1
|
Moos M, Overgaard J, Hůla P, Byrge CG, Šmilauer P, Nedvěd O, Koštál V. Metabolomic signatures associated with cold adaptation and seasonal acclimation of Drosophila: profiling of 43 species. J Exp Biol 2025; 228:JEB250076. [PMID: 39911076 DOI: 10.1242/jeb.250076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 01/30/2025] [Indexed: 02/07/2025]
Abstract
Cold tolerance is a key determinant of poleward colonization in insects. However, the physiological basis underlying interspecific differences in cold tolerance is not fully understood. Here, we analyzed cold tolerance and metabolomic profiles in warm- and cold-acclimated phenotypes of 43 Drosophila species representing a latitudinal gradient from the tropics to the boreal zone. We found a strong positive correlation between cold tolerance and climatic variables associated with habitat seasonality and temperature. Including the effects of cold acclimation, we found most species have similar 'safety margins', measured as the difference between the average environmental temperature and the lower lethal temperature. Searching for metabolomic signatures of cold tolerance, we found that the warm-acclimated flies of cold-hardy species had moderately but significantly higher constitutive signals of putative cryoprotectants such as trehalose, glucose, glycerol and mannitol/sorbitol. Cold acclimation (and the transition to a winter dormant phenotype) resulted in a strong accumulation of myo-inositol, which occurred only in species of the virilis group. Other temperate and boreal species either showed only moderate, idiosyncratic accumulations of sugars/polyols and free amino acids, or did not accumulate any 'classical' cryoprotectant at all. Thus, our results suggest that the colonization of boreal regions by Drosophila does not necessarily depend on the seasonal accumulation of classical cryoprotectants. In contrast, virtually all cold-acclimated species showed a significant increase in products of phospholipid catabolism, suggesting that remodeling of biological membranes is a clear and ubiquitous signature of cold acclimation in Drosophila.
Collapse
Affiliation(s)
- Martin Moos
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, Branišovská 1160-31, 37005 České Budějovice, Czech Republic
| | - Johannes Overgaard
- Section for Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - Petr Hůla
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, Branišovská 1160-31, 37005 České Budějovice, Czech Republic
| | - Clara Garfiel Byrge
- Section for Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - Petr Šmilauer
- Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic
| | - Oldřich Nedvěd
- Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic
| | - Vladimír Koštál
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, Branišovská 1160-31, 37005 České Budějovice, Czech Republic
| |
Collapse
|
2
|
Du J, Zheng P, Gao W, Liang Q, Leng L, Shi L. All roads lead to Rome: the plasticity of gut microbiome drives the extensive adaptation of the Yarkand toad-headed agama ( Phrynocephalus axillaris) to different altitudes. Front Microbiol 2025; 15:1501684. [PMID: 39845039 PMCID: PMC11751238 DOI: 10.3389/fmicb.2024.1501684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/24/2024] [Indexed: 01/24/2025] Open
Abstract
The gut microbiome was involved in a variety of physiological processes and played a key role in host environmental adaptation. However, the mechanisms of their response to altitudinal environmental changes remain unclear. In this study, we used 16S rRNA sequencing and LC-MS metabolomics to investigate the changes in the gut microbiome and metabolism of the Yarkand toad-headed agama (Phrynocephalus axillaris) at different altitudes (-80 m to 2000 m). The results demonstrated that Firmicutes, Bacteroidetes, and Proteobacteria were the dominant phylum, Lachnospiraceae and Oscillospiraceae were the most abundant family, and the low-altitude populations had higher richness than high-altitude populations; Akkermansiaceae appeared to be enriched in high-altitude populations and the relative abundance tended to increase with altitude. The gut microbiome of three populations of P. axillaris at different altitudes was clustered into two different enterotypes, low-altitude populations and high-altitude populations shared an enterotype dominated by Akkermansia, Kineothrix, Phocaeicola; intermediate-altitude populations had an enterotype dominated by Mesorhizobium, Bradyrhizobium. Metabolites involved in amino acid and lipid metabolism differed significantly at different altitudes. The above results suggest that gut microbiome plasticity drives the extensive adaptation of P. axillaris to multi-stress caused by different altitudes. With global warming, recognizing the adaptive capacity of wide-ranging species to altitude can help plan future conservation strategies.
Collapse
Affiliation(s)
| | | | | | | | | | - Lei Shi
- Xinjiang Key Laboratory for Ecological Adaptation and Evolution of Extreme Environment Biology, College of Life Sciences, Xinjiang Agricultural University, Ürümqi, China
| |
Collapse
|
3
|
Helou B, Ritchie MW, MacMillan HA, Andersen MK. Dietary potassium and cold acclimation additively increase cold tolerance in Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2024; 159:104701. [PMID: 39251183 DOI: 10.1016/j.jinsphys.2024.104701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/01/2024] [Accepted: 09/04/2024] [Indexed: 09/11/2024]
Abstract
In the cold, chill susceptible insects lose the ability to regulate ionic and osmotic gradients. This leads to hemolymph hyperkalemia that drives a debilitating loss of cell membrane polarization, triggering cell death pathways and causing organismal injury. Biotic and abiotic factors can modulate insect cold tolerance by impacting the ability to mitigate or prevent this cascade of events. In the present study, we test the combined and isolated effects of dietary manipulations and thermal acclimation on cold tolerance in fruit flies. Specifically, we acclimated adult Drosophila melanogaster to 15 or 25 °C and fed them either a K+-loaded diet or a control diet. We then tested the ability of these flies to recover from and survive a cold exposure, as well as their capacity to protect transmembrane K+ gradients, and intracellular Na+ concentration. As predicted, cold-exposed flies experienced hemolymph hyperkalemia and cold-acclimated flies had improved cold tolerance due to an improved maintenance of the hemolymph K+ concentration at low temperature. Feeding on a high-K+ diet improved cold tolerance additively, but paradoxically reduced the ability to maintain extracellular K+ concentrations. Cold-acclimation and K+-feeding additively increased the intracellular K+ concentration, aiding in maintenance of the transmembrane K+ gradient during cold exposure despite cold-induced hemolymph hyperkalemia. There was no effect of acclimation or diet on intracellular Na+ concentration. These findings suggest intracellular K+ loading and reduced muscle membrane K+ sensitivity as mechanisms through which cold-acclimated and K+-fed flies are able to tolerate hemolymph hyperkalemia.
Collapse
Affiliation(s)
- Bassam Helou
- Department of Biology, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Marshall W Ritchie
- Department of Biology, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Heath A MacMillan
- Department of Biology, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Mads Kuhlmann Andersen
- Department of Biology, Carleton University, Ottawa, Ontario K1S 5B6, Canada; Department of Biology, Aarhus University, 8000 Aarhus C, Denmark.
| |
Collapse
|
4
|
Juarez BH, Quintanilla-Salinas I, Lacey MP, O'Connell LA. Water Availability and Temperature as Modifiers of Evaporative Water Loss in Tropical Frogs. Integr Comp Biol 2024; 64:354-365. [PMID: 38839599 PMCID: PMC11406161 DOI: 10.1093/icb/icae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024] Open
Abstract
Water plays a notable role in the ecology of most terrestrial organisms due to the risks associated with water loss. Specifically, water loss in terrestrial animals happens through evaporation across respiratory tissues or the epidermis. Amphibians are ideal systems for studying how abiotic factors impact water loss since their bodies often respond quickly to environmental changes. While the effect of temperature on water loss is well known across many taxa, we are still learning how temperature in combination with humidity or water availability affects water loss. Here, we tested how standing water sources (availability) and temperature (26 and 36°C) together affect water loss in anuran amphibians using a Bayesian framework. We also present a conceptual model for considering how water availability and temperature may interact, resulting in body mass changes. After accounting for phylogenetic and time autocorrelation, we determined how different variables (water loss and uptake rates, temperature, and body size) affect body mass in three species of tropical frogs (Rhinella marina, Phyllobates terribilis, and Xenopus tropicalis). We found that all variables impacted body mass changes, with greater similarities between P. terribilis and X. tropicalis, but temperature only showed a notable effect in P. terribilis. Furthermore, we describe how the behavior of P. terribilis might affect its water budget. This study shows how organisms might manage water budgets across different environments and is important for developing models of evaporative water loss and species distributions.
Collapse
Affiliation(s)
- Bryan H Juarez
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Earth System Science Department, Stanford University, Stanford, CA 94305, USA
| | | | - Madison P Lacey
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | |
Collapse
|
5
|
Andersen MK, Roe AD, Liu Y, Musso AE, Fudlosid S, Haider F, Evenden ML, MacMillan HA. The freeze-avoiding mountain pine beetle (Dendroctonus ponderosae) survives prolonged exposure to stressful cold by mitigating ionoregulatory collapse. J Exp Biol 2024; 227:jeb247498. [PMID: 38682690 PMCID: PMC11128280 DOI: 10.1242/jeb.247498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/02/2024] [Indexed: 05/01/2024]
Abstract
Insect performance is linked to environmental temperature, and surviving through winter represents a key challenge for temperate, alpine and polar species. To overwinter, insects have adapted a range of strategies to become truly cold hardy. However, although the mechanisms underlying the ability to avoid or tolerate freezing have been well studied, little attention has been given to the challenge of maintaining ion homeostasis at frigid temperatures in these species, despite this limiting cold tolerance for insects susceptible to mild chilling. Here, we investigated how prolonged exposure to temperatures just above the supercooling point affects ion balance in freeze-avoidant mountain pine beetle (Dendroctonus ponderosae) larvae in autumn, mid-winter and spring, and related it to organismal recovery times and survival. Hemolymph ion balance was gradually disrupted during the first day of exposure, characterized by hyperkalemia and hyponatremia, after which a plateau was reached and maintained for the rest of the 7-day experiment. The degree of ionoregulatory collapse correlated strongly with recovery times, which followed a similar asymptotical progression. Mortality increased slightly during extensive cold exposures, where hemolymph K+ concentration was highest, and a sigmoidal relationship was found between survival and hyperkalemia. Thus, the cold tolerance of the freeze-avoiding larvae of D. ponderosae appears limited by the ability to prevent ionoregulatory collapse in a manner similar to that of chill-susceptible insects, albeit at much lower temperatures. Based on these results, we propose that a prerequisite for the evolution of insect freeze avoidance may be a convergent or ancestral ability to maintain ion homeostasis during extreme cold stress.
Collapse
Affiliation(s)
| | - Amanda Diane Roe
- Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, Sault Ste. Marie, ON, Canada, P6A 2E5
| | - Yuehong Liu
- Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, Sault Ste. Marie, ON, Canada, P6A 2E5
| | - Antonia E. Musso
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada, T6G 2E9
| | - Serita Fudlosid
- Department of Biology, Carleton University, Ottawa, ON, Canada, K1S 5B6
| | - Fouzia Haider
- Department of Biology, Carleton University, Ottawa, ON, Canada, K1S 5B6
| | - Maya L. Evenden
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada, T6G 2E9
| | | |
Collapse
|
6
|
Ferguson LV, El Nabbout A, Adamo SA. Warming, but not infection with Borrelia burgdorferi, increases off-host winter activity in the ectoparasite, Ixodes scapularis. J Therm Biol 2024; 121:103853. [PMID: 38626664 DOI: 10.1016/j.jtherbio.2024.103853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/17/2024] [Indexed: 04/18/2024]
Abstract
Warming winters will change patterns of behaviour in temperate and polar arthropods, but we know little about the drivers of winter activity in animals such as ticks. Any changes in behaviour are likely to arise from a combination of both abiotic (e.g. temperature) and biotic (e.g. infection) drivers, and will have important consequences for survival and species interactions. Blacklegged ticks, Ixodes scapularis, have invaded Atlantic Canada and high proportions (30-50%) are infected with the bacteria causing Lyme disease, Borrelia burgdorferi. Infection is correlated with increased overwintering survival of adult females, and ticks are increasingly active in the winter, but it is unclear if infection is associated with activity. Further, we know little about how temperature drives the frequency of winter activity. Here, we exposed wild-caught, adult, female Ixodes scapularis ticks to three different winter temperature regimes (constant low temperatures, increased warming, and increased warming + variability) to determine the thermal and infection conditions that promote or suppress activity. We used automated behaviour monitors to track daily activity in individual ticks and repeated the study with fresh ticks over three years. Following exposure to winter conditions we determined whether ticks were infected with the bacteria B. burgdorferi and if infection was responsible for any patterns in winter activity. Warming conditions promoted increased activity throughout the overwintering period but infection with B. burgdorferi had no impact on the frequency or overall number of ticks active throughout the winter. Individual ticks varied in their levels of activity throughout the winter, such that some were largely dormant for several weeks, while others were active almost daily; however, we do not yet know the drivers behind this individual variation in behaviour. Overall, warming winters will heighten the risk of tick-host encounters.
