1
|
Sekhar B, Desai DV. Thermal desiccation and relative gene expression of HSP90 in an acorn barnacle, Amphibalanus amphitrite. MARINE ENVIRONMENTAL RESEARCH 2025; 209:107227. [PMID: 40403583 DOI: 10.1016/j.marenvres.2025.107227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/26/2025] [Accepted: 05/16/2025] [Indexed: 05/24/2025]
Abstract
Sessile and sedentary invertebrates respond to various magnitudes of thermally desiccated stress during tidal emersion, and regulation of body temperature plays a crucial role in survival during an intraday aerial exposure. Survival strategies often include ecological and molecular adaptation strategies such as modifying body temperature (shell temperature) and expression of stress genes such as Heat shock protein 90 (HSP90). Estimation of gene expression through real-time qPCR is ideal for unravelling the intricate molecular mechanisms underlying the stress adaptation of intertidal invertebrates. Selection of reference genes (RGs) before qPCR experiments requires a systematic assessment of RGs relating to the adaptation of the intertidal barnacles. Marine intertidal barnacles such as Amphibalanus amphitrite are infamous crustaceans from the perspective of biofouling and antifouling. They are extensively studied for their larval ecology, stress adaptation, settlement and recruitment, etc. In this study, we implemented RefFinder tool to evaluate the expression stability of RGs such as Actin muscle (ACT), 18S rRNA aminocarboxypropyltransferase-like (18S rRNA), 28S rRNA, Tubulin (TUB), Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and Actin alpha (ACT-A) in adult A. amphitrite. This study is the first of its kind to investigate and validate the RGs (ACT-A and GAPDH) towards Relative Gene Expression (REGs) (fold change) using stress gene hsp90-CDC37like (HSP90). The findings of this study indicated that ACT-A and GAPDH are the most stable and ideal reference genes to perform relative gene expression (REGs) of thermally desiccated A. amphitrite. Additionally, stable RGs were validated for relative gene expression of stress gene HSP90 among thermally-desiccated A. amphitrite. An upregulation of HSP90 gene expression in barnacles upon 2h of thermal-desiccation was observed, which can be attributed to subtle rise in body temperature by 0.5 °C during early emersion.
Collapse
Affiliation(s)
- Bidwan Sekhar
- CSIR-National Institute of Oceanography, Dona Paula, Goa, 403004, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Dattesh V Desai
- CSIR-National Institute of Oceanography, Dona Paula, Goa, 403004, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Gardner AS, Maclean IMD, Rodríguez‐Muñoz R, Ojanguren AF, Tregenza T. How Air Temperature and Solar Radiation Impact Life History Traits in a Wild Insect. Ecol Evol 2025; 15:e71135. [PMID: 40083730 PMCID: PMC11904815 DOI: 10.1002/ece3.71135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/27/2025] [Accepted: 03/03/2025] [Indexed: 03/16/2025] Open
Abstract
Ectotherms are essential components of all ecosystems. They rely on external heat sources like air temperature and solar radiation to regulate their body temperature and optimise life history traits. Climate change, by altering air temperature and cloud cover, will likely impact these processes. To examine how air temperature and shade influence terrestrial insects, we reared nymphs of the field cricket (Gryllus campestris) at high (mean air temperature 13.4°C) and low (mean air temperature 9.6°C) sites in northern Spain, with partially shaded and unshaded treatments at each site. We tested for local adaptation to these climate variables by rearing nymphs from high and low altitude genetic lineages in all treatment combinations. Development time was significantly longer (on average 10 days) at low air temperature but was unaffected by a 40% increase in shade, suggesting crickets compensate for reduced sun exposure in shaded environments and may forgo some opportunities to gain energy from the sun in unshaded environments. Adult mass was affected by an interaction between shade and air temperature. At low air temperature, shaded crickets had higher mass (on average + 0.06 g) than unshaded crickets, whereas at high air temperature, shaded crickets had lower mass than unshaded crickets (on average - 0.08 g). This indicates that changes in cloud cover will impact insects differently in warmer and cooler parts of their range. We found no evidence for local adaptation in either development time or mass, suggesting these traits are not strongly differentiated between populations from high and low altitude environments. Our findings highlight the importance of considering both air temperature and solar radiation when predicting climate change impacts on insects. Shifts in temperature and cloud cover may have complex and region-specific effects on these vital ecosystem components.
Collapse
Affiliation(s)
| | | | | | - Alfredo F. Ojanguren
- Departamento de Biología de Organismos y SistemasUniversidad de OviedoOviedoSpain
| | - Tom Tregenza
- Centre for Ecology and ConservationUniversity of ExeterCornwallUK
| |
Collapse
|
3
|
Bonesteve A, Lluch-Cota SE, Sicard MT, Racotta IS, Tripp-Valdez MA, Rojo-Arreola L. HSP mRNA sequences and their expression under different thermal oscillation patterns and heat stress in two populations of Nodipecten subnodosus. Cell Stress Chaperones 2025; 30:33-47. [PMID: 39706547 PMCID: PMC11750468 DOI: 10.1016/j.cstres.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 12/23/2024] Open
Abstract
Understanding the molecular mechanisms underlying thermal acclimation and heat shock responses in marine ectotherms is critical for assessing their adaptive capacity in the context of climate change and climate extremes. This study examines the expression dynamics of heat shock proteins (HSPs) in the scallop Nodipecten subnodosus, shedding light on their role in thermal adaptation. Our analysis revealed the presence of several conserved functional signatures in N. subnodosus HSPs deduced amino acid sequences. Comparative gene expression profiling between two populations of N. subnodosus, maintained for 15 days under constant and oscillatory thermal regimes and then exposed to acute heat stress, revealed conserved adaptive traits. The heat-inducible nature of N. subnodosus HSP70 (HSPA8) gene expression highlights its potential as a stress marker, in contrast to its human homolog, which is constitutively expressed. Furthermore, the identification of HSP90 (HSPC3) and its overexpression during acute heat stress underscores its critical role in initiating a protective stress response. Population-specific responses in the magnitude of gene expression were observed; however, both populations exhibited similar overall patterns of HSP induction, suggesting a shared adaptive response mechanism. This study also elucidated the diversity and expansion of members of the HSP70 family members, specifically the HSPA12 subfamily, in N. subnodosus. This characteristic, previously observed in other bivalves, underscores the role of HSPA12 in environmental adaptation, providing molecular plasticity to withstand varying environmental pressures. These findings offer valuable insights into the molecular basis of thermal adaptation in N. subnodosus, highlighting the importance of HSPs in coping with environmental stochasticity under climate change scenarios.
