1
|
Carmichael RE, Richards DM, Fahimi HD, Schrader M. Organelle Membrane Extensions in Mammalian Cells. BIOLOGY 2023; 12:biology12050664. [PMID: 37237478 DOI: 10.3390/biology12050664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023]
Abstract
Organelles within eukaryotic cells are not isolated static compartments, instead being morphologically diverse and highly dynamic in order to respond to cellular needs and carry out their diverse and cooperative functions. One phenomenon exemplifying this plasticity, and increasingly gaining attention, is the extension and retraction of thin tubules from organelle membranes. While these protrusions have been observed in morphological studies for decades, their formation, properties and functions are only beginning to be understood. In this review, we provide an overview of what is known and still to be discovered about organelle membrane protrusions in mammalian cells, focusing on the best-characterised examples of these membrane extensions arising from peroxisomes (ubiquitous organelles involved in lipid metabolism and reactive oxygen species homeostasis) and mitochondria. We summarise the current knowledge on the diversity of peroxisomal/mitochondrial membrane extensions, as well as the molecular mechanisms by which they extend and retract, necessitating dynamic membrane remodelling, pulling forces and lipid flow. We also propose broad cellular functions for these membrane extensions in inter-organelle communication, organelle biogenesis, metabolism and protection, and finally present a mathematical model that suggests that extending protrusions is the most efficient way for an organelle to explore its surroundings.
Collapse
Affiliation(s)
- Ruth E Carmichael
- Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - David M Richards
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
- Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, UK
| | - H Dariush Fahimi
- Institute for Anatomy and Cell Biology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Michael Schrader
- Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter EX4 4QD, UK
| |
Collapse
|
2
|
Genovese I, Fornetti E, Ruocco G. Mitochondria inter-organelle relationships in cancer protein aggregation. Front Cell Dev Biol 2022; 10:1062993. [PMID: 36601538 PMCID: PMC9806238 DOI: 10.3389/fcell.2022.1062993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Mitochondria are physically associated with other organelles, such as ER and lysosomes, forming a complex network that is crucial for cell homeostasis regulation. Inter-organelle relationships are finely regulated by both tether systems, which maintain physical proximity, and by signaling cues that induce the exchange of molecular information to regulate metabolism, Ca2+ homeostasis, redox state, nutrient availability, and proteostasis. The coordinated action of the organelles is engaged in the cellular integrated stress response. In any case, pathological conditions alter functional communication and efficient rescue pathway activation, leading to cell distress exacerbation and eventually cell death. Among these detrimental signals, misfolded protein accumulation and aggregation cause major damage to the cells, since defects in protein clearance systems worsen cell toxicity. A cause for protein aggregation is often a defective mitochondrial redox balance, and the ER freshly translated misfolded proteins and/or a deficient lysosome-mediated clearance system. All these features aggravate mitochondrial damage and enhance proteotoxic stress. This review aims to gather the current knowledge about the complex liaison between mitochondria, ER, and lysosomes in facing proteotoxic stress and protein aggregation, highlighting both causes and consequences. Particularly, specific focus will be pointed to cancer, a pathology in which inter-organelle relations in protein aggregation have been poorly investigated.
Collapse
Affiliation(s)
- Ilaria Genovese
- Center for Life Nano and Neuro Science, Istituto Italiano di Tecnologia (IIT), Rome, Italy,*Correspondence: Ilaria Genovese,
| | - Ersilia Fornetti
- Center for Life Nano and Neuro Science, Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Giancarlo Ruocco
- Center for Life Nano and Neuro Science, Istituto Italiano di Tecnologia (IIT), Rome, Italy,Department of Physics, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
3
|
Fujiki Y, Okumoto K, Honsho M, Abe Y. Molecular insights into peroxisome homeostasis and peroxisome biogenesis disorders. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119330. [PMID: 35917894 DOI: 10.1016/j.bbamcr.2022.119330] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Peroxisomes are single-membrane organelles essential for cell metabolism including the β-oxidation of fatty acids, synthesis of etherlipid plasmalogens, and redox homeostasis. Investigations into peroxisome biogenesis and the human peroxisome biogenesis disorders (PBDs) have identified 14 PEX genes encoding peroxins involved in peroxisome biogenesis and the mutation of PEX genes is responsible for the PBDs. Many recent findings have further advanced our understanding of the biology, physiology, and consequences of a functional deficit of peroxisomes. In this Review, we discuss cell defense mechanisms that counteract oxidative stress by 1) a proapoptotic Bcl-2 factor BAK-mediated release to the cytosol of H2O2-degrading catalase from peroxisomes and 2) peroxisomal import suppression of catalase by Ser232-phosphorylation of Pex14, a docking protein for the Pex5-PTS1 complex. With respect to peroxisome division, the important issue of how the energy-rich GTP is produced and supplied for the division process was recently addressed by the discovery of a nucleoside diphosphate kinase-like protein, termed DYNAMO1 in a lower eukaryote, which has a mammalian homologue NME3. In regard to the mechanisms underlying the pathogenesis of PBDs, a new PBD model mouse defective in Pex14 manifests a dysregulated brain-derived neurotrophic factor (BDNF)-TrkB pathway, an important signaling pathway for cerebellar morphogenesis. Communications between peroxisomes and other organelles are also addressed.
Collapse
Affiliation(s)
- Yukio Fujiki
- Medical Institute of Bioregulation, Institute of Rheological Functions of Food, Collaboration Program, Kyushu University, 3-1-1 Maidashi, Fukuoka 812-8582, Japan.
| | - Kanji Okumoto
- Department of Biology and Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Masanori Honsho
- Medical Institute of Bioregulation, Institute of Rheological Functions of Food, Collaboration Program, Kyushu University, 3-1-1 Maidashi, Fukuoka 812-8582, Japan
| | - Yuichi Abe
- Faculty of Arts and Science, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| |
Collapse
|
4
|
Fission Impossible (?)-New Insights into Disorders of Peroxisome Dynamics. Cells 2022; 11:cells11121922. [PMID: 35741050 PMCID: PMC9221819 DOI: 10.3390/cells11121922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022] Open
Abstract
Peroxisomes are highly dynamic and responsive organelles, which can adjust their morphology, number, intracellular position, and metabolic functions according to cellular needs. Peroxisome multiplication in mammalian cells involves the concerted action of the membrane-shaping protein PEX11β and division proteins, such as the membrane adaptors FIS1 and MFF, which recruit the fission GTPase DRP1 to the peroxisomal membrane. The latter proteins are also involved in mitochondrial division. Patients with loss of DRP1, MFF or PEX11β function have been identified, showing abnormalities in peroxisomal (and, for the shared proteins, mitochondrial) dynamics as well as developmental and neurological defects, whereas the metabolic functions of the organelles are often unaffected. Here, we provide a timely update on peroxisomal membrane dynamics with a particular focus on peroxisome formation by membrane growth and division. We address the function of PEX11β in these processes, as well as the role of peroxisome–ER contacts in lipid transfer for peroxisomal membrane expansion. Furthermore, we summarize the clinical phenotypes and pathophysiology of patients with defects in the key division proteins DRP1, MFF, and PEX11β as well as in the peroxisome–ER tether ACBD5. Potential therapeutic strategies for these rare disorders with limited treatment options are discussed.
Collapse
|
5
|
S Mogre S, Brown AI, Koslover EF. Getting around the cell: physical transport in the intracellular world. Phys Biol 2020; 17:061003. [PMID: 32663814 DOI: 10.1088/1478-3975/aba5e5] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Eukaryotic cells face the challenging task of transporting a variety of particles through the complex intracellular milieu in order to deliver, distribute, and mix the many components that support cell function. In this review, we explore the biological objectives and physical mechanisms of intracellular transport. Our focus is on cytoplasmic and intra-organelle transport at the whole-cell scale. We outline several key biological functions that depend on physically transporting components across the cell, including the delivery of secreted proteins, support of cell growth and repair, propagation of intracellular signals, establishment of organelle contacts, and spatial organization of metabolic gradients. We then review the three primary physical modes of transport in eukaryotic cells: diffusive motion, motor-driven transport, and advection by cytoplasmic flow. For each mechanism, we identify the main factors that determine speed and directionality. We also highlight the efficiency of each transport mode in fulfilling various key objectives of transport, such as particle mixing, directed delivery, and rapid target search. Taken together, the interplay of diffusion, molecular motors, and flows supports the intracellular transport needs that underlie a broad variety of biological phenomena.
Collapse
Affiliation(s)
- Saurabh S Mogre
- Department of Physics, University of California, San Diego, San Diego, California 92093, United States of America
| | | | | |
Collapse
|
6
|
Miyamoto T, Hosoba K, Itabashi T, Iwane AH, Akutsu SN, Ochiai H, Saito Y, Yamamoto T, Matsuura S. Insufficiency of ciliary cholesterol in hereditary Zellweger syndrome. EMBO J 2020; 39:e103499. [PMID: 32368833 PMCID: PMC7298307 DOI: 10.15252/embj.2019103499] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 03/13/2020] [Accepted: 03/20/2020] [Indexed: 11/22/2022] Open
Abstract
Primary cilia are antenna‐like organelles on the surface of most mammalian cells that receive sonic hedgehog (Shh) signaling in embryogenesis and carcinogenesis. Cellular cholesterol functions as a direct activator of a seven‐transmembrane oncoprotein called Smoothened (Smo) and thereby induces Smo accumulation on the ciliary membrane where it transduces the Shh signal. However, how cholesterol is supplied to the ciliary membrane remains unclear. Here, we report that peroxisomes are essential for the transport of cholesterol into the ciliary membrane. Zellweger syndrome (ZS) is a peroxisome‐deficient hereditary disorder with several ciliopathy‐related features and cells from these patients showed a reduced cholesterol level in the ciliary membrane. Reverse genetics approaches revealed that the GTP exchange factor Rabin8, the Rab GTPase Rab10, and the microtubule minus‐end‐directed kinesin KIFC3 form a peroxisome‐associated complex to control the movement of peroxisomes along microtubules, enabling communication between peroxisomes and ciliary pocket membranes. Our findings suggest that insufficient ciliary cholesterol levels may underlie ciliopathies.