Collapse
Affiliation(s)
- Laura V Ferguson
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4J1, Canada.
| | - Amal El Nabbout
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4J1, Canada
| | - Shelley A Adamo
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4J1, Canada
| |
Collapse
|
7
|
Privalova V, Sobczyk Ł, Szlachcic E, Labecka AM, Czarnoleski M. Heat tolerance in Drosophila melanogaster is influenced by oxygen conditions and mutations in cell size control pathways. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220490. [PMID: 38186282 PMCID: PMC10772611 DOI: 10.1098/rstb.2022.0490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/17/2023] [Indexed: 01/09/2024] Open
Abstract
Understanding metabolic performance limitations is key to explaining the past, present and future of life. We investigated whether heat tolerance in actively flying Drosophila melanogaster is modified by individual differences in cell size and the amount of oxygen in the environment. We used two mutants with loss-of-function mutations in cell size control associated with the target of rapamycin (TOR)/insulin pathways, showing reduced (mutant rictorΔ2) or increased (mutant Mnt1) cell size in different body tissues compared to controls. Flies were exposed to a steady increase in temperature under normoxia and hypoxia until they collapsed. The upper critical temperature decreased in response to each mutation type as well as under hypoxia. Females, which have larger cells than males, had lower heat tolerance than males. Altogether, mutations in cell cycle control pathways, differences in cell size and differences in oxygen availability affected heat tolerance, but existing theories on the roles of cell size and tissue oxygenation in metabolic performance can only partially explain our results. A better understanding of how the cellular composition of the body affects metabolism may depend on the development of research models that help separate various interfering physiological parameters from the exclusive influence of cell size. This article is part of the theme issue 'The evolutionary significance of variation in metabolic rates'.
Collapse
Affiliation(s)
- Valeriya Privalova
- Life History Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Łukasz Sobczyk
- Life History Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Ewa Szlachcic
- Life History Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Anna Maria Labecka
- Life History Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Marcin Czarnoleski
- Life History Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|
8
|
Štětina T, Koštál V. Extracellular freezing induces a permeability transition in the inner membrane of muscle mitochondria of freeze-sensitive but not freeze-tolerant Chymomyza costata larvae. Front Physiol 2024; 15:1358190. [PMID: 38384799 PMCID: PMC10880108 DOI: 10.3389/fphys.2024.1358190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/29/2024] [Indexed: 02/23/2024] Open
Abstract
Background: Many insect species have evolved the ability to survive extracellular freezing. The search for the underlying principles of their natural freeze tolerance remains hampered by our poor understanding of the mechanistic nature of freezing damage itself. Objectives: Here, in search of potential primary cellular targets of freezing damage, we compared mitochondrial responses (changes in morphology and physical integrity, respiratory chain protein functionality, and mitochondrial inner membrane (IMM) permeability) in freeze-sensitive vs. freeze-tolerant phenotypes of the larvae of the drosophilid fly, Chymomyza costata. Methods: Larvae were exposed to freezing stress at -30°C for 1 h, which is invariably lethal for the freeze-sensitive phenotype but readily survived by the freeze-tolerant phenotype. Immediately after melting, the metabolic activity of muscle cells was assessed by the Alamar Blue assay, the morphology of muscle mitochondria was examined by transmission electron microscopy, and the functionality of the oxidative phosphorylation system was measured by Oxygraph-2K microrespirometry. Results: The muscle mitochondria of freeze-tolerant phenotype larvae remained morphologically and functionally intact after freezing stress. In contrast, most mitochondria of the freeze-sensitive phenotype were swollen, their matrix was diluted and enlarged in volume, and the structure of the IMM cristae was lost. Despite this morphological damage, the electron transfer chain proteins remained partially functional in lethally frozen larvae, still exhibiting strong responses to specific respiratory substrates and transferring electrons to oxygen. However, the coupling of electron transfer to ATP synthesis was severely impaired. Based on these results, we formulated a hypothesis linking the observed mitochondrial swelling to a sudden loss of barrier function of the IMM.
Collapse
Affiliation(s)
| | - Vladimír Koštál
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| |
Collapse
|
9
|
Allen MC, Ritchie MW, El-Saadi MI, MacMillan HA. Effects of a high cholesterol diet on chill tolerance are highly context-dependent in Drosophila. J Therm Biol 2024; 119:103789. [PMID: 38340464 DOI: 10.1016/j.jtherbio.2024.103789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/11/2023] [Accepted: 01/04/2024] [Indexed: 02/12/2024]
Abstract
Chill susceptible insects are thought to be injured through different mechanisms depending on the duration and severity of chilling. While chronic chilling causes "indirect" injury through disruption of metabolic and ion homeostasis, acute chilling is suspected to cause "direct" injury, in part through phase transitions of cell membrane lipids. Dietary supplementation of cholesterol can reduce acute chilling injury in Drosophila melanogaster (Shreve et al., 2007), but the generality of this effect and the mechanisms underlying it remain unclear. To better understand how and why cholesterol has this effect, we assessed how a high cholesterol diet and thermal acclimation independently and interactively impact several measures of chill tolerance. Cholesterol supplementation positively affected tolerance to acute chilling in warm-acclimated flies (as reported previously). Conversely, feeding on the high-cholesterol diet negatively affected tolerance to chronic chilling in both cold and warm acclimated flies, as well as tolerance to acute chilling in cold acclimated flies. Cholesterol had no effect on the ability of flies to remain active in the cold or recover movement after a cold stress. Our findings support the idea that dietary cholesterol reduces mechanical injury to membranes caused by direct chilling injury, and that acute and chronic chilling are associated with distinct mechanisms of injury. Feeding on a high-cholesterol diet may interfere with mechanisms involved in cold acclimation, leaving cholesterol augmented flies more susceptible to chilling injury under some conditions.
Collapse
Affiliation(s)
- Mitchell C Allen
- Department of Biology, Carleton University, 1125 Colonel By Dr, Ottawa, Ontario, K1S 5B6, Canada
| | - Marshall W Ritchie
- Department of Biology, Carleton University, 1125 Colonel By Dr, Ottawa, Ontario, K1S 5B6, Canada
| | - Mahmoud I El-Saadi
- Department of Biology, Carleton University, 1125 Colonel By Dr, Ottawa, Ontario, K1S 5B6, Canada
| | - Heath A MacMillan
- Department of Biology, Carleton University, 1125 Colonel By Dr, Ottawa, Ontario, K1S 5B6, Canada.
| |
Collapse
|
10
|
Quattrocchi G, Christensen E, Sinerchia M, Marras S, Cucco A, Domenici P, Behrens JW. Aerobic metabolic scope mapping of an invasive fish species with global warming. CONSERVATION PHYSIOLOGY 2023; 11:coad094. [PMID: 38425367 PMCID: PMC10904007 DOI: 10.1093/conphys/coad094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 09/13/2023] [Accepted: 11/07/2023] [Indexed: 03/02/2024]
Abstract
Climate change will exacerbate the negative effects associated with the introduction of non-indigenous species in marine ecosystems. Predicting the spread of invasive species in relation to environmental warming is therefore a fundamental task in ecology and conservation. The Baltic Sea is currently threatened by several local stressors and the highest increase in sea surface temperature of the world's large marine ecosystems. These new thermal conditions can further favour the spreading of the invasive round goby (Neogobius melanostomus), a fish of Ponto-Caspian origin, currently well established in the southern and central parts of the Baltic Sea. This study aims to assess the thermal habitat suitability of the round goby in the Baltic Sea considering the past and future conditions. The study combines sightings records with known physiological models of aerobic performance and sea surface temperatures. Physiological models read these temperatures, at sighting times and locations, to determine their effects on the aerobic metabolic scope (AMS) of the fish, a measure of its energetic potential in relation to environmental conditions. The geographical mapping of the AMS was used to describe the changes in habitat suitability during the past 3 decades and for climatic predictions (until 2100) showing that the favourable thermal habitat in the Baltic Sea has increased during the past 32 years and will continue to do so in all the applied climate model predictions. Particularly, the predicted new thermal conditions do not cause any reduction in the AMS of round goby populations, while the wintertime cold ranges are likely expected to preserve substantial areas from invasion. The results of this research can guide future monitoring programs increasing the chance to detect this invader in novel areas.
Collapse
Affiliation(s)
- Giovanni Quattrocchi
- National Research Council, Institute for the study of the Anthropic Impact and Sustainability in the marine environment, Loc. Sa Mardini, 09170, Oristano, Italy
| | - Emil Christensen
- National Institute of Aquatic Resources, Technical University of Denmark, Kgs. Lyngby, Denmark
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Matteo Sinerchia
- National Research Council, Institute for the study of the Anthropic Impact and Sustainability in the marine environment, Loc. Sa Mardini, 09170, Oristano, Italy
| | - Stefano Marras
- National Research Council, Institute for the study of the Anthropic Impact and Sustainability in the marine environment, Loc. Sa Mardini, 09170, Oristano, Italy
| | - Andrea Cucco
- National Research Council, Institute for the study of the Anthropic Impact and Sustainability in the marine environment, Loc. Sa Mardini, 09170, Oristano, Italy
| | - Paolo Domenici
- National Research Council, Institute for the study of the Anthropic Impact and Sustainability in the marine environment, Loc. Sa Mardini, 09170, Oristano, Italy
- National Research Council, Istituto di Biofisica, Pisa, Italy
| | - Jane W Behrens
- National Institute of Aquatic Resources, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
11
|
Rueda Moreno G, Sasaki MC. Starvation reduces thermal limits of the widespread copepod Acartia tonsa. Ecol Evol 2023; 13:e10586. [PMID: 37799447 PMCID: PMC10547671 DOI: 10.1002/ece3.10586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/11/2023] [Accepted: 09/22/2023] [Indexed: 10/07/2023] Open
Abstract
Organismal thermal limits affect a wide range of biogeographical and ecological processes. Copepods are some of the most abundant animals on the planet and play key roles in aquatic habitats. Despite their abundance and ecological importance, there is limited data on the factors that affect copepod thermal limits, impeding our ability to predict how aquatic ecosystems will be affected by anthropogenic climate change. In a warming ocean, one factor that may have particularly important effects on thermal limits is the availability of food. A recently proposed feedback loop known as "metabolic meltdown" suggests that starvation and exposure to high temperatures interact to drastically reduce organismal thermal limits, increasing vulnerability to warming. To investigate one component of this feedback loop, we examined how starvation affects thermal limits (critical thermal maxima: CTmax) of Acartia tonsa, a widespread estuarine copepod. We found that there was no effect of short-duration exposure to starvation (up to 2 days). However, after 3 days, there was a significant decrease in the CTmax of starved copepods relative to the fed controls. Our results provide empirical evidence that extended periods of starvation reduce thermal limits, potentially initiating "metabolic meltdown" in this key species of coastal copepod. This suggests that changes in food availability may increase the vulnerability of copepods to increasing temperatures, amplifying the effects of climate change on coastal systems.
