1
|
Barbosa S, Moura PC, Dias A, Haneklaus N, Bellefqih H, Kiegiel K, Canovas CR, Nieto JM, Bilal E, Pessanha S. An advanced image processing and multivariate statistical methodology to interpret Micro-EDXRF 2D maps: Uncovering heterogeneity and spatial distribution patterns of rare earth elements in phosphogypsum. CHEMOSPHERE 2025; 381:144478. [PMID: 40367743 DOI: 10.1016/j.chemosphere.2025.144478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 05/05/2025] [Accepted: 05/06/2025] [Indexed: 05/16/2025]
Abstract
Phosphogypsum (PG), a by-product of the fertilizer industry, is a potential source of rare earth elements (REEs) such as Lanthanum (La), Cerium (Ce), Neodymium (Nd), and Yttrium (Y). These elements were efficiently detected using micro-Energy Dispersive X-Ray Fluorescence (μ-EDXRF). Although a homogeneous REE distribution was expected in μ-EDXRF 2D maps, significant heterogeneity and variations in elemental associations (EA) were observed at a micrometric scale. To enhance and better interpret μ-EDXRF mapping results, a specialized image processing methodology was developed, incorporating Principal Component Analysis (PCA), Hierarchical Clustering (HC), and Multiple Linear Regression (MLA) which were applied to process and analyse 2D RGB pixel data. Identification of spatial overlaps, and multivariate correlations among the detected elements could be achieved. Notably, distinct EA patterns were found, with Ti, Ba, Y, and K playing a key role in REEs spatial distribution. Strong positive spatial correlations were identified between La and Ti, while Ce, Nd, and Y exhibited independent spatial distributions relative to La in certain sample areas. MLA further revealed strong EA between La, Ce, Nd, Y, and K, particularly in locations where Ti or Ba were also present. Additional elemental interactions were detected with Al, Cl, Ni, and Fe, with P and Cl showing significant correlations. Multicollinearity effects suggest strong interdependencies among elements. These findings highlight distinct REE spatial distributions within PG, demonstrating that mineralogical and compositional variations within the PG matrix influence REE spatial distribution patterns. Understanding these associations can improve strategies for REEs recovery from PG waste.
Collapse
Affiliation(s)
- Sofia Barbosa
- GeoBioTec (UNL) - GeoBiosciences, GeoTechnologies and GeoEngineering, Department of Earth Sciences, NOVA School of Science and Technology, NOVA University of Lisbon, Campus FCT-UNL, 2829-516, Caparica, Portugal.
| | - Pedro Catalão Moura
- Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), LA-REAL, Department of Physics, NOVA School of Science and Technology, NOVA University of Lisbon, Campus FCT-UNL, 2829-516, Caparica, Portugal
| | - António Dias
- Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), LA-REAL, Department of Physics, NOVA School of Science and Technology, NOVA University of Lisbon, Campus FCT-UNL, 2829-516, Caparica, Portugal
| | - Nils Haneklaus
- Td-Lab Sustainable Mineral Resources, University for Continuing Education Krems, Dr.-Karl-Dorrek-Straße 30, 3500, Krems an der Donau, Austria; North-West University, Unit for Energy and Technology Systems - Nuclear Engineering, 11 Hoffman Street, Potchefstroom, 2520, South Africa
| | - Hajar Bellefqih
- Ecole Nationale Supérieure des Mines de Saint Etienne, CNRS UMR, EVS, 5600, F42023, Saint Etienne, France
| | - Katarzyna Kiegiel
- Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195, Warsaw, Poland
| | - Carlos Ruiz Canovas
- Department of Earth Sciences & Research Center on Natural Resources, Health and the Environment, University of Huelva, Campus "El Carmen", Huelva, E-21071, Spain
| | - José Miguel Nieto
- Department of Earth Sciences & Research Center on Natural Resources, Health and the Environment, University of Huelva, Campus "El Carmen", Huelva, E-21071, Spain
| | - Essaid Bilal
- Ecole Nationale Supérieure des Mines de Saint Etienne, CNRS UMR, EVS, 5600, F42023, Saint Etienne, France
| | - Sofia Pessanha
- Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), LA-REAL, Department of Physics, NOVA School of Science and Technology, NOVA University of Lisbon, Campus FCT-UNL, 2829-516, Caparica, Portugal
| |
Collapse
|
2
|
Cabral‐Miranda F, Araujo APB, Medinas DB, Gomes FCA. Astrocytic Hevin/SPARCL-1 Regulates Cognitive Decline in Pathological and Normal Brain Aging. Aging Cell 2025; 24:e14493. [PMID: 39935382 PMCID: PMC12074016 DOI: 10.1111/acel.14493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/20/2024] [Accepted: 01/08/2025] [Indexed: 02/13/2025] Open
Abstract
Dementia, characterized by loss of cognitive abilities in the elderly, poses a significant global health challenge. This study explores the role of astrocytes, one of most representative glial cells in the brain, in mitigating cognitive decline. Specifically, we investigated the impact of Hevin (also known as SPARC-like1/SPARCL-1), a secreted glycoprotein, on cognitive decline in both normal and pathological brain aging. By using adeno-associated viruses, we overexpressed Hevin in hippocampal astrocytes of middle-aged APP/PSEN mice, an established Alzheimer's disease (AD) model. Results demonstrated that Hevin overexpression attenuates cognitive decline, as evidenced by cognitive tests, increased pre- and postsynaptic markers colocalization, and altered expression of synaptic mediators, as revealed by proteomic profiling. Importantly, Hevin overexpression did not influence the deposition of Aβ plaques in the hippocampus, a hallmark of AD pathology. Furthermore, the study extended its findings to middle-aged wild-type animals, revealing improved cognitive performance following astrocytic Hevin overexpression. In conclusion, our results propose astrocytic Hevin as a potential therapeutic target for age-associated cognitive decline.
Collapse
Affiliation(s)
- Felipe Cabral‐Miranda
- Institute of Biomedical SciencesUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
| | | | - Danilo Bilches Medinas
- Department of Biochemistry, Institute of ChemistryUniversity of São PauloSão PauloBrazil
| | | |
Collapse
|
3
|
Zhao G, Zeng Y, Cheng W, Karkampouna S, Papadopoulou P, Hu B, Zang S, Wezenberg E, Forn-Cuní G, Lopes-Bastos B, Julio MKD, Kros A, Snaar-Jagalska BE. Peptide-Modified Lipid Nanoparticles Boost the Antitumor Efficacy of RNA Therapeutics. ACS NANO 2025; 19:13685-13704. [PMID: 40176316 PMCID: PMC12004924 DOI: 10.1021/acsnano.4c14625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/04/2025]
Abstract
RNA therapeutics offer a promising approach to cancer treatment by precisely regulating cancer-related genes. While lipid nanoparticles (LNPs) are currently the most advanced nonviral clinically approved vectors for RNA therapeutics, their antitumor efficacy is limited by their unspecific hepatic accumulation after systemic administration. Thus, there is an urgent need to enhance the delivery efficiency of LNPs to target tumor-residing tissues. Here, we conjugated the cluster of differentiation 44 (CD44)-specific targeting peptide A6 (KPSSPPEE) to the cholesterol of LNPs via PEG, named AKPC-LNP, enabling specific tumor delivery. This modification significantly improved delivery to breast cancer cells both in vitro and in vivo, as shown by flow cytometry and confocal microscopy. We further used AKPC-siYT to codeliver siRNAs targeting the transcriptional coactivators YAP and TAZ, achieving potent gene silencing and increased cell death in both 2D cultures and 3D tumor spheroids, outperforming unmodified LNPs. In a breast tumor cell xenografted zebrafish model, systemically administered AKPC-siYT induced robust silencing of YAP/TAZ and downstream genes and significantly enhanced tumor suppression compared to unmodified LNPs. Additionally, AKPC-siYT effectively reduced proliferation in prostate cancer organoids and tumor growth in a patient-derived xenograft (PDX) model. Overall, we developed highly efficient AKPC-LNPs carrying RNA therapeutics for targeted cancer therapy.
Collapse
Affiliation(s)
- Gangyin Zhao
- Department
of Cellular Tumor Biology, Leiden Institute of Biology, Leiden University, Einsteinweg 55, Leiden 2333 CC, the Netherlands
- Shenzhen
Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 51800, China
| | - Ye Zeng
- Department
of Supramolecular & Biomaterials Chemistry, Leiden Institute of
Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, the Netherlands
| | - Wanli Cheng
- Urology
Research Laboratory, Department for BioMedical Research, University of Bern, Bern 3010, Switzerland
| | - Sofia Karkampouna
- Urology
Research Laboratory, Department for BioMedical Research, University of Bern, Bern 3010, Switzerland
- Department
of Urology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
| | - Panagiota Papadopoulou
- Department
of Supramolecular & Biomaterials Chemistry, Leiden Institute of
Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, the Netherlands
| | - Bochuan Hu
- Department
of Supramolecular & Biomaterials Chemistry, Leiden Institute of
Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, the Netherlands
| | - Shuya Zang
- Department
of Supramolecular & Biomaterials Chemistry, Leiden Institute of
Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, the Netherlands
| | - Emma Wezenberg
- Department
of Supramolecular & Biomaterials Chemistry, Leiden Institute of
Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, the Netherlands
| | - Gabriel Forn-Cuní
- Department
of Cellular Tumor Biology, Leiden Institute of Biology, Leiden University, Einsteinweg 55, Leiden 2333 CC, the Netherlands
| | - Bruno Lopes-Bastos
- Department
of Cellular Tumor Biology, Leiden Institute of Biology, Leiden University, Einsteinweg 55, Leiden 2333 CC, the Netherlands
| | - Marianna Kruithof-de Julio
- Department
of Urology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
| | - Alexander Kros
- Department
of Supramolecular & Biomaterials Chemistry, Leiden Institute of
Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, the Netherlands
| | - B. Ewa Snaar-Jagalska
- Department
of Cellular Tumor Biology, Leiden Institute of Biology, Leiden University, Einsteinweg 55, Leiden 2333 CC, the Netherlands
| |
Collapse
|
4
|
Dondi C, Tsikritsis D, Vorng JL, Greenidge G, Kepiro IE, Belsey NA, McMahon G, Gilmore IS, Ryadnov MG, Shaw M. Multiparametric physicochemical analysis of a type 1 collagen 3D cell culture model using light and electron microscopy and mass spectrometry imaging. Sci Rep 2025; 15:9578. [PMID: 40113888 PMCID: PMC11926111 DOI: 10.1038/s41598-025-93700-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 03/10/2025] [Indexed: 03/22/2025] Open
Abstract
Three-dimensional cell culture systems underpin cell-based technologies ranging from tissue scaffolds for regenerative medicine to tumor models and organoids for drug screening. However, to realise the full potential of these technologies requires analytical methods able to capture the diverse information needed to characterize constituent cells, scaffold components and the extracellular milieu. Here we describe a multimodal imaging workflow which combines fluorescence, vibrational and second harmonic generation microscopy with secondary ion mass spectrometry imaging and transmission electron microscopy to analyse the morphological, chemical and ultrastructural properties of cell-seeded scaffolds. Using cell nuclei as landmarks we register fluorescence with label-free optical microscopy images and high mass resolution with high spatial resolution secondary ion mass spectrometry images, with an accuracy comparable to the intrinsic spatial resolution of the techniques. We apply these methods to investigate relationships between cell distribution, cytoskeletal morphology, scaffold fiber organisation and biomolecular composition in type I collagen scaffolds seeded with human dermal fibroblasts.
Collapse
Affiliation(s)
- Camilla Dondi
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
| | | | - Jean-Luc Vorng
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
| | - Gina Greenidge
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
| | - Ibolya E Kepiro
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
| | - Natalie A Belsey
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford, GU2 7XH, UK
| | - Greg McMahon
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
| | - Ian S Gilmore
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
| | - Maxim G Ryadnov
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
| | - Michael Shaw
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK.
- UCL Hawkes Institute and Department of Computer Science, University College London, London, UK.
| |
Collapse
|
5
|
Zhang L, Yang S, Cui H, Hang C, Wang X, An L, Shan Z, Liang Z, Shao R, Tang Z. Hypothermia regulates mitophagy and apoptosis via PINK1/Parkin-VDAC 3 signaling pathway during oxygen-glucose deprivation/recovery injury. Sci Rep 2025; 15:4607. [PMID: 39920327 PMCID: PMC11806084 DOI: 10.1038/s41598-025-89176-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 02/03/2025] [Indexed: 02/09/2025] Open
Abstract
Post-cardiac arrest brain injury (PCABI), as the main cause of high mortality and long-term disability in patients, induces mitochondrial damage and cell apoptosis. Hypothermia is well-known as an effective neuroprotective therapy, but its underlying mechanisms deserve further exploration. Previous study has demonstrated that hypothermia provides neuroprotection via increasing PINK1/Parkin-mediated mitophagy. However, whether hypothermia can regulate both apoptosis and mitophagy through the PINK1/Parkin-VDAC3 signaling pathway or not. In this study, BV2 mouse microglial cells were cultured under oxygen-glucose deprivation for 6 h following reperfusion with or without hypothermia for 2-4 h. Cell viability was examined by trypan blue stain. Mitophagy was observed by transmission electron microscope. Mitochondrial membrane potential (MMP) and mitochondrial permeability transition pore (mPTP) opening were determined respectively by JC-1 staining and BBcellProbe M61 staining using a flow cytometer. Expression of mitophagy-related proteins (Cleaved PINK1, Parkin, SQSTM1/p62, Beclin-1, LC3B II/LC3B I), apoptosis-related proteins (Bcl-2, Cytochrome C, caspase-3, cleaved caspase3) and VDAC3 were assessed using western blot analysis and quantitative real-time PCR. The interaction between Parkin and VDAC3 was confirmed by immunofluorescence colocalization. The results showed that hypothermia alleviated MMP damage, inhibited mPTP opening, then decreased cell apoptosis and activated mitophagy at 2 h after temperature intervention, which might be mediated by the PINK1/Parkin-VDAC3 signaling pathway. Moreover, the effects of hypothermia were reduced or reversed at 4 h after temperature intervention. In conclusion, the potential mechanisms of hypothermia during oxygen-glucose deprivation/recovery could be summarized as follows:1) At 2 h after temperature intervention, hypothermia provided neuroprotective effects via promoting mitophagy and reducing apoptosis through activating the PINK1/Parkin-VDAC3 signaling pathway. 2) The curative effect of hypothermia was timeliness. At 4 h after temperature intervention, hypothermia aggravated apoptosis through inhibiting Parkin recruitment to mitochondria and aggravating the release of Cyt C through open mPTP.
