1
|
Nita A, Abraham SP, Elrefaay ER, Fafilek B, Cizkova E, Ursachi VC, Gudernova I, Koudelka A, Dudeja P, Gregor T, Feketova Z, Rico G, Svozilova K, Celiker C, Czyrek AA, Barta T, Trantirek L, Wiedlocha A, Krejci P, Bosakova M. FGFR2 residence in primary cilia is necessary for epithelial cell signaling. J Cell Biol 2025; 224:e202311030. [PMID: 40257378 PMCID: PMC12010920 DOI: 10.1083/jcb.202311030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/21/2024] [Accepted: 03/21/2025] [Indexed: 04/22/2025] Open
Abstract
Primary cilium projects from cells to provide a communication platform with neighboring cells and the surrounding environment. This is ensured by the selective entry of membrane receptors and signaling molecules, producing fine-tuned and effective responses to the extracellular cues. In this study, we focused on one family of signaling molecules, the fibroblast growth factor receptors (FGFRs), their residence within cilia, and its role in FGFR signaling. We show that FGFR1 and FGFR2, but not FGFR3 and FGFR4, localize to primary cilia of the developing mouse tissues and in vitro cells. For FGFR2, we demonstrate that the ciliary residence is necessary for its signaling and expression of target morphogenic genes. We also show that the pathogenic FGFR2 variants have minimal cilium presence, which can be rescued for the p.P253R variant associated with the Apert syndrome by using the RLY-4008 kinase inhibitor. Finally, we determine the molecular regulators of FGFR2 trafficking to cilia, including IFT144, BBS1, and the conserved T429V430 motif within FGFR2.
Collapse
Affiliation(s)
- Alexandru Nita
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Institute of Animal Physiology and Genetics of the CAS, Brno, Czech Republic
| | - Sara P. Abraham
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Institute of Animal Physiology and Genetics of the CAS, Brno, Czech Republic
| | - Eman R. Elrefaay
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Institute of Animal Physiology and Genetics of the CAS, Brno, Czech Republic
| | - Bohumil Fafilek
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Eliska Cizkova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Vlad Constantin Ursachi
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czech Republic
| | - Iva Gudernova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Institute of Animal Physiology and Genetics of the CAS, Brno, Czech Republic
| | - Adolf Koudelka
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Pooja Dudeja
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czech Republic
| | - Tomas Gregor
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Zuzana Feketova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czech Republic
| | - Gustavo Rico
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czech Republic
| | - Katerina Svozilova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Institute of Animal Physiology and Genetics of the CAS, Brno, Czech Republic
| | - Canan Celiker
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Aleksandra A. Czyrek
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czech Republic
| | - Tomas Barta
- Institute of Animal Physiology and Genetics of the CAS, Brno, Czech Republic
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lukas Trantirek
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Antoni Wiedlocha
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Cell Reprograming, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Institute of Animal Physiology and Genetics of the CAS, Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czech Republic
| | - Michaela Bosakova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Institute of Animal Physiology and Genetics of the CAS, Brno, Czech Republic
| |
Collapse
|
2
|
Hirai M, Inoue N, Nagai T, Nishita M. Different temporal dynamics of primary cilia formation and elongation during adipocyte differentiation in umbilical cord- and bone marrow-derived mesenchymal stem cells. Biochem Biophys Res Commun 2025; 768:151918. [PMID: 40327906 DOI: 10.1016/j.bbrc.2025.151918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2025] [Accepted: 04/28/2025] [Indexed: 05/08/2025]
Abstract
Umbilical cord-derived mesenchymal stem cells (UC-MSCs) are considered a promising alternative to bone marrow-derived MSCs (BM-MSCs) due to their high proliferative capacity and non-invasive accessibility. While UC-MSCs exhibit osteogenic, chondrogenic, and myogenic differentiation potential comparable to BM-MSCs, their adipogenic differentiation is significantly delayed. To investigate the underlying mechanisms, we focused on primary cilia, sensory organelles that regulate key adipogenic signaling pathways, including the insulin-Akt axis. Under serum-starved, growth-arrest conditions, both UC-MSCs and BM-MSCs formed primary cilia at similar frequencies and lengths; however, under serum-fed, proliferative conditions, UC-MSCs showed a significantly lower frequency of ciliation. During adipogenesis, BM-MSCs exhibited early ciliogenesis and stable cilium length, whereas UC-MSCs displayed delayed ciliogenesis and developed significantly longer cilia after repeated induction cycles. Despite comparable ciliation frequency and longer cilia in UC-MSCs at later stages, insulin-induced Akt activation was reduced compared to BM-MSCs, suggesting that primary cilia in UC-MSCs may be less efficient in sensing insulin. These alterations in insulin signaling may contribute to the reduced adipogenic capacity observed in UC-MSCs.
Collapse
Affiliation(s)
- Masako Hirai
- Department of Biochemistry, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Naokazu Inoue
- Department of Cell Science, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, 960-1295, Fukushima, Japan
| | - Tomoaki Nagai
- Department of Biochemistry, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan.
| | - Michiru Nishita
- Department of Biochemistry, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan.
| |
Collapse
|
3
|
Čajánek L, Smite S, Ivashchenko O, Huranova M. Cilia at the crossroad: convergence of regulatory mechanisms to govern cilia dynamics during cell signaling and the cell cycle. Cell Biosci 2025; 15:81. [PMID: 40483459 PMCID: PMC12144771 DOI: 10.1186/s13578-025-01403-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 04/28/2025] [Indexed: 06/11/2025] Open
Abstract
Cilia are versatile, microtubule-based organelles that facilitate cellular signaling, motility, and environmental sensing in eukaryotic cells. These dynamic structures act as hubs for key developmental signaling pathways, while their assembly and disassembly are intricately regulated along cell cycle transitions. Recent findings show that factors regulating ciliogenesis and cilia dynamics often integrate their roles across other cellular processes, including cell cycle regulation, cytoskeletal organization, and intracellular trafficking, ensuring multilevel crosstalk of mechanisms controlling organogenesis. Disruptions in these shared regulators lead to broad defects associated with both ciliopathies and cancer. This review explores the crosstalk of regulatory mechanisms governing cilia assembly, disassembly, and maintenance during ciliary signaling and the cell cycle, along with the broader implications for development, tissue homeostasis, and disease.
Collapse
Affiliation(s)
- Lukáš Čajánek
- Laboratory of Cilia and Centrosome Biology, Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 3, Brno, 62500, Czech Republic.
- Section of Animal Physiology and Immunology, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic.
| | - Sindija Smite
- Laboratory of Cilia Genetics and Pathology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, Prague, 142 00, Czech Republic
| | - Olha Ivashchenko
- Laboratory of Cilia Genetics and Pathology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, Prague, 142 00, Czech Republic
| | - Martina Huranova
- Laboratory of Cilia Genetics and Pathology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, Prague, 142 00, Czech Republic.
| |
Collapse
|
4
|
Melnik BC, Weiskirchen R, John SM, Stremmel W, Leitzmann C, Weiskirchen S, Schmitz G. White Adipocyte Stem Cell Expansion Through Infant Formula Feeding: New Insights into Epigenetic Programming Explaining the Early Protein Hypothesis of Obesity. Int J Mol Sci 2025; 26:4493. [PMID: 40429638 PMCID: PMC12110815 DOI: 10.3390/ijms26104493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 05/03/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
Prolonged breastfeeding (BF), as opposed to artificial infant formula feeding (FF), has been shown to prevent the development of obesity later in life. The aim of our narrative review is to investigate the missing molecular link between postnatal protein overfeeding-often referred to as the "early protein hypothesis"-and the subsequent transcriptional and epigenetic changes that accelerate the expansion of adipocyte stem cells (ASCs) in the adipose vascular niche during postnatal white adipose tissue (WAT) development. To achieve this, we conducted a search on the Web of Science, Google Scholar, and PubMed databases from 2000 to 2025 and reviewed 750 papers. Our findings revealed that the overactivation of mechanistic target of rapamycin complex 1 (mTORC1) and S6 kinase 1 (S6K1), which inhibits wingless (Wnt) signaling due to protein overfeeding, serves as the primary pathway promoting ASC commitment and increasing preadipocyte numbers. Moreover, excessive protein intake, combined with the upregulation of the fat mass and obesity-associated gene (FTO) and a deficiency of breast milk-derived microRNAs from lactation, disrupts the proper regulation of FTO and Wnt pathway components. This disruption enhances ASC expansion in WAT while inhibiting brown adipose tissue development. While BF has been shown to have protective effects against obesity, the postnatal transcriptional and epigenetic changes induced by excessive protein intake from FF may predispose infants to early and excessive ASC commitment in WAT, thereby increasing the risk of obesity later in life.
Collapse
Affiliation(s)
- Bodo C. Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany;
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany;
| | - Swen Malte John
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany;
- Institute for Interdisciplinary Dermatological Prevention and Rehabilitation (iDerm), University of Osnabrück, D-49076 Osnabrück, Germany
| | | | - Claus Leitzmann
- Institut für Ernährungswissenschaft, Universität Gießen, D-35392 Gießen, Germany;
| | - Sabine Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany;
| | - Gerd Schmitz
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, D-93053 Regensburg, Germany;
| |
Collapse
|
5
|
Shahdadnejad K, Yazdanparast R. The influence of IMPDH activity on ciliogenesis and adipogenesis of 3T3-L1 cells while undergoing differentiation. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159603. [PMID: 39961477 DOI: 10.1016/j.bbalip.2025.159603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 01/18/2025] [Accepted: 02/13/2025] [Indexed: 02/23/2025]
Abstract
The functional roles of primary cilia and inosine 5'-monophosphate dehydrogenase (IMPDH) are among the hot topics in today's adipogenesis research. Considering the reported interaction between IMPDH and ADP Ribosylation Factor-Like GTPase 13B (ARL13B), as a key ciliary protein, our study focused on this interaction during the ciliogenesis process while 3T3-L1 pre-adipocytes undergoing differentiation to lipid-accumulating adipocytes. Our results indicated that, in the early days of differentiation, when cilium length is long, IMPDH expression is high and its interaction with ARL13B is low. Conversely, in the last days of differentiation, the cilia length and IMPDH expression reduced while, the IMPDH/ARL13B interaction remains high relative to the initial days. In either of these two situations, IMPDH was not documented within the cilia. The extent of the interaction between IMPDH and ARL13B might account for the lack of co-localization of IMPDH and ARL13B within cilia during the process of differentiation. Although, inhibiting IMPDH in the early days of differentiation did not have a significant effect on cilia length, it did reduce adipogenesis by limiting mitotic clonal expansion through arresting cells in the G1/G0 phase. These findings provide the ground for further research to investigate the relationship between the IMPDH/ARL13B interaction and cilia length, which decline in obesity.
Collapse
Affiliation(s)
| | - Razieh Yazdanparast
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
6
|
Li J, Zhao X, Wang Y, Wang J. Non-Coding RNAs in Regulating Fat Deposition in Farm Animals. Animals (Basel) 2025; 15:797. [PMID: 40150326 PMCID: PMC11939817 DOI: 10.3390/ani15060797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/01/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
Fat deposition represents a crucial feature in the expenditure of physical energy and affects the meat quality of farm animals. It is regulated by multiple genes and regulators. Of them, non-coding RNAs (ncRNAs) play a critical role in modulating the fat deposition process. As well as being an important protein source, farm animals can be used as medical models, so many researchers worldwide have explored their mechanism of fat deposition. This article summarizes the transcription factors, regulatory genes, and signaling pathways involved in the molecular regulation process of fat deposition; outlines the progress of researching the roles of microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs) in fat deposition in common farm animals including pigs, cattle, sheep, ducks, and chickens; and identifies scientific problems in the field that must be further investigated. It has been demonstrated that ncRNAs play a critical role in regulating the fat deposition process and have great potential in improving meat quality traits.
Collapse
Affiliation(s)
- Jingxuan Li
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (J.L.); (X.Z.); (Y.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan 250100, China
| | - Xueyan Zhao
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (J.L.); (X.Z.); (Y.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan 250100, China
| | - Yanping Wang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (J.L.); (X.Z.); (Y.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan 250100, China
| | - Jiying Wang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (J.L.); (X.Z.); (Y.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan 250100, China
| |
Collapse
|
7
|
Guggeri L, Sosa-Redaelli I, Cárdenas-Rodríguez M, Alonso M, González G, Naya H, Prieto-Echagüe V, Lepanto P, Badano JL. Follistatin like-1 ( Fstl1) regulates adipose tissue development in zebrafish. Adipocyte 2024; 13:2435862. [PMID: 39644214 PMCID: PMC11633180 DOI: 10.1080/21623945.2024.2435862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/09/2024] Open
Abstract
Obesity is a highly prevalent disorder with complex aetiology. Therefore, studying its associated cellular and molecular pathways may be aided by analysing genetic tractable diseases. In this context, the study of ciliopathies such as Bardet-Biedl syndrome has highlighted the relevance of primary cilia in obesity, both in the central nervous system and peripheral tissues. Based on our previous in vitro results supporting the role of a novel Bbs4-cilia-Fstl1 axis in adipocyte differentiation, we evaluated the in vivo relevance of the zebrafish orthologous genes fstl1a and fstl1b in primary cilia and adipose tissue development. Using a combination of knockdowns and a new fstl1a mutant line, we show that fstl1a promotes primary cilia formation in early embryos and participates in adipose tissue formation in larvae. We also show that fstl1b partially compensates for the loss of fstl1a. Moreover, in high fat diet, fstl1a depletion affects the expression of differentiation and mature adipocyte markers. These results agree with our previous in vitro data and provide further support for the role of FSTL1 as a regulator of adipose tissue formation. Dissecting the exact biological role of proteins such as FSTL1 will likely contribute to understand obesity onset and presentation.