Collapse
Affiliation(s)
- Tatsuo Miyamoto
- Department of Genetics and Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Kosuke Hosoba
- Department of Genetics and Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan.,Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Takeshi Itabashi
- Laboratory for Cell Field Structure, RIKEN Center for Biosystems Dynamics Research, Higashi-Hiroshima, Japan
| | - Atsuko H Iwane
- Laboratory for Cell Field Structure, RIKEN Center for Biosystems Dynamics Research, Higashi-Hiroshima, Japan
| | - Silvia Natsuko Akutsu
- Department of Genetics and Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Hiroshi Ochiai
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Yumiko Saito
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan.,Program of Life and Environmental Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Takashi Yamamoto
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan.,Program of Mathematical and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Shinya Matsuura
- Department of Genetics and Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
7
|
Scorrano L, De Matteis MA, Emr S, Giordano F, Hajnóczky G, Kornmann B, Lackner LL, Levine TP, Pellegrini L, Reinisch K, Rizzuto R, Simmen T, Stenmark H, Ungermann C, Schuldiner M. Coming together to define membrane contact sites. Nat Commun 2019; 10:1287. [PMID: 30894536 PMCID: PMC6427007 DOI: 10.1038/s41467-019-09253-3] [Citation(s) in RCA: 489] [Impact Index Per Article: 81.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 02/21/2019] [Indexed: 12/14/2022] Open
Abstract
Close proximities between organelles have been described for decades. However, only recently a specific field dealing with organelle communication at membrane contact sites has gained wide acceptance, attracting scientists from multiple areas of cell biology. The diversity of approaches warrants a unified vocabulary for the field. Such definitions would facilitate laying the foundations of this field, streamlining communication and resolving semantic controversies. This opinion, written by a panel of experts in the field, aims to provide this burgeoning area with guidelines for the experimental definition and analysis of contact sites. It also includes suggestions on how to operationally and tractably measure and analyze them with the hope of ultimately facilitating knowledge production and dissemination within and outside the field of contact-site research.
Collapse
Affiliation(s)
- Luca Scorrano
- Venetian Institute of Molecular Medicine, Department of Biology, University of Padua, Padua, Italy.
| | - Maria Antonietta De Matteis
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Napoli Federico II, Naples, Italy
| | - Scott Emr
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Francesca Giordano
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Paris-Sud University, Paris-Saclay University, Gif-sur-Yvette cedex, 91198, France.
| | - György Hajnóczky
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Benoît Kornmann
- University of Oxford, Department of Biochemistry, South Parks Road, Ox1 3QU, Oxford, United Kingdom
| | - Laura L Lackner
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA
| | - Tim P Levine
- UCL Institute of Ophthalmology, London, EC1V 9EL, UK
| | - Luca Pellegrini
- Department of Molecular Biology, Medical Biochemistry, and Pathology, Universitè Laval, Quebec, QC, Canada
| | - Karin Reinisch
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Thomas Simmen
- University of Alberta, Faculty of Medicine and Dentistry, Department of Cell Biology, Edmonton, AB, T6G2H7, Canada
| | - Harald Stenmark
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Montebello, N-0379, Oslo, Norway
| | - Christian Ungermann
- Department of Biology/Chemistry, University of Osnabrück, 49082, Osnabrück, Germany
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|
8
|
Abstract
Cytoplasmic dynein 1 is an important microtubule-based motor in many eukaryotic cells. Dynein has critical roles both in interphase and during cell division. Here, we focus on interphase cargoes of dynein, which include membrane-bound organelles, RNAs, protein complexes and viruses. A central challenge in the field is to understand how a single motor can transport such a diverse array of cargoes and how this process is regulated. The molecular basis by which each cargo is linked to dynein and its cofactor dynactin has started to emerge. Of particular importance for this process is a set of coiled-coil proteins - activating adaptors - that both recruit dynein-dynactin to their cargoes and activate dynein motility.
Collapse
|
9
|
Diogo CV, Yambire KF, Fernández Mosquera L, Branco F T, Raimundo N. Mitochondrial adventures at the organelle society. Biochem Biophys Res Commun 2018; 500:87-93. [PMID: 28456629 PMCID: PMC5930832 DOI: 10.1016/j.bbrc.2017.04.124] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 04/23/2017] [Indexed: 01/16/2023]
Abstract
Mitochondria are constantly communicating with the rest of the cell. Defects in mitochondria underlie severe pathologies, whose mechanisms remain poorly understood. It is becoming increasingly evident that mitochondrial malfunction resonates in other organelles, perturbing their function and their biogenesis. In this manuscript, we review the current knowledge on the cross-talk between mitochondria and other organelles, particularly lysosomes, peroxisomes and the endoplasmic reticulum. Several organelle interactions are mediated by transcriptional programs, and other signaling mechanisms are likely mediating organelle dysfunction downstream of mitochondrial impairments. Many of these organelle crosstalk pathways are likely to have a role in pathological processes.
Collapse
Affiliation(s)
- Cátia V Diogo
- Universitätsmedizin Göttingen, Institute fur Zellbiochemie, Humboldtallee 23, room 01.423, 37073 Göttingen, Germany
| | - King Faisal Yambire
- Universitätsmedizin Göttingen, Institute fur Zellbiochemie, Humboldtallee 23, room 01.423, 37073 Göttingen, Germany; International Max-Planck Research School in Neuroscience, Göttingen, Germany
| | - Lorena Fernández Mosquera
- Universitätsmedizin Göttingen, Institute fur Zellbiochemie, Humboldtallee 23, room 01.423, 37073 Göttingen, Germany
| | - Tiago Branco F
- Universitätsmedizin Göttingen, Institute fur Zellbiochemie, Humboldtallee 23, room 01.423, 37073 Göttingen, Germany
| | - Nuno Raimundo
- Universitätsmedizin Göttingen, Institute fur Zellbiochemie, Humboldtallee 23, room 01.423, 37073 Göttingen, Germany.
| |
Collapse
|
10
|
Castro IG, Richards DM, Metz J, Costello JL, Passmore JB, Schrader TA, Gouveia A, Ribeiro D, Schrader M. A role for Mitochondrial Rho GTPase 1 (MIRO1) in motility and membrane dynamics of peroxisomes. Traffic 2018; 19:229-242. [PMID: 29364559 PMCID: PMC5888202 DOI: 10.1111/tra.12549] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/18/2018] [Accepted: 01/18/2018] [Indexed: 01/09/2023]
Abstract
Peroxisomes are dynamic organelles which fulfil essential roles in lipid and ROS metabolism. Peroxisome movement and positioning allows interaction with other organelles and is crucial for their cellular function. In mammalian cells, such movement is microtubule-dependent and mediated by kinesin and dynein motors. The mechanisms of motor recruitment to peroxisomes are largely unknown, as well as the role this plays in peroxisome membrane dynamics and proliferation. Here, using a combination of microscopy, live-cell imaging analysis and mathematical modelling, we identify a role for Mitochondrial Rho GTPase 1 (MIRO1) as an adaptor for microtubule-dependent peroxisome motility in mammalian cells. We show that MIRO1 is targeted to peroxisomes and alters their distribution and motility. Using a peroxisome-targeted MIRO1 fusion protein, we demonstrate that MIRO1-mediated pulling forces contribute to peroxisome membrane elongation and proliferation in cellular models of peroxisome disease. Our findings reveal a molecular mechanism for establishing peroxisome-motor protein associations in mammalian cells and provide new insights into peroxisome membrane dynamics in health and disease.
Collapse
Affiliation(s)
| | | | - Jeremy Metz
- Biosciences, University of Exeter, Exeter, UK
| | | | | | | | - Ana Gouveia
- Institute of Biomedicine, University of Aveiro, Aveiro, Portugal
| | - Daniela Ribeiro
- Institute of Biomedicine, University of Aveiro, Aveiro, Portugal
| | | |
Collapse
|
11
|
Qin L, Crawford JM. Anatomy and Cellular Functions of the Liver. ZAKIM AND BOYER'S HEPATOLOGY 2018:2-19.e4. [DOI: 10.1016/b978-0-323-37591-7.00001-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
12
|
Walker CL, Pomatto LCD, Tripathi DN, Davies KJA. Redox Regulation of Homeostasis and Proteostasis in Peroxisomes. Physiol Rev 2018; 98:89-115. [PMID: 29167332 PMCID: PMC6335096 DOI: 10.1152/physrev.00033.2016] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 06/19/2017] [Accepted: 06/21/2017] [Indexed: 02/08/2023] Open
Abstract
Peroxisomes are highly dynamic intracellular organelles involved in a variety of metabolic functions essential for the metabolism of long-chain fatty acids, d-amino acids, and many polyamines. A byproduct of peroxisomal metabolism is the generation, and subsequent detoxification, of reactive oxygen and nitrogen species, particularly hydrogen peroxide (H2O2). Because of its relatively low reactivity (as a mild oxidant), H2O2 has a comparatively long intracellular half-life and a high diffusion rate, all of which makes H2O2 an efficient signaling molecule. Peroxisomes also have intricate connections to mitochondria, and both organelles appear to play important roles in regulating redox signaling pathways. Peroxisomal proteins are also subject to oxidative modification and inactivation by the reactive oxygen and nitrogen species they generate, but the peroxisomal LonP2 protease can selectively remove such oxidatively damaged proteins, thus prolonging the useful lifespan of the organelle. Peroxisomal homeostasis must adapt to the metabolic state of the cell, by a combination of peroxisome proliferation, the removal of excess or badly damaged organelles by autophagy (pexophagy), as well as by processes of peroxisome inheritance and motility. More recently the tumor suppressors ataxia telangiectasia mutate (ATM) and tuberous sclerosis complex (TSC), which regulate mTORC1 signaling, have been found to regulate pexophagy in response to variable levels of certain reactive oxygen and nitrogen species. It is now clear that any significant loss of peroxisome homeostasis can have devastating physiological consequences. Peroxisome dysregulation has been implicated in several metabolic diseases, and increasing evidence highlights the important role of diminished peroxisomal functions in aging processes.
