Here, we characterized the function of YTHDF1 in cardiomyocytes using a newly generated cardiac-restricted mouse model. Deletion of YTHDF1 in adult cardiomyocytes led to hypertrophy, fibrosis, and dysfunction. Using mass spectrometry, we identified the necessity of YTHDF1 for the expression of cardiomyocyte membrane raft proteins. Specifically, YTHDF1 bound to m6A-modified Caveolin 1 (Cav1) mRNA and favored its translation. We further demonstrated that YTHDF1 regulates downstream ERK signaling. Altogether, our findings highlight a novel role for YTHDF1 as a post-transcriptional regulator of caveolar proteins which is necessary for the maintenance of cardiac function.
Collapse
Affiliation(s)
- Volha A Golubeva
- Department of Physiology & Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Anindhya Sundar Das
- Department of Physiology & Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA; Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI, USA
| | - Charles P Rabolli
- Department of Physiology & Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Lisa E Dorn
- Department of Physiology & Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Jop H van Berlo
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Federica Accornero
- Department of Physiology & Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA; Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI, USA.
| |
Collapse
|
11
|
Groza R, Schmidt KV, Müller PM, Ronchi P, Schlack-Leigers C, Neu U, Puchkov D, Dimova R, Matthaeus C, Taraska J, Weikl TR, Ewers H. Adhesion energy controls lipid binding-mediated endocytosis. Nat Commun 2024; 15:2767. [PMID: 38553473 PMCID: PMC10980822 DOI: 10.1038/s41467-024-47109-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 03/19/2024] [Indexed: 04/02/2024] Open
Abstract
Several bacterial toxins and viruses can deform membranes through multivalent binding to lipids for clathrin-independent endocytosis. However, it remains unclear, how membrane deformation and endocytic internalization are mechanistically linked. Here we show that many lipid-binding virions induce membrane deformation and clathrin-independent endocytosis, suggesting a common mechanism based on multivalent lipid binding by globular particles. We create a synthetic cellular system consisting of a lipid-anchored receptor in the form of GPI-anchored anti-GFP nanobodies and a multivalent globular binder exposing 180 regularly-spaced GFP molecules on its surface. We show that these globular, 40 nm diameter, particles bind to cells expressing the receptor, deform the plasma membrane upon adhesion and become endocytosed in a clathrin-independent manner. We explore the role of the membrane adhesion energy in endocytosis by using receptors with affinities varying over 7 orders of magnitude. Using this system, we find that once a threshold in adhesion energy is overcome to allow for membrane deformation, endocytosis occurs reliably. Multivalent, binding-induced membrane deformation by globular binders is thus sufficient for internalization to occur and we suggest it is the common, purely biophysical mechanism for lipid-binding mediated endocytosis of toxins and pathogens.
Collapse
Affiliation(s)
- Raluca Groza
- Institute of Biochemistry, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - Kita Valerie Schmidt
- Institute of Biochemistry, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
- Max Planck Institute of Colloids and Interfaces, Potsdam Science Park, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Paul Markus Müller
- Institute of Biochemistry, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - Paolo Ronchi
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, 69117, Heidelberg, Germany
| | - Claire Schlack-Leigers
- Institute of Biochemistry, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - Ursula Neu
- Institute of Biochemistry, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - Dmytro Puchkov
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany
| | - Rumiana Dimova
- Max Planck Institute of Colloids and Interfaces, Potsdam Science Park, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Claudia Matthaeus
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Institute for Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Justin Taraska
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Thomas R Weikl
- Max Planck Institute of Colloids and Interfaces, Potsdam Science Park, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Helge Ewers
- Institute of Biochemistry, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany.
| |
Collapse
|
12
|
Mushtaq A, Li L, Grøndahl L, A A. Targeted Nanoparticles Based on Alendronate Polyethylene Glycol Conjugated Chitosan for the Delivery of siRNA and Curcumin for Bone Metastasized Breast Cancer Applications. Macromol Biosci 2024; 24:e2300268. [PMID: 37794635 DOI: 10.1002/mabi.202300268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/22/2023] [Indexed: 10/06/2023]
Abstract
Bone metastasized breast cancer reduces the quality of life and median survival. Targeted delivery of small interfering RNA (siRNA) and chemotherapeutic drugs using nanoparticles (NPs) is a promising strategy to overcome current limitations in treating these metastatic breast cancers. This research develops alendronate conjugated polyethylene glycol functionalized chitosan (ALD-PEG-CHI) NP for the delivery of cell death siRNA (CD-siRNA) and curcumin (CUR) and explores its targeting ability and in vitro cell cytotoxicity. Polyethylene glycol functionalized CHI (mPEG-CHI) NPs serve as control. The size of CD-siRNA loaded NPs is below 100 nm while CUR loaded NPs is below 200 nm, with near neutral zeta potential for all NPs. The CUR encapsulation efficiency (EE) is 70% and 88% for targeted and control NPs, respectively, while complete encapsulation of CD-siRNA is achieved in both NP systems. The bone targeting ability of CY5-dsDNA loaded ALD-PEG-CHI NPs using hydroxyapatite discs is fivefold compared to control indicating ALD presentation at the targeting NP surface. Delivery of CD-siRNA loaded NPs and CUR loaded NPs show synergistic and additive growth inhibition effects against MCF-7 cells by mPEG-CHI and ALD-PEG-CHI NPs, respectively. Overall, these in vitro results illustrate the potential of the targeted NPs as an effective therapeutic system toward bone metastasized breast cancer.
Collapse
Affiliation(s)
- Asim Mushtaq
- School of Chemistry and Molecular Biosciences, The University of Queensland, Cooper Road, Brisbane, Queensland, 4072, Australia
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Corner of College and Cooper Road, Brisbane, Queensland, 4072, Australia
| | - Lisbeth Grøndahl
- School of Chemistry and Molecular Biosciences, The University of Queensland, Cooper Road, Brisbane, Queensland, 4072, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Corner of College and Cooper Road, Brisbane, Queensland, 4072, Australia
| | - Anitha A
- School of Chemistry and Molecular Biosciences, The University of Queensland, Cooper Road, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
13
|
Abstract
Flaviviruses such as dengue, Zika, and West Nile viruses are highly concerning pathogens that pose significant risks to public health. The NS1 protein is conserved among flaviviruses and is synthesized as a part of the flavivirus polyprotein. It plays a critical role in viral replication, disease progression, and immune evasion. Post-translational modifications influence NS1's stability, secretion, antigenicity, and interactions with host factors. NS1 protein forms extensive interactions with host cellular proteins allowing it to affect vital processes such as RNA processing, gene expression regulation, and cellular homeostasis, which in turn influence viral replication, disease pathogenesis, and immune responses. NS1 acts as an immune evasion factor by delaying complement-dependent lysis of infected cells and contributes to disease pathogenesis by inducing endothelial cell damage and vascular leakage and triggering autoimmune responses. Anti-NS1 antibodies have been shown to cross-react with host endothelial cells and platelets, causing autoimmune destruction that is hypothesized to contribute to disease pathogenesis. However, in contrast, immunization of animal models with the NS1 protein confers protection against lethal challenges from flaviviruses such as dengue and Zika viruses. Understanding the multifaceted roles of NS1 in flavivirus pathogenesis is crucial for effective disease management and control. Therefore, further research into NS1 biology, including its host protein interactions and additional roles in disease pathology, is imperative for the development of strategies and therapeutics to combat flavivirus infections successfully. This Review provides an in-depth exploration of the current available knowledge on the multifaceted roles of the NS1 protein in the pathogenesis of flaviviruses.
Collapse
Affiliation(s)
- Dayangi R Perera
- Department of Chemistry, Faculty of Science, University of Colombo, Sri Lanka 00300
| | - Nadeeka D Ranadeva
- Department of Biomedical Science, Faculty of Health Sciences, KIU Campus Sri Lanka 10120
| | - Kavish Sirisena
- Department of Chemistry, Faculty of Science, University of Colombo, Sri Lanka 00300
- Section of Genetics, Institute for Research and Development in Health and Social Care, Sri Lanka 10120
| | | |
Collapse
|
14
|
Cowan DB, Wu H, Chen H. Epsin Endocytic Adaptor Proteins in Angiogenic and Lymphangiogenic Signaling. Cold Spring Harb Perspect Med 2024; 14:a041165. [PMID: 37217282 PMCID: PMC10759987 DOI: 10.1101/cshperspect.a041165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Circulating vascular endothelial growth factor (VEGF) ligands and receptors are central regulators of vasculogenesis, angiogenesis, and lymphangiogenesis. In response to VEGF ligand binding, VEGF receptor tyrosine kinases initiate the chain of events that transduce extracellular signals into endothelial cell responses such as survival, proliferation, and migration. These events are controlled by intricate cellular processes that include the regulation of gene expression at multiple levels, interactions of numerous proteins, and intracellular trafficking of receptor-ligand complexes. Endocytic uptake and transport of macromolecular complexes through the endosome-lysosome system helps fine-tune endothelial cell responses to VEGF signals. Clathrin-dependent endocytosis remains the best understood means of macromolecular entry into cells, although the importance of non-clathrin-dependent pathways is increasingly recognized. Many of these endocytic events rely on adaptor proteins that coordinate internalization of activated cell-surface receptors. In the endothelium of both blood and lymphatic vessels, epsins 1 and 2 are functionally redundant adaptors involved in receptor endocytosis and intracellular sorting. These proteins are capable of binding both lipids and proteins and are important for promoting curvature of the plasma membrane as well as binding ubiquitinated cargo. Here, we discuss the role of epsin proteins and other endocytic adaptors in governing VEGF signaling in angiogenesis and lymphangiogenesis and discuss their therapeutic potential as molecular targets.
