1
|
Luo Z, Li W, Li J, Zhang Y. A new Tec family-based clinical model predicts survival in differentiated thyroid cancer patients via machine learning. Thyroid Res 2025; 18:18. [PMID: 40307932 PMCID: PMC12044924 DOI: 10.1186/s13044-025-00234-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/21/2025] [Indexed: 05/02/2025] Open
Abstract
BACKGROUND The Tec family of proteins has been identified as a key player in numerous diseases. However, no studies on the associations of Tec family proteins with overall survival (OS) in differentiated thyroid cancer (DTC) patients have been conducted. METHODS RNA sequencing (RNA-Seq) and clinical data were downloaded from The Cancer Genome Atlas (TCGA) database. LASSO-Cox, random forest, and eXtreme Gradient Boosting (XGBoost) analysis methods were used to screen for the genes encoding Tec family proteins that were most closely associated with DTC. A predictive model was developed to estimate the OS of DTC patients. The validity of the prediction model was evaluated via receiver operating characteristic (ROC) curves, decision curve analysis (DCA), and fivefold and 200-fold cross-validation. In addition, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to investigate the biological functions of the most significant genes. RESULTS The AC007494.3 and AC019226.2 genes were most strongly associated with the OS of DTC patients. Therefore, the model can be used to predict the OS of DTC patients. Functional annotation analysis revealed characteristics similar to those of other Tec kinases. CONCLUSIONS We found that the TEC gene has significant predictive value for the prognosis of DTC patients. The TEC gene has potential value as a target for future drug development. In addition, we recommend more comprehensive treatment and closer monitoring of high-risk populations.
Collapse
Affiliation(s)
- Ziyu Luo
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710068, China
| | - Wenhan Li
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710068, China
| | - Jianhui Li
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710068, China
| | - Ying Zhang
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710068, China.
| |
Collapse
|
2
|
Martin DA, Telliez JB, Pleasic-Williams S, Zhang Y, Tierney B, Blatnik M, Gale JD, Banfield C, Zhou Y, Lejeune A, Zwillich SH, Stevens E, Tiwari N, Kieras E, Karanam A. Target Occupancy and Functional Inhibition of JAK3 and TEC Family Kinases by Ritlecitinib in Healthy Adults: An Open-Label, Phase 1 Study. J Clin Pharmacol 2024; 64:67-79. [PMID: 37691236 DOI: 10.1002/jcph.2347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/01/2023] [Indexed: 09/12/2023]
Abstract
Ritlecitinib is a small molecule in clinical development that covalently and irreversibly inhibits Janus kinase 3 (JAK3) and the TEC family of kinases (BTK, BMX, ITK, TXK, and TEC). This phase 1, open-label, parallel-group study assessed target occupancy and functional effects of ritlecitinib on JAK3 and TEC family kinases in healthy participants aged 18-60 years who received 50 or 200 mg single doses of ritlecitinib on day 1. Blood samples to assess ritlecitinib pharmacokinetics, target occupancy, and pharmacodynamics were collected over 48 hours. Target occupancy was assessed using mass spectroscopy. Functional inhibition of JAK3-dependent signaling was measured by the inhibition of the phosphorylation of its downstream target signal transducer and activator of transcription 5 (pSTAT5), following activation by interleukin 15 (IL-15). The functional inhibition of Bruton's tyrosine kinase (BTK)-dependent signaling was measured by the reduction in the upregulation of cluster of differentiation 69 (CD69), an early marker of B-cell activation, following treatment with anti-immunoglobulin D. Eight participants received one 50 mg ritlecitinib dose and 8 participants received one 200 mg dose. Ritlecitinib plasma exposure increased in an approximately dose-proportional manner from 50 to 200 mg. The maximal median JAK3 target occupancy was 72% for 50 mg and 64% for 200 mg. Ritlecitinib 50 mg had >94% maximal target occupancy of all TEC kinases, except BMX (87%), and 200 mg had >97% for all TEC kinases. For BTK and TEC, ritlecitinib maintained high target occupancy throughout a period of 48 hours. Ritlecitinib reduced pSTAT5 levels following IL-15- and BTK-dependent signaling in a dose-dependent manner. These target occupancy and functional assays demonstrate the dual inhibition of the JAK3- and BTK-dependent pathways by ritlecitinib. Further studies are needed to understand the contribution to clinical effects of inhibiting these pathways.
Collapse
|
3
|
Li L, Zhao M, Kiernan CH, Castro Eiro MD, van Meurs M, Brouwers-Haspels I, Wilmsen MEP, Grashof DGB, van de Werken HJG, Hendriks RW, Mueller YM, Katsikis PD. Ibrutinib directly reduces CD8+T cell exhaustion independent of BTK. Front Immunol 2023; 14:1201415. [PMID: 37771591 PMCID: PMC10523025 DOI: 10.3389/fimmu.2023.1201415] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023] Open
Abstract
Introduction Cytotoxic CD8+ T cell (CTL) exhaustion is a dysfunctional state of T cells triggered by persistent antigen stimulation, with the characteristics of increased inhibitory receptors, impaired cytokine production and a distinct transcriptional profile. Evidence from immune checkpoint blockade therapy supports that reversing T cell exhaustion is a promising strategy in cancer treatment. Ibrutinib, is a potent inhibitor of BTK, which has been approved for the treatment of chronic lymphocytic leukemia. Previous studies have reported improved function of T cells in ibrutinib long-term treated patients but the mechanism remains unclear. We investigated whether ibrutinib directly acts on CD8+ T cells and reinvigorates exhausted CTLs. Methods We used an established in vitro CTL exhaustion system to examine whether ibrutinib can directly ameliorate T cell exhaustion. Changes in inhibitory receptors, transcription factors, cytokine production and killing capacity of ibrutinib-treated exhausted CTLs were detected by flow cytometry. RNA-seq was performed to study transcriptional changes in these cells. Btk deficient mice were used to confirm that the effect of ibrutinib was independent of BTK expression. Results We found that ibrutinib reduced exhaustion-related features of CTLs in an in vitro CTL exhaustion system. These changes included decreased inhibitory receptor expression, enhanced cytokine production, and downregulation of the transcription factor TOX with upregulation of TCF1. RNA-seq further confirmed that ibrutinib directly reduced the exhaustion-related transcriptional profile of these cells. Importantly, using btk deficient mice we showed the effect of ibrutinib was independent of BTK expression, and therefore mediated by one of its other targets. Discussion Our study demonstrates that ibrutinib directly ameliorates CTL exhaustion, and provides evidence for its synergistic use with cancer immunotherapy.
Collapse
Affiliation(s)
- Ling Li
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Manzhi Zhao
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Caoimhe H. Kiernan
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | | | - Marjan van Meurs
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | | | - Merel E. P. Wilmsen
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Dwin G. B. Grashof
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Harmen J. G. van de Werken
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
- Cancer Computational Biology Center, Erasmus Medical Center (MC) Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Rudi W. Hendriks
- Department of Pulmonary Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Yvonne M. Mueller
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Peter D. Katsikis
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
4
|
Duan Y, Chen J, Meng X, Liu L, Shang K, Wu X, Wang Y, Huang Z, Liu H, Huang Y, Zhou C, Gao X, Wang Y, Sun J. Balancing activation and co-stimulation of CAR tunes signaling dynamics and enhances therapeutic potency. Mol Ther 2023; 31:35-47. [PMID: 36045585 PMCID: PMC9840118 DOI: 10.1016/j.ymthe.2022.08.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/18/2022] [Accepted: 08/25/2022] [Indexed: 01/28/2023] Open
Abstract
CD19-targeting chimeric antigen receptors (CARs) with CD28 and CD3ζ signaling domains have been approved by the US FDA for treating B cell malignancies. Mutation of immunoreceptor tyrosine-based activation motifs (ITAMs) in CD3ζ generated a single-ITAM containing 1XX CAR, which displayed superior antitumor activity in a leukemia mouse model. Here, we investigated whether the 1XX design could enhance therapeutic potency against solid tumors. We constructed both CD19- and AXL-specific 1XX CARs and compared their in vitro and in vivo functions with their wild-type (WT) counterparts. 1XX CARs showed better antitumor efficacy in both pancreatic and melanoma mouse models. Detailed analysis revealed that 1XX CAR-T cells persisted longer in vivo and had a higher percentage of central memory cells. With fluorescence resonance energy transfer (FRET)-based biosensors, we found that decreased ITAM numbers in 1XX resulted in similar 70-kDa zeta chain-associated protein (ZAP70) activation, while 1XX induced higher Ca2+ elevation and faster extracellular signal-regulated kinase (Erk) activation than WT CAR. Thus, our results confirmed the superiority of 1XX against two targets in different solid tumor models and shed light on the underlying molecular mechanism of CAR signaling, paving the way for the clinical applications of 1XX CARs against solid tumors.
Collapse
Affiliation(s)
- Yanting Duan
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou 310058, Zhejiang, China
| | - Jiangqing Chen
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou 310058, Zhejiang, China
| | - Xianhui Meng
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou 310058, Zhejiang, China
| | - Longwei Liu
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, San Diego, CA 92093, USA
| | - Kai Shang
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou 310058, Zhejiang, China
| | - Xiaoyan Wu
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou 310058, Zhejiang, China
| | - Yajie Wang
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou 310058, Zhejiang, China
| | - Zihan Huang
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou 310058, Zhejiang, China
| | - Houyu Liu
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou 310058, Zhejiang, China
| | - Yanjie Huang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310058, China
| | - Chun Zhou
- School of Public Health and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiaofei Gao
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310058, China
| | - Yingxiao Wang
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, San Diego, CA 92093, USA
| | - Jie Sun
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
5
|
Ibrutinib reverses IL-6-induced osimertinib resistance through inhibition of Laminin α5/FAK signaling. Commun Biol 2022; 5:155. [PMID: 35197546 PMCID: PMC8866396 DOI: 10.1038/s42003-022-03111-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 02/01/2022] [Indexed: 11/16/2022] Open
Abstract
Osimertinib, a 3rd generation epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), is the first-line standard-of-care for EGFR-mutant non-small cell lung cancer (NSCLC) patients, while acquired drug resistance will inevitably occur. Interleukin-6 (IL-6) is a keystone cytokine in inflammation and cancer, while its role in osimertinib efficacy was unknown. Here we show that clinically, plasma IL-6 level predicts osimertinib efficacy in EGFR mutant NSCLC patients. Highly increased IL-6 levels are found in patients with acquired resistance to osimertinib. Addition of IL-6 or exogenous overexpression of IL-6 directly induces osimertinib resistance. Proteomics reveals LAMA5 (Laminin α5) and PTK2, protein tyrosine kinase 2, also called focal adhesion kinase (FAK), are activated in osimertinib-resistant cells, and siRNA knockdown of LAMA5 or PTK2 reverses IL-6-mediated osimertinib resistance. Next, using a large-scale compound screening, we identify ibrutinib as a potent inhibitor of IL-6 and Laminin α5/FAK signaling, which shows synergy with osimertinib in osimertinib-resistant cells with high IL-6 levels, but not in those with low IL-6 levels. In vivo, this combination inhibits tumor growth of xenografts bearing osimertinib-resistant tumors. Taken together, we conclude that Laminin α5/FAK signaling is responsible for IL-6-induced osimertinib resistance, which could be reversed by combination of ibrutinib and osimertinib. The resistance mechanism of osimertinib, a third-generation EGFR-TKI, is mediated by IL-6 and Laminin α5/FAK signaling. Ibrutinib combined with osimertinib is presented as a strategy for overcoming osimertinib acquired resistance in EGFR mutant NSCLC.