Collapse
Affiliation(s)
| | | | | | - Ilie S Racotta
- Centro de Investigaciones Biológicas del Noroeste, La Paz, Mexico
| | | | | |
Collapse
|
4
|
Smith A, Erber J, Watson A, Johnson C, Gato WE, George SB. The Physiological and Biochemical Response of Ribbed Mussels to Rising Temperatures: Benefits of Salt Marsh Cordgrass. Integr Org Biol 2024; 6:obae031. [PMID: 39282253 PMCID: PMC11398905 DOI: 10.1093/iob/obae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Salt marsh ecosystems are heavily reliant on ribbed mussel (Geukensia demissa) populations to aid in rapid recovery from droughts. The focus of this study was thus to document the effects of rising temperatures on ribbed mussel populations in a Georgia salt marsh. Seven lab and eight field experiments were used to assess the effects of current air temperatures on mussels at two high marsh (HM) sites with short and sparse cordgrass and one mid marsh (MM) site with tall and dense cordgrass. Field results in 2018 and 2019 indicate that ribbed mussels were experiencing extremely high temperatures for prolonged periods of time at the landlocked high marsh (LHM) site. In 2018, the highest temperature (54°C) and longest high temperature events, HTEs (58 days), that is, consecutive days with temperatures ≥40°C, were recorded at this site. When laboratory temperatures were increased from 20 to 36°C, mean heart rates increased by an average of 19 bpm for mussels from both high and MM sites respectively. When field temperatures rose from 20°C in April to 40°C in September 2019, mean heart rates increased by an average of 10 bpm for HM mussels and by 26.3 bpm for MM mussels. Under identical laboratory and field conditions, mean heart rates for mussels from the LHM site with the highest temperatures, increased by <1 bpm and 3.7 bpm respectively. Evidence of the potential role of shade on mussel aggregates was provided by examining whether mussels from the edge of mussel aggregates with little to no cordgrass for shade were more stressed than those living at the center of mussel aggregates. In the absence of shade, mean body temperatures for mussels at the edge of mussel aggregates were up to 8°C higher than for those living in the center underneath a dense tuft of cordgrass. Despite high body temperatures, mean heart rates and Hsp70 gene expression were lower for mussels living at the edges. This agrees with the strategy that during prolong exposure to high temperatures, mussels may reduce their heart rate to conserve energy and enhance survival. Alternatively, heat-stressed mussels at the edges of aggregates may not have the resources to express high levels of Hsp70. Increase in the frequency, intensity, and duration of HTEs may stress the physiological and biochemical function of mussel populations to the limit, dictate mussel aggregate size, and threaten the functionality of SE salt marshes.
Collapse
Affiliation(s)
- A Smith
- B iology Department, Georgia Southern University, Statesboro, GA 30460, USA
| | - J Erber
- Department of Chemistry and Biochemistry, Georgia Southern University, Statesboro, GA 30460, USA
| | - A Watson
- B iology Department, Georgia Southern University, Statesboro, GA 30460, USA
| | - C Johnson
- B iology Department, Georgia Southern University, Statesboro, GA 30460, USA
| | - W E Gato
- Department of Chemistry and Biochemistry, Georgia Southern University, Statesboro, GA 30460, USA
| | - S B George
- B iology Department, Georgia Southern University, Statesboro, GA 30460, USA
| |
Collapse
|
5
|
Zhu W, Li Q, Peng M, Yang C, Chen X, Feng P, Liu Q, Zhang B, Zeng D, Zhao Y. Biochemical indicators, cell apoptosis, and metabolomic analyses of the low-temperature stress response and cold tolerance mechanisms in Litopenaeus vannamei. Sci Rep 2024; 14:15242. [PMID: 38956131 PMCID: PMC11219869 DOI: 10.1038/s41598-024-65851-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024] Open
Abstract
The cold tolerance of Litopenaeus vannamei is important for breeding in specific areas. To explore the cold tolerance mechanism of L. vannamei, this study analyzed biochemical indicators, cell apoptosis, and metabolomic responses in cold-tolerant (Lv-T) and common (Lv-C) L. vannamei under low-temperature stress (18 °C and 10 °C). TUNEL analysis showed a significant increase in apoptosis of hepatopancreatic duct cells in L. vannamei under low-temperature stress. Biochemical analysis showed that Lv-T had significantly increased levels of superoxide dismutase (SOD) and triglycerides (TG), while alanine aminotransferase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH-L), and uric acid (UA) levels were significantly decreased compared to Lv-C (p < 0.05). Metabolomic analysis displayed significant increases in metabolites such as LysoPC (P-16:0), 11beta-Hydroxy-3,20-dioxopregn-4-en-21-oic acid, and Pirbuterol, while metabolites such as 4-Hydroxystachydrine, Oxolan-3-one, and 3-Methyldioxyindole were significantly decreased in Lv-T compared to Lv-C. The differentially regulated metabolites were mainly enriched in pathways such as Protein digestion and absorption, Central carbon metabolism in cancer and ABC transporters. Our study indicate that low temperature induces damage to the hepatopancreatic duct of shrimp, thereby affecting its metabolic function. The cold resistance mechanism of Lv-T L. vannamei may be due to the enhancement of antioxidant enzymes and lipid metabolism.
Collapse
Affiliation(s)
- Weilin Zhu
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Qiangyong Li
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Min Peng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Chunling Yang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Xiuli Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Pengfei Feng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Qingyun Liu
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Bin Zhang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Digang Zeng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China.
| | - Yongzhen Zhao
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China.
| |
Collapse
|
6
|
Cubillos VM, Salas-Yanquin LP, Mardones-Toledo DA, Ramírez-Kuschel EF, Paredes-Molina FJ, Büchner-Miranda JA, Chaparro OR. Location also matters: The oxidative response of the intertidal purple mussel Perumytilus purpuratus during tidal cycle. MARINE ENVIRONMENTAL RESEARCH 2024; 199:106562. [PMID: 38870558 DOI: 10.1016/j.marenvres.2024.106562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/15/2024]
Abstract
For sessile intertidal organisms, periods of low tide impose both cellular and physiological challenges that can determine bathymetric distribution. To understand how intertidal location influences the cellular response of the bivalve Perumytilus purpuratus during the tidal cycle (immersion-emersion-immersion), specimens from the upper intertidal (UI) and lower intertidal (LI) of bathymetric distribution were sampled every 2 h over a 10-h period during a summer tidal cycle. Parallelly, organisms from the UI and LI were reciprocally transplanted and sampled throughout the same tidal cycle. Levels of oxidative damage (lipid peroxidation and protein carbonyls) as well as total antioxidant capacity and total carotenoids were evaluated as cellular responses to variations in environmental conditions throughout the tidal cycle. The results indicate that both the location in the intertidal zone (UI/LI), the level of aerial exposure, and the interaction of both factors are determinants of oxidative levels and total antioxidant capacity of P. purpuratus. Although oxidative damage levels are triggered during the low tide period (aerial exposure), it is the UI specimens that induce higher levels of lipid peroxidation compared to those from the LI, which is consistent with the elevated levels of total antioxidant capacity. On the other hand, organisms from the LI transplanted to the UI increase the levels of lipid peroxidation but not the levels of protein carbonyls, a situation that is also reflected in higher levels of antioxidant response and total carotenoids than those from the UI transplanted to the LI. The bathymetric distribution of P. purpuratus in the intertidal zone implies differentiated responses between organisms of the lower and upper limits, influenced by their life history. A high phenotypic plasticity allows this mussel to adjust its metabolism to respond to abrupt changes in the surrounding environmental conditions.
Collapse
Affiliation(s)
- V M Cubillos
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile.
| | - L P Salas-Yanquin
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - D A Mardones-Toledo
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - E F Ramírez-Kuschel
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - F J Paredes-Molina
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - J A Büchner-Miranda
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - O R Chaparro
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
7
|
Schwartz LC, González VL, Strong EE, Truebano M, Hilbish TJ. Transgressive gene expression and expression plasticity under thermal stress in a stable hybrid zone. Mol Ecol 2024; 33:e17333. [PMID: 38597343 DOI: 10.1111/mec.17333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 02/21/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024]
Abstract
Interspecific hybridization can lead to myriad outcomes, including transgressive phenotypes in which the hybrids are more fit than either parent species. Such hybrids may display important traits in the context of climate change, able to respond to novel environmental conditions not previously experienced by the parent populations. While this has been evaluated in an agricultural context, the role of transgressive hybrids under changing conditions in the wild remains largely unexplored; this is especially true regarding transgressive gene expression. Using the blue mussel species complex (genus Mytilus) as a model system, we investigated the effects of hybridization on temperature induced gene expression plasticity by comparing expression profiles in parental species and their hybrids following a 2-week thermal challenge. Hybrid expression plasticity was most often like one parent or the other (50%). However, a large fraction of genes (26%) showed transgressive expression plasticity (i.e. the change in gene expression was either greater or lesser than that of both parent species), while only 2% were intermediately plastic in hybrids. Despite their close phylogenetic relationship, there was limited overlap in the differentially expressed genes responding to temperature, indicating interspecific differences in the responses to high temperature in which responses from hybrids are distinct from both parent species. We also identified differentially expressed long non-coding RNAs (lncRNAs), which we suggest may contribute to species-specific differences in thermal tolerance. Our findings provide important insight into the impact of hybridization on gene expression under warming. We propose transgressive hybrids may play an important role in population persistence under future warming conditions.