Collapse
Affiliation(s)
- Douglas B Cowan
- Vascular Biology Program, Boston Children's Hospital, and Department of Surgery, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Hao Wu
- Vascular Biology Program, Boston Children's Hospital, and Department of Surgery, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Hong Chen
- Vascular Biology Program, Boston Children's Hospital, and Department of Surgery, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
15
|
Arora S, Bajaj T, Kumar J, Goyal M, Singh A, Singh C. Recent Advances in Delivery of Peptide and Protein Therapeutics to the Brain. J Pharmacol Exp Ther 2024; 388:54-66. [PMID: 37977811 DOI: 10.1124/jpet.123.001690] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 10/05/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023] Open
Abstract
The classes of neuropharmaceuticals known as proteins and peptides serve as diagnostic tools and are involved in specific communication in the peripheral and central nervous systems. However, due to tight junctions resembling epithelial cells found in the blood-brain barrier (BBB) in vivo, they are typically excluded from transport from the blood to the brain. The drugs having molecular weight of less than 400 Dalton are able to cross the BBB via lipid-mediated free diffusion. However, large molecule therapeutics are devoid of these characteristics. As an alternative, these substances may be carried via chimeric peptide drug delivery systems, and assist in transcytosis through BBB with the aid of linker strategies. With their recent developments, several forms of nanoparticles, including poly (ethylene glycol)-poly(ε-caprolactone) copolymers, nanogels, liposomes, nanostructured lipid carriers, poly (D, L-lactide-co-glycolide) nanoparticles, chitosan, and solid lipid nanoparticles, have also been considered for their therapeutic applications. Moreover, the necessity for physiologic optimization of current drug delivery methods and their carriers to deliver therapeutic doses of medication into the brain for the treatment of various neurologic illnesses has also been emphasized. Therapeutic use of proteins and peptides has no neuroprotective impact in the absence of all these methods. Each tactic, however, has unique drawbacks and considerations. In this review, we discuss different drug delivery methods for therapeutic distribution of pharmaceuticals, primarily neuroproteins and neuropeptides, through endothelial capillaries via blood-brain barrier. Finally, we have also discussed the challenges and future perspective of protein and peptide therapeutics delivery to the brain. SIGNIFICANCE STATEMENT: Very few reports on the delivery of therapeutic protein and peptide nanoformulations are available in the literature. Herein, we attempted to discuss these nanoformulations of protein and peptide therapeutics used to treat brain diseases.
Collapse
Affiliation(s)
- Sanchit Arora
- Maa Saraswati College of Pharmacy, Abohar-Sito Road, VPO Kala Tibba, Punjab, India (S.A.); Department of Pharmaceutics, ISF College of Pharmacy, Punjab, India Affiliated to I.K. Gujral Punjab Technical University, formerly Punjab Technical University, Punjab, India (T.B., C.S.); Department of Pharmaceutical Sciences, School of Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Uttarakhand, India (J.K., M.G., C.S.); and Department of Pharmacology, ISF College of Pharmacy, Punjab, India (A.S.)
| | - Tania Bajaj
- Maa Saraswati College of Pharmacy, Abohar-Sito Road, VPO Kala Tibba, Punjab, India (S.A.); Department of Pharmaceutics, ISF College of Pharmacy, Punjab, India Affiliated to I.K. Gujral Punjab Technical University, formerly Punjab Technical University, Punjab, India (T.B., C.S.); Department of Pharmaceutical Sciences, School of Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Uttarakhand, India (J.K., M.G., C.S.); and Department of Pharmacology, ISF College of Pharmacy, Punjab, India (A.S.)
| | - Jayant Kumar
- Maa Saraswati College of Pharmacy, Abohar-Sito Road, VPO Kala Tibba, Punjab, India (S.A.); Department of Pharmaceutics, ISF College of Pharmacy, Punjab, India Affiliated to I.K. Gujral Punjab Technical University, formerly Punjab Technical University, Punjab, India (T.B., C.S.); Department of Pharmaceutical Sciences, School of Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Uttarakhand, India (J.K., M.G., C.S.); and Department of Pharmacology, ISF College of Pharmacy, Punjab, India (A.S.)
| | - Manoj Goyal
- Maa Saraswati College of Pharmacy, Abohar-Sito Road, VPO Kala Tibba, Punjab, India (S.A.); Department of Pharmaceutics, ISF College of Pharmacy, Punjab, India Affiliated to I.K. Gujral Punjab Technical University, formerly Punjab Technical University, Punjab, India (T.B., C.S.); Department of Pharmaceutical Sciences, School of Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Uttarakhand, India (J.K., M.G., C.S.); and Department of Pharmacology, ISF College of Pharmacy, Punjab, India (A.S.)
| | - Arti Singh
- Maa Saraswati College of Pharmacy, Abohar-Sito Road, VPO Kala Tibba, Punjab, India (S.A.); Department of Pharmaceutics, ISF College of Pharmacy, Punjab, India Affiliated to I.K. Gujral Punjab Technical University, formerly Punjab Technical University, Punjab, India (T.B., C.S.); Department of Pharmaceutical Sciences, School of Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Uttarakhand, India (J.K., M.G., C.S.); and Department of Pharmacology, ISF College of Pharmacy, Punjab, India (A.S.)
| | - Charan Singh
- Maa Saraswati College of Pharmacy, Abohar-Sito Road, VPO Kala Tibba, Punjab, India (S.A.); Department of Pharmaceutics, ISF College of Pharmacy, Punjab, India Affiliated to I.K. Gujral Punjab Technical University, formerly Punjab Technical University, Punjab, India (T.B., C.S.); Department of Pharmaceutical Sciences, School of Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Uttarakhand, India (J.K., M.G., C.S.); and Department of Pharmacology, ISF College of Pharmacy, Punjab, India (A.S.)
| |
Collapse
|
16
|
Wang D, Jiang Q, Dong Z, Meng T, Hu F, Wang J, Yuan H. Nanocarriers transport across the gastrointestinal barriers: The contribution to oral bioavailability via blood circulation and lymphatic pathway. Adv Drug Deliv Rev 2023; 203:115130. [PMID: 37913890 DOI: 10.1016/j.addr.2023.115130] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/27/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
Oral administration is the preferred route of drug delivery in clinical practice due to its noninvasiveness, safety, convenience, and high patient compliance. The gastrointestinal tract (GIT) plays a crucial role in facilitating the targeted delivery of oral drugs. However, the GIT presents multiple barriers that impede drug absorption, including the gastric barrier in the stomach and the mucus and epithelial barriers in the intestine. In recent decades, nanotechnology has emerged as a promising approach for overcoming these challenges by utilizing nanocarrier-based drug delivery systems such as liposomes, micelles, polymeric nanoparticles, solid lipid nanoparticles, and inorganic nanoparticles. Encapsulating drugs within nanocarriers not only protects them from degradation but also enhances their transport and absorption across the GIT, ultimately improving oral bioavailability. The aim of this review is to elucidate the mechanisms underlying nanocarrier-mediated transportation across the GIT into systemic circulation via both the blood circulation and lymphatic pathway.
Collapse
Affiliation(s)
- Ding Wang
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, PR China
| | - Qi Jiang
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, PR China
| | - Zhefan Dong
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, PR China
| | - Tingting Meng
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, PR China
| | - Fuqiang Hu
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, PR China
| | - Jianwei Wang
- The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, PR China
| | - Hong Yuan
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, PR China; China Jinhua Institute of Zhejiang University, Jinhua 321299, PR China.
| |
Collapse
|
17
|
Gandek TB, van der Koog L, Nagelkerke A. A Comparison of Cellular Uptake Mechanisms, Delivery Efficacy, and Intracellular Fate between Liposomes and Extracellular Vesicles. Adv Healthc Mater 2023; 12:e2300319. [PMID: 37384827 PMCID: PMC11469107 DOI: 10.1002/adhm.202300319] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
A key aspect for successful drug delivery via lipid-based nanoparticles is their internalization in target cells. Two prominent examples of such drug delivery systems are artificial phospholipid-based carriers, such as liposomes, and their biological counterparts, the extracellular vesicles (EVs). Despite a wealth of literature, it remains unclear which mechanisms precisely orchestrate nanoparticle-mediated cargo delivery to recipient cells and the subsequent intracellular fate of therapeutic cargo. In this review, internalization mechanisms involved in the uptake of liposomes and EVs by recipient cells are evaluated, also exploring their intracellular fate after intracellular trafficking. Opportunities are highlighted to tweak these internalization mechanisms and intracellular fates to enhance the therapeutic efficacy of these drug delivery systems. Overall, literature to date shows that both liposomes and EVs are predominantly internalized through classical endocytosis mechanisms, sharing a common fate: accumulation inside lysosomes. Studies tackling the differences between liposomes and EVs, with respect to cellular uptake, intracellular delivery and therapy efficacy, remain scarce, despite its importance for the selection of an appropriate drug delivery system. In addition, further exploration of functionalization strategies of both liposomes and EVs represents an important avenue to pursue in order to control internalization and fate, thereby improving therapeutic efficacy.
Collapse
Affiliation(s)
- Timea B. Gandek
- Pharmaceutical AnalysisGroningen Research Institute of PharmacyUniversity of GroningenP.O. Box 196, XB20Groningen9700 ADThe Netherlands
| | - Luke van der Koog
- Molecular PharmacologyGroningen Research Institute of PharmacyUniversity of GroningenP.O. Box 196, XB10Groningen9700 ADThe Netherlands
| | - Anika Nagelkerke
- Pharmaceutical AnalysisGroningen Research Institute of PharmacyUniversity of GroningenP.O. Box 196, XB20Groningen9700 ADThe Netherlands
| |
Collapse
|
18
|
Groza R, Schmidt KV, Müller PM, Ronchi P, Schlack-Leigers C, Neu U, Puchkov D, Dimova R, Matthäus C, Taraska J, Weikl TR, Ewers H. Adhesion energy controls lipid binding-mediated endocytosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.23.546235. [PMID: 37503169 PMCID: PMC10370163 DOI: 10.1101/2023.06.23.546235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Several bacterial toxins and viruses can deform membranes through multivalent binding to lipids for clathrin-independent endocytosis. However, it remains unclear, how membrane deformation and endocytic internalization are mechanistically linked. Here we show that many lipid-binding virions induce membrane deformation and clathrin-independent endocytosis, suggesting a common mechanism based on multivalent lipid binding by globular particles. We create a synthetic cellular system consisting of a lipid-anchored receptor in the form of GPI-anchored anti-GFP nanobodies and a multivalent globular binder exposing 180 regularly-spaced GFP molecules on its surface. We show that these globular, 40 nm diameter, particles bind to cells expressing the receptor, deform the plasma membrane upon adhesion and become endocytosed in a clathrin-independent manner. We explore the role of the membrane adhesion energy in endocytosis by using receptors with affinities varying over 7 orders of magnitude. Using this system, we find that once a threshold in adhesion energy is overcome to allow for membrane deformation, endocytosis occurs reliably. Multivalent, binding-induced membrane deformation by globular binders is thus sufficient for internalization to occur and we suggest it is the common, purely biophysical mechanism for lipid-binding mediated endocytosis of toxins and pathogens.