Collapse
Affiliation(s)
- Cheryl L Walker
- Center for Precision Environmental Health and Departments of Molecular & Cellular Biology and Medicine, Baylor College of Medicine, Houston, Texas; and Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center and Division of Molecular & Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, The University of Southern California, Los Angeles, California
| | - Laura C D Pomatto
- Center for Precision Environmental Health and Departments of Molecular & Cellular Biology and Medicine, Baylor College of Medicine, Houston, Texas; and Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center and Division of Molecular & Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, The University of Southern California, Los Angeles, California
| | - Durga Nand Tripathi
- Center for Precision Environmental Health and Departments of Molecular & Cellular Biology and Medicine, Baylor College of Medicine, Houston, Texas; and Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center and Division of Molecular & Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, The University of Southern California, Los Angeles, California
| | - Kelvin J A Davies
- Center for Precision Environmental Health and Departments of Molecular & Cellular Biology and Medicine, Baylor College of Medicine, Houston, Texas; and Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center and Division of Molecular & Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, The University of Southern California, Los Angeles, California
| |
Collapse
|
13
|
Okumoto K, Ono T, Toyama R, Shimomura A, Nagata A, Fujiki Y. New splicing variants of mitochondrial Rho GTPase-1 (Miro1) transport peroxisomes. J Cell Biol 2017; 217:619-633. [PMID: 29222186 PMCID: PMC5800816 DOI: 10.1083/jcb.201708122] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/27/2017] [Accepted: 11/06/2017] [Indexed: 01/31/2023] Open
Abstract
The mechanisms underlying microtubule-dependent long-distance movement of peroxisomes in mammalian cells are unclear. Okumoto et al. identify splicing variants of human mitochondrial Rho GTPase-1 (Miro1) that localize to peroxisomes and that link these organelles to microtubule-dependent transport complexes including TRAK2. Microtubule-dependent long-distance movement of peroxisomes occurs in mammalian cells. However, its molecular mechanisms remain undefined. In this study, we identified three distinct splicing variants of human mitochondrial Rho GTPase-1 (Miro1), each containing amino acid sequence insertions 1 (named Miro1-var2), 2 (Miro1-var3), and both 1 and 2 (Miro1-var4), respectively, at upstream of the transmembrane domain. Miro1-var4 and Miro1-var2 are localized to peroxisomes in a manner dependent on the insertion 1 that is recognized by the cytosolic receptor Pex19p. Exogenous expression of Miro1-var4 induces accumulation of peroxisomes at the cell periphery and augments long-range movement of peroxisomes along microtubules. Depletion of all Miro1 variants by knocking down MIRO1 suppresses the long-distance movement of peroxisomes. Such abrogated movement is restored by reexpression of peroxisomal Miro1 variants. Collectively, our findings identify for the first time peroxisome-localized Miro1 variants as adapter proteins that link peroxisomes to the microtubule-dependent transport complexes including TRAK2 in the intracellular translocation of peroxisomes in mammalian cells.
Collapse
Affiliation(s)
- Kanji Okumoto
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan.,Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
| | - Tatsuaki Ono
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
| | - Ryusuke Toyama
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| | - Ayako Shimomura
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| | - Aiko Nagata
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
| | - Yukio Fujiki
- Division of Organelle Homeostasis, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
14
|
Asare A, Levorse J, Fuchs E. Coupling organelle inheritance with mitosis to balance growth and differentiation. Science 2017; 355:355/6324/eaah4701. [PMID: 28154022 DOI: 10.1126/science.aah4701] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/26/2016] [Accepted: 11/23/2016] [Indexed: 01/03/2023]
Abstract
Balancing growth and differentiation is essential to tissue morphogenesis and homeostasis. How imbalances arise in disease states is poorly understood. To address this issue, we identified transcripts differentially expressed in mouse basal epidermal progenitors versus their differentiating progeny and those altered in cancers. We used an in vivo RNA interference screen to unveil candidates that altered the equilibrium between the basal proliferative layer and suprabasal differentiating layers forming the skin barrier. We found that epidermal progenitors deficient in the peroxisome-associated protein Pex11b failed to segregate peroxisomes properly and entered a mitotic delay that perturbed polarized divisions and skewed daughter fates. Together, our findings unveil a role for organelle inheritance in mitosis, spindle alignment, and the choice of daughter progenitors to differentiate or remain stem-like.
Collapse
Affiliation(s)
- Amma Asare
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY 10065, USA
| | - John Levorse
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY 10065, USA
| | - Elaine Fuchs
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
15
|
Barel O, Malicdan MCV, Ben-Zeev B, Kandel J, Pri-Chen H, Stephen J, Castro IG, Metz J, Atawa O, Moshkovitz S, Ganelin E, Barshack I, Polak-Charcon S, Nass D, Marek-Yagel D, Amariglio N, Shalva N, Vilboux T, Ferreira C, Pode-Shakked B, Heimer G, Hoffmann C, Yardeni T, Nissenkorn A, Avivi C, Eyal E, Kol N, Glick Saar E, Wallace DC, Gahl WA, Rechavi G, Schrader M, Eckmann DM, Anikster Y. Deleterious variants in TRAK1 disrupt mitochondrial movement and cause fatal encephalopathy. Brain 2017; 140:568-581. [PMID: 28364549 PMCID: PMC6075218 DOI: 10.1093/brain/awx002] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/22/2016] [Accepted: 12/05/2016] [Indexed: 01/12/2023] Open
Abstract
Cellular distribution and dynamics of mitochondria are regulated by several motor proteins and a microtubule network. In neurons, mitochondrial trafficking is crucial because of high energy needs and calcium ion buffering along axons to synapses during neurotransmission. The trafficking kinesin proteins (TRAKs) are well characterized for their role in lysosomal and mitochondrial trafficking in cells, especially neurons. Using whole exome sequencing, we identified homozygous truncating variants in TRAK1 (NM_001042646:c.287-2A > C), in six lethal encephalopathic patients from three unrelated families. The pathogenic variant results in aberrant splicing and significantly reduced gene expression at the RNA and protein levels. In comparison with normal cells, TRAK1-deficient fibroblasts showed irregular mitochondrial distribution, altered mitochondrial motility, reduced mitochondrial membrane potential, and diminished mitochondrial respiration. This study confirms the role of TRAK1 in mitochondrial dynamics and constitutes the first report of this gene in association with a severe neurodevelopmental disorder.
Collapse
Affiliation(s)
- Ortal Barel
- Sheba Cancer Research Center, Sheba Medical Center, Tel-Hashomer, Israel
- The Wohl Institute for Translational Medicine, Sheba Medical Center, Tel-Hashomer, Israel
| | - May Christine V Malicdan
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
- NIH Undiagnosed Diseases Program, NHGRI, National Institutes of Health, Bethesda, Maryland, USA
| | - Bruria Ben-Zeev
- The Wohl Institute for Translational Medicine, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Pediatric Neurology Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-Hashomer, Israel
| | - Judith Kandel
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hadass Pri-Chen
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Joshi Stephen
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Inês G Castro
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Jeremy Metz
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Osama Atawa
- Palestenian Red Crescent Society Hospital, Department of Pediatrics, Hebron City, Palestine
| | - Sharon Moshkovitz
- Sheba Cancer Research Center, Sheba Medical Center, Tel-Hashomer, Israel
- The Wohl Institute for Translational Medicine, Sheba Medical Center, Tel-Hashomer, Israel
| | - Esther Ganelin
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Pediatric Neurology Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-Hashomer, Israel
| | - Iris Barshack
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Department of Pathology, Sheba Medical Center, Tel-Hashomer, Israel
| | - Sylvie Polak-Charcon
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Department of Pathology, Sheba Medical Center, Tel-Hashomer, Israel
| | - Dvora Nass
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Department of Pathology, Sheba Medical Center, Tel-Hashomer, Israel
| | - Dina Marek-Yagel
- The Wohl Institute for Translational Medicine, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Metabolic Disease Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-Hashomer, Israel
| | - Ninette Amariglio
- Sheba Cancer Research Center, Sheba Medical Center, Tel-Hashomer, Israel
- The Wohl Institute for Translational Medicine, Sheba Medical Center, Tel-Hashomer, Israel
| | - Nechama Shalva
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Metabolic Disease Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-Hashomer, Israel
| | - Thierry Vilboux
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
- Inova Translational Medicine Institute, Inova Health System, Falls Church, Virginia, USA
| | - Carlos Ferreira
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
- Division of Genetics and Metabolism, Children’s National Health System, Washington DC, USA
| | - Ben Pode-Shakked
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Metabolic Disease Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-Hashomer, Israel
- The Dr. Pinchas Borenstein Talpiot Medical Leadership Program, Sheba Medical Center, Tel-Hashomer, Israel
| | - Gali Heimer
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Pediatric Neurology Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-Hashomer, Israel
- The Dr. Pinchas Borenstein Talpiot Medical Leadership Program, Sheba Medical Center, Tel-Hashomer, Israel
| | - Chen Hoffmann
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Department of Radiology, Sheba Medical Center, Tel-Hashomer, Israel
| | - Tal Yardeni
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Andreea Nissenkorn
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Service for Rare Disorders, Pediatric Neurology Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-Hashomer, Israel
| | - Camila Avivi
- Department of Pathology, Sheba Medical Center, Tel-Hashomer, Israel
| | - Eran Eyal
- Sheba Cancer Research Center, Sheba Medical Center, Tel-Hashomer, Israel
- The Wohl Institute for Translational Medicine, Sheba Medical Center, Tel-Hashomer, Israel
| | - Nitzan Kol
- Sheba Cancer Research Center, Sheba Medical Center, Tel-Hashomer, Israel
- The Wohl Institute for Translational Medicine, Sheba Medical Center, Tel-Hashomer, Israel
| | - Efrat Glick Saar
- Sheba Cancer Research Center, Sheba Medical Center, Tel-Hashomer, Israel
- The Wohl Institute for Translational Medicine, Sheba Medical Center, Tel-Hashomer, Israel
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - William A Gahl
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
- NIH Undiagnosed Diseases Program, NHGRI, National Institutes of Health, Bethesda, Maryland, USA
| | - Gideon Rechavi
- Sheba Cancer Research Center, Sheba Medical Center, Tel-Hashomer, Israel
- The Wohl Institute for Translational Medicine, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Michael Schrader
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - David M Eckmann
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yair Anikster
- The Wohl Institute for Translational Medicine, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Metabolic Disease Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-Hashomer, Israel
| |
Collapse
|
16
|
Salogiannis J, Reck-Peterson SL. Hitchhiking: A Non-Canonical Mode of Microtubule-Based Transport. Trends Cell Biol 2016; 27:141-150. [PMID: 27665063 DOI: 10.1016/j.tcb.2016.09.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/29/2016] [Accepted: 09/02/2016] [Indexed: 01/01/2023]
Abstract
The long-range movement of organelles, vesicles, and macromolecular complexes by microtubule-based transport is crucial for cell growth and survival. The canonical view of intracellular transport is that each cargo directly recruits molecular motors via cargo-specific adaptor molecules. Recently, a new paradigm called 'hitchhiking' has emerged: some cargos can achieve motility by interacting with other cargos that have already recruited molecular motors. In this way, cargos are co-transported together and their movements are directly coupled. Cargo hitchhiking was discovered in fungi. However, the observation that organelle dynamics are coupled in mammalian cells suggests that this paradigm may be evolutionarily conserved. We review here the data for hitchhiking and discuss the biological significance of this non-canonical mode of microtubule-based transport.