Collapse
|
6
|
Chakraborty N, Zamarioli A, Gautam A, Campbell R, Mendenhall SK, Childress PJ, Dimitrov G, Sowe B, Tucker A, Zhao L, Hammamieh R, Kacena MA. Gene-metabolite networks associated with impediment of bone fracture repair in spaceflight. Comput Struct Biotechnol J 2021; 19:3507-3520. [PMID: 34194674 PMCID: PMC8220416 DOI: 10.1016/j.csbj.2021.05.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/26/2021] [Accepted: 05/30/2021] [Indexed: 01/05/2023] Open
Abstract
Adverse effects of spaceflight on musculoskeletal health increase the risk of bone injury and impairment of fracture healing. Its yet elusive molecular comprehension warrants immediate attention, since space travel is becoming more frequent. Here we examined the effects of spaceflight on bone fracture healing using a 2 mm femoral segmental bone defect (SBD) model. Forty, 9-week-old, male C57BL/6J mice were randomized into 4 groups: 1) Sham surgery on Ground (G-Sham); 2) Sham surgery housed in Spaceflight (FLT-Sham); 3) SBD surgery on Ground (G-Surgery); and 4) SBD surgery housed in Spaceflight (FLT-Surgery). Surgery procedures occurred 4 days prior to launch; post-launch, the spaceflight mice were house in the rodent habitats on the International Space Station (ISS) for approximately 4 weeks before euthanasia. Mice remaining on the Earth were subjected to identical housing and experimental conditions. The right femur from half of the spaceflight and ground groups was investigated by micro-computed tomography (µCT). In the remaining mice, the callus regions from surgery groups and corresponding femoral segments in sham mice were probed by global transcriptomic and metabolomic assays. µCT confirmed escalated bone loss in FLT-Sham compared to G-Sham mice. Comparing to their respective on-ground counterparts, the morbidity gene-network signal was inhibited in sham spaceflight mice but activated in the spaceflight callus. µCT analyses of spaceflight callus revealed increased trabecular spacing and decreased trabecular connectivity. Activated apoptotic signals in spaceflight callus were synchronized with inhibited cell migration signals that potentially hindered the wound site to recruit growth factors. A major pro-apoptotic and anti-migration gene network, namely the RANK-NFκB axis, emerged as the central node in spaceflight callus. Concluding, spaceflight suppressed a unique biomolecular mechanism in callus tissue to facilitate a failed regeneration, which merits a customized intervention strategy.
Collapse
Affiliation(s)
| | - Ariane Zamarioli
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Orthopaedics and Anaesthesiology, Ribeirão Preto Medical School, SP, Brazil
| | - Aarti Gautam
- Medical Readiness Systems Biology, CMPN, WRAIR, Silver Spring, MD, USA
| | - Ross Campbell
- Medical Readiness Systems Biology, CMPN, WRAIR, Silver Spring, MD, USA
- Geneva Foundation, Medical Readiness Systems Biology, CMPN, WRAIR, Silver Spring, MD, USA
| | - Stephen K Mendenhall
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Paul J. Childress
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - George Dimitrov
- Medical Readiness Systems Biology, CMPN, WRAIR, Silver Spring, MD, USA
- Geneva Foundation, Medical Readiness Systems Biology, CMPN, WRAIR, Silver Spring, MD, USA
| | - Bintu Sowe
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- ORISE, Medical Readiness Systems Biology, CMPN, WRAIR, Silver Spring, MD, USA
| | - Aamir Tucker
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Liming Zhao
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rasha Hammamieh
- Medical Readiness Systems Biology, CMPN, WRAIR, Silver Spring, MD, USA
| | - Melissa A. Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| |
Collapse
|
7
|
McGee MC, August A, Huang W. TCR/ITK Signaling in Type 1 Regulatory T cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1278:115-124. [PMID: 33523446 DOI: 10.1007/978-981-15-6407-9_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Type 1 regulatory T (Tr1) cells can modulate inflammation through multiple direct and indirect molecular and cellular mechanisms and have demonstrated potential for anti-inflammatory therapies. Tr1 cells do not express the master transcription factor of conventional regulatory T cells, Foxp3, but express high levels of the immunomodulatory cytokine, IL-10. IL-2-inducible T-cell kinase (ITK) is conserved between mouse and human and is highly expressed in T cells. ITK signaling downstream of the T-cell receptor (TCR) is critical for T-cell subset differentiation and function. Upon activation by TCR, ITK is critical for Ras activation, leading to downstream activation of MAPKs and upregulation of IRF4, which further enable Tr1 cell differentiation and suppressive function. We summarize here the structure, signaling pathway, and function of ITK in T-cell lineage designation, with an emphasis on Tr1 cell development and function.
Collapse
Affiliation(s)
- Michael C McGee
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Avery August
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Weishan Huang
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA. .,Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
8
|
The Seminiferous Epithelial Cycle of Spermatogenesis: Role of Non-receptor Tyrosine Kinases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1288:1-20. [PMID: 34453729 DOI: 10.1007/978-3-030-77779-1_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Non-receptor tyrosine kinases (NRTKs) are implicated in various biological processes including cell proliferation, differentiation, survival, and apoptosis, as well as cell adhesion and movement. NRTKs are expressed in all mammals and in different cell types, with extraordinarily high expression in the testis. Their association with the plasma membrane and dynamic subcellular localization are crucial parameters in their activation and function. Many NRTKs are found in endosomal protein trafficking pathways, which suggests a novel mechanism to regulate the timely junction restructuring in the mammalian testis to facilitate spermiation and germ cell transport across the seminiferous epithelium.
Collapse
|
9
|
Kim HO. Development of BTK inhibitors for the treatment of B-cell malignancies. Arch Pharm Res 2019; 42:171-181. [PMID: 30706214 DOI: 10.1007/s12272-019-01124-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 01/19/2019] [Indexed: 01/03/2023]
Abstract
BTK is a key component of B-cell receptor signaling and functions as an important regulator of cell proliferation and survival in B-cell malignancies. The first-in-class BTK inhibitor ibrutinib is a small molecule drug that binds covalently to BTK and has been proved to be an effective treatment for various B-cell malignancies. However, it has off-target activities on non-BTK kinases that are related to side effects or might be translated into clinical limitations, with resistance to ibrutinib also reported. Much progress has been made in the development of more selective and second-generation BTK inhibitors. A recent shift in the mechanisms of action of BTK inhibitors is noteworthy, and novel inhibitors acting through noncovalent BTK inhibition are now being developed. This review describes key characteristics of ibrutinib, including current issues of its clinical use, and summarizes preclinical properties and clinical developments of second-generation BTK inhibitors for the treatment of B-cell malignancies. A review of novel noncovalent BTK inhibitors are also included.
Collapse
Affiliation(s)
- Hyung-Ook Kim
- Department of Clinical Medicinal Sciences, Konyang University, 121 Daehakro, Nonsan, 32992, Republic of Korea.
| |
Collapse
|
10
|
Shah NH, Amacher JF, Nocka LM, Kuriyan J. The Src module: an ancient scaffold in the evolution of cytoplasmic tyrosine kinases. Crit Rev Biochem Mol Biol 2018; 53:535-563. [PMID: 30183386 PMCID: PMC6328253 DOI: 10.1080/10409238.2018.1495173] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Tyrosine kinases were first discovered as the protein products of viral oncogenes. We now know that this large family of metazoan enzymes includes nearly one hundred structurally diverse members. Tyrosine kinases are broadly classified into two groups: the transmembrane receptor tyrosine kinases, which sense extracellular stimuli, and the cytoplasmic tyrosine kinases, which contain modular ligand-binding domains and propagate intracellular signals. Several families of cytoplasmic tyrosine kinases have in common a core architecture, the "Src module," composed of a Src-homology 3 (SH3) domain, a Src-homology 2 (SH2) domain, and a kinase domain. Each of these families is defined by additional elaborations on this core architecture. Structural, functional, and evolutionary studies have revealed a unifying set of principles underlying the activity and regulation of tyrosine kinases built on the Src module. The discovery of these conserved properties has shaped our knowledge of the workings of protein kinases in general, and it has had important implications for our understanding of kinase dysregulation in disease and the development of effective kinase-targeted therapies.
Collapse
Affiliation(s)
- Neel H. Shah
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Jeanine F. Amacher
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Laura M. Nocka
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - John Kuriyan
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
11
|
Fujisaki H, Futaki S, Yamada M, Sekiguchi K, Hayashi T, Ikejima T, Hattori S. Respective optimal calcium concentrations for proliferation on type I collagen fibrils in two keratinocyte line cells, HaCaT and FEPE1L-8. Regen Ther 2018; 8:73-79. [PMID: 30271869 PMCID: PMC6146901 DOI: 10.1016/j.reth.2018.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 03/22/2018] [Accepted: 04/11/2018] [Indexed: 01/02/2023] Open
Abstract
Keratinocyte line cells HaCaT and FEPE1L-8 are used for skin model with type I collagen fibrils (gels). For this purpose, not only differentiation but also regulation of proliferation on type I collagen gels by exogenous calcium concentration is important. When exogenous calcium concentration is low, primary keratinocyte proliferation is repressed and eventually cells are induced to apoptosis on type I collagen gels. The apoptosis induced on type I collagen gels is suppressed by increasing calcium concentration in the medium. That is, higher exogenous calcium concentration is necessary for primary keratinocyte survival on type I collagen gels than for that on dish surface culture. Meanwhile much higher exogenous calcium causes cell differentiation and inhibition of proliferation. The optimal calcium concentrations for proliferation on type I collagen gels have not been clarified in keratinocyte line cells. HaCaT cells have a unique calcium sensitivity in comparison with primary keratinocytes, whereas FEPE1L-8 cells have a similar sensitivity to primary keratinocytes. In this study, we compared the effect of calcium concentrations on proliferation of HaCaT and FEPE1L-8 cells on type I collagen gels. On type I collagen gels, both line cells required higher calcium concentrations for proliferation than on dish surface. HaCaT cells proliferated better in a wider range of calcium concentrations than FEPE1L-8 cells.