Collapse
Affiliation(s)
- Lucía Guggeri
- Human Molecular Genetics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Ileana Sosa-Redaelli
- Human Molecular Genetics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | | | - Martina Alonso
- Human Molecular Genetics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Gisell González
- Zebrafish Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Hugo Naya
- Bioinformatics Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| | | | - Paola Lepanto
- Human Molecular Genetics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Jose L. Badano
- Human Molecular Genetics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| |
Collapse
|
8
|
Ott CM, Constable S, Nguyen TM, White K, Lee WCA, Lippincott-Schwartz J, Mukhopadhyay S. Permanent deconstruction of intracellular primary cilia in differentiating granule cell neurons. J Cell Biol 2024; 223:e202404038. [PMID: 39137043 PMCID: PMC11320830 DOI: 10.1083/jcb.202404038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/03/2024] [Accepted: 06/26/2024] [Indexed: 08/15/2024] Open
Abstract
Primary cilia on granule cell neuron progenitors in the developing cerebellum detect sonic hedgehog to facilitate proliferation. Following differentiation, cerebellar granule cells become the most abundant neuronal cell type in the brain. While granule cell cilia are essential during early developmental stages, they become infrequent upon maturation. Here, we provide nanoscopic resolution of cilia in situ using large-scale electron microscopy volumes and immunostaining of mouse cerebella. In many granule cells, we found intracellular cilia, concealed from the external environment. Cilia were disassembled in differentiating granule cell neurons-in a process we call cilia deconstruction-distinct from premitotic cilia resorption in proliferating progenitors. In differentiating granule cells, cilia deconstruction involved unique disassembly intermediates, and, as maturation progressed, mother centriolar docking at the plasma membrane. Unlike ciliated neurons in other brain regions, our results show the deconstruction of concealed cilia in differentiating granule cells, which might prevent mitogenic hedgehog responsiveness. Ciliary deconstruction could be paradigmatic of cilia removal during differentiation in other tissues.
Collapse
Affiliation(s)
- Carolyn M Ott
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Sandii Constable
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tri M Nguyen
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Kevin White
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wei-Chung Allen Lee
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Saikat Mukhopadhyay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
9
|
Perge K, Capel E, Senée V, Julier C, Vigouroux C, Nicolino M. Ciliopathies are responsible for short stature and insulin resistance: A systematic review of this clinical association regarding SOFT syndrome. Rev Endocr Metab Disord 2024; 25:827-838. [PMID: 39017987 PMCID: PMC11470920 DOI: 10.1007/s11154-024-09894-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/05/2024] [Indexed: 07/18/2024]
Abstract
SOFT syndrome (Short stature-Onychodysplasia-Facial dysmorphism-hypoTrichosis) is a rare primordial dwarfism syndrome caused by biallelic variants in POC1A encoding a centriolar protein. To refine the phenotypic spectrum of SOFT syndrome, recently shown to include metabolic features, we conducted a systematic review of all published cases (19 studies, including 42 patients). The SOFT tetrad affected only 24 patients (57%), while all cases presented with short stature from birth (median height: -5.5SDS([-8.5]-[-2.8])/adult height: 132.5 cm(103.5-148)), which was most often disproportionate (90.5%), with relative macrocephaly. Bone involvement resulted in short hands and feet (100%), brachydactyly (92.5%), metaphyseal (92%) or epiphyseal (84%) anomalies, and/or sacrum/pelvis hypoplasia (58%). Serum IGF-I was increased (median IGF-I level: + 2 SDS ([-0.5]-[+ 3])). Recombinant human growth hormone (rhGH) therapy was stopped for absence/poor growth response (7/9 patients, 78%) and/or hyperglycemia (4/9 patients, 45%). Among 11 patients evaluated, 10 (91%) presented with central distribution of fat (73%), clinical (64%) and/or biological insulin resistance (IR) (100%, median HOMA-IR: 18), dyslipidemia (80%), and hepatic steatosis (100%). Glucose tolerance abnormalities affected 58% of patients aged over 10 years. Patients harbored biallelic missense (52.4%) or truncating (45.2%) POC1A variants. Biallelic null variants, affecting 36% of patients, were less frequently associated with the SOFT tetrad (33% vs 70% respectively, p = 0.027) as compared to other variants, without difference in the prevalence of metabolic abnormalities. POC1A should be sequenced in children with short stature, altered glucose/insulin homeostasis and/or centripetal fat distribution. In patients with SOFT syndrome, rhGH treatment is not indicated, and IR-related complications should be regularly screened and monitored.PROSPERO registration: CRD42023460876.
Collapse
Affiliation(s)
- Kevin Perge
- Pediatric Endocrinology, Diabetology and Metabolism Department, Femme Mère Enfant Hospital, Hospices Civils de Lyon, Bron, France.
- Claude Bernard University, Lyon 1, Lyon, France.
- Paris University, Institut Cochin, INSERM U1016, CNRS UMR-8104, Paris, France.
| | - Emilie Capel
- Sorbonne University, Inserm U938, Saint-Antoine Research Centre, Institute of Cardiometabolism and Nutrition, Paris, France
| | - Valérie Senée
- Paris University, Institut Cochin, INSERM U1016, CNRS UMR-8104, Paris, France
| | - Cécile Julier
- Paris University, Institut Cochin, INSERM U1016, CNRS UMR-8104, Paris, France
| | - Corinne Vigouroux
- Sorbonne University, Inserm U938, Saint-Antoine Research Centre, Institute of Cardiometabolism and Nutrition, Paris, France
- Department of Endocrinology, Diabetology and Reproductive Endocrinology, Assistance Publique-Hôpitaux de Paris, Saint-Antoine University Hospital, National Reference Center for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Paris, France
- Department of Molecular Biology and Genetics, Assistance Publique-Hôpitaux de Paris, Saint-Antoine University Hospital, Paris, France
| | - Marc Nicolino
- Pediatric Endocrinology, Diabetology and Metabolism Department, Femme Mère Enfant Hospital, Hospices Civils de Lyon, Bron, France
- Claude Bernard University, Lyon 1, Lyon, France
| |
Collapse
|
10
|
Putnová I, Putnová BM, Hurník P, Štembírek J, Buchtová M, Kolísková P. Primary cilia-associated signalling in squamous cell carcinoma of head and neck region. Front Oncol 2024; 14:1413255. [PMID: 39234399 PMCID: PMC11372790 DOI: 10.3389/fonc.2024.1413255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/29/2024] [Indexed: 09/06/2024] Open
Abstract
Squamous cell carcinoma (SCC) of the head and neck originates from the mucosal lining of the upper aerodigestive tract, including the lip, tongue, nasopharynx, oropharynx, larynx and hypopharynx. In this review, we summarise what is currently known about the potential function of primary cilia in the pathogenesis of this disease. As primary cilia represent a key cellular structure for signal transduction and are related to cell proliferation, an understanding of their role in carcinogenesis is necessary for the design of new treatment approaches. Here, we introduce cilia-related signalling in head and neck squamous cell carcinoma (HNSCC) and its possible association with HNSCC tumorigenesis. From this point of view, PDGF, EGF, Wnt and Hh signalling are discussed as all these pathways were found to be dysregulated in HNSCC. Moreover, we review the clinical potential of small molecules affecting primary cilia signalling to target squamous cell carcinoma of the head and neck area.
Collapse
Affiliation(s)
- Iveta Putnová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Anatomy, Histology and Embryology, University of Veterinary Sciences Brno, Brno, Czechia
| | - Barbora Moldovan Putnová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Pathological Morphology and Parasitology, University of Veterinary Sciences Brno, Brno, Czechia
| | - Pavel Hurník
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Institute of Molecular and Clinical Pathology and Medical Genetics, University Hospital Ostrava, Ostrava, Czechia
- Institute of Molecular and Clinical Pathology and Medical Genetics, Faculty of Medicine, University of Ostrava, Ostrava, Czechia
| | - Jan Štembírek
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Maxillofacial Surgery, University Hospital Ostrava, Ostrava, Czechia
| | - Marcela Buchtová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Petra Kolísková
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| |
Collapse
|
11
|
Byun KA, Kim HM, Oh S, Batsukh S, Lee S, Oh M, Lee J, Lee R, Kim JW, Oh SM, Kim J, Kim G, Park HJ, Hong H, Lee J, An SH, Oh SS, Jung YS, Son KH, Byun K. High-Intensity Focused Ultrasound Increases Facial Adipogenesis in a Swine Model via Modulation of Adipose-Derived Stem Cell Cilia. Int J Mol Sci 2024; 25:7648. [PMID: 39062891 PMCID: PMC11277104 DOI: 10.3390/ijms25147648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Decreased medial cheek fat volume during aging leads to loss of a youthful facial shape. Increasing facial volume by methods such as adipose-derived stem cell (ASC) injection can produce facial rejuvenation. High-intensity focused ultrasound (HIFU) can increase adipogenesis in subcutaneous fat by modulating cilia on ASCs, which is accompanied by increased HSP70 and decreased NF-κB expression. Thus, we evaluated the effect of HIFU on increasing facial adipogenesis in swine (n = 2) via modulation of ASC cilia. Expression of CD166, an ASC marker, differed by subcutaneous adipose tissue location. CD166 expression in the zygomatic arch (ZA) was significantly higher than that in the subcutaneous adipose tissue in the mandible or lateral temporal areas. HIFU was applied only on the right side of the face, which was compared with the left side, where HIFU was not applied, as a control. HIFU produced a significant increase in HSP70 expression, decreased expression of NF-κB and a cilia disassembly factor (AURKA), and increased expression of a cilia increasing factor (ARL13B) and PPARG and CEBPA, which are the main regulators of adipogenesis. All of these changes were most prominent at the ZA. Facial adipose tissue thickness was also increased by HIFU. Adipose tissue volume, evaluated by magnetic resonance imaging, was increased by HIFU, most prominently in the ZA. In conclusion, HIFU increased ASC marker expression, accompanied by increased HSP70 and decreased NF-κB expression. Additionally, changes in cilia disassembly and length and expression of adipogenesis were observed. These results suggest that HIFU could be used to increase facial volume by modulating adipogenesis.
Collapse
Affiliation(s)
- Kyung-A Byun
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
- LIBON Inc., Incheon 22006, Republic of Korea
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Hyoung Moon Kim
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
- Maylin Clinic, Goyang 10391, Republic of Korea
| | - Seyeon Oh
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Sosorburam Batsukh
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Sangsu Lee
- Mirabel Clinic, Seoul 04596, Republic of Korea
| | - Myungjune Oh
- GangnamON Clinic, Seoul 06129, Republic of Korea
| | | | - Ran Lee
- Ezen Clinic, Cheonan 31090, Republic of Korea
| | - Jae Woo Kim
- Lienjang Clinic, Seoul 04536, Republic of Korea
| | - Seung Min Oh
- GangnamON Clinic, Seoul 06129, Republic of Korea
| | - Jisun Kim
- MH Clinic, Seoul 06010, Republic of Korea
| | - Geebum Kim
- Misogain Dermatology Clinic, Gimpo 10108, Republic of Korea
| | - Hyun Jun Park
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
- Maylin Clinic the Cheongdam, Seoul 06091, Republic of Korea
| | - Hanbit Hong
- Lux Well Clinic, Cheongju 28424, Republic of Korea
| | - Jehyuk Lee
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
- Doctorbom Clinic, Seoul 06614, Republic of Korea
| | - Sang-Hyun An
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| | - Sung Suk Oh
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| | - Yeon-Seop Jung
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| | - Kuk Hui Son
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon 21565, Republic of Korea
| | - Kyunghee Byun
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health & Sciences and Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
12
|
Zhong BH, Dong M. The implication of ciliary signaling pathways for epithelial-mesenchymal transition. Mol Cell Biochem 2024; 479:1535-1543. [PMID: 37490178 PMCID: PMC11224103 DOI: 10.1007/s11010-023-04817-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/15/2023] [Indexed: 07/26/2023]
Abstract
Epithelial-to-mesenchymal transition (EMT), which plays an essential role in development, tissue repair and fibrosis, and cancer progression, is a reversible cellular program that converts epithelial cells to mesenchymal cell states characterized by motility-invasive properties. The mostly signaling pathways that initiated and controlled the EMT program are regulated by a solitary, non-motile organelle named primary cilium. Acting as a signaling nexus, primary cilium dynamically concentrates signaling molecules to respond to extracellular cues. Recent research has provided direct evidence of connection between EMT and primary ciliogenesis in multiple contexts, but the mechanistic understanding of this relationship is complicated and still undergoing. In this review, we describe the current knowledge about the ciliary signaling pathways involved in EMT and list the direct evidence that shows the link between them, trying to figure out the intricate relationship between EMT and primary ciliogenesis, which may aid the future development of primary cilium as a novel therapeutic approach targeted to EMT.
Collapse
Affiliation(s)
- Bang-Hua Zhong
- Department of Gastrointestinal Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ming Dong
- Department of Gastrointestinal Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
13
|
Idevall-Hagren O, Incedal Nilsson C, Sanchez G. Keeping pace: the primary cilium as the conducting baton of the islet. Diabetologia 2024; 67:773-782. [PMID: 38353726 PMCID: PMC10955035 DOI: 10.1007/s00125-024-06096-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/03/2024] [Indexed: 03/21/2024]
Abstract
Primary cilia are rod-like sensory organelles that protrude from the surface of most mammalian cells, including the cells of the islet, and mounting evidence supports important roles of these structures in the regulation of beta cell function and insulin secretion. The sensory abilities of the cilium arise from local receptor activation that is coupled to intrinsic signal transduction, and ciliary signals can propagate into the cell and influence cell function. Here, we review recent advances and studies that provide insights into intra-islet cues that trigger primary cilia signalling; how second messenger signals are generated and propagated within cilia; and how ciliary signalling affects beta cell function. We also discuss the potential involvement of primary cilia and ciliary signalling in the development and progression of type 2 diabetes, identify gaps in our current understanding of islet cell cilia function and provide suggestions on how to further our understanding of this intriguing structure.