Collapse
|
19
|
Moreno J, Zoghebi K, Salehi D, Kim L, Shoushtari SK, Tiwari RK, Parang K. Amphiphilic Cell-Penetrating Peptides Containing Arginine and Hydrophobic Residues as Protein Delivery Agents. Pharmaceuticals (Basel) 2023; 16:469. [PMID: 36986567 PMCID: PMC10053436 DOI: 10.3390/ph16030469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
The entry of proteins through the cell membrane is challenging, thus limiting their use as potential therapeutics. Seven cell-penetrating peptides, designed in our laboratory, were evaluated for the delivery of proteins. Fmoc solid-phase peptide synthesis was utilized for the synthesis of seven cyclic or hybrid cyclic-linear amphiphilic peptides composed of hydrophobic (tryptophan (W) or 3,3-diphenylalanine (Dip) and positively-charged arginine (R) residues, such as [WR]4, [WR]9, [WWRR]4, [WWRR]5, [(RW)5K](RW)5, [R5K]W7, and [DipR]5. Confocal microscopy was used to screen the peptides as a protein delivery system of model cargo proteins, green and red fluorescein proteins (GFP and RFP). Based on the confocal microscopy results, [WR]9 and [DipR]5 were found to be more efficient among all the peptides and were selected for further studies. [WR]9 (1-10 µM) + protein (GFP and RFP) physical mixture did not show high cytotoxicity (>90% viability) in triple-negative breast cancer cells (MDA-MB-231) after 24 h, while [DipR]5 (1-10 µM) physical mixture with GFP exhibited more than 81% cell viability. Confocal microscopy images revealed internalization of GFP and RFP in MDA-MB-231 cells using [WR]9 (2-10 μM) and [DipR]5 (1-10 µM). Fluorescence-activated cell sorting (FACS) analysis indicated that the cellular uptake of GFP was concentration-dependent in the presence of [WR]9 in MDA-MB-231 cells after 3 h of incubation at 37 °C. The concentration-dependent uptake of GFP and RFP was also observed in the presence of [DipR5] in SK-OV-3 and MDA-MB-231 cells after 3 h of incubation at 37 °C. FACS analysis indicated that the cellular uptake of GFP in the presence of [WR]9 was partially decreased by methyl-β-cyclodextrin and nystatin as endocytosis inhibitors after 3 h of incubation in MDA-MB-231 cells, whereas nystatin and chlorpromazine as endocytosis inhibitors slightly reduced the uptake of GFP in the presence of [DipR]5 after 3 h of incubation in MDA-MB-231. [WR]9 was able to deliver therapeutically relevant proteins (Histone H2A) at different concentrations. These results provide insight into the use of amphiphilic cyclic peptides in the delivery of protein-related therapeutics.
Collapse
Affiliation(s)
- Jonathan Moreno
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA
| | - Khalid Zoghebi
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan 82826, Saudi Arabia
| | - David Salehi
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA
| | - Lois Kim
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA
| | - Sorour Khayyatnejad Shoushtari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA
| | - Rakesh K. Tiwari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA
| |
Collapse
|
20
|
Deng F, Bae YH. Effect of modification of polystyrene nanoparticles with different bile acids on their oral transport. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 48:102629. [PMID: 36410698 PMCID: PMC9918699 DOI: 10.1016/j.nano.2022.102629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/25/2022] [Accepted: 11/11/2022] [Indexed: 11/23/2022]
Abstract
Bile acid-modified nanomedicine is a promising strategy to improve oral bioavailability. However, the efficiencies of different bile acids have not been clarified. To clarify this issue, deoxycholic acid (DCA) and cholic acid (CA) and glycocholic acid (GCA) were conjugated to carboxylated polystyrene nanoparticle (CPN). The endocytosis, intracellular and transcellular transport among the NPs were compared in Caco-2 cells, and their oral pharmacokinetics profiles were studied in C57BL/6 J mice. It was found that DCPN demonstrated higher uptake and transcytosis rate. With modification by different bile acids, the transport pathways of the NPs were altered. In mice, GCPN showed the highest absorption speed and oral bioavailability. It was found that the synergic effect of hydrophobicity and ASBT affinity might lead to the difference between in vitro and in vivo transport. This study will build a basis for the rational design of bile acid-modified nanomedicines.
Collapse
Affiliation(s)
- Feiyang Deng
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, University of Utah, 30 S 2000 E, Salt Lake City, UT 84112, USA
| | - You Han Bae
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, University of Utah, 30 S 2000 E, Salt Lake City, UT 84112, USA.
| |
Collapse
|
21
|
Mardi N, Haiaty S, Rahbarghazi R, Mobarak H, Milani M, Zarebkohan A, Nouri M. Exosomal transmission of viruses, a two-edged biological sword. Cell Commun Signal 2023; 21:19. [PMID: 36691072 PMCID: PMC9868521 DOI: 10.1186/s12964-022-01037-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 12/28/2022] [Indexed: 01/24/2023] Open
Abstract
As a common belief, most viruses can egress from the host cells as single particles and transmit to uninfected cells. Emerging data have revealed en bloc viral transmission as lipid bilayer-cloaked particles via extracellular vesicles especially exosomes (Exo). The supporting membrane can be originated from multivesicular bodies during intra-luminal vesicle formation and autophagic response. Exo are nano-sized particles, ranging from 40-200 nm, with the ability to harbor several types of signaling molecules from donor to acceptor cells in a paracrine manner, resulting in the modulation of specific signaling reactions in target cells. The phenomenon of Exo biogenesis consists of multiple and complex biological steps with the participation of diverse constituents and molecular pathways. Due to similarities between Exo biogenesis and virus replication and the existence of shared pathways, it is thought that viruses can hijack the Exo biogenesis machinery to spread and evade immune cells. To this end, Exo can transmit complete virions (as single units or aggregates), separate viral components, and naked genetic materials. The current review article aims to scrutinize challenges and opportunities related to the exosomal delivery of viruses in terms of viral infections and public health. Video Abstract.
Collapse
Affiliation(s)
- Narges Mardi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanya Haiaty
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St., Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Halimeh Mobarak
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St., Tabriz, Iran
| | - Morteza Milani
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Zarebkohan
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
22
|
Ye XW, Liu MN, Wang X, Cheng SQ, Li CS, Bai YY, Yang LL, Wang XX, Wen J, Xu WJ, Zhang SY, Xu XF, Li XR. Exploring the common pathogenesis of Alzheimer's disease and type 2 diabetes mellitus via microarray data analysis. Front Aging Neurosci 2023; 15:1071391. [PMID: 36923118 PMCID: PMC10008874 DOI: 10.3389/fnagi.2023.1071391] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 02/03/2023] [Indexed: 03/01/2023] Open
Abstract
Background Alzheimer's Disease (AD) and Type 2 Diabetes Mellitus (DM) have an increased incidence in modern society. Although more and more evidence has supported that DM is prone to AD, the interrelational mechanisms remain fully elucidated. Purpose The primary purpose of this study is to explore the shared pathophysiological mechanisms of AD and DM. Methods Download the expression matrix of AD and DM from the Gene Expression Omnibus (GEO) database with sequence numbers GSE97760 and GSE95849, respectively. The common differentially expressed genes (DEGs) were identified by limma package analysis. Then we analyzed the six kinds of module analysis: gene functional annotation, protein-protein interaction (PPI) network, potential drug screening, immune cell infiltration, hub genes identification and validation, and prediction of transcription factors (TFs). Results The subsequent analyses included 339 common DEGs, and the importance of immunity, hormone, cytokines, neurotransmitters, and insulin in these diseases was underscored by functional analysis. In addition, serotonergic synapse, ovarian steroidogenesis, estrogen signaling pathway, and regulation of lipolysis are closely related to both. DEGs were input into the CMap database to screen small molecule compounds with the potential to reverse AD and DM pathological functions. L-690488, exemestane, and BMS-345541 ranked top three among the screened small molecule compounds. Finally, 10 essential hub genes were identified using cytoHubba, including PTGS2, RAB10, LRRK2, SOS1, EEA1, NF1, RAB14, ADCY5, RAPGEF3, and PRKACG. For the characteristic Aβ and Tau pathology of AD, RAPGEF3 was associated significantly positively with AD and NF1 significantly negatively with AD. In addition, we also found ADCY5 and NF1 significant correlations with DM phenotypes. Other datasets verified that NF1, RAB14, ADCY5, and RAPGEF3 could be used as key markers of DM complicated with AD. Meanwhile, the immune cell infiltration score reflects the different cellular immune microenvironments of the two diseases. Conclusion The common pathogenesis of AD and DM was revealed in our research. These common pathways and hub genes directions for further exploration of the pathogenesis or treatment of these two diseases.
Collapse
Affiliation(s)
- Xian-Wen Ye
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Meng-Nan Liu
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China.,School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xuan Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shui-Qing Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chun-Shuai Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yu-Ying Bai
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Lin-Lin Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xu-Xing Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jia Wen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wen-Juan Xu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shu-Yan Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xin-Fang Xu
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiang-Ri Li
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
23
|
Mahata P, Vennamneni L, Chattopadhyay S. A mechanical-thermodynamic model for understanding endocytosis of COVID-19 virus SARS-CoV-2. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS. PART C. JOURNAL OF MECHANICAL ENGINEERING SCIENCE 2022; 236:9431-9440. [PMID: 38603131 PMCID: PMC9127454 DOI: 10.1177/09544062221098538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 04/11/2022] [Indexed: 04/13/2024]
Abstract
We analyze the endocytosis process of COVID-19 (coronavirus disease 2019) virus SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) using a mechanical-thermodynamic model. The virus particle is designed to interface with the cell membrane as a hard sphere. The role of cytoplasmic BAR (Bin/Amphiphysin/RVs) proteins is considered in the endocytosis. Interestingly, the Endophilin N-BAR cytoplasmic proteins show resistance in participating endocytosis, whereas F-BAR, Arfaptin BAR, Amphiphysin N-BAR, and PX-BAR proteins participate in endocytosis. The increase in membrane tension, concentrated force between the cell membrane receptor, and spike glycoprotein present on the surface of virus particle promote the endocytosis. Also, the increase in the bending modulus of membrane leads to the two-phase solution of BAR protein concentration on the interior of cell membrane surface. We observe an unstable region of protein concentration, which may help one to retard the endocytosis process and thus the viral infection. Though the present study is focused on SARS-CoV-2, it can be extended to understand any other viral infections, involving endocytosis process.