Collapse
Affiliation(s)
- Luying Zhang
- Department of Emergency Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Song Yang
- Department of Emergency Medicine, Beijing Huairou Hospital, Beijing, 101400, China
| | - Hao Cui
- Department of Emergency Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Chenchen Hang
- Department of Emergency Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Xingsheng Wang
- Department of Emergency Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Le An
- Department of Emergency Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Zhenyu Shan
- Department of Emergency Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Zhen Liang
- Department of Critical Care Medicine, Mi-Yun Teaching Hospital, Capital Medical University, Beijing, 101500, China
| | - Rui Shao
- Department of Emergency Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China.
| | - Ziren Tang
- Department of Emergency Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
6
|
Morita C, Wada M, Ohsaki E, Kimura-Ohba S, Ueda K. Generation of Replication-Competent Hepatitis B Virus Harboring Tagged Polymerase for Visualization and Quantification of the Infection. Microbiol Immunol 2025; 69:43-58. [PMID: 39620377 DOI: 10.1111/1348-0421.13183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 01/07/2025]
Abstract
Hepatitis B virus (HBV) infection is a serious global health problem causing acute and chronic hepatitis and related diseases. Approximately, 296 million patients have been chronically infected with the virus, leading to cirrhosis and hepatocellular carcinoma. Although HBV polymerase (HBVpol, pol) plays a pivotal role in HBV replication and must be a definite therapeutic target. The problems are that the detailed functions and intracellular dynamics of HBVpol remain unclear. Here, we constructed two kinds of tagged HBVpol, PA-tagged and HiBiT-tagged pol, and the HBV-producing vectors. Each PA tag and HiBiT tag were inserted into N-terminus of spacer region on HBVpol open reading frame. Transfection of the plasmids into HepG2 cells led to production of HBV. These tagged HBVpol were detectable in HBV replicating cells and pol-HiBiT enabled quantitative analysis. Furthermore, these recombinant HBV were infectious to primary human hepatocytes. Thus, we successfully designed infectious and replication-competent recombinant HBV harboring detectable tagged HBVpol. Such infectious recombinant HBV will provide a novel tool to study HBVpol dynamics and develop new therapeutics against HBV.
Collapse
Grants
- This research was supported by Grants from the Japan Agency for Medical Research and Development (AMED) Grants (16fk0310504h0005, 17fk0310105h0001, 18fk0310105h0002, 19fk0310105h0003, 20fk0310105h0004, 21fk0310105h005, 22fk0310505h0001, 23fk0310505h0002, and 24fk0310505h003) to K.U. and from JST SPRING, Grant Number JPMJSP2138, to C.M. and from the Osaka University Transdisciplinary Program for Biomedical Entrepreneurship and Innovation (WISE program) to C.M.
Collapse
Affiliation(s)
- Chiharu Morita
- Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masami Wada
- Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Eriko Ohsaki
- Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka, Japan
| | - Shihoko Kimura-Ohba
- Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Keiji Ueda
- Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
7
|
Fumoto Y, Takada S, Onodera Y, Hatakeyama S, Oikawa T. Development of a Myogenin minimal promoter-based system for visualizing the degree of myogenic differentiation. Biochem Biophys Res Commun 2024; 741:151091. [PMID: 39622159 DOI: 10.1016/j.bbrc.2024.151091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 11/27/2024] [Indexed: 12/11/2024]
Abstract
Myogenic differentiation plays a fundamental role in myogenesis during development and in muscle regeneration. Sequential expression of myogenic regulatory factors (MRFs) including myogenin in the progenitor cells triggers the expression of effector proteins such as myosin heavy chain (MHC), leading to the terminal muscle differentiation. Although we have a snapshot-like understanding of molecules at each stage of the differentiation, how these molecules are interrelated in the continuum of myogenic differentiation remains poorly understood. In this study, we analyzed the dynamics of the minimal Myogenin promoter activity in live myoblasts. With the development of a new co-expression analysis method, we were able to reveal in detail the relationship between this Myogenin promoter activity and the expression of endogenous myogenin or MHC, as differentiation markers. Consequently, we found that our visualization system of myogenic differentiation is suitable for monitoring the transition from myoblasts to myotubes, in which the Myogenin promoter activity quantitatively represents the degree of myogenic differentiation. Thus, this system allows simultaneous observation of the degree of myoblast differentiation in relation to other molecules, which would contribute to deepening our understanding of myogenic differentiation as a continuous process.
Collapse
Affiliation(s)
- Yoshizuki Fumoto
- Department of Molecular Biology, Graduate School of Medicine, Hokkaido University, Japan.
| | - Shingo Takada
- Department of Sports Education, Faculty of Lifelong Sport, Hokusho University, Japan
| | - Yasuhito Onodera
- Department of Molecular and Cellular Dynamics Research, Graduate School of Biomedical Science and Engineering, Hokkaido University, Japan
| | - Shigetsugu Hatakeyama
- Department of Biochemistry, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Japan
| | - Tsukasa Oikawa
- Department of Molecular Biology, Graduate School of Medicine, Hokkaido University, Japan.
| |
Collapse
|
8
|
Liang R, Song F, Liang Y, Fang Y, Wang J, Chen Y, Chen Z, Tan X, Dong J. A novel method for exploration and prediction of the bioactive target of rice bran-derived peptide (KF-8) by integrating computational methods and experiments. Food Funct 2024; 15:11875-11887. [PMID: 39529597 DOI: 10.1039/d4fo02493a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The investigation into the bioactive peptide's activity and target action poses a significant challenge in the field of food. An active peptide prepared from rice bran, KF-8, was confirmed to possess antioxidant activity in our previous study, but the specific target was unclear. This study used eight target prediction tools based on artificial intelligence and chemoinformatics to preliminarily screen potential antioxidant targets by integrating different computational methods. Then five different types of docking software were comparatively analyzed to further clarify their interaction sites and possible modes of action. The results showed that SIRT1 and CXCR4 are potential antioxidant targets of KF-8. Different docking software suggested that KF-8 interacts with SIRT1 and CXCR4 as major residues. Meanwhile, the results of Immunofluorescence co-localization experiments showed that the co-localization coefficients of KF-8 with SIRT1 and CXCR4 reached 0.5879 and 0.5684. This study provides new alternative means for the discovery of active peptide targets.
Collapse
Affiliation(s)
- Rui Liang
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, PR China.
| | - Fangliang Song
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, PR China.
| | - Ying Liang
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, PR China.
| | - Yanpeng Fang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, P. R. China
| | - Jianqiang Wang
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, PR China.
| | - Yajuan Chen
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, PR China.
| | - Zhongxu Chen
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, PR China.
| | - Xiaorong Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, P. R. China
| | - Jie Dong
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, P. R. China
| |
Collapse
|
9
|
Zhang J, Lin D, Hu H, Xu H. PD-1/PD-L1 interaction score and NKT-like cell infiltration predict immunotherapy efficacy in non-small cell lung cancer patients. Cytotherapy 2024; 26:1484-1490. [PMID: 39127923 DOI: 10.1016/j.jcyt.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/24/2024] [Accepted: 07/15/2024] [Indexed: 08/12/2024]
Abstract
OBJECTIVE The currently available biomarkers are insufficient to accurately predict the immunotherapy response in patients. This work attempted to investigate effects of PD-1/PD-L1 interaction score combined with NKT-like cell infiltration level in tumor microenvironment on predicting immunotherapy efficacy. METHODS 24 non-small cell lung cancer (NSCLC) patients who underwent immunotherapy were analyzed using multiplex immunofluorescence to quantitatively assess positive cells of target biomarkers and their spatial localization. Correlation between PD-1/PD-L1 interaction score in combination with NKT-like cell infiltration level and immunotherapy response was analyzed. The predictive performance of two individual biomarkers and combined novel biomarkers in immunotherapy efficacy was assessed through receiver operating characteristic curve analysis. Relationships between these factors and patient survival prognosis were analyzed using Kaplan-Meier curves. RESULTS Among responders, PD-1/PD-L1 interaction score and NKT-like cell infiltration level were significantly higher than nonresponders (P < 0.05), and PD-1/PD-L1 interaction score and NKT-like cell infiltration level could effectively identify the population with immunotherapy response, with area under the curves (AUCs) of 0.7571 and 0.8643, respectively. Combination of the two had the best performance in predicting the efficacy of immunotherapy (AUC = 0.9070). High PD-1/PD-L1 interaction scores and high levels of NKT-like cell infiltration significantly improved progression-free survival (HR = 0.2544, P = 0.0053) and overall survival (HR = 0.2820, P = 0.0053) in patients. CONCLUSIONS Combination of PD-1/PD-L1 interaction score and NKT-like cell infiltration level had favorable performance in predicting immunotherapy response in NSCLC patients, contributing to accurately identify patients who may benefit from immunotherapy.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Thoracic Oncology, Fujian Cancer Hospital& Clinical Oncology School of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Dong Lin
- Department of Thoracic Oncology, Fujian Cancer Hospital& Clinical Oncology School of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Huihua Hu
- Department of Thoracic Oncology, Fujian Cancer Hospital& Clinical Oncology School of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Haipeng Xu
- Department of Thoracic Oncology, Fujian Cancer Hospital& Clinical Oncology School of Fujian Medical University, Fuzhou, Fujian Province, China.
| |
Collapse
|
10
|
Link F, Jung S, Malzer X, Zierhut F, Konle A, Borges A, Batters C, Weiland M, Poellmann M, Nguyen AB, Kullmann J, Veigel C, Engstler M, Morriswood B. The actomyosin system is essential for the integrity of the endosomal system in bloodstream form Trypanosoma brucei. eLife 2024; 13:RP96953. [PMID: 39570285 PMCID: PMC11581428 DOI: 10.7554/elife.96953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024] Open
Abstract
The actin cytoskeleton is a ubiquitous feature of eukaryotic cells, yet its complexity varies across different taxa. In the parasitic protist Trypanosoma brucei, a rudimentary actomyosin system consisting of one actin gene and two myosin genes has been retained despite significant investment in the microtubule cytoskeleton. The functions of this highly simplified actomyosin system remain unclear, but appear to centre on the endomembrane system. Here, advanced light and electron microscopy imaging techniques, together with biochemical and biophysical assays, were used to explore the relationship between the actomyosin and endomembrane systems. The class I myosin (TbMyo1) had a large cytosolic pool and its ability to translocate actin filaments in vitro was shown here for the first time. TbMyo1 exhibited strong association with the endosomal system and was additionally found on glycosomes. At the endosomal membranes, TbMyo1 colocalised with markers for early and late endosomes (TbRab5A and TbRab7, respectively), but not with the marker associated with recycling endosomes (TbRab11). Actin and myosin were simultaneously visualised for the first time in trypanosomes using an anti-actin chromobody. Disruption of the actomyosin system using the actin-depolymerising drug latrunculin A resulted in a delocalisation of both the actin chromobody signal and an endosomal marker, and was accompanied by a specific loss of endosomal structure. This suggests that the actomyosin system is required for maintaining endosomal integrity in T. brucei.
Collapse
Affiliation(s)
- Fabian Link
- Department of Cell and Developmental Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Sisco Jung
- Department of Cell and Developmental Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Xenia Malzer
- Department of Cell and Developmental Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Felix Zierhut
- Ludwig-Maximilians-Universität München, Department of Cellular Physiology, Biomedical Centre (BMC)Planegg-MartinsriedGermany
- Center for Nanosciences (CeNS)MünchenGermany
| | - Antonia Konle
- Department of Cell and Developmental Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Alyssa Borges
- Department of Cell and Developmental Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Christopher Batters
- Ludwig-Maximilians-Universität München, Department of Cellular Physiology, Biomedical Centre (BMC)Planegg-MartinsriedGermany
- Center for Nanosciences (CeNS)MünchenGermany
| | - Monika Weiland
- Department of Cell and Developmental Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Mara Poellmann
- Department of Cell and Developmental Biology, Biocenter, University of WürzburgWürzburgGermany
| | - An Binh Nguyen
- Department of Cell and Developmental Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Johannes Kullmann
- Department of Cell and Developmental Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Claudia Veigel
- Ludwig-Maximilians-Universität München, Department of Cellular Physiology, Biomedical Centre (BMC)Planegg-MartinsriedGermany
- Center for Nanosciences (CeNS)MünchenGermany
| | - Markus Engstler
- Department of Cell and Developmental Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Brooke Morriswood
- Department of Cell and Developmental Biology, Biocenter, University of WürzburgWürzburgGermany
| |
Collapse
|
11
|
Shahriari S, Ghildyal R. The actin-binding protein palladin associates with the respiratory syncytial virus matrix protein. J Virol 2024; 98:e0143524. [PMID: 39360826 PMCID: PMC11494977 DOI: 10.1128/jvi.01435-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/09/2024] [Indexed: 10/23/2024] Open
Abstract
The respiratory syncytial virus (RSV) matrix (M) protein plays an important role in infection as it can interact with viral components as well as the host cell actin microfilaments. The M-actin interaction may play a role in facilitating the transportation of virion components to the apical surface, where RSV is released. We show that M protein's association with actin is facilitated by palladin, an actin-binding protein. Cells were infected with RSV or transfected to express full-length M as a green fluorescent protein (GFP)-tagged protein, followed by removal of nuclear and cytosolic proteins to enrich for cytoskeleton and its associated proteins. M protein was present in inclusion bodies tethered to microfilaments in infected cells. In transfected cells, GFP-M was presented close to microfilaments, without association, suggesting the possible involvement of an additional protein in this interaction. As palladin can bind to proteins that also bind actin, we investigated its interaction with M. Cells were co-transfected to express GFP-M and palladin as an mCherry fluorescent-tagged protein, followed by cytoskeleton enrichment. M and palladin were observed to colocalize towards microfilaments, suggesting that palladin is involved in the M-actin interaction. In co-immunoprecipitation studies, M was found to associate with two isoforms of palladin, of 140 and 37 kDa. Interestingly, siRNA downregulation of palladin resulted in reduced titer of released RSV, while cell associated RSV titer increased, suggesting a role for palladin in virus release. Together, our data show that the M-actin interaction mediated by palladin is important for RSV budding and release.IMPORTANCERespiratory syncytial virus is responsible for severe lower respiratory tract infections in young children under 5 years old, the elderly, and the immunosuppressed. The interaction of the respiratory syncytial virus matrix protein with the host actin cytoskeleton is important in infection but has not been investigated in depth. In this study, we show that the respiratory syncytial virus matrix protein associates with actin microfilaments and the actin-binding protein palladin, suggesting a role for palladin in respiratory syncytial virus release. This study provides new insight into the role of the actin cytoskeleton in respiratory syncytial virus infection, a key host-RSV interaction in assembly. Understanding the mechanism by which the RSV M protein and actin interact will ultimately provide a basis for the development of therapeutics targeted at RSV infections.