Collapse
Affiliation(s)
- Lindsey C Schwartz
- Department of Biological Sciences, The University of South Carolina, Columbia, South Carolina, USA
- Department of Invertebrate Zoology, Smithsonian National Museum of Natural History, Washington, District of Columbia, USA
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana, USA
| | - Vanessa L González
- Informatics and Data Science Center, Smithsonian National Museum of Natural History, Washington, District of Columbia, USA
| | - Ellen E Strong
- Department of Invertebrate Zoology, Smithsonian National Museum of Natural History, Washington, District of Columbia, USA
| | - Manuela Truebano
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | - Thomas J Hilbish
- Department of Biological Sciences, The University of South Carolina, Columbia, South Carolina, USA
| |
Collapse
|
8
|
Gardner AS, Maclean IMD, Rodríguez‐Muñoz R, Hopwood PE, Mills K, Wotherspoon R, Tregenza T. The relationship between the body and air temperature in a terrestrial ectotherm. Ecol Evol 2024; 14:e11019. [PMID: 38352197 PMCID: PMC10862186 DOI: 10.1002/ece3.11019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/13/2024] [Accepted: 01/30/2024] [Indexed: 02/16/2024] Open
Abstract
Ectotherms make up the majority of terrestrial biodiversity, so it is important to understand their potential responses to climate change. Often, models aiming to achieve this understanding correlate species distributions with ambient air temperature. However, this assumes a constant relationship between the air temperature and body temperature, which determines an ectotherm's thermal performance. To test this assumption, we develop and validate a method for retrospective estimation of ectotherm body temperature using heat exchange equations. We apply the model to predict the body temperature of wild field crickets (Gryllus campestris) in Northern Spain for 1985-2019 and compare these values to air temperature. We show that while air temperature impacts ectotherm body temperature, it captures only a fraction of its thermal experience. Solar radiation can increase the body temperature by more than 20°C above air temperature with implications for physiology and behaviour. The effect of solar radiation on body temperature is particularly important given that climate change will alter cloud cover. Our study shows that the impacts of climate change on species cannot be assumed to be proportional only to changing air temperature. More reliable models of future species distributions require mechanistic links between environmental conditions and thermal ecophysiologies of species.
Collapse
Affiliation(s)
| | - Ilya M. D. Maclean
- Environment and Sustainability InstituteUniversity of ExeterPenrynCornwallUK
| | | | - Paul E. Hopwood
- Centre for Ecology and ConservationUniversity of ExeterPenrynCornwallUK
| | - Kali Mills
- Centre for Ecology and ConservationUniversity of ExeterPenrynCornwallUK
| | - Ross Wotherspoon
- Centre for Ecology and ConservationUniversity of ExeterPenrynCornwallUK
| | - Tom Tregenza
- Centre for Ecology and ConservationUniversity of ExeterPenrynCornwallUK
| |
Collapse
|
9
|
Tu Z, Tang L, Abo-Raya MH, Sun M, Shen H, Wang Y. Cloning and characterization of heat shock transcription factor 1 and its functional role for Hsp70 production in the sea slug Onchidium reevesii. Gene 2024; 893:147945. [PMID: 38381511 DOI: 10.1016/j.gene.2023.147945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/19/2023] [Accepted: 10/27/2023] [Indexed: 02/22/2024]
Abstract
To investigate the regulatory role of heat shock transcription factor 1 of sea slug Onchidium reevesii (OrHSF1) on Hsp70 expression in the sea slug under stress , the OrHSF1 gene was cloned and bioinformatics analysis was performed, then the gene and protein expressions by RNA interference (RNAi) mediated knockdown of OrHSF1 expression were measured to clarify the regulatory relationship between OrHSF1 and Hsp70 under low-frequency noise (LFN) stress. Our study was the first to clone a 1572 bp sequence of the OrHSF1 gene, with the sequence coding for amino acids (CDS) being 729 bp, encoding 243 amino acids. O. reevesii shared a close evolutionary relationship with mollusks such as the Aplysia californica. OrHSF1 gene is widely expressed in different tissues of sea slugs, with the highest expression in the intestine and the lowest in the reproductive glands. Furthermore, we used RNA interference (RNAi) as a tool to silence the OrHSF1 gene in the central nervous system (CNS) and the results indicated that gene silencing was occurring systematically in the CNS and the suppression of OrHSF1 expression by RNAi-mediated gene silencing altered the expression of Hsp70; besides, the expression trends of OrHSF1 gene and Hsp70 were consistent in the 3 and 5-day RNAi experiment. Moreover, in sea slugs injected with siHSF1 and exposed to LFN, the mRNA expression and protein expression of Hsp70 in the CNS were significantly decreased compared to the low-frequency noise group (P < 0.05). This study demonstrated that OrHSF1 regulates Hsp70 expression in marine mollusks under low-frequency noise, and HSF1-Hsp70 axis plays a key role in stress response.
Collapse
Affiliation(s)
- Zhihan Tu
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Liusiqiao Tang
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Mohamed H Abo-Raya
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Mengying Sun
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Heding Shen
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Youji Wang
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
10
|
Kuo HW. Tyramine beta hydroxylase-mediated octopamine synthesis pathway in Litopenaeus vannamei under thermal, salinity, and Vibrio alginolyticus infection stress. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109096. [PMID: 37758094 DOI: 10.1016/j.fsi.2023.109096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/30/2023]
Abstract
Stress responses impact the immune systems, growth, and reproduction of aquatic organisms. Neuroendocrine regulation involving biogenic amines, including octopamine (OA), plays a pivotal role in maintaining physiological balance during stress. This study focuses on the synthesis pathway of OA, particularly the role of tyramine beta hydroxylase (TBH), in Litopenaeus vannamei under stress. TBH catalyzes the conversion of tyramine to OA, a process critical for physiological responses. The present study demonstrated LvTBH at the protein level under different stress conditions during acute (0.5, 1, 2 h) and chronic stress (24, 72, 168 h) periods. LvTBH increased in thoracic ganglia within 2 h under hyperthermal stress, accompanied by elevated OA levels. Conversely, LvTBH decreased in the brain and circumesophageal connective tissues during acute and chronic hypothermal stress. Additionally, LvTBH increased in the brain and circumesophageal connective tissues under acute infection stress, coinciding with elevated OA levels. These findings collectively contribute to a more intricate understanding of the neuroendocrine dynamics within L. vannamei under stress, underscoring the role of TBH in orchestrating responses crucial for adaptation.