Collapse
Affiliation(s)
| | | | - Gonzalo Sanchez
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
14
|
Perge K, Capel E, Villanueva C, Gautheron J, Diallo S, Auclair M, Rondeau S, Morichon R, Brioude F, Jéru I, Rossi M, Nicolino M, Vigouroux C. Ciliopathy due to POC1A deficiency: clinical and metabolic features, and cellular modeling. Eur J Endocrinol 2024; 190:151-164. [PMID: 38245004 DOI: 10.1093/ejendo/lvae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/08/2024] [Accepted: 01/15/2024] [Indexed: 01/22/2024]
Abstract
OBJECTIVE SOFT syndrome (MIM#614813), denoting Short stature, Onychodysplasia, Facial dysmorphism, and hypoTrichosis, is a rare primordial dwarfism syndrome caused by biallelic variants in POC1A, encoding a centriolar protein. SOFT syndrome, characterized by severe growth failure of prenatal onset and dysmorphic features, was recently associated with insulin resistance. This study aims to further explore its endocrinological features and pathophysiological mechanisms. DESIGN/METHODS We present clinical, biochemical, and genetic features of 2 unrelated patients carrying biallelic pathogenic POC1A variants. Cellular models of the disease were generated using patients' fibroblasts and POC1A-deleted human adipose stem cells. RESULTS Both patients present with clinical features of SOFT syndrome, along with hyperinsulinemia, diabetes or glucose intolerance, hypertriglyceridemia, liver steatosis, and central fat distribution. They also display resistance to the effects of IGF-1. Cellular studies show that the lack of POC1A protein expression impairs ciliogenesis and adipocyte differentiation, induces cellular senescence, and leads to resistance to insulin and IGF-1. An altered subcellular localization of insulin receptors and, to a lesser extent, IGF1 receptors could also contribute to resistance to insulin and IGF1. CONCLUSIONS Severe growth retardation, IGF-1 resistance, and centripetal fat repartition associated with insulin resistance-related metabolic abnormalities should be considered as typical features of SOFT syndrome caused by biallelic POC1A null variants. Adipocyte dysfunction and cellular senescence likely contribute to the metabolic consequences of POC1A deficiency. SOFT syndrome should be included within the group of monogenic ciliopathies with metabolic and adipose tissue involvement, which already encompasses Bardet-Biedl and Alström syndromes.
Collapse
Affiliation(s)
- Kevin Perge
- Pediatric Endocrinology, Diabetology and Metabolism Department, Femme Mère Enfant Hospital, Hospices Civils de Lyon, Bron F69500, France
- Claude Bernard University, Lyon 1, Lyon F69100, France
| | - Emilie Capel
- Sorbonne University, Inserm U938, Saint-Antoine Research Centre, and Institute of Cardiometabolism and Nutrition, F75012 Paris, France
| | - Carine Villanueva
- Pediatric Endocrinology, Diabetology and Metabolism Department, Femme Mère Enfant Hospital, Hospices Civils de Lyon, Bron F69500, France
| | - Jérémie Gautheron
- Sorbonne University, Inserm U938, Saint-Antoine Research Centre, and Institute of Cardiometabolism and Nutrition, F75012 Paris, France
| | - Safiatou Diallo
- Sorbonne University, Inserm U938, Saint-Antoine Research Centre, and Institute of Cardiometabolism and Nutrition, F75012 Paris, France
| | - Martine Auclair
- Sorbonne University, Inserm U938, Saint-Antoine Research Centre, and Institute of Cardiometabolism and Nutrition, F75012 Paris, France
| | - Sophie Rondeau
- Department of Molecular Biology, Assistance Publique-Hôpitaux de Paris, Necker Enfants Malades Hospital, Paris F75015, France
| | - Romain Morichon
- Sorbonne University, Inserm U938, Saint-Antoine Research Centre, and Institute of Cardiometabolism and Nutrition, F75012 Paris, France
- Cytometry and Imagery platform Saint-Antoine (CISA), Inserm UMS30 Lumic, Paris F75012, France
| | - Frédéric Brioude
- Sorbonne University, Inserm U938, Saint-Antoine Research Centre, and Institute of Cardiometabolism and Nutrition, F75012 Paris, France
- Department of Molecular Biology and Genetics, Assistance Publique-Hôpitaux de Paris, Armand Trousseau University Hospital, Paris F75012, France
| | - Isabelle Jéru
- Sorbonne University, Inserm U938, Saint-Antoine Research Centre, and Institute of Cardiometabolism and Nutrition, F75012 Paris, France
- Department of Molecular Biology and Genetics, Assistance Publique-Hôpitaux de Paris, Saint-Antoine University Hospital, Paris F75012, France
| | - Massimiliamo Rossi
- Genetics Department, Referral Center for Skeletal Dysplasias, Femme Mère Enfant Hospital, Hospices Civils de Lyon, Lyon F69500, France
- UMR5292, Lyon Neuroscience Research Center, INSERM U1028, CNRS, GENDEV Team, Bron F69500, France
| | - Marc Nicolino
- Pediatric Endocrinology, Diabetology and Metabolism Department, Femme Mère Enfant Hospital, Hospices Civils de Lyon, Bron F69500, France
- Claude Bernard University, Lyon 1, Lyon F69100, France
| | - Corinne Vigouroux
- Sorbonne University, Inserm U938, Saint-Antoine Research Centre, and Institute of Cardiometabolism and Nutrition, F75012 Paris, France
- Department of Molecular Biology and Genetics, Assistance Publique-Hôpitaux de Paris, Saint-Antoine University Hospital, Paris F75012, France
- Department of Endocrinology, Diabetology and Reproductive Endocrinology, Assistance Publique-Hôpitaux de Paris, Saint-Antoine University Hospital, National Reference Center for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Paris F75012, France
| |
Collapse
|
15
|
Ott CM, Constable S, Nguyen TM, White K, Lee WCA, Lippincott-Schwartz J, Mukhopadhyay S. Permanent deconstruction of intracellular primary cilia in differentiating granule cell neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.07.565988. [PMID: 38106104 PMCID: PMC10723395 DOI: 10.1101/2023.12.07.565988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Primary cilia on granule cell neuron progenitors in the developing cerebellum detect sonic hedgehog to facilitate proliferation. Following differentiation, cerebellar granule cells become the most abundant neuronal cell type in the brain. While essential during early developmental stages, the fate of granule cell cilia is unknown. Here, we provide nanoscopic resolution of ciliary dynamics in situ by studying developmental changes in granule cell cilia using large-scale electron microscopy volumes and immunostaining of mouse cerebella. We found that many granule cell primary cilia were intracellular and concealed from the external environment. Cilia were disassembed in differentiating granule cell neurons in a process we call cilia deconstruction that was distinct from pre-mitotic cilia resorption in proliferating progenitors. In differentiating granule cells, ciliary loss involved unique disassembly intermediates, and, as maturation progressed, mother centriolar docking at the plasma membrane. Cilia did not reform from the docked centrioles, rather, in adult mice granule cell neurons remained unciliated. Many neurons in other brain regions require cilia to regulate function and connectivity. In contrast, our results show that granule cell progenitors had concealed cilia that underwent deconstruction potentially to prevent mitogenic hedgehog responsiveness. The ciliary deconstruction mechanism we describe could be paradigmatic of cilia removal during differentiation in other tissues.
Collapse
Affiliation(s)
- Carolyn M. Ott
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Sandii Constable
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tri M. Nguyen
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Current affiliation, Zetta AI LLC, USA
| | - Kevin White
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wei-Chung Allen Lee
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Saikat Mukhopadhyay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
16
|
Gopalakrishnan J, Feistel K, Friedrich BM, Grapin‐Botton A, Jurisch‐Yaksi N, Mass E, Mick DU, Müller R, May‐Simera H, Schermer B, Schmidts M, Walentek P, Wachten D. Emerging principles of primary cilia dynamics in controlling tissue organization and function. EMBO J 2023; 42:e113891. [PMID: 37743763 PMCID: PMC10620770 DOI: 10.15252/embj.2023113891] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/07/2023] [Accepted: 09/08/2023] [Indexed: 09/26/2023] Open
Abstract
Primary cilia project from the surface of most vertebrate cells and are key in sensing extracellular signals and locally transducing this information into a cellular response. Recent findings show that primary cilia are not merely static organelles with a distinct lipid and protein composition. Instead, the function of primary cilia relies on the dynamic composition of molecules within the cilium, the context-dependent sensing and processing of extracellular stimuli, and cycles of assembly and disassembly in a cell- and tissue-specific manner. Thereby, primary cilia dynamically integrate different cellular inputs and control cell fate and function during tissue development. Here, we review the recently emerging concept of primary cilia dynamics in tissue development, organization, remodeling, and function.
Collapse
Affiliation(s)
- Jay Gopalakrishnan
- Institute for Human Genetics, Heinrich‐Heine‐UniversitätUniversitätsklinikum DüsseldorfDüsseldorfGermany
| | - Kerstin Feistel
- Department of Zoology, Institute of BiologyUniversity of HohenheimStuttgartGermany
| | | | - Anne Grapin‐Botton
- Cluster of Excellence Physics of Life, TU DresdenDresdenGermany
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at The University Hospital Carl Gustav Carus and Faculty of Medicine of the TU DresdenDresdenGermany
| | - Nathalie Jurisch‐Yaksi
- Department of Clinical and Molecular MedicineNorwegian University of Science and TechnologyTrondheimNorway
| | - Elvira Mass
- Life and Medical Sciences Institute, Developmental Biology of the Immune SystemUniversity of BonnBonnGermany
| | - David U Mick
- Center for Molecular Signaling (PZMS), Center of Human and Molecular Biology (ZHMB)Saarland School of MedicineHomburgGermany
| | - Roman‐Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD), Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Helen May‐Simera
- Institute of Molecular PhysiologyJohannes Gutenberg‐UniversityMainzGermany
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD), Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Miriam Schmidts
- Pediatric Genetics Division, Center for Pediatrics and Adolescent MedicineUniversity Hospital FreiburgFreiburgGermany
- CIBSS‐Centre for Integrative Biological Signalling StudiesUniversity of FreiburgFreiburgGermany
| | - Peter Walentek
- CIBSS‐Centre for Integrative Biological Signalling StudiesUniversity of FreiburgFreiburgGermany
- Renal Division, Internal Medicine IV, Medical CenterUniversity of FreiburgFreiburgGermany
| | - Dagmar Wachten
- Institute of Innate Immunity, Biophysical Imaging, Medical FacultyUniversity of BonnBonnGermany
| |
Collapse
|
17
|
Mill P, Christensen ST, Pedersen LB. Primary cilia as dynamic and diverse signalling hubs in development and disease. Nat Rev Genet 2023; 24:421-441. [PMID: 37072495 PMCID: PMC7615029 DOI: 10.1038/s41576-023-00587-9] [Citation(s) in RCA: 154] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2023] [Indexed: 04/20/2023]
Abstract
Primary cilia, antenna-like sensory organelles protruding from the surface of most vertebrate cell types, are essential for regulating signalling pathways during development and adult homeostasis. Mutations in genes affecting cilia cause an overlapping spectrum of >30 human diseases and syndromes, the ciliopathies. Given the immense structural and functional diversity of the mammalian cilia repertoire, there is a growing disconnect between patient genotype and associated phenotypes, with variable severity and expressivity characteristic of the ciliopathies as a group. Recent technological developments are rapidly advancing our understanding of the complex mechanisms that control biogenesis and function of primary cilia across a range of cell types and are starting to tackle this diversity. Here, we examine the structural and functional diversity of primary cilia, their dynamic regulation in different cellular and developmental contexts and their disruption in disease.
Collapse
Affiliation(s)
- Pleasantine Mill
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland
| | | | - Lotte B Pedersen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
18
|
Lee LMY, Lin ZQ, Zheng LX, Tu YF, So YH, Zheng XH, Feng TJ, Wang XY, Wong WT, Leung YC. Lysine Deprivation Suppresses Adipogenesis in 3T3-L1 Cells: A Transcriptome Analysis. Int J Mol Sci 2023; 24:ijms24119402. [PMID: 37298352 DOI: 10.3390/ijms24119402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Growing evidence proves that amino acid restriction can reverse obesity by reducing adipose tissue mass. Amino acids are not only the building blocks of proteins but also serve as signaling molecules in multiple biological pathways. The study of adipocytes' response to amino acid level changes is crucial. It has been reported that a low concentration of lysine suppresses lipid accumulation and transcription of several adipogenic genes in 3T3-L1 preadipocytes. However, the detailed lysine-deprivation-induced cellular transcriptomic changes and the altered pathways have yet to be fully studied. Here, using 3T3-L1 cells, we performed RNA sequencing on undifferentiated and differentiated cells, and differentiated cells under a lysine-free environment, and the data were subjected to KEGG enrichment. We found that the differentiation process of 3T3-L1 cells to adipocytes required the large-scale upregulation of metabolic pathways, mainly on the mitochondrial TCA cycle, oxidative phosphorylation, and downregulation of the lysosomal pathway. Single amino acid lysine depletion suppressed differentiation dose dependently. It disrupted the metabolism of cellular amino acids, which could be partially reflected in the changes in amino acid levels in the culture medium. It inhibited the mitochondria respiratory chain and upregulated the lysosomal pathway, which are essential for adipocyte differentiation. We also noticed that cellular interleukin 6 (IL6) expression and medium IL6 level were dramatically increased, which was one of the targets for suppressing adipogenesis induced by lysine depletion. Moreover, we showed that the depletion of some essential amino acids such as methionine and cystine could induce similar phenomena. This suggests that individual amino acid deprivation may share some common pathways. This descriptive study dissects the pathways for adipogenesis and how the cellular transcriptome was altered under lysine depletion.