Collapse
Affiliation(s)
- Shadi Shahriari
- Biomedical Research Cluster, Faculty of Science and Technology, University of Canberra, Canberra, Australia
| | - Reena Ghildyal
- Biomedical Research Cluster, Faculty of Science and Technology, University of Canberra, Canberra, Australia
| |
Collapse
|
12
|
Hurwitz SN, Kobulsky DR, Jung SK, Chia JJ, Butler JM, Kurre P. CCR2 cooperativity promotes hematopoietic stem cell homing to the bone marrow. SCIENCE ADVANCES 2024; 10:eadq1476. [PMID: 39292787 PMCID: PMC11409967 DOI: 10.1126/sciadv.adq1476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/12/2024] [Indexed: 09/20/2024]
Abstract
Cross-talk between hematopoietic stem and progenitor cells (HSPCs) and bone marrow (BM) cells is critical for homing and sustained engraftment after transplantation. In particular, molecular and physical adaptation of sinusoidal endothelial cells (ECs) promote HSPC BM occupancy; however, signals that govern these events are not well understood. Extracellular vesicles (EVs) are mediators of cell-cell communication crucial in shaping tissue microenvironments. Here, we demonstrate that integrin α4β7 on murine HSPC EVs targets uptake into ECs. In BM ECs, HSPC EVs induce up-regulation of C-C motif chemokine receptor 2 (CCR2) ligands that synergize with CXCL12-CXCR4 signaling to promote BM homing. In nonirradiated murine models, marrow preconditioning with HSPC EVs or recombinant CCR2 ligands improves homing and early graft occupancy after transplantation. These findings identify a role for HSPC EVs in remodeling ECs, newly define CCR2-dependent graft homing, and inform novel translational conditioning strategies to improve HSPC transplantation.
Collapse
Affiliation(s)
- Stephanie N. Hurwitz
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Comprehensive Bone Marrow Failure Center, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Danielle R. Kobulsky
- Comprehensive Bone Marrow Failure Center, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Seul K. Jung
- Comprehensive Bone Marrow Failure Center, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jennifer J. Chia
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Jason M. Butler
- Division of Hematology/Oncology, University of Florida, Gainesville, FL, USA
| | - Peter Kurre
- Comprehensive Bone Marrow Failure Center, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
13
|
Chen X, Thakur T, Jeyasekharan AD, Benoukraf T, Meruvia-Pastor O. ColocZStats: a z-stack signal colocalization extension tool for 3D slicer. Front Physiol 2024; 15:1440099. [PMID: 39296518 PMCID: PMC11408364 DOI: 10.3389/fphys.2024.1440099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/12/2024] [Indexed: 09/21/2024] Open
Abstract
Confocal microscopy has evolved to be a widely adopted imaging technique in molecular biology and is frequently utilized to achieve accurate subcellular localization of proteins. Applying colocalization analysis on image z-stacks obtained from confocal fluorescence microscopes is a dependable method of revealing the relationship between different molecules. In addition, despite the established advantages and growing adoption of 3D visualization software in various microscopy research domains, there have been few systems that can support colocalization analysis within a user-specified region of interest (ROI). In this context, several broadly employed biological image visualization platforms are meticulously explored in this study to understand the current landscape. It has been observed that while these applications can generate three-dimensional (3D) reconstructions for z-stacks, and in some cases transfer them into an immersive virtual reality (VR) scene, there is still little support for performing quantitative colocalization analysis on such images based on a user-defined ROI and thresholding levels. To address these issues, an extension called ColocZStats (pronounced Coloc-Zee-Stats) has been developed for 3D Slicer, a widely used free and open-source software package for image analysis and scientific visualization. With a custom-designed user-friendly interface, ColocZStats allows investigators to conduct intensity thresholding and ROI selection on imported 3D image stacks. It can deliver several essential colocalization metrics for structures of interest and produce reports in the form of diagrams and spreadsheets.
Collapse
Affiliation(s)
- Xiang Chen
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
- Department of Computer Science, Faculty of Science, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Teena Thakur
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Anand D Jeyasekharan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Touati Benoukraf
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Oscar Meruvia-Pastor
- Department of Computer Science, Faculty of Science, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
14
|
Kelly MR, Lant NJ, Berlinguer-Palmini R, Burgess JG. Chemical mapping of xyloglucan distribution and cellulose crystallinity in cotton textiles reveals novel enzymatic targets to improve clothing longevity. Carbohydr Polym 2024; 339:122243. [PMID: 38823912 DOI: 10.1016/j.carbpol.2024.122243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
Pilling is a form of textile mechanical damage, forming fibrous bobbles on the surface of garments, resulting in premature disposal of clothing by consumers. However, our understanding on how the structural properties of the cellulosic matrix compliment the three-dimensional shape of cotton pills remains limited. This knowledge gap has hindered the development of effective 'pillase' technologies over the past 20 years due to challenges in balancing depilling efficacy with fabric integrity preservation. Therefore, the main focus here was characterising the role of cellulose and the hemicellulose components in cotton textiles to elucidate subtle differences between the chemistry of pills and fibre regions involved in structural integrity. State-of-the-art bioimaging using carbohydrate binding modules, monoclonal antibodies, and Leica SP8 and a Nikon A1R confocal microscopes, revealed the biophysical structure of cotton pills for the first time. Identifying regions of increased crystalline cellulose in the base of anchor fibres and weaker amorphous cellulose at dislocations in their centres, enhancing our understanding of current enzyme specificity. Surprisingly, pills contained a 7-fold increase in the concentration of xyloglucan compared to the main textile. Therefore, xyloglucan offers a previously undescribed target for overcoming this benefit-to-risk paradigm, suggesting a role for xyloglucanase enzymes in future pillase systems.
Collapse
Affiliation(s)
- Max R Kelly
- School of Natural and Environmental Sciences, Ridley Building, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom.
| | - Neil J Lant
- Procter and Gamble, Newcastle Innovation Centre, Whitley Road, Longbenton, Newcastle upon Tyne NE12 9TS, United Kingdom.
| | - Rolando Berlinguer-Palmini
- Bioimaging unit, William Leech Building, Medical School, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom.
| | - J Grant Burgess
- School of Natural and Environmental Sciences, Ridley Building, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom.
| |
Collapse
|
15
|
Bryniarski MA, Tuhin MTH, Acker TM, Wakefield DL, Sethaputra PG, Cook KD, Soto M, Ponce M, Primack R, Jagarapu A, LaGory EL, Conner KP. Cellular Neonatal Fc Receptor Recycling Efficiencies can Differentiate Target-Independent Clearance Mechanisms of Monoclonal Antibodies. J Pharm Sci 2024; 113:2879-2894. [PMID: 38906252 DOI: 10.1016/j.xphs.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
In vivo clearance mechanisms of therapeutic monoclonal antibodies (mAbs) encompass both target-mediated and target-independent processes. Two distinct determinants of overall mAb clearance largely separate of target-mediated influences are non-specific cellular endocytosis and subsequent pH-dependent mAb recycling mediated by the neonatal Fc receptor (FcRn), where inter-mAb variability in the efficiency of both processes is observed. Here, we implemented a functional cell-based FcRn recycling assay via Madin-Darby canine kidney type II cells stably co-transfected with human FcRn and its light chain β2-microglobulin. Next, a series of pH-dependent internalization studies using a model antibody demonstrated proper function of the human FcRn complex. We then applied our cellular assays to assess the contribution of both FcRn and non-specific interactions in the cellular turnover for a panel of 8 clinically relevant mAbs exhibiting variable human pharmacokinetic behavior. Our results demonstrate that the interplay of non-specific endocytosis rates, pH-dependent non-specific interactions, and engagement with FcRn all contribute to the overall recycling efficiency of therapeutic monoclonal antibodies. The predictive capacity of our assay approach was highlighted by successful identification of all mAbs within our panel possessing clearance in humans greater than 5 mL/day/kg. These results demonstrate that a combination of cell-based in vitro assays can properly resolve individual mechanisms underlying the overall in vivo recycling efficiency and non-target mediated clearance of therapeutic mAbs.
Collapse
Affiliation(s)
- Mark A Bryniarski
- Pharmacokinetics and Drug Metabolism, Amgen Research, 750 Gateway Blvd, Suite 100, South San Francisco, CA 94080, USA.
| | - Md Tariqul Haque Tuhin
- Pharmacokinetics and Drug Metabolism, Amgen Research, 750 Gateway Blvd, Suite 100, South San Francisco, CA 94080, USA
| | - Timothy M Acker
- Pharmacokinetics and Drug Metabolism, Amgen Research, 750 Gateway Blvd, Suite 100, South San Francisco, CA 94080, USA
| | - Devin L Wakefield
- Research Biomics, Amgen Research, 750 Gateway Blvd, Suite 100, South San Francisco, CA 94080, USA
| | - Panijaya Gemy Sethaputra
- Pharmacokinetics and Drug Metabolism, Amgen Research, 750 Gateway Blvd, Suite 100, South San Francisco, CA 94080, USA
| | - Kevin D Cook
- Pharmacokinetics and Drug Metabolism, Amgen Research, 750 Gateway Blvd, Suite 100, South San Francisco, CA 94080, USA
| | - Marcus Soto
- Pharmacokinetics & Drug Metabolism, Amgen Research, One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Manuel Ponce
- Pharmacokinetics & Drug Metabolism, Amgen Research, One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Ronya Primack
- Pharmacokinetics & Drug Metabolism, Amgen Research, One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Aditya Jagarapu
- Pharmacokinetics and Drug Metabolism, Amgen Research, 750 Gateway Blvd, Suite 100, South San Francisco, CA 94080, USA
| | - Edward L LaGory
- Pharmacokinetics and Drug Metabolism, Amgen Research, 750 Gateway Blvd, Suite 100, South San Francisco, CA 94080, USA
| | - Kip P Conner
- Pharmacokinetics and Drug Metabolism, Amgen Research, 750 Gateway Blvd, Suite 100, South San Francisco, CA 94080, USA.
| |
Collapse
|
16
|
Yu SB, Wang H, Sanchez RG, Carlson NM, Nguyen K, Zhang A, Papich ZD, Abushawish AA, Whiddon Z, Matysik W, Zhang J, Whisenant TC, Ghassemian M, Koberstein JN, Stewart ML, Myers SA, Pekkurnaz G. Neuronal activity-driven O-GlcNAcylation promotes mitochondrial plasticity. Dev Cell 2024; 59:2143-2157.e9. [PMID: 38843836 PMCID: PMC11338717 DOI: 10.1016/j.devcel.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/15/2024] [Accepted: 05/09/2024] [Indexed: 06/18/2024]
Abstract
Neuronal activity is an energy-intensive process that is largely sustained by instantaneous fuel utilization and ATP synthesis. However, how neurons couple ATP synthesis rate to fuel availability is largely unknown. Here, we demonstrate that the metabolic sensor enzyme O-linked N-acetyl glucosamine (O-GlcNAc) transferase regulates neuronal activity-driven mitochondrial bioenergetics in hippocampal and cortical neurons. We show that neuronal activity upregulates O-GlcNAcylation in mitochondria. Mitochondrial O-GlcNAcylation is promoted by activity-driven glucose consumption, which allows neurons to compensate for high energy expenditure based on fuel availability. To determine the proteins that are responsible for these adjustments, we mapped the mitochondrial O-GlcNAcome of neurons. Finally, we determine that neurons fail to meet activity-driven metabolic demand when O-GlcNAcylation dynamics are prevented. Our findings suggest that O-GlcNAcylation provides a fuel-dependent feedforward control mechanism in neurons to optimize mitochondrial performance based on neuronal activity. This mechanism thereby couples neuronal metabolism to mitochondrial bioenergetics and plays a key role in sustaining energy homeostasis.
Collapse
Affiliation(s)
- Seungyoon B Yu
- Neurobiology Department, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Haoming Wang
- Neurobiology Department, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Richard G Sanchez
- Neurobiology Department, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Natasha M Carlson
- Neurobiology Department, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Khanh Nguyen
- Laboratory for Immunochemical Circuits, Center of Autoimmunity and Inflammation, and Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA 92093, USA
| | - Andrew Zhang
- Neurobiology Department, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Zachary D Papich
- Neurobiology Department, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Ahmed A Abushawish
- Neurobiology Department, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Zachary Whiddon
- Neurobiology Department, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Weronika Matysik
- Neurobiology Department, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Jie Zhang
- Neurobiology Department, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Thomas C Whisenant
- Center for Computational Biology and Bioinformatics, University of California San Diego, La Jolla, CA 92093, USA
| | - Majid Ghassemian
- Biomolecular and Proteomics Mass Spectrometry Facility, University of California San Diego, La Jolla, CA 92093, USA
| | - John N Koberstein
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Melissa L Stewart
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Samuel A Myers
- Laboratory for Immunochemical Circuits, Center of Autoimmunity and Inflammation, and Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA 92093, USA; Department of Pharmacology, Program in Immunology, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Gulcin Pekkurnaz
- Neurobiology Department, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
17
|
Nishimura A, Nelke C, Huber M, Mensch A, Roth A, Oberwittler C, Zimmerlein B, Krämer HH, Neuen-Jacob E, Stenzel W, Müller-Ladner U, Ruck T, Schänzer A. Differentiating idiopathic inflammatory myopathies by automated morphometric analysis of MHC-1, MHC-2 and ICAM-1 in muscle tissue. Neuropathol Appl Neurobiol 2024; 50:e12998. [PMID: 39030945 DOI: 10.1111/nan.12998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/22/2024]
Abstract
AIMS Diagnosis of idiopathic inflammatory myopathies (IIM) is based on morphological characteristics and the evaluation of disease-related proteins. However, although broadly applied, substantial bias is imposed by the respective methods, observers and individual staining approaches. We aimed to quantify the protein levels of major histocompatibility complex (MHC)-1, (MHC)-2 and intercellular adhesion molecule (ICAM)-1 using an automated morphometric method to mitigate bias. METHODS Double immunofluorescence staining was performed on whole muscle sections to study differences in protein expression in myofibre and endomysial vessels. We analysed all IIM subtypes including dermatomyositis (DM), anti-synthetase syndrome (ASyS), inclusion body myositis (IBM), immune-mediated-necrotising myopathy (IMNM), dysferlinopathy (DYSF), SARS-CoV-2 infection and vaccination-associated myopathy. Biopsies with neurogenic atrophy (NA) and normal morphology served as controls. Bulk RNA-Sequencing (RNA-Seq) was performed on a subset of samples. RESULTS Our study highlights the significance of MHC-1, MHC-2 and ICAM-1 in diagnosing IIM subtypes and reveals distinct immunological profiles. RNASeq confirmed the precision of our method and identified specific gene pathways in the disease subtypes. Notably, ASyS, DM and SARS-CoV-2-associated myopathy showed increased ICAM-1 expression in the endomysial capillaries, indicating ICAM-1-associated vascular activation in these conditions. In addition, ICAM-1 showed high discrimination between different subgroups with high sensitivity and specificity. CONCLUSIONS Automated morphometric analysis provides precise quantitative data on immune-associated proteins that can be integrated into our pathophysiological understanding of IIM. Further, ICAM-1 holds diagnostic value for the detection of IIM pathology.