Collapse
Affiliation(s)
- Hsin-Wei Kuo
- General Research Service Center, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan, ROC.
| |
Collapse
|
11
|
Collins M, Clark MS, Truebano M. The environmental cellular stress response: the intertidal as a multistressor model. Cell Stress Chaperones 2023; 28:467-475. [PMID: 37129699 PMCID: PMC10469114 DOI: 10.1007/s12192-023-01348-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023] Open
Abstract
The wild poses a multifaceted challenge to the maintenance of cellular function. Therefore, a multistressor approach is essential to predict the cellular mechanisms which promote homeostasis and underpin whole-organism tolerance. The intertidal zone is particularly dynamic, and thus, its inhabitants provide excellent models to assess mechanisms underpinning multistressor tolerance. Here, we critically review our current understanding of the regulation of the cellular stress response (CSR) under multiple abiotic stressors in intertidal organisms and consider to what extent a multistressor approach brings us closer to understanding responses in the wild. The function of the CSR has been well documented in laboratory and field exposures with a view to understanding single-stressor thermal effects. Multistressor studies still remain relatively limited in comparison but have applied three main approaches: (i) laboratory application of multiple stressors in isolation, (ii) multiple stressors applied in combination, and (iii) field-based correlation of multiple stressors against the CSR. The application of multiple stressors in isolation has allowed the identification of putative, shared stress pathways but overlooks non-additive stressor interactions on the CSR. Combined stressor studies are relatively limited in number but already highlight variable effects on the CSR dependent upon stressor type, timing, and magnitude. Field studies have allowed the identification of responsive components of the CSR to various stressors in situ but are correlative, not causative. A combined approach involving laboratory multistressor studies linking the CSR to whole-organism tolerance as well as field studies is required if we are to understand the role of the CSR in the natural environment.
Collapse
Affiliation(s)
- Michael Collins
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK.
| | - Melody S Clark
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 OET, UK
| | - Manuela Truebano
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| |
Collapse
|
12
|
Noer NK, Nielsen KL, Sverrisdóttir E, Kristensen TN, Bahrndorff S. Temporal regulation of temperature tolerances and gene expression in an arctic insect. J Exp Biol 2023; 226:jeb245097. [PMID: 37283090 DOI: 10.1242/jeb.245097] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 05/02/2023] [Indexed: 05/18/2023]
Abstract
Terrestrial arthropods in the Arctic are exposed to highly variable temperatures that frequently reach cold and warm extremes. Yet, ecophysiological studies on arctic insects typically focus on the ability of species to tolerate low temperatures, whereas studies investigating physiological adaptations of species to periodically warm and variable temperatures are few. In this study, we investigated temporal changes in thermal tolerances and the transcriptome in the Greenlandic seed bug Nysius groenlandicus, collected in the field across different times and temperatures in Southern Greenland. We found that plastic changes in heat and cold tolerances occurred rapidly (within hours) and at a daily scale in the field, and that these changes are correlated with diurnal temperature variation. Using RNA sequencing, we provide molecular underpinnings of the rapid adjustments in thermal tolerance across ambient field temperatures and in the laboratory. We show that transcriptional responses are sensitive to daily temperature changes, and days characterized by high temperature variation induced markedly different expression patterns than thermally stable days. Further, genes associated with laboratory-induced heat responses, including expression of heat shock proteins and vitellogenins, were shared across laboratory and field experiments, but induced at time points associated with lower temperatures in the field. Cold stress responses were not manifested at the transcriptomic level.
Collapse
Affiliation(s)
- Natasja Krog Noer
- Department of Chemistry and Bioscience, Aalborg University, Aalborg 9220, Denmark
| | - Kåre Lehmann Nielsen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg 9220, Denmark
| | - Elsa Sverrisdóttir
- Department of Chemistry and Bioscience, Aalborg University, Aalborg 9220, Denmark
| | | | - Simon Bahrndorff
- Department of Chemistry and Bioscience, Aalborg University, Aalborg 9220, Denmark
| |
Collapse
|
13
|
Elevated aerial temperature modulates digestive enzyme activities in Mytilus californianus. Comp Biochem Physiol B Biochem Mol Biol 2023; 265:110825. [PMID: 36572236 DOI: 10.1016/j.cbpb.2022.110825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 12/06/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
The marine intertidal mussel Mytilus californianus aggregates to form beds along the Pacific shores of North America. As a sessile organism it must cope with fluctuations in temperature during low-tide aerial exposure, which elevates maintenance costs and negatively affects its overall energy budget. The function of its digestive gland is to release enzymes that break apart ingested polymers for subsequent nutrient absorption. The effects of elevated aerial warming acclimation on the functioning of digestive gland enzymes are not well studied. In this study we asked whether digestive gland carbohydases and proteases could be overstimulated in warm condition to possibly mitigate the costs related to the heat-shock response. We compared mussels acclimated to a + 9 °C heat-shock during daily low-tide aerial exposure to mussels acclimated to isothermal tidal conditions in a simulated intertidal system. The results showed fairly consistent activities of cellulase, trypsin, and amino-peptidase across tidal variation and between thermal treatments; however, amylase activity was lower in warmed versus cool mussels across low and high-tide. We also observed the expression of heat-shock genes in gill tissue during warm tidal conditions, suggestive that moderate temperatures during aerial exposure can induce a stress response.
Collapse
|
14
|
Baag S, Mandal S. Do predator (Mystus gulio) and prey (Penaeus monodon) have differential response against heatwaves? Unveiling through oxidative stress biomarkers and thermal tolerance estimation. MARINE ENVIRONMENTAL RESEARCH 2023; 184:105850. [PMID: 36566576 DOI: 10.1016/j.marenvres.2022.105850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Extreme climatic events such as heatwaves are anticipated to intensify in future and impose additional thermal stress to aquatic animals. Knowledge regarding an organism's thermal tolerance or sensitivity is therefore important in determining the effects of fluctuating water temperature on physiological responses. Thus, thermal tolerance tests can serve as a first step in understanding the present and future effects of climate warming. Climatic variability will alter prey-predator attributes differentially and impact their subsequent interactions. The key objective of this study was to compare and decode the stress responses, resistance and vulnerability of two economically important species from Sundarbans estuarine system- Penaeus monodon (prey) and Mystus gulio (predator) subjected to acute thermal challenges such as sudden heatwaves. Both the species were subjected to an increasing thermal ramp of 1°C h-1 from 22°C to 42°C. Organisms were observed continuously throughout the ramping period and changes in the locomotory behaviour were followed until their loss of equilibrium. The digestive tissue samples were dissected out from both M. gulio and P. monodon at every 2°C and also after a recovery period of 48 h. The SOD, CAT, GST, LPO were measured and integrated biomarker response (IBR) was analysed. The results from thermal tolerance maxima estimation, biomarker study, IBR responses indicated more intense stress response in fish M. gulio whereas recovery potential was greater in shrimp P. monodon. Our findings corroborate the 'trophic sensitivity hypothesis' which advocates predators to be less tolerant in aggravated environmental stress than their prey.
Collapse
Affiliation(s)
- Sritama Baag
- Marine Ecology Laboratory, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata, 700073, India
| | - Sumit Mandal
- Marine Ecology Laboratory, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata, 700073, India.
| |
Collapse
|
15
|
Kır M, Sunar MC, Topuz M, Sarıipek M. Thermal acclimation capacity and standard metabolism of the Pacific white shrimp Litopenaeus vannamei (Boone, 1931) at different temperature and salinity combinations. J Therm Biol 2023; 112:103429. [PMID: 36796886 DOI: 10.1016/j.jtherbio.2022.103429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 11/09/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
In aquatic environments, rising temperatures reduce the oxygen content of the water while increasing the oxygen demand of organisms. In intensive shrimp culture, it is of great importance to know the thermal tolerance of cultured species and their oxygen consumption since this affects the physiological condition. In this study, the thermal tolerance of Litopenaeus vannamei was determined by dynamic and static thermal methodologies at different acclimation temperatures (15, 20, 25, and 30 °C) and salinities (10, 20, and 30 ppt). The oxygen consumption rate (OCR) was also measured to determine the standard metabolic rate (SMR) of shrimp. Acclimation temperature significantly affected the thermal tolerance and SMR of Litopenaeus vannamei (P < 0.01). Salinity had a large effect on SMR (P < 0.01) but did not influence the thermal acclimation of the shrimp (P > 0.01). Litopenaeus vannamei is a species that has high thermal tolerance and can survive at extreme temperatures (CTmin-CTmax: 7.2-41.9 °C) with its large dynamic (988, 992, and 1004 °C2) and static thermal polygon areas (748, 778 and 777 °C2) developed at the above temperature and salinity combinations and resistance zone (1001, 81 and 82 °C2). The optimal temperature range of Litopenaeus vannamei is the 25-30 °C range, where a decrease in standard metabolism is determined with increasing temperature. Given the SMR and optimal temperature range, the results of this study indicate that Litopenaeus vannamei should be cultured at 25-30 °C for effective production.