Collapse
Affiliation(s)
- Paritosh Mahata
- Department of Mechanical Engineering, Birla Institute of Technology, Ranchi, India
| | | | | |
Collapse
|
24
|
Griffiths G, Gruenberg J, Marsh M, Wohlmann J, Jones AT, Parton RG. Nanoparticle entry into cells; the cell biology weak link. Adv Drug Deliv Rev 2022; 188:114403. [PMID: 35777667 DOI: 10.1016/j.addr.2022.114403] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/22/2022]
Abstract
Nanoparticles (NP) are attractive options for the therapeutic delivery of active pharmaceutical drugs, proteins and nucleic acids into cells, tissues and organs. Research into the development and application of NP most often starts with a diverse group of scientists, including chemists, bioengineers and material and pharmaceutical scientists, who design, fabricate and characterize NP in vitro (Stage 1). The next step (Stage 2) generally investigates cell toxicity as well as the processes by which NP bind, are internalized and deliver their cargo to appropriate model tissue culture cells. Subsequently, in Stage 3, selected NP are tested in animal systems, mostly mouse. Whereas the chemistry-based development and analysis in Stage 1 is increasingly sophisticated, the investigations in Stage 2 are not what could be regarded as 'state-of-the-art' for the cell biology field and the quality of research into NP interactions with cells is often sub-standard. In this review we describe our current understanding of the mechanisms by which particles gain entry into mammalian cells via endocytosis. We summarize the most important areas for concern, highlight some of the most common mis-conceptions, and identify areas where NP scientists could engage with trained cell biologists. Our survey of the different mechanisms of uptake into cells makes us suspect that claims for roles for caveolae, as well as macropinocytosis, in NP uptake into cells have been exaggerated, whereas phagocytosis has been under-appreciated.
Collapse
Affiliation(s)
- Gareth Griffiths
- Department Biosciences, University of Oslo, Blindernveien 31, PO Box 1041, 0316 Oslo, Norway.
| | - Jean Gruenberg
- Department of Biochemistry, University of Geneva, 30 quai E. Ansermet, 1211-Geneva-4, Switzerland
| | - Mark Marsh
- Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Jens Wohlmann
- Department Biosciences, University of Oslo, Blindernveien 31, PO Box 1041, 0316 Oslo, Norway
| | - Arwyn T Jones
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, Cardiff, Wales CF103NB, UK
| | - Robert G Parton
- Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis, The University of Queensland, Qld 4072, Australia
| |
Collapse
|
25
|
Park J, Jia S, Salter D, Bagnaninchi P, Hansen CG. The Hippo pathway drives the cellular response to hydrostatic pressure. EMBO J 2022; 41:e108719. [PMID: 35702882 PMCID: PMC9251841 DOI: 10.15252/embj.2021108719] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 04/13/2022] [Accepted: 05/16/2022] [Indexed: 11/24/2022] Open
Abstract
Cells need to rapidly and precisely react to multiple mechanical and chemical stimuli in order to ensure precise context-dependent responses. This requires dynamic cellular signalling events that ensure homeostasis and plasticity when needed. A less well-understood process is cellular response to elevated interstitial fluid pressure, where the cell senses and responds to changes in extracellular hydrostatic pressure. Here, using quantitative label-free digital holographic imaging, combined with genome editing, biochemical assays and confocal imaging, we analyse the temporal cellular response to hydrostatic pressure. Upon elevated cyclic hydrostatic pressure, the cell responds by rapid, dramatic and reversible changes in cellular volume. We show that YAP and TAZ, the co-transcriptional regulators of the Hippo signalling pathway, control cell volume and that cells without YAP and TAZ have lower plasma membrane tension. We present direct evidence that YAP/TAZ drive the cellular response to hydrostatic pressure, a process that is at least partly mediated via clathrin-dependent endocytosis. Additionally, upon elevated oscillating hydrostatic pressure, YAP/TAZ are activated and induce TEAD-mediated transcription and expression of cellular components involved in dynamic regulation of cell volume and extracellular matrix. This cellular response confers a feedback loop that allows the cell to robustly respond to changes in interstitial fluid pressure.
Collapse
Affiliation(s)
- Jiwon Park
- Centre for Inflammation ResearchInstitute for Regeneration and Repair, Edinburgh bioQuarterThe University of EdinburghEdinburghUK
- Centre for Regenerative MedicineInstitute for Regeneration and Repair, Edinburgh bioQuarterThe University of EdinburghEdinburghUK
| | - Siyang Jia
- Centre for Inflammation ResearchInstitute for Regeneration and Repair, Edinburgh bioQuarterThe University of EdinburghEdinburghUK
- Centre for Regenerative MedicineInstitute for Regeneration and Repair, Edinburgh bioQuarterThe University of EdinburghEdinburghUK
| | - Donald Salter
- Centre for Genomic & Experimental MedicineMRC Institute of Genetics & Molecular MedicineThe University of Edinburgh, Western General HospitalEdinburghUK
| | - Pierre Bagnaninchi
- Centre for Regenerative MedicineInstitute for Regeneration and Repair, Edinburgh bioQuarterThe University of EdinburghEdinburghUK
| | - Carsten G Hansen
- Centre for Inflammation ResearchInstitute for Regeneration and Repair, Edinburgh bioQuarterThe University of EdinburghEdinburghUK
- Centre for Regenerative MedicineInstitute for Regeneration and Repair, Edinburgh bioQuarterThe University of EdinburghEdinburghUK
| |
Collapse
|
26
|
Miyamoto T, Toyooka K, Chuah JA, Odahara M, Higchi-Takeuchi M, Goto Y, Motoda Y, Kigawa T, Kodama Y, Numata K. A Synthetic Multidomain Peptide That Drives a Macropinocytosis-Like Mechanism for Cytosolic Transport of Exogenous Proteins into Plants. JACS AU 2022; 2:223-233. [PMID: 35098239 PMCID: PMC8790739 DOI: 10.1021/jacsau.1c00504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Indexed: 05/28/2023]
Abstract
Direct delivery of proteins into plants represents a promising alternative to conventional gene delivery for probing and modulating cellular functions without the risk of random integration of transgenes into the host genome. This remains challenging, however, because of the lack of a protein delivery tool applicable to diverse plant species and the limited information about the entry mechanisms of exogenous proteins in plant cells. Here, we present the synthetic multidomain peptide (named dTat-Sar-EED4) for cytosolic protein delivery in various plant species via simple peptide-protein coincubation. dTat-Sar-EED4 enabled the cytosolic delivery of an active enzyme with up to ∼20-fold greater efficiency than previously described cell-penetrating peptides in several model plant systems. Our analyses using pharmacological inhibitors and transmission electron microscopy revealed that dTat-Sar-EED4 triggered a unique endocytic mechanism for cargo protein internalization. This endocytic mechanism shares several features with macropinocytosis, including the dependency of actin polymerization, sensitivity to phosphatidylinositol-3 kinase activity, and formation of membrane protrusions and large intracellular vesicles (>200 nm in diameter), even though macropinocytosis has not been identified to date in plants. Our study thus presents a robust molecular tool that can induce a unique cellular uptake mechanism for the efficient transport of bioactive proteins into plants.
Collapse
Affiliation(s)
- Takaaki Miyamoto
- Biomacromolecules
Research Team, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
| | - Kiminori Toyooka
- Technology
Platform Division, Mass Spectrometry and Microscopy Unit, RIKEN Center
for Sustainable Resource Science, Yokohama 230-0045, Japan
| | - Jo-Ann Chuah
- Biomacromolecules
Research Team, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
| | - Masaki Odahara
- Biomacromolecules
Research Team, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
| | - Mieko Higchi-Takeuchi
- Biomacromolecules
Research Team, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
| | - Yumi Goto
- Technology
Platform Division, Mass Spectrometry and Microscopy Unit, RIKEN Center
for Sustainable Resource Science, Yokohama 230-0045, Japan
| | - Yoko Motoda
- Biomacromolecules
Research Team, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
- Laboratory
for Cellular Structural Biology, RIKEN Center for Biosystems Dynamics
Research, Yokohama 230-0045, Japan
| | - Takanori Kigawa
- Laboratory
for Cellular Structural Biology, RIKEN Center for Biosystems Dynamics
Research, Yokohama 230-0045, Japan
| | - Yutaka Kodama
- Biomacromolecules
Research Team, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
- Center
for Bioscience Research and Education, Utsunomiya
University, Tochigi 321-8505, Japan
| | - Keiji Numata
- Biomacromolecules
Research Team, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
- Department
of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
27
|
Song S, Xia X, Qi J, Hu X, Chen Q, Liu J, Ji N, Zhao H. Silmitasertib-induced macropinocytosis promoting DDP intracellular uptake to enhance cell apoptosis in oral squamous cell carcinoma. Drug Deliv 2021; 28:2480-2494. [PMID: 34766543 PMCID: PMC8592591 DOI: 10.1080/10717544.2021.2000677] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Cisplatin (DDP) is a first-line chemotherapeutic drug applied for the treatment of oral squamous cell carcinoma (OSCC). The anticancer activity of DDP is tightly linked to its intracellular uptake. It is unwise to increase the DDP intake by increasing the dose or shortening the dosing interval because of the severe systemic toxicity (nephrotoxicity, ototoxicity and neurotoxicity) in DDP application. The main uptake pathways of DDP include passive diffusion and active transporter transport. Therefore, finding additional uptake pathways that can improve the effective intracellular concentration of DDP is critical. Macropinocytosis, an endocytic mechanism for extracellular material absorption, contributes to the intracellular uptake of anticancer drugs. No research has been conducted to determine whether macropinocytosis can augment the intracellular uptake of DDP in OSCC cells or not. Based on that, we proved for the first time that silmitasertib (previously CX-4945) could trigger macropinocytosis, which may increase the intracellular uptake of DDP and enhance apoptosis via in vivo and in vitro experiments. We hope that our findings will inspire a new approach for the application of DDP in cancer treatment.
Collapse
Affiliation(s)
- Shaojuan Song
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu, China
| | - Xin Xia
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu, China
| | - Jiajia Qi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu, China
| | - Xiaopei Hu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu, China
| | - Qian Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu, China
| | - Jiang Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu, China
| | - Ning Ji
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu, China
| | - Hang Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu, China
| |
Collapse
|
28
|
Sommi P, Vitali A, Coniglio S, Callegari D, Barbieri S, Casu A, Falqui A, Vigano’ L, Vigani B, Ferrari F, Anselmi-Tamburini U. Microvilli Adhesion: An Alternative Route for Nanoparticle Cell Internalization. ACS NANO 2021; 15:15803-15814. [PMID: 34585565 PMCID: PMC8552441 DOI: 10.1021/acsnano.1c03151] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 09/24/2021] [Indexed: 05/31/2023]
Abstract
The cellular uptake of nanoparticles (NPs) represents a critical step in nanomedicine and a crucial point for understanding the interaction of nanomaterials with biological systems. No specific mechanism of uptake has been identified so far, as the NPs are generally incorporated by the cells through one of the few well-known endocytotic mechanisms. Here, an alternative internalization route mediated by microvilli adhesion is demonstrated. This microvillus-mediated adhesion (MMA) has been observed using ceria and magnetite NPs with a dimension of <40 nm functionalized with polyacrylic acid but not using NPs with a neutral or positive functionalization. Such an adhesion was not cell specific, as it was demonstrated in three different cell lines. MMA was also reduced by modifications of the microvillus lipid rafts, obtained by depleting cholesterol and altering synthesis of sphingolipids. We found a direct relationship between MAA, cell cycle, and density of microvilli. The evidence suggests that MMA differs from the commonly described uptake mechanisms and might represent an interesting alternative approach for selective NP delivery.