Collapse
Affiliation(s)
| | - Matthew C. Sasaki
- Department of Marine SciencesUniversity of ConnecticutGrotonConnecticutUSA
- Department of BiologyUniversity of VermontBurlingtonVermontUSA
| |
Collapse
|
12
|
Andersen MK, Willot Q, MacMillan HA. A neurophysiological limit and its biogeographic correlations: cold-induced spreading depolarization in tropical butterflies. J Exp Biol 2023; 226:jeb246313. [PMID: 37665251 DOI: 10.1242/jeb.246313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/23/2023] [Indexed: 09/05/2023]
Abstract
The physiology of insects is directly influenced by environmental temperature, and thermal tolerance is therefore intrinsically linked to their thermal niche and distribution. Understanding the mechanisms that limit insect thermal tolerance is crucial to predicting biogeography and range shifts. Recent studies on locusts and flies suggest that the critical thermal minimum (CTmin) follows a loss of CNS function via a spreading depolarization. We hypothesized that other insect taxa share this phenomenon. Here, we investigate whether spreading depolarization events occur in butterflies exposed to cold. Supporting our hypothesis, we found that exposure to stressful cold induced spreading depolarization in all 12 species tested. This reinforces the idea that spreading depolarization is a common mechanism underlying the insect CTmin. Furthermore, our results highlight how CNS function is tuned to match the environment of a species. Further research into the physiology underlying spreading depolarization will likely elucidate key mechanisms determining insect thermal tolerance and ecology.
Collapse
Affiliation(s)
| | - Quentin Willot
- Department of Biology, Aarhus University, Aarhus 8000, Denmark
| | - Heath A MacMillan
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
13
|
El-Saadi MI, MacMillan HA, Ferguson LV. Cold-induced immune activation in chill-susceptible insects. CURRENT OPINION IN INSECT SCIENCE 2023:101054. [PMID: 37207832 DOI: 10.1016/j.cois.2023.101054] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/03/2023] [Accepted: 05/12/2023] [Indexed: 05/21/2023]
Abstract
Chilling injuries in chill-susceptible insects, like the model dipteran Drosophila melanogaster, have been well-documented as a consequence of stressful low temperature exposures. Cold stress also causes upregulation of genes in the insect immune pathways, some of which are also upregulated following other forms of sterile stress. The adaptive significance and underlying mechanisms surrounding cold-induced immune activation, however, are still unclear. Here, we review recent work on the roles of ROS, DAMPs, and AMPs in insect immune signalling or function. Using this emerging knowledge, we propose a conceptual model linking biochemical and molecular causes of immune activation to its consequences during and following cold stress.
Collapse
Affiliation(s)
- Mahmoud I El-Saadi
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada, K1S 5B6
| | - Heath A MacMillan
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada, K1S 5B6
| | - Laura V Ferguson
- Department of Biology, Acadia University, Wolfville, Nova Scotia, Canada, B4P 2R6
| |
Collapse
|
14
|
Wang Y, Wang HM, Zhou Y, Hu LH, Wan JM, Yang JH, Niu HB, Hong XP, Hu P, Chen LB, Hu P, Chen LB. Dusp1 regulates thermal tolerance limits in zebrafish by maintaining mitochondrial integrity. Zool Res 2023; 44:126-141. [PMID: 36419379 PMCID: PMC9841188 DOI: 10.24272/j.issn.2095-8137.2022.397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Temperature tolerance restricts the distribution of a species. However, the molecular and cellular mechanisms that set the thermal tolerance limits of an organism are poorly understood. Here, we report on the function of dual-specificity phosphatase 1 (DUSP1) in thermal tolerance regulation. Notably, we found that dusp1 -/- zebrafish grew normally but survived within a narrowed temperature range. The higher susceptibility of these mutant fish to both cold and heat challenges was attributed to accelerated cell death caused by aggravated mitochondrial dysfunction and over-production of reactive oxygen species in the gills. The DUSP1-MAPK-DRP1 axis was identified as a key pathway regulating these processes in both fish and human cells. These observations suggest that DUSP1 may play a role in maintaining mitochondrial integrity and redox homeostasis. We therefore propose that maintenance of cellular redox homeostasis may be a key mechanism for coping with cellular thermal stress and that the interplay between signaling pathways regulating redox homeostasis in the most thermosensitive tissue (i.e., gills) may play an important role in setting the thermal tolerance limit of zebrafish.
Collapse
Affiliation(s)
- Ying Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 200120, China,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 200120, China,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 200120, China
| | - Hua-Min Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 200120, China,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 200120, China,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 200120, China
| | - Yan Zhou
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 200120, China,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 200120, China,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 200120, China
| | - Ling-Hong Hu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 200120, China,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 200120, China,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 200120, China
| | - Jing-Ming Wan
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 200120, China,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 200120, China,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 200120, China
| | - Ji-Hui Yang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 200120, China,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 200120, China,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 200120, China
| | - Hong-Bo Niu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 200120, China,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 200120, China,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 200120, China
| | - Xiu-Ping Hong
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 200120, China,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 200120, China,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 200120, China
| | - Peng Hu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 200120, China,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 200120, China,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 200120, China
| | - Liang-Biao Chen
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 200120, China,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 200120, China,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 200120, China,E-mail:
| | | | | | | | | | | | | |
Collapse
|
15
|
Barman M, Samanta S, Ahmed B, Dey S, Chakraborty S, Deeksha M, Dutta S, Samanta A, Tarafdar J, Roy D. Transcription dynamics of heat-shock proteins (Hsps) and endosymbiont titres in response to thermal stress in whitefly, Bemisia tabaci (Asia-I). Front Physiol 2023; 13:1097459. [PMID: 36714306 PMCID: PMC9880761 DOI: 10.3389/fphys.2022.1097459] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/23/2022] [Indexed: 01/15/2023] Open
Abstract
The sweet potato whitefly, Bemisia tabaci (Gennadius), is one of the several species complexes of whitefly that are currently significant agricultural pests. Bemisia tabaci infests more than 600 plant species and thrives under a wide range of temperature conditions. In addition to the direct damage caused by sucking plant sap, it vectors several plant viruses. Heat-shock proteins play a pivotal role in enabling the insect to extend its geographical location, survival, and reproduction under different stress conditions. B. tabaci harbours several endosymbionts under the genera Portiera, Rickettsia, Hamiltonella, Wolbachia, Arsenophonus, Cardinium, and Fritschea that directly or indirectly affect its fitness. By accelerating cuticle biosynthesis and sclerotisation, symbiotic microbes can reduce or enhance tolerance to extreme temperatures and detoxify heavy metals. Thus, symbionts or microbial communities can expand or constrain the abiotic niche space of their host and affect its ability to adapt to changing conditions. The present study delineates the effect of thermal stress on the expression of heat-shock genes and endosymbionts in B. tabaci. Studies of the expression level of heat-shock proteins with the help of quantitative real-time polymerase chain reaction (qRT-PCR) showed that heat- and cold-shock treatment fuels the increased expression of heat-shock proteins (Hsp40 and Hsp70). However, Hsp90 was not induced by a heat- and cold-shock treatment. A significant decrease in the relative titre of secondary endosymbionts, such as Rickettsia, Arsenophonus, and Wolbachia, were recorded in B. tabaci upon heat treatment. However, the titre of the primary symbiont, C. Portiera, was relatively unaffected by both cold and heat treatments. These results are indicative of the fact that Hsp genes and endosymbionts in B. tabaci are modulated in response to thermal stress, and this might be responsible for the adaptation of whitefly under changing climatic scenario.
Collapse
Affiliation(s)
- Mritunjoy Barman
- Department of Agricultural Entomology, B.C.K.V, Mohanpur, West Bengal, India,GD Goenka University, Gurgaon, Haryana, India,*Correspondence: Mritunjoy Barman, ; Jayanta Tarafdar, ; Deepayan Roy,
| | - Snigdha Samanta
- Department of Agricultural Entomology, B.C.K.V, Mohanpur, West Bengal, India
| | | | - Soumik Dey
- Faculty Centre for Agriculture Rural and Tribal Development (ARTD), RKMVERI, Ranchi, India
| | | | - M.G. Deeksha
- Division of Entomology, I.C.A.R-Indian Agricultural Research Institute, New Delhi, India
| | - Subham Dutta
- Department of Plant Pathology, B.C.K.V, Nadia, West Bengal, India
| | - Arunava Samanta
- Department of Agricultural Entomology, B.C.K.V, Mohanpur, West Bengal, India
| | - Jayanta Tarafdar
- Department of Plant Pathology, B.C.K.V, Nadia, West Bengal, India,*Correspondence: Mritunjoy Barman, ; Jayanta Tarafdar, ; Deepayan Roy,
| | - Deepayan Roy
- GD Goenka University, Gurgaon, Haryana, India,*Correspondence: Mritunjoy Barman, ; Jayanta Tarafdar, ; Deepayan Roy,
| |
Collapse
|
16
|
Friesen CR, Wapstra E, Olsson M. Of telomeres and temperature: Measuring thermal effects on telomeres in ectothermic animals. Mol Ecol 2022; 31:6069-6086. [PMID: 34448287 DOI: 10.1111/mec.16154] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/20/2021] [Accepted: 08/23/2021] [Indexed: 01/31/2023]
Abstract
Ectotherms are classic models for understanding life-history tradeoffs, including the reproduction-somatic maintenance tradeoffs that may be reflected in telomere length and their dynamics. Importantly, life-history traits of ectotherms are tightly linked to their thermal environment, with diverse or synergistic mechanistic explanations underpinning the variation. Telomere dynamics potentially provide a mechanistic link that can be used to monitor thermal effects on individuals in response to climatic perturbations. Growth rate, age and developmental stage are all affected by temperature, which interacts with telomere dynamics in complex and intriguing ways. The physiological processes underpinning telomere dynamics can be visualized and understood using thermal performance curves (TPCs). TPCs reflect the evolutionary history and the thermal environment during an individual's ontogeny. Telomere maintenance should be enhanced at or near the thermal performance optimum of a species, population and individual. The thermal sensitivity of telomere dynamics should reflect the interacting TPCs of the processes underlying them. The key processes directly underpinning telomere dynamics are mitochondrial function (reactive oxygen production), antioxidant activity, telomerase activity and telomere endcap protein status. We argue that identifying TPCs for these processes will significantly help design robust, repeatable experiments and field studies of telomere dynamics in ectotherms. Conceptually, TPCs are a valuable framework to predict and interpret taxon- and population-specific telomere dynamics across thermal regimes. The literature of thermal effects on telomeres in ectotherms is sparse and mostly limited to vertebrates, but our conclusions and recommendations are relevant across ectothermic animals.
Collapse
Affiliation(s)
- Christopher R Friesen
- School of Earth, Atmospheric and Life Sciences, The University of Wollongong, Wollongong, New South Wales, Australia.,School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Erik Wapstra
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Mats Olsson
- School of Earth, Atmospheric and Life Sciences, The University of Wollongong, Wollongong, New South Wales, Australia.,Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
17
|
The point of no return for species facing heatwaves. Nature 2022; 611:39-40. [DOI: 10.1038/d41586-022-03365-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
18
|
Boardman L, Lockwood JL, Angilletta MJ, Krause JS, Lau JA, Loik ME, Simberloff D, Thawley CJ, Meyerson LA. The Future of Invasion Science Needs Physiology. Bioscience 2022. [DOI: 10.1093/biosci/biac080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Incorporating physiology into models of population dynamics will improve our understanding of how and why invasions succeed and cause ecological impacts, whereas others fail or remain innocuous. Targeting both organismal physiologists and invasion scientists, we detail how physiological processes affect every invasion stage, for both plants and animals, and how physiological data can be better used for studying the spatial dynamics and ecological effects of invasive species. We suggest six steps to quantify the physiological functions related to demography of nonnative species: justifying physiological traits of interest, determining ecologically appropriate time frames, identifying relevant abiotic variables, designing experimental treatments that capture covariation between abiotic variables, measuring physiological responses to these abiotic variables, and fitting statistical models to the data. We also provide brief guidance on approaches to modeling invasions. Finally, we emphasize the benefits of integrating research between communities of physiologists and invasion scientists.