Collapse
Key Words
- Calcium concentration
- DAG, diacylglycerol
- DMEM (0), DMEM supplemented without fetal bovine serum
- DMEM (10), DMEM supplemented with 10% fetal bovine serum
- DMEM, Dulbecco's Modified Eagle's Medium
- ECM, extracellular matrix
- HBSS, Hanks' balanced salt solution
- HEPES, 4-(2-hydroxyethyl-1-piperazineethanesulfonic acid
- IP3, inositol trisphosphate
- K110, K110 type II medium
- Keratinocyte proliferation
- MTT, 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazoliumbromide
- PI, propidium iodide
- PI3K, phosphoinositide 3-OH-kinase
- PIP2, hydrolyze phosphatidylinositol bisphosphate
- PKC, protein kinase C
- Type I collagen gel
- WST-8, (2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt
Collapse
Affiliation(s)
- Hitomi Fujisaki
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, Japan
| | - Sugiko Futaki
- Department of Anatomy and Cell Biology, Osaka Medical College, Osaka, Japan
| | - Masashi Yamada
- Division of Matrixome Research and Application, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Kiyotoshi Sekiguchi
- Division of Matrixome Research and Application, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Toshihiko Hayashi
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Takashi Ikejima
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Shunji Hattori
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, Japan
| |
Collapse
|
12
|
IL-2 Inducible Kinase ITK is Critical for HIV-1 Infection of Jurkat T-cells. Sci Rep 2018; 8:3217. [PMID: 29453458 PMCID: PMC5816632 DOI: 10.1038/s41598-018-21344-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/15/2018] [Indexed: 01/04/2023] Open
Abstract
Successful replication of Human immunodeficiency virus (HIV)-1 depends on the expression of various cellular host factors, such as the interleukin-2 inducible T-cell kinase (ITK), a member of the protein family of TEC-tyrosine kinases. ITK is selectively expressed in T-cells and coordinates signaling pathways downstream of the T-cell receptor and chemokine receptors, including PLC-1 activation, Ca2+-release, transcription factor mobilization, and actin rearrangements. The exact role of ITK during HIV-1 infection is still unknown. We analyzed the function of ITK during HIV-1 replication and showed that attachment, fusion of virions with the cell membrane and entry into Jurkat T-cells was inhibited when ITK was knocked down. In contrast, reverse transcription and provirus expression were not affected by ITK deficiency. Inhibited ITK expression did not affect the CXCR4 receptor on the cell surface, whereas CD4 and LFA-1 integrin levels were slightly enhanced in ITK knockdown cells and heparan sulfate (HS) expression was completely abolished in ITK depleted T-cells. However, neither HS expression nor other attachment factors could explain the impaired HIV-1 binding to ITK-deficient cells, which suggests that a more complex cellular process is influenced by ITK or that not yet discovered molecules contribute to restriction of HIV-1 binding and entry.
Collapse
|
13
|
Hershkovitz-Rokah O, Pulver D, Lenz G, Shpilberg O. Ibrutinib resistance in mantle cell lymphoma: clinical, molecular and treatment aspects. Br J Haematol 2018; 181:306-319. [PMID: 29359797 DOI: 10.1111/bjh.15108] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mantle cell lymphoma (MCL) is a lymphoproliferative disorder comprising about 6-10% of all B cell lymphoma cases. Ibrutinib is an inhibitor of Bruton tyrosine kinase (BTK), a key component of early B-cell receptor (BCR) signalling pathways. Although treatment with ibrutinib has significantly improved the outcome of MCL patients, approximately one-third of the patients have primary drug resistance while others appear to develop acquired resistance. Understanding the molecular events leading to the primary and acquired resistance to ibrutinib is essential for achieving better outcomes in patients with MCL. In this review, we describe the biology of the BCR signalling pathway and summarize the landmark clinical trials that have led to the approval of ibrutinib. We review the molecular mechanisms underlying primary and acquired ibrutinib resistance as well as recent studies dealing with overcoming ibrutinib resistance.
Collapse
Affiliation(s)
- Oshrat Hershkovitz-Rokah
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel, Israel.,Translational Research Laboratory, Assuta Medical Centres, Tel Aviv, Israel.,Institute of Haematology, Assuta Medical Centres, Tel Aviv, Israel
| | - Dana Pulver
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel, Israel.,Translational Research Laboratory, Assuta Medical Centres, Tel Aviv, Israel.,Institute of Haematology, Assuta Medical Centres, Tel Aviv, Israel
| | - Georg Lenz
- University Hospital Münster, Münster, Germany.,Cluster of Excellence EXC 1003, Cells in Motion, Münster, Germany
| | - Ofer Shpilberg
- Translational Research Laboratory, Assuta Medical Centres, Tel Aviv, Israel.,Institute of Haematology, Assuta Medical Centres, Tel Aviv, Israel.,Pre-Medicine Department, School of Health Sciences, Ariel University, Ariel, Israel
| |
Collapse
|
14
|
Burgett ME, Lathia JD, Roth P, Nowacki AS, Galileo DS, Pugacheva E, Huang P, Vasanji A, Li M, Byzova T, Mikkelsen T, Bao S, Rich JN, Weller M, Gladson CL. Direct contact with perivascular tumor cells enhances integrin αvβ3 signaling and migration of endothelial cells. Oncotarget 2018; 7:43852-43867. [PMID: 27270311 PMCID: PMC5190064 DOI: 10.18632/oncotarget.9700] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 05/13/2016] [Indexed: 12/15/2022] Open
Abstract
The secretion of soluble pro-angiogenic factors by tumor cells and stromal cells in the perivascular niche promotes the aggressive angiogenesis that is typical of glioblastoma (GBM). Here, we show that angiogenesis also can be promoted by a direct interaction between brain tumor cells, including tumor cells with cancer stem-like properties (CSCs), and endothelial cells (ECs). As shown in vitro, this direct interaction is mediated by binding of integrin αvβ3 expressed on ECs to the RGD-peptide in L1CAM expressed on CSCs. It promotes both EC network formation and enhances directed migration toward basic fibroblast growth factor. Activation of αvβ3 and bone marrow tyrosine kinase on chromosome X (BMX) is required for migration stimulated by direct binding but not for migration stimulated by soluble factors. RGD-peptide treatment of mice with established intracerebral GBM xenografts significantly reduced the percentage of Sox2-positive tumor cells and CSCs in close proximity to ECs, decreased integrin αvβ3 and BMX activation and p130CAS phosphorylation in the ECs, and reduced the vessel surface area. These results reveal a previously unrecognized aspect of the regulation of angiogenesis in GBM that can impact therapeutic anti-angiogenic targeting.
Collapse
Affiliation(s)
- Monica E Burgett
- Department of Cancer Biology, Cleveland Clinic, Cleveland, OH, USA.,School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Justin D Lathia
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Patrick Roth
- Department of Neurology, Laboratory of Molecular Neuro-Oncology, University Hospital, Zurich, Switzerland
| | - Amy S Nowacki
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Deni S Galileo
- Department of Biological Sciences, University of Delaware and Helen F. Graham Cancer Center and Research Institute, Christiana Care Health System, Newark, DE, USA
| | - Elena Pugacheva
- Department of Biochemistry, West Virginia University, Morgantown, VA, USA
| | - Ping Huang
- Department of Cancer Biology, Cleveland Clinic, Cleveland, OH, USA
| | | | - Meizhang Li
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Tatiana Byzova
- Department of Molecular Cardiology, Cleveland Clinic, Cleveland, OH, USA
| | - Tom Mikkelsen
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, USA
| | - Shideng Bao
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Jeremy N Rich
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Michael Weller
- Department of Neurology, Laboratory of Molecular Neuro-Oncology, University Hospital, Zurich, Switzerland
| | | |
Collapse
|
15
|
Molina-Cerrillo J, Alonso-Gordoa T, Gajate P, Grande E. Bruton's tyrosine kinase (BTK) as a promising target in solid tumors. Cancer Treat Rev 2017. [PMID: 28641100 DOI: 10.1016/j.ctrv.2017.06.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bruton's tyrosine kinase (BTK) is a non-receptor intracellular kinase that belongs to the TEC-family tyrosine kinases together with bone marrow-expressed kinase (BMX), redundant-resting lymphocyte kinase (RLK), and IL-2 inducible T-Cell kinase (ITK). All these proteins play a key role in the intracellular signaling of both B and T lymphocytes. Recently, some preclinical data have demonstrated that BTK is present in certain tumor subtypes and in other relevant cells that are contributing to the tumor microenvironment such as dendritic cells, macrophages, myeloid derived suppressor cells and endothelial cells. Ibrutinib (PCI-32765) is an orally available small molecule that acts as an inhibitor of the BTK and is approved for the treatment of patients with some hematological malignancies. It has been suggested that ibrutinib may also have a potential antitumor activity in solid neoplasms. In this sense, ibrutinib has the ability to revert polarization of TCD4+ to Th1 lymphocytes to increase the cytotoxic ability of T CD8+ and to regulate tumor-induced immune tolerance by acting over tumor infiltrating cells activity and immunosuppressive cytokines release. Furthermore, based on its molecular activity and safety, ibrutinib has been considered as a partner for treatment combination with PI3K/AKT/mTOR inhibitors or with immune-checkpoint inhibitors, inhibiting immunosuppressive signals from the tumor microenvironment, and overcoming the immune resistance to current anti-PD1/PDL1 immunotherapeutic drugs by the CXCR4/CXCL2 pathway regulation. Currently, a broad range of different studies are evaluating the activity of ibrutinib either as single agent or in combination in patients with solid tumors.
Collapse
Affiliation(s)
- J Molina-Cerrillo
- Medical Oncology Department, Ramón y Cajal University Hospital, Madrid, Spain.
| | - T Alonso-Gordoa
- Medical Oncology Department, Ramón y Cajal University Hospital, Madrid, Spain
| | - P Gajate
- Medical Oncology Department, Ramón y Cajal University Hospital, Madrid, Spain
| | - E Grande
- Medical Oncology Department, Ramón y Cajal University Hospital, Madrid, Spain
| |
Collapse
|
16
|
Gustafsson MO, Mohammad DK, Ylösmäki E, Choi H, Shrestha S, Wang Q, Nore BF, Saksela K, Smith CIE. ANKRD54 preferentially selects Bruton's Tyrosine Kinase (BTK) from a Human Src-Homology 3 (SH3) domain library. PLoS One 2017; 12:e0174909. [PMID: 28369144 PMCID: PMC5378395 DOI: 10.1371/journal.pone.0174909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 03/17/2017] [Indexed: 11/19/2022] Open
Abstract
Bruton's Tyrosine Kinase (BTK) is a cytoplasmic protein tyrosine kinase with a fundamental role in B-lymphocyte development and activation. The nucleocytoplasmic shuttling of BTK is specifically modulated by the Ankyrin Repeat Domain 54 (ANKRD54) protein and the interaction is known to be exclusively SH3-dependent. To identify the spectrum of the ANKRD54 SH3-interactome, we applied phage-display screening of a library containing all the 296 human SH3 domains. The BTK-SH3 domain was the prime interactor. Quantitative western blotting analysis demonstrated the accuracy of the screening procedure. Revealing the spectrum and specificity of ANKRD54-interactome is a critical step toward functional analysis in cells and tissues.