Collapse
Affiliation(s)
- Leo Man-Yuen Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- Lo Ka Chung Research Centre for Natural Anti-Cancer Drug Development and State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- School of Biomedical Science, The Chinese University of Hong Kong, Shatin, New Territory, Hong Kong, China
| | - Zhi-Qiang Lin
- School of Biomedical Science, The Chinese University of Hong Kong, Shatin, New Territory, Hong Kong, China
| | - Lu-Xi Zheng
- School of Biomedical Science, The Chinese University of Hong Kong, Shatin, New Territory, Hong Kong, China
| | - Yi-Fan Tu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- Lo Ka Chung Research Centre for Natural Anti-Cancer Drug Development and State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- Department of Obstetrics and Gynecology, The Chinese University of Hong Kong, New Territory, Hong Kong, China
| | - Yik-Hing So
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- Lo Ka Chung Research Centre for Natural Anti-Cancer Drug Development and State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Xiu-Hua Zheng
- School of Biomedical Science, The Chinese University of Hong Kong, Shatin, New Territory, Hong Kong, China
| | - Tie-Jun Feng
- School of Biomedical Science, The Chinese University of Hong Kong, Shatin, New Territory, Hong Kong, China
| | - Xi-Yue Wang
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen 518000, China
| | - Wai-Ting Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yun-Chung Leung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- Lo Ka Chung Research Centre for Natural Anti-Cancer Drug Development and State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
19
|
Atmakuru PS, Dhawan J. The cilium-centrosome axis in coupling cell cycle exit and cell fate. J Cell Sci 2023; 136:308872. [PMID: 37144419 DOI: 10.1242/jcs.260454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023] Open
Abstract
The centrosome is an evolutionarily conserved, ancient organelle whose role in cell division was first described over a century ago. The structure and function of the centrosome as a microtubule-organizing center, and of its extracellular extension - the primary cilium - as a sensory antenna, have since been extensively studied, but the role of the cilium-centrosome axis in cell fate is still emerging. In this Opinion piece, we view cellular quiescence and tissue homeostasis from the vantage point of the cilium-centrosome axis. We focus on a less explored role in the choice between distinct forms of mitotic arrest - reversible quiescence and terminal differentiation, which play distinct roles in tissue homeostasis. We outline evidence implicating the centrosome-basal body switch in stem cell function, including how the cilium-centrosome complex regulates reversible versus irreversible arrest in adult skeletal muscle progenitors. We then highlight exciting new findings in other quiescent cell types that suggest signal-dependent coupling of nuclear and cytoplasmic events to the centrosome-basal body switch. Finally, we propose a framework for involvement of this axis in mitotically inactive cells and identify future avenues for understanding how the cilium-centrosome axis impacts central decisions in tissue homeostasis.
Collapse
Affiliation(s)
- Priti S Atmakuru
- CSIR Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
| | - Jyotsna Dhawan
- CSIR Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
20
|
Portal C, Lin Y, Rastogi V, Peterson C, Yiu SCH, Foster JW, Wilkerson A, Butovich IA, Iomini C. Primary cilia control cellular patterning of Meibomian glands during morphogenesis but not lipid composition. Commun Biol 2023; 6:282. [PMID: 36932132 PMCID: PMC10023665 DOI: 10.1038/s42003-023-04632-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 02/27/2023] [Indexed: 03/19/2023] Open
Abstract
Meibomian glands (MGs) are modified sebaceous glands producing the tear film's lipids. Despite their critical role in maintaining clear vision, the mechanisms underlying MG morphogenesis in development and disease remain obscure. Cilia-mediate signals are critical for the development of skin adnexa, including sebaceous glands. Thus, we investigated the role of cilia in MG morphogenesis during development. Most cells were ciliated during early MG development, followed by cilia disassembly during differentiation. In mature glands, ciliated cells were primarily restricted to the basal layer of the proximal gland central duct. Cilia ablation in keratine14-expressing tissue disrupted the accumulation of proliferative cells at the distal tip but did not affect the overall rate of proliferation or apoptosis. Moreover, impaired cellular patterning during elongation resulted in hypertrophy of mature MGs with increased meibum volume without altering its lipid composition. Thus, cilia signaling networks provide a new platform to design therapeutic treatments for MG dysfunction.
Collapse
Affiliation(s)
- Céline Portal
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
| | - Yvonne Lin
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Varuni Rastogi
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Cornelia Peterson
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Samuel Chi-Hung Yiu
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - James W Foster
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Amber Wilkerson
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Igor A Butovich
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Carlo Iomini
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.
| |
Collapse
|
21
|
Canesini G, Galoppo GH, Tavalieri YE, Lazzarino GP, Stoker C, Luque EH, Ramos JG, Muñoz-de-Toro M. Disruption of the developmental programming of the gonad of the broad snouted caiman (Caiman latirostris) after in ovo exposure to atrazine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:40132-40146. [PMID: 36607581 DOI: 10.1007/s11356-022-25104-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Environmental exposure to agrochemicals during early stages of development can induce subtle alterations that could permanently affect normal physiology. Previously, we reported that in ovo exposure to atrazine (ATZ) disrupts testicular histoarchitecture in postnatal caimans (Caiman latirostris). To assess whether such alterations are the result of disruption of gonadal developmental programming, this study aimed to evaluate the expression of histofunctional biomarkers (VASA, ER, PR, PCNA, and aromatase) and genes involved in gonadal development and differentiation (amh, sox-9, sf-1 and cyp19-a1) in the gonads of male and female caiman embryos and to assess the effect of ATZ exposure on these biomarkers and genes in the gonads of male embryos. Our results suggest that amh, aromatase and sox-9 play a role in sex determination and gonadal differentiation. In male caiman embryos, ATZ exposure increased aromatase expression and altered the temporal expression pattern of amh and sox-9 evidencing an ATZ-induced disruption of gonadal developmental programming. Since the effects of ATZ are consistent across all vertebrate classes, the ATZ-mediated disruptive effects here observed could be present in other vertebrate species.
Collapse
Affiliation(s)
- Guillermina Canesini
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Casilla de Correo 242, Santa Fe 3000, Argentina
| | - Germán H Galoppo
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Casilla de Correo 242, Santa Fe 3000, Argentina.
| | - Yamil E Tavalieri
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Casilla de Correo 242, Santa Fe 3000, Argentina
| | - Gisela P Lazzarino
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Casilla de Correo 242, Santa Fe 3000, Argentina
| | - Cora Stoker
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Casilla de Correo 242, Santa Fe 3000, Argentina
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Enrique H Luque
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Casilla de Correo 242, Santa Fe 3000, Argentina
| | - Jorge G Ramos
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Casilla de Correo 242, Santa Fe 3000, Argentina
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Mónica Muñoz-de-Toro
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Casilla de Correo 242, Santa Fe 3000, Argentina
| |
Collapse
|
22
|
Zhang K, Da Silva F, Seidl C, Wilsch-Bräuninger M, Herbst J, Huttner WB, Niehrs C. Primary cilia are WNT-transducing organelles whose biogenesis is controlled by a WNT-PP1 axis. Dev Cell 2023; 58:139-154.e8. [PMID: 36693320 DOI: 10.1016/j.devcel.2022.12.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 10/18/2022] [Accepted: 12/19/2022] [Indexed: 01/24/2023]
Abstract
WNT signaling is important in development, stem cell maintenance, and disease. WNT ligands typically signal via receptor activation across the plasma membrane to induce β-catenin-dependent gene activation. Here, we show that in mammalian primary cilia, WNT receptors relay a WNT/GSK3 signal that β-catenin-independently promotes ciliogenesis. Characterization of a LRP6 ciliary targeting sequence and monitoring of acute WNT co-receptor activation (phospho-LRP6) support this conclusion. Ciliary WNT signaling inhibits protein phosphatase 1 (PP1) activity, a negative regulator of ciliogenesis, by preventing GSK3-mediated phosphorylation of the PP1 regulatory inhibitor subunit PPP1R2. Concordantly, deficiency of WNT/GSK3 signaling by depletion of cyclin Y and cyclin-Y-like protein 1 induces primary cilia defects in mouse embryonic neuronal precursors, kidney proximal tubules, and adult mice preadipocytes.
Collapse
Affiliation(s)
- Kaiqing Zhang
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Fabio Da Silva
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Carina Seidl
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Michaela Wilsch-Bräuninger
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraβe 108, 01307 Dresden, Germany
| | - Jessica Herbst
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraβe 108, 01307 Dresden, Germany
| | - Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Institute of Molecular Biology (IMB), 55128 Mainz, Germany.
| |
Collapse
|
23
|
Wu Y, Zhou J, Yang Y. Peripheral and central control of obesity by primary cilia. J Genet Genomics 2023; 50:295-304. [PMID: 36632916 DOI: 10.1016/j.jgg.2022.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/10/2023]
Abstract
Primary cilia are hair-like structures that protrude from the cell surface. They are capable of sensing external cues and conveying a vast array of signals into cells to regulate a variety of physiological activities. Mutations in cilium-associated genes are linked to a group of diseases with overlapping clinical manifestations, collectively known as ciliopathies. A significant proportion of human ciliopathy cases are accompanied by metabolic disorders such as obesity and type 2 diabetes. Nevertheless, the mechanisms through which dysfunction of primary cilia contributes to obesity are complex. In this article, we present an overview of primary cilia and highlight obesity-related ciliopathies. We also discuss the potential role of primary cilia in peripheral organs, with a focus on adipose tissues. In addition, we emphasize the significance of primary cilia in the central regulation of obesity, especially the involvement of ciliary signaling in the hypothalamic control of feeding behavior. This article therefore proposes a framework of both peripheral and central regulation of obesity by primary cilia, which may benefit further exploration of the ciliary role in metabolic regulation.
Collapse
Affiliation(s)
- Yue Wu
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Jun Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China; State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Yunfan Yang
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
24
|
Adipose-Derived Stem Cells Attenuate Skin Fibrosis and Improve Fat Retention of a Localized Scleroderma Mouse Model. Plast Reconstr Surg 2023; 151:97-107. [PMID: 36206077 DOI: 10.1097/prs.0000000000009796] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Although autologous fat grafting is a feasible surgical technique to improve facial deformity in patients with localized scleroderma, its success is limited by the low graft retention induced by the local inflammatory environment. This study investigated the potential effect of adipose-derived stem cells (ASCs) on skin fibrosis and fat retention in a localized scleroderma mouse model. METHODS BALB/C nude mice that were induced by bleomycin to establish a localized scleroderma model were divided randomly into five groups: blank control; fat grafting; and low, moderate, and high doses of ASC-assisted fat grafting. The backs of the mice were subcutaneously injected with phosphate-buffered saline or fat, or fat with low, moderate, and high doses of ASCs (1 × 10 5 /mL, 5 × 10 5 /mL, and 25 × 10 5 /mL, respectively). The skin fibrosis and fat retention were analyzed after 1 month or 3 months, respectively. RESULTS Compared to the disease model group, the fat-grafting group, and the low- and moderate-dose ASC-enriched groups, the high-dose ASCs significantly attenuated skin fibrosis, inhibited the production of type III collagen and transforming growth factor-β1, increased fat graft retention, enhanced the expression of angiogenesis-related cytokines and angiogenesis, and increased the expression of adipogenesis-related cytokines. CONCLUSIONS The results demonstrated that high-dose ASCs attenuated skin fibrosis and improved fat retention in a localized scleroderma model by reducing inflammation and by promoting angiogenesis and adipogenesis. The authors further demonstrated that ASCs enhanced adipogenesis through the AKT/ERK signaling pathway. CLINICAL RELEVANCE STATEMENT Fat grafting has been used to treat localized scleroderma patients but with low fat retention. In this study, ASC attenuated skin fibrosis and improved fat retention in the localized scleroderma model, providing evidence for cell therapy in future application of localized scleroderma treatment.
Collapse
|
25
|
Nakazato R, Otani H, Ijaz F, Ikegami K. Time-lapse imaging of primary cilium behavior with physiological expression of fluorescent ciliary proteins. Methods Cell Biol 2023; 175:45-68. [PMID: 36967145 DOI: 10.1016/bs.mcb.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Almost all cell types of mammals have a small protrusion named a primary cilium on their surface. Primary cilia are enriched by cilia-specific ion channels and G-protein-coupled receptors. They are known to regulate various cellular functions that contribute to the development and homeostasis of living organisms by receiving extracellular signals and transfusing them to the cell body. All functions are performed when the structure of the primary cilia is maintained properly. Abnormalities in primary cilia or their signaling can lead to a collection of diseases in various organs called ciliopathies. The primary cilium is dynamic, static, or fixed. The length of primary cilia varies as the cell cycle progresses and is also altered by extracellular stimuli. Ligand binding to cilia-specific receptors is also known to alter the length. Thus, there is a need for a method to study the morphological changes of the primary cilium in a time-dependent manner, especially under stimuli or mechanical shocks. Time-lapse imaging of primary cilia is one of the most powerful methods to capture the time-dependent behavior of primary cilia. Overexpression of ciliary proteins fused to fluorescent proteins is commonly used for the time-lapse imaging of primary cilia. However, overexpression has drawbacks in terms of artifacts. In addition, the time-lapse imaging of the tiny primary cilia requires some technical tricks. Here, we present a detailed description of the methods for time-lapse imaging of primary cilium, from the generation of cell lines that stably express fluorescent protein-labeled cilia-localized proteins at the physiological level to image analysis, including quantification through image acquisition.