Collapse
Affiliation(s)
- Leigh Boardman
- Department of Biological Sciences and with the Center for Biodiversity Research, University of Memphis , Memphis, Tennessee, United States
| | - Julie L Lockwood
- Department of Ecology, Evolution, and Natural Resources at Rutgers University , New Brunswick, New Jersey, United States
| | - Michael J Angilletta
- School of Life Sciences and with the Center for Learning Innovation in Science, Arizona State University , Tempe, Arizona, United States
| | - Jesse S Krause
- Department of Biology, University of Nevada , Reno, Nevada, United States
| | - Jennifer A Lau
- Department of Biology, Indiana University , Bloomington, Indian, United States
| | - Michael E Loik
- Environmental Studies Department, University of California , Santa Cruz, Santa Cruz, California, United States
| | - Daniel Simberloff
- Department of Ecology and Evolutionary Biology, University of Tennessee , Knoxville, Tennessee, United States
| | - Christopher J Thawley
- Department of Biological Sciences, University of Rhode Island , Kingston, Rhode Island, United States
| | - Laura A Meyerson
- Department of Natural Resources Science, University of Rhode Island , Kingston, Rhode Island, United States
| |
Collapse
|
19
|
Leibold DC, Gastelum JA, VandenBrooks JM, Telemeco RS. Oxygen environment and metabolic oxygen demand predictably interact to affect thermal behavior in a lizard, Sceloporus occidentalis. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:739-745. [PMID: 35652426 DOI: 10.1002/jez.2630] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
The climate crisis necessitates predicting how organisms respond to changing environments, but this requires understanding the mechanisms underlying thermal tolerance. The Hierarchical Mechanisms of Thermal Limitation (HMTL) hypothesis proposes that respiratory capacity and marginal stability of proteins and membranes interact hierarchically to determine thermal performance and limits. An untested prediction of the HMTL hypothesis is that behavioral anapyrexia (i.e., reduced body temperature in hypoxia) is exacerbated when metabolic demand is high. We tested this prediction by manipulating western fence lizards' (Sceloporus occidentalis) metabolic demand and oxygen environment, then measuring selected body temperatures. Lizards with elevated metabolic demand selected lower body temperatures at higher oxygen concentrations than resting lizards, but this occurred only at oxygen concentrations <12% O2 , suggesting thermal limits are unaffected by naturally-occurring oxygen variation. Given our results and the ubiquity of behavioral anapyrexia, the HMTL hypothesis may generally explain how oxygen and temperature interactively affect reptile performance.
Collapse
Affiliation(s)
- Dalton C Leibold
- Department of Biology, California State University Fresno, Fresno, California, USA
| | - Jacob A Gastelum
- Department of Biology, California State University Fresno, Fresno, California, USA
| | | | - Rory S Telemeco
- Department of Biology, California State University Fresno, Fresno, California, USA
| |
Collapse
|
20
|
Manrakhan A, Daneel JH, Stephen PR, Hattingh V. Cold Tolerance of Immature Stages of Ceratitis capitata and Bactrocera dorsalis (Diptera: Tephritidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:482-492. [PMID: 35024832 DOI: 10.1093/jee/toab263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Indexed: 06/14/2023]
Abstract
Bactrocera dorsalis (Hendel) is a new fruit fly pest of some fruit types in the north and north eastern areas of South Africa. In order to determine whether existing cold disinfestation treatment schedules for an indigenous fruit fly pest: Ceratitis capitata (Wiedemann) would be effective for B. dorsalis, cold tolerances of four immature stages of the two species were compared. Studies were done in an artificial carrot-based larval diet. The developmental rates of the immature stages of the two species in the carrot-based larval diet were first determined at a constant temperature of 26°C. The developmental times for eggs and three larval stages were found to be similar for the two species. Incubation times of both species after egg inoculation were determined to be 0, 3, 4, and 6 d for obtaining egg, first larval, second larval, and third larval stages respectively for the cold treatment. At a test temperature of -0.6°C, mortality rates of C. capitata eggs, first instars, second instars, and third instars were lower than those of B. dorsalis. These results demonstrate that the current cold treatment schedules for disinfestation of C. capitata can be used as equally or more efficacious treatments for B. dorsalis.
Collapse
Affiliation(s)
- Aruna Manrakhan
- Citrus Research International, PO Box 28, Nelspruit, 1200, South Africa
- Department of Conservation Ecology and Entomology, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland 7602, Stellenbosch, South Africa
| | - John-Henry Daneel
- Citrus Research International, PO Box 28, Nelspruit, 1200, South Africa
| | - Peter R Stephen
- Citrus Research International, PO Box 28, Nelspruit, 1200, South Africa
| | - Vaughan Hattingh
- Citrus Research International, PO Box 28, Nelspruit, 1200, South Africa
- Department of Horticultural Science, Stellenbosch University, Private Bag X1, Matieland 7602, Stellenbosch, South Africa
| |
Collapse
|
21
|
Pandey A, Rajesh M, Baral P, Sarma D, Tripathi PH, Akhtar MS, Ciji A, Dubey MK, Pande V, Sharma P, Kamalam BS. Concurrent changes in thermal tolerance thresholds and cellular heat stress response reveals novel molecular signatures and markers of high temperature acclimation in rainbow trout. J Therm Biol 2021; 102:103124. [PMID: 34863487 DOI: 10.1016/j.jtherbio.2021.103124] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/27/2021] [Accepted: 10/30/2021] [Indexed: 01/31/2023]
Abstract
The objective of this study was to better understand the molecular mechanisms which regulate acclimatory responses and thermal safety margins of rainbow trout (Oncorhynchus mykiss) at temperatures above physiological optimum. For this, we investigated the time course of changes in critical thermal tolerance thresholds and associated hepatic and renal transcript abundance of molecular markers related to cellular stress response, during high temperature acclimation. The experimental fish were initially acclimated to 17 °C and later exposed to a gradually raised elevated temperature regime (22 °C) for a period of 30 days. CTmax, CTmin and mRNA expression of candidate markers were examined before the thermal challenge (T0) and over the time-course (days) of high temperature exposure (T1, T3, T7, T15 and T30). With respect to organismal response, CTmax was significantly elevated at T3, but the degree of gain in heat tolerance was not persistent. Contrarily, we observed a gradual loss in cold tolerance with highest CTmin estimate at T30. Based on the time-course of mRNA expression, the studied markers could be categorized into those which were persistently elevated (hsp70a, hsp70b, hspa5, hsp90a, hsp90b, stip1 and serpinh1 in kidney and hsp90b in liver); those which concurred with changes in CTmin (hspbp1, hsp90b, stip1, gr1, hif1a, hyou1, tnfa and tlr5 in kidney); and those which concurred with changes in CTmax (hsp90a, serpinh1, tlr5 and lmo2 in liver). Apparently, transcriptional changes in kidney and liver reflected CTmin and CTmax trend, respectively. Expression profile of stip1 and tlr5 suggest that they are potential novel markers which could reflect thermal limits in rainbow trout. Hepatic metabolic markers were either initially elevated (alt, glud, g6pase1) or down-regulated at different time-points (ast2, gls1, fas, cpt1b, mtor), linked to gluconeogenesis and metabolic depression, respectively. Whereas, growth-axis markers showed no significant differences. Overall, this time-course analysis has revealed potential associations in organismal and tissue-specific cellular response to high temperature acclimation in a thermally sensitive coldwater ectotherm.
Collapse
Affiliation(s)
- Anupam Pandey
- ICAR-Directorate of Coldwater Fisheries Research, Bhimtal, 263136, Uttarakhand, India; Department of Biotechnology, Kumaun University, Bhimtal, 263136, Uttarakhand, India
| | - Manchi Rajesh
- ICAR-Directorate of Coldwater Fisheries Research, Bhimtal, 263136, Uttarakhand, India
| | - Pratibha Baral
- ICAR-Directorate of Coldwater Fisheries Research, Bhimtal, 263136, Uttarakhand, India
| | - Debajit Sarma
- ICAR-Directorate of Coldwater Fisheries Research, Bhimtal, 263136, Uttarakhand, India
| | - Priyanka H Tripathi
- ICAR-Directorate of Coldwater Fisheries Research, Bhimtal, 263136, Uttarakhand, India; Department of Biotechnology, Kumaun University, Bhimtal, 263136, Uttarakhand, India
| | - Md Shahbaz Akhtar
- ICAR-Directorate of Coldwater Fisheries Research, Bhimtal, 263136, Uttarakhand, India
| | - Alexander Ciji
- ICAR-Directorate of Coldwater Fisheries Research, Bhimtal, 263136, Uttarakhand, India
| | - Maneesh Kumar Dubey
- ICAR-Directorate of Coldwater Fisheries Research, Bhimtal, 263136, Uttarakhand, India
| | - Veena Pande
- Department of Biotechnology, Kumaun University, Bhimtal, 263136, Uttarakhand, India
| | - Prakash Sharma
- ICAR-Directorate of Coldwater Fisheries Research, Bhimtal, 263136, Uttarakhand, India
| | - Biju Sam Kamalam
- ICAR-Directorate of Coldwater Fisheries Research, Bhimtal, 263136, Uttarakhand, India.
| |
Collapse
|
22
|
Jiang RX, Shang F, Jiang HB, Dou W, Cernava T, Wang JJ. The Influence of Temperature and Host Gender on Bacterial Communities in the Asian Citrus Psyllid. INSECTS 2021; 12:insects12121054. [PMID: 34940142 PMCID: PMC8704560 DOI: 10.3390/insects12121054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 01/01/2023]
Abstract
The Asian citrus psyllid, D. citri Kuwayama is the primary vector for Candidatus Liberibacter asiaticus (CLas), which causes a destructive disease in citrus plants. Bacterial symbionts are important determinants of insect physiology, and they can be impacted by many external factors. Temperature is an important abiotic factor affecting insect physiology, and it is also known that differences in symbiont proportions may vary in different insect genders. To date, it is unclear how the symbionts of D. citri are affected by temperature and gender. This study used high-throughput sequencing of 16S ribosomal RNA amplicons to determine how temperature and gender affect the bacterial communities present in D. citri. We identified 27 amplicon sequence variants (ASVs) belonging to 10 orders, seven classes, and five phyla. The dominant phylum was Proteobacteria (99.93%). Other phyla, including Firmicutes, Bacteroidota, Deinococcota, Cyanobacteria, and Actinobacteriota, were less abundant (<0.1%). Profftella (71.77-81.59%) and Wolbachia (18.39-28.22%) were the predominant taxa in all samples. Under high-temperature treatment, Profftella was more common in females, while Wolbachia had a higher abundance in males. In males, Profftella was more abundant under low-temperature treatments than under high-temperature treatments. In contrast, Wolbachia showed a higher abundance under high-temperature treatments than under low-temperature treatments. An RT-qPCR (quantitative real-time PCR) approach confirmed the results obtained with high-throughput DNA sequencing. Our results provide a basis for understanding the co-adaptation of D. citri and its symbionts to environmental temperature stress.
Collapse
Affiliation(s)
- Rui-Xu Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China; (R.-X.J.); (F.S.); (H.-B.J.); (W.D.)
| | - Feng Shang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China; (R.-X.J.); (F.S.); (H.-B.J.); (W.D.)
| | - Hong-Bo Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China; (R.-X.J.); (F.S.); (H.-B.J.); (W.D.)
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China; (R.-X.J.); (F.S.); (H.-B.J.); (W.D.)