Collapse
Affiliation(s)
- John Salogiannis
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA; Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Samara L Reck-Peterson
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA; Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
17
|
Lin C, Schuster M, Guimaraes SC, Ashwin P, Schrader M, Metz J, Hacker C, Gurr SJ, Steinberg G. Active diffusion and microtubule-based transport oppose myosin forces to position organelles in cells. Nat Commun 2016; 7:11814. [PMID: 27251117 PMCID: PMC4895713 DOI: 10.1038/ncomms11814] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 05/03/2016] [Indexed: 11/26/2022] Open
Abstract
Even distribution of peroxisomes (POs) and lipid droplets (LDs) is critical to their role in lipid and reactive oxygen species homeostasis. How even distribution is achieved remains elusive, but diffusive motion and directed motility may play a role. Here we show that in the fungus Ustilago maydis ∼95% of POs and LDs undergo diffusive motions. These movements require ATP and involve bidirectional early endosome motility, indicating that microtubule-associated membrane trafficking enhances diffusion of organelles. When early endosome transport is abolished, POs and LDs drift slowly towards the growing cell end. This pole-ward drift is facilitated by anterograde delivery of secretory cargo to the cell tip by myosin-5. Modelling reveals that microtubule-based directed transport and active diffusion support distribution, mobility and mixing of POs. In mammalian COS-7 cells, microtubules and F-actin also counteract each other to distribute POs. This highlights the importance of opposing cytoskeletal forces in organelle positioning in eukaryotes. The mechanisms underlying the positioning of eukaryotic organelles remain elusive. Here Lin et al. use imaging and a mathematical model to show that microtubule-based transport and active diffusion and actin-based polar drift act together to facilitate even distribution of peroxisomes in filamentous fungi.
Collapse
Affiliation(s)
- Congping Lin
- School of Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK.,Mathematics, University of Exeter, North Park Road, Exeter EX4 4QF, UK
| | - Martin Schuster
- School of Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | | | - Peter Ashwin
- Mathematics, University of Exeter, North Park Road, Exeter EX4 4QF, UK
| | - Michael Schrader
- School of Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Jeremy Metz
- School of Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Christian Hacker
- School of Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Sarah Jane Gurr
- School of Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Gero Steinberg
- School of Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
18
|
Fan J, Li X, Issop L, Culty M, Papadopoulos V. ACBD2/ECI2-Mediated Peroxisome-Mitochondria Interactions in Leydig Cell Steroid Biosynthesis. Mol Endocrinol 2016; 30:763-82. [PMID: 27167610 DOI: 10.1210/me.2016-1008] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Fatty acid metabolism and steroid biosynthesis are 2 major pathways shared by peroxisomes and mitochondria. Both organelles are in close apposition to the endoplasmic reticulum, with which they communicate via interorganelle membrane contact sites to promote cellular signaling and the exchange of ions and lipids. To date, no convincing evidence of the direct contact between peroxisomes and mitochondria was reported in mammalian cells. Hormone-induced, tightly controlled steroid hormone biosynthesis requires interorganelle interactions. Using immunofluorescent staining and live-cell imaging, we found that dibutyryl-cAMP treatment of MA-10 mouse tumor Leydig cells rapidly induces peroxisomes to approach mitochondria and form peroxisome-mitochondrial contact sites/fusion, revealed by the subcellular distribution of the endogenous acyl-coenzyme A-binding domain (ACBD)2/ECI2 isoform A generated by alternative splicing, and further validated using a proximity ligation assay. This event occurs likely via a peroxisome-like structure, which is mediated by peroxisomal and mitochondrial matrix protein import complexes: peroxisomal import receptor peroxisomal biogenesis factor 5 (PEX5), and the mitochondrial import receptor subunit translocase of outer mitochondrial membrane 20 homolog (yeast) protein. Similar results were obtained using the mLTC-1 mouse tumor Leydig cells. Ectopic expression of the ACBD2/ECI2 isoform A in MA-10 cells led to increased basal and hormone-stimulated steroid formation, indicating that ACBD2/ECI2-mediated peroxisomes-mitochondria interactions favor in the exchange of metabolites and/or macromolecules between these 2 organelles in support of steroid biosynthesis. Considering the widespread occurrence of the ACBD2/ECI2 protein, we propose that this protein might serve as a tool to assist in understanding the contact between peroxisomes and mitochondria.
Collapse
Affiliation(s)
- Jinjiang Fan
- The Research Institute of the McGill University Health Centre (J.F., X.L., L.I., M.C., V.P.) and Departments of Medicine (J.F., L.I., M.C., V.P.), Biochemistry (X.L., V.P.), and Pharmacology and Therapeutics (M.C., V.P.), McGill University, Montréal, Québec, Canada H4A 3J1
| | - Xinlu Li
- The Research Institute of the McGill University Health Centre (J.F., X.L., L.I., M.C., V.P.) and Departments of Medicine (J.F., L.I., M.C., V.P.), Biochemistry (X.L., V.P.), and Pharmacology and Therapeutics (M.C., V.P.), McGill University, Montréal, Québec, Canada H4A 3J1
| | - Leeyah Issop
- The Research Institute of the McGill University Health Centre (J.F., X.L., L.I., M.C., V.P.) and Departments of Medicine (J.F., L.I., M.C., V.P.), Biochemistry (X.L., V.P.), and Pharmacology and Therapeutics (M.C., V.P.), McGill University, Montréal, Québec, Canada H4A 3J1
| | - Martine Culty
- The Research Institute of the McGill University Health Centre (J.F., X.L., L.I., M.C., V.P.) and Departments of Medicine (J.F., L.I., M.C., V.P.), Biochemistry (X.L., V.P.), and Pharmacology and Therapeutics (M.C., V.P.), McGill University, Montréal, Québec, Canada H4A 3J1
| | - Vassilios Papadopoulos
- The Research Institute of the McGill University Health Centre (J.F., X.L., L.I., M.C., V.P.) and Departments of Medicine (J.F., L.I., M.C., V.P.), Biochemistry (X.L., V.P.), and Pharmacology and Therapeutics (M.C., V.P.), McGill University, Montréal, Québec, Canada H4A 3J1
| |
Collapse
|
19
|
Neuhaus A, Eggeling C, Erdmann R, Schliebs W. Why do peroxisomes associate with the cytoskeleton? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1019-26. [DOI: 10.1016/j.bbamcr.2015.11.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/16/2015] [Accepted: 11/20/2015] [Indexed: 12/20/2022]
|
20
|
How peroxisomes partition between cells. A story of yeast, mammals and filamentous fungi. Curr Opin Cell Biol 2016; 41:73-80. [PMID: 27128775 DOI: 10.1016/j.ceb.2016.04.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/07/2016] [Accepted: 04/11/2016] [Indexed: 11/21/2022]
Abstract
Eukaryotic cells are subcompartmentalized into discrete, membrane-enclosed organelles. These organelles must be preserved in cells over many generations to maintain the selective advantages afforded by compartmentalization. Cells use complex molecular mechanisms of organelle inheritance to achieve high accuracy in the sharing of organelles between daughter cells. Here we focus on how a multi-copy organelle, the peroxisome, is partitioned in yeast, mammalian cells, and filamentous fungi, which differ in their mode of cell division. Cells achieve equidistribution of their peroxisomes through organelle transport and retention processes that act coordinately, although the strategies employed vary considerably by organism. Nevertheless, we propose that mechanisms common across species apply to the partitioning of all membrane-enclosed organelles.
Collapse
|
21
|
Salogiannis J, Egan MJ, Reck-Peterson SL. Peroxisomes move by hitchhiking on early endosomes using the novel linker protein PxdA. J Cell Biol 2016; 212:289-96. [PMID: 26811422 PMCID: PMC4748578 DOI: 10.1083/jcb.201512020] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 01/05/2016] [Indexed: 11/22/2022] Open
Abstract
Eukaryotic cells use microtubule-based intracellular transport for the delivery of many subcellular cargos, including organelles. The canonical view of organelle transport is that organelles directly recruit molecular motors via cargo-specific adaptors. In contrast with this view, we show here that peroxisomes move by hitchhiking on early endosomes, an organelle that directly recruits the transport machinery. Using the filamentous fungus Aspergillus nidulans we found that hitchhiking is mediated by a novel endosome-associated linker protein, PxdA. PxdA is required for normal distribution and long-range movement of peroxisomes, but not early endosomes or nuclei. Using simultaneous time-lapse imaging, we find that early endosome-associated PxdA localizes to the leading edge of moving peroxisomes. We identify a coiled-coil region within PxdA that is necessary and sufficient for early endosome localization and peroxisome distribution and motility. These results present a new mechanism of microtubule-based organelle transport in which peroxisomes hitchhike on early endosomes and identify PxdA as the novel linker protein required for this coupling.
Collapse
Affiliation(s)
- John Salogiannis
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Martin J Egan
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Samara L Reck-Peterson
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115 Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093 Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
22
|
No peroxisome is an island - Peroxisome contact sites. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:1061-9. [PMID: 26384874 DOI: 10.1016/j.bbamcr.2015.09.016] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/10/2015] [Accepted: 09/11/2015] [Indexed: 10/23/2022]
Abstract
In order to optimize their multiple cellular functions, peroxisomes must collaborate and communicate with the surrounding organelles. A common way of communication between organelles is through physical membrane contact sites where membranes of two organelles are tethered, facilitating exchange of small molecules and intracellular signaling. In addition contact sites are important for controlling processes such as metabolism, organelle trafficking, inheritance and division. How peroxisomes rely on contact sites for their various cellular activities is only recently starting to be appreciated and explored and the extent of peroxisomal communication, their contact sites and their functions are less characterized. In this review we summarize the identified peroxisomal contact sites, their tethering complexes and their potential physiological roles. Additionally, we highlight some of the preliminary evidence that exists in the field for unexplored peroxisomal contact sites.
Collapse
|
23
|
Schrader M, Costello J, Godinho LF, Islinger M. Peroxisome-mitochondria interplay and disease. J Inherit Metab Dis 2015; 38:681-702. [PMID: 25687155 DOI: 10.1007/s10545-015-9819-7] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/21/2015] [Accepted: 01/26/2015] [Indexed: 12/16/2022]
Abstract
Peroxisomes and mitochondria are ubiquitous, highly dynamic organelles with an oxidative type of metabolism in eukaryotic cells. Over the years, substantial evidence has been provided that peroxisomes and mitochondria exhibit a close functional interplay which impacts on human health and development. The so-called "peroxisome-mitochondria connection" includes metabolic cooperation in the degradation of fatty acids, a redox-sensitive relationship, an overlap in key components of the membrane fission machineries and cooperation in anti-viral signalling and defence. Furthermore, combined peroxisome-mitochondria disorders with defects in organelle division have been revealed. In this review, we present the latest progress in the emerging field of peroxisomal and mitochondrial interplay in mammals with a particular emphasis on cooperative fatty acid β-oxidation, redox interplay, organelle dynamics, cooperation in anti-viral signalling and the resulting implications for disease.