Collapse
|
26
|
Scamfer SR, Lee MD, Hilgendorf KI. Ciliary control of adipocyte progenitor cell fate regulates energy storage. Front Cell Dev Biol 2022; 10:1083372. [PMID: 36561368 PMCID: PMC9763467 DOI: 10.3389/fcell.2022.1083372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
The primary cilium is a cellular sensory organelle found in most cells in our body. This includes adipocyte progenitor cells in our adipose tissue, a complex organ involved in energy storage, endocrine signaling, and thermogenesis. Numerous studies have shown that the primary cilium plays a critical role in directing the cell fate of adipocyte progenitor cells in multiple adipose tissue types. Accordingly, diseases with dysfunctional cilia called ciliopathies have a broad range of clinical manifestations, including obesity and diabetes. This review summarizes our current understanding of how the primary cilium regulates adipocyte progenitor cell fate in multiple contexts and illustrates the importance of the primary cilium in regulating energy storage and adipose tissue function.
Collapse
Affiliation(s)
| | | | - Keren I. Hilgendorf
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, United States
| |
Collapse
|
27
|
Yamakawa D, Tsuboi J, Kasahara K, Matsuda C, Nishimura Y, Kodama T, Katayama N, Watanabe M, Inagaki M. Cilia-Mediated Insulin/Akt and ST2/JNK Signaling Pathways Regulate the Recovery of Muscle Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 10:e2202632. [PMID: 36373718 PMCID: PMC9811445 DOI: 10.1002/advs.202202632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/20/2022] [Indexed: 06/04/2023]
Abstract
Following injury, skeletal muscle regenerates but fatty tissue accumulation is seen in aged muscle or muscular dystrophies. Fibro/adipogenic progenitors (FAPs) are key players in these events; however, the effect of primary cilia on FAPs remains unclear. Here, it is reported that genetic ablation of trichoplein (TCHP), a ciliary regulator, induces ciliary elongation on FAPs after injury, which promotes muscle regeneration while inhibiting adipogenesis. The defective adipogenic differentiation of FAPs is attributed to dysfunction of cilia-dependent lipid raft dynamics, which is critical for insulin/Akt signaling. It is also found that interleukin (IL) 13 is substantially produced by intramuscular FAPs, which are upregulated by ciliary elongation and contribute to regeneration. Mechanistically, upon injury, long cilia excessively activate the IL33/ST2/JNK axis to enhance IL13 production, facilitating myoblast proliferation and M2 macrophage polarization. The results indicate that FAPs organize the regenerative responses to skeletal muscle injury via cilia-mediated insulin/Akt and ST2/JNK signaling pathways.
Collapse
Affiliation(s)
- Daishi Yamakawa
- Department of PhysiologyMie University Graduate School of MedicineTsuMie514‐8507Japan
| | - Junya Tsuboi
- Department of Gastroenterology and HepatologyMie University Graduate School of MedicineTsuMie514‐8507Japan
- Department of Hematology and OncologyMie University Graduate School of MedicineTsuMie514‐8507Japan
| | - Kousuke Kasahara
- Department of PhysiologyMie University Graduate School of MedicineTsuMie514‐8507Japan
| | - Chise Matsuda
- Department of Oncogenic PathologyMie University Graduate School of MedicineTsuMie514‐8507Japan
| | - Yuhei Nishimura
- Department of Integrative PharmacologyMie University Graduate School of MedicineTsuMie514‐8507Japan
| | - Tatsuya Kodama
- Department of PhysiologyMie University Graduate School of MedicineTsuMie514‐8507Japan
| | - Naoyuki Katayama
- Department of Hematology and OncologyMie University Graduate School of MedicineTsuMie514‐8507Japan
| | - Masatoshi Watanabe
- Department of Oncogenic PathologyMie University Graduate School of MedicineTsuMie514‐8507Japan
| | - Masaki Inagaki
- Department of PhysiologyMie University Graduate School of MedicineTsuMie514‐8507Japan
| |
Collapse
|
28
|
Ávalos Y, Hernández-Cáceres MP, Lagos P, Pinto-Nuñez D, Rivera P, Burgos P, Díaz-Castro F, Joy-Immediato M, Venegas-Zamora L, Lopez-Gallardo E, Kretschmar C, Batista-Gonzalez A, Cifuentes-Araneda F, Toledo-Valenzuela L, Rodriguez-Peña M, Espinoza-Caicedo J, Perez-Leighton C, Bertocchi C, Cerda M, Troncoso R, Parra V, Budini M, Burgos PV, Criollo A, Morselli E. Palmitic acid control of ciliogenesis modulates insulin signaling in hypothalamic neurons through an autophagy-dependent mechanism. Cell Death Dis 2022; 13:659. [PMID: 35902579 PMCID: PMC9334645 DOI: 10.1038/s41419-022-05109-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 01/21/2023]
Abstract
Palmitic acid (PA) is significantly increased in the hypothalamus of mice, when fed chronically with a high-fat diet (HFD). PA impairs insulin signaling in hypothalamic neurons, by a mechanism dependent on autophagy, a process of lysosomal-mediated degradation of cytoplasmic material. In addition, previous work shows a crosstalk between autophagy and the primary cilium (hereafter cilium), an antenna-like structure on the cell surface that acts as a signaling platform for the cell. Ciliopathies, human diseases characterized by cilia dysfunction, manifest, type 2 diabetes, among other features, suggesting a role of the cilium in insulin signaling. Cilium depletion in hypothalamic pro-opiomelanocortin (POMC) neurons triggers obesity and insulin resistance in mice, the same phenotype as mice deficient in autophagy in POMC neurons. Here we investigated the effect of chronic consumption of HFD on cilia; and our results indicate that chronic feeding with HFD reduces the percentage of cilia in hypothalamic POMC neurons. This effect may be due to an increased amount of PA, as treatment with this saturated fatty acid in vitro reduces the percentage of ciliated cells and cilia length in hypothalamic neurons. Importantly, the same effect of cilia depletion was obtained following chemical and genetic inhibition of autophagy, indicating autophagy is required for ciliogenesis. We further demonstrate a role for the cilium in insulin sensitivity, as cilium loss in hypothalamic neuronal cells disrupts insulin signaling and insulin-dependent glucose uptake, an effect that correlates with the ciliary localization of the insulin receptor (IR). Consistently, increased percentage of ciliated hypothalamic neuronal cells promotes insulin signaling, even when cells are exposed to PA. Altogether, our results indicate that, in hypothalamic neurons, impairment of autophagy, either by PA exposure, chemical or genetic manipulation, cause cilia loss that impairs insulin sensitivity.
Collapse
Affiliation(s)
- Yenniffer Ávalos
- grid.412179.80000 0001 2191 5013Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - María Paz Hernández-Cáceres
- grid.7870.80000 0001 2157 0406Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile ,grid.443909.30000 0004 0385 4466Cellular and Molecular Biology Laboratory, Institute in Dentistry Sciences, Dentistry Faculty, Universidad de Chile, Santiago, Chile
| | - Pablo Lagos
- grid.7870.80000 0001 2157 0406Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniela Pinto-Nuñez
- grid.7870.80000 0001 2157 0406Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Patricia Rivera
- grid.7870.80000 0001 2157 0406Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paulina Burgos
- grid.7870.80000 0001 2157 0406Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco Díaz-Castro
- grid.7870.80000 0001 2157 0406Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Michelle Joy-Immediato
- grid.7870.80000 0001 2157 0406Laboratory for Molecular Mechanics of Cell Adhesion, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Leslye Venegas-Zamora
- grid.443909.30000 0004 0385 4466Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Erik Lopez-Gallardo
- grid.443909.30000 0004 0385 4466Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Catalina Kretschmar
- grid.443909.30000 0004 0385 4466Cellular and Molecular Biology Laboratory, Institute in Dentistry Sciences, Dentistry Faculty, Universidad de Chile, Santiago, Chile
| | - Ana Batista-Gonzalez
- grid.443909.30000 0004 0385 4466Cellular and Molecular Biology Laboratory, Institute in Dentistry Sciences, Dentistry Faculty, Universidad de Chile, Santiago, Chile
| | - Flavia Cifuentes-Araneda
- grid.7870.80000 0001 2157 0406Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Lilian Toledo-Valenzuela
- grid.7870.80000 0001 2157 0406Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marcelo Rodriguez-Peña
- grid.443909.30000 0004 0385 4466Cellular and Molecular Biology Laboratory, Institute in Dentistry Sciences, Dentistry Faculty, Universidad de Chile, Santiago, Chile
| | - Jasson Espinoza-Caicedo
- grid.7870.80000 0001 2157 0406Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudio Perez-Leighton
- grid.7870.80000 0001 2157 0406Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cristina Bertocchi
- grid.7870.80000 0001 2157 0406Laboratory for Molecular Mechanics of Cell Adhesion, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mauricio Cerda
- grid.443909.30000 0004 0385 4466Integrative Biology Program, Institute of Biomedical Sciences, Facultad de Medicina, Universidad de Chile, Santiago, Chile ,grid.443909.30000 0004 0385 4466Center for Medical Informatics and Telemedicine, Facultad de Medicina, Universidad de Chile, Santiago, Chile ,grid.443909.30000 0004 0385 4466Biomedical Neuroscience Institute, Santiago, Chile
| | - Rodrigo Troncoso
- grid.443909.30000 0004 0385 4466Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile ,grid.443909.30000 0004 0385 4466Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile ,Autophagy Research Center, Santiago, Chile
| | - Valentina Parra
- grid.443909.30000 0004 0385 4466Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile ,Autophagy Research Center, Santiago, Chile ,grid.443909.30000 0004 0385 4466Network for the Study of High-Lethality Cardiopulmonary Diseases (REECPAL), Universidad de Chile, Santiago, Chile
| | - Mauricio Budini
- Autophagy Research Center, Santiago, Chile ,grid.443909.30000 0004 0385 4466Laboratory of Molecular and Cellular Pathology, Institute in Dentistry Sciences, Dentistry Faculty, Universidad de Chile, Santiago, Chile
| | - Patricia V. Burgos
- Autophagy Research Center, Santiago, Chile ,grid.442215.40000 0001 2227 4297Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile ,grid.7870.80000 0001 2157 0406Centro de Envejecimiento y Regeneración (CARE-UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alfredo Criollo
- grid.443909.30000 0004 0385 4466Cellular and Molecular Biology Laboratory, Institute in Dentistry Sciences, Dentistry Faculty, Universidad de Chile, Santiago, Chile ,grid.443909.30000 0004 0385 4466Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile ,Autophagy Research Center, Santiago, Chile
| | - Eugenia Morselli
- grid.7870.80000 0001 2157 0406Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile ,Autophagy Research Center, Santiago, Chile ,grid.442215.40000 0001 2227 4297Department of Basic Sciences, Faculty of Medicine and Sciences, Universidad San Sebastián, Santiago, Chile
| |
Collapse
|
29
|
Lee CH, Kang GM, Kim MS. Mechanisms of Weight Control by Primary Cilia. Mol Cells 2022; 45:169-176. [PMID: 35387896 PMCID: PMC9001153 DOI: 10.14348/molcells.2022.2046] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 02/06/2023] Open
Abstract
A primary cilium, a hair-like protrusion of the plasma membrane, is a pivotal organelle for sensing external environmental signals and transducing intracellular signaling. An interesting linkage between cilia and obesity has been revealed by studies of the human genetic ciliopathies Bardet-Biedl syndrome and Alström syndrome, in which obesity is a principal manifestation. Mouse models of cell type-specific cilia dysgenesis have subsequently demonstrated that ciliary defects restricted to specific hypothalamic neurons are sufficient to induce obesity and hyperphagia. A potential mechanism underlying hypothalamic neuron cilia-related obesity is impaired ciliary localization of G protein-coupled receptors involved in the regulation of appetite and energy metabolism. A well-studied example of this is melanocortin 4 receptor (MC4R), mutations in which are the most common cause of human monogenic obesity. In the paraventricular hypothalamus neurons, a blockade of ciliary trafficking of MC4R as well as its downstream ciliary signaling leads to hyperphagia and weight gain. Another potential mechanism is reduced leptin signaling in hypothalamic neurons with defective cilia. Leptin receptors traffic to the periciliary area upon leptin stimulation. Moreover, defects in cilia formation hamper leptin signaling and actions in both developing and differentiated hypothalamic neurons. The list of obesity-linked ciliary proteins is expending and this supports a tight association between cilia and obesity. This article provides a brief review on the mechanism of how ciliary defects in hypothalamic neurons facilitate obesity.
Collapse
Affiliation(s)
- Chan Hee Lee
- Department of Biomedical Science, Hallym University, Chuncheon 24252, Korea
| | - Gil Myoung Kang
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Min-Seon Kim
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| |
Collapse
|
30
|
Pablos M, Casanueva-Álvarez E, González-Casimiro CM, Merino B, Perdomo G, Cózar-Castellano I. Primary Cilia in Pancreatic β- and α-Cells: Time to Revisit the Role of Insulin-Degrading Enzyme. Front Endocrinol (Lausanne) 2022; 13:922825. [PMID: 35832432 PMCID: PMC9271624 DOI: 10.3389/fendo.2022.922825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/24/2022] [Indexed: 12/25/2022] Open
Abstract
The primary cilium is a narrow organelle located at the surface of the cell in contact with the extracellular environment. Once underappreciated, now is thought to efficiently sense external environmental cues and mediate cell-to-cell communication, because many receptors, ion channels, and signaling molecules are highly or differentially expressed in primary cilium. Rare genetic disorders that affect cilia integrity and function, such as Bardet-Biedl syndrome and Alström syndrome, have awoken interest in studying the biology of cilium. In this review, we discuss recent evidence suggesting emerging roles of primary cilium and cilia-mediated signaling pathways in the regulation of pancreatic β- and α-cell functions, and its implications in regulating glucose homeostasis.