Collapse
Affiliation(s)
- Patrizia Sommi
- Human
Physiology Unit, Department of Molecular Medicine, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
| | - Agostina Vitali
- Department
of Chemistry, University of Pavia, 27100 Pavia, Italy
| | - Stefania Coniglio
- Human
Physiology Unit, Department of Molecular Medicine, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
| | | | - Sofia Barbieri
- Department
of Physics, University of Pavia, 27100 Pavia, Italy
| | - Alberto Casu
- Biological
and Environmental Sciences and Engineering Division, NABLA Lab, King Abdullah University of Science and Technology
(KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - Andrea Falqui
- Biological
and Environmental Sciences and Engineering Division, NABLA Lab, King Abdullah University of Science and Technology
(KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - Lorenzo Vigano’
- Department
of Chemistry, University of Pavia, 27100 Pavia, Italy
| | - Barbara Vigani
- Department
of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Franca Ferrari
- Department
of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | | |
Collapse
|
29
|
Sun EW, Matusica D, Wattchow DA, McCluskey A, Robinson PJ, Keating DJ. Dynamin regulates L cell secretion in human gut. Mol Cell Endocrinol 2021; 535:111398. [PMID: 34274446 DOI: 10.1016/j.mce.2021.111398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 06/01/2021] [Accepted: 07/13/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND The mechanochemical enzyme dynamin mediates endocytosis and regulates neuroendocrine cell exocytosis. Enteroendocrine L cells co-secrete the anorectic gut hormones glucagon-like peptide 1 (GLP-1) and peptide YY (PYY) postprandially and is a potential therapeutic target for metabolic diseases. In the present study, we aimed to determine if dynamin is implicated in human L cell secretion. METHODS Western blot was performed on the murine L cell line GLUTag. Static incubation of human colonic mucosae with activators and inhibitors of dynamin was carried out. GLP-1 and PYY contents of the secretion supernatants were assayed using ELISA. RESULTS AND CONCLUSION s: Both dynamin I and II are expressed in GLUTag cells. The dynamin activator Ryngo 1-23 evoked significant GLP-1 and PYY release from human colonic mucosae while the dynamin inhibitor Dynole 3-42 significantly inhibited release triggered by known L cell secretagogues. Thus, the cell signaling regulator dynamin is able to bi-directionally regulate L cell hormone secretion in the human gut and may represent a novel target for gastrointestinal-targeted metabolic drug development.
Collapse
Affiliation(s)
- Emily Wl Sun
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| | - Dusan Matusica
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| | | | - Adam McCluskey
- Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | - Philip J Robinson
- Cell Signalling Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW, Australia
| | - Damien J Keating
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia.
| |
Collapse
|
30
|
Endocytosis-pathway polygenic scores affects the hippocampal network connectivity and individualized identification across the high-risk of Alzheimer's disease. Brain Imaging Behav 2021; 15:1155-1169. [PMID: 32803660 DOI: 10.1007/s11682-020-00316-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The neural mechanisms underlying the polygenic effects of the endocytosis pathway on the brain function of Alzheimer's Disease (AD) remain unclear, especially in the prodromal stages of AD from early mild cognitive impairment (EMCI) to late mild cognitive impairment (LMCI). We used an imaging genetic approach to investigate the polygenic effects of the endocytosis pathway on the hippocampal network across the prodromal stages of AD. The subjects' data were selected from the Alzheimer's Disease Neuroimaging Initiative. Hippocampal volumes were examined in subjects of cognitive normal (CN), EMCI and LMCI groups. Multivariate linear regression analysis was employed to measure the effects of disease and endocytosis-based multilocus genetic risk scores (MGRS) on the hippocampal network which was constructed using the bilateral hippocampal regions. We identified hippocampal volumes in LMCI group were smaller than those in CN and EMCI groups. Endocytosis-based MGRS was widely influenced the neural structures within the hippocampal network, especially in the prefrontal-occipital regions and striatum. Compared to low endocytosis-based MGRS carriers, high MGRS carriers showed the opposite trajectory of hippocampal network functional connectivity (FC) across the prodromal stages of AD. Further, a model composed of selected hippocampal FCs and hippocampal volume yielded strong classification powers of EMCI and LMCI. These findings expand our understanding of the pathophysiology of polygenic effects underlying brain network in the prodromal stages of AD.
Collapse
|
31
|
Di J, Gao X, Du Y, Zhang H, Gao J, Zheng A. Size, shape, charge and "stealthy" surface: Carrier properties affect the drug circulation time in vivo. Asian J Pharm Sci 2021; 16:444-458. [PMID: 34703494 PMCID: PMC8520042 DOI: 10.1016/j.ajps.2020.07.005] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/14/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022] Open
Abstract
The present review sets out to discuss recent developments of the effects and mechanisms of carrier properties on their circulation time. For most drugs, sufficient in vivo circulation time is the basis of high bioavailability. Drug carrier plays an irreplaceable role in helping drug avoid being quickly recognized and cleared by mononuclear phagocyte system, to give drug enough time to arrive at targeted organ and tissue to play its therapeutic effect. The physical and chemical properties of drug carriers, such as size, shape, surface charge and surface modification, would affect their in vivo circulation time, metabolic behavior and biodistribution. The final circulation time of carriers is determined by the balance between macrophage recognitions, blood vessel penetration and urine excretion. Therefore, when designing the drug delivery system, we should pay much attention to the properties of drug carriers to get enough in vivo circulation time to arrive at target site eventually. This article mainly reviews the effect of carrier size, size, surface charge and surface properties on its circulation time in vivo, and discusses the mechanism of these properties affecting circulation time. This review has reference significance for the research of long-circulation drug delivery system.
Collapse
Affiliation(s)
- Jinwei Di
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Xiang Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Yimeng Du
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Hui Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Jing Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Aiping Zheng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| |
Collapse
|
32
|
Chiang CL, Cheng MH, Lin CH. From Nanoparticles to Cancer Nanomedicine: Old Problems with New Solutions. NANOMATERIALS 2021; 11:nano11071727. [PMID: 34209111 PMCID: PMC8308137 DOI: 10.3390/nano11071727] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/12/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022]
Abstract
Anticancer nanomedicines have been studied over 30 years, but fewer than 10 formulations have been approved for clinical therapy today. Despite abundant options of anticancer drugs, it remains challenging to have agents specifically target cancer cells while reducing collateral toxicity to healthy tissue. Nanocompartments that can be selective toward points deeply within malignant tissues are a promising concept, but the heterogeneity of tumor tissue, inefficiency of cargo loading and releasing, and low uniformity of manufacture required from preclinical to commercialization are major obstacles. Technological advances have been made in this field, creating engineered nanomaterials with improved uniformity, flexibility of cargo loading, diversity of surface modification, and less inducible immune responses. This review highlights the developmental process of approved nanomedicines and the opportunities for novel materials that combine insights of tumors and nanotechnology to develop a more effective nanomedicine for cancer patients.
Collapse
Affiliation(s)
- Chi-Ling Chiang
- Comprehensive Cancer Center, Division of Hematology, Ohio State University, Columbus, OH 43202, USA;
- NSEC Center for Affordable Nanoengineering of Polymeric Biomedical Devices, Ohio State University, Columbus, OH 43202, USA
| | - Ming-Huei Cheng
- Center of Lymphedema Microsurgery, Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan;
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Chih-Hsin Lin
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence:
| |
Collapse
|
33
|
Johannes L. The Cellular and Chemical Biology of Endocytic Trafficking and Intracellular Delivery-The GL-Lect Hypothesis. Molecules 2021; 26:3299. [PMID: 34072622 PMCID: PMC8198588 DOI: 10.3390/molecules26113299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/27/2021] [Accepted: 05/06/2021] [Indexed: 12/31/2022] Open
Abstract
Lipid membranes are common to all forms of life. While being stable barriers that delimitate the cell as the fundamental organismal unit, biological membranes are highly dynamic by allowing for lateral diffusion, transbilayer passage via selective channels, and in eukaryotic cells for endocytic uptake through the formation of membrane bound vesicular or tubular carriers. Two of the most abundant fundamental fabrics of membranes-lipids and complex sugars-are produced through elaborate chains of biosynthetic enzymes, which makes it difficult to study them by conventional reverse genetics. This review illustrates how organic synthesis provides access to uncharted areas of membrane glycobiology research and its application to biomedicine. For this Special Issue on Chemical Biology Research in France, focus will be placed on synthetic approaches (i) to study endocytic functions of glycosylated proteins and lipids according to the GlycoLipid-Lectin (GL-Lect) hypothesis, notably that of Shiga toxin; (ii) to mechanistically dissect its endocytosis and intracellular trafficking with small molecule; and (iii) to devise intracellular delivery strategies for immunotherapy and tumor targeting. It will be pointed out how the chemical biologist's view on lipids, sugars, and proteins synergizes with biophysics and modeling to "look" into the membrane for atomistic scale insights on molecular rearrangements that drive the biogenesis of endocytic carriers in processes of clathrin-independent endocytosis.
Collapse
Affiliation(s)
- Ludger Johannes
- Cellular and Chemical Biology Department, Institut Curie, PSL Research University, U1143 INSERM, UMR3666 CNRS, 26 rue d'Ulm, CEDEX 05, 75248 Paris, France
| |
Collapse
|
34
|
Mushtaq A, Li L, A A, Grøndahl L. Chitosan Nanomedicine in Cancer Therapy: Targeted Delivery and Cellular Uptake. Macromol Biosci 2021; 21:e2100005. [PMID: 33738977 DOI: 10.1002/mabi.202100005] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/22/2021] [Indexed: 12/11/2022]
Abstract
Nanomedicine has gained much attention for the management and treatment of cancers due to the distinctive physicochemical properties of the drug-loaded particles. Chitosan's cationic nature is attractive for the development of such particles for drug delivery, transfection, and controlled release. The particle properties can be improved by modification of the polymer or the particle themselves. The physicochemical properties of chitosan particles are analyzed in 126 recent studies, which allows to highlight their impact on passive and active targeted drug delivery, cellular uptake, and tumor growth inhibition (TGI). From 2012 to 2019, out of 40 in vivo studies, only 4 studies are found reporting a reduction in tumor size by using chitosan particles while all other studies reported tumor growth inhibition relative to controls. A total of 23 studies are analyzed for cellular uptake including 12 studies reporting cellular uptake mechanisms. Understanding and exploiting the processes involved in targeted delivery, endocytosis, and exocytosis by controlling the physicochemical properties of chitosan particles are important for the development of safe and efficient nanomedicine. It is concluded based on the recent literature available on chitosan particles that combination therapies can play a pivotal role in transformation of chitosan nanomedicine from bench to bedside.