Collapse
Affiliation(s)
- Mehmet Kır
- Faculty of Fisheries, Mugla Sitki Kocman University, 48000, Kotekli, Mugla, Turkey.
| | - Murat Can Sunar
- Faculty of Fisheries, Mugla Sitki Kocman University, 48000, Kotekli, Mugla, Turkey
| | - Mustafa Topuz
- Faculty of Fisheries, Mugla Sitki Kocman University, 48000, Kotekli, Mugla, Turkey
| | - Merve Sarıipek
- Faculty of Fisheries, Sinop University, 57000, Akliman, Sinop, Turkey
| |
Collapse
|
16
|
Kumar V, Roy S, Behera BK, Das BK. Heat Shock Proteins (Hsps) in Cellular Homeostasis: A Promising Tool for Health Management in Crustacean Aquaculture. Life (Basel) 2022; 12:1777. [PMID: 36362932 PMCID: PMC9699388 DOI: 10.3390/life12111777] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 09/28/2023] Open
Abstract
Heat shock proteins (Hsps) are a family of ubiquitously expressed stress proteins and extrinsic chaperones that are required for viability and cell growth in all living organisms. These proteins are highly conserved and produced in all cellular organisms when exposed to stress. Hsps play a significant role in protein synthesis and homeostasis, as well as in the maintenance of overall health in crustaceans against various internal and external environmental stresses. Recent reports have suggested that enhancing in vivo Hsp levels via non-lethal heat shock, exogenous Hsps, or plant-based compounds, could be a promising strategy used to develop protective immunity in crustaceans against both abiotic and biotic stresses. Hence, Hsps as the agent of being an immune booster and increasing disease resistance will present a significant advancement in reducing stressful conditions in the aquaculture system.
Collapse
Affiliation(s)
| | | | - Bijay Kumar Behera
- Aquatic Environmental Biotechnology and Nanotechnology (AEBN) Division, ICAR-Central Inland Fisheries Research Institute (CIFRI), Barrackpore 700120, India
| | - Basanta Kumar Das
- Aquatic Environmental Biotechnology and Nanotechnology (AEBN) Division, ICAR-Central Inland Fisheries Research Institute (CIFRI), Barrackpore 700120, India
| |
Collapse
|
17
|
Nancollas SJ, Todgham AE. The influence of stochastic temperature fluctuations in shaping the physiological performance of the California mussel, Mytilus californianus. J Exp Biol 2022; 225:276100. [PMID: 35749162 DOI: 10.1242/jeb.243729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 06/20/2022] [Indexed: 11/20/2022]
Abstract
Climate change is forecasted to increase temperature variability and stochasticity. Most of our understanding of thermal physiology of intertidal organisms has come from laboratory experiments that acclimate organisms to submerged conditions and steady-state increases in temperatures. For organisms experiencing the ebb and flow of tides with unpredictable low tide aerial temperatures, the reliability of reported tolerances and thus predicted responses to climate change requires incorporation of environmental complexity into empirical studies. Using the mussel Mytilus californianus, our study examined how stochasticity of the thermal regime influences physiological performance. Mussels were acclimated to either submerged conditions or a tidal cycle that included either predictable, unpredictable or no thermal stress during daytime low tide. Physiological performance was measured through anaerobic metabolism, energy stores and cellular stress mechanisms just before low tide, and cardiac responses during a thermal ramp. Both air exposure and stochasticity of temperature change were important in determining thermal performance. Glycogen content was highest in the mussels from the unpredictable treatment, but there was no difference in the expression of heat shock proteins between thermal treatments, suggesting that mussels prioritise energy reserves to deal with unpredictable low tide conditions. Mussels exposed to fluctuating thermal regimes had lower gill anaerobic metabolism, which could reflect increased metabolic capacity. Our results suggest that while thermal magnitude plays an important role in shaping physiological performance, other key elements of the intertidal environment complexity such as stochasticity, thermal variability, and thermal history are also important considerations for determining how species will respond to climate warming.
Collapse
Affiliation(s)
- Sarah J Nancollas
- Department of Animal Science, University of California Davis, Davis, CA USA
| | - Anne E Todgham
- Department of Animal Science, University of California Davis, Davis, CA USA
| |
Collapse
|
18
|
Noer NK, Sørensen MH, Colinet H, Renault D, Bahrndorff S, Kristensen TN. Rapid Adjustments in Thermal Tolerance and the Metabolome to Daily Environmental Changes - A Field Study on the Arctic Seed Bug Nysius groenlandicus. Front Physiol 2022; 13:818485. [PMID: 35250620 PMCID: PMC8889080 DOI: 10.3389/fphys.2022.818485] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
Laboratory investigations on terrestrial model-species, typically of temperate origin, have demonstrated that terrestrial ectotherms can cope with daily temperature variations through rapid hardening responses. However, few studies have investigated this ability and its physiological basis in the field. Especially in polar regions, where the temporal and spatial temperature variations can be extreme, are hardening responses expected to be important. Here, we examined diurnal adjustments in heat and cold tolerance in the Greenlandic seed bug Nysius groenlandicus by collecting individuals for thermal assessment at different time points within and across days. We found a significant correlation between observed heat or cold tolerance and the ambient microhabitat temperatures at the time of capture, indicating that N. groenlandicus continuously and within short time-windows respond physiologically to thermal changes and/or other environmental variables in their microhabitats. Secondly, we assessed underlying metabolomic fingerprints using GC-MS metabolomics in a subset of individuals collected during days with either low or high temperature variation. Concentrations of metabolites, including sugars, polyols, and free amino acids varied significantly with time of collection. For instance, we detected elevated sugar levels in animals caught at the lowest daily field temperatures. Polyol concentrations were lower in individuals collected in the morning and evening and higher at midday and afternoon, possibly reflecting changes in temperature. Additionally, changes in concentrations of metabolites associated with energetic metabolism were observed across collection times. Our findings suggest that in these extreme polar environments hardening responses are marked and likely play a crucial role for coping with microhabitat temperature variation on a daily scale, and that metabolite levels are actively altered on a daily basis.
Collapse
Affiliation(s)
- Natasja Krog Noer
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | | | - Hervé Colinet
- UMR 6553, CNRS, Ecosystèmes, Biodiversité, Évolution, University of Rennes 1, Rennes, France
| | - David Renault
- UMR 6553, CNRS, Ecosystèmes, Biodiversité, Évolution, University of Rennes 1, Rennes, France
- Institut Universitaire de France, Paris, France
| | - Simon Bahrndorff
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | | |
Collapse
|
19
|
Manzon LA, Zak MA, Agee M, Boreham DR, Wilson JY, Somers CM, Manzon RG. Thermal acclimation alters both basal heat shock protein gene expression and the heat shock response in juvenile lake whitefish (Coregonus clupeaformis). J Therm Biol 2022; 104:103185. [DOI: 10.1016/j.jtherbio.2021.103185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/21/2021] [Accepted: 12/31/2021] [Indexed: 12/26/2022]
|
20
|
Molecular Responses to Thermal and Osmotic Stress in Arctic Intertidal Mussels (Mytilus edulis): The Limits of Resilience. Genes (Basel) 2022; 13:genes13010155. [PMID: 35052494 PMCID: PMC8774603 DOI: 10.3390/genes13010155] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/04/2022] [Accepted: 01/13/2022] [Indexed: 02/04/2023] Open
Abstract
Increases in Arctic temperatures have accelerated melting of the Greenland icesheet, exposing intertidal organisms, such as the blue mussel Mytilus edulis, to high air temperatures and low salinities in summer. However, the interaction of these combined stressors is poorly described at the transcriptional level. Comparing expression profiles of M. edulis from experimentally warmed (30 °C and 33 °C) animals kept at control (23‰) and low salinities (15‰) revealed a significant lack of enrichment for Gene Ontology terms (GO), indicating that similar processes were active under all conditions. However, there was a progressive increase in the abundance of upregulated genes as each stressor was applied, with synergistic increases at 33 °C and 15‰, suggesting combined stressors push the animal towards their tolerance thresholds. Further analyses comparing the effects of salinity alone (23‰, 15‰ and 5‰) showed high expression of stress and osmoregulatory marker genes at the lowest salinity, implying that the cell is carrying out intracellular osmoregulation to maintain the cytosol as hyperosmotic. Identification of aquaporins and vacuolar-type ATPase transcripts suggested the cell may use fluid-filled cavities to excrete excess intracellular water, as previously identified in embryonic freshwater mussels. These results indicate that M. edulis has considerable resilience to heat stress and highly efficient mechanisms to acclimatise to lowered salinity in a changing world.