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, 8010 Graz, Austria;
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China; (R.-X.J.); (F.S.); (H.-B.J.); (W.D.)
- Correspondence: ; Tel.: +86-23-6825-0255
| |
Collapse
|
23
|
Overgaard J, Gerber L, Andersen MK. Osmoregulatory capacity at low temperature is critical for insect cold tolerance. CURRENT OPINION IN INSECT SCIENCE 2021; 47:38-45. [PMID: 33676056 DOI: 10.1016/j.cois.2021.02.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
At low temperature many insects lose extracellular ion homeostasis and the capacity to mitigate homeostatic imbalance determines their cold tolerance. Extracellular homeostasis is ensured by the osmoregulatory organs and recent research has emphasized key roles for the Malpighian tubules and hindgut in modulating insect cold tolerance. Here, we review the effects of low temperature on transport capacity of osmoregulatory organs and outline physiological processes leading from cold exposure to disruption of ion homeostasis and cold-injury in insects. We show how cold adaptation and cold acclimation are associated with physiological modifications to transport capacity in Malpighian tubules and hindgut. These responses mitigate loss of homeostasis and we highlight how further study of molecular and cellular mechanisms are critical to fully appreciate the adaptations that facilitate insect cold tolerance.
Collapse
Affiliation(s)
- Johannes Overgaard
- Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Lucie Gerber
- Section for Physiology and Cell Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | | |
Collapse
|
24
|
Bouyoucos IA, Trujillo JE, Weideli OC, Nakamura N, Mourier J, Planes S, Simpfendorfer CA, Rummer JL. Investigating links between thermal tolerance and oxygen supply capacity in shark neonates from a hyperoxic tropical environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 782:146854. [PMID: 33853007 DOI: 10.1016/j.scitotenv.2021.146854] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/09/2021] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
Temperature and oxygen limit the distribution of marine ectotherms. Haematological traits underlying blood-oxygen carrying capacity are thought to be correlated with thermal tolerance in certain fishes, and this relationship is hypothesised to be explained by oxygen supply capacity. We tested this hypothesis using reef shark neonates as experimental models because they live near their upper thermal limits and are physiologically sensitive to low oxygen conditions. We first described in situ associations between temperature and oxygen at the study site (Moorea, French Polynesia) and found that the habitats for reef shark neonates (Carcharhinus melanopterus and Negaprion acutidens) were hyperoxic at the maximum recorded temperatures. Next, we tested for in situ associations between thermal habitat characteristics and haematological traits of neonates. Contrary to predictions, we only demonstrated a negative association between haemoglobin concentration and maximum habitat temperatures in C. melanopterus. Next, we tested for ex situ associations between critical thermal maximum (CTMax) and haematological traits, but only demonstrated a negative association between haematocrit and CTMax in C. melanopterus. Finally, we measured critical oxygen tension (pcrit) ex situ and estimated its temperature sensitivity to predict oxygen-dependent values of CTMax. Estimated temperature sensitivity of pcrit was similar to reported values for sharks and skates, and predicted values for CTMax equalled maximum habitat temperatures. These data demonstrate unique associations between haematological traits and thermal tolerance in a reef shark that are likely not explained by oxygen supply capacity. However, a relationship between oxygen supply capacity and thermal tolerance remains to be demonstrated empirically.
Collapse
Affiliation(s)
- Ian A Bouyoucos
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia; PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 58 Avenue Paul Alduy, 66860 Perpignan Cedex, France.
| | - José E Trujillo
- Department of Marine Science, University of Otago, Dunedin 9016, New Zealand
| | - Ornella C Weideli
- PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 58 Avenue Paul Alduy, 66860 Perpignan Cedex, France
| | - Nao Nakamura
- PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 58 Avenue Paul Alduy, 66860 Perpignan Cedex, France
| | - Johann Mourier
- PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 58 Avenue Paul Alduy, 66860 Perpignan Cedex, France; Laboratoire d'Excellence "CORAIL", EPHE, PSL Research University, UPVD, CNRS, USR 3278 CRIOBE, Papetoai, Moorea, French Polynesia; Université de Corse Pasquale Paoli, UMS 3514 Plateforme Marine Stella Mare, 20620 Biguglia, France
| | - Serge Planes
- PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 58 Avenue Paul Alduy, 66860 Perpignan Cedex, France; Laboratoire d'Excellence "CORAIL", EPHE, PSL Research University, UPVD, CNRS, USR 3278 CRIOBE, Papetoai, Moorea, French Polynesia
| | - Colin A Simpfendorfer
- Centre for Sustainable Tropical Fisheries and Aquaculture & College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| | - Jodie L Rummer
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
25
|
Gamperl AK, Syme DA. Temperature effects on the contractile performance and efficiency of oxidative muscle from a eurythermal versus a stenothermal salmonid. J Exp Biol 2021; 224:jeb242487. [PMID: 34350949 PMCID: PMC8353165 DOI: 10.1242/jeb.242487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/24/2021] [Indexed: 01/18/2023]
Abstract
We compared the thermal sensitivity of oxidative muscle function between the eurythermal Atlantic salmon (Salmo salar) and the more stenothermal Arctic char (Salvelinus alpinus; which prefers cooler waters). Power output was measured in red skeletal muscle strips and myocardial trabeculae, and efficiency (net work/energy consumed) was measured for trabeculae, from cold (6°C) and warm (15°C) acclimated fish at temperatures from 2 to 26°C. The mass-specific net power produced by char red muscle was greater than in salmon, by 2-to 5-fold depending on test temperature. Net power first increased, then decreased, when the red muscle of 6°C-acclimated char was exposed to increasing temperature. Acclimation to 15°C significantly impaired mass-specific power in char (by ∼40-50%) from 2 to 15°C, but lessened its relative decrease between 15 and 26°C. In contrast, maximal net power increased, and then plateaued, with increasing temperature in salmon from both acclimation groups. Increasing test temperature resulted in a ∼3- to 5-fold increase in maximal net power produced by ventricular trabeculae in all groups, and this effect was not influenced by acclimation temperature. Nonetheless, lengthening power was higher in trabeculae from warm-acclimated char, and char trabeculae could not contract as fast as those from salmon. Finally, the efficiency of myocardial net work was approximately 2-fold greater in 15°C-acclimated salmon than char (∼15 versus 7%), and highest at 20°C in salmon. This study provides several mechanistic explanations as to their inter-specific difference in upper thermal tolerance, and potentially why southern char populations are being negatively impacted by climate change.
Collapse
Affiliation(s)
- A. Kurt Gamperl
- Department of Ocean Sciences, Memorial University of Newfoundland, St John's, NL, CanadaA1C 5S7
| | - Douglas A. Syme
- Department of Biological Sciences, University of Calgary, Calgary, AB, CanadaT2N 1N4
| |
Collapse
|
26
|
Davis HE, Cheslock A, MacMillan HA. Chill coma onset and recovery fail to reveal true variation in thermal performance among populations of Drosophila melanogaster. Sci Rep 2021; 11:10876. [PMID: 34035382 PMCID: PMC8149885 DOI: 10.1038/s41598-021-90401-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/11/2021] [Indexed: 11/09/2022] Open
Abstract
Species from colder climates tend to be more chill tolerant regardless of the chill tolerance trait measured, but for Drosophila melanogaster, population-level differences in chill tolerance among populations are not always found when a single trait is measured in the laboratory. We measured chill coma onset temperature, chill coma recovery time, and survival after chronic cold exposure in replicate lines derived from multiple paired African and European D. melanogaster populations. The populations in our study were previously found to differ in chronic cold survival ability, which is believed to have evolved independently in each population pair; however, they did not differ in chill coma onset temperature and chill coma recovery time in a manner that reflected their geographic origins, even though these traits are known to vary with origin latitude among Drosophila species and are among the most common metrics of thermal tolerance in insects. While it is common practice to measure only one chill tolerance trait when comparing chill tolerance among insect populations, our results emphasise the importance of measuring more than one thermal tolerance trait to minimize the risk of missing real adaptive variation in insect thermal tolerance.
Collapse
Affiliation(s)
- Hannah E Davis
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, K1S 5B6, Canada
| | - Alexandra Cheslock
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, K1S 5B6, Canada
| | - Heath A MacMillan
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, K1S 5B6, Canada.
| |
Collapse
|
27
|
Michaelsen J, Fago A, Bundgaard A. High temperature impairs mitochondrial function in rainbow trout cardiac mitochondria. J Exp Biol 2021; 224:jeb.242382. [DOI: 10.1242/jeb.242382] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/18/2021] [Indexed: 12/17/2022]
Abstract
ABSTRACT
Mitochondria provide cellular energy through oxidative phosphorylation, and thus temperature-induced constraints on mitochondrial function may be crucial to animal aerobic scope and thermal tolerance. Here, we report the effect of temperature in the range 5–30°C on respiration rates of isolated cardiac mitochondria from rainbow trout (Oncorhynchus mykiss) studied by high-resolution respirometry and spectrophotometric enzyme activity assays. Arrhenius breakpoint temperature analysis indicated that mitochondrial respiration rates under phosphorylating and fully uncoupled conditions increased exponentially up to 20°C, but stopped increasing at higher temperatures. In contrast, respiration rates measured under non-phosphorylating leak conditions continued to increase up to 30°C. The decrease in the ratio between phosphorylating and uncoupled respiration at high temperature indicated that phosphorylation was gradually impaired with increasing temperature, possibly because of the steadily increasing proton leak across the membrane. In addition, we found that complex I (NADH dehydrogenase) activity decreased above 20°C, similarly to mitochondrial respiration, and that complex I was unstable in the presence of detergents, suggesting that it may be particularly sensitive to changes in its interaction with membrane phospholipids. In contrast, complex II (succinate dehydrogenase) maintained activity at temperatures above 20°C, although succinate oxidation was insufficient to compensate for the loss of complex I activity in intact mitochondria. Together, these results indicate that the temperature-induced decrease in cardiac mitochondrial function coincides with the temperature at which trout aerobic scope peaks, and is largely due to impaired phosphorylation and complex I activity.
Collapse
Affiliation(s)
- Jakob Michaelsen
- Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - Angela Fago
- Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - Amanda Bundgaard
- Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
28
|
Haverinen J, Dzhumaniiazova I, Abramochkin DV, Hassinen M, Vornanen M. Effects of Na+ channel isoforms and cellular environment on temperature tolerance of cardiac Na+ current in zebrafish (Danio rerio) and rainbow trout (Oncorhynchus mykiss). J Exp Biol 2021; 224:237812. [PMID: 33914031 DOI: 10.1242/jeb.241067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/01/2021] [Indexed: 11/20/2022]
Abstract
Heat tolerance of heart rate in fish is suggested to be limited by impaired electrical excitation of the ventricle due to the antagonistic effects of high temperature on Na+ (INa) and K+ (IK1) ion currents (INa is depressed at high temperatures while IK1 is resistant to them). To examine the role of Na+ channel proteins in heat tolerance of INa, we compared temperature dependencies of zebrafish (Danio rerio, warm-dwelling subtropical species) and rainbow trout (Oncorhynchus mykiss, cold-active temperate species) ventricular INa, and INa generated by the cloned zebrafish and rainbow trout NaV1.4 and NaV1.5 Na+ channels in human embryonic kidney (HEK) cells. Whole-cell patch-clamp recordings showed that zebrafish ventricular INa has better heat tolerance and slower inactivation kinetics than rainbow trout ventricular INa. In contrast, heat tolerance and inactivation kinetics of zebrafish and rainbow trout NaV1.4 channels are similar when expressed in the identical cellular environment of HEK cells. The same applies to NaV1.5 channels. These findings indicate that thermal adaptation of ventricular INa is largely achieved by differential expression of Na+ channel alpha subunits: zebrafish that tolerate higher temperatures mainly express the slower NaV1.5 isoform, while rainbow trout that prefer cold waters mainly express the faster NaV1.4 isoform. Differences in elasticity (stiffness) of the lipid bilayer and/or accessory protein subunits of the channel assembly may also be involved in thermal adaptation of INa. The results are consistent with the hypothesis that slow Na+ channel kinetics are associated with increased heat tolerance of cardiac excitation.