Collapse
Affiliation(s)
- Michael Schrader
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK,
| | | | | | | |
Collapse
|
24
|
Smelser AM, Macosko JC, O'Dell AP, Smyre S, Bonin K, Holzwarth G. Mechanical properties of normal versus cancerous breast cells. Biomech Model Mechanobiol 2015; 14:1335-47. [PMID: 25929519 DOI: 10.1007/s10237-015-0677-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 04/04/2015] [Indexed: 12/21/2022]
Abstract
A cell's mechanical properties are important in determining its adhesion, migration, and response to the mechanical properties of its microenvironment and may help explain behavioral differences between normal and cancerous cells. Using fluorescently labeled peroxisomes as microrheological probes, the interior mechanical properties of normal breast cells were compared to a metastatic breast cell line, MDA-MB-231. To estimate the mechanical properties of cell cytoplasms from the motions of their peroxisomes, it was necessary to reduce the contribution of active cytoskeletal motions to peroxisome motion. This was done by treating the cells with blebbistatin, to inhibit myosin II, or with sodium azide and 2-deoxy-D-glucose, to reduce intracellular ATP. Using either treatment, the peroxisomes exhibited normal diffusion or subdiffusion, and their mean squared displacements (MSDs) showed that the MDA-MB-231 cells were significantly softer than normal cells. For these two cell types, peroxisome MSDs in treated and untreated cells converged at high frequencies, indicating that cytoskeletal structure was not altered by the drug treatment. The MSDs from ATP-depleted cells were analyzed by the generalized Stokes-Einstein relation to estimate the interior viscoelastic modulus G* and its components, the elastic shear modulus G' and viscous shear modulus G", at angular frequencies between 0.126 and 628 rad/s. These moduli are the material coefficients that enter into stress-strain relations and relaxation times in quantitative mechanical models such as the poroelastic model of the interior regions of cancerous and non-cancerous cells.
Collapse
Affiliation(s)
- Amanda M Smelser
- Department of Biochemistry and Molecular Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Jed C Macosko
- Department of Biochemistry and Molecular Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
- Department of Physics, Wake Forest University, Winston-Salem, NC, 27109, USA
| | - Adam P O'Dell
- Department of Physics, Wake Forest University, Winston-Salem, NC, 27109, USA
| | - Scott Smyre
- Department of Physics, Wake Forest University, Winston-Salem, NC, 27109, USA
| | - Keith Bonin
- Department of Physics, Wake Forest University, Winston-Salem, NC, 27109, USA
| | - George Holzwarth
- Department of Physics, Wake Forest University, Winston-Salem, NC, 27109, USA.
| |
Collapse
|
25
|
Fransen M. HaloTag as a tool to investigate peroxisome dynamics in cultured mammalian cells. Methods Mol Biol 2015; 1174:157-70. [PMID: 24947380 DOI: 10.1007/978-1-4939-0944-5_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Peroxisomes are multifunctional organelles that can rapidly modulate their morphology, number, and function in response to changing environmental stimuli. Defects in any of these processes can lead to organelle dysfunction and have been associated with various inherited and age-related disorders. Progress in this field continues to be driven by advances in live-cell imaging techniques. This chapter provides detailed protocols for the use of HaloTag to fluorescently pulse-label peroxisomes in cultured mammalian cells. In contrast to the use of classical fluorescent proteins, this technology allows researchers to optically distinguish pools of peroxisomal proteins that are synthesized at different time points. The protocols can be easily adapted to image the dynamics of other macromolecular protein assemblies in mammalian cells.
Collapse
Affiliation(s)
- Marc Fransen
- Laboratory of Lipid Biochemistry and Protein Interactions, Department of Cellular and Molecular Medicine, Faculty of Medicine, Katholieke Universiteit Leuven, Campus Gasthuisberg, Herestraat 49, 601, 3000, Leuven, Belgium,
| |
Collapse
|
26
|
Pawlica P, Dufour C, Berthoux L. Inhibition of microtubules and dynein rescues human immunodeficiency virus type 1 from owl monkey TRIMCyp-mediated restriction in a cellular context-specific fashion. J Gen Virol 2014; 96:874-886. [PMID: 25502651 DOI: 10.1099/jgv.0.000018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
IFN-induced restriction factors can significantly affect the replicative capacity of retroviruses in mammals. TRIM5α (tripartite motif protein 5, isoform α) is a restriction factor that acts at early stages of the virus life cycle by intercepting and destabilizing incoming retroviral cores. Sensitivity to TRIM5α maps to the N-terminal domain of the retroviral capsid proteins. In several New World and Old World monkey species, independent events of retrotransposon-mediated insertion of the cyclophilin A (CypA)-coding sequence in the trim5 gene have given rise to TRIMCyp (also called TRIM5-CypA), a hybrid protein that is active against some lentiviruses in a species-specific fashion. In particular, TRIMCyp from the owl monkey (omkTRIMCyp) very efficiently inhibits human immunodeficiency virus type 1 (HIV-1). Previously, we showed that disrupting the integrity of microtubules (MTs) and of cytoplasmic dynein complexes partially rescued replication of retroviruses, including HIV-1, from restriction mediated by TRIM5α. Here, we showed that efficient restriction of HIV-1 by omkTRIMCyp was similarly dependent on the MT network and on dynein complexes, but in a context-dependent fashion. When omkTRIMCyp was expressed in human HeLa cells, restriction was partially counteracted by pharmacological agents targeting MTs or by small interfering RNA-mediated inhibition of dynein. The same drugs (nocodazole and paclitaxel) also rescued HIV-1 from restriction in cat CRFK cells, although to a lesser extent. Strikingly, neither nocodazole, paclitaxel nor depletion of the dynein heavy chain had a significant effect on the restriction of HIV-1 in an owl monkey cell line. These results suggested the existence of cell-specific functional interactions between MTs/dynein and TRIMCyp.
Collapse
Affiliation(s)
- Paulina Pawlica
- Laboratory of Retrovirology, Department of Medical Biology and BioMed Research Group, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Rivières, Quebec G9A 5H7, Canada
| | - Caroline Dufour
- Laboratory of Retrovirology, Department of Medical Biology and BioMed Research Group, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Rivières, Quebec G9A 5H7, Canada
| | - Lionel Berthoux
- Laboratory of Retrovirology, Department of Medical Biology and BioMed Research Group, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Rivières, Quebec G9A 5H7, Canada
| |
Collapse
|
27
|
Cytoplasmic dynein promotes HIV-1 uncoating. Viruses 2014; 6:4195-211. [PMID: 25375884 PMCID: PMC4246216 DOI: 10.3390/v6114195] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 10/24/2014] [Accepted: 10/27/2014] [Indexed: 12/20/2022] Open
Abstract
Retroviral capsid (CA) cores undergo uncoating during their retrograde transport (toward the nucleus), and/or after reaching the nuclear membrane. However, whether HIV-1 CA core uncoating is dependent upon its transport is not understood. There is some evidence that HIV-1 cores retrograde transport involves cytoplasmic dynein complexes translocating on microtubules. Here we investigate the role of dynein-dependent transport in HIV-1 uncoating. To interfere with dynein function, we depleted dynein heavy chain (DHC) using RNA interference, and we over-expressed p50/dynamitin. In immunofluorescence microscopy experiments, DHC depletion caused an accumulation of CA foci in HIV-1 infected cells. Using a biochemical assay to monitor HIV-1 CA core disassembly in infected cells, we observed an increase in amounts of intact (pelletable) CA cores upon DHC depletion or p50 over-expression. Results from these two complementary assays suggest that inhibiting dynein-mediated transport interferes with HIV-1 uncoating in infected cells, indicating the existence of a functional link between HIV-1 transport and uncoating.
Collapse
|
28
|
Dietrich D, Seiler F, Essmann F, Dodt G. Identification of the kinesin KifC3 as a new player for positioning of peroxisomes and other organelles in mammalian cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3013-3024. [PMID: 23954441 DOI: 10.1016/j.bbamcr.2013.08.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 07/19/2013] [Accepted: 08/02/2013] [Indexed: 01/25/2023]
Abstract
The attachment of organelles to the cytoskeleton and directed organelle transport is essential for cellular morphology and function. In contrast to other cell organelles like the endoplasmic reticulum or the Golgi apparatus, peroxisomes are evenly distributed in the cytoplasm, which is achieved by binding of peroxisomes to microtubules and their bidirectional transport by the microtubule motor proteins kinesin-1 (Kif5) and cytoplasmic dynein. KifC3, belonging to the group of C-terminal kinesins, has been identified to interact with the human peroxin PEX1 in a yeast two-hybrid screen. We investigated the potential involvement of KifC3 in peroxisomal transport. Interaction of KifC3 and the AAA-protein (ATPase associated with various cellular activities) PEX1 was confirmed by in vivo colocalization and by coimmunoprecipitation from cell lysates. Furthermore, knockdown of KifC3 using RNAi resulted in an increase of cells with perinuclear-clustered peroxisomes, indicating enhanced minus-end directed motility of peroxisomes. The occurrence of this peroxisomal phenotype was cell cycle phase independent, while microtubules were essential for phenotype formation. We conclude that KifC3 may play a regulatory role in minus-end directed peroxisomal transport for example by blocking the motor function of dynein at peroxisomes. Knockdown of KifC3 would then lead to increased minus-end directed peroxisomal transport and cause the observed peroxisomal clustering at the microtubule-organizing center.