Collapse
Affiliation(s)
- Anna Nishimura
- Institute of Neuropathology, Justus-Liebig University Giessen, Germany
| | - Christopher Nelke
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Melanie Huber
- Department of Rheumatology and Clinical Immunology, Campus Kerckhoff, Justus-Liebig-University, Giessen, Germany
| | - Alexander Mensch
- Department of Neurology, University Medicine Halle, Halle (Saale), Germany
| | - Angela Roth
- Institute of Neuropathology, Justus-Liebig University Giessen, Germany
| | | | | | - Heidrun H Krämer
- Department of Neurology, Justus-Liebig-University, Giessen, Germany
- Translational Neuroscience Network Giessen (TNNG), Justus Liebig University Giessen, Giessen, Germany
| | - Eva Neuen-Jacob
- Institute of Neuropathology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Werner Stenzel
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ulf Müller-Ladner
- Department of Rheumatology and Clinical Immunology, Campus Kerckhoff, Justus-Liebig-University, Giessen, Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Anne Schänzer
- Institute of Neuropathology, Justus-Liebig University Giessen, Germany
- Translational Neuroscience Network Giessen (TNNG), Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
18
|
Tsunoda Y, Yamano-Adachi N, Koga Y, Omasa T. Sar1A overexpression in Chinese hamster ovary cells and its effects on antibody productivity and secretion. J Biosci Bioeng 2024; 138:171-180. [PMID: 38806389 DOI: 10.1016/j.jbiosc.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/24/2024] [Accepted: 05/08/2024] [Indexed: 05/30/2024]
Abstract
Chinese hamster ovary (CHO) cells are the most widely used for therapeutic antibody production. In cell line development, engineering secretion processes such as folding-related protein upregulation is an effective way of constructing cell lines with high recombinant protein productivity. However, there have been few studies on the transport of recombinant proteins between the endoplasmic reticulum (ER) and the Golgi apparatus. In this study, Sar1A, a protein involved in COPII vesicle formation, was focused on to improve antibody productivity by enhancing COPII vesicle-mediated antibody transport from the ER to the Golgi apparatus, and to clarify its effect on the secretion process. The constructed Sar1A-overexpressing CHO cell lines were batch-cultured, in which they showed an increased specific antibody production rate. The intracellular antibody accumulation and the specific localization of the intracellular antibodies were investigated by chase assay using a translation inhibitor and observed by immunofluorescence-based imaging analysis. The results showed that Sar1A overexpression reduced intracellular antibody accumulation, especially in the ER. The effects of the engineered antibody transport on the antibody's glycosylation profile and the unfolded protein response (UPR) pathway were analyzed by liquid chromatography-mass spectrometry and UPR-related gene expression evaluation, respectively. Sar1A overexpression lowered glycan galactosylation and induced a stronger UPR at the end of the batch culture. Sar1A overexpression enhanced the antibody productivity of CHO cells by modifying their secretion process. This approach could also contribute to the production of not only monoclonal antibodies but also other therapeutic proteins that require transport by COPII vesicles.
Collapse
Affiliation(s)
- Yu Tsunoda
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Noriko Yamano-Adachi
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Manufacturing Technology Association of Biologics, 7-1-49 Minatojima-minami, Kobe, Hyogo 650-0047, Japan; Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuichi Koga
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takeshi Omasa
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Manufacturing Technology Association of Biologics, 7-1-49 Minatojima-minami, Kobe, Hyogo 650-0047, Japan; Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
19
|
Cimini BA. Creating and troubleshooting microscopy analysis workflows: Common challenges and common solutions. J Microsc 2024; 295:93-101. [PMID: 38532662 PMCID: PMC11245365 DOI: 10.1111/jmi.13288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/28/2024]
Abstract
As microscopy diversifies and becomes ever more complex, the problem of quantification of microscopy images has emerged as a major roadblock for many researchers. All researchers must face certain challenges in turning microscopy images into answers, independent of their scientific question and the images they have generated. Challenges may arise at many stages throughout the analysis process, including handling of the image files, image pre-processing, object finding, or measurement, and statistical analysis. While the exact solution required for each obstacle will be problem-specific, by keeping analysis in mind, optimizing data quality, understanding tools and tradeoffs, breaking workflows and data sets into chunks, talking to experts, and thoroughly documenting what has been done, analysts at any experience level can learn to overcome these challenges and create better and easier image analyses.
Collapse
Affiliation(s)
- Beth A Cimini
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
20
|
Jiang T, Ruan N, Luo P, Wang Q, Wei X, Li Y, Dai Y, Lin L, Lv J, Liu Y, Zhang C. Modulation of ER-mitochondria tethering complex VAPB-PTPIP51: Novel therapeutic targets for aging-associated diseases. Ageing Res Rev 2024; 98:102320. [PMID: 38719161 DOI: 10.1016/j.arr.2024.102320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/15/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024]
Abstract
Aging is a gradual and irreversible natural process. With aging, the body experiences a functional decline, and the effects amplify the vulnerability to a range of age-related diseases, including neurodegenerative, cardiovascular, and metabolic diseases. Within the aging process, the morphology and function of mitochondria and the endoplasmic reticulum (ER) undergo alterations, particularly in the structure connecting these organelles known as mitochondria-associated membranes (MAMs). MAMs serve as vital intracellular signaling hubs, facilitating communication between the ER and mitochondria when regulating various cellular events, including calcium homeostasis, lipid metabolism, mitochondrial function, and apoptosis. The formation of MAMs is partly dependent on the interaction between the vesicle-associated membrane protein-associated protein-B (VAPB) and protein tyrosine phosphatase-interacting protein-51 (PTPIP51). Accumulating evidence has begun to elucidate the pivotal role of the VAPB-PTPIP51 tether in the initiation and progression of age-related diseases. In this study, we delineate the intricate structure and multifunctional role of the VAPB-PTPIP51 tether and discuss its profound implications in aging-associated diseases. Moreover, we provide a comprehensive overview of potential therapeutic interventions and pharmacological agents targeting the VAPB-PTPIP51-mediated MAMs, thereby offering a glimmer of hope in mitigating aging processes and treating age-related disorders.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Nan Ruan
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Pengcheng Luo
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qian Wang
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiuxian Wei
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yi Li
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yue Dai
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Lin
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Division of Cardiology, Department of Internal Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiagao Lv
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Division of Cardiology, Department of Internal Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yu Liu
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Cuntai Zhang
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
21
|
Seefelder M, Kochanek S, Klein FAC. ProteinCoLoc streamlines Bayesian analysis of colocalization in microscopic images. Sci Rep 2024; 14:13277. [PMID: 38858475 PMCID: PMC11164984 DOI: 10.1038/s41598-024-63884-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024] Open
Abstract
Colocalization, the spatial overlap of molecular entities, is often key to support their involvement in common functions. Existing colocalization tools, however, face limitations, particularly because of their basic statistical analysis and their low-throughput manual entry processes making them unsuitable for automation and potentially introducing bias. These shortcomings underscore the need for user-friendly tools streamlining colocalization assessments and enabling their robust and automated quantitative analyses. We have developed ProteinCoLoc, an innovative software designed for automated high-throughput colocalization analyses and incorporating advanced statistical features such as Bayesian modelling, automatic background detection and localised correlation analysis. ProteinCoLoc rationalises colocalization assessments without manual input, comes with a user-friendly graphical user interface and provides various analytics allowing to study and locally quantify colocalization. This easy-to-use application presents numerous advantages, including a direct comparison with controls employing a Bayesian model and the analysis of local correlation patterns, while reducing hands-on time through automatic background detection. The software was validated while studying the colocalization pattern of two proteins forming a stable complex: the huntingtin protein (HTT) and its partner huntingtin-associated protein 40 (HAP40). Our results showcase the software's capacity to quantitatively assess colocalizations. ProteinCoLoc is available both as a Julia package and as a compiled software ( https://github.com/ma-seefelder/ProteinCoLoc ).
Collapse
Affiliation(s)
- Manuel Seefelder
- Department of Gene Therapy, Ulm University, 89081, Ulm, Germany.
| | - Stefan Kochanek
- Department of Gene Therapy, Ulm University, 89081, Ulm, Germany
| | | |
Collapse
|
22
|
Ma T, Huang J, Xu P, Shu C, Wang Z, Geng L, Zhang J. In Vivo and In Vitro Interactions between Exopolysaccharides from Bacillus thuringensis HD270 and Vip3Aa11 Protein. Toxins (Basel) 2024; 16:215. [PMID: 38787067 PMCID: PMC11125869 DOI: 10.3390/toxins16050215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Bacillus thuringiensis (Bt) secretes the nutritional insecticidal protein Vip3Aa11, which exhibits high toxicity against the fall armyworm (Spodoptera frugiperda). The Bt HD270 extracellular polysaccharide (EPS) enhances the toxicity of Vip3Aa11 protoxin against S. frugiperda by enhancing the attachment of brush border membrane vesicles (BBMVs). However, how EPS-HD270 interacts with Vip3Aa11 protoxin in vivo and the effect of EPS-HD270 on the toxicity of activated Vip3Aa11 toxin are not yet clear. Our results indicated that there is an interaction between mannose, a monosaccharide that composes EPS-HD270, and Vip3Aa11 protoxin, with a dissociation constant of Kd = 16.75 ± 0.95 mmol/L. When EPS-HD270 and Vip3Aa11 protoxin were simultaneously fed to third-instar larvae, laser confocal microscopy observations revealed the co-localization of the two compounds near the midgut wall, which aggravated the damage to BBMVs. EPS-HD270 did not have a synergistic insecticidal effect on the activated Vip3Aa11 protein against S. frugiperda. The activated Vip3Aa11 toxin demonstrated a significantly reduced binding capacity (548.73 ± 82.87 nmol/L) towards EPS-HD270 in comparison to the protoxin (34.96 ± 9.00 nmol/L). Furthermore, this activation diminished the affinity of EPS-HD270 for BBMVs. This study provides important evidence for further elucidating the synergistic insecticidal mechanism between extracellular polysaccharides and Vip3Aa11 protein both in vivo and in vitro.
Collapse
Affiliation(s)
- Tianjiao Ma
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (T.M.); (J.H.)
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jinqiu Huang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (T.M.); (J.H.)
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Pengdan Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Changlong Shu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zeyu Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lili Geng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jie Zhang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (T.M.); (J.H.)
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
23
|
Hu Y, Tian C, Chen F, Zhang A, Wang W. The mystery of methylmercury-perturbed calcium homeostasis: AMPK-DRP1-dependent mitochondrial fission initiates ER-mitochondria contact formation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171398. [PMID: 38442753 DOI: 10.1016/j.scitotenv.2024.171398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/17/2024] [Accepted: 02/28/2024] [Indexed: 03/07/2024]
Abstract
Methylmercury (MeHg), as a global environmental pollutant, is of concern globally due to its neurodevelopmental toxicity. Mitochondria-associated membranes (MAMs) are highly dynamic sites of endoplasmic reticulum (ER)-haemocyte contact. MAMs are closely associated with the pathophysiology of neurological disorders due to their role in the transfer of calcium ions (Ca2+) between mitochondria and the ER. However, the molecular mechanisms that control these interactions in MeHg-induced neurotoxicity have not yet been characterized. In the current study, MeHg caused increases in the levels of both cytosolic and mitochondrial Ca2+ in PC12 cells and promoted MAMs formation in both in vivo and in vitro experiments. Of note, MeHg perturbed mitochondrial dynamics, promoting a shift toward a fission phenotype, and this was supported by the dysregulation of fission regulators. Interestingly, the MeHg-induced promotion of MAMs formation and increase in Ca2+ levels were effectively attenuated by the inhibition of mitochondrial fission using Mdivi-1, a DRP1 inhibitor. Furthermore, MeHg triggered the AMPK pathway, and most of the aforementioned changes were significantly rescued by Compound C. Mechanistic investigations revealed a reciprocal relationship between AMPK- and Ca2+-mediated mitochondrial fission. The specific inhibitor of Ca2+ uniporter, ruthenium-red (RuR), effectively abolished the feedback regulation of mitochondrial dynamics and MAMs formation mediated by AMPK in response to MeHg-induced Ca2+ overload. This study reveals a novel role of AMPK-DRP1-mediated mitochondrial fragmentation in the coupling of ER-mitochondrial calcium microdomains in MeHg-induced neurotoxicity. The findings provide valuable insights for the development of strategies to regulate mitochondrial imbalances in neurological diseases.
Collapse
Affiliation(s)
- Yi Hu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Changsong Tian
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Fang Chen
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Wenjuan Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China; Key Laboratory of Human Brain bank for Functions and Diseases of Department of Education of Guizhou Province, Guizhou Medical University, Guiyang 550025, China.
| |
Collapse
|
24
|
Liu X, Komladzei S, Guy C. KCBC - a correlation-based method for co-localization analysis of super-resolution microscopy images using bivariate Ripley's K functions. J Appl Stat 2024; 51:3333-3349. [PMID: 39628851 PMCID: PMC11610358 DOI: 10.1080/02664763.2024.2346828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/09/2024] [Indexed: 12/06/2024]
Abstract
Motivated by the high demand for co-localization analysis methods for super-resolution microscopy images which are featured with nanoscale precise locational information of molecules, this paper establishes a novel correlation-based method, KCBC, named after the Coordinated-Based Colocalization (CBC) method proposed by Malkusch et al. in 2012, by using bivariate Ripley's K functions. The local KCBC values are to quantify the local spatial co-localization of molecules between two species by measuring the correlation of bivariate Ripley's K functions over equal-area concentric rings around the base species within a near distance. The mean of local KCBC values is proposed to quantify the co-localization degree of cross-channel to base-channel molecules for the whole image. It could effectively correct the false positives with reduced variance and increased power within the user-defined proximity size. We provide extensive simulation studies under different scenarios to demonstrate the unbiasedness of the KCBC method, and its ability to filter noise signals and random over-counting. Our real data application for super-resolution mitochondria image data illustrates the applicability of our methods with increased effectiveness and power.