Collapse
Affiliation(s)
- Asim Mushtaq
- School of Chemistry and Molecular Biosciences, The University of Queensland, Building 68, Cooper Road, Brisbane, Queensland, 4072, Australia
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Building 75, Corner of College and Cooper Road, Brisbane, Queensland, 4072, Australia
| | - Anitha A
- School of Chemistry and Molecular Biosciences, The University of Queensland, Building 68, Cooper Road, Brisbane, Queensland, 4072, Australia
| | - Lisbeth Grøndahl
- School of Chemistry and Molecular Biosciences, The University of Queensland, Building 68, Cooper Road, Brisbane, Queensland, 4072, Australia.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Building 75, Corner of College and Cooper Road, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
35
|
Pan X, He G, Hai B, Liu Y, Bian L, Yong L, Zhang H, Yang C, Du C, Mao T, Ma Y, Jia F, Dou X, Zhai S, Liu X. VPS34 regulates dynamin to determine the endocytosis of mitochondria-targeted zinc oxide nanoparticles in human osteosarcoma cells. J Mater Chem B 2021; 9:2641-2655. [PMID: 33683276 DOI: 10.1039/d1tb00226k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In our previous study, zinc oxide nanoparticles (ZnO NPs) presented satisfying therapeutic effects with cancer cell selectivity in osteosarcoma cells and, thus, have been considered as a potential nanomedicine for human osteosarcoma treatment. However, the poorly investigated internalization process, including their endocytic pathway into tumor cells and intracellular fate, limits the clinical application. Here, we further clarified these aspects. First, ZnO NPs were rapidly internalized by osteosarcoma cells and accumulated in mitochondria, before being entrapped into lysosomes. Second, dynasore (a dynamin inhibitor) was demonstrated to be the most effective in blocking ZnO NP uptake and rescuing ZnO NP-induced osteosarcoma cell autophagic death and apoptosis. Third, we confirmed the key role of dynamin 2 in ZnO NP endocytosis and subsequent autophagic cell death in vitro and in vivo. Furthermore, we proved that VPS34 transferred from cell cytoplasm to cell membrane to interact with dynamin under ZnO NP treatment. Altogether, combined with our previous study, the current research further revealed that ZnO NPs entered human osteosarcoma cells through the VPS34/dynamin 2-dependent endocytic pathway, directly targeting and damaging the mitochondria before being entrapped into the lysosomes, thereby initiating mitophagy-Zn2+-reactive oxygen species-mitophagy axis mediated cell apoptosis.
Collapse
Affiliation(s)
- Xiaoyu Pan
- Department of Orthopedics, Beijing International Cooperation Base for Science and Technology on Biomimetic Titanium Orthopedic Implants, Peking University Third Hospital, Beijing 100191, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Hilterbrand AT, Daly RE, Heldwein EE. Contributions of the Four Essential Entry Glycoproteins to HSV-1 Tropism and the Selection of Entry Routes. mBio 2021; 12:e00143-21. [PMID: 33653890 PMCID: PMC8092210 DOI: 10.1128/mbio.00143-21] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 01/02/2023] Open
Abstract
Herpes simplex viruses (HSV-1 and HSV-2) encode up to 16 envelope proteins, four of which are essential for entry. However, whether these four proteins alone are sufficient to dictate the broad cellular tropism of HSV-1 and the selection of different cell type-dependent entry routes is unknown. To begin addressing this, we previously pseudotyped vesicular stomatitis virus (VSV), lacking its native glycoprotein G, with only the four essential entry glycoproteins of HSV-1: gB, gH, gL, and gD. This novel VSVΔG-BHLD pseudotype recapitulated several important features of HSV-1 entry: the requirement for gB, gH, gL, gD, and a cellular receptor and sensitivity to anti-gB and anti-gH/gL neutralizing antibodies. However, due to the use of a single cell type in that study, the tropism of the VSVΔG-BHLD pseudotype was not investigated. Here, we show that the cellular tropism of the pseudotype is severely limited compared to that of wild-type HSV-1 and that its entry pathways differ from the native HSV-1 entry pathways. To test the hypothesis that other HSV-1 envelope proteins may contribute to HSV-1 tropism, we generated a derivative pseudotype containing the HSV-1 glycoprotein C (VSVΔG-BHLD-gC) and observed a gC-dependent increase in entry efficiency in two cell types. We propose that the pseudotyping platform developed here has the potential to uncover functional contributions of HSV-1 envelope proteins to entry in a gain-of-function manner.IMPORTANCE Herpes simplex viruses (HSV-1 and HSV-2) contain up to 16 different proteins in their envelopes. Four of these, glycoproteins gB, gD, gH, and gL, are termed essential with regard to entry, whereas the rest are typically referred to as nonessential based on the entry phenotypes of the respective single genetic deletions. However, the single-gene deletion approach, which relies on robust loss-of-function phenotypes, may be confounded by functional redundancies among the many HSV-1 envelope proteins. We have developed a pseudotyping platform in which the essential four entry glycoproteins are isolated from the rest, which can be added back individually for systematic gain-of-function entry experiments. Here, we show the utility of this platform for dissecting the contributions of HSV envelope proteins, both the essential four and the remaining dozen (using gC as an example), to HSV entry.
Collapse
Affiliation(s)
- Adam T Hilterbrand
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Raecliffe E Daly
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Graduate Program in Cellular, Molecular, and Developmental Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Ekaterina E Heldwein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Graduate Program in Cellular, Molecular, and Developmental Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
37
|
Takechi K, Nagase H, Furuya T, Hattori K, Sato Y, Miyajima K, Higuchi T, Matsuda R, Takio S, Tsukaya H, Takano H. Two atypical ANGUSTIFOLIA without a plant-specific C-terminus regulate gametophore and sporophyte shapes in the moss Physcomitrium (Physcomitrella) patens. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1390-1399. [PMID: 33280196 DOI: 10.1111/tpj.15121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 11/06/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
ANGUSTIFOLIA (AN) is a plant-specific subfamily of the CtBP/BARS/AN family, characterized by a plant-specific C-terminal domain of approximately 200 amino acids. Previously, we revealed that double knockout (DKO) lines of Physcomitrium (Physcomitrella) patens ANGUSTIFOLIA genes (PpAN1-1 and PpAN1-2) show defects in gametophore height and the lengths of the seta and foot region of sporophytes, by reduced cell elongation. In addition to two canonical ANs, the genome of P. patens has two atypical ANs without a coding region for a plant-specific C-terminus (PpAN2-1 and PpAN2-2); these were investigated in this study. Similar to PpAN1s, both promoters of the PpAN2 genes were highly active in the stems of haploid gametophores and in the middle-to-basal region of young diploid sporophytes that develop into the seta and foot. Analyses of PpAN2-1/2-2 DKO and PpAN quadruple knockout (QKO) lines implied that these four AN genes have partially redundant functions to regulate cell elongation in their expression regions. Transgenic strains harboring P. patens α-tubulin fused to green fluorescent protein, which were generated from a QKO line, showed that the orientation of the microtubules in the gametophore tips in the PpAN QKO lines was unchanged from the wild-type and PpAN1-1/1-2 DKO plants. In addition to both PpAN2-1 and PpAN2-2, short Arabidopsis AN without the C-terminus of 200 amino acids could rescue the Arabidopsis thaliana an-1 phenotypes, implying AN activity is dependent on the N-terminal regions.
Collapse
Affiliation(s)
- Katsuaki Takechi
- Faculty of Advanced Science and Technology, Kumamoto University, Kurokami, Kumamoto, 860-8555, Japan
| | - Hiroaki Nagase
- Graduate School of Science and Technology, Kumamoto University, Kurokami, Kumamoto, 860-8555, Japan
| | - Tomoyuki Furuya
- Graduate School of Science, University of Tokyo, Tokyo, 113-0033, Japan
- Graduate School of Science, Kobe University, Kobe, 657-8501, Japan
| | - Koro Hattori
- Graduate School of Science, University of Tokyo, Tokyo, 113-0033, Japan
| | - Yoshikatsu Sato
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, 464-8601, Japan
| | - Kensuke Miyajima
- Graduate School of Science and Technology, Kumamoto University, Kurokami, Kumamoto, 860-8555, Japan
| | - Tomofumi Higuchi
- Graduate School of Science and Technology, Kumamoto University, Kurokami, Kumamoto, 860-8555, Japan
| | - Ryuya Matsuda
- Center for Water Cycle, Marine Environment and Disaster Management, Kumamoto University, Kurokami, Kumamoto, 860-8555, Japan
| | - Susumu Takio
- Faculty of Advanced Science and Technology, Kumamoto University, Kurokami, Kumamoto, 860-8555, Japan
- Center for Water Cycle, Marine Environment and Disaster Management, Kumamoto University, Kurokami, Kumamoto, 860-8555, Japan
| | - Hirokazu Tsukaya
- Graduate School of Science, University of Tokyo, Tokyo, 113-0033, Japan
| | - Hiroyoshi Takano
- Faculty of Advanced Science and Technology, Kumamoto University, Kurokami, Kumamoto, 860-8555, Japan
| |
Collapse
|
38
|
Portilla Y, Mellid S, Paradela A, Ramos-Fernández A, Daviu N, Sanz-Ortega L, Pérez-Yagüe S, Morales MP, Barber DF. Iron Oxide Nanoparticle Coatings Dictate Cell Outcomes Despite the Influence of Protein Coronas. ACS APPLIED MATERIALS & INTERFACES 2021; 13:7924-7944. [PMID: 33587585 DOI: 10.1021/acsami.0c20066] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A critical issue in nanomedicine is to understand the complex dynamics that dictate the interactions of nanoparticles (NPs) with their biological milieu. The most exposed part of a nanoparticle is its surface coating, which comes into contact with the biological medium and adsorbs proteins, forming what is known as a protein corona (PC). It is assumed that this PC mainly dictates the nanoparticle-cell interactions. As such, we set out to analyze how different coatings on iron oxide nanoparticles (MNPs) affect the composition of the PC that forms on top of them, and how these newly formed coronas influence the uptake of MNPs by macrophages and tumor cells, their subcellular location upon internalization, and their intracellular degradation. We found that different superficial charges of the coatings did not affect the PC composition, with an enrichment in proteins with affinity for divalent ions regardless of the type of coating. The iron oxide core of the MNP might become exposed to the biological medium, influencing the proteins that constitute the PCs. The presence of enzymes with hydrolase activity in the PC could explain the degradation of the coatings when they come into contact with the biological media. In terms of MNP internalization by cells, coatings mainly determine the endocytic pathways used, especially in terms of receptor-mediated endocytosis. However, the increase in hydrodynamic size provoked by the formation of the associated corona drives uptake mechanisms like macropinocytosis. Once inside the cells, the PC protected the NPs in their intracellular transit to lysosomes, where they were fully degraded. This understanding of how coatings and PCs influence different cellular processes will help design improved NPs for biomedical applications, taking into account the influence of the coating and corona on the biology of the NPs.