Collapse
Affiliation(s)
- Denise Dietrich
- Interfaculty Institute of Biochemistry, Cell Biochemistry, University of Tuebingen, D-72076 Tuebingen, Germany
| | - Florian Seiler
- Interfaculty Institute of Biochemistry, Cell Biochemistry, University of Tuebingen, D-72076 Tuebingen, Germany
| | - Frank Essmann
- Interfaculty Institute of Biochemistry, Molecular Medicine, University of Tuebingen, D-72076 Tuebingen, Germany
| | - Gabriele Dodt
- Interfaculty Institute of Biochemistry, Cell Biochemistry, University of Tuebingen, D-72076 Tuebingen, Germany.
| |
Collapse
|
29
|
Grinev VV, Ramanouskaya TV, Gloushen SV. Multidimensional control of cell structural robustness. Cell Biol Int 2013; 37:1023-37. [PMID: 23686647 DOI: 10.1002/cbin.10128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 04/21/2013] [Indexed: 11/12/2022]
Abstract
Ample adaptive and functional opportunities of a living cell are determined by the complexity of its structural organisation. However, such complexity gives rise to a problem of maintenance of the coherence of inner processes in macroscopic interims and in macroscopic volumes which is necessary to support the structural robustness of a cell. The solution to this problem lies in multidimensional control of the adaptive and functional changes of a cell as well as its self-renewing processes in the context of environmental conditions. Six mechanisms (principles) form the basis of this multidimensional control: regulatory circuits with feedback loops, redundant inner diversity within a cell, multilevel distributed network organisation of a cell, molecular selection within a cell, continuous informational flows and functioning with a reserve of power. In the review we provide detailed analysis of these mechanisms, discuss their specific functions and the role of the superposition of these mechanisms in the maintenance of cell structural robustness in a wide range of environmental conditions.
Collapse
Affiliation(s)
- Vasily V Grinev
- Biology Faculty, Department of Genetics, Belarusian State University, 220030, Minsk, Belarus.
| | | | | |
Collapse
|
30
|
Schrader M, Grille S, Fahimi HD, Islinger M. Peroxisome interactions and cross-talk with other subcellular compartments in animal cells. Subcell Biochem 2013; 69:1-22. [PMID: 23821140 DOI: 10.1007/978-94-007-6889-5_1] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Peroxisomes are remarkably plastic and dynamic organelles, which fulfil important functions in hydrogen peroxide and lipid metabolism rendering them essential for human health and development. Despite great advances in the identification and characterization of essential components and molecular mechanisms associated with the biogenesis and function of peroxisomes, our understanding of how peroxisomes are incorporated into metabolic pathways and cellular communication networks is just beginning to emerge. Here we address the interaction of peroxisomes with other subcellular compartments including the relationship with the endoplasmic reticulum, the peroxisome-mitochondria connection and the association with lipid droplets. We highlight metabolic cooperations and potential cross-talk and summarize recent findings on peroxisome-peroxisome interactions and the interaction of peroxisomes with microtubules in mammalian cells.
Collapse
Affiliation(s)
- Michael Schrader
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK,
| | | | | | | |
Collapse
|
31
|
Egan MJ, McClintock MA, Reck-Peterson SL. Microtubule-based transport in filamentous fungi. Curr Opin Microbiol 2012; 15:637-45. [PMID: 23127389 DOI: 10.1016/j.mib.2012.10.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 10/04/2012] [Accepted: 10/07/2012] [Indexed: 01/29/2023]
Abstract
Defects in microtubule-based transport are implicated in many neuropathologies. The filamentous fungi Aspergillus nidulans and Ustilago maydis are valuable models for studying transport owing to their yeast-like genetic and biochemical tractability and metazoan-like dependence on microtubule-based transport for cellular trafficking. In these organisms the role of microtubules in nuclear positioning is well studied, but recent work has expanded the range of cargos to include endosomes, messenger RNA, secretory vesicles, peroxisomes, and nuclear pore complexes, reflecting the diversity of metazoan systems. Furthermore, similarities in transport mechanisms exist between filamentous fungi and metazoan neurons, demonstrating the suitability of A. nidulans and U. maydis for studying the molecular basis of transport-related neuropathologies such as lissencephaly, motor neuron disease, and Perry syndrome.
Collapse
Affiliation(s)
- Martin J Egan
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, United States
| | | | | |
Collapse
|
32
|
Bonekamp NA, Sampaio P, de Abreu FV, Lüers GH, Schrader M. Transient complex interactions of mammalian peroxisomes without exchange of matrix or membrane marker proteins. Traffic 2012; 13:960-78. [PMID: 22435684 DOI: 10.1111/j.1600-0854.2012.01356.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 03/18/2012] [Accepted: 03/21/2012] [Indexed: 11/29/2022]
Abstract
Peroxisomes and mitochondria show a much closer interrelationship than previously anticipated. They co-operate in the metabolism of fatty acids and reactive oxygen species, but also share components of their fission machinery. If peroxisomes - like mitochondria - also fuse in mammalian cells is a matter of debate and was not yet systematically investigated. To examine potential peroxisomal fusion and interactions in mammalian cells, we established an in vivo fusion assay based on hybridoma formation by cell fusion. Fluorescence microscopy in time course experiments revealed a merge of different peroxisomal markers in fused cells. However, live cell imaging revealed that peroxisomes were engaged in transient and long-term contacts, without exchanging matrix or membrane markers. Computational analysis showed that transient peroxisomal interactions are complex and can potentially contribute to the homogenization of the peroxisomal compartment. However, peroxisomal interactions do not increase after fatty acid or H(2) O(2) treatment. Additionally, we provide the first evidence that mitochondrial fusion proteins do not localize to peroxisomes. We conclude that mammalian peroxisomes do not fuse with each other in a mechanism similar to mitochondrial fusion. However, they show an extensive degree of interaction, the implication of which is discussed.
Collapse
Affiliation(s)
- Nina A Bonekamp
- Centre for Cell Biology and Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | | | | | | | | |
Collapse
|
33
|
Oeljeklaus S, Reinartz BS, Wolf J, Wiese S, Tonillo J, Podwojski K, Kuhlmann K, Stephan C, Meyer HE, Schliebs W, Brocard C, Erdmann R, Warscheid B. Identification of Core Components and Transient Interactors of the Peroxisomal Importomer by Dual-Track Stable Isotope Labeling with Amino Acids in Cell Culture Analysis. J Proteome Res 2012; 11:2567-80. [DOI: 10.1021/pr3000333] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Silke Oeljeklaus
- Faculty of Biology and BIOSS
Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Benedikt S. Reinartz
- Medizinisches Proteom-Center,
Zentrum für klinische Forschung, Ruhr-University Bochum, Universitätsstraße 150, 44780 Bochum,
Germany
| | - Janina Wolf
- Institute of Physiological
Chemistry,
Department of Systems Biochemistry, Ruhr-University Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| | - Sebastian Wiese
- Faculty of Biology and BIOSS
Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Jason Tonillo
- Medizinisches Proteom-Center,
Zentrum für klinische Forschung, Ruhr-University Bochum, Universitätsstraße 150, 44780 Bochum,
Germany
| | - Katharina Podwojski
- Medizinisches Proteom-Center,
Zentrum für klinische Forschung, Ruhr-University Bochum, Universitätsstraße 150, 44780 Bochum,
Germany
| | - Katja Kuhlmann
- Medizinisches Proteom-Center,
Zentrum für klinische Forschung, Ruhr-University Bochum, Universitätsstraße 150, 44780 Bochum,
Germany
| | - Christian Stephan
- Medizinisches Proteom-Center,
Zentrum für klinische Forschung, Ruhr-University Bochum, Universitätsstraße 150, 44780 Bochum,
Germany
| | - Helmut E. Meyer
- Medizinisches Proteom-Center,
Zentrum für klinische Forschung, Ruhr-University Bochum, Universitätsstraße 150, 44780 Bochum,
Germany
| | - Wolfgang Schliebs
- Institute of Physiological
Chemistry,
Department of Systems Biochemistry, Ruhr-University Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| | - Cécile Brocard
- University of Vienna, Center of Molecular Biology, Department of Biochemistry and Cell
Biology, Max F. Perutz Laboratories, Dr. Bohrgasse 9, 1030 Vienna,
Austria
| | - Ralf Erdmann
- Institute of Physiological
Chemistry,
Department of Systems Biochemistry, Ruhr-University Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| | - Bettina Warscheid
- Faculty of Biology and BIOSS
Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
34
|
Islinger M, Grille S, Fahimi HD, Schrader M. The peroxisome: an update on mysteries. Histochem Cell Biol 2012; 137:547-74. [DOI: 10.1007/s00418-012-0941-4] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2012] [Indexed: 12/31/2022]
|
35
|
Fission and proliferation of peroxisomes. Biochim Biophys Acta Mol Basis Dis 2011; 1822:1343-57. [PMID: 22240198 DOI: 10.1016/j.bbadis.2011.12.014] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/22/2011] [Accepted: 12/23/2011] [Indexed: 01/12/2023]
Abstract
Peroxisomes are remarkably dynamic, multifunctional organelles, which react to physiological changes in their cellular environment and adopt their morphology, number, enzyme content and metabolic functions accordingly. At the organelle level, the key molecular machinery controlling peroxisomal membrane elongation and remodeling as well as membrane fission is becoming increasingly established and defined. Key players in peroxisome division are conserved in animals, plants and fungi, and key fission components are shared with mitochondria. However, the physiological stimuli and corresponding signal transduction pathways regulating and modulating peroxisome maintenance and proliferation are, despite a few exceptions, largely unexplored. There is emerging evidence that peroxisomal dynamics and proper regulation of peroxisome number and morphology are crucial for the physiology of the cell, as well as for the pathology of the organism. Here, we discuss several key aspects of peroxisomal fission and proliferation and highlight their association with certain diseases. We address signaling and transcriptional events resulting in peroxisome proliferation, and focus on novel findings concerning the key division components and their interplay. Finally, we present an updated model of peroxisomal growth and division. This article is part of a Special Issue entitled: Metabolic Functions and Biogenesis of Peroxisomes in Health and Disease.
Collapse
|
36
|
Bharti P, Schliebs W, Schievelbusch T, Neuhaus A, David C, Kock K, Herrmann C, Meyer HE, Wiese S, Warscheid B, Theiss C, Erdmann R. PEX14 is required for microtubule-based peroxisome motility in human cells. J Cell Sci 2011; 124:1759-68. [PMID: 21525035 DOI: 10.1242/jcs.079368] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
We have established a procedure for isolating native peroxisomal membrane protein complexes from cultured human cells. Protein-A-tagged peroxin 14 (PEX14), a central component of the peroxisomal protein translocation machinery was genomically expressed in Flp-In-293 cells and purified from digitonin-solubilized membranes. Size-exclusion chromatography revealed the existence of distinct multimeric PEX14 assemblies at the peroxisomal membrane. Using mass spectrometric analysis, almost all known human peroxins involved in protein import were identified as constituents of the PEX14 complexes. Unexpectedly, tubulin was discovered to be the major PEX14-associated protein, and direct binding of the proteins was demonstrated. Accordingly, peroxisomal remnants in PEX14-deficient cells have lost their ability to move along microtubules. In vivo and in vitro analyses indicate that the physical binding to tubulin is mediated by the conserved N-terminal domain of PEX14. Thus, human PEX14 is a multi-tasking protein that not only facilitates peroxisomal protein import but is also required for peroxisome motility by serving as membrane anchor for microtubules.