Collapse
Affiliation(s)
- Xueyan Liu
- Department of Mathematics, University of New Orleans, New Orleans, LA, USA
| | - Stephan Komladzei
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, USA
| | - Clifford Guy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
25
|
Eusébio D, Paul M, Biswas S, Cui Z, Costa D, Sousa Â. Mannosylated polyethylenimine-cholesterol-based nanoparticles for targeted delivery of minicircle DNA vaccine against COVID-19 to antigen-presenting cells. Int J Pharm 2024; 654:123959. [PMID: 38430949 DOI: 10.1016/j.ijpharm.2024.123959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 01/25/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
DNA vaccines can be a potential solution to protect global health, triggering both humoral and cellular immune responses. DNA vaccines are valuable in preventing intracellular pathogen infections, and therefore can be explored against coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus (SARS-CoV-2). This work explored different systems based on polyethylenimine (PEI), functionalized for the first time with both cholesterol (CHOL) and mannose (MAN) to deliver parental plasmid (PP) and minicircle DNA (mcDNA) vectors encoding the receptor-binding domain (RBD) of SARS-CoV-2 to antigen-presenting cells (APCs). For comparative purposes, three different systems were evaluated: PEI, PEI-CHOL and PEI-CHOL-MAN. The systems were prepared at various nitrogen-to-phosphate group (N/P) ratios and characterized in terms of encapsulation efficiency, surface charge, size, polydispersity index (PDI), morphology, and stability over time. Moreover, in vitro transfection studies of dendritic cells (JAWS II) and human fibroblast cells were performed. Viability studies assured the biocompatibility of all nanocarriers. Confocal microscopy studies confirmed intracellular localization of systems, resulting in enhanced cellular uptake using PEI-CHOL and PEI-CHOL-MAN systems when compared with the PEI system. Regarding the RBD expression, PEI-CHOL-MAN was the system that led to the highest levels of transcripts and protein expression in JAWS II cells. Furthermore, the nanosystems significantly stimulated pro-inflammatory cytokines production and dendritic cell maturation in vitro. Overall, mannosylated systems can be considered a valuable tool in the delivery of plasmid DNA or mcDNA vaccines to APCs.
Collapse
Affiliation(s)
- Dalinda Eusébio
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Milan Paul
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus. Jawahar Nagar, Medchal, Hyderabad 500078, India
| | - Swati Biswas
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus. Jawahar Nagar, Medchal, Hyderabad 500078, India
| | - Zhengrong Cui
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX 78712, USA
| | - Diana Costa
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Ângela Sousa
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|
26
|
Chen H, Zhang H, Li AM, Liu YT, Liu Y, Zhang W, Yang C, Song N, Zhan M, Yang S. VDR regulates mitochondrial function as a protective mechanism against renal tubular cell injury in diabetic rats. Redox Biol 2024; 70:103062. [PMID: 38320454 PMCID: PMC10850784 DOI: 10.1016/j.redox.2024.103062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 02/08/2024] Open
Abstract
PURPOSE To investigate the regulatory effect and mechanism of Vitamin D receptor (VDR) on mitochondrial function in renal tubular epithelial cell under diabetic status. METHODS The diabetic rats induced by streptozotocin (STZ) and HK-2 cells under high glocose(HG)/transforming growth factor beta (TGF-β) stimulation were used in this study. Calcitriol was administered for 24 weeks. Renal tubulointerstitial injury and some parameters of mitochondrial function including mitophagy, mitochondrial fission, mitochondrial ROS, mitochondrial membrane potential (MMP), mitochondrial ATP, Complex V activity and mitochondria-associated ER membranes (MAMs) integrity were examined. Additionally, paricalcitol, 3-MA (an autophagy inhibitor), VDR over-expression plasmid, VDR siRNA and Mfn2 siRNA were applied in vitro. RESULTS The expression of VDR, Pink1, Parkin, Fundc1, LC3II, Atg5, Mfn2, Mfn1 in renal tubular cell of diabetic rats were decreased significantly. Calcitriol treatment reduced the levels of urinary albumin, serum creatinine and attenuated renal tubulointerstitial fibrosis in STZ induced diabetic rats. In addition, VDR agonist relieved mitophagy dysfunction, MAMs integrity, and inhibited mitochondrial fission, mitochondrial ROS. Co-immunoprecipitation analysis demonstrated that VDR interacted directly with Mfn2. Mitochondrial function including mitophagy, mitochondrial membrane potential (MMP), mitochondrial Ca2+, mitochondrial ATP and Complex V activity were decreased dramatically in HK-2 cells under HG/TGF-β ambience. In vitro pretreatment of HK-2 cells with autophagy inhibitor 3-MA, VDR siRNA or Mfn2 siRNA negated the activating effects of paricalcitol on mitochondrial function. Pricalcitol and VDR over-expression plasmid activated Mfn2 and then partially restored the MAMs integrity. Additionally, VDR restored mitophagy was partially associated with MAMs integrity through Fundc1. CONCLUSION Activated VDR could contribute to restore mitophagy through Mfn2-MAMs-Fundc1 pathway in renal tubular cell. VDR could recover mitochondrial ATP, complex V activity and MAMs integrity, inhibit mitochondrial fission and mitochondrial ROS. It indicating that VDR agonists ameliorate renal tubulointerstitial fibrosis in diabetic rats partially via regulation of mitochondrial function.
Collapse
Affiliation(s)
- Hong Chen
- Department of Nephrology, The Third Xiangya Hospital, The Critical Kidney Disease Research Center, Central South University, China.
| | - Hao Zhang
- Department of Nephrology, The Third Xiangya Hospital, The Critical Kidney Disease Research Center, Central South University, China.
| | - Ai-Mei Li
- Department of Nephrology, The Third Xiangya Hospital, The Critical Kidney Disease Research Center, Central South University, China.
| | - Yu-Ting Liu
- Department of Nephrology, The Third Xiangya Hospital, The Critical Kidney Disease Research Center, Central South University, China.
| | - Yan Liu
- Department of Nephrology, The Third Xiangya Hospital, The Critical Kidney Disease Research Center, Central South University, China.
| | - Wei Zhang
- Department of Nephrology, The Third Xiangya Hospital, The Critical Kidney Disease Research Center, Central South University, China.
| | - Cheng Yang
- Department of Nephrology, The Third Xiangya Hospital, The Critical Kidney Disease Research Center, Central South University, China.
| | - Na Song
- Department of Nephrology, The Third Xiangya Hospital, The Critical Kidney Disease Research Center, Central South University, China.
| | - Ming Zhan
- Department of Nephrology, The First Affiliated Hospital of Ningbo University, China.
| | - Shikun Yang
- Department of Nephrology, The Third Xiangya Hospital, The Critical Kidney Disease Research Center, Central South University, China.
| |
Collapse
|
27
|
Sundara Rajan S, Ebegboni VJ, Pichling P, Ludwig KR, Jones TL, Chari R, Tran A, Kruhlak MJ, Loncarek J, Caplen NJ. Endogenous EWSR1 Exists in Two Visual Modalities That Reflect Its Associations with Nucleic Acids and Concentration at Sites of Active Transcription. Mol Cell Biol 2024; 44:103-122. [PMID: 38506112 PMCID: PMC10986767 DOI: 10.1080/10985549.2024.2315425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 03/21/2024] Open
Abstract
EWSR1 is a member of the FET family of nucleic acid binding proteins that includes FUS and TAF15. Here, we report the systematic analysis of endogenous EWSR1's cellular organization in human cells. We demonstrate that EWSR1, which contains low complexity and nucleic acid binding domains, is present in cells in faster and slower-recovering fractions, indicative of a protein undergoing both rapid exchange and longer-term interactions. The employment of complementary high-resolution imaging approaches shows EWSR1 exists in two visual modalities, a distributed state which is present throughout the nucleoplasm, and a concentrated state consistent with the formation of foci. Both EWSR1 visual modalities localize with nascent RNA. EWSR1 foci concentrate in regions of euchromatin, adjacent to protein markers of transcriptional activation, and significantly colocalize with phosphorylated RNA polymerase II. Our results contribute to bridging the gap between our understanding of the biophysical and biochemical properties of FET proteins, including EWSR1, their functions as transcriptional regulators, and the participation of these proteins in tumorigenesis and neurodegenerative disease.
Collapse
Affiliation(s)
- Soumya Sundara Rajan
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Vernon J. Ebegboni
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Patricio Pichling
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Katelyn R. Ludwig
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Tamara L. Jones
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Raj Chari
- Genome Modification Core, Laboratory Animal Sciences Program, Frederick National Lab for Cancer Research, Frederick, Maryland, USA
| | - Andy Tran
- CCR Confocal Microscopy Core Facility, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael J. Kruhlak
- CCR Confocal Microscopy Core Facility, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jadranka Loncarek
- Centrosome Biology Section, Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Natasha J. Caplen
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
28
|
Lin H, Sandkuhler S, Dunlea C, Rodwell-Bullock J, King DH, Johnson GVW. BAG3 regulates the specificity of the recognition of specific MAPT species by NBR1 and SQSTM1. Autophagy 2024; 20:577-589. [PMID: 37899687 PMCID: PMC10936643 DOI: 10.1080/15548627.2023.2276622] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 10/09/2023] [Accepted: 10/19/2023] [Indexed: 10/31/2023] Open
Abstract
Macroautophagy/autophagy receptors are essential for the recognition and clearance of specific cargos by selective autophagy, which is essential for maintaining MAPT proteostasis. Previous studies have implicated different autophagy receptors in directing distinct species of MAPT to autophagy, but the underlying mechanisms have not been fully investigated. Here we examine how the autophagy receptors NBR1 and SQSTM1 differentially associate with specific forms of MAPT. In primary neurons depletion of NBR1, unlike depletion of SQSTM1, significantly increased phosphorylated MAPT levels. The specificity of the interactions was confirmed using in vitro binding assays with purified proteins. We provide direct evidence that the co-chaperone BAG3 promotes the preferential association of NBR1 with monomeric MAPT and SQSTM1 with oligomeric MAPT. Using an in vitro affinity-isolation assay, we show that SQSTM1 only binds to monomeric MAPT when BAG3 is absent and fails to bind when BAG3 is present. The opposite is true of NBR1; its association with monomeric MAPT was dependent on the presence of BAG3. Interestingly, in Alzheimer disease brain the association of NBR1 with BAG3 was significantly decreased. In a mouse model, ablation of BAG3 in neural cells disrupted the association of NBR1 with phosphorylated MAPT and led to increased levels of phosphorylated and oligomeric MAPT. Overall, our results uncover a novel role for BAG3 in regulating the specificity of selective autophagy receptors in targeting different species of MAPT and provide compelling evidence that BAG3 plays a key role in maintaining MAPT proteostasis.Abbreviations: AD: Alzheimer disease; BAG3: BCL2-associated athanogene 3; BSA: bovine serum albumin; CERAD: Consortium to Establish a Registry for Alzheimer's Disease; ESCRT: endosomal sorting complexes required for transport; GST: glutathione S-transferases; MAPT: microtubule-associated protein tau; NBR1: NBR1, autophagy cargo receptor; NFT: neurofibrillary tangles; PMI: postmortem interval; SQSTM1: sequestosome 1.
Collapse
Affiliation(s)
- Heng Lin
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, NY, USA
| | - Sarah Sandkuhler
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, NY, USA
| | - Colleen Dunlea
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, NY, USA
| | - Joel Rodwell-Bullock
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, NY, USA
| | - Darron H King
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, NY, USA
| | - Gail V. W. Johnson
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, NY, USA
| |
Collapse
|
29
|
Shetab Boushehri S, Kornivetc A, Winter DJE, Kazeminia S, Essig K, Schmich F, Marr C. PXPermute reveals staining importance in multichannel imaging flow cytometry. CELL REPORTS METHODS 2024; 4:100715. [PMID: 38412831 PMCID: PMC10921034 DOI: 10.1016/j.crmeth.2024.100715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 11/08/2023] [Accepted: 01/29/2024] [Indexed: 02/29/2024]
Abstract
Imaging flow cytometry (IFC) allows rapid acquisition of numerous single-cell images per second, capturing information from multiple fluorescent channels. However, the traditional process of staining cells with fluorescently labeled conjugated antibodies for IFC analysis is time consuming, expensive, and potentially harmful to cell viability. To streamline experimental workflows and reduce costs, it is crucial to identify the most relevant channels for downstream analysis. In this study, we introduce PXPermute, a user-friendly and powerful method for assessing the significance of IFC channels, particularly for cell profiling. Our approach evaluates channel importance by permuting pixel values within each channel and analyzing the resulting impact on machine learning or deep learning models. Through rigorous evaluation of three multichannel IFC image datasets, we demonstrate PXPermute's potential in accurately identifying the most informative channels, aligning with established biological knowledge. PXPermute can assist biologists with systematic channel analysis, experimental design optimization, and biomarker identification.
Collapse
Affiliation(s)
- Sayedali Shetab Boushehri
- Institute of AI for Health, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764 Neuherberg, Germany; Institute of Computational Biology, Helmholtz Zentrum MünchenMunich - Helmholtz Munich - German Research Center for Environmental Health, 85764 Neuherberg, Germany; Technical University of Munich, Department of Mathematics, 85748 Munich, Germany; Data & Analytics (D&A), Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, 82377 Penzberg, Germany
| | - Aleksandra Kornivetc
- Institute of AI for Health, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764 Neuherberg, Germany; Institute of Computational Biology, Helmholtz Zentrum MünchenMunich - Helmholtz Munich - German Research Center for Environmental Health, 85764 Neuherberg, Germany; University of Hamburg, Department of Informatics, 22527 Hamburg, Germany
| | - Domink J E Winter
- Institute of AI for Health, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764 Neuherberg, Germany; Institute of Computational Biology, Helmholtz Zentrum MünchenMunich - Helmholtz Munich - German Research Center for Environmental Health, 85764 Neuherberg, Germany; Technical University of Munich, School of Life Sciences, 85354 Weihenstephan, Germany
| | - Salome Kazeminia
- Institute of AI for Health, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764 Neuherberg, Germany; Technical University of Munich, Department of Mathematics, 85748 Munich, Germany
| | - Katharina Essig
- Large Molecule Research (LMR), Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, 82377 Penzberg, Germany
| | - Fabian Schmich
- Data & Analytics (D&A), Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, 82377 Penzberg, Germany
| | - Carsten Marr
- Institute of AI for Health, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764 Neuherberg, Germany.
| |
Collapse
|
30
|
Wang XR, Cull B, Oliver JD, Kurtti TJ, Munderloh UG. The role of autophagy in tick-endosymbiont interactions: insights from Ixodes scapularis and Rickettsia buchneri. Microbiol Spectr 2024; 12:e0108623. [PMID: 38038450 PMCID: PMC10783069 DOI: 10.1128/spectrum.01086-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 10/27/2023] [Indexed: 12/02/2023] Open
Abstract
IMPORTANCE Ticks are second only to mosquitoes in their importance as vectors of disease agents; however, tick-borne diseases (TBDs) account for the majority of all vector-borne disease cases in the United States (approximately 76.5%), according to Centers for Disease Control and Prevention reports. Newly discovered tick species and their associated disease-causing pathogens, and anthropogenic and demographic factors also contribute to the emergence and re-emergence of TBDs. Thus, incorporating different tick control approaches based on a thorough knowledge of tick biology has great potential to prevent and eliminate TBDs in the future. Here we demonstrate that replication of a transovarially transmitted rickettsial endosymbiont depends on the tick's autophagy machinery but not on apoptosis. Our findings improve our understanding of the role of symbionts in tick biology and the potential to discover tick control approaches to prevent or manage TBDs.