Collapse
Affiliation(s)
- Manuela O. Gustafsson
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, SE Stockholm, Sweden
| | - Dara K. Mohammad
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, SE Stockholm, Sweden
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region-Iraq
| | - Erkko Ylösmäki
- Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Hyunseok Choi
- Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Subhash Shrestha
- Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Qing Wang
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, SE Stockholm, Sweden
| | - Beston F. Nore
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, SE Stockholm, Sweden
- Department of Biochemistry, School of Medicine, Faculty of Medical Sciences, University of Sulaimani, Sulaimani, Iraq
- Department of Health, Kurdistan Institution for Strategic Studies and Scientific Research (KISSSR), Sulaimani, Kurdistan-Iraq
| | - Kalle Saksela
- Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - C. I. Edvard Smith
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, SE Stockholm, Sweden
| |
Collapse
|
17
|
Phosphorylation Sites Identified in the NEIL1 DNA Glycosylase Are Potential Targets for the JNK1 Kinase. PLoS One 2016; 11:e0157860. [PMID: 27518429 PMCID: PMC4982613 DOI: 10.1371/journal.pone.0157860] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 07/23/2016] [Indexed: 12/20/2022] Open
Abstract
The NEIL1 DNA glycosylase is one of eleven mammalian DNA glycosylases that partake in the first step of the base excision repair (BER) pathway. NEIL1 recognizes and cleaves mainly oxidized pyrimidines from DNA. The past decade has witnessed the identification of an increasing number of post-translational modifications (PTMs) in BER enzymes including phosphorylation, acetylation, and sumoylation, which modulate enzyme function. In this work, we performed the first comprehensive analysis of phosphorylation sites in human NEIL1 expressed in human cells. Mass spectrometry (MS) analysis revealed phosphorylation at three serine residues: S207, S306, and a third novel site, S61. We expressed, purified, and characterized phosphomimetic (glutamate) and phosphoablating (alanine) mutants of the three phosphorylation sites in NEIL1 revealed by the MS analysis. All mutant enzymes were active and bound tightly to DNA, indicating that phosphorylation does not affect DNA binding and enzyme activity at these three serine sites. We also characterized phosphomimetic mutants of two other sites of phosphorylation, Y263 and S269, reported previously, and observed that mutation of Y263 to E yielded a completely inactive enzyme. Furthermore, based on sequence motifs and kinase prediction algorithms, we identified the c-Jun N-terminal kinase 1 (JNK1) as the kinase involved in the phosphorylation of NEIL1. JNK1, a member of the mitogen activated protein kinase (MAPK) family, was detected in NEIL1 immunoprecipitates, interacted with NEIL1 in vitro, and was able to phosphorylate the enzyme at residues S207, S306, and S61.
Collapse
|
18
|
La Venuta G, Wegehingel S, Sehr P, Müller HM, Dimou E, Steringer JP, Grotwinkel M, Hentze N, Mayer MP, Will DW, Uhrig U, Lewis JD, Nickel W. Small Molecule Inhibitors Targeting Tec Kinase Block Unconventional Secretion of Fibroblast Growth Factor 2. J Biol Chem 2016; 291:17787-803. [PMID: 27382052 DOI: 10.1074/jbc.m116.729384] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Indexed: 11/06/2022] Open
Abstract
Fibroblast growth factor 2 (FGF2) is a potent mitogen promoting both tumor cell survival and tumor-induced angiogenesis. It is secreted by an unconventional secretory mechanism that is based upon direct translocation across the plasma membrane. Key steps of this process are (i) phosphoinositide-dependent membrane recruitment, (ii) FGF2 oligomerization and membrane pore formation, and (iii) extracellular trapping mediated by membrane-proximal heparan sulfate proteoglycans. Efficient secretion of FGF2 is supported by Tec kinase that stimulates membrane pore formation based upon tyrosine phosphorylation of FGF2. Here, we report the biochemical characterization of the direct interaction between FGF2 and Tec kinase as well as the identification of small molecules that inhibit (i) the interaction of FGF2 with Tec, (ii) tyrosine phosphorylation of FGF2 mediated by Tec in vitro and in a cellular context, and (iii) unconventional secretion of FGF2 from cells. We further demonstrate the specificity of these inhibitors for FGF2 because tyrosine phosphorylation of a different substrate of Tec is unaffected in their presence. Building on previous evidence using RNA interference, the identified compounds corroborate the role of Tec kinase in unconventional secretion of FGF2. In addition, they are valuable lead compounds with great potential for drug development aiming at the inhibition of FGF2-dependent tumor growth and metastasis.
Collapse
Affiliation(s)
- Giuseppe La Venuta
- From the Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Sabine Wegehingel
- From the Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Peter Sehr
- the European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany, and
| | - Hans-Michael Müller
- From the Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Eleni Dimou
- From the Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Julia P Steringer
- From the Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Mareike Grotwinkel
- From the Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Nikolai Hentze
- the Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Allianz, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Matthias P Mayer
- the Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Allianz, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - David W Will
- the European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany, and
| | - Ulrike Uhrig
- the European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany, and
| | - Joe D Lewis
- the European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany, and
| | - Walter Nickel
- From the Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany,
| |
Collapse
|
19
|
Chang C, Niu Z, Gu N, Zhao W, Wang G, Jia Y, Li D, Xu C. Analysis of the ways and methods of signaling pathways in regulating cell cycle of NIH3T3 at transcriptional level. BMC Cell Biol 2015; 16:25. [PMID: 26511608 PMCID: PMC4625951 DOI: 10.1186/s12860-015-0071-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 10/19/2015] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND To analyze the ways and methods of signaling pathways in regulating cell cycle progression of NIH3T3 at transcriptional level, we modeled cell cycle of NIH3T3 and found that G1 phase of NIH3T3 cell cycle was at 5-15 h after synchronization, S phase at 15-21 h, G2 phase at 21-22 h, M phase at 22-25 h. RESULTS Mouse Genome 430 2.0 microarray was used to detect the gene expression profiles of the model, and results showed remarkable changes in the expressions of 64 cell cycle genes and 960 genes associated with other physiological activity during the cell cycle of NIH3T3. For the next step, IPA software was used to analyze the physiological activities, cell cycle genes-associated signal transduction activities and their regulatory roles of these genes in cell cycle progression, and our results indicated that the reported genes were involved in 17 signaling pathways in the regulation of cell cycle progression. Newfound genes such as PKC, RAS, PP2A, NGR and PI3K etc. belong to the functional category of molecular mechanism of cancer, cyclins and cell cycle regulation HER-2 signaling in breast cancer signaling pathways. These newfound genes could promote DNA damage repairment and DNA replication progress, regulate the metabolism of protein, and maintain the cell cycle progression of NIH3T3 modulating the reported genes CCND1 and C-FOS. CONCLUSION All of the aforementioned signaling pathways interacted with the cell cycle network, indicating that NIH3T3 cell cycle was regulated by a number of signaling pathways.
Collapse
Affiliation(s)
- Cuifang Chang
- College of Life Science, Henan Normal University, No. 46, Construction East Road, Xinxiang, 453007, Henan Province, P. R. China. .,State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, 453007, P. R. China.
| | - Zhipeng Niu
- College of Life Science, Henan Normal University, No. 46, Construction East Road, Xinxiang, 453007, Henan Province, P. R. China. .,State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, 453007, P. R. China.
| | - Ningning Gu
- College of Life Science, Henan Normal University, No. 46, Construction East Road, Xinxiang, 453007, Henan Province, P. R. China. .,State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, 453007, P. R. China.
| | - Weiming Zhao
- College of Life Science, Henan Normal University, No. 46, Construction East Road, Xinxiang, 453007, Henan Province, P. R. China. .,State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, 453007, P. R. China.
| | - Gaiping Wang
- College of Life Science, Henan Normal University, No. 46, Construction East Road, Xinxiang, 453007, Henan Province, P. R. China. .,State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, 453007, P. R. China.
| | - Yifeng Jia
- College of Life Science, Henan Normal University, No. 46, Construction East Road, Xinxiang, 453007, Henan Province, P. R. China. .,State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, 453007, P. R. China.
| | - Deming Li
- College of Life Science, Henan Normal University, No. 46, Construction East Road, Xinxiang, 453007, Henan Province, P. R. China. .,State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, 453007, P. R. China.
| | - Cunshuan Xu
- College of Life Science, Henan Normal University, No. 46, Construction East Road, Xinxiang, 453007, Henan Province, P. R. China. .,State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, 453007, P. R. China.
| |
Collapse
|
20
|
Li R, Su P, Liu C, Zhang Q, Zhu T, Pang Y, Liu X, Li Q. A novel protein tyrosine kinase Tec identified in lamprey, Lampetra japonica. Acta Biochim Biophys Sin (Shanghai) 2015; 47:639-46. [PMID: 26079172 DOI: 10.1093/abbs/gmv056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 04/15/2015] [Indexed: 11/14/2022] Open
Abstract
Protein tyrosine kinase Tec, a kind of non-receptor tyrosine kinase, is primarily found to be expressed in T cells, B cells, hematopoietic cells, and liver cells as a cytoplasmic protein. Tec has been proved to be a critical modulator of T cell receptor signaling pathway. In the present study, a homolog of Tec was identified in the lamprey, Lampetra japonica. The full-length Tec cDNA of L. japonica (Lja-Tec) contains a 1923 bp open reading frame that encodes a 641-amino acid protein. The multi-alignment of the deduced amino acid sequence of Lja-Tec with typical vertebrate Tecs showed that it possesses all conserved domains of the Tec family proteins, indicating that an ortholog of Tec exists in the extant jawless vertebrate. In the phylogenetic tree that was reconstructed with 24 homologs of jawless and jawed vertebrates, the Tecs from lampreys and hagfish were clustered as a single clade. The genetic distance between the outgroup and agnathan Tecs' group is closer than that between outgroup and gnathostome Tecs' group, indicating that its origin was far earlier than any of the jawed vertebrates. The mRNA levels of Lja-Tec in lymphocyte-like cells and gills were detected by real-time quantitative polymerase chain reaction. Results showed that it was significantly upregulated under stimulation with mixed pathogens. This result was further confirmed by western blot analysis. All these results indicated that Lja-Tec plays an important role in immune response. Our data will provide a reference for the further study of lamprey Tec and its immunological function in jawless vertebrates.