Collapse
Affiliation(s)
- Yadileiny Portilla
- Department of Immunology and Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Madrid 28049, Spain
| | - Sara Mellid
- Department of Immunology and Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Madrid 28049, Spain
| | - Alberto Paradela
- Proteomics Facility, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Madrid 28049, Spain
| | - Antonio Ramos-Fernández
- Proteomics Facility, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Madrid 28049, Spain
| | - Neus Daviu
- Department of Immunology and Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Madrid 28049, Spain
| | - Laura Sanz-Ortega
- Department of Immunology and Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Madrid 28049, Spain
| | - Sonia Pérez-Yagüe
- Department of Immunology and Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Madrid 28049, Spain
| | - María P Morales
- Department of Energy, Environment and Health, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Sor Juana Inés de la Cruz 3, Madrid 28049, Spain
| | - Domingo F Barber
- Department of Immunology and Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Madrid 28049, Spain
| |
Collapse
|
39
|
Song S, Zhang Y, Ding T, Ji N, Zhao H. The Dual Role of Macropinocytosis in Cancers: Promoting Growth and Inducing Methuosis to Participate in Anticancer Therapies as Targets. Front Oncol 2021; 10:570108. [PMID: 33542897 PMCID: PMC7851083 DOI: 10.3389/fonc.2020.570108] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 12/01/2020] [Indexed: 02/05/2023] Open
Abstract
Macropinocytosis is an important mechanism of internalizing extracellular materials and dissolved molecules in eukaryotic cells. Macropinocytosis has a dual effect on cancer cells. On the one hand, cells expressing RAS genes (such as K-RAS, H-RAS) under the stress of nutrient deficiency can spontaneously produce constitutive macropinocytosis to promote the growth of cancer cells by internalization of extracellular nutrients (like proteins), receptors, and extracellular vesicles(EVs). On the other hand, abnormal expression of RAS genes and drug treatment (such as MOMIPP) can induce a novel cell death associated with hyperactivated macropinocytosis: methuosis. Based on the dual effect, there is immense potential for designing anticancer therapies that target macropinocytosis in cancer cells. In view of the fact that there has been little review of the dual effect of macropinocytosis in cancer cells, herein, we systematically review the general process of macropinocytosis, its specific manifestation in cancer cells, and its application in cancer treatment, including anticancer drug delivery and destruction of macropinocytosis. This review aims to serve as a reference for studying macropinocytosis in cancers and designing macropinocytosis-targeting anticancer drugs in the future.
Collapse
Affiliation(s)
- Shaojuan Song
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tingting Ding
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ning Ji
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hang Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
40
|
Central nervous system delivery of molecules across the blood-brain barrier. Neurochem Int 2021; 144:104952. [PMID: 33400964 DOI: 10.1016/j.neuint.2020.104952] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/15/2020] [Accepted: 12/23/2020] [Indexed: 12/20/2022]
Abstract
Therapies targeting neurological conditions such as Alzheimer's or Parkinson's diseases are hampered by the presence of the blood-brain barrier (BBB). During the last decades, several approaches have been developed to overcome the BBB, such as the use of nanoparticles (NPs) based on biomaterials, or alternative methods to open the BBB. In this review, we briefly highlight these strategies and the most recent advances in this field. Limitations and advantages of each approach are discussed. Combination of several methods such as functionalized NPs targeting the receptor-mediated transcytosis system with the use of magnetic resonance imaging-guided focused ultrasound (FUS) might be a promising strategy to develop theranostic tools as well as to safely deliver therapeutic molecules, such as drugs, neurotrophic factors or antibodies within the brain parenchyma.
Collapse
|
41
|
Arlauckas S, Oh N, Li R, Weissleder R, Miller MA. Macrophage imaging and subset analysis using single-cell RNA sequencing. Nanotheranostics 2021; 5:36-56. [PMID: 33391974 PMCID: PMC7738942 DOI: 10.7150/ntno.50185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
Macrophages have been associated with drug response and resistance in diverse settings, thus raising the possibility of using macrophage imaging as a companion diagnostic to inform personalized patient treatment strategies. Nanoparticle-based contrast agents are especially promising because they efficiently deliver fluorescent, magnetic, and/or radionuclide labels by leveraging the intrinsic capacity of macrophages to accumulate nanomaterials in their role as professional phagocytes. Unfortunately, current clinical imaging modalities are limited in their ability to quantify broad molecular programs that may explain (a) which particular cell subsets a given imaging agent is actually labeling, and (b) what mechanistic role those cells play in promoting drug response or resistance. Highly multiplexed single-cell approaches including single-cell RNA sequencing (scRNAseq) have emerged as resources to help answer these questions. In this review, we query recently published scRNAseq datasets to support companion macrophage imaging, with particular focus on using dextran-based nanoparticles to predict the action of anti-cancer nanotherapies and monoclonal antibodies.
Collapse
Affiliation(s)
- Sean Arlauckas
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA
| | - Nuri Oh
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA
| | - Ran Li
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA.,Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA.,Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA.,Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Miles A Miller
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA.,Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
42
|
Jeger JL. Endosomes, lysosomes, and the role of endosomal and lysosomal biogenesis in cancer development. Mol Biol Rep 2020; 47:9801-9810. [PMID: 33185829 DOI: 10.1007/s11033-020-05993-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 12/19/2022]
Abstract
Endosomes and lysosomes are membrane-bound organelles crucial for the normal functioning of the eukaryotic cell. The primary function of endosomes relates to the transportation of extracellular material into the intracellular domain. Lysosomes, on the other hand, are primarily involved in the degradation of macromolecules. Endosomes and lysosomes interact through two distinct pathways: kiss-and-run and direct fusion. In addition to the internalization of particles, endosomes also play an important role in cell signaling and autophagy. Disruptions in either of these processes may contribute to cancer development. Lysosomal proteins, such as cathepsins, can play a role in both tumorigenesis and cancer cell apoptosis. Since endosomal and lysosomal biogenesis and signaling are important components of normal cellular growth and proliferation, proteins involved in these processes are attractive targets for cancer research and, potentially, therapeutics. This literature review provides an overview of the endocytic pathway, endolysosome formation, and the interplay between endosomal/lysosomal biogenesis and carcinogenesis.
Collapse
|
43
|
Mayberry CL, Maginnis MS. Taking the Scenic Route: Polyomaviruses Utilize Multiple Pathways to Reach the Same Destination. Viruses 2020; 12:v12101168. [PMID: 33076363 PMCID: PMC7602598 DOI: 10.3390/v12101168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 01/02/2023] Open
Abstract
Members of the Polyomaviridae family differ in their host range, pathogenesis, and disease severity. To date, some of the most studied polyomaviruses include human JC, BK, and Merkel cell polyomavirus and non-human subspecies murine and simian virus 40 (SV40) polyomavirus. Although dichotomies in host range and pathogenesis exist, overlapping features of the infectious cycle illuminate the similarities within this virus family. Of particular interest to human health, JC, BK, and Merkel cell polyomavirus have all been linked to critical, often fatal, illnesses, emphasizing the importance of understanding the underlying viral infections that result in the onset of these diseases. As there are significant overlaps in the capacity of polyomaviruses to cause disease in their respective hosts, recent advancements in characterizing the infectious life cycle of non-human murine and SV40 polyomaviruses are key to understanding diseases caused by their human counterparts. This review focuses on the molecular mechanisms by which different polyomaviruses hijack cellular processes to attach to host cells, internalize, traffic within the cytoplasm, and disassemble within the endoplasmic reticulum (ER), prior to delivery to the nucleus for viral replication. Unraveling the fundamental processes that facilitate polyomavirus infection provides deeper insight into the conserved mechanisms of the infectious process shared within this virus family, while also highlighting critical unique viral features.
Collapse
Affiliation(s)
- Colleen L. Mayberry
- Department of Molecular and Biomedical Sciences, The University of Maine, Orono, ME 04469, USA;
| | - Melissa S. Maginnis
- Department of Molecular and Biomedical Sciences, The University of Maine, Orono, ME 04469, USA;
- Graduate School in Biomedical Sciences and Engineering, The University of Maine, Orono, ME 04469, USA
- Correspondence:
| |
Collapse
|
44
|
Anwar M, Mehta D. Post-translational modifications of S1PR1 and endothelial barrier regulation. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158760. [PMID: 32585303 PMCID: PMC7409382 DOI: 10.1016/j.bbalip.2020.158760] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/09/2020] [Accepted: 06/15/2020] [Indexed: 12/16/2022]
Abstract
Sphingosine-1-phosphate receptor-1 (S1PR1), a G-protein coupled receptor that is expressed in endothelium and activated upon ligation by the bioactive lipid sphingosine-1-phosphate (S1P), is an important vascular-barrier protective mechanism at the level of adherens junctions (AJ). Loss of endothelial barrier function is a central factor in the pathogenesis of various inflammatory conditions characterized by protein-rich lung edema formation, such as acute respiratory distress syndrome (ARDS). While several S1PR1 agonists are available, the challenge of arresting the progression of protein-rich edema formation remains to be met. In this review, we discuss the role of S1PRs, especially S1PR1, in regulating endothelial barrier function. We review recent findings showing that replenishment of the pool of cell-surface S1PR1 may be crucial to the effectiveness of S1P in repairing the endothelial barrier. In this context, we discuss the S1P generating machinery and mechanisms that regulate S1PR1 at the cell surface and their impact on endothelial barrier function.
Collapse
Affiliation(s)
- Mumtaz Anwar
- Department of Pharmacology and Center for Lung and Vascular Biology, University of Illinois at Chicago Chicago, IL 60612, United States of America
| | - Dolly Mehta
- Department of Pharmacology and Center for Lung and Vascular Biology, University of Illinois at Chicago Chicago, IL 60612, United States of America.
| |
Collapse
|
45
|
Hydrophobicity drives receptor-mediated uptake of heat-processed proteins by THP-1 macrophages and dendritic cells, but not cytokine responses. PLoS One 2020; 15:e0236212. [PMID: 32797100 PMCID: PMC7428126 DOI: 10.1371/journal.pone.0236212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/02/2020] [Indexed: 11/24/2022] Open
Abstract
Although an impact of processing on immunogenicity of food proteins has clearly been demonstrated, the underlying mechanisms are still unclear. We applied 3 different processing methods: wet heating (60 °C) and low- or high-temperature (50 °C or 130 °C, respectively) dry-heating in absence or presence of reducing sugars, to β-lactoglobulin (BLG), lysozyme and thyroglobulin, which represent dietary proteins with different pI or molecular weight. Uptake of the soluble fraction of the samples was tested in two types of, genetically homogeneous, antigen-presenting cells (macrophages and dendritic cells derived from THP-1 monocytes). This revealed a strong correlation between the uptake of the different protein samples by macrophages and dendritic cells, and confirmed the key role of hydrophobicity, over aggregation, in determining the uptake. Several uptake routes were shown to contribute to the uptake of BLG by macrophages. However, cytokine responses following exposure of macrophages to BLG samples were not related to the levels of uptake. Together, our results demonstrate that heat-treatment-induced increased hydrophobicity is the prime driving factor in uptake, but not in cytokine production, by THP-1 macrophages.