Collapse
|
21
|
Collins M, Peck LS, Clark MS. Large within, and between, species differences in marine cellular responses: Unpredictability in a changing environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148594. [PMID: 34225140 DOI: 10.1016/j.scitotenv.2021.148594] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/13/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Predicting the impacts of altered environments on future biodiversity requires a detailed understanding of organism responses to change. To date, studies evaluating mechanisms underlying marine organism stress responses have largely concentrated on oxygen limitation and the use of heat shock proteins as biomarkers. However, whether these biomarkers represent responses that are consistent across species and different environmental stressors remains open to question. Here we show that responses to four different thermal stresses (three rates of thermal ramping (1 °C h-1, 1 °C day-1 or 1 °C 3 day-1) and a three-month acclimation to warming of 2 °C) applied to three species of Antarctic marine invertebrate produced highly individual responses in gene expression profiles, both within and between species. Mapping the gene expression profiles from each treatment for each of the three species, identified considerable difference in numbers of differentially regulated transcripts ranging from 10 to 3011. When these data were correlated across the different temperature treatments, there was no evidence for a common response with only 0-2 transcripts shared between all four treatments within any one species. There were also no shared differentially expressed genes across species, even at the same thermal ramping rates. The classical cellular stress response (CSR) i.e. up-regulation of heat shock proteins, was only strongly present in two species at the fastest ramping rate of 1 °C h-1, albeit with different sets of stress genes expressed in each species. These data demonstrate the wide variability in response to warming at the molecular level in marine species. Therefore, identification of biodiversity stress responses engendered by changing conditions will require evaluation at the species level using targeted key members of the ecosystem, strongly correlated to the local biotic and abiotic factors.
Collapse
Affiliation(s)
- Michael Collins
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 OET, UK; Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - Lloyd S Peck
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 OET, UK
| | - Melody S Clark
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 OET, UK.
| |
Collapse
|
22
|
Dong YW, Liao ML, Han GD, Somero GN. An integrated, multi-level analysis of thermal effects on intertidal molluscs for understanding species distribution patterns. Biol Rev Camb Philos Soc 2021; 97:554-581. [PMID: 34713568 DOI: 10.1111/brv.12811] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022]
Abstract
Elucidating the physiological mechanisms that underlie thermal stress and discovering how species differ in capacities for phenotypic acclimatization and evolutionary adaptation to this stress is critical for understanding current latitudinal and vertical distribution patterns of species and for predicting their future state in a warming world. Such mechanistic analyses require careful choice of study systems (species and temperature-sensitive traits) and design of laboratory experiments that reflect the complexities of in situ conditions. Here, we critically review a wide range of studies of intertidal molluscs that provide mechanistic accounts of thermal effects across all levels of biological organization - behavioural, organismal, organ level, cellular, molecular, and genomic - and show how temperature-sensitive traits govern distribution patterns and capacities for coping with thermal stress. Comparisons of congeners from different thermal habitats are especially effective means for identifying adaptive variation. We employ these mechanistic analyses to illustrate how species differ in the severity of threats posed by rising temperature. Counterintuitively, we show that some of the most heat-tolerant species may be most threatened by increases in temperatures because of their small thermal safety margins and minimal abilities to acclimatize to higher temperatures. We discuss recent molecular biological and genomic studies that provide critical foundations for understanding the types of evolutionary changes in protein structure, RNA secondary structure, genome content, and gene expression capacities that underlie adaptation to temperature. Duplication of stress-related genes, as found in heat-tolerant molluscs, may provide enhanced capacity for coping with higher temperatures. We propose that the anatomical, behavioural, physiological, and genomic diversity found among intertidal molluscs, which commonly are of critical importance and high abundance in these ecosystems, makes this group of animals a highly appropriate study system for addressing questions about the mechanistic determinants of current and future distribution patterns of intertidal organisms.
Collapse
Affiliation(s)
- Yun-Wei Dong
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao, 266003, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China
| | - Ming-Ling Liao
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Guo-Dong Han
- College of Life Science, Yantai University, Yantai, 264005, China
| | - George N Somero
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, California, 93950, U.S.A
| |
Collapse
|
23
|
Waite HR, Sorte CJB. Negative carry-over effects on larval thermal tolerances across a natural thermal gradient. Ecology 2021; 103:e03565. [PMID: 34674265 DOI: 10.1002/ecy.3565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/11/2021] [Accepted: 07/20/2021] [Indexed: 11/10/2022]
Abstract
Under climate change, marine organisms will need to tolerate or adapt to increasing temperatures to persist. The ability of populations to cope with thermal stress may be influenced by conditions experienced by parents, by both genetic changes and transgenerational phenotypic plasticity through epigenetics or maternal provisioning. In organisms with complex life cycles, larval stages are particularly vulnerable to stress. Positive parental carry-over effects occur if more stressful parental environments yield more tolerant offspring while the opposite pattern leads to negative carry-over effects. This study evaluated the role of parental effects in determining larval thermal tolerances for the intertidal mussel, Mytilus californianus. We tested whether thermal environments across a natural gradient (shoreline elevation) impacted mussel temperature tolerances. Lethal thermal limits were compared for field-collected adults and their larvae. We observed parental effects across one generation, in which adult mussels exposed to warmer habitats yielded less tolerant offspring. Interestingly, although parental environments influenced offspring tolerances, we found no clear effects of habitat conditions on adult phenotypes (tolerances). We found indicators of trade-offs in energy investment, with higher reproductive condition and larger egg diameters in low stress environments. These results suggest that parental effects are negative, leading to possible adverse effects of thermal stress on the next generation.
Collapse
Affiliation(s)
- Heidi R Waite
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, California, 92697-2525, USA
| | - Cascade J B Sorte
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, California, 92697-2525, USA
| |
Collapse
|
24
|
Zhang W, Dong Y. Membrane lipid metabolism, heat shock response and energy costs mediate the interaction between acclimatization and heat-hardening response in the razor clam Sinonovacula constricta. J Exp Biol 2021; 224:272389. [PMID: 34499178 DOI: 10.1242/jeb.243031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/06/2021] [Indexed: 12/29/2022]
Abstract
Thermal plasticity on different time scales, including acclimation/acclimatization and heat-hardening response - a rapid adjustment for thermal tolerance after non-lethal thermal stress, can interact to improve the resilience of organisms to thermal stress. However, little is known about physiological mechanisms mediating this interaction. To investigate the underpinnings of heat-hardening responses after acclimatization in warm seasons, we measured thermal tolerance plasticity, and compared transcriptomic and metabolomic changes after heat hardening at 33 or 37°C followed by recovery of 3 or 24 h in an intertidal bivalve Sinonovacula constricta. Clams showed explicit heat-hardening responses after acclimatization in a warm season. The higher inducing temperature (37°C) caused less effective heat-hardening effects than the inducing temperature that was closer to the seasonal maximum temperature (33°C). Metabolomic analysis highlighted the elevated content of glycerophospholipids in all heat-hardened clams, which may help to maintain the structure and function of the membrane. Heat shock proteins (HSPs) tended to be upregulated after heat hardening at 37°C but not at 33°C, indicating that there was no complete dependency of heat-hardening effects on upregulated HSPs. Enhanced energy metabolism and decreased energy reserves were observed after heat hardening at 37°C, suggesting more energy costs during exposure to a higher inducing temperature, which may restrict heat-hardening effects. These results highlight the mediating role of membrane lipid metabolism, heat shock responses and energy costs in the interaction between heat-hardening response and seasonal acclimatization, and contribute to the mechanistic understanding of evolutionary change and thermal plasticity during global climate change.