Collapse
Affiliation(s)
- Ranran Li
- College of Life Science, Liaoning Normal University, Dalian 116029, China Lamprey Research Center, Liaoning Normal University, Dalian 116029, China
| | - Peng Su
- College of Life Science, Liaoning Normal University, Dalian 116029, China Lamprey Research Center, Liaoning Normal University, Dalian 116029, China
| | - Chang Liu
- College of Life Science, Liaoning Normal University, Dalian 116029, China Lamprey Research Center, Liaoning Normal University, Dalian 116029, China
| | - Qiong Zhang
- College of Life Science, Liaoning Normal University, Dalian 116029, China Lamprey Research Center, Liaoning Normal University, Dalian 116029, China
| | - Ting Zhu
- College of Life Science, Liaoning Normal University, Dalian 116029, China Lamprey Research Center, Liaoning Normal University, Dalian 116029, China
| | - Yue Pang
- College of Life Science, Liaoning Normal University, Dalian 116029, China Lamprey Research Center, Liaoning Normal University, Dalian 116029, China
| | - Xin Liu
- College of Life Science, Liaoning Normal University, Dalian 116029, China Lamprey Research Center, Liaoning Normal University, Dalian 116029, China
| | - Qingwei Li
- College of Life Science, Liaoning Normal University, Dalian 116029, China Lamprey Research Center, Liaoning Normal University, Dalian 116029, China
| |
Collapse
|
21
|
Liao HR, Chien CR, Chen JJ, Lee TY, Lin SZ, Tseng CP. The anti-inflammatory effect of 2-(4-hydroxy-3-prop-2-enyl-phenyl)-4-prop-2-enyl-phenol by targeting Lyn kinase in human neutrophils. Chem Biol Interact 2015; 236:90-101. [PMID: 25980585 DOI: 10.1016/j.cbi.2015.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/29/2015] [Accepted: 05/08/2015] [Indexed: 11/24/2022]
Abstract
The undesirable respiratory burst in neutrophils can lead to inflammation and tissue damage. This study investigates the effect and the underlying mechanism of 2-(4-hydroxy-3-prop-2-enyl-phenyl)-4-prop-2-enyl-phenol (honokiol), a lignan extracted from the stem bark of Magnolia officinalis Rehd. et Wils (Magnoliaceae), on N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP)-induced respiratory burst in human neutrophils. Signaling pathways regulated by honokiol which modulate fMLP-induced respiratory burst and cathepsin G release were evaluated by phosphorylation of Src family kinase induced by fMLP, Src family kinases activities and by immunoblotting analysis of the downstream targets of Src kinase. Briefly, honokiol inhibited fMLP-induced superoxide anion production (IC50 = 9.80 ± 0.21 μM, n = 4), cathepsin G release (IC50 = 14.23 ± 1.43 μM, n = 4) and migration (IC50 = 5.69 ± 1.51 μM, n = 4) in a concentration dependent manner. Further, honokiol specifically suppresses fMLP-induced Lyn (a member of the Src kinase family) phosphorylation, by inhibiting Lyn kinase activity. Consequently, honokiol attenuated the downstream targets of Lyn kinase, such as Tec translocation from the cytosol to the inner leaflet of the plasma membrane, phosphorylation of AKT, P38, PLCγ2, protein kinase C and membrane localization of p47(phox). On the other hand, fMLP-induced phosphorylation of Hck, Fgr kinase activity (other members of Src kinase), downstream phosphorylation of Vav1 and extracellular signal-regulated kinase remained unaffected. In addition, honokiol neither inhibited NADPH oxidase activity nor increased cyclic AMP levels. Honokiol is not a competitive or allosteric antagonist of fMLP. In conclusion, honokiol specifically modulates fMLP-mediated neutrophil activation by inhibiting Lyn activation which subsequently interferes with the activation of PLCγ2, AKT, p38, protein kinase C, and p47(phox).
Collapse
Affiliation(s)
- Hsiang-Ruei Liao
- Graduate Institute of Natural Products, College of Medicine, Chang-Gung University, Tao-Yuan, Taiwan.
| | - Ching-Ru Chien
- Graduate Institute of Natural Products, College of Medicine, Chang-Gung University, Tao-Yuan, Taiwan
| | - Jih-Jung Chen
- Department of Pharmacy & Graduate Institute of Pharmaceutical Technology, Ta-jen University, Taiwan
| | - Tzung-Yan Lee
- Graduate Institute of Traditional Chinese Medicine, College of Medicine, Chang-Gung University, Tao-Yuan, Taiwan
| | - Shinn-Zhi Lin
- Graduate Institute of Natural Products, College of Medicine, Chang-Gung University, Tao-Yuan, Taiwan
| | - Ching-Ping Tseng
- Graduate Institute of Medical Biotechnology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| |
Collapse
|
22
|
Wang X, Hills LB, Huang YH. Lipid and Protein Co-Regulation of PI3K Effectors Akt and Itk in Lymphocytes. Front Immunol 2015; 6:117. [PMID: 25821452 PMCID: PMC4358224 DOI: 10.3389/fimmu.2015.00117] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/02/2015] [Indexed: 12/21/2022] Open
Abstract
The phosphoinositide 3-kinase (PI 3-kinase, PI3K) pathway transduces signals critical for lymphocyte function. PI3K generates the phospholipid PIP3 at the plasma membrane to recruit proteins that contain pleckstrin homology (PH) domains – a conserved domain found in hundreds of mammalian proteins. PH domain–PIP3 interactions allow for rapid signal propagation and confer a spatial component to these signals. The kinases Akt and Itk are key PI3K effectors that bind PIP3 via their PH domains and mediate vital processes – such as survival, activation, and differentiation – in lymphocytes. Here, we review the roles and regulation of PI3K signaling in lymphocytes with a specific emphasis on Akt and Itk. We also discuss these and other PH domain-containing proteins as they relate more broadly to immune cell function. Finally, we highlight the emerging view of PH domains as multifunctional protein domains that often bind both lipid and protein substrates to exert their effects.
Collapse
Affiliation(s)
- Xinxin Wang
- California Institute for Biomedical Research , La Jolla, CA , USA
| | - Leonard Benjamin Hills
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth , Lebanon, NH , USA
| | - Yina Hsing Huang
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth , Lebanon, NH , USA ; Department of Pathology, Geisel School of Medicine at Dartmouth , Lebanon, NH , USA
| |
Collapse
|
23
|
Tsikala G, Karagogeos D, Strigini M. Btk-dependent epithelial cell rearrangements contribute to the invagination of nearby tubular structures in the posterior spiracles of Drosophila. Dev Biol 2014; 396:42-56. [PMID: 25305143 DOI: 10.1016/j.ydbio.2014.09.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 09/16/2014] [Accepted: 09/18/2014] [Indexed: 01/08/2023]
Abstract
The Drosophila respiratory system consists of two connected organs, the tracheae and the spiracles. Together they ensure the efficient delivery of air-borne oxygen to all tissues. The posterior spiracles consist internally of the spiracular chamber, an invaginated tube with filtering properties that connects the main tracheal branch to the environment, and externally of the stigmatophore, an extensible epidermal structure that covers the spiracular chamber. The primordia of both components are first specified in the plane of the epidermis and subsequently the spiracular chamber is internalized through the process of invagination accompanied by apical cell constriction. It has become clear that invagination processes do not always or only rely on apical constriction. We show here that in mutants for the src-like kinase Btk29A spiracle cells constrict apically but do not complete invagination, giving rise to shorter spiracular chambers. This defect can be rescued by using different GAL4 drivers to express Btk29A throughout the ectoderm, in cells of posterior segments only, or in the stigmatophore pointing to a non cell-autonomous role for Btk29A. Our analysis suggests that complete invagination of the spiracular chamber requires Btk29A-dependent planar cell rearrangements of adjacent non-invaginating cells of the stigmatophore. These results highlight the complex physical interactions that take place among organ components during morphogenesis, which contribute to their final form and function.
Collapse
Affiliation(s)
- Georgia Tsikala
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology Hellas (FORTH), Nikolaou Plastira 100, GR-70013 Heraklion, Crete, Greece; Department of Basic Sciences, Faculty of Medicine, University of Crete, P.O. Box 2208, GR-71003 Heraklion, Crete, Greece
| | - Domna Karagogeos
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology Hellas (FORTH), Nikolaou Plastira 100, GR-70013 Heraklion, Crete, Greece; Department of Basic Sciences, Faculty of Medicine, University of Crete, P.O. Box 2208, GR-71003 Heraklion, Crete, Greece
| | - Maura Strigini
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology Hellas (FORTH), Nikolaou Plastira 100, GR-70013 Heraklion, Crete, Greece.
| |
Collapse
|
24
|
Ponader S, Burger JA. Bruton's tyrosine kinase: from X-linked agammaglobulinemia toward targeted therapy for B-cell malignancies. J Clin Oncol 2014; 32:1830-9. [PMID: 24778403 PMCID: PMC5073382 DOI: 10.1200/jco.2013.53.1046] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Discovery of Bruton's tyrosine kinase (BTK) mutations as the cause for X-linked agammaglobulinemia was a milestone in understanding the genetic basis of primary immunodeficiencies. Since then, studies have highlighted the critical role of this enzyme in B-cell development and function, and particularly in B-cell receptor signaling. Because its deletion affects mostly B cells, BTK has become an attractive therapeutic target in autoimmune disorders and B-cell malignancies. Ibrutinib (PCI-32765) is the most advanced BTK inhibitor in clinical testing, with ongoing phase III clinical trials in patients with chronic lymphocytic leukemia and mantle-cell lymphoma. In this article, we discuss key discoveries related to BTK and clinically relevant aspects of BTK inhibitors, and we provide an outlook into clinical development and open questions regarding BTK inhibitor therapy.
Collapse
Affiliation(s)
- Sabine Ponader
- All authors: The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jan A Burger
- All authors: The University of Texas MD Anderson Cancer Center, Houston, TX.
| |
Collapse
|
25
|
Arita A, McFarland DC, Myklebust JH, Parekh S, Petersen B, Gabrilove J, Brody JD. Signaling pathways in lymphoma: pathogenesis and therapeutic targets. Future Oncol 2013; 9:1549-71. [DOI: 10.2217/fon.13.113] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Lymphoma is the fifth most common cancer in the USA. Most lymphomas are classified as non-Hodgkin’s lymphoma, and nearly 95% of these cancers are of B-cell origin. B-cell receptor (BCR) surface expression and BCR functional signaling are critical for survival and proliferation of both healthy B cells, as well as most B-lymphoma cells. Agents that inhibit various components of the BCR signaling pathway, as well as parallel signaling pathways, are currently in clinical trials for the treatment of various lymphoma subtypes, including those targeting isoforms of PI3K, mTOR and BTK. In this review, we describe the signaling pathways in healthy mature B cells, the aberrant signaling in lymphomatous B cells and the rationale for clinical trials of agents targeting these pathways as well as the results of clinical trials to date. We propose that the entry into a kinase inhibitor era of lymphoma therapy will be as transformative for our patients as the advent of the antibody or chemotherapy era before it.
Collapse
Affiliation(s)
- Adriana Arita
- Division of Hematology/Oncology, Tisch Cancer Institute & Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Daniel C McFarland
- Division of Hematology/Oncology, Tisch Cancer Institute & Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - June H Myklebust
- Department of Immunology, Institute for Cancer Research, Oslo University Hospital/Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
| | - Samir Parekh
- Division of Hematology/Oncology, Tisch Cancer Institute & Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Bruce Petersen
- Department of Pathology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Janice Gabrilove
- Division of Hematology/Oncology, Tisch Cancer Institute & Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Joshua D Brody
- Division of Hematology/Oncology, Tisch Cancer Institute & Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| |
Collapse
|
26
|
Chen S, Jiang X, Gewinner CA, Asara JM, Simon NI, Cai C, Cantley LC, Balk SP. Tyrosine kinase BMX phosphorylates phosphotyrosine-primed motif mediating the activation of multiple receptor tyrosine kinases. Sci Signal 2013; 6:ra40. [PMID: 23716717 DOI: 10.1126/scisignal.2003936] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The nonreceptor tyrosine kinase BMX (bone marrow tyrosine kinase gene on chromosome X) is abundant in various cell types and activated downstream of phosphatidylinositol-3 kinase (PI3K) and the kinase Src, but its substrates are unknown. Positional scanning peptide library screening revealed a marked preference for a priming phosphorylated tyrosine (pY) in the -1 position, indicating that BMX substrates may include multiple tyrosine kinases that are fully activated by pYpY sites in the kinase domain. BMX phosphorylated focal adhesion kinase (FAK) at Tyr⁵⁷⁷ subsequent to its Src-mediated phosphorylation at Tyr⁵⁷⁶. Loss of BMX by RNA interference or by genetic deletion in mouse embryonic fibroblasts (MEFs) markedly impaired FAK activity. Phosphorylation of the insulin receptor in the kinase domain at Tyr¹¹⁸⁹ and Tyr¹¹⁹⁰, as well as Tyr¹¹⁸⁵, and downstream phosphorylation of the kinase AKT at Thr³⁰⁸ were similarly impaired by BMX deficiency. However, insulin-induced phosphorylation of AKT at Ser⁴⁷³ was not impaired in Bmx knockout MEFs or liver tissue from Bmx knockout mice, which also showed increased insulin-stimulated glucose uptake, possibly because of decreased abundance of the phosphatase PHLPP (PH domain leucine-rich repeat protein phosphatase). Thus, by identifying the pYpY motif as a substrate for BMX, our findings suggest that BMX functions as a central regulator among multiple signaling pathways mediated by tyrosine kinases.