Collapse
Affiliation(s)
- Xin-Ru Wang
- Department of Entomology, University of Minnesota, St. Paul, Minnesota, USA
- SUNY Center for Vector-Borne Diseases, Upstate Medical University, Syracuse, New York, USA
- Institute for Global Health and Translational Sciences, Upstate Medical University, Syracuse, New York, USA
- Department of Microbiology and Immunology, Upstate Medical University, Syracuse, New York, USA
| | - Benjamin Cull
- Department of Entomology, University of Minnesota, St. Paul, Minnesota, USA
| | - Jonathan D. Oliver
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Timothy J. Kurtti
- Department of Entomology, University of Minnesota, St. Paul, Minnesota, USA
| | | |
Collapse
|
31
|
Reyes-Ábalos AL, Álvarez-Zabaleta M, Olivera-Bravo S, Di Tomaso MV. Astrocyte DNA damage and response upon acute exposure to ethanol and corticosterone. FRONTIERS IN TOXICOLOGY 2024; 5:1277047. [PMID: 38259729 PMCID: PMC10800529 DOI: 10.3389/ftox.2023.1277047] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction: Astrocytes are the glial cells responsible for brain homeostasis, but if injured, they could damage neural cells even deadly. Genetic damage, DNA damage response (DDR), and its downstream cascades are dramatic events poorly studied in astrocytes. Hypothesis and methods: We propose that 1 h of 400 mmol/L ethanol and/or 1 μmol/L corticosterone exposure of cultured hippocampal astrocytes damages DNA, activating the DDR and eliciting functional changes. Immunolabeling against γH2AX (chromatin DNA damage sites), cyclin D1 (cell cycle control), nuclear (base excision repair, BER), and cytoplasmic (anti-inflammatory functions) APE1, ribosomal nucleolus proteins together with GFAP and S100β plus scanning electron microscopy studies of the astrocyte surface were carried out. Results: Data obtained indicate significant DNA damage, immediate cell cycle arrest, and BER activation. Changes in the cytoplasmic signals of cyclin D1 and APE1, nucleolus number, and membrane-attached vesicles strongly suggest a reactivity like astrocyte response without significant morphological changes. Discussion: Obtained results uncover astrocyte genome immediate vulnerability and DDR activation, plus a functional response that might in part, be signaled through extracellular vesicles, evidencing the complex influence that astrocytes may have on the CNS even upon short-term aggressions.
Collapse
Affiliation(s)
- Ana Laura Reyes-Ábalos
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Magdalena Álvarez-Zabaleta
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | | | - María Vittoria Di Tomaso
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| |
Collapse
|
32
|
Liu YT, Zhang H, Duan SB, Wang JW, Chen H, Zhan M, Zhang W, Li AM, Liu Y, Yang Y, Yang S. Mitofusin2 Ameliorated Endoplasmic Reticulum Stress and Mitochondrial Reactive Oxygen Species Through Maintaining Mitochondria-Associated Endoplasmic Reticulum Membrane Integrity in Cisplatin-Induced Acute Kidney Injury. Antioxid Redox Signal 2024; 40:16-39. [PMID: 37053105 DOI: 10.1089/ars.2022.0178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Aims: This study investigated the regulatory effect of Mitofusin2 (Mfn2) on mitochondria-associated endoplasmic reticulum membrane (MAM) integrity and cellular injury in cisplatin-induced acute kidney injury (CP-AKI). Results: CP-AKI mice exhibited decreased expression of Mfn2, increased expression of phosphorylated adenosine monophosphate-activated protein kinase (p-AMPK), abnormal mitochondrial morphology, and reduced MAMs integrity, accompanied by the activation of mitochondrial reactive oxygen species (ROS) and endoplasmic reticulum (ER) stress (inositol-requiring enzyme 1 [IRE1] and PERK pathways). In in vitro studies, CP-induced mitochondrial ROS, ER-stress activation, and increased apoptosis were accompanied by the downregulation of Mfn2 and MAMs integrity reduction in Boston University mouse proximal tubular cells (BUMPT) and human proximal tubular epithelial cells (HK-2). Pretreatment of BUMPT cells with the Mfn2 plasmid partially restored the integrity of MAMs, negatively controlled IRE1 and PERK pathways, and inhibited cell apoptosis. In contrast, ER-stress and MAMs integrity violations were increased after Mfn2 small-interfering RNA (siRNA) treatment in HK-2 cells under CP treatment. Coimmunoprecipitation analysis demonstrated that Mfn2 interacted with PERK and IRE1. Furthermore, the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK), acadesine (AICAR), had a similar effect to Mfn2 plasmid in the regulation of ER stress and MAMs. Conversely, the ER-stress inhibitor, 4-phenylbutyric acid (4-PBA), had no effect on the expression of Mfn2 and MAMs integrity. Innovation and Conclusion: This is the first study to explore the association between MAMs, ER stress, and Mfn2 in CP-AKI. Downregulation of Mfn2 expression abolished the MAMs integrity, and induced ER stress, mitochondrial ROS, and tubular cell apoptosis. This suggests that the Mfn2-MAMs pathway is a potential therapeutic target in CP-AKI. Antioxid. Redox Signal. 40, 16-39. The Ethical Registration number of animal experiment in this study was CSU-2022-01-0095.
Collapse
Affiliation(s)
- Yu-Ting Liu
- Department of Nephrology, The Third Xiangya Hospital, The Critical Kidney Disease Research Center, Central South University, Changsha, China
| | - Hao Zhang
- Department of Nephrology, The Third Xiangya Hospital, The Critical Kidney Disease Research Center, Central South University, Changsha, China
| | - Shao-Bin Duan
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jian-Wen Wang
- Department of Nephrology, The Third Xiangya Hospital, The Critical Kidney Disease Research Center, Central South University, Changsha, China
| | - Hong Chen
- Department of Nephrology, The Third Xiangya Hospital, The Critical Kidney Disease Research Center, Central South University, Changsha, China
| | - Ming Zhan
- International Medicine Department, Ningbo First Hospital, Zhejiang University, Ningbo, China
| | - Wei Zhang
- Department of Nephrology, The Third Xiangya Hospital, The Critical Kidney Disease Research Center, Central South University, Changsha, China
| | - Ai-Mei Li
- Department of Nephrology, The Third Xiangya Hospital, The Critical Kidney Disease Research Center, Central South University, Changsha, China
| | - Yan Liu
- Department of Nephrology, The Third Xiangya Hospital, The Critical Kidney Disease Research Center, Central South University, Changsha, China
| | - Yang Yang
- Department of Pneumology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Shikun Yang
- Department of Nephrology, The Third Xiangya Hospital, The Critical Kidney Disease Research Center, Central South University, Changsha, China
| |
Collapse
|
33
|
Lee RM, Eisenman LR, Khuon S, Aaron JS, Chew TL. Believing is seeing - the deceptive influence of bias in quantitative microscopy. J Cell Sci 2024; 137:jcs261567. [PMID: 38197776 DOI: 10.1242/jcs.261567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024] Open
Abstract
The visual allure of microscopy makes it an intuitively powerful research tool. Intuition, however, can easily obscure or distort the reality of the information contained in an image. Common cognitive biases, combined with institutional pressures that reward positive research results, can quickly skew a microscopy project towards upholding, rather than rigorously challenging, a hypothesis. The impact of these biases on a variety of research topics is well known. What might be less appreciated are the many forms in which bias can permeate a microscopy experiment. Even well-intentioned researchers are susceptible to bias, which must therefore be actively recognized to be mitigated. Importantly, although image quantification has increasingly become an expectation, ostensibly to confront subtle biases, it is not a guarantee against bias and cannot alone shield an experiment from cognitive distortions. Here, we provide illustrative examples of the insidiously pervasive nature of bias in microscopy experiments - from initial experimental design to image acquisition, analysis and data interpretation. We then provide suggestions that can serve as guard rails against bias.
Collapse
Affiliation(s)
- Rachel M Lee
- Advanced Imaging Center, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA 20147, USA
| | - Leanna R Eisenman
- Advanced Imaging Center, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA 20147, USA
| | - Satya Khuon
- Advanced Imaging Center, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA 20147, USA
| | - Jesse S Aaron
- Advanced Imaging Center, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA 20147, USA
| | - Teng-Leong Chew
- Advanced Imaging Center, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA 20147, USA
| |
Collapse
|
34
|
Skiba M, Guedes G, Karpov D, Feliu N, L. Cortajarena A, Parak WJ, Sanchez-Cano C. Probing the Cellular Fate of the Protein Corona around Nanoparticles with Nanofocused X-ray Fluorescence Imaging. Int J Mol Sci 2023; 25:528. [PMID: 38203697 PMCID: PMC10778884 DOI: 10.3390/ijms25010528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
X-ray fluorescence imaging (XRF-imaging) with subcellular resolution is used to study the intracellular integrity of a protein corona that was pre-formed around gold nanoparticles (AuNP). Artificial proteins engineered to obtain Gd coordination for detection by XRF-imaging were used to form the corona. Indications about the degradation of this protein corona at a cellular and subcellular level can be observed by following the Au and Gd quantities in a time and spatial-dependent manner. The extended acquisition times necessary for capturing individual XRF-imaging cell images result in relatively small sample populations, stressing the need for faster image acquisition strategies in future XRF-imaging-based studies to deal with the inherent variability between cells. Still, results obtained reveal degradation of the protein corona during cellular trafficking, followed by differential cellular processing for AuNP and Gd-labelled proteins. Overall, this demonstrates that the dynamic degradation of the protein corona can be tracked by XRF-imaging to a certain degree.
Collapse
Affiliation(s)
- Marvin Skiba
- Center for Hybrid Nanostructures, University of Hamburg, 22761 Hamburg, Germany;
- The Hamburg Centre for Ultrafast Imaging, 22761 Hamburg, Germany
| | - Gabriela Guedes
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastian, Spain
| | - Dmitry Karpov
- European Synchrotron Radiation Facility, 38000 Grenoble, France
| | - Neus Feliu
- Zentrum für Angewandte Nanotechnologie CAN, Fraunhofer-Institut für Angewandte Polymerforschung IAP, 20146 Hamburg, Germany
| | - Aitziber L. Cortajarena
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastian, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Wolfgang J. Parak
- Center for Hybrid Nanostructures, University of Hamburg, 22761 Hamburg, Germany;
- The Hamburg Centre for Ultrafast Imaging, 22761 Hamburg, Germany
| | - Carlos Sanchez-Cano
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
- Donostia International Physics Center, 20018 Donostia-San Sebastian, Spain
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU, 20018 Donostia-San Sebastian, Spain
| |
Collapse
|
35
|
Zhao Y, Li Q, Huang Q, Liu Y. Self-Destructive Nanoscavengers Capture and Clear Neurotoxic Soluble β-Amyloid Aggregates. Macromol Rapid Commun 2023; 44:e2300378. [PMID: 37534564 DOI: 10.1002/marc.202300378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/30/2023] [Indexed: 08/04/2023]
Abstract
Cerebral soluble β-amyloid aggregates (sAβs) accumulation is one of the most important causes in Alzheimer's disease (AD) progression. In order to mitigate the neurotoxicity induced by sAβs and achieve enhanced AD therapeutic outcomes, robust sAβs clearance become an emerging task. Herein, a self-destructive nanoscavenger (SDNS) is reported based on multifunctional peptide-polymer complexes that can capture extracellular sAβs via hydrogen-bonding interactions and deliver them into microglial lysosomes. The internalized SDNS then occurs self-destruction within lysosomes and upregulates autophagy, thereby promoting the degradation of neurotoxic sAβs. Importantly, the enhanced autophagy also significantly suppresses the secretion of inflammatory factors by microglia, which is induced by internalized sAβs. Given that cerebral persistent inflammatory environment disturbs microglia-mediated phagocytosis and degradation, it is believed that this synergistic approach has valuable potential as a therapeutic strategy for AD.
Collapse
Affiliation(s)
- Yu Zhao
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, China
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Qiushi Li
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Qingqing Huang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yang Liu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, China
- Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| |
Collapse
|
36
|
Davenport AM, Morris M, Sabti F, Sabti S, Shakya D, Hynds DL, Cheriyath V. G1P3/IFI6, an interferon stimulated protein, promotes the association of RAB5 + endosomes with mitochondria in breast cancer cells. Cell Biol Int 2023; 47:1868-1879. [PMID: 37598317 DOI: 10.1002/cbin.12079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/31/2023] [Accepted: 08/05/2023] [Indexed: 08/21/2023]
Abstract
G1P3/IFI6 is an interferon stimulated gene with antiapoptotic, prometastatic, and antiviral functions. Despite its pleiotropic functions, subcellular localization of G1P3 remains unclear. Using biochemical- and confocal microscopic approaches, this study identified the localization of G1P3 in organelles of the endomembrane system and in the mitochondria of breast cancer cells. In cell fractionation studies, both interferon-induced endogenous- and stably expressed G1P3 cofractionated with affinity-isolated mitochondria. Results of the protease protection assay have suggested that ~24% of mitochondrial G1P3 resides within the mitochondria. Conforming to this, confocal microscopy studies of cells stably expressing epitope-tagged G1P3 (MCF-7/G1P3-FLAG), identified its localization in mitochondria (~38%) as well as in ER, trans-Golgi network (TGN), lysosomes, and in RAB5 positive (RAB5+ ) endosomes. These results suggested the trafficking of G1P3 from TGN into endolysosomes. Both G1P3 and RAB5 were known to confer apoptosis resistance through mitochondrial stabilization. Therefore, the effects of G1P3 on the localization of RAB5 in mitochondria were tested. Compared to vector control, the co-occurrence of RAB5 with the mitochondria was increased by 1.5-fold in MCF-7/G1P3-FLAG expressing cells (p ≤ .005). Taken together, our results demonstrate a role for G1P3 to promote the association of RAB5+ endosomes with mitochondria and provide insight into yet another mechanism of G1P3-induced cancer cell survival.