Collapse
Affiliation(s)
- Wenyi Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China.,Institute of Animal Genetic Resource, Nanjing Normal University, Nanjing 210046, China
| | - Yunwei Dong
- Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266003, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
| |
Collapse
|
25
|
Mincarelli LF, Rotchell JM, Chapman EC, Turner AP, Wollenberg Valero KC. Consequences of combined exposure to thermal stress and the plasticiser DEHP in Mytilus spp. differ by sex. MARINE POLLUTION BULLETIN 2021; 170:112624. [PMID: 34146859 DOI: 10.1016/j.marpolbul.2021.112624] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 06/12/2023]
Abstract
Little is known about the combined effect of environmental factors and contaminants on commercially important marine species, and whether this effect differs by sex. In this study, blue mussels were exposed for seven days to both single and combined stressors (i.e., +3 °C elevated temperature and two environmentally relevant concentrations of the plastic softener DEHP, 0.5 and 50 μg/l) in a factorial design. Males were observed to be more sensitive to high temperature, demonstrated by the significant increase in out-of-season spawning gonads and higher gene expression of the antioxidant catalase and the estrogen receptor genes. On the other hand, while the gametogenesis cycle in females was more resilient than in males, DEHP exposure altered the estrogen-related receptor gene expression. We show that the combined stressors DEHP and increased temperature, in environmentally relevant magnitudes, have different consequences in male and female mussels, with the potential to impact the timing and breeding season success in Mytilus spp.
Collapse
Affiliation(s)
| | - Jeanette M Rotchell
- Department of Biological and Marine Sciences, University of Hull, Hull HU6 7RX, United Kingdom
| | - Emma C Chapman
- Department of Biological and Marine Sciences, University of Hull, Hull HU6 7RX, United Kingdom
| | - Alexander P Turner
- Department of Computer Science, University of Nottingham, NG8 1BB, United Kingdom
| | | |
Collapse
|
26
|
Georgoulis I, Feidantsis K, Giantsis IA, Kakale A, Bock C, Pörtner HO, Sokolova IM, Michaelidis B. Heat hardening enhances mitochondrial potential for respiration and oxidative defence capacity in the mantle of thermally stressed Mytilus galloprovincialis. Sci Rep 2021; 11:17098. [PMID: 34429490 PMCID: PMC8384858 DOI: 10.1038/s41598-021-96617-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023] Open
Abstract
Ectotherms are exposed to a range of environmental temperatures and may face extremes beyond their upper thermal limits. Such temperature extremes can stimulate aerobic metabolism toward its maximum, a decline in aerobic substrate oxidation, and a parallel increase of anaerobic metabolism, combined with ROS generation and oxidative stress. Under these stressful conditions, marine organisms recruit several defensive strategies for their maintenance and survival. However, thermal tolerance of ectothermic organisms may be increased after a brief exposure to sub-lethal temperatures, a process known as "hardening". In our study, we examined the ability of M. galloprovincialis to increase its thermal tolerance under the effect of elevated temperatures (24, 26 and 28 °C) through the "hardening" process. Our results demonstrate that this process can increase the heat tolerance and antioxidant defense of heat hardened mussels through more efficient ETS activity when exposed to temperatures beyond 24 °C, compared to non-hardened individuals. Enhanced cell protection is reflected in better adaptive strategies of heat hardened mussels, and thus decreased mortality. Although hardening seems a promising process for the maintenance of aquacultured populations under increased seasonal temperatures, further investigation of the molecular and cellular mechanisms regulating mussels' heat resistance is required.
Collapse
Affiliation(s)
- Ioannis Georgoulis
- grid.4793.90000000109457005Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Konstantinos Feidantsis
- grid.4793.90000000109457005Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioannis A. Giantsis
- grid.184212.c0000 0000 9364 8877Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, 53100 Florina, Greece
| | - Asimina Kakale
- grid.4793.90000000109457005Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Christian Bock
- grid.10894.340000 0001 1033 7684Alfred-Wegener-Institut, Helmholtz-Center for Polar and Marine Research, Integrative Ecophysiology, Postfach 120161, 27515 Bremerhaven, Germany
| | - Hans O. Pörtner
- grid.10894.340000 0001 1033 7684Alfred-Wegener-Institut, Helmholtz-Center for Polar and Marine Research, Integrative Ecophysiology, Postfach 120161, 27515 Bremerhaven, Germany
| | - Inna M. Sokolova
- grid.10493.3f0000000121858338Department of Marine Biology, Institute for Biological Sciences, University of Rostock, A.-Einstein Str., 3, 18055 Rostock, Germany
| | - Basile Michaelidis
- grid.4793.90000000109457005Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
27
|
Bultelle F, Boutet I, Devin S, Caza F, St-Pierre Y, Péden R, Brousseau P, Chan P, Vaudry D, Le Foll F, Fournier M, Auffret M, Rocher B. Molecular response of a sub-antarctic population of the blue mussel (Mytilus edulis platensis) to a moderate thermal stress. MARINE ENVIRONMENTAL RESEARCH 2021; 169:105393. [PMID: 34217095 DOI: 10.1016/j.marenvres.2021.105393] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
The Kerguelen Islands (49°26'S, 69°50'E) represent a unique environment due to their geographical isolation, which protects them from anthropogenic pollution. The ability of the endemic mussel, part of the Mytilus complex, to cope with moderate heat stress was explored using omic tools. Transcripts involved in six major metabolic functions were selected and the qRT-PCR data indicated mainly changes in aerobic and anaerobic energy metabolism and stress response. Proteomic comparisons revealed a typical stress response pattern with cytoskeleton modifications and elements suggesting increased energy metabolism. Results also suggest conservation of protein homeostasis by the long-lasting presence of HSP while a general decrease in transcription is observed. The overall findings are consistent with an adaptive response to moderate stresses in mussels in good physiological condition, i.e. living in a low-impact site, and with the literature concerning this model species. Therefore, local blue mussels could be advantageously integrated into biomonitoring strategies, especially in the context of Global Change.