Collapse
Affiliation(s)
- Marta Pablos
- Department of Biochemistry, Molecular Biology and Physiology, School of Medicine, University of Valladolid, Valladolid, Spain
- *Correspondence: Marta Pablos,
| | - Elena Casanueva-Álvarez
- Unidad de Excelencia Instituto de Biología y Genética Molecular, University of Valladolid Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Carlos M. González-Casimiro
- Unidad de Excelencia Instituto de Biología y Genética Molecular, University of Valladolid Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Beatriz Merino
- Unidad de Excelencia Instituto de Biología y Genética Molecular, University of Valladolid Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Germán Perdomo
- Unidad de Excelencia Instituto de Biología y Genética Molecular, University of Valladolid Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Irene Cózar-Castellano
- Department of Biochemistry, Molecular Biology and Physiology, School of Medicine, University of Valladolid, Valladolid, Spain
- Unidad de Excelencia Instituto de Biología y Genética Molecular, University of Valladolid Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| |
Collapse
|
31
|
Luo G, Chen J, Ren Z. Regulation of Methylase METTL3 on Fat Deposition. Diabetes Metab Syndr Obes 2021; 14:4843-4852. [PMID: 34984016 PMCID: PMC8709552 DOI: 10.2147/dmso.s344472] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/08/2021] [Indexed: 11/23/2022] Open
Abstract
N6-methyladenosine (m6A) is the most prevalent and abundant type of internal post-transcriptional RNA modification in eukaryotic cells. METTL3 is a methylation modifying enzyme, which can directly or indirectly affect biological processes, such as RNA degradation, translation and splicing. In addition, it was found that 67% of 3'-UTR regions containing m6A sites had at least one miRNA binding site, and the number of m6A at 3'-UTR sites was closely related to the binding sites of miRNA. With the improvement of human living standards, obesity has become a very serious and urgent problem. The essence of obesity is the accumulation of excess fat. Exploring the origin and development mechanisms of adipocyte from the perspective of fat deposition has always been a hotspot in the field of adipocyte research. The aim of the present review is to focus on METTL3 regulating fat deposition through mRNA/adipocyte differentiation axis and pri-miRNA/pre-miRNA/target genes/adipocyte differentiation and to provide a theoretical basis according to the currently available literature for further exploring this association. This review may provide new insights for obesity, fat deposition disease and molecular breeding.
Collapse
Affiliation(s)
- Gang Luo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People’s Republic of China
| | - Jialing Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People’s Republic of China
| | - Zhanjun Ren
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People’s Republic of China
| |
Collapse
|
32
|
Aurora A and AKT Kinase Signaling Associated with Primary Cilia. Cells 2021; 10:cells10123602. [PMID: 34944109 PMCID: PMC8699881 DOI: 10.3390/cells10123602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 02/07/2023] Open
Abstract
Dysregulation of kinase signaling is associated with various pathological conditions, including cancer, inflammation, and autoimmunity; consequently, the kinases involved have become major therapeutic targets. While kinase signaling pathways play crucial roles in multiple cellular processes, the precise manner in which their dysregulation contributes to disease is dependent on the context; for example, the cell/tissue type or subcellular localization of the kinase or substrate. Thus, context-selective targeting of dysregulated kinases may serve to increase the therapeutic specificity while reducing off-target adverse effects. Primary cilia are antenna-like structures that extend from the plasma membrane and function by detecting extracellular cues and transducing signals into the cell. Cilia formation and signaling are dynamically regulated through context-dependent mechanisms; as such, dysregulation of primary cilia contributes to disease in a variety of ways. Here, we review the involvement of primary cilia-associated signaling through aurora A and AKT kinases with respect to cancer, obesity, and other ciliopathies.
Collapse
|
33
|
Hilgendorf KI. Primary Cilia Are Critical Regulators of White Adipose Tissue Expansion. Front Physiol 2021; 12:769367. [PMID: 34759842 PMCID: PMC8573240 DOI: 10.3389/fphys.2021.769367] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/04/2021] [Indexed: 12/14/2022] Open
Abstract
The primary cilium is a microtubule-based cellular protrusion found on most mammalian cell types in diverse tissues. It functions as a cellular antenna to sense and transduce a broad range of signals, including odorants, light, mechanical stimuli, and chemical ligands. This diversity in signals requires cilia to display a context and cell type-specific repertoire of receptors. Recently, primary cilia have emerged as critical regulators of metabolism. The importance of primary cilia in metabolic disease is highlighted by the clinical features of human genetic disorders with dysfunctional ciliary signaling, which include obesity and diabetes. This review summarizes the current literature on the role of primary cilia in metabolic disease, focusing on the importance of primary cilia in directing white adipose tissue expansion during obesity.
Collapse
Affiliation(s)
- Keren I Hilgendorf
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, United States
| |
Collapse
|
34
|
Nishimura Y, Yamakawa D, Uchida K, Shiromizu T, Watanabe M, Inagaki M. Primary cilia and lipid raft dynamics. Open Biol 2021; 11:210130. [PMID: 34428960 PMCID: PMC8385361 DOI: 10.1098/rsob.210130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Primary cilia, antenna-like structures of the plasma membrane, detect various extracellular cues and transduce signals into the cell to regulate a wide range of functions. Lipid rafts, plasma membrane microdomains enriched in cholesterol, sphingolipids and specific proteins, are also signalling hubs involved in a myriad of physiological functions. Although impairment of primary cilia and lipid rafts is associated with various diseases, the relationship between primary cilia and lipid rafts is poorly understood. Here, we review a newly discovered interaction between primary cilia and lipid raft dynamics that occurs during Akt signalling in adipogenesis. We also discuss the relationship between primary cilia and lipid raft-mediated Akt signalling in cancer biology. This review provides a novel perspective on primary cilia in the regulation of lipid raft dynamics.
Collapse
Affiliation(s)
- Yuhei Nishimura
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Daishi Yamakawa
- Department of Physiology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Katsunori Uchida
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Takashi Shiromizu
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Masatoshi Watanabe
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Masaki Inagaki
- Department of Physiology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| |
Collapse
|
35
|
Zhong Y, Li X, Wang F, Wang S, Wang X, Tian X, Bai S, Miao D, Fan J. Emerging Potential of Exosomes on Adipogenic Differentiation of Mesenchymal Stem Cells. Front Cell Dev Biol 2021; 9:649552. [PMID: 34239869 PMCID: PMC8258133 DOI: 10.3389/fcell.2021.649552] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/28/2021] [Indexed: 12/20/2022] Open
Abstract
The mesenchymal stem cells have multidirectional differentiation potential and can differentiate into adipocytes, osteoblasts, cartilage tissue, muscle cells and so on. The adipogenic differentiation of mesenchymal stem cells is of great significance for the construction of tissue-engineered fat and the treatment of soft tissue defects. Exosomes are nanoscale vesicles secreted by cells and widely exist in body fluids. They are mainly involved in cell communication processes and transferring cargo contents to recipient cells. In addition, exosomes can also promote tissue and organ regeneration. Recent studies have shown that various exosomes can influence the adipogenic differentiation of stem cells. In this review, the effects of exosomes on stem cell differentiation, especially on adipogenic differentiation, will be discussed, and the mechanisms and conclusions will be drawn. The main purpose of studying the role of these exosomes is to understand more comprehensively the influencing factors existing in the process of stem cell differentiation into adipocytes and provide a new idea in adipose tissue engineering research.
Collapse
Affiliation(s)
- Yuxuan Zhong
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, China
| | - Xiang Li
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Fanglin Wang
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, China
| | - Shoushuai Wang
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, China
| | - Xiaohong Wang
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, China
| | - Xiaohong Tian
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, China
| | - Shuling Bai
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, China
| | - Di Miao
- China Medical University-The Queen's University of Belfast Joint College-Combination, Shenyang, China
| | - Jun Fan
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, China
| |
Collapse
|
36
|
Therapeutically actionable signaling node to rescue AURKA driven loss of primary cilia in VHL-deficient cells. Sci Rep 2021; 11:10461. [PMID: 34002003 PMCID: PMC8128866 DOI: 10.1038/s41598-021-89933-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 05/04/2021] [Indexed: 12/30/2022] Open
Abstract
Loss of primary cilia in cells deficient for the tumor suppressor von Hippel Lindau (VHL) arise from elevated Aurora Kinase A (AURKA) levels. VHL in its role as an E3 ubiquitin ligase targets AURKA for degradation and in the absence of VHL, high levels of AURKA result in destabilization of the primary cilium. We identified NVP-BEZ235, a dual PI3K/AKT and mTOR inhibitor, in an image-based high throughput screen, as a small molecule that restored primary cilia in VHL-deficient cells. We identified the ability of AKT to modulate AURKA expression at the transcript and protein level. Independent modulation of AKT and mTOR signaling decreased AURKA expression in cells confirming AURKA as a new signaling node downstream of the PI3K cascade. Corroborating these data, a genetic knockdown of AKT in cells deficient for VHL rescued the ability of these cells to ciliate. Finally, inhibition of AKT/mTOR using NVP-BEZ235 was efficacious in reducing tumor burden in a 786-0 xenograft model of renal cell carcinoma. These data highlight a previously unappreciated signaling node downstream of the AKT/mTOR pathway via AURKA that can be targeted in VHL-null cells to restore ciliogenesis.
Collapse
|
37
|
Conduit SE, Davies EM, Fulcher AJ, Oorschot V, Mitchell CA. Superresolution Microscopy Reveals Distinct Phosphoinositide Subdomains Within the Cilia Transition Zone. Front Cell Dev Biol 2021; 9:634649. [PMID: 33996795 PMCID: PMC8120242 DOI: 10.3389/fcell.2021.634649] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 04/06/2021] [Indexed: 11/30/2022] Open
Abstract
Primary cilia are evolutionary conserved microtubule-based organelles that protrude from the surface of most mammalian cells. Phosphoinositides (PI) are membrane-associated signaling lipids that regulate numerous cellular events via the recruitment of lipid-binding effectors. The temporal and spatial membrane distribution of phosphoinositides is regulated by phosphoinositide kinases and phosphatases. Recently phosphoinositide signaling and turnover has been observed at primary cilia. However, the precise localization of the phosphoinositides to specific ciliary subdomains remains undefined. Here we use superresolution microscopy (2D stimulated emission depletion microscopy) to map phosphoinositide distribution at the cilia transition zone. PI(3,4,5)P3 and PI(4,5)P2 localized to distinct subregions of the transition zone in a ring-shape at the inner transition zone membrane. Interestingly, the PI(3,4,5)P3 subdomain was more distal within the transition zone relative to PtdIns(4,5)P2. The phosphoinositide effector kinase pAKT(S473) localized in close proximity to these phosphoinositides. The inositol polyphosphate 5-phosphatase, INPP5E, degrades transition zone phosphoinositides, however, studies of fixed cells have reported recombinant INPP5E localizes to the ciliary axoneme, distant from its substrates. Notably, here using live cell imaging and optimized fixation/permeabilization protocols INPP5E was found concentrated at the cilia base, in a distribution characteristic of the transition zone in a ring-shaped domain of similar dimensions to the phosphoinositides. Collectively, this superresolution map places the phosphoinositides in situ with the transition zone proteins and reveals that INPP5E also likely localizes to a subdomain of the transition zone membrane, where it is optimally situated to control local phosphoinositide metabolism.
Collapse
Affiliation(s)
- Sarah E Conduit
- Cancer Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Elizabeth M Davies
- Cancer Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Alex J Fulcher
- Monash Micro Imaging, Monash University, Clayton, VIC, Australia
| | - Viola Oorschot
- Monash Ramaciotti Centre for Structural Cryo-Electron Microscopy, Monash University, Clayton, VIC, Australia
| | - Christina A Mitchell
- Cancer Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
38
|
Wang L, Liu Y, Stratigopoulos G, Panigrahi S, Sui L, Zhang Y, Leduc CA, Glover HJ, De Rosa MC, Burnett LC, Williams DJ, Shang L, Goland R, Tsang SH, Wardlaw S, Egli D, Zheng D, Doege CA, Leibel RL. Bardet-Biedl syndrome proteins regulate intracellular signaling and neuronal function in patient-specific iPSC-derived neurons. J Clin Invest 2021; 131:146287. [PMID: 33630762 DOI: 10.1172/jci146287] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/23/2021] [Indexed: 12/11/2022] Open
Abstract
Bardet-Biedl syndrome (BBS) is a rare autosomal recessive disorder caused by mutations in genes encoding components of the primary cilium and is characterized by hyperphagic obesity. To investigate the molecular basis of obesity in human BBS, we developed a cellular model of BBS using induced pluripotent stem cell-derived (iPSC-derived) hypothalamic arcuate-like neurons. BBS mutations BBS1M390R and BBS10C91fsX95 did not affect neuronal differentiation efficiency but caused morphological defects, including impaired neurite outgrowth and longer primary cilia. Single-cell RNA sequencing of BBS1M390R hypothalamic neurons identified several downregulated pathways, including insulin and cAMP signaling and axon guidance. Additional studies demonstrated that BBS1M390R and BBS10C91fsX95 mutations impaired insulin signaling in both human fibroblasts and iPSC-derived neurons. Overexpression of intact BBS10 fully restored insulin signaling by restoring insulin receptor tyrosine phosphorylation in BBS10C91fsX95 neurons. Moreover, mutations in BBS1 and BBS10 impaired leptin-mediated p-STAT3 activation in iPSC-derived hypothalamic neurons. Correction of the BBS mutation by CRISPR rescued leptin signaling. POMC expression and neuropeptide production were decreased in BBS1M390R and BBS10C91fsX95 iPSC-derived hypothalamic neurons. In the aggregate, these data provide insights into the anatomic and functional mechanisms by which components of the BBSome in CNS primary cilia mediate effects on energy homeostasis.