Collapse
Affiliation(s)
- Anne M Davenport
- Department of Biological and Environmental Sciences, Texas A&M University-Commerce, Commerce, Texas, USA
- Department of Biology, Texas Woman's University, Denton, Texas, USA
| | - Madeleine Morris
- Department of Biological and Environmental Sciences, Texas A&M University-Commerce, Commerce, Texas, USA
| | - Fatima Sabti
- Department of Biological and Environmental Sciences, Texas A&M University-Commerce, Commerce, Texas, USA
| | - Sarah Sabti
- Department of Biological and Environmental Sciences, Texas A&M University-Commerce, Commerce, Texas, USA
| | - Diksha Shakya
- Department of Biological and Environmental Sciences, Texas A&M University-Commerce, Commerce, Texas, USA
| | - DiAnna L Hynds
- Department of Biology, Texas Woman's University, Denton, Texas, USA
| | - Venugopalan Cheriyath
- Department of Biological and Environmental Sciences, Texas A&M University-Commerce, Commerce, Texas, USA
| |
Collapse
|
37
|
Zeng Y, Shen M, Pattipeiluhu R, Zhou X, Zhang Y, Bakkum T, Sharp TH, Boyle AL, Kros A. Efficient mRNA delivery using lipid nanoparticles modified with fusogenic coiled-coil peptides. NANOSCALE 2023; 15:15206-15218. [PMID: 37671560 DOI: 10.1039/d3nr02175k] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Gene delivery has great potential in modulating protein expression in specific cells to treat diseases. Such therapeutic gene delivery demands sufficient cellular internalization and endosomal escape. Of various nonviral nucleic acid delivery systems, lipid nanoparticles (LNPs) are the most advanced, but still, are very inefficient as the majority are unable to escape from endosomes/lysosomes. Here, we develop a highly efficient gene delivery system using fusogenic coiled-coil peptides. We modified LNPs, carrying EGFP-mRNA, and cells with complementary coiled-coil lipopeptides. Coiled-coil formation between these lipopeptides induced fast nucleic acid uptake and enhanced GFP expression. The cellular uptake of coiled-coil modified LNPs is likely driven by membrane fusion thereby omitting typical endocytosis pathways. This direct cytosolic delivery circumvents the problems commonly observed with the limited endosomal escape of mRNA. Therefore fusogenic coiled-coil peptide modification of existing LNP formulations to enhance nucleic acid delivery efficiency could be beneficial for several gene therapy applications.
Collapse
Affiliation(s)
- Ye Zeng
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| | - Mengjie Shen
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| | - Roy Pattipeiluhu
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| | - Xuequan Zhou
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| | - Yun Zhang
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| | - Thomas Bakkum
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| | - Thomas H Sharp
- Department of Cell and Chemical Biology, Section Electron Microscopy, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Aimee L Boyle
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| | - Alexander Kros
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| |
Collapse
|
38
|
Achimovich AM, Yan T, Gahlmann A. Dimerization of iLID optogenetic proteins observed using 3D single-molecule tracking in live E. coli. Biophys J 2023; 122:3254-3267. [PMID: 37421134 PMCID: PMC10465707 DOI: 10.1016/j.bpj.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/25/2023] [Accepted: 07/05/2023] [Indexed: 07/09/2023] Open
Abstract
3D single-molecule tracking microscopy has enabled measurements of protein diffusion in living cells, offering information about protein dynamics and cellular environments. For example, different diffusive states can be resolved and assigned to protein complexes of different size and composition. However, substantial statistical power and biological validation, often through genetic deletion of binding partners, are required to support diffusive state assignments. When investigating cellular processes, real-time perturbations to protein spatial distributions is preferable to permanent genetic deletion of an essential protein. For example, optogenetic dimerization systems can be used to manipulate protein spatial distributions that could offer a means to deplete specific diffusive states observed in single-molecule tracking experiments. Here, we evaluate the performance of the iLID optogenetic system in living E. coli cells using diffraction-limited microscopy and 3D single-molecule tracking. We observed a robust optogenetic response in protein spatial distributions after 488 nm laser activation. Surprisingly, 3D single-molecule tracking results indicate activation of the optogenetic response when illuminating with high-intensity light with wavelengths at which there is minimal photon absorbance by the LOV2 domain. The preactivation can be minimized through the use of iLID system mutants, and titration of protein expression levels.
Collapse
Affiliation(s)
- Alecia M Achimovich
- Department of Molecular Physiology & Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Ting Yan
- Department of Chemistry, University of Virginia, Charlottesville, Virginia
| | - Andreas Gahlmann
- Department of Molecular Physiology & Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia; Department of Chemistry, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
39
|
Rajan SS, Ebegboni VJ, Pichling P, Ludwig KR, Jones TL, Chari R, Tran A, Kruhlak MJ, Loncarek J, Caplen NJ. EWSR1's visual modalities are defined by its association with nucleic acids and RNA polymerase II. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.16.553246. [PMID: 37645932 PMCID: PMC10462028 DOI: 10.1101/2023.08.16.553246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
We report systematic analysis of endogenous EWSR1's cellular organization. We demonstrate that EWSR1, which contains low complexity and nucleic acid binding domains, is present in cells in faster and slower-recovering fractions, indicative of a protein undergoing both rapid exchange and longer-term interactions. The employment of complementary high-resolution imaging approaches shows EWSR1 exists in in two visual modalities, a distributed state which is present throughout the nucleoplasm, and a concentrated state consistent with the formation of foci. Both EWSR1 visual modalities localize with nascent RNA. EWSR1 foci concentrate in regions of euchromatin, adjacent to protein markers of transcriptional activation, and significantly colocalize with phosphorylated RNA polymerase II. Interestingly, EWSR1 and FUS, another FET protein, exhibit distinct spatial organizations. Our results contribute to bridging the gap between our understanding of the biophysical and biochemical properties of FET proteins, including EWSR1, their functions as transcriptional regulators, and the participation of these proteins in tumorigenesis and neurodegenerative disease.
Collapse
Affiliation(s)
- Soumya Sundara Rajan
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health MD 20892, USA
| | - Vernon J. Ebegboni
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health MD 20892, USA
| | - Patricio Pichling
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health MD 20892, USA
| | - Katelyn R. Ludwig
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health MD 20892, USA
| | - Tamara L. Jones
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health MD 20892, USA
| | - Raj Chari
- Genome Modification Core, Laboratory Animal Sciences Program at the Frederick National Lab for Cancer Research, Frederick, MD 21702, USA
| | - Andy Tran
- CCR Confocal Microscopy Core Facility, Laboratory of Cancer Biology and Genetics, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Michael J. Kruhlak
- CCR Confocal Microscopy Core Facility, Laboratory of Cancer Biology and Genetics, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jadranka Loncarek
- Centrosome Biology Section, Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702 USA
| | - Natasha J. Caplen
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health MD 20892, USA
| |
Collapse
|
40
|
Shao X, Meng C, Song W, Zhang T, Chen Q. Subcellular visualization: Organelle-specific targeted drug delivery and discovery. Adv Drug Deliv Rev 2023; 199:114977. [PMID: 37391014 DOI: 10.1016/j.addr.2023.114977] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
Organelles perform critical biological functions due to their distinct molecular composition and internal environment. Disorders in organelles or their interacting networks have been linked to the incidence of numerous diseases, and the research of pharmacological actions at the organelle level has sparked pharmacists' interest. Currently, cell imaging has evolved into a critical tool for drug delivery, drug discovery, and pharmacological research. The introduction of advanced imaging techniques in recent years has provided researchers with richer biological information for viewing and studying the ultrastructure of organelles, protein interactions, and gene transcription activities, leading to the design and delivery of precision-targeted drugs. Therefore, this reviews the research on organelles-targeted drugs based upon imaging technologies and development of fluorescent molecules for medicinal purposes. We also give a thorough analysis of a number of subcellular-level elements of drug development, including subcellular research instruments and methods, organelle biological event investigation, subcellular target and drug identification, and design of subcellular delivery systems. This review will make it possible to promote drug research from the individual/cellular level to the subcellular level, as well as give a new focus based on newly found organelle activities.
Collapse
Affiliation(s)
- Xintian Shao
- School of Life Sciences, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China
| | - Caicai Meng
- School of Life Sciences, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China
| | - Wenjing Song
- School of Life Sciences, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China; School of Pharmaceutical Sciences & Institute of Materia Medica, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Key Laboratory for Biotechnology Drugs of National Health Commission, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China
| | - Tao Zhang
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province 250014, PR China
| | - Qixin Chen
- School of Pharmaceutical Sciences & Institute of Materia Medica, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Key Laboratory for Biotechnology Drugs of National Health Commission, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China.
| |
Collapse
|
41
|
Susnik E, Balog S, Taladriz-Blanco P, Petri-Fink A, Rothen-Rutishauser B. The Functions of Cholera Toxin Subunit B as a Modulator of Silica Nanoparticle Endocytosis. Toxins (Basel) 2023; 15:482. [PMID: 37624239 PMCID: PMC10467089 DOI: 10.3390/toxins15080482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/15/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023] Open
Abstract
The gastrointestinal tract is the main target of orally ingested nanoparticles (NPs) and at the same time is exposed to noxious substances, such as bacterial components. We investigated the interaction of 59 nm silica (SiO2) NPs with differentiated Caco-2 intestinal epithelial cells in the presence of cholera toxin subunit B (CTxB) and compared the effects to J774A.1 macrophages. CTxB can affect cellular functions and modulate endocytosis via binding to the monosialoganglioside (GM1) receptor, expressed on both cell lines. After stimulating macrophages with CTxB, we observed notable changes in the membrane structure but not in Caco-2 cells, and no secretion of the pro-inflammatory cytokine tumor necrosis factor-α (TNF-α) was detected. Cells were then exposed to 59 nm SiO2 NPs and CtxB sequentially and simultaneously, resulting in a high NP uptake in J774A.1 cells, but no uptake in Caco-2 cells was detected. Flow cytometry analysis revealed that the exposure of J774A.1 cells to CTxB resulted in a significant reduction in the uptake of SiO2 NPs. In contrast, the uptake of NPs by highly selective Caco-2 cells remained unaffected following CTxB exposure. Based on colocalization studies, CTxB and NPs might enter cells via shared endocytic pathways, followed by their sorting into different intracellular compartments. Our findings provide new insights into CTxB's function of modulating SiO2 NP uptake in phagocytic but not in differentiated intestine cells.
Collapse
Affiliation(s)
- Eva Susnik
- Adolphe Merkle Institute, University of Fribourg, 1700 Fribourg, Switzerland; (E.S.); (S.B.); (A.P.-F.)
| | - Sandor Balog
- Adolphe Merkle Institute, University of Fribourg, 1700 Fribourg, Switzerland; (E.S.); (S.B.); (A.P.-F.)
| | | | - Alke Petri-Fink
- Adolphe Merkle Institute, University of Fribourg, 1700 Fribourg, Switzerland; (E.S.); (S.B.); (A.P.-F.)
- Department of Chemistry, University of Fribourg, 1700 Fribourg, Switzerland
| | | |
Collapse
|
42
|
Songster LD, Bhuyan D, Christensen JR, Reck-Peterson SL. Woronin body hitchhiking on early endosomes is dispensable for septal localization in Aspergillus nidulans. Mol Biol Cell 2023; 34:br9. [PMID: 37017489 PMCID: PMC10295486 DOI: 10.1091/mbc.e23-01-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/06/2023] Open
Abstract
The proper functioning of organelles depends on their intracellular localization, mediated by motor protein-dependent transport on cytoskeletal tracks. Rather than directly associating with a motor protein, peroxisomes move by hitchhiking on motile early endosomes in the filamentous fungus Aspergillus nidulans. However, the physiological role of peroxisome hitchhiking is unclear. Peroxisome hitchhiking requires the protein PxdA, which is conserved within the fungal subphylum Pezizomycotina but absent from other fungal clades. Woronin bodies are specialized peroxisomes that are also unique to the Pezizomycotina. In these fungi, multinucleate hyphal segments are separated by incomplete cell walls called septa that possess a central pore enabling cytoplasmic exchange. Upon damage to a hyphal segment, Woronin bodies plug septal pores to prevent widespread leakage. Here, we tested whether peroxisome hitchhiking is important for Woronin body motility, distribution, and function in A. nidulans. We show that Woronin body proteins are present within all motile peroxisomes and hitchhike on PxdA-labeled early endosomes during bidirectional, long-distance movements. Loss of peroxisome hitchhiking significantly affected Woronin body distribution and motility in the cytoplasm, but Woronin body hitchhiking is ultimately dispensable for septal localization and plugging.
Collapse
Affiliation(s)
- Livia D. Songster
- Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093
| | - Devahuti Bhuyan
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Jenna R. Christensen
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Samara L. Reck-Peterson
- Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
- Howard Hughes Medical Institute, Chevy Chase, MD 20815
| |
Collapse
|
43
|
Zhou Y, Bennett TM, White TW, Shiels A. Charged multivesicular body protein 4b forms complexes with gap junction proteins during lens fiber cell differentiation. FASEB J 2023; 37:e22801. [PMID: 36880430 PMCID: PMC10101236 DOI: 10.1096/fj.202201368rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 03/08/2023]
Abstract
Charged multivesicular body protein 4b (CHMP4B) is a core sub-unit of the endosomal sorting complex required for transport III (ESCRT-III) machinery that serves myriad remodeling and scission processes of biological membranes. Mutation of the human CHMP4B gene underlies rare forms of early-onset lens opacities or cataracts, and CHMP4B is required for lens growth and differentiation in mice. Here, we determine the sub-cellular distribution of CHMP4B in the lens and uncover a novel association with gap junction alpha-3 protein (GJA3) or connexin 46 (Cx46) and GJA8 or Cx50. Immunofluorescence confocal microscopy revealed that CHMP4B localized to cell membranes of elongated fiber cells in the outer cortex of the lens-where large gap junction plaques begin to form-particularly, on the broad faces of these flattened hexagon-like cells in cross-section. Dual immunofluorescence imaging showed that CHMP4B co-localized with gap junction plaques containing Cx46 and/or Cx50. When combined with the in situ proximity ligation assay, immunofluorescence confocal imaging indicated that CHMP4B lay in close physical proximity to Cx46 and Cx50. In Cx46-knockout (Cx46-KO) lenses, CHMP4B-membrane distribution was similar to that of wild-type, whereas, in Cx50-KO lenses, CHMP4B localization to fiber cell membranes was lost. Immunoprecipitation and immunoblotting analyses revealed that CHMP4B formed complexes with Cx46 and Cx50 in vitro. Collectively, our data suggest that CHMP4B forms plasma membrane complexes, either directly and/or indirectly, with gap junction proteins Cx46 and Cx50 that are often associated with "ball-and-socket" double-membrane junctions during lens fiber cell differentiation.
Collapse
Affiliation(s)
- Yuefang Zhou
- Department of Ophthalmology and Visual SciencesWashington University School of MedicineSt. LouisMissouriUSA
| | - Thomas M. Bennett
- Department of Ophthalmology and Visual SciencesWashington University School of MedicineSt. LouisMissouriUSA
| | - Thomas W. White
- Department of Physiology and BiophysicsStony Brook UniversityStony BrookNew YorkUSA
| | - Alan Shiels
- Department of Ophthalmology and Visual SciencesWashington University School of MedicineSt. LouisMissouriUSA
| |
Collapse
|
44
|
Chen D, Lai J, Cheng J, Fu M, Lin L, Chen F, Huang R, Chen J, Lu J, Chen Y, Huang G, Yan M, Ma X, Li G, Chen G, Yan J. Predicting peritoneal recurrence in gastric cancer with serosal invasion using a pathomics nomogram. iScience 2023; 26:106246. [PMID: 36994190 PMCID: PMC10040964 DOI: 10.1016/j.isci.2023.106246] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/29/2023] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Peritoneal recurrence is the most frequent and lethal recurrence pattern in gastric cancer (GC) with serosal invasion after radical surgery. However, current evaluation methods are not adequate for predicting peritoneal recurrence in GC with serosal invasion. Emerging evidence shows that pathomics analyses could be advantageous for risk stratification and outcome prediction. Herein, we propose a pathomics signature composed of multiple pathomics features extracted from digital hematoxylin and eosin-stained images. We found that the pathomics signature was significantly associated with peritoneal recurrence. A competing-risk pathomics nomogram including carbohydrate antigen 19-9 level, depth of invasion, lymph node metastasis, and pathomics signature was developed for predicting peritoneal recurrence. The pathomics nomogram had favorable discrimination and calibration. Thus, the pathomics signature is a predictive indicator of peritoneal recurrence, and the pathomics nomogram may provide a helpful reference for predicting an individual's risk in peritoneal recurrence of GC with serosal invasion.