Collapse
Affiliation(s)
- Jaakko Haverinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, 80101 Joensuu, Finland
| | - Irina Dzhumaniiazova
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory 1-12, 119234 Moscow, Russia
| | - Denis V Abramochkin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory 1-12, 119234 Moscow, Russia.,Laboratory of Cardiac Electrophysiology, National Medical Research Center for Cardiology, 3rd Cherepkovskaya 15a, 121552 Moscow, Russia.,Department of Physiology, Pirogov Russian National Research Medical University, Ostrovityanova Str. 1, 117997 Moscow, Russia
| | - Minna Hassinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, 80101 Joensuu, Finland
| | - Matti Vornanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, 80101 Joensuu, Finland
| |
Collapse
|
29
|
Bartolini F, Giomi F. Microclimate drives intraspecific thermal specialization: conservation perspectives in freshwater habitats. CONSERVATION PHYSIOLOGY 2021; 9:coab006. [PMID: 33880183 PMCID: PMC8043256 DOI: 10.1093/conphys/coab006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 01/11/2021] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
Endemic and relict species are often confined to ecological refugia or over fragmented distributions, representing priority conservation subjects. Within these sites, the individual population may realize distinct niches to a varying degree of specialization. An emblematic example is provided by freshwater species segregated in thermal-mineral springs, where individuals may face highly diverse microclimates in limited geographic areas. Downscaling the characterization of physiological traits to microclimatic niches becomes pivotal to adopt effective conservation measures in these heterogeneous habitats. Melanopsis etrusca (Brot, 1862) is an endangered relict snail endemic to a small number of thermal-mineral streams in central Italy. Here we describe the thermal tolerance of two populations of M. etrusca inhabiting streams with distinctly different thermal regimes, investigating the extent of physiological and behavioural specialization to such diverse microclimatic niches. The comparison of oxygen consumption rates of a population dwelling in temperate streams, characterized by seasonal temperature fluctuations (12-27°C), with a population experiencing constantly hot water (35-38°C) revealed the absence of any seasonal or geographic effect on metabolic compensation. Conversely, mobility performances were maximized in the population inhabiting the hot stream. Interestingly, here, the snails exhibited emersion behaviour outside the water, triggered by temperatures above 37°C. In the field, individuals of this population are observed inactive on stream banks, conceivably to minimize the metabolic cost that otherwise would be induced by remaining in the hot water. Only a few individuals from the temperate stream exhibited the same behaviour when exposed to elevated temperatures, suggesting the exaptation of a pre-existing trait during the evolutionary process of adaptation to hot waters. The present results provide elements for the best practice in future programmes aimed at reintroducing stocks of threatened species across heterogeneous habitats. Our study further underlines the relevance of downscaling data collection for endangered species conservation in order to recognize microclimatic specializations.
Collapse
Affiliation(s)
- Fabrizio Bartolini
- NEMO Nature and Environment Management Operators S.R.L., Viale Mazzini 26, 50132 Florence, Italy
| | | |
Collapse
|
30
|
Adrenergic tone benefits cardiac performance and warming tolerance in two teleost fishes that lack a coronary circulation. J Comp Physiol B 2021; 191:701-709. [PMID: 33738526 PMCID: PMC8241749 DOI: 10.1007/s00360-021-01359-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/04/2021] [Accepted: 02/22/2021] [Indexed: 01/14/2023]
Abstract
Tolerance to acute environmental warming in fish is partly governed by the functional capacity of the heart to increase systemic oxygen delivery at high temperatures. However, cardiac function typically deteriorates at high temperatures, due to declining heart rate and an impaired capacity to maintain or increase cardiac stroke volume, which in turn has been attributed to a deterioration of the electrical conductivity of cardiac tissues and/or an impaired cardiac oxygen supply. While autonomic regulation of the heart may benefit cardiac function during warming by improving myocardial oxygenation, contractility and conductivity, the role of these processes for determining whole animal thermal tolerance is not clear. This is in part because interpretations of previous pharmacological in vivo experiments in salmonids are ambiguous and were confounded by potential compensatory increases in coronary oxygen delivery to the myocardium. Here, we tested the previously advanced hypothesis that cardiac autonomic control benefits heart function and acute warming tolerance in perch (Perca fluviatilis) and roach (Rutilus rutilus); two species that lack coronary arteries and rely entirely on luminal venous oxygen supplies for cardiac oxygenation. Pharmacological blockade of β-adrenergic tone lowered the upper temperature where heart rate started to decline in both species, marking the onset of cardiac failure, and reduced the critical thermal maximum (CTmax) in perch. Cholinergic (muscarinic) blockade had no effect on these thermal tolerance indices. Our findings are consistent with the hypothesis that adrenergic stimulation improves cardiac performance during acute warming, which, at least in perch, increases acute thermal tolerance.
Collapse
|
31
|
Buckley LB, Schoville SD, Williams CM. Shifts in the relative fitness contributions of fecundity and survival in variable and changing environments. J Exp Biol 2021; 224:224/Suppl_1/jeb228031. [DOI: 10.1242/jeb.228031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
ABSTRACT
Organisms respond to shifts in climate means and variability via distinct mechanisms. Accounting for these differential responses and appropriately aggregating them is central to understanding and predicting responses to climate variability and change. Separately considering fitness components can clarify organismal responses: fecundity is primarily an integrated, additive response to chronic environmental conditions over time via mechanisms such as energy use and acquisition, whereas survival can be strongly influenced by short-term, extreme environmental conditions. In many systems, the relative importance of fecundity and survival constraints changes systematically along climate gradients, with fecundity constraints dominating at high latitudes or altitudes (i.e. leading range edges as climate warms), and survival constraints dominating at trailing range edges. Incorporating these systematic differences in models may improve predictions of responses to recent climate change over models that assume similar processes along environmental gradients. We explore how detecting and predicting shifts in fitness constraints can improve our ability to forecast responses to climate gradients and change.
Collapse
Affiliation(s)
- Lauren B. Buckley
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA
| | - Sean D. Schoville
- Department of Entomology, University of Wisconsin, Madison, WI 53715-1218, USA
| | - Caroline M. Williams
- Department of Integrative Biology, University of California, Berkeley, CA 94720-3140, USA
| |
Collapse
|
32
|
Carrington J, Andersen MK, Brzezinski K, MacMillan HA. Hyperkalaemia, not apoptosis, accurately predicts insect chilling injury. Proc Biol Sci 2020; 287:20201663. [PMID: 33323084 DOI: 10.1098/rspb.2020.1663] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
There is a growing appreciation that insect distribution and abundance are associated with the limits of thermal tolerance, but the physiology underlying thermal tolerance remains poorly understood. Many insects, like the migratory locust (Locusta migratoria), suffer a loss of ion and water balance leading to hyperkalaemia (high extracellular [K+]) in the cold that indirectly causes cell death. Cells can die in several ways under stress, and how they die is of critical importance to identifying and understanding the nature of thermal adaptation. Whether apoptotic or necrotic cell death pathways are responsible for low-temperature injury is unclear. Here, we use a caspase-3 specific assay to indirectly quantify apoptotic cell death in three locust tissues (muscle, nerves and midgut) following prolonged chilling and recovery from an injury-inducing cold exposure. Furthermore, we obtain matching measurements of injury, extracellular [K+] and muscle caspase-3 activity in individual locusts to gain further insight into the mechanistic nature of chilling injury. We found a significant increase in muscle caspase-3 activity, but no such increase was observed in either nervous or gut tissue from the same animals, suggesting that chill injury primarily relates to muscle cell death. Levels of chilling injury measured at the whole animal level, however, were strongly correlated with the degree of haemolymph hyperkalaemia, and not apoptosis. These results support the notion that cold-induced ion balance disruption triggers cell death but also that apoptosis is not the main form of cell damage driving low-temperature injury.
Collapse
|
33
|
Youngblood JP, VandenBrooks JM, Babarinde O, Donnay ME, Elliott DB, Fredette-Roman J, Angilletta MJ. Oxygen supply limits the chronic heat tolerance of locusts during the first instar only. JOURNAL OF INSECT PHYSIOLOGY 2020; 127:104157. [PMID: 33098860 DOI: 10.1016/j.jinsphys.2020.104157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
Although scientists know that overheating kills many organisms, they do not agree on the mechanism. According to one theory, referred to as oxygen- and capacity-limitation of thermal tolerance, overheating occurs when a warming organism's demand for oxygen exceeds its supply, reducing the organism's supply of ATP. This model predicts that an organism's heat tolerance should decrease under hypoxia, yet most terrestrial organisms tolerate the same amount of warming across a wide range of oxygen concentrations. This point is especially true for adult insects, who deliver oxygen through highly efficient respiratory systems. However, oxygen limitation at high temperatures may be more common during immature life stages, which have less developed respiratory systems. To test this hypothesis, we measured the effects of heat and hypoxia on the survival of South American locusts (Schistocerca cancellata) throughout development and during specific instars. We demonstrate that the heat tolerance of locusts depends on oxygen supply during the first instar but not during later instars. This finding provides further support for the idea that oxygen limitation of thermal tolerance depends on respiratory performance, especially during immature life stages.
Collapse
Affiliation(s)
- Jacob P Youngblood
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.
| | | | | | - Megan E Donnay
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Deanna B Elliott
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | | | | |
Collapse
|
34
|
Abstract
Temperature is a critical abiotic factor shaping the distribution and abundance of species, but the mechanisms that underpin organismal thermal limits remain poorly understood. One possible mechanism underlying these limits is the failure of mitochondrial processes, as mitochondria play a crucial role in animals as the primary site of ATP production. Conventional measures of mitochondrial performance suggest that these organelles can function at temperatures much higher than those that limit whole-organism function, suggesting that they are unlikely to set organismal thermal limits. However, this conclusion is challenged by recent data connecting sequence variation in mitochondrial genes to whole-organism thermal tolerance. Here, we review the current state of knowledge of mitochondrial responses to thermal extremes and ask whether they are consistent with a role for mitochondrial function in shaping whole-organism thermal limits. The available data are fragmentary, but it is possible to draw some conclusions. There is little evidence that failure of maximal mitochondrial oxidative capacity as assessed in vitro sets thermal limits, but there is some evidence to suggest that temperature effects on ATP synthetic capacity may be important. Several studies suggest that loss of mitochondrial coupling is associated with the thermal limits for organismal growth, although this needs to be rigorously tested. Most studies have utilized isolated mitochondrial preparations to assess the effects of temperature on these organelles, and there remain many untapped opportunities to address these questions using preparations that retain more of their biological context to better connect these subcellular processes with whole-organism thermal limits.