Collapse
Affiliation(s)
- Sen Chen
- Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Xinnong Jiang
- Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Christina A Gewinner
- Signal Transduction Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - John M Asara
- Signal Transduction Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Nicholas I Simon
- Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Changmeng Cai
- Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Lewis C Cantley
- Signal Transduction Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Weill Cornell Medical College and New York Presbyterian Hospital, New York, NY 10065, USA
| | - Steven P Balk
- Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
27
|
Himpe E, Abdul Rahim S, Verdood P, Mano H, Kooijman R. Tec kinase stimulates cell survival in transfected Hek293T cells and is regulated by the anti-apoptotic growth factor IGF-I in human neutrophils. Cell Signal 2013; 25:666-73. [DOI: 10.1016/j.cellsig.2012.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 12/11/2012] [Accepted: 12/11/2012] [Indexed: 01/20/2023]
|
28
|
5-Hydroxy-7-methoxyflavone inhibits N-formyl-L-methionyl-L-leucyl-L-phenylalanine-induced superoxide anion production by specific modulate membrane localization of Tec with a PI3K independent mechanism in human neutrophils. Biochem Pharmacol 2012; 84:182-91. [PMID: 22484311 DOI: 10.1016/j.bcp.2012.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 03/09/2012] [Accepted: 03/22/2012] [Indexed: 11/23/2022]
Abstract
Respiratory burst mediates crucial bactericidal mechanism in neutrophils. However, undesirable respiratory burst leads to pathological inflammation and tissue damage. This study investigates the effect and the underlying mechanism of 5-hydroxy-7-methoxyflavone (MCL-1), a lignan extracted from the leaves of Muntingia calabura L. (Tiliaceae), on N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP)-induced respiratory burst and cathepsin G release in human neutrophils. Signaling pathways regulated by MCL-1 to oppose fMLP-induced respiratory burst were evaluated by membrane localization of Tec induced by fMLP and by immunoblotting analysis of downstream phosphorylation targets of Tec. Briefly, MCL-1 specific inhibited fMLP-induced superoxide anion production in a concentration-dependent (IC(50)=0.16±0.01 μM) and Tec kinase-dependent manner, however, MCL-1 did not affect fMLP-induced cathepsin G release. Further, MCL-1 suppressed fMLP-induced Tec translocation from the cytosol to the inner leaflet of the plasma membrane, and subsequently activation of phospholipase Cγ2 (PLCγ2). Moreover, MCL-1 attenuated PLCγ2 activity and intracellular calcium concentration notably through extracellular calcium influx. Consequently, fMLP-induced phosphorylation of protein kinase C (PKC) and membrane localization of p47(phox) were decreased by MCL-1 in a Tec-dependent manner, while the phosphorylation of extracellular signal-regulated kinase (ERK), p38, AKT and Src tyrosine kinase family remained unaffected. In addition, MCL-1 neither inhibited NADPH oxidase activity nor increased cyclicAMP levels. MCL-1 specific opposes fMLP-mediated respiratory burst by inhibition of membrane localization of Tec and subsequently interfered with the activation of PLCγ2, protein kinase C, and p47(phox).
Collapse
|
29
|
Muckelbauer J, Sack JS, Ahmed N, Burke J, Chang CY, Gao M, Tino J, Xie D, Tebben AJ. X-Ray Crystal Structure of Bone Marrow Kinase in the X Chromosome: A Tec Family Kinase. Chem Biol Drug Des 2011; 78:739-48. [DOI: 10.1111/j.1747-0285.2011.01230.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Vasilevsky NA, Ruby CE, Hurlin PJ, Weinberg AD. OX40 engagement stabilizes Mxd4 and Mnt protein levels in antigen-stimulated T cells leading to an increase in cell survival. Eur J Immunol 2011; 41:1024-34. [PMID: 21400495 DOI: 10.1002/eji.201040449] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 11/30/2010] [Accepted: 01/11/2011] [Indexed: 12/28/2022]
Abstract
OX40 engagement on activated T cells leads to increased proliferation, expansion and survival of Ag-specific T cells. Direct ex vivo examination of Ag-stimulated murine T cells show that the Myc antagonists, Mxd4 and Mnt, are transiently upregulated and translocated to the nucleus following OX40 engagement and may be involved in suppressing cell death. Both Mxd4 and Mnt are upregulated following OX40 stimulation through increased protein stability and we identify a critical phosphorylation site in Mxd4 that controls Mxd4 stability. The upregulation of Mxd4 and Mnt contributes to OX40-mediated T-cell survival because siRNA knockdown of Mxd4 and Mnt led to increased cell death. We hypothesize the upregulation of c-Myc following OX40 engagement drives T-cell proliferation and that upregulation of Mxd4 and Mnt suppresses Myc-dependent cell death. Thus, Mxd4 and Mnt upregulation following OX40 engagement most likely increases T-cell survival.
Collapse
Affiliation(s)
- Nicole A Vasilevsky
- Earle A. Chiles Research Institute, Providence Portland Medical Center, Portland, OR 97213-2933, USA
| | | | | | | |
Collapse
|
31
|
Uckun FM, Qazi S. Bruton's tyrosine kinase as a molecular target in treatment of leukemias and lymphomas as well as inflammatory disorders and autoimmunity. Expert Opin Ther Pat 2010; 20:1457-70. [DOI: 10.1517/13543776.2010.517750] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
32
|
Ishida M, Itsukaichi T, Kobayashi D, Kikuchi H. Alteration of the PKC theta-Vav1 complex and phosphorylation of Vav1 in TCDD-induced apoptosis in the lymphoblastic T cell line, L-MAT. Toxicology 2010; 275:72-8. [PMID: 20561557 DOI: 10.1016/j.tox.2010.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 06/05/2010] [Accepted: 06/08/2010] [Indexed: 01/22/2023]
Abstract
We have previously reported that protein kinase C (PKC) theta (theta) and protein tyrosine kinase are involved in 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced apoptosis of L-MAT, a human lymphoblastic T cell line. In the current report, we show that Vav1, a GDP/GTP exchange factor for Rho-like small GTPases, could be detected by Western blotting in the membrane fraction of L-MAT cells after TCDD treatment and was precipitated by incubating with an antibody against PKC theta. Furthermore, the degree of phosphorylation of Vav1, which can be detected using the phosphotyrosine-specific antibody PY-20 or 4G10, is significantly increased after treatment with TCDD. In addition, pretreatment of the cells with genistein, a protein tyrosine kinase inhibitor, abolished the phosphorylation of Vav1 and inhibited the apoptosis. These results suggest that TCDD treatment may activate an unidentified protein tyrosine kinase. Accordingly we hypothesize that this kinase phosphorylates Vav1, following which phosphorylated Vav1 may translocate to the membrane with PKC theta. Finally, PKC theta may mediate the transfer of the apoptotic signal to downstream components.
Collapse
Affiliation(s)
- Masato Ishida
- Division of Cell Technology, Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan. onigiri
| | | | | | | |
Collapse
|
33
|
Susaki K, Kitanaka A, Dobashi H, Kubota Y, Kittaka K, Kameda T, Yamaoka G, Mano H, Mihara K, Ishida T. Tec protein tyrosine kinase inhibits CD25 expression in human T-lymphocyte. Immunol Lett 2009; 127:135-42. [PMID: 19883687 DOI: 10.1016/j.imlet.2009.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 10/21/2009] [Accepted: 10/23/2009] [Indexed: 11/19/2022]
Abstract
The Tec protein tyrosine kinase (PTK) belongs to a group of structurally related nonreceptor PTKs that also includes Btk, Itk, Rlk, and Bmx. Previous studies have suggested that these kinases play important roles in hematopoiesis and in the lymphocyte signaling pathway. Despite evidence suggesting the involvement of Tec in the T-lymphocyte activation pathway via T-cell receptor (TCR) and CD28, Tec's role in T-lymphocytes remains unclear because of the lack of apparent defects in T-lymphocyte function in Tec-deficient mice. In this study, we investigated the role of Tec in human T-lymphocyte using the Jurkat T-lymphoid cell line stably transfected with a cDNA encoding Tec. We found that the expression of wild-type Tec inhibited the expression of CD25 induced by TCR cross-linking. Second, we observed that LFM-A13, a selective inhibitor of Tec family PTK, rescued the suppression of TCR-induced CD25 expression observed in wild-type Tec-expressing Jurkat cells. In addition, expression of kinase-deleted Tec did not alter the expression level of CD25 after TCR ligation. We conclude that Tec PTK mediates signals that negatively regulate CD25 expression induced by TCR cross-linking. This, in turn, implies that this PTK plays a role in the attenuation of IL-2 activity in human T-lymphocytes.
Collapse
Affiliation(s)
- Kentaro Susaki
- Division of Endocrinology and Metabolism, Hematology, Rheumatology, and Respiratory Medicine, Department of Internal Medicine, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
The purpose of present study was to explore the possibility of Tec kinase as a mediator for IL-8 transcription in monocytes stimulated with LPS. Plasmids of mouse Tec kinase IV or Tec kinase IV with inactivating point mutations generated with QuikChange site-directed mutagenesis were co-transfected with IL-8 promoter driven luciferase construct into RAW264.7 cells, then luciferase activity was measured with a luminometer. The results shown Tec kinase could significantly enhance IL-8 transcription. Furthermore, point inactivating mutation in SH2, PH or PTK domain almost completely abolish the effects of Tec kinase on the transcription of IL-8. In the transfection experiment, PD98059, a MEK1 inhibitor, decreased the transcription of IL-8 in a dose dependent pattern. When siRNA for Tec kinase was transfected into THP-1 cells, it could efficiently block the production of IL-8 from THP-1 cells (p < 0.01) stimulated with LPS. In conclusion, Tec kinase may mediate the transcription of IL-8 in monocyte stimulated with LPS.