Collapse
Affiliation(s)
- Dexin Chen
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| | - Jianbo Lai
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| | - Jiaxin Cheng
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| | - Meiting Fu
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| | - Liyan Lin
- Department of Pathology, Fujian Provincial Key Laboratory of Translational Cancer Medicine, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, P.R. China
| | - Feng Chen
- Department of Oncological Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, P.R. China
| | - Rong Huang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| | - Jun Chen
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| | - Jianping Lu
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| | - Yuning Chen
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| | - Guangyao Huang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| | - Miaojia Yan
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| | - Xiaodan Ma
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| | - Guoxin Li
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| | - Gang Chen
- Department of Pathology, Fujian Provincial Key Laboratory of Translational Cancer Medicine, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, P.R. China
| | - Jun Yan
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| |
Collapse
|
45
|
Ji L, Moghal N, Zou X, Fang Y, Hu S, Wang Y, Tsao MS. The NRF2 antagonist ML385 inhibits PI3K-mTOR signaling and growth of lung squamous cell carcinoma cells. Cancer Med 2023; 12:5688-5702. [PMID: 36305267 PMCID: PMC10028163 DOI: 10.1002/cam4.5311] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/11/2022] [Accepted: 09/20/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lung squamous cell carcinoma (LUSC) currently has limited therapeutic options because of the relatively few validated targets and the lack of clinical drugs for some of these targets. Although NRF2/NFE2L2 pathway activation commonly occurs in LUSC, NRF2 has predominantly been studied in other cancer models. Here, we investigated the function of NRF2 in LUSC, including in organoid models, and we explored the activity of a small molecule NRF2 inhibitor ML385, which has not previously been investigated in LUSC. METHODS We first explored the role of NRF2 signaling in LUSC cancer cell line and organoid proliferation through NRF2 knockdown or ML385 treatment, both in vivo and in vitro. Next, we performed Western blot and immunofluorescence assays to determine the effect of NRF2 inhibition on PI3K-mTOR signaling. Finally, we used cell viability and clonogenic assays to explore whether ML385 could sensitize LUSC cancer cells to PI3K inhibitors. RESULTS We find that downregulation of NRF2 signaling inhibited proliferation of LUSC cancer cell lines and organoids, both in vivo and in vitro. We also demonstrate that inhibition of NRF2 reduces PI3K-mTOR signaling, with two potential mechanisms being involved. Although NRF2 promotes AKT phosphorylation, it also acts downstream of AKT to increase RagD protein expression and recruitment of mTOR to lysosomes after amino acid stimulation. We also find that ML385 potentiates LUSC growth inhibition by a pan-PI3K inhibitor, which correlates with stronger inhibition of PI3K-mTOR signaling. CONCLUSIONS Our data provide additional support for NRF2 promoting LUSC growth through PI3K-mTOR activation and support development of NRF2 inhibitors for the treatment of LUSC.
Collapse
Affiliation(s)
- Lili Ji
- Department of Pathology, Key Laboratory of Microenvironment and Translational Cancer Research, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Nadeem Moghal
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Xinru Zou
- Department of Pathology, Key Laboratory of Microenvironment and Translational Cancer Research, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Yixuan Fang
- Department of Pathology, Key Laboratory of Microenvironment and Translational Cancer Research, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Shuning Hu
- Department of Pathology, Key Laboratory of Microenvironment and Translational Cancer Research, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Yuhui Wang
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ming Sound Tsao
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
46
|
Lin H, Sandkuhler S, Dunlea C, King DH, Johnson GVW. BAG3 regulates the specificity of the recognition of specific MAPT species by NBR1 and SQSTM1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.527546. [PMID: 36798173 PMCID: PMC9934686 DOI: 10.1101/2023.02.08.527546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Autophagy receptors are essential for the recognition and clearance of specific cargos by selective autophagy, which is essential for maintaining MAPT proteostasis. Previous studies have implicated different autophagy receptors in directing distinct species of MAPT to autophagy, but the underlying mechanisms have not been fully investigated. Here we examine how the autophagy receptors NBR1 and SQSTM1 differentially engage specific forms of MAPT and facilitate their clearance. In primary neurons depletion of NBR1, unlike depletion of SQSTM1, significantly increased phosphorylated MAPT levels. The specificity of the interactions were confirmed using in vitro binding assays with purified proteins. We provide direct evidence that NBR1 preferentially binds to monomeric MAPT, while SQSTM1 interacts predominantly with oligomeric MAPT, and that the co-chaperone BAG3 regulates the specificity of these interactions. Using an in vitro pulldown assay, we show that SQSTM1 only binds to monomeric MAPT when BAG3 is absent and fails to bind when BAG3 is present. The opposite is true of NBR1; its binding to monomeric MAPT was dependent on the presence of BAG3. Interestingly, in Alzheimer's disease brain the association of NBR1 with BAG3 was significantly decreased. In a mouse model, ablation of BAG3 in neural cells disrupted the association of NBR1 with phosphorylated MAPT and lead to increased levels of phosphorylated and oligomeric MAPT. Overall, our results uncover a novel role for BAG3 in regulating the specificity of selective autophagy receptors in targeting different species of MAPT and provide compelling evidence that BAG3 plays a key role in maintaining MAPT proteostasis.
Collapse
Affiliation(s)
- Heng Lin
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, 601 Elmwood Ave, Box 604, Rochester, NY 14620 USA
| | - Sarah Sandkuhler
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, 601 Elmwood Ave, Box 604, Rochester, NY 14620 USA
| | - Colleen Dunlea
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, 601 Elmwood Ave, Box 604, Rochester, NY 14620 USA
| | - Darron H King
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, 601 Elmwood Ave, Box 604, Rochester, NY 14620 USA
| | - Gail V. W. Johnson
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, 601 Elmwood Ave, Box 604, Rochester, NY 14620 USA
| |
Collapse
|
47
|
Songster LD, Bhuyan D, Christensen JR, Reck-Peterson SL. Woronin bodies move dynamically and bidirectionally by hitchhiking on early endosomes in Aspergillus nidulans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.20.524968. [PMID: 36711994 PMCID: PMC9882315 DOI: 10.1101/2023.01.20.524968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The proper functioning of organelles depends on their intracellular localization, mediated by motor protein-dependent transport on cytoskeletal tracks. Rather than directly associating with a motor protein, peroxisomes move by hitchhiking on motile early endosomes in the filamentous fungus Aspergillus nidulans . However, the cellular function of peroxisome hitchhiking is unclear. Peroxisome hitchhiking requires the protein PxdA, which is conserved within the fungal subphylum Pezizomycotina, but absent from other fungal clades. Woronin bodies are specialized peroxisomes that are also unique to the Pezizomycotina. In these fungi, multinucleate hyphal segments are separated by incomplete cell walls called septa that possess a central pore enabling cytoplasmic exchange. Upon damage to a hyphal segment, Woronin bodies plug septal pores to prevent wide-spread leakage. Here, we tested if peroxisome hitchhiking is important for Woronin body motility, distribution, and function in A. nidulans . We show that Woronin body proteins are present within all motile peroxisomes and hitchhike on PxdA-labeled early endosomes during bidirectional, long-distance movements. Loss of peroxisome hitchhiking by knocking out pxdA significantly affected Woronin body distribution and motility in the cytoplasm, but Woronin body hitchhiking is ultimately dispensable for septal localization and plugging.
Collapse
Affiliation(s)
- Livia D. Songster
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Devahuti Bhuyan
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jenna R. Christensen
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Samara L. Reck-Peterson
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
48
|
Dong Y, Shachaf N, Feldberg L, Rogachev I, Heinig U, Aharoni A. PICA: Pixel Intensity Correlation Analysis for Deconvolution and Metabolite Identification in Mass Spectrometry Imaging. Anal Chem 2023; 95:1652-1662. [PMID: 36594613 PMCID: PMC9850408 DOI: 10.1021/acs.analchem.2c04778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In-source fragmentation (ISF) is a naturally occurring phenomenon in various ion sources including soft ionization techniques such as matrix-assisted laser desorption/ionization (MALDI). It has traditionally been minimized as it makes the dataset more complex and often leads to mis-annotation of metabolites. Here, we introduce an approach termed PICA (for pixel intensity correlation analysis) that takes advantage of ISF in MALDI imaging to increase confidence in metabolite identification. In PICA, the extraction and association of in-source fragments to their precursor ion results in "pseudo-MS/MS spectra" that can be used for identification. We examined PICA using three different datasets, two of which were published previously and included validated metabolites annotation. We show that highly colocalized ions possessing Pearson correlation coefficient (PCC) ≥ 0.9 for a given precursor ion are mainly its in-source fragments, natural isotopes, adduct ions, or multimers. These ions provide rich information for their precursor ion identification. In addition, our results show that moderately colocalized ions (PCC < 0.9) may be structurally related to the precursor ion, which allows for the identification of unknown metabolites through known ones. Finally, we propose three strategies to reduce the total computation time for PICA in MALDI imaging. To conclude, PICA provides an efficient approach to extract and group ions stemming from the same metabolites in MALDI imaging and thus allows for high-confidence metabolite identification.
Collapse
Affiliation(s)
- Yonghui Dong
- Department
of Plant Sciences, Weizmann Institute of
Science, Rehovot7610001, Israel,Department
of Life Sciences Core Facilities, Weizmann
Institute of Science, Rehovot7610001, Israel
| | - Nir Shachaf
- Department
of Plant Sciences, Weizmann Institute of
Science, Rehovot7610001, Israel
| | - Liron Feldberg
- Department
of Analytical Chemistry, Israel Institute
for Biological Research, Ness Ziona7410001, Israel
| | - Ilana Rogachev
- Department
of Plant Sciences, Weizmann Institute of
Science, Rehovot7610001, Israel
| | - Uwe Heinig
- Department
of Plant Sciences, Weizmann Institute of
Science, Rehovot7610001, Israel,Department
of Life Sciences Core Facilities, Weizmann
Institute of Science, Rehovot7610001, Israel
| | - Asaph Aharoni
- Department
of Plant Sciences, Weizmann Institute of
Science, Rehovot7610001, Israel,. Phone: +972 544 784259
| |
Collapse
|
49
|
Li S, Roger LM, Kumar L, Lewinski NA, Klein-Seetharaman J, Putnam HM, Yang J. High-frequency imagery to capture coral tissue (Montipora capricornis) response to environmental stress, a pilot study. PLoS One 2023; 18:e0283042. [PMID: 36943854 PMCID: PMC10030036 DOI: 10.1371/journal.pone.0283042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 02/28/2023] [Indexed: 03/23/2023] Open
Abstract
Environment stress is a major threat to the existence of coral reefs and has generated a lot of interest in the coral research community. Under the environmental stress, corals can experience tissue loss and/or the breakdown of symbiosis between the cnidarian host and its symbiotic algae causing the coral tissue to appear white as the skeleton can be seen by transparency. Image analysis is a common method used to assess tissue response under the environmental stress. However, the traditional approach is limited by the dynamic nature of the coral-algae symbiosis. Here, we observed coral tissue response in the scleractinian coral, Montipora capricornis, using high frequency image analysis throughout the experiment, as opposed to the typical start/end point assessment method. Color analysis reveals that the process can be divided into five stages with two critical stages according to coral tissue morphology and color ratio. We further explore changes to the morphology of individual polyps by means of the Pearson correlation coefficient and recurrence plots, where the quasi-periodic and nonstationary dynamics can be identified. The recurrence quantification analysis also allows the comparison between the different polyps. Our research provides a detailed visual and mathematical analysis of coral tissue response to environmental stress, which potentially shows universal applicability. Moreover, our approach provides a robust quantitative advancement for improving our insight into a suite of biotic responses in the perspective of coral health evaluation and fate prediction.
Collapse
Affiliation(s)
- Shuaifeng Li
- Department of Aeronautics and Astronautics, University of Washington, Seattle, WA, United States of America
| | - Liza M Roger
- Department of Chemical and Life Science and Engineering, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Lokender Kumar
- Department of Physics, Colorado School of Mines, Golden, CO, United States of America
| | - Nastassja A Lewinski
- Department of Chemical and Life Science and Engineering, Virginia Commonwealth University, Richmond, VA, United States of America
| | | | - Hollie M Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, United States of America
| | - Jinkyu Yang
- Department of Aeronautics and Astronautics, University of Washington, Seattle, WA, United States of America
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
50
|
Lancaster CE, Moussaoui S, Gimenez MC, Terebiznik MR. Microscopy-Based Tracking and Quantification Methods to Study Phagosome Resolution. Methods Mol Biol 2023; 2692:221-235. [PMID: 37365471 DOI: 10.1007/978-1-0716-3338-0_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Phagosome resolution is a newly defined, terminal stage in the process of phagocytosis. During this phase, phagolysosomes are fragmented into smaller vesicles, which we called phagosome-derived vesicles (PDVs). PDVs gradually accumulate within macrophages, while the phagosomes diminish in size until the organelles are no longer detectable. Although PDVs share the same maturation markers as phagolysosomes, they are heterogeneous in size and very dynamic, which makes PDVs difficult to track. Thus, to analyze PDV populations in cells, we developed methods to differentiate PDVs from the phagosomes in which they were derived and further assess their characteristics. In this chapter, we describe two microscopy-based methods that can be used to quantify different aspects of phagosome resolution: volumetric analysis of phagosome shrinkage and PDV accumulation and co-occurrence analysis of various membrane markers with PDVs.
Collapse
Affiliation(s)
- Charlene E Lancaster
- Department of Biological Sciences, University of Toronto at Scarborough, Toronto, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Serene Moussaoui
- Department of Biological Sciences, University of Toronto at Scarborough, Toronto, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Maria Cecilia Gimenez
- Department of Biological Sciences, University of Toronto at Scarborough, Toronto, ON, Canada
| | - Mauricio R Terebiznik
- Department of Biological Sciences, University of Toronto at Scarborough, Toronto, ON, Canada.
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|