Collapse
Affiliation(s)
- Pratima Bharti
- Institute for Physiological Chemistry, Department of Systems Biology, Faculty of Medicine, Ruhr University of Bochum, 44780 Bochum, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Delille HK, Agricola B, Guimaraes SC, Borta H, Lüers GH, Fransen M, Schrader M. Pex11pbeta-mediated growth and division of mammalian peroxisomes follows a maturation pathway. J Cell Sci 2010; 123:2750-62. [PMID: 20647371 DOI: 10.1242/jcs.062109] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Peroxisomes are ubiquitous subcellular organelles, which multiply by growth and division but can also form de novo via the endoplasmic reticulum. Growth and division of peroxisomes in mammalian cells involves elongation, membrane constriction and final fission. Dynamin-like protein (DLP1/Drp1) and its membrane adaptor Fis1 function in the later stages of peroxisome division, whereas the membrane peroxin Pex11pbeta appears to act early in the process. We have discovered that a Pex11pbeta-YFP(m) fusion protein can be used as a specific tool to further dissect peroxisomal growth and division. Pex11pbeta-YFP(m) inhibited peroxisomal segmentation and division, but resulted in the formation of pre-peroxisomal membrane structures composed of globular domains and tubular extensions. Peroxisomal matrix and membrane proteins were targeted to distinct regions of the peroxisomal structures. Pex11pbeta-mediated membrane formation was initiated at pre-existing peroxisomes, indicating that growth and division follows a multistep maturation pathway and that formation of mammalian peroxisomes is more complex than simple division of a pre-existing organelle. The implications of these findings on the mechanisms of peroxisome formation and membrane deformation are discussed.
Collapse
Affiliation(s)
- Hannah K Delille
- Centre for Cell Biology and Department of Biology, University of Aveiro, Aveiro, Portugal
| | | | | | | | | | | | | |
Collapse
|
38
|
Lanyon-Hogg T, Warriner SL, Baker A. Getting a camel through the eye of a needle: the import of folded proteins by peroxisomes. Biol Cell 2010; 102:245-63. [PMID: 20146669 DOI: 10.1042/bc20090159] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Peroxisomes are a family of organelles which have many unusual features. They can arise de novo from the endoplasmic reticulum by a still poorly characterized process, yet possess a unique machinery for the import of their matrix proteins. As peroxisomes lack DNA, their function, which is highly variable and dependent on developmental and/or environmental conditions, is determined by the post-translational import of specific metabolic enzymes in folded or oligomeric states. The two classes of matrix targeting signals for peroxisomal proteins [PTS1 (peroxisomal targeting signal 1) and PTS2] are recognized by cytosolic receptors [PEX5 (peroxin 5) and PEX7 respectively] which escort their cargo proteins to, or possibly across, the peroxisome membrane. Although the membrane translocation mechanism remains unclear, it appears to be driven by thermodynamically favourable binding interactions. Recycling of the receptors from the peroxisome membrane requires ATP hydrolysis for two linked processes: ubiquitination of PEX5 (and the PEX7 co-receptors in yeast) and the function of two peroxisome-associated AAA (ATPase associated with various cellular activities) ATPases, which play a role in recycling or turnover of the ubiquitinated receptors. This review summarizes and integrates recent findings on peroxisome matrix protein import from yeast, plant and mammalian model systems, and discusses some of the gaps in our understanding of this remarkable protein transport system.
Collapse
Affiliation(s)
- Thomas Lanyon-Hogg
- School of Chemistry, Faculty of Mathematical and Physical Sciences, University of Leeds, Leeds LS29JT, UK
| | | | | |
Collapse
|
39
|
Sinclair AM, Trobacher CP, Mathur N, Greenwood JS, Mathur J. Peroxule extension over ER-defined paths constitutes a rapid subcellular response to hydroxyl stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 59:231-42. [PMID: 19292761 DOI: 10.1111/j.1365-313x.2009.03863.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plants survive against myriad environmental odds while remaining rooted to a single spot. The time scale over which plant cells can respond to environmental cues is seldom appreciated. Fluorescent protein-assisted live imaging of peroxisomes reveals that they respond within seconds of exposure to hydrogen peroxide and hydroxyl radicals by producing dynamic extensions called peroxules. Observations of the Arabidopsis flu mutant and treatments with xenobiotics eliciting singlet oxygen and superoxide reactive oxygen species suggest that the observed responses are specific for hydroxyl radicals. Prolonged exposure to hydroxyl radicals inhibits peroxule extension, and instead causes motile and spherical peroxisomes in a cell to become immotile and elongate several-fold. Expression of photo-convertible EosFP-PTS1 demonstrates that vermiform peroxisomes result from rapid stretching of individual peroxisomes, while the subsequent 'beads-on-a-string' morphology results from differential protein distribution within an elongated tubule. Over time, the beads in elongated peroxisomes also extend peroxules randomly before undergoing asynchronous, asymmetrical fission. Peroxule extension does not appear to involve cytoskeletal elements directly, but is closely aligned with and reflects the dynamics of ER tubules. Peroxisomal responses reveal a rapidly invoked subcellular machinery that is involved in recognition of hydroxyl stress thresholds, and its possible remediation locally through extension of peroxules or globally by increasing peroxisome numbers. A matrix protein retro-flow mechanism that supports peroxisome-ER connectivity in plant cells is suggested.
Collapse
Affiliation(s)
- Alison M Sinclair
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | | | | | | | | |
Collapse
|
40
|
Lehmann M, Milev MP, Abrahamyan L, Yao XJ, Pante N, Mouland AJ. Intracellular transport of human immunodeficiency virus type 1 genomic RNA and viral production are dependent on dynein motor function and late endosome positioning. J Biol Chem 2009; 284:14572-85. [PMID: 19286658 PMCID: PMC2682905 DOI: 10.1074/jbc.m808531200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 03/03/2009] [Indexed: 11/06/2022] Open
Abstract
Our earlier work indicated that the human immunodeficiency virus type 1 (HIV-1) genomic RNA (vRNA) is trafficked to the microtubule-organizing center (MTOC) when heterogeneous nuclear ribonucleoprotein A2/B1 is depleted from cells. Also, Rab7-interacting lysosomal protein promoted dynein motor complex, late endosome and vRNA clustering at the MTOC suggesting that the dynein motor and late endosomes were involved in vRNA trafficking. To investigate the role of the dynein motor in vRNA trafficking, dynein motor function was disrupted by small interference RNA-mediated depletion of the dynein heavy chain or by p50/dynamitin overexpression. These treatments led to a marked relocalization of vRNA and viral structural protein Gag to the cell periphery with late endosomes and a severalfold increase in HIV-1 production. In contrast, rerouting vRNA to the MTOC reduced virus production. vRNA localization depended on Gag membrane association as shown using both myristoylation and Gag nucleocapsid domain proviral mutants. Furthermore, the cytoplasmic localization of vRNA and Gag was not attributable to intracellular or internalized endocytosed virus particles. Our results demonstrate that dynein motor function is important for regulating Gag and vRNA egress on endosomal membranes in the cytoplasm to directly impact on viral production.
Collapse
Affiliation(s)
- Martin Lehmann
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute for Medical Research, Quebec
| | | | | | | | | | | |
Collapse
|
41
|
Camões F, Bonekamp NA, Delille HK, Schrader M. Organelle dynamics and dysfunction: A closer link between peroxisomes and mitochondria. J Inherit Metab Dis 2009; 32:163-80. [PMID: 19067229 DOI: 10.1007/s10545-008-1018-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 10/30/2008] [Accepted: 11/04/2008] [Indexed: 12/23/2022]
Abstract
Mitochondria and peroxisomes are ubiquitous subcellular organelles, which fulfil an indispensable role in the cellular metabolism of higher eukaryotes. Moreover, they are highly dynamic and display large plasticity. There is growing evidence now that both organelles exhibit a closer interrelationship than previously appreciated. This connection includes metabolic cooperations and cross-talk, a novel putative mitochondria-to-peroxisome vesicular trafficking pathway, as well as an overlap in key components of their fission machinery. Thus, peroxisomal alterations in metabolism, biogenesis, dynamics and proliferation can potentially influence mitochondrial functions, and vice versa. In this review, we present the latest progress in the emerging field of peroxisomal and mitochondrial interrelationship with a particular emphasis on organelle dynamics and its implication in diseases.
Collapse
Affiliation(s)
- F Camões
- Centre for Cell Biology & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | | | | | | |
Collapse
|
42
|
Delille HK, Schrader M. Targeting of hFis1 to peroxisomes is mediated by Pex19p. J Biol Chem 2008; 283:31107-15. [PMID: 18782765 PMCID: PMC2662177 DOI: 10.1074/jbc.m803332200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Revised: 09/03/2008] [Indexed: 11/06/2022] Open
Abstract
The processes of peroxisome formation and proliferation are still a matter of debate. We have previously shown that peroxisomes share some components of their division machinery with mitochondria. hFis1, a tail-anchored membrane protein, regulates the membrane fission of both organelles by DLP1/Drp1 recruitment, but nothing is known about the mechanisms of the dual targeting of hFis1. Here we demonstrate for the first time that peroxisomal targeting of hFis1 depends on Pex19p, a peroxisomal membrane protein import factor. hFis1/Pex19p binding was demonstrated by expression and co-immunoprecipitation studies. Using mutated versions of hFis1 an essential binding region for Pex19p was located within the last 26 C-terminal amino acids of hFis1, which are required for proper targeting to both mitochondria and peroxisomes. The basic amino acids in the very C terminus are not essential for Pex19p binding and peroxisomal targeting, but are instead required for mitochondrial targeting. Silencing of Pex19p by small interference RNA reduced the targeting of hFis1 to peroxisomes, but not to mitochondria. In contrast, overexpression of Pex19p alone was not sufficient to shift the targeting of hFis1 to peroxisomes. Our findings indicate that targeting of hFis1 to peroxisomes and mitochondria are independent events and support a direct, Pex19p-dependent targeting of peroxisomal tail-anchored proteins.