Collapse
|
35
|
Zemans RL, Arndt PG. Tec kinases regulate actin assembly and cytokine expression in LPS-stimulated human neutrophils via JNK activation. Cell Immunol 2009; 258:90-7. [PMID: 19393603 PMCID: PMC2697619 DOI: 10.1016/j.cellimm.2009.03.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 03/19/2009] [Accepted: 03/25/2009] [Indexed: 01/20/2023]
Abstract
The acute inflammatory response involves neutrophils wherein recognition of bacterial products, such as lipopolysaccharide (LPS), activates intracellular signaling pathways. We have shown that the mitogen-activated protein kinase (MAPK) c-Jun NH(2) terminal kinase (JNK) is activated by LPS in neutrophils and plays a critical role in monocyte chemoattractant protein (MCP)-1 expression and actin assembly. As the Tec family kinases are expressed in neutrophils and regulate activation of the MAPKs in other cell systems, we hypothesized that the Tec kinases are an upstream component of the signaling pathway leading to LPS-induced MAPKs activation in neutrophils. Herein, we show that the Tec kinases are activated in LPS-stimulated human neutrophils and that inhibition of the Tec kinases, with leflunomide metabolite analog (LFM-A13), decreased LPS-induced JNK, but not p38, activity. Furthermore, LPS-induced actin polymerization as well as MCP-1, tumor necrosis factor-alpha, interleukin-6, and interleukin-1beta expression are dependent on Tec kinase activity.
Collapse
Affiliation(s)
- Rachel L Zemans
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Colorado School of Medicine, Denver, CO 80206, USA
| | | |
Collapse
|
36
|
Nawaz HM, Blomberg KEM, Lindvall JM, Kurosaki T, Smith CE. Expression profiling of chicken DT40 lymphoma cells indicates clonal selection of knockout and gene reconstituted cells. Biochem Biophys Res Commun 2008; 377:584-588. [DOI: 10.1016/j.bbrc.2008.10.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Accepted: 10/04/2008] [Indexed: 11/24/2022]
|
37
|
Semaan N, Alsaleh G, Gottenberg JE, Wachsmann D, Sibilia J. Etk/BMX, a Btk family tyrosine kinase, and Mal contribute to the cross-talk between MyD88 and FAK pathways. THE JOURNAL OF IMMUNOLOGY 2008; 180:3485-91. [PMID: 18292575 DOI: 10.4049/jimmunol.180.5.3485] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
MyD88 and focal adhesion kinase (FAK) are key adaptors involved in signaling downstream of TLR2, TLR4, and integrin alpha5beta1, linking pathogen-associated molecule detection to the initiation of proinflammatory response. The MyD88 and integrin pathways are interlinked, but the mechanism of this cross-talk is not yet understood. In this study we addressed the involvement of Etk, which belongs to the Tec family of tyrosine kinases, in the cross-talk between the integrin/FAK and the MyD88 pathways in fibroblast-like synoviocytes (FLS) and in IL-6 synthesis. Using small interfering RNA blockade, we report that Etk plays a major role in LPS- and protein I/II (a model activator of FAK)-dependent IL-6 release by activated FLS. Etk is associated with MyD88, FAK, and Mal as shown by coimmunoprecipitation. Interestingly, knockdown of Mal appreciably inhibited IL-6 synthesis in response to LPS and protein I/II. Our results also indicate that LPS and protein I/II induced phosphorylation of Etk and Mal in rheumatoid arthritis FLS via a FAK-dependent pathway. In conclusion, our data provide support that, in FLS, Etk and Mal are implicated in the cross-talk between FAK and MyD88 and that their being brought into play is clearly dependent on FAK.
Collapse
Affiliation(s)
- Noha Semaan
- Laboratoire Physiopathologie des Arthrites, Université Louis Pasteur de Strasbourg, Unité de Formation et de Recherche Sciences Pharmaceutiques, Illkirch, France
| | | | | | | | | |
Collapse
|
38
|
Jongstra-Bilen J, Puig Cano A, Hasija M, Xiao H, Smith CIE, Cybulsky MI. Dual Functions of Bruton’s Tyrosine Kinase and Tec Kinase during Fcγ Receptor-Induced Signaling and Phagocytosis. THE JOURNAL OF IMMUNOLOGY 2008; 181:288-98. [DOI: 10.4049/jimmunol.181.1.288] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
39
|
Waldeck-Weiermair M, Zoratti C, Osibow K, Balenga N, Goessnitzer E, Waldhoer M, Malli R, Graier WF. Integrin clustering enables anandamide-induced Ca2+ signaling in endothelial cells via GPR55 by protection against CB1-receptor-triggered repression. J Cell Sci 2008; 121:1704-1717. [PMID: 18445684 PMCID: PMC4067516 DOI: 10.1242/jcs.020958] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Although the endocannabinoid anandamide is frequently described to act predominantly in the cardiovascular system, the molecular mechanisms of its signaling remained unclear. In human endothelial cells, two receptors for anandamide were found, which were characterized as cannabinoid 1 receptor (CB1R; CNR1) and G-protein-coupled receptor 55 (GPR55). Both receptors trigger distinct signaling pathways. It crucially depends on the activation status of integrins which signaling cascade becomes promoted upon anandamide stimulation. Under conditions of inactive integrins, anandamide initiates CB1R-derived signaling, including Gi-protein-mediated activation of spleen tyrosine kinase (Syk), resulting in NFkappaB translocation. Furthermore, Syk inhibits phosphoinositide 3-kinase (PI3K) that represents a key protein in the transduction of GPR55-originated signaling. However, once integrins are clustered, CB1R splits from integrins and, thus, Syk cannot further inhibit GPR55-triggered signaling resulting in intracellular Ca2+ mobilization from the endoplasmic reticulum (ER) via a PI3K-Bmx-phospholipase C (PLC) pathway and activation of nuclear factor of activated T-cells. Altogether, these data demonstrate that the physiological effects of anandamide on endothelial cells depend on the status of integrin clustering.
Collapse
Affiliation(s)
| | - Cristina Zoratti
- Institute of Molecular Biology and Biochemistry, Medical University Graz, Graz, A8010, Austria
| | - Karin Osibow
- Institute of Molecular Biology and Biochemistry, Medical University Graz, Graz, A8010, Austria
| | - Nariman Balenga
- Institute of Experimental and Clinical Pharmacology, Medical University Graz, Graz, A8010, Austria
| | - Edith Goessnitzer
- Institute of Pharmaceutical Chemistry, University Graz, Graz Austria
| | - Maria Waldhoer
- Institute of Experimental and Clinical Pharmacology, Medical University Graz, Graz, A8010, Austria
| | - Roland Malli
- Institute of Molecular Biology and Biochemistry, Medical University Graz, Graz, A8010, Austria
| | - Wolfgang F. Graier
- Institute of Molecular Biology and Biochemistry, Medical University Graz, Graz, A8010, Austria
| |
Collapse
|
40
|
Mihara S, Suzuki N. Role of Txk, a member of the Tec family of tyrosine kinases, in immune-inflammatory diseases. Int Rev Immunol 2008; 26:333-48. [PMID: 18027204 DOI: 10.1080/08830180701690835] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Txk/Rlk, a member of the Tec family of tyrosine kinases, is an important signaling mediator. We previously reported that human Txk is expressed in Th1/Th0 cells, and Txk translocates from cytoplasm into nuclei upon activation. Txk regulates specifically interferon-gamma gene transcription. Txk, poly(ADP-ribose) polymerase 1, and elongation factor 1alpha make a complex to bind to interferon-gamma gene promoter region-53/-39 (Txk responsive element) to exert positive effects on transcription as a Th1 cell-associated transcription factor. Txk expression is enhanced in rheumatoid arthritis and Behçet's disease, where Th1 dominant immunity occurs. In bronchial asthma and atopic dermatitis, typical Th2 diseases, Txk expression is reduced. Modulation of Txk expression by gene transfer or similar modality may lead to the correction of aberrant immunity and, consequently, disease treatment.
Collapse
Affiliation(s)
- Shoji Mihara
- Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima, Japan
| | | |
Collapse
|
41
|
Patrussi L, Ulivieri C, Lucherini OM, Paccani SR, Gamberucci A, Lanfrancone L, Pelicci PG, Baldari CT. p52Shc is required for CXCR4-dependent signaling and chemotaxis in T cells. Blood 2007; 110:1730-8. [PMID: 17537990 DOI: 10.1182/blood-2007-01-068411] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ShcA is an important mediator of Ras/MAPK activation in PTK-regulated pathways triggered by surface receptors. This function is subserved by the constitutively expressed p52-kDa isoform. Besides activating Ras, p52Shc couples the TCR to Rho GTPases, and thereby participates in actin cytoskeleton remodeling in T cells. Here we have addressed the potential involvement of p52Shc in T-cell chemotaxis and the role of the phosphorylatable tyrosine residues, YY239/240 and Y317, in this process. We show that CXCR4 engagement by the homeostatic chemokine, SDF-1alpha, results in p52Shc phosphorylation and its assembly into a complex that includes Lck, ZAP-70, and Vav. This process was found to be both Lck and Gi dependent. Expression of p52Shc mutants lacking YY239/240 or Y317, or p52Shc deficiency, resulted in a profound impairment in CXCR4 signaling and SDF-1alpha-dependent chemotaxis, underscoring a crucial role of p52Shc as an early component of the CXCR4 signaling cascade. p52Shc was also found to be required for ligand-dependent CXCR4 internalization independently of tyrosine phosphorylation. Remarkably, CXCR4 engagement promoted phosphorylation of the zeta chain of the TCR/CD3 complex, which was found to be essential for CXCR4 signaling, as well as for SDF-1alpha-dependent receptor endocytosis and chemotaxis, indicating that CXCR4 signals by transactivating the TCR.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/physiology
- Calcium
- Chemokine CXCL12
- Chemokines, CXC/genetics
- Chemokines, CXC/metabolism
- Chemotaxis
- Flow Cytometry
- Humans
- Immunoblotting
- Immunoprecipitation
- Jurkat Cells
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/genetics
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism
- Proto-Oncogene Proteins c-vav/genetics
- Proto-Oncogene Proteins c-vav/metabolism
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Receptors, CXCR4/genetics
- Receptors, CXCR4/metabolism
- Shc Signaling Adaptor Proteins
- Signal Transduction
- Src Homology 2 Domain-Containing, Transforming Protein 1
- T-Lymphocytes/physiology
- Transcriptional Activation
- Tyrosine/metabolism
- ZAP-70 Protein-Tyrosine Kinase/genetics
- ZAP-70 Protein-Tyrosine Kinase/metabolism
Collapse
Affiliation(s)
- Laura Patrussi
- Departments of Evolutionary Biology, European Institute of Oncology, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Dinh M, Grunberger D, Ho H, Tsing SY, Shaw D, Lee S, Barnett J, Hill RJ, Swinney DC, Bradshaw JM. Activation mechanism and steady state kinetics of Bruton's tyrosine kinase. J Biol Chem 2007; 282:8768-76. [PMID: 17264076 DOI: 10.1074/jbc.m609920200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bruton's tyrosine kinase (BTK) is a member of the Tec non-receptor tyrosine kinase family that is involved in regulating B cell proliferation. To better understand the enzymatic mechanism of the Tec family of kinases, the kinetics of BTK substrate phosphorylation were characterized using a radioactive enzyme assay. We first examined whether autophosphorylation regulates BTK activity. Western blotting with a phosphospecific antibody revealed that BTK rapidly autophosphorylates at Tyr(551) within its activation loop in vitro. Examination of a Y551F BTK mutant indicated that phosphorylation of Tyr(551) causes a 10-fold increase in BTK activity. We then proceeded to characterize the steady state kinetic mechanism of BTK. Varying the concentrations of ATP and S1 peptide (biotin-Aca-AAAEEIY-GEI-NH2) revealed that BTK employs a ternary complex mechanism with KmATP = 84 +/- 20 microM and KmS1 = 37 +/- 8 microM. Inhibition studies were also performed to examine the order of substrate binding. The inhibitors ADP and staurosporine were both found to be competitive with ATP and non-competitive with S1, indicating binding of ATP and S1 to BTK is either random or ordered with ATP binding first. Negative cooperativity was also found between the S1 and ATP binding sites. Unlike ATP site inhibitors, substrate analog inhibitors did not inhibit BTK at concentrations less than 1 mm, suggesting that BTK may employ a "substrate clamping" type of kinetic mechanism whereby the substrate Kd is weaker than Km. This investigation of BTK provides the first detailed kinetic characterization of a Tec family kinase.