Collapse
Affiliation(s)
- Dillon J Chung
- National Heart Lung and Blood Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20814, USA
| | - Patricia M Schulte
- Department of Zoology, University of British Columbia, 6270 University Blvd, Vancouver, British Columbia, Canada V6T 1Z4
| |
Collapse
|
35
|
Pichaud N, Ekström A, Breton S, Sundström F, Rowinski P, Blier PU, Sandblom E. Adjustments of cardiac mitochondrial phenotype in a warmer thermal habitat is associated with oxidative stress in European perch, Perca fluviatilis. Sci Rep 2020; 10:17697. [PMID: 33077851 PMCID: PMC7572411 DOI: 10.1038/s41598-020-74788-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 09/18/2020] [Indexed: 12/18/2022] Open
Abstract
Mitochondria are playing key roles in setting the thermal limits of fish, but how these organelles participate in selection mechanisms during extreme thermal events associated with climate warming in natural populations is unclear. Here, we investigated the thermal effects on mitochondrial metabolism, oxidative stress, and mitochondrial gene expression in cardiac tissues of European perch (Perca fluviatilis) collected from an artificially heated ecosystem, the "Biotest enclosure", and an adjacent reference area in the Baltic sea with normal temperatures (~ 23 °C and ~ 16 °C, respectively, at the time of capture in summer). Fish were sampled one month after a heat wave that caused the Biotest temperatures to peak at ~ 31.5 °C, causing significant mortality. When assayed at 23 °C, Biotest perch maintained high mitochondrial capacities, while reference perch displayed depressed mitochondrial functions relative to measurements at 16 °C. Moreover, mitochondrial gene expression of nd4 (mitochondrial subunit of complex I) was higher in Biotest fish, likely explaining the increased respiration rates observed in this population. Nonetheless, cardiac tissue from Biotest perch displayed higher levels of oxidative damage, which may have resulted from their chronically warm habitat, as well as the extreme temperatures encountered during the preceding summer heat wave. We conclude that eurythermal fish such as perch are able to adjust and maintain mitochondrial capacities of highly aerobic organs such as the heart when exposed to a warming environment as predicted with climate change. However, this might come at the expense of exacerbated oxidative stress, potentially threatening performance in nature.
Collapse
Affiliation(s)
- Nicolas Pichaud
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, E1A 3E9, Canada. .,Department of Biological and Environmental Sciences, University of Gothenburg, 405 30, Gothenburg, Sweden. .,Department of Biology, Université du Québec à Rimouski, Rimouski, QC, G5L 3A1, Canada.
| | - Andreas Ekström
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30, Gothenburg, Sweden
| | - Sophie Breton
- Department of Biological Sciences, Université de Montréal, Montréal, QC, H2V 2S9, Canada
| | - Fredrik Sundström
- Department of Ecology and Genetics, Uppsala University, 752 36, Uppsala, Sweden
| | - Piotr Rowinski
- Department of Ecology and Genetics, Uppsala University, 752 36, Uppsala, Sweden
| | - Pierre U Blier
- Department of Biology, Université du Québec à Rimouski, Rimouski, QC, G5L 3A1, Canada
| | - Erik Sandblom
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30, Gothenburg, Sweden
| |
Collapse
|
36
|
Vornanen M. Feeling the heat: source–sink mismatch as a mechanism underlying the failure of thermal tolerance. J Exp Biol 2020; 223:223/16/jeb225680. [DOI: 10.1242/jeb.225680] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
ABSTRACT
A mechanistic explanation for the tolerance limits of animals at high temperatures is still missing, but one potential target for thermal failure is the electrical signaling off cells and tissues. With this in mind, here I review the effects of high temperature on the electrical excitability of heart, muscle and nerves, and refine a hypothesis regarding high temperature-induced failure of electrical excitation and signal transfer [the temperature-dependent deterioration of electrical excitability (TDEE) hypothesis]. A central tenet of the hypothesis is temperature-dependent mismatch between the depolarizing ion current (i.e. source) of the signaling cell and the repolarizing ion current (i.e. sink) of the receiving cell, which prevents the generation of action potentials (APs) in the latter. A source–sink mismatch can develop in heart, muscles and nerves at high temperatures owing to opposite effects of temperature on source and sink currents. AP propagation is more likely to fail at the sites of structural discontinuities, including electrically coupled cells, synapses and branching points of nerves and muscle, which impose an increased demand of inward current. At these sites, temperature-induced source–sink mismatch can reduce AP frequency, resulting in low-pass filtering or a complete block of signal transmission. In principle, this hypothesis can explain a number of heat-induced effects, including reduced heart rate, reduced synaptic transmission between neurons and reduced impulse transfer from neurons to muscles. The hypothesis is equally valid for ectothermic and endothermic animals, and for both aquatic and terrestrial species. Importantly, the hypothesis is strictly mechanistic and lends itself to experimental falsification.
Collapse
Affiliation(s)
- Matti Vornanen
- Department of Environmental and Biological Sciences , University of Eastern Finland, 80101 Joensuu, Finland
| |
Collapse
|
37
|
Štětina T, Des Marteaux LE, Koštál V. Insect mitochondria as targets of freezing-induced injury. Proc Biol Sci 2020; 287:20201273. [PMID: 32693722 DOI: 10.1098/rspb.2020.1273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Many insects survive internal freezing, but the great complexity of freezing stress hinders progress in understanding the ultimate nature of freezing-induced injury. Here, we use larvae of the drosophilid fly, Chymomyza costata to assess the role of mitochondrial responses to freezing stress. Respiration analysis revealed that fat body mitochondria of the freeze-sensitive (non-diapause) phenotype significantly decrease oxygen consumption upon lethal freezing stress, while mitochondria of the freeze-tolerant (diapausing, cold-acclimated) phenotype do not lose respiratory capacity upon the same stress. Using transmission electron microscopy, we show that fat body and hindgut mitochondria swell, and occasionally burst, upon exposure of the freeze-sensitive phenotype to lethal freezing stress. By contrast, mitochondrial swelling is not observed in the freeze-tolerant phenotype exposed to the same stress. We hypothesize that mitochondrial swelling results from permeability transition of the inner mitochondrial membrane and loss of its barrier function, which causes osmotic influx of cytosolic water into the matrix. We therefore suggest that the phenotypic transition to diapause and cold acclimation could be associated with adaptive changes that include the protection of the inner mitochondrial membrane against permeability transition and subsequent mitochondrial swelling. Accumulation of high concentrations of proline and other cryoprotective substances might be a part of such adaptive changes as we have shown that freezing-induced mitochondrial swelling was abolished by feeding the freeze-sensitive phenotype larvae on a proline-augmented diet.
Collapse
Affiliation(s)
- T Štětina
- Biology Centre, Czech Academy of Sciences, Institute of Entomology, Branišovská 31, České Budějovice 37005, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice 37005, Czech Republic
| | - L E Des Marteaux
- Biology Centre, Czech Academy of Sciences, Institute of Entomology, Branišovská 31, České Budějovice 37005, Czech Republic
| | - V Koštál
- Biology Centre, Czech Academy of Sciences, Institute of Entomology, Branišovská 31, České Budějovice 37005, Czech Republic
| |
Collapse
|
38
|
Bouyoucos IA, Morrison PR, Weideli OC, Jacquesson E, Planes S, Simpfendorfer CA, Brauner CJ, Rummer JL. Thermal tolerance and hypoxia tolerance are associated in blacktip reef shark (Carcharhinus melanopterus) neonates. J Exp Biol 2020; 223:223/14/jeb221937. [DOI: 10.1242/jeb.221937] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 06/01/2020] [Indexed: 12/19/2022]
Abstract
ABSTRACT
Thermal dependence of growth and metabolism can influence thermal preference and tolerance in marine ectotherms, including threatened and data-deficient species. Here, we quantified the thermal dependence of physiological performance in neonates of a tropical shark species (blacktip reef shark, Carcharhinus melanopterus) from shallow, nearshore habitats. We measured minimum and maximum oxygen uptake rates (ṀO2), calculated aerobic scope, excess post-exercise oxygen consumption and recovery from exercise, and measured critical thermal maxima (CTmax), thermal safety margins, hypoxia tolerance, specific growth rates, body condition and food conversion efficiencies at two ecologically relevant acclimation temperatures (28 and 31°C). Owing to high post-exercise mortality, a third acclimation temperature (33°C) was not investigated further. Acclimation temperature did not affect ṀO2 or growth, but CTmax and hypoxia tolerance were greatest at 31°C and positively associated. We also quantified in vitro temperature (25, 30 and 35°C) and pH effects on haemoglobin–oxygen (Hb–O2) affinity of wild-caught, non-acclimated sharks. As expected, Hb–O2 affinity decreased with increasing temperatures, but pH effects observed at 30°C were absent at 25 and 35°C. Finally, we logged body temperatures of free-ranging sharks and determined that C. melanopterus neonates avoided 31°C in situ. We conclude that C. melanopterus neonates demonstrate minimal thermal dependence of whole-organism physiological performance across a seasonal temperature range and may use behaviour to avoid unfavourable environmental temperatures. The association between thermal tolerance and hypoxia tolerance suggests a common mechanism warranting further investigation. Future research should explore the consequences of ocean warming, especially in nearshore, tropical species.
Collapse
Affiliation(s)
- Ian A. Bouyoucos
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia
- PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 58 Avenue Paul Alduy, 66860 Perpignan Cedex, France
| | - Phillip R. Morrison
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Ornella C. Weideli
- PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 58 Avenue Paul Alduy, 66860 Perpignan Cedex, France
| | - Eva Jacquesson
- PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 58 Avenue Paul Alduy, 66860 Perpignan Cedex, France
| | - Serge Planes
- PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 58 Avenue Paul Alduy, 66860 Perpignan Cedex, France
- Laboratoire d'Excellence ‘CORAIL’, EPHE, PSL Research University, UPVD, CNRS, USR 3278 CRIOBE, Papetoai, Moorea, French Polynesia
| | - Colin A. Simpfendorfer
- Centre for Sustainable Tropical Fisheries and Aquaculture & College of Science and Engineering, James Cook University, Townsville, Queensland, 4811, Australia
| | - Colin J. Brauner
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Jodie L. Rummer
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia
| |
Collapse
|
39
|
Lemoine MM, Engl T, Kaltenpoth M. Microbial symbionts expanding or constraining abiotic niche space in insects. CURRENT OPINION IN INSECT SCIENCE 2020; 39:14-20. [PMID: 32086000 DOI: 10.1016/j.cois.2020.01.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/07/2020] [Accepted: 01/13/2020] [Indexed: 05/06/2023]
Abstract
In addition to their well-studied contributions to their host's nutrition, digestion, and defense, microbial symbionts of insects are increasingly found to affect their host's response toward abiotic stressors. In particular, symbiotic microbes can reduce or enhance tolerance to temperature extremes, improve desiccation resistance by aiding cuticle biosynthesis and sclerotization, and detoxify heavy metals. As such, individual symbionts or microbial communities can expand or constrain the abiotic niche space of their host and determine its adaptability to fluctuating environments. In light of the increasing impact of humans on climate and environment, a better understanding of host-microbe interactions is necessary to predict how different insect species will respond to changes in abiotic conditions.
Collapse
Affiliation(s)
- Marion M Lemoine
- Department of Evolutionary Ecology, Institute for Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, Hanns-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| | - Tobias Engl
- Department of Evolutionary Ecology, Institute for Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, Hanns-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| | - Martin Kaltenpoth
- Department of Evolutionary Ecology, Institute for Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, Hanns-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany.
| |
Collapse
|
40
|
Wolfe BW, Fitzgibbon QP, Semmens JM, Tracey SR, Pecl GT. Physiological mechanisms linking cold acclimation and the poleward distribution limit of a range-extending marine fish. CONSERVATION PHYSIOLOGY 2020; 8:coaa045. [PMID: 32494362 PMCID: PMC7248536 DOI: 10.1093/conphys/coaa045] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/18/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
Extensions of species' geographical distributions, or range extensions, are among the primary ecological responses to climate change in the oceans. Considerable variation across the rates at which species' ranges change with temperature hinders our ability to forecast range extensions based on climate data alone. To better manage the consequences of ongoing and future range extensions for global marine biodiversity, more information is needed on the biological mechanisms that link temperatures to range limits. This is especially important at understudied, low relative temperatures relevant to poleward range extensions, which appear to outpace warm range edge contractions four times over. Here, we capitalized on the ongoing range extension of a teleost predator, the Australasian snapper Chrysophrys auratus, to examine multiple measures of ecologically relevant physiological performance at the population's poleward range extension front. Swim tunnel respirometry was used to determine how mid-range and poleward range edge winter acclimation temperatures affect metabolic rate, aerobic scope, swimming performance and efficiency and recovery from exercise. Relative to 'optimal' mid-range temperature acclimation, subsequent range edge minimum temperature acclimation resulted in absolute aerobic scope decreasing while factorial aerobic scope increased; efficiency of swimming increased while maximum sustainable swimming speed decreased; and recovery from exercise required a longer duration despite lower oxygen payback. Cold-acclimated swimming faster than 0.9 body lengths sec-1 required a greater proportion of aerobic scope despite decreased cost of transport. Reduced aerobic scope did not account for declines in recovery and lower maximum sustainable swimming speed. These results suggest that while performances decline at range edge minimum temperatures, cold-acclimated snapper are optimized for energy savings and range edge limitation may arise from suboptimal temperature exposure throughout the year rather than acute minimum temperature exposure. We propose incorporating performance data with in situ behaviour and environmental data in bioenergetic models to better understand how thermal tolerance determines range limits.