Collapse
|
46
|
Haack F, Budde K, Uhrmacher AM. Exploring the mechanistic and temporal regulation of LRP6 endocytosis in canonical WNT signaling. J Cell Sci 2020; 133:jcs243675. [PMID: 32661084 DOI: 10.1242/jcs.243675] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 07/03/2020] [Indexed: 12/17/2022] Open
Abstract
Endocytosis plays a pivotal regulatory role in canonical WNT signaling. Internalization of the low-density lipoprotein receptor-related protein 6 (LRP6) receptor complex can either promote or attenuate canonical WNT signaling, depending on the employed internalization pathway. Detailed analysis of the mechanism of LRP6 internalization and its temporal regulation is crucial for understanding the different cellular responses to WNT stimulation under varying conditions and in various cell types. Here, we elucidate the mechanisms involved in the internalization of LRP6 and re-evaluate existing, partly contradicting, theories on the regulation of LRP6 receptor internalization. We utilize a computational approach that aims at finding a set of mechanisms that accounts for the temporal dynamics of LRP6 receptor internalization upon WNT stimulation. Starting with a simple simulation model, we successively extend and probe the model's behavior based on quantitative measurements. The final model confirms that LRP6 internalization is clathrin independent in vertebrates, is not restricted to microdomains, and that signalosome formation delays LRP6 internalization within the microdomains. These findings partly revise the current understanding of LRP6 internalization in vertebrates.
Collapse
Affiliation(s)
- Fiete Haack
- Institute for Visual and Analytic Computing, Modeling and Simulation Group, Albert-Einstein-Str. 22, 18051 Rostock, Germany
| | - Kai Budde
- Institute for Visual and Analytic Computing, Modeling and Simulation Group, Albert-Einstein-Str. 22, 18051 Rostock, Germany
| | - Adelinde M Uhrmacher
- Institute for Visual and Analytic Computing, Modeling and Simulation Group, Albert-Einstein-Str. 22, 18051 Rostock, Germany
| |
Collapse
|
47
|
Hasan M, Khatun A, Fukuta T, Kogure K. Noninvasive transdermal delivery of liposomes by weak electric current. Adv Drug Deliv Rev 2020; 154-155:227-235. [PMID: 32589904 DOI: 10.1016/j.addr.2020.06.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/27/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023]
Abstract
Noninvasive transdermal drug delivery (NTDD) offers an exciting new method of administration relative to conventional routes, but is associated with some challenges. Liposomes are capable of encapsulating transdermally-unfavorable drugs. However, the horny layer of skin is a significant barrier that limits efficient transdermal delivery of liposomes. Iontophoresis using weak electric current (WEC) represents a NTDD technology. WEC treatment of liposomes applied to the skin surface improves transdermal penetration of encapsulated drugs by cooperative effects. In this review, we provide an overview of the application of WEC/liposomes for transdermal delivery of macromolecules and low molecular weight drugs. We compare the transdermal delivery and therapeutic efficiency of the combined system with conventional routes of administration and their individual use. We discuss a novel perspective on the mechanism of WEC-mediated transdermal delivery of liposomes, which suggests that WEC activates the intracellular signaling pathway for transdermal permeation and induces unique endocytosis in skin cells.
Collapse
Affiliation(s)
- Mahadi Hasan
- Department of Pharmaceutical Health Chemistry, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8505, Japan; Tokyo Biochemical Research Foundation (TBRF) Fellow, Tokushima, Japan
| | - Anowara Khatun
- Department of Pharmaceutical Health Chemistry, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8505, Japan
| | - Tatsuya Fukuta
- Department of Pharmaceutical Health Chemistry, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8505, Japan
| | - Kentaro Kogure
- Department of Pharmaceutical Health Chemistry, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8505, Japan.
| |
Collapse
|
48
|
Glebov OO. Understanding SARS-CoV-2 endocytosis for COVID-19 drug repurposing. FEBS J 2020; 287:3664-3671. [PMID: 32428379 PMCID: PMC7276759 DOI: 10.1111/febs.15369] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023]
Abstract
The quest for the effective treatment against coronavirus disease 2019 pneumonia caused by the severe acute respiratory syndrome (SARS)‐coronavirus 2(CoV‐2) coronavirus is hampered by the lack of knowledge concerning the basic cell biology of the infection. Given that most viruses use endocytosis to enter the host cell, mechanistic investigation of SARS‐CoV‐2 infection needs to consider the diversity of endocytic pathways available for SARS‐CoV‐2 entry in the human lung epithelium. Taking advantage of the well‐established methodology of membrane trafficking studies, this research direction allows for the rapid characterisation of the key cell biological mechanism(s) responsible for SARS‐CoV‐2 infection. Furthermore, 11 clinically approved generic drugs are identified as potential candidates for repurposing as blockers of several potential routes for SARS‐CoV‐2 endocytosis. More broadly, the paradigm of targeting a fundamental aspect of human cell biology to protect against infection may be advantageous in the context of future pandemic outbreaks.
Collapse
Affiliation(s)
- Oleg O Glebov
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, Shandong, China.,Department of Old Age Psychiatry, The Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England, UK
| |
Collapse
|
49
|
Nawaz W, Xu S, Li Y, Huang B, Wu X, Wu Z. Nanotechnology and immunoengineering: How nanotechnology can boost CAR-T therapy. Acta Biomater 2020; 109:21-36. [PMID: 32294554 DOI: 10.1016/j.actbio.2020.04.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/29/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022]
Abstract
Chimeric antigen receptor (CAR) therapy has achieved remarkable clinical efficacy against hematological cancers and has been approved by FDA for treatment of B-cell tumors. However, the complex manufacturing process and limited success in solid tumors hamper its widespread applications, thus prompting the development of new strategies for overcoming the abovementioned hurdles. In the last decade, nanotechnology has provided sustainable strategies for improving cancer immunotherapy through vaccine development and delivery of immunomodulatory drugs. Nanotechnology can boost CAR-T therapy and may overcome the existing challenges by emerging as a carrier for CAR-T therapy or in combination with CAR-T, it may inhibit solid tumors more effectively than conventional approaches. The revealing of cellular mechanisms, barriers and potential strategies that could be used to manipulate and/or modify cells would enable unprecedented advances in nanotechnology for biologics delivery. This review outlines the journey and barriers of nanoparticles (NPs) across the cell. Subsequently, the approaches to tackle the barriers and strategies to modulate NPs as a carrier for CAR-T therapy are discussed. Finally, the role of NPs in CAR-T therapy and the potential challenges are summarized. This review aims to provide the readers with a detailed overview of NP-based CAR-T therapy research and distil this information into an accessible form conducive to design desired CAR-T therapy using NP approach. STATEMENT OF SIGNIFICANCE: Chimeric antigen receptor (CAR) T-cell therapy is the most vibrant field in immuno-oncology today, with enormous benefits to patients with B-cell malignancies. However, a rapid and straightforward procedure for CAR-T generation is an exigent need to broaden its therapeutic avenue. Nanotechnology has emerged as a novel alternative approach for CAR-T generation. To the best of our knowledge, this is the first in-depth review that briefly highlights the various aspects of nanotechnology in CAR-T therapy, including the strategies to brand NPs as an effective carrier for CAR cargo, its potential advantages, challenges, and future roadmap. It provides readers with a detailed overview of NP-based CAR-T therapy research, and researchers would be able to distill this information into an accessible form conducive to design the desired CAR therapy using the nanotechnology approach.
Collapse
|
50
|
Kumar A, Ahmad A, Vyawahare A, Khan R. Membrane Trafficking and Subcellular Drug Targeting Pathways. Front Pharmacol 2020; 11:629. [PMID: 32536862 PMCID: PMC7267071 DOI: 10.3389/fphar.2020.00629] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/21/2020] [Indexed: 12/29/2022] Open
Abstract
The movement of micro and macro molecules into and within a cell significantly governs several of their pharmacokinetic and pharmacodynamic parameters, thus regulating the cellular response to exogenous and endogenous stimuli. Trafficking of various pharmacological agents and other bioactive molecules throughout and within the cell is necessary for the fidelity of the cells but has been poorly investigated. Novel strategies against cancer and microbial infections need a deeper understanding of membrane as well as subcellular trafficking pathways and essentially regulate several aspects of the initiation and spread of anti-microbial and anti-cancer drug resistance. Furthermore, in order to avail the maximum possible bioavailability and therapeutic efficacy and to restrict the unwanted toxicity of pharmacological bioactives, these sometimes need to be functionalized with targeting ligands to regulate the subcellular trafficking and to enhance the localization. In the recent past the scenario drug targeting has primarily focused on targeting tissue components and cell vicinities, however, it is the membranous and subcellular trafficking system that directs the molecules to plausible locations. The effectiveness of the delivery platforms largely depends on their physicochemical nature, intracellular barriers, and biodistribution of the drugs, pharmacokinetics and pharmacodynamic paradigms. Most subcellular organelles possess some peculiar characteristics by which membranous and subcellular targeting can be manipulated, such as negative transmembrane potential in mitochondria, intraluminal delta pH in a lysosome, and many others. Many specialized methods, which positively promote the subcellular targeting and restrict the off-targeting of the bioactive molecules, exist. Recent advancements in designing the carrier molecules enable the handling of membrane trafficking to facilitate the delivery of active compounds to subcellular localizations. This review aims to cover membrane trafficking pathways which promote the delivery of the active molecule in to the subcellular locations, the associated pathways of the subcellular drug delivery system, and the role of the carrier system in drug delivery techniques.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Nano-Therapeutics, Institute of Nano Science and Technology, Mohali, India
| | - Anas Ahmad
- Department of Nano-Therapeutics, Institute of Nano Science and Technology, Mohali, India
| | - Akshay Vyawahare
- Department of Nano-Therapeutics, Institute of Nano Science and Technology, Mohali, India
| | - Rehan Khan
- Department of Nano-Therapeutics, Institute of Nano Science and Technology, Mohali, India
| |
Collapse
|