Collapse
Affiliation(s)
- Liheng Wang
- Naomi Berrie Diabetes Center and.,Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Yang Liu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - George Stratigopoulos
- Naomi Berrie Diabetes Center and.,Division of Molecular Genetics, Department of Pediatrics, Columbia University, College of Physicians and Surgeons, New York, New York, USA
| | - Sunil Panigrahi
- Naomi Berrie Diabetes Center and.,Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Lina Sui
- Naomi Berrie Diabetes Center and.,Division of Molecular Genetics, Department of Pediatrics, Columbia University, College of Physicians and Surgeons, New York, New York, USA
| | - Yiying Zhang
- Naomi Berrie Diabetes Center and.,Division of Molecular Genetics, Department of Pediatrics, Columbia University, College of Physicians and Surgeons, New York, New York, USA
| | - Charles A Leduc
- Naomi Berrie Diabetes Center and.,Division of Molecular Genetics, Department of Pediatrics, Columbia University, College of Physicians and Surgeons, New York, New York, USA
| | - Hannah J Glover
- Naomi Berrie Diabetes Center and.,Division of Molecular Genetics, Department of Pediatrics, Columbia University, College of Physicians and Surgeons, New York, New York, USA
| | - Maria Caterina De Rosa
- Naomi Berrie Diabetes Center and.,Division of Molecular Genetics, Department of Pediatrics, Columbia University, College of Physicians and Surgeons, New York, New York, USA
| | - Lisa C Burnett
- Naomi Berrie Diabetes Center and.,Levo Therapeutics, Skokie, Illinois, USA
| | - Damian J Williams
- Institute for Genomic Medicine, Columbia University, New York, New York, USA
| | - Linshan Shang
- Naomi Berrie Diabetes Center and.,Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Stephen H Tsang
- Jonas Children's Vision Care, and Bernard and Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, New York, USA.,Columbia Stem Cell Initiative and.,Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Sharon Wardlaw
- Naomi Berrie Diabetes Center and.,Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Dieter Egli
- Naomi Berrie Diabetes Center and.,Division of Molecular Genetics, Department of Pediatrics, Columbia University, College of Physicians and Surgeons, New York, New York, USA.,New York Stem Cell Foundation Research Institute, New York, New York, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA.,Department of Neurology and Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Claudia A Doege
- Naomi Berrie Diabetes Center and.,Columbia Stem Cell Initiative and.,Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Rudolph L Leibel
- Naomi Berrie Diabetes Center and.,Division of Molecular Genetics, Department of Pediatrics, Columbia University, College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
39
|
Stypulkowski E, Feng Q, Joseph I, Farrell V, Flores J, Yu S, Sakamori R, Sun J, Bandyopadhyay S, Das S, Dobrowolski R, Bonder EM, Chen MH, Gao N. Rab8 attenuates Wnt signaling and is required for mesenchymal differentiation into adipocytes. J Biol Chem 2021; 296:100488. [PMID: 33662399 PMCID: PMC8042397 DOI: 10.1016/j.jbc.2021.100488] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/18/2021] [Accepted: 02/26/2021] [Indexed: 12/11/2022] Open
Abstract
Differentiation of mesenchymal stem cells into adipocyte requires coordination of external stimuli and depends upon the functionality of the primary cilium. The Rab8 small GTPases are regulators of intracellular transport of membrane-bound structural and signaling cargo. However, the physiological contribution of the intrinsic trafficking network controlled by Rab8 to mesenchymal tissue differentiation has not been fully defined in vivo and in primary tissue cultures. Here, we show that mouse embryonic fibroblasts (MEFs) lacking Rab8 have severely impaired adipocyte differentiation in vivo and ex vivo. Immunofluorescent localization and biochemical analyses of Rab8a-deficient, Rab8b-deficient, and Rab8a and Rab8b double-deficient MEFs revealed that Rab8 controls the Lrp6 vesicular compartment, clearance of basal signalosome, traffic of frizzled two receptor, and thereby a proper attenuation of Wnt signaling in differentiating MEFs. Upon induction of adipogenesis program, Rab8a- and Rab8b-deficient MEFs exhibited severely defective lipid-droplet formation and abnormal cilia morphology, despite overall intact cilia growth and ciliary cargo transport. Our results suggest that intracellular Rab8 traffic regulates induction of adipogenesis via proper positioning of Wnt receptors for signaling control in mesenchymal cells.
Collapse
Affiliation(s)
- Ewa Stypulkowski
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Qiang Feng
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Ivor Joseph
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Victoria Farrell
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Juan Flores
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Shiyan Yu
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Ryotaro Sakamori
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Jiaxin Sun
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | | | - Soumyashree Das
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Radek Dobrowolski
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Edward M Bonder
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Miao-Hsueh Chen
- Department of Pediatrics, Baylor College of Medicine, Children's Nutrition Research Center, Houston, Texas, USA.
| | - Nan Gao
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA.
| |
Collapse
|
40
|
Yamakawa D, Katoh D, Kasahara K, Shiromizu T, Matsuyama M, Matsuda C, Maeno Y, Watanabe M, Nishimura Y, Inagaki M. Primary cilia-dependent lipid raft/caveolin dynamics regulate adipogenesis. Cell Rep 2021; 34:108817. [PMID: 33691104 DOI: 10.1016/j.celrep.2021.108817] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/28/2020] [Accepted: 02/11/2021] [Indexed: 12/14/2022] Open
Abstract
Primary cilia play a pivotal role in signal transduction and development and are known to serve as signaling hubs. Recent studies have shown that primary cilium dysfunction influences adipogenesis, but the mechanisms are unclear. Here, we show that mesenchymal progenitors C3H10T1/2 depleted of trichoplein, a key regulator of cilium formation, have significantly longer cilia than control cells and fail to differentiate into adipocytes. Mechanistically, the elongated cilia prevent caveolin-1- and/or GM3-positive lipid rafts from being assembled around the ciliary base where insulin receptor proteins accumulate, thereby inhibiting the insulin-Akt signaling. We further generate trichoplein knockout mice, in which adipogenic progenitors display elongated cilia and impair the lipid raft dynamics. The knockout mice on an extended high-fat diet exhibit reduced body fat and smaller adipocytes than wild-type (WT) mice. Overall, our results suggest a role for primary cilia in regulating adipogenic signal transduction via control of the lipid raft dynamics around cilia.
Collapse
Affiliation(s)
- Daishi Yamakawa
- Department of Physiology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Daisuke Katoh
- Department of Physiology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan; Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Kousuke Kasahara
- Department of Physiology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Takashi Shiromizu
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Makoto Matsuyama
- Division of Molecular Genetics, Shigei Medical Research Institute, 2117 Yamada, Minami-ku, Okayama 701-0202, Japan
| | - Chise Matsuda
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Yumi Maeno
- Department of Physiology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Masatoshi Watanabe
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Yuhei Nishimura
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Masaki Inagaki
- Department of Physiology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan.
| |
Collapse
|
41
|
Cook LB, Ophardt HD, Shen R, Pratt BH, Galbier LA. Transcriptome analysis of ciliary-dependent MCH signaling in differentiating 3T3-L1 pre-adipocytes. Sci Rep 2021; 11:4880. [PMID: 33649390 PMCID: PMC7921120 DOI: 10.1038/s41598-021-84138-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 02/11/2021] [Indexed: 12/24/2022] Open
Abstract
An understanding of adipocyte responsiveness to G-protein-coupled receptor-(GPCR) derived signals must take into consideration the role of membrane microenvironments; that individual sub-populations of proteins may vary significantly across different regions of the cell, and that cell differentiation alters those microenvironments. 3T3-L1 pre-adipocytes undergo a dramatic phenotypic transformation during differentiation into adipocytes, requiring the development of a transient primary cilium. We demonstrate that melanin-concentrating hormone (MCH) receptor 1, a GPCR that stimulates appetite, translocates to the transient primary cilium during early 3T3-L1 cell adipogenesis. Furthermore, we used RNA-Seq to investigate whether MCH signaling is influenced by its receptor localization and whether MCH can influence the transcriptome of early adipocyte development. We found that MCH signaling is sensitive to receptor localization to cilia, and this alters the adipogenic transcriptional program. Also, novel MCH signaling pathways in 3T3-L1 cells are identified, including those for circadian rhythm, the inflammatory response, and ciliary biogenesis. The presence of active MCH-signaling pathways in pre-adipocytes and the discovery that these pathways intersect with the early adipogenic program, among other newly-identified signaling pathways, suggests that the use of MCH receptor 1 antagonists for clinical interventions may have unintended consequences on adipose tissue development.
Collapse
Affiliation(s)
- Laurie B Cook
- Department of Biology, 217 Lennon Hall, SUNY Brockport, 350 New Campus Drive, Brockport, NY, 14420, USA.
| | - Henry D Ophardt
- Department of Biology, 217 Lennon Hall, SUNY Brockport, 350 New Campus Drive, Brockport, NY, 14420, USA
| | - Rongkun Shen
- Department of Biology, 217 Lennon Hall, SUNY Brockport, 350 New Campus Drive, Brockport, NY, 14420, USA
| | - Bryan H Pratt
- Department of Biology, 217 Lennon Hall, SUNY Brockport, 350 New Campus Drive, Brockport, NY, 14420, USA
| | - Lucas A Galbier
- Department of Biology, 217 Lennon Hall, SUNY Brockport, 350 New Campus Drive, Brockport, NY, 14420, USA
| |
Collapse
|
42
|
Kopinke D, Norris AM, Mukhopadhyay S. Developmental and regenerative paradigms of cilia regulated hedgehog signaling. Semin Cell Dev Biol 2021; 110:89-103. [PMID: 32540122 PMCID: PMC7736055 DOI: 10.1016/j.semcdb.2020.05.029] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/25/2020] [Accepted: 05/29/2020] [Indexed: 01/08/2023]
Abstract
Primary cilia are immotile appendages that have evolved to receive and interpret a variety of different extracellular cues. Cilia play crucial roles in intercellular communication during development and defects in cilia affect multiple tissues accounting for a heterogeneous group of human diseases called ciliopathies. The Hedgehog (Hh) signaling pathway is one of these cues and displays a unique and symbiotic relationship with cilia. Not only does Hh signaling require cilia for its function but the majority of the Hh signaling machinery is physically located within the cilium-centrosome complex. More specifically, cilia are required for both repressing and activating Hh signaling by modifying bifunctional Gli transcription factors into repressors or activators. Defects in balancing, interpreting or establishing these repressor/activator gradients in Hh signaling either require cilia or phenocopy disruption of cilia. Here, we will summarize the current knowledge on how spatiotemporal control of the molecular machinery of the cilium allows for a tight control of basal repression and activation states of the Hh pathway. We will then discuss several paradigms on how cilia influence Hh pathway activity in tissue morphogenesis during development. Last, we will touch on how cilia and Hh signaling are being reactivated and repurposed during adult tissue regeneration. More specifically, we will focus on mesenchymal stem cells within the connective tissue and discuss the similarities and differences of how cilia and ciliary Hh signaling control the formation of fibrotic scar and adipose tissue during fatty fibrosis of several tissues.
Collapse
Affiliation(s)
- Daniel Kopinke
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, USA.
| | - Alessandra M Norris
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, USA
| | - Saikat Mukhopadhyay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
43
|
Sunjic SB, Gasparovic AC, Jaganjac M, Rechberger G, Meinitzer A, Grune T, Kohlwein SD, Mihaljevic B, Zarkovic N. Sensitivity of Osteosarcoma Cells to Concentration-Dependent Bioactivities of Lipid Peroxidation Product 4-Hydroxynonenal Depend on Their Level of Differentiation. Cells 2021; 10:cells10020269. [PMID: 33572933 PMCID: PMC7912392 DOI: 10.3390/cells10020269] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 12/24/2022] Open
Abstract
4-Hydroxynonenal (HNE) is a major aldehydic product of lipid peroxidation known to exert several biological effects. Normal and malignant cells of the same origin express different sensitivity to HNE. We used human osteosarcoma cells (HOS) in different stages of differentiation in vitro, showing differences in mitosis, DNA synthesis, and alkaline phosphatase (ALP) staining. Differentiated HOS cells showed decreased proliferation (3H-thymidine incorporation), decreased viability (thiazolyl blue tetrazolium bromide-MTT), and increased apoptosis and necrosis (nuclear morphology by staining with 4′,6-diamidino-2-phenylindole-DAPI). Differentiated HOS also had less expressed c-MYC, but the same amount of c-FOS (immunocytochemistry). When exposed to HNE, differentiated HOS produced more reactive oxygen species (ROS) in comparison with undifferentiated HOS. To clarify this, we measured HNE metabolism by an HPLC method, total glutathione (GSH), oxidized GSH (ox GSH), glutathione transferase activity (GST), proteasomal activity by enzymatic methods, HNE-protein adducts by genuine ELISA and fatty acid composition by GC-MS in these cell cultures. Differentiated HOS cells had less GSH, lower HNE metabolism, increased formation of HNE-protein adducts, and lower proteasomal activity, in comparison to undifferentiated counterpart cells, while GST and oxGSH were the same. Fatty acids analyzed by GC-MS showed that there is an increase in C20:3 in differentiated HOS while the amount of C20:4 remained the same. The results showed that the cellular machinery responsible for protection against toxicity of HNE was less efficient in differentiated HOS cells. Moreover, differentiated HOS cells contained more C20:3 fatty acid, which might make them more sensitive to free radical-initiated oxidative chain reactions and more vulnerable to the effects of reactive aldehydes such as HNE. We propose that HNE might act as natural promotor of decay of malignant (osteosarcoma) cells in case of their differentiation associated with alteration of the lipid metabolism.