Collapse
Affiliation(s)
- Barrett W Wolfe
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Quinn P Fitzgibbon
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Jayson M Semmens
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Sean R Tracey
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Gretta T Pecl
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7001, Australia
| |
Collapse
|
41
|
Cooke SJ, Madliger CL, Cramp RL, Beardall J, Burness G, Chown SL, Clark TD, Dantzer B, de la Barrera E, Fangue NA, Franklin CE, Fuller A, Hawkes LA, Hultine KR, Hunt KE, Love OP, MacMillan HA, Mandelman JW, Mark FC, Martin LB, Newman AEM, Nicotra AB, Robinson SA, Ropert-Coudert Y, Rummer JL, Seebacher F, Todgham AE. Reframing conservation physiology to be more inclusive, integrative, relevant and forward-looking: reflections and a horizon scan. CONSERVATION PHYSIOLOGY 2020; 8:coaa016. [PMID: 32274063 PMCID: PMC7125050 DOI: 10.1093/conphys/coaa016] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/27/2020] [Accepted: 02/10/2020] [Indexed: 05/21/2023]
Abstract
Applying physiological tools, knowledge and concepts to understand conservation problems (i.e. conservation physiology) has become commonplace and confers an ability to understand mechanistic processes, develop predictive models and identify cause-and-effect relationships. Conservation physiology is making contributions to conservation solutions; the number of 'success stories' is growing, but there remain unexplored opportunities for which conservation physiology shows immense promise and has the potential to contribute to major advances in protecting and restoring biodiversity. Here, we consider how conservation physiology has evolved with a focus on reframing the discipline to be more inclusive and integrative. Using a 'horizon scan', we further explore ways in which conservation physiology can be more relevant to pressing conservation issues of today (e.g. addressing the Sustainable Development Goals; delivering science to support the UN Decade on Ecosystem Restoration), as well as more forward-looking to inform emerging issues and policies for tomorrow. Our horizon scan provides evidence that, as the discipline of conservation physiology continues to mature, it provides a wealth of opportunities to promote integration, inclusivity and forward-thinking goals that contribute to achieving conservation gains. To advance environmental management and ecosystem restoration, we need to ensure that the underlying science (such as that generated by conservation physiology) is relevant with accompanying messaging that is straightforward and accessible to end users.
Collapse
Affiliation(s)
- Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, 1125 Colonel By Dr., Ottawa, ON, K1S 5B6, Canada
- Corresponding author: Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, 1125 Colonel By Dr., Ottawa, ON, K1S 5B6, Canada.
| | - Christine L Madliger
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, 1125 Colonel By Dr., Ottawa, ON, K1S 5B6, Canada
| | - Rebecca L Cramp
- School of Biological Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - John Beardall
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Gary Burness
- Department of Biology, Trent University, 1600 West Bank Drive, Peterborough, ON, K9L 0G2, Canada
| | - Steven L Chown
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Timothy D Clark
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 14 3216, Australia
| | - Ben Dantzer
- Department of Psychology, Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Erick de la Barrera
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro 8701, Morelia, Michoacán, 58190, Mexico
| | - Nann A Fangue
- Department of Wildlife, Fish & Conservation Biology, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Craig E Franklin
- School of Biological Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - Andrea Fuller
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, 7 York Rd, Parktown, 2193, South Africa
| | - Lucy A Hawkes
- College of Life and Environmental Sciences, Hatherly Laboratories, University of Exeter, Prince of Wales Road, Exeter, EX4 4PS, UK
| | - Kevin R Hultine
- Department of Research, Conservation and Collections, Desert Botanical Garden, Phoenix, AZ 85008, USA
| | - Kathleen E Hunt
- Department of Biology, George Mason University, Fairfax, VA 22030, USA
| | - Oliver P Love
- Department of Integrative Biology, University of Windsor, 401 Sunset Avenue, Windsor, ON N9B 3P4, Canada
| | - Heath A MacMillan
- Department of Biology and Institute of Biochemistry, Carleton University, 1125 Colonel By Dr., Ottawa, ON K1S 5B6, Canada
| | - John W Mandelman
- Anderson Cabot Center for Ocean Life, New England Aquarium, 1 Central Wharf, Boston, MA 02110, USA
| | - Felix C Mark
- Department of Integrative Ecophysiology, Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Am Handelshafen 12, 27574 Bremerhaven, Germany
| | - Lynn B Martin
- Global Health and Infectious Disease Research, University of South Florida, 3720 Spectrum Boulevard, Tampa, FL 33612, USA
| | - Amy E M Newman
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Adrienne B Nicotra
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Sharon A Robinson
- School of Earth, Atmospheric and Life Sciences (SEALS) and Centre for Sustainable Ecosystem Solutions, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Yan Ropert-Coudert
- Centre d'Etudes Biologiques de Chizé, CNRS UMR 7372 - La Rochelle Université, 79360 Villiers-en-Bois, France
| | - Jodie L Rummer
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 5811, Australia
| | - Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, NSW 2006, Australia
| | - Anne E Todgham
- Department of Animal Science, University of California Davis, One Shields Ave. Davis, CA, 95616, USA
| |
Collapse
|
42
|
Jass A, Yerushalmi GY, Davis HE, Donini A, MacMillan HA. An impressive capacity for cold tolerance plasticity protects against ionoregulatory collapse in the disease vector Aedes aegypti. ACTA ACUST UNITED AC 2019; 222:jeb.214056. [PMID: 31732503 DOI: 10.1242/jeb.214056] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/10/2019] [Indexed: 12/30/2022]
Abstract
The mosquito Aedes aegypti is largely confined to tropical and subtropical regions, but its range has recently been spreading to colder climates. As insect biogeography is tied to environmental temperature, understanding the limits of A. aegypti thermal tolerance and their capacity for phenotypic plasticity is important in predicting the spread of this species. In this study, we report on the chill coma onset (CCO) and recovery time (CCRT), as well as low-temperature survival phenotypes of larvae and adults of A. aegypti that developed or were acclimated to 15°C (cold) or 25°C (warm). Cold acclimation did not affect CCO temperatures of larvae but substantially reduced CCO in adults. Temperature and the duration of exposure both affected CCRT, and cold acclimation strongly mitigated these effects and increased rates of survival following prolonged chilling. Female adults were far less likely to take a blood meal when cold acclimated, and exposing females to blood (without feeding) attenuated some of the beneficial effects of cold acclimation on CCRT. Lastly, larvae suffered from haemolymph hyperkalaemia when chilled, but cold acclimation attenuated the imbalance. Our results demonstrate that A. aegypti larvae and adults have the capacity to acclimate to low temperatures, and do so at least in part by better maintaining ion balance in the cold. This ability for cold acclimation may facilitate the spread of this species to higher latitudes, particularly in an era of climate change.
Collapse
Affiliation(s)
- Amanda Jass
- Department of Biology, York University, Toronto, ON, Canada M3J 1P3
| | - Gil Y Yerushalmi
- Department of Biology, York University, Toronto, ON, Canada M3J 1P3
| | - Hannah E Davis
- Department of Biology, Carleton University, Ottawa, ON, Canada K1S 5B6
| | - Andrew Donini
- Department of Biology, York University, Toronto, ON, Canada M3J 1P3
| | - Heath A MacMillan
- Department of Biology, Carleton University, Ottawa, ON, Canada K1S 5B6
| |
Collapse
|
43
|
Ekström A, Gräns A, Sandblom E. Can´t beat the heat? Importance of cardiac control and coronary perfusion for heat tolerance in rainbow trout. J Comp Physiol B 2019; 189:10.1007/s00360-019-01243-7. [PMID: 31707423 DOI: 10.1007/s00360-019-01243-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/11/2019] [Accepted: 10/24/2019] [Indexed: 12/11/2022]
Abstract
Coronary perfusion and cardiac autonomic regulation may benefit myocardial oxygen delivery and thermal performance of the teleost heart, and thus influence whole animal heat tolerance. Yet, no study has examined how coronary perfusion affects cardiac output during warming in vivo. Moreover, while β-adrenergic stimulation could protect cardiac contractility, and cholinergic decrease in heart rate may enhance myocardial oxygen diffusion at critically high temperatures, previous studies in rainbow trout (Oncorhynchus mykiss) using pharmacological antagonists to block cholinergic and β-adrenergic regulation showed contradictory results with regard to cardiac performance and heat tolerance. This could reflect intra-specific differences in the extent to which altered coronary perfusion buffered potential negative effects of the pharmacological blockade. Here, we first tested how cardiac performance and the critical thermal maximum (CTmax) were affected following a coronary ligation. We then assessed how these performances were influenced by pharmacological cholinergic or β-adrenergic blockade, hypothesising that the effects of the pharmacological treatment would be more pronounced in coronary ligated trout compared to trout with intact coronaries. Coronary blockade reduced CTmax by 1.5 °C, constrained stroke volume and cardiac output across temperatures, led to earlier cardiac failure and was associated with reduced blood oxygen-carrying capacity. Nonetheless, CTmax and the temperatures for cardiac failure were not affected by autonomic blockade. Collectively, our data show that coronary perfusion improves heat tolerance and cardiac performance in trout, while evidence for beneficial effects of altered cardiac autonomic tone during warming remains inconclusive.
Collapse
Affiliation(s)
- Andreas Ekström
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, 405 30, Göteborg, Sweden.
| | - Albin Gräns
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, Göteborg, Sweden
| | - Erik Sandblom
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, 405 30, Göteborg, Sweden
| |
Collapse
|
44
|
Srithiphaphirom P, Lavallee S, Robertson RM. Rapid cold hardening and octopamine modulate chill tolerance in Locusta migratoria. Comp Biochem Physiol A Mol Integr Physiol 2019; 234:28-35. [PMID: 30991118 DOI: 10.1016/j.cbpa.2019.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 12/13/2022]
Abstract
Temperature has profound effects on the neural function and behaviour of insects. When exposed to low temperature, chill-susceptible insects enter chill coma, a reversible state of neuromuscular paralysis. Despite the popularity of studying the effects of low temperature on insects, we know little about the physiological mechanisms controlling the entry to, and recovery from, chill coma. Spreading depolarization (SD) is a phenomenon that causes a neural shutdown in the central nervous system (CNS) and it is associated with a loss of K+ homeostasis in the CNS. Here, we investigated the effects of rapid cold hardening (RCH) on chill tolerance of the migratory locust. With an implanted thermocouple in the thorax, we determined the temperature associated with a loss of responsiveness (i.e. the critical thermal minimum - CTmin) in intact male adult locusts. In parallel experiments, we recorded field potential (FP) in the metathoracic ganglion (MTG) of semi-intact preparations to determine the temperature that would induce neural shutdown. We found that SD in the CNS causes a loss of coordinated movement immediately prior to chill coma and RCH reduces the temperature that evokes neural shutdown. Additionally, we investigated a role for octopamine (OA) in the locust chill tolerance and found that OA reduces the CTmin and mimics the effects of prior stress (anoxia) in locust.
Collapse
Affiliation(s)
| | - Sarah Lavallee
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada
| | | |
Collapse
|