Collapse
Affiliation(s)
- Marie Dinh
- Department of Biochemical Pharmacology, Roche Palo Alto LLC, CA 94304, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Hoff H, Burmester GR, Brunner-Weinzierl MC. Competition and cooperation: Signal transduction by CD28 and CTLA-4. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/sita.200500081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
44
|
Lindvall JM, Blomberg KEM, Berglöf A, Smith CIE. Distinct gene expression signature in Btk-defective T1 B-cells. Biochem Biophys Res Commun 2006; 346:461-9. [PMID: 16764821 DOI: 10.1016/j.bbrc.2006.05.146] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Accepted: 05/19/2006] [Indexed: 11/20/2022]
Abstract
Bruton's tyrosine kinase (Btk) is a cytoplasmic tyrosine kinase important for B-lymphocyte maturation. Mutations in Btk give rise to the primary immunodeficiency disease X-linked agammaglobulinemia (XLA) in man and X-linked immunodeficiency (Xid) in mice. Recent studies have subdivided the mouse immature, or transitional, B-cells into two distinct subsets according to their respective surface markers. Transitional type 1 (T1) and transitional type 2 (T2) cells are also located in distinct anatomic locations. Based on a limited number of markers it has previously been reported that the earliest phenotypic sign of Btk deficiency is manifested at the T2 stage in mice. Here, we report on distinct genome-wide transcriptomic signature differences found in T1 B-lymphocytes from Btk-defective compared to normal mice and demonstrate that Btk deficiency is visible already at this stage.
Collapse
Affiliation(s)
- Jessica M Lindvall
- Clinical Research Center, Karolinska University Hospital, Huddinge, Sweden
| | | | | | | |
Collapse
|
45
|
Barbee SD, Alberola-Ila J. Phosphatidylinositol 3-kinase improves the efficiency of positive selection. Int Immunol 2006; 18:921-30. [PMID: 16636016 DOI: 10.1093/intimm/dxl027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have generated transgenic mice expressing the amino-terminal fragment of the phosphatidylinositol 3-kinase (PI3K) catalytic subunit (p110ABD) in thymocytes. Expression of p110ABD results in constitutive activation of PI3K and in significant increases in the numbers of mature, single-positive thymocytes. We previously reported that the increase in mature cells was in part due to a defect in thymic emigration. In this study we identify another component to this phenotype. Expression of p110ABD results in an enhancement of positive selection, without alterations in thymocyte lifespan or negative selection. Since PI3K can affect activation of Btk, which in turn potentiates calcium fluxes, during B cell development, our results suggest that PI3K could play a role in the regulation of Itk kinases in T cells, and that both cell types share a common signaling network to modulate calcium responses downstream of their antigen receptor.
Collapse
Affiliation(s)
- Susannah D Barbee
- Division of Biology, California Institute of Technology, 1200 E. California Boulevard, Mail code 147-75, Pasadena, CA 91125, USA
| | | |
Collapse
|
46
|
Chandrasekaran V, Beckendorf SK. Tec29 controls actin remodeling and endoreplication during invagination of the Drosophila embryonic salivary glands. Development 2005; 132:3515-24. [PMID: 16000381 DOI: 10.1242/dev.01926] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Epithelial invagination is necessary for formation of many tubular organs, one of which is the Drosophila embryonic salivary gland. We show that actin reorganization and control of endocycle entry are crucial for normal invagination of the salivary placodes. Embryos mutant for Tec29, the Drosophila Tec family tyrosine kinase, showed delayed invagination of the salivary placodes. This invagination delay was partly the result of an accumulation of G-actin in the salivary placodes, indicating that Tec29 is necessary for maintaining the equilibrium between G- and F-actin during invagination of the salivary placodes. Furthermore, normal invagination of the salivary placodes appears to require the proper timing of the endocycle in these cells; Tec29 must delay DNA endoreplication in the salivary placode cells until they have invaginated into the embryo. Taken together, these results show that Tec29 regulates both the actin cytoskeleton and the cell cycle to facilitate the morphogenesis of the embryonic salivary glands. We suggest that apical constriction of the actin cytoskeleton may provide a temporal cue ensuring that endoreplication does not begin until the cells have finished invagination.
Collapse
Affiliation(s)
- Vidya Chandrasekaran
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | |
Collapse
|
47
|
Kane LP, Watkins SC. Dynamic Regulation of Tec Kinase Localization in Membrane-proximal Vesicles of a T Cell Clone Revealed by Total Internal Reflection Fluorescence and Confocal Microscopy. J Biol Chem 2005; 280:21949-54. [PMID: 15817477 DOI: 10.1074/jbc.m412913200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Tec family tyrosine kinases are key regulators of lymphocyte activation and effector function. Several Tec family kinases (Tec, Itk, Rlk/Txk) are expressed in T cells, but it is still not clear to what degree these are redundant or have unique functions. We recently demonstrated that Tec alone, among the Tec kinase family members examined, can induce nuclear factor of activated T cell-dependent transcription. This unique functional characteristic correlated with a unique pattern of subcellular localization, as Tec (but not other family members) was found in small vesicles, the appearance of which requires signaling through the T cell receptor for antigen. Here we report on our studies of these Tec-containing structures in live T cells, using total internal reflection fluorescence microscopy. With this technique, we showed that, in live T cells, the Tec vesicles are located at the plasma membrane, the vesicles are unique to Tec (and not the related kinase Itk), and their formation and maintenance require T cell receptor signaling through Src family kinases and PI 3-kinase. Finally, we have imaged isolated T cell membranes by confocal microscopy, confirming the membrane-proximal location of Tec vesicles, as well as demonstrating overlap of these vesicles with the tyrosine kinase Lck, the Tec substrate PLC-gamma1, and the early endosomal antigen 1 marker EEA1.
Collapse
Affiliation(s)
- Lawrence P Kane
- Department of Immunology, BST E-1056, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | | |
Collapse
|
48
|
Li CR, Berg LJ. Itk is not essential for CD28 signaling in naive T cells. THE JOURNAL OF IMMUNOLOGY 2005; 174:4475-9. [PMID: 15814667 DOI: 10.4049/jimmunol.174.8.4475] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Itk, a member of the Tec family of tyrosine kinases, is critical for TCR signaling, leading to the activation of phospholipase C gamma1. Early biochemical studies performed in tumor cell lines also implicated Itk in CD28 signaling. These data were complemented by functional studies on primary Itk-/- T cells that suggested a negative role for Itk in CD28 signaling. In this report, we describe a thorough analysis of CD28-mediated responses in T cells lacking Itk. Using purified naive CD4+ T cells from Itk-/- mice, we examine a range of responses dependent on CD28 costimulation. We also analyze Akt and glycogen synthase kinase-3beta phosphorylation in response to stimulation of CD28 alone. Overall, these experiments demonstrate that CD28 signaling, as well as CD28-mediated costimulation of TCR signaling, function efficiently in the absence of Itk. These findings indicate that Itk is not essential for CD28 signaling in primary naive CD4+ T cells.
Collapse
Affiliation(s)
- Cheng-Rui Li
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | |
Collapse
|
49
|
Fernandes MJG, Lachance G, Paré G, Rollet-Labelle E, Naccache PH. Signaling through CD16b in human neutrophils involves the Tec family of tyrosine kinases. J Leukoc Biol 2005; 78:524-32. [PMID: 15899983 DOI: 10.1189/jlb.0804479] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Tec kinases belong to the second largest family of nonreceptor tyrosine kinases. Although these kinases are expressed in myeloid cells, little is known about their implication in neutrophil function. We recently reported the participation of Tec kinases in the responses of human neutrophils to the bacterial peptide N-formyl-l-methionyl-l-leucyl-l-phenylalanine via G-coupled protein receptors. In this study, we extended our investigations of Tec kinases to the signaling of the glycosylphosphatidylinositol-linked receptor CD16b, which is highly and specifically expressed in neutrophils. The results obtained indicate that Tec is translocated to the plasma membrane, phosphorylated, and activated upon CD16b cross-linking and that the activation of Tec is inhibited by Src-specific inhibitors as well as by the phosphatidylinositol-3 kinase inhibitor, wortmannin. As no specific inhibitor of Tec exists, the role of Tec kinases was further investigated using a-Cyano-b-hydroxy-b-methyl-N-(2,5-dibromophenyl)propenamide (LFM-A13), a compound known to inhibit Bruton's tyrosine kinase. We show that this compound also inhibits the kinase activity of Tec and provide evidence that the mobilization of intracellular calcium and the tyrosine phosphorylation of phospholipase Cgamma2 (PLCgamma2) induced upon CD16b engagement are inhibited by LFM-A13. We also show that Tec kinases are important for CD16b-dependent degranulation of neutrophils. In summary, we provide direct evidence for the implication of Tec in CD16b signaling and suggest that Tec kinases are involved in the phosphorylation and activation of PLCgamma2 and subsequently, in the mobilization of calcium in human neutrophils.
Collapse
Affiliation(s)
- Maria J G Fernandes
- Centre de Recherche en Rhumatologie et Immunologie, Department of Anatomy and Physiology, Laval University, Québec, Canada.
| | | | | | | | | |
Collapse
|
50
|
Abstract
The Tec family tyrosine kinases are now recognized as important mediators of antigen receptor signaling in lymphocytes. Three members of this family, Itk, Rlk, and Tec, are expressed in T cells and activated in response to T cell receptor (TCR) engagement. Although initial studies demonstrated a role for these proteins in TCR-mediated activation of phospholipase C-gamma, recent data indicate that Tec family kinases also regulate actin cytoskeletal reorganization and cellular adhesion following TCR stimulation. In addition, Tec family kinases are activated downstream of G protein-coupled chemokine receptors, where they play parallel roles in the regulation of Rho GTPases, cell polarization, adhesion, and migration. In all these systems, however, Tec family kinases are not essential signaling components, but instead function to modulate or amplify signaling pathways. Although they quantitatively reduce proximal signaling, mutations that eliminate Tec family kinases in T cells nonetheless qualitatively alter T cell development and differentiation.
Collapse
Affiliation(s)
- Leslie J Berg
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA.
| | | | | | | |
Collapse
|