Collapse
Affiliation(s)
- Suzana Borovic Sunjic
- Laboratory for Oxidative Stress (LabOS), Division of Molecular Medicine, Rudjer Boskovic Institute, HR-10000 Zagreb, Croatia; (S.B.S.); (A.C.G.); (M.J.); (B.M.)
| | - Ana Cipak Gasparovic
- Laboratory for Oxidative Stress (LabOS), Division of Molecular Medicine, Rudjer Boskovic Institute, HR-10000 Zagreb, Croatia; (S.B.S.); (A.C.G.); (M.J.); (B.M.)
| | - Morana Jaganjac
- Laboratory for Oxidative Stress (LabOS), Division of Molecular Medicine, Rudjer Boskovic Institute, HR-10000 Zagreb, Croatia; (S.B.S.); (A.C.G.); (M.J.); (B.M.)
| | - Gerald Rechberger
- Institute of Molecular Biosciences, Bio TechMed-Graz, University of Graz, 8010 Graz, Austria; (G.R.); (S.D.K.)
| | - Andreas Meinitzer
- University Clinic of Traumatology, University of Graz, 8010 Graz, Austria;
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany;
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, A-1090 Vienna, Austria
| | - Sepp D. Kohlwein
- Institute of Molecular Biosciences, Bio TechMed-Graz, University of Graz, 8010 Graz, Austria; (G.R.); (S.D.K.)
| | - Branka Mihaljevic
- Laboratory for Oxidative Stress (LabOS), Division of Molecular Medicine, Rudjer Boskovic Institute, HR-10000 Zagreb, Croatia; (S.B.S.); (A.C.G.); (M.J.); (B.M.)
| | - Neven Zarkovic
- Laboratory for Oxidative Stress (LabOS), Division of Molecular Medicine, Rudjer Boskovic Institute, HR-10000 Zagreb, Croatia; (S.B.S.); (A.C.G.); (M.J.); (B.M.)
- Correspondence:
| |
Collapse
|
44
|
Liu S, Trupiano MX, Simon J, Guo J, Anton ES. The essential role of primary cilia in cerebral cortical development and disorders. Curr Top Dev Biol 2021; 142:99-146. [PMID: 33706927 DOI: 10.1016/bs.ctdb.2020.11.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Primary cilium, first described in the 19th century in different cell types and organisms by Alexander Ecker, Albert Kolliker, Aleksandr Kowalevsky, Paul Langerhans, and Karl Zimmermann (Ecker, 1844; Kolliker, 1854; Kowalevsky, 1867; Langerhans, 1876; Zimmermann, 1898), play an essential modulatory role in diverse aspects of nervous system development and function. The primary cilium, sometimes referred to as the cell's 'antennae', can receive wide ranging inputs from cellular milieu, including morphogens, growth factors, neuromodulators, and neurotransmitters. Its unique structural and functional organization bequeaths it the capacity to hyper-concentrate signaling machinery in a restricted cellular domain approximately one-thousandth the volume of cell soma. Thus enabling it to act as a signaling hub that integrates diverse developmental and homestatic information from cellular milieu to regulate the development and function of neural cells. Dysfunction of primary cilia contributes to the pathophysiology of several brain malformations, intellectual disabilities, epilepsy, and psychiatric disorders. This review focuses on the most essential contributions of primary cilia to cerebral cortical development and function, in the context of neurodevelopmental disorders and malformations. It highlights the recent progress made in identifying the mechanisms underlying primary cilia's role in cortical progenitors, neurons and glia, in health and disease. A future challenge will be to translate these insights and advances into effective clinical treatments for ciliopathies.
Collapse
Affiliation(s)
- Siling Liu
- UNC Neuroscience Center and the Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Mia X Trupiano
- UNC Neuroscience Center and the Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Jeremy Simon
- UNC Neuroscience Center and the Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Jiami Guo
- Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, and the Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada
| | - E S Anton
- UNC Neuroscience Center and the Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC, United States.
| |
Collapse
|
45
|
Primary cilia safeguard cortical neurons in neonatal mouse forebrain from environmental stress-induced dendritic degeneration. Proc Natl Acad Sci U S A 2020; 118:2012482118. [PMID: 33443207 DOI: 10.1073/pnas.2012482118] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The developing brain is under the risk of exposure to a multitude of environmental stressors. While perinatal exposure to excessive levels of environmental stress is responsible for a wide spectrum of neurological and psychiatric conditions, the developing brain is equipped with intrinsic cell protection, the mechanisms of which remain unknown. Here we show, using neonatal mouse as a model system, that primary cilia, hair-like protrusions from the neuronal cell body, play an essential role in protecting immature neurons from the negative impacts of exposure to environmental stress. More specifically, we found that primary cilia prevent the degeneration of dendritic arbors upon exposure to alcohol and ketamine, two major cell stressors, by activating cilia-localized insulin-like growth factor 1 receptor and downstream Akt signaling. We also found that activation of this pathway inhibits Caspase-3 activation and caspase-mediated cleavage/fragmentation of cytoskeletal proteins in stress-exposed neurons. These results indicate that primary cilia play an integral role in mitigating adverse impacts of environmental stressors such as drugs on perinatal brain development.
Collapse
|
46
|
Hosio M, Jaks V, Lagus H, Vuola J, Ogawa R, Kankuri E. Primary Ciliary Signaling in the Skin-Contribution to Wound Healing and Scarring. Front Cell Dev Biol 2020; 8:578384. [PMID: 33282860 PMCID: PMC7691485 DOI: 10.3389/fcell.2020.578384] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/08/2020] [Indexed: 12/21/2022] Open
Abstract
Primary cilia (PC) are solitary, post-mitotic, microtubule-based, and membrane-covered protrusions that are found on almost every mammalian cell. PC are specialized cellular sensory organelles that transmit environmental information to the cell. Signaling through PC is involved in the regulation of a variety of cellular processes, including proliferation, differentiation, and migration. Conversely, defective, or abnormal PC signaling can contribute to the development of various pathological conditions. Our knowledge of the role of PC in organ development and function is largely based on ciliopathies, a family of genetic disorders with mutations affecting the structure and function of PC. In this review, we focus on the role of PC in their major signaling pathways active in skin cells, and their contribution to wound healing and scarring. To provide comprehensive insights into the current understanding of PC functions, we have collected data available in the literature, including evidence across cell types, tissues, and animal species. We conclude that PC are underappreciated subcellular organelles that significantly contribute to both physiological and pathological processes of the skin development and wound healing. Thus, PC assembly and disassembly and PC signaling may serve as attractive targets for antifibrotic and antiscarring therapies.
Collapse
Affiliation(s)
- Mayu Hosio
- Faculty of Medicine, Department of Pharmacology, University of Helsinki, Helsinki, Finland
| | - Viljar Jaks
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
- Dermatology Clinic, Tartu University Hospital, Tartu, Estonia
| | - Heli Lagus
- Department of Plastic Surgery and Wound Healing Centre, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Jyrki Vuola
- Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Rei Ogawa
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Tokyo, Japan
| | - Esko Kankuri
- Faculty of Medicine, Department of Pharmacology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
47
|
Wang B, Liang Z, Liu P. Functional aspects of primary cilium in signaling, assembly and microenvironment in cancer. J Cell Physiol 2020; 236:3207-3219. [PMID: 33107052 PMCID: PMC7984063 DOI: 10.1002/jcp.30117] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 09/16/2020] [Accepted: 10/11/2020] [Indexed: 12/12/2022]
Abstract
The primary cilium is an antennae‐like structure extent outside the cell surface. It has an important role in regulating cell‐signaling transduction to affect proliferation, differentiation and migration. Evidence is accumulating that ciliary defects lead to ciliopathies and ciliary deregulation also play crucial roles in cancer formation and progression. Interestingly, restoring the cilia can suppress proliferation in some cancer cell. However, t he role of primary cilia in cancer still be debated. In this article, we review the role of the primary cilium in cancer through architecture, signaling pathways, cilia assembly and disassembly regulators, and summarized the new findings of the primary cilium in tumor microenvironments and different cancers, highlighting novel possibilities for therapeutic target in cancer.
Collapse
Affiliation(s)
- Bo Wang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zheyong Liang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Peijun Liu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
48
|
Conduit SE, Vanhaesebroeck B. Phosphoinositide lipids in primary cilia biology. Biochem J 2020; 477:3541-3565. [PMID: 32970140 PMCID: PMC7518857 DOI: 10.1042/bcj20200277] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/30/2020] [Accepted: 08/27/2020] [Indexed: 12/11/2022]
Abstract
Primary cilia are solitary signalling organelles projecting from the surface of most cell types. Although the ciliary membrane is continuous with the plasma membrane it exhibits a unique phospholipid composition, a feature essential for normal cilia formation and function. Recent studies have illustrated that distinct phosphoinositide lipid species localise to specific cilia subdomains, and have begun to build a 'phosphoinositide map' of the cilium. The abundance and localisation of phosphoinositides are tightly regulated by the opposing actions of lipid kinases and lipid phosphatases that have also been recently discovered at cilia. The critical role of phosphoinositides in cilia biology is highlighted by the devastating consequences of genetic defects in cilia-associated phosphoinositide regulatory enzymes leading to ciliopathy phenotypes in humans and experimental mouse and zebrafish models. Here we provide a general introduction to primary cilia and the roles phosphoinositides play in cilia biology. In addition to increasing our understanding of fundamental cilia biology, this rapidly expanding field may inform novel approaches to treat ciliopathy syndromes caused by deregulated phosphoinositide metabolism.
Collapse
Affiliation(s)
- Sarah E. Conduit
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6BT, U.K
| | - Bart Vanhaesebroeck
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6BT, U.K
| |
Collapse
|
49
|
Shiromizu T, Yuge M, Kasahara K, Yamakawa D, Matsui T, Bessho Y, Inagaki M, Nishimura Y. Targeting E3 Ubiquitin Ligases and Deubiquitinases in Ciliopathy and Cancer. Int J Mol Sci 2020; 21:E5962. [PMID: 32825105 PMCID: PMC7504095 DOI: 10.3390/ijms21175962] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/16/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022] Open
Abstract
Cilia are antenna-like structures present in many vertebrate cells. These organelles detect extracellular cues, transduce signals into the cell, and play an essential role in ensuring correct cell proliferation, migration, and differentiation in a spatiotemporal manner. Not surprisingly, dysregulation of cilia can cause various diseases, including cancer and ciliopathies, which are complex disorders caused by mutations in genes regulating ciliary function. The structure and function of cilia are dynamically regulated through various mechanisms, among which E3 ubiquitin ligases and deubiquitinases play crucial roles. These enzymes regulate the degradation and stabilization of ciliary proteins through the ubiquitin-proteasome system. In this review, we briefly highlight the role of cilia in ciliopathy and cancer; describe the roles of E3 ubiquitin ligases and deubiquitinases in ciliogenesis, ciliopathy, and cancer; and highlight some of the E3 ubiquitin ligases and deubiquitinases that are potential therapeutic targets for these disorders.
Collapse
Affiliation(s)
- Takashi Shiromizu
- Department of Integrative Pharmacology, Graduate School of Medicine, Mie University, Tsu, Mie 514-8507, Japan; (T.S.); (M.Y.)
| | - Mizuki Yuge
- Department of Integrative Pharmacology, Graduate School of Medicine, Mie University, Tsu, Mie 514-8507, Japan; (T.S.); (M.Y.)
| | - Kousuke Kasahara
- Department of Physiology, Graduate School of Medicine, Mie University, Tsu, Mie 514-5807, Japan; (K.K.); (D.Y.); (M.I.)
| | - Daishi Yamakawa
- Department of Physiology, Graduate School of Medicine, Mie University, Tsu, Mie 514-5807, Japan; (K.K.); (D.Y.); (M.I.)
| | - Takaaki Matsui
- Gene Regulation Research, Division of Biological Sciences, Nara Institute of Science and Technology, Takayama, Nara 630-0192, Japan; (T.M.); (Y.B.)
| | - Yasumasa Bessho
- Gene Regulation Research, Division of Biological Sciences, Nara Institute of Science and Technology, Takayama, Nara 630-0192, Japan; (T.M.); (Y.B.)
| | - Masaki Inagaki
- Department of Physiology, Graduate School of Medicine, Mie University, Tsu, Mie 514-5807, Japan; (K.K.); (D.Y.); (M.I.)
| | - Yuhei Nishimura
- Department of Integrative Pharmacology, Graduate School of Medicine, Mie University, Tsu, Mie 514-8507, Japan; (T.S.); (M.Y.)
| |
Collapse
|
50
|
Nechipurenko IV. The Enigmatic Role of Lipids in Cilia Signaling. Front Cell Dev Biol 2020; 8:777. [PMID: 32850869 PMCID: PMC7431879 DOI: 10.3389/fcell.2020.00777] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/24/2020] [Indexed: 12/21/2022] Open
Abstract
Primary cilia are specialized cellular structures that project from the surface of most cell types in metazoans and mediate transduction of major signaling pathways. The ciliary membrane is contiguous with the plasma membrane, yet it exhibits distinct protein and lipid composition, which is essential for ciliary function. Diffusion barriers at the base of a cilium are responsible for establishing unique molecular composition of this organelle. Although considerable progress has been made in identifying mechanisms of ciliary protein trafficking in and out of cilia, it remains largely unknown how the distinct lipid identity of the ciliary membrane is achieved. In this mini review, I summarize recent developments in characterizing lipid composition and organization of the ciliary membrane and discuss the emerging roles of lipids in modulating activity of ciliary signaling components including ion channels and G protein-coupled receptors.
Collapse
Affiliation(s)
- Inna V. Nechipurenko
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, United States
| |
Collapse
|