Collapse
Affiliation(s)
- Hannah K Delille
- Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | | |
Collapse
|
43
|
Abstract
More than half a century of research on peroxisomes has revealed unique features of this ubiquitous subcellular organelle, which have often been in disagreement with existing dogmas in cell biology. About 50 peroxisomal enzymes have so far been identified, which contribute to several crucial metabolic processes such as β-oxidation of fatty acids, biosynthesis of ether phospholipids and metabolism of reactive oxygen species, and render peroxisomes indispensable for human health and development. It became obvious that peroxisomes are highly dynamic organelles that rapidly assemble, multiply and degrade in response to metabolic needs. However, many aspects of peroxisome biology are still mysterious. This review addresses recent exciting discoveries on the biogenesis, formation and degradation of peroxisomes, on peroxisomal dynamics and division, as well as on the interaction and cross talk of peroxisomes with other subcellular compartments. Furthermore, recent advances on the role of peroxisomes in medicine and in the identification of novel peroxisomal proteins are discussed.
Collapse
Affiliation(s)
- Michael Schrader
- Centre for Cell Biology and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.
| | | |
Collapse
|
44
|
Fagarasanu A, Fagarasanu M, Rachubinski RA. Maintaining peroxisome populations: a story of division and inheritance. Annu Rev Cell Dev Biol 2007; 23:321-44. [PMID: 17506702 DOI: 10.1146/annurev.cellbio.23.090506.123456] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Eukaryotic cells divide their metabolic labor between functionally distinct, membrane-enveloped organelles, each precisely tailored for a specific set of biochemical reactions. Peroxisomes are ubiquitous, endoplasmic reticulum-derived organelles that perform requisite biochemical functions intimately connected to lipid metabolism. Upon cell division, cells have to strictly control peroxisome division and inheritance to maintain an appropriate number of peroxisomes in each cell. Peroxisome division follows a specific sequence of events that include peroxisome elongation, membrane constriction, and peroxisome fission. Pex11 proteins mediate the elongation step of peroxisome division, whereas dynamin-related proteins execute the final fission. The mechanisms responsible for peroxisome membrane constriction are poorly understood. Molecular players involved in peroxisome inheritance are just beginning to be elucidated. Inp1p and Inp2p are two recently identified peroxisomal proteins that perform antagonistic functions in regulating peroxisome inheritance in budding yeast. Inp1p promotes the retention of peroxisomes in mother cells and buds by attaching peroxisomes to as-yet-unidentified cortical structures. Inp2p is implicated in the motility of peroxisomes by linking them to the Myo2p motor, which then propels their movement along actin cables. The functions of Inp1p and Inp2p are cell cycle regulated and coordinated to ensure a fair distribution of peroxisomes at cytokinesis.
Collapse
Affiliation(s)
- Andrei Fagarasanu
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada.
| | | | | |
Collapse
|
45
|
Schrader M, Yoon Y. Mitochondria and peroxisomes: Are the ‘Big Brother’ and the ‘Little Sister’ closer than assumed? Bioessays 2007; 29:1105-14. [DOI: 10.1002/bies.20659] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
46
|
Miguel NCDO, Wajsenzon IJR, Takiya CM, de Andrade LR, Tortelote GG, Einicker-Lamas M, Allodi S. Catalase, Bax and p53 expression in the visual system of the crab Ucides cordatus following exposure to ultraviolet radiation. Cell Tissue Res 2007; 329:159-68. [PMID: 17406897 DOI: 10.1007/s00441-007-0410-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Accepted: 03/02/2007] [Indexed: 12/20/2022]
Abstract
In invertebrates, a few studies have suggested apoptosis as the mechanism of choice to protect the retina after exposure to ultraviolet (UV) radiation. We demonstrated previously, by electron microscopy, that the retina and lamina ganglionaris (or lamina) cells of the crab Ucides cordatus displayed subcellular signs of apoptosis after exposure to UVB and UVC. Here, we first ascertained, by the TdT-mediated dUTP-biotin nick end-labeling (TUNEL) technique, that UV irradiation indeed produced the previously reported results. We next tested, in the visual system of U. cordatus, whether the expression (as analyzed by immunohistochemistry and observed with laser scanning microscopy) and levels (as examined by Western blotting) of catalase, Bax, and p53 were affected by the same dose of UV radiation as that used previously. Our data revealed that the intensity of catalase, Bax, and p53 labeling was stronger in irradiated retina and lamina cells than in non-irradiated retina and lamina. However, no significant difference was observed in the concentrations of these proteins isolated from the whole optic lobe. The results thus suggest that UVB and UVC induce apoptosis in the crustacean retina and lamina by increasing catalase expression and activating the Bax- and p53-mediated apoptosis pathways.
Collapse
Affiliation(s)
- Nadia Campos de Oliveira Miguel
- Departamento de Histologia e Embriologia, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Ilha do Fundão, 21941-590 Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | |
Collapse
|
47
|
Burakov AV, Nadezhdina ES. Dynein and dynactin as organizers of the system of cell microtubules. Russ J Dev Biol 2006. [DOI: 10.1134/s1062360406050018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
48
|
Schrader M. Shared components of mitochondrial and peroxisomal division. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:531-41. [PMID: 16487606 DOI: 10.1016/j.bbamcr.2006.01.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 01/11/2006] [Accepted: 01/13/2006] [Indexed: 12/15/2022]
Abstract
Mitochondria and peroxisomes are ubiquitous subcellular organelles, which are highly dynamic and display large plasticity. Recent studies have led to the surprising finding that both organelles share components of their division machinery, namely the dynamin-related protein DLP1/Drp1 and hFis1, which recruits DLP1/Drp1 to the organelle membranes. This review addresses the current state of knowledge concerning the dynamics and fission of peroxisomes, especially in relation to mitochondrial morphology and division in mammalian cells.
Collapse
Affiliation(s)
- Michael Schrader
- Department of Cell Biology and Cell Pathology, University of Marburg, Robert-Koch Str. 6, 35037 Marburg, Germany.
| |
Collapse
|
49
|
Mullen RT, McCartney AW, Flynn CR, Smith GS. Peroxisome biogenesis and the formation of multivesicular peroxisomes during tombusvirus infection: a role for ESCRT?This review is one of a selection of papers published in the Special Issue on Plant Cell Biology. ACTA ACUST UNITED AC 2006. [DOI: 10.1139/b06-005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peroxisomes are highly dynamic organelles with regard to their metabolic functions, shapes, distribution, movements, and biogenesis. They are also important as sites for the development of some viral pathogens. It has long been known that certain members of the tombusvirus family recruit peroxisomes for viral RNA replication and that this process is accompanied by dramatic changes in peroxisome morphology, the most remarkable of which is the extensive inward vesiculation of the peroxisomal boundary membrane leading to the formation of a peroxisomal multivesicular body (pMVB). While it is unclear how the internal vesicles of a pMVB form, they appear to serve in effectively concentrating viral membrane-bound replication complexes and protecting nascent viral RNAs from host-cell defences. Here, we review briefly the biogenesis of peroxisomes and pMVBs and discuss recent studies that have begun to shed light on how components of the tombusvirus replicase exploit the molecular mechanisms involved in peroxisome membrane protein sorting. We also address the question of what controls invagination and vesicle formation at the peroxisomal membrane during pMVB biogenesis. We propose that tombusviruses exploit protein constituents of the class E vacuolar protein-sorting pathway referred to as ESCRT (endosomal sorting complex required for transport) in the formation of pMVBs. This new pMVB–ESCRT hypothesis reconciles current paradigms of pMVB biogenesis with the role of ESCRT in endosomal multivesicular body formation and the ability of enveloped RNA viruses, including HIV, to appropriate the ESCRT machinery to execute their budding programme from cells.
Collapse
Affiliation(s)
- Robert T. Mullen
- Department of Molecular and Cellular Biology, The University of Guelph, Guelph, ON N1G 2W1, Canada
- Harrington Department of Bioengineering, Arizona State University, Tempe, AZ 85287-9709, USA
| | - Andrew W. McCartney
- Department of Molecular and Cellular Biology, The University of Guelph, Guelph, ON N1G 2W1, Canada
- Harrington Department of Bioengineering, Arizona State University, Tempe, AZ 85287-9709, USA
| | - C. Robb Flynn
- Department of Molecular and Cellular Biology, The University of Guelph, Guelph, ON N1G 2W1, Canada
- Harrington Department of Bioengineering, Arizona State University, Tempe, AZ 85287-9709, USA
| | - Graham S.T. Smith
- Department of Molecular and Cellular Biology, The University of Guelph, Guelph, ON N1G 2W1, Canada
- Harrington Department of Bioengineering, Arizona State University, Tempe, AZ 85287-9709, USA
| |
Collapse
|
50
|
Nguyen T, Bjorkman J, Paton BC, Crane DI. Failure of microtubule-mediated peroxisome division and trafficking in disorders with reduced peroxisome abundance. J Cell Sci 2006; 119:636-45. [PMID: 16449325 DOI: 10.1242/jcs.02776] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In contrast to peroxisomes in normal cells, remnant peroxisomes in cultured skin fibroblasts from a subset of the clinically severe peroxisomal disorders that includes the biogenesis disorder Zellweger syndrome and the single-enzyme defect D-bifunctional protein (D-BP) deficiency, are enlarged and significantly less abundant. We tested whether these features could be related to the known role of microtubules in peroxisome trafficking in mammalian cells. We found that remnant peroxisomes in fibroblasts from patients with PEX1-null Zellweger syndrome or D-BP deficiency exhibited clustering and loss of alignment along peripheral microtubules. Similar effects were observed for both cultured embryonic fibroblasts and brain neurons from a PEX13-null mouse with a Zellweger-syndrome-like phenotype, and a less-pronounced effect was observed for fibroblasts from an infantile Refsum patient who was homozygous for a milder PEX1 mutation. By contrast, such changes were not seen for patients with peroxisomal disorders characterized by normal peroxisome abundance and size. Stable overexpression of PEX11beta to induce peroxisome proliferation largely re-established the alignment of peroxisomal structures along peripheral microtubules in both PEX1-null and D-BP-deficient cells. In D-BP-deficient cells, peroxisome division was apparently driven to completion, as induced peroxisomal structures were similar to the spherical parental structures. By contrast, in PEX1-null cells the majority of induced peroxisomal structures were elongated and tubular. These structures were apparently blocked at the division step, despite having recruited DLP1, a protein necessary for peroxisome fission. These findings indicate that the increased size, reduced abundance, and disturbed cytoplasmic distribution of peroxisomal structures in PEX1-null and D-BP-deficient cells reflect defects at different stages in peroxisome proliferation and division, processes that require association of these structures with, and dispersal along, microtubules.
Collapse
Affiliation(s)
- Tam Nguyen
- Cell Biology Group, Eskitis Institute for Cell and Molecular Therapies, Griffith University, 170 Kessels Road, Brisbane, Queensland 4111, Australia
| | | | | | | |
Collapse
|