Collapse
Affiliation(s)
- F Bultelle
- UMR-I 02 INERIS-URCA-ULH SEBIO / Environmental Stresses and Biomonitoring of Aquatic Ecosystems, FR CNRS 3730 Scale, Université Le Havre Normandie, F-76063, Le Havre Cedex, France.
| | - I Boutet
- Station Biologique de Roscoff CNRS, Laboratory Adaptation & Diversity in Marine Environment (UMR7144 CNRS-SU), Sorbonne Université, Roscoff, France.
| | - S Devin
- UMR 7360 LIEC, Université Metz-Lorraine, France.
| | - F Caza
- INRS-Institut Armand-Frappier, 531 Boul. des Prairies, Laval, Québec, H7V 1B7, Canada.
| | - Y St-Pierre
- INRS-Institut Armand-Frappier, 531 Boul. des Prairies, Laval, Québec, H7V 1B7, Canada.
| | - R Péden
- UMR-I 02 INERIS-URCA-ULH SEBIO / Environmental Stresses and Biomonitoring of Aquatic Ecosystems, FR CNRS 3730 Scale, Université Le Havre Normandie, F-76063, Le Havre Cedex, France; UMR-I 02 INERIS-URCA-ULH SEBIO / Environmental Stresses and Biomonitoring of Aquatic Ecosystems, Université de REIMS Champagne-Ardenne, Campus Moulin de la Housse, 51687, Reims, France.
| | - P Brousseau
- Institut des Sciences de la mer, Le Parc de la rivière Mitis, Sainte-Flavie, Québec, G0J 2L0, Canada.
| | - P Chan
- Normandie Univ, UNIROUEN, Plateforme PISSARO, IRIB, 76821, Mont-Saint-Aignan, France.
| | - D Vaudry
- Normandie Univ, UNIROUEN, Plateforme PISSARO, IRIB, 76821, Mont-Saint-Aignan, France; Normandie Univ, UNIROUEN, INSERM U1239 DC2N, 76821, Mont-Saint-Aignan, France.
| | - F Le Foll
- UMR-I 02 INERIS-URCA-ULH SEBIO / Environmental Stresses and Biomonitoring of Aquatic Ecosystems, FR CNRS 3730 Scale, Université Le Havre Normandie, F-76063, Le Havre Cedex, France.
| | - M Fournier
- Institut des Sciences de la mer, Le Parc de la rivière Mitis, Sainte-Flavie, Québec, G0J 2L0, Canada.
| | - M Auffret
- UMR CNRS 6539-LEMAR/ Laboratoire des Sciences de l'Environnement Marin, Technopôle Brest-Iroise, 29280, Plouzané, France.
| | - B Rocher
- UMR-I 02 INERIS-URCA-ULH SEBIO / Environmental Stresses and Biomonitoring of Aquatic Ecosystems, FR CNRS 3730 Scale, Université Le Havre Normandie, F-76063, Le Havre Cedex, France.
| |
Collapse
|
28
|
Morash AJ, Speers-Roesch B, Andrew S, Currie S. The physiological ups and downs of thermal variability in temperate freshwater ecosystems. JOURNAL OF FISH BIOLOGY 2021; 98:1524-1535. [PMID: 33349944 DOI: 10.1111/jfb.14655] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Freshwater fish face a variety of spatiotemporal thermal challenges throughout their life. On a broad scale, temperature is an important driver of physiological, behavioural and ecological patterns and ultimately affects populations and overall distribution. These broad patterns are partly underpinned by the small-scale local effects of temperature on individuals within the population. Climate change is increasing the range of daily thermal variation in most freshwater ecosystems, altering behaviour and performance of resident fishes. The aim of this review is understanding how daily thermal variation in temperate rivers affects individual fish physiology, behaviour and overall performance. The following are highlighted in this study: (a) the physical characteristics of rivers that can either buffer or exacerbate thermal variability, (b) the effects of thermal variability on growth and metabolism, (c) the approaches for quantifying thermal variation and thermal stress and (d) how fish may acclimatize or adapt to our changing climate.
Collapse
Affiliation(s)
- Andrea J Morash
- Department of Biology, Mount Allison University, Sackville, New Brunswick, Canada
| | - Ben Speers-Roesch
- Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick, Canada
| | - Sean Andrew
- Department of Biology, Mount Allison University, Sackville, New Brunswick, Canada
| | - Suzanne Currie
- Department of Biology, Acadia University, Wolfville, Nova Scotia, Canada
| |
Collapse
|
29
|
Nguyen BV, O’Donnell B, Villamagna AM. The environmental context of inducible HSP70 expression in Eastern Brook Trout. CONSERVATION PHYSIOLOGY 2021; 9:coab022. [PMID: 33996100 PMCID: PMC8111384 DOI: 10.1093/conphys/coab022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 12/22/2020] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Much research has focused on the population-level effects of climate change on Eastern Brook Trout (Salvelinus fontinalis). While some studies have considered here sub-lethal stress caused by warming waters, the role of multiple, interacting stressors remains largely unexplored. We used inducible heat shock protein 70 (HSP70) as a molecular biomarker to assess in situ response of Eastern Brook Trout in headwater streams to multiple potential stressors, including temperature. Over 7 sampling events during 2018 and 2019, we sampled 141 fish and found that HSP70 expression and 3-day mean water temperature exhibited a quadratic relationship (R 2-adj = 0.68). Further analyses showed that HSP70 expression was explained by temperature, relative water level and their interaction (R 2-adj = 0.75), while fish size and capture location were not factors. We observed a significant increase in HSP70 expression during periods of low relative water level with warm temperatures (~18°C) and also during high relative water level with cold temperatures (~8°C). Our results suggest that temperatures at the edges of the preferred range coupled with relative water level might act together to trigger the cellular stress response in Eastern Brook Trout and that there is greater variation in response at colder temperatures. These findings reinforce the need to consider complex, interactive stressors in influencing the health and persistence of Eastern Brook Trout populations into the future.
Collapse
Affiliation(s)
- Bao V Nguyen
- Molecular and Cellular Biology, University of Massachusetts - Amherst, MA, USA
| | | | - Amy M Villamagna
- Environmental Science & Policy, Plymouth State University, NH, USA
| |
Collapse
|
30
|
Morgan Fleming J, Carter AW, Sheldon KS. Dung beetles show metabolic plasticity as pupae and smaller adult body size in response to increased temperature mean and variance. JOURNAL OF INSECT PHYSIOLOGY 2021; 131:104215. [PMID: 33662376 DOI: 10.1016/j.jinsphys.2021.104215] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 12/17/2020] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Though organisms may use thermal plasticity to cope with novel temperature regimes, our understanding of plastic responses is limited. Research on thermal plasticity has traditionally focused on the response of organisms to shifts in mean temperatures. However, increased temperature variation can have a greater impact on organismal performance than mean temperature alone. In addition, thermal plasticity studies are often designed to investigate plasticity in response to more extreme temperatures despite the fact that organisms make physiological adjustments to diurnal temperature fluctuations that they experience. Using pupae of the dung beetle Onthophagus taurus, we investigated the potential for plasticity in response to increasing temperature mean and variance using thermal regimes that were well within the species critical thermal limits. We reared 40 beetles from egg to pupae (n = 20) or adults (n = 20) at one of nine incubation treatments, including all combinations of three mean temperatures (22, 24, 26 °C) and three amplitudes of fluctuation (±2, ±4, ±8 °C). To measure thermal plasticity of pupae, we quantified CO2 production across a range of temperatures (i.e., 15, 20, 25, and 30 °C) for 20 beetles per treatment. The relationship between CO2 production and temperature provides an estimate of energetic costs at a given temperature (i.e., using the intercept) and thermal sensitivity (i.e., using the slope). We reared the remaining O. taurus in each treatment (n = 20) to adulthood and then recorded mass (g) to determine body size, a proxy for fitness. Pupae exhibited thermal plasticity in response to the additive and interactive effects of temperature mean and variance. Pupae reared in the warmest and most variable treatment (26 ± 8 °C) showed the greatest decrease in overall metabolism compared to all other treatments, and adult beetles from this treatment (26 ± 8 °C) were also significantly smaller than adult beetles from any other treatment. We found that both temperature mean and variance contributed to thermal plasticity of pupae and had consequences for adult body size, a trait related to dung beetle fitness. Importantly, the temperatures we used in our treatments are not extreme and are likely well below the critical thermal maxima of the species, demonstrating that organisms can make adjustments to temperatures they experience across diurnal or seasonal timescales.
Collapse
Affiliation(s)
- J Morgan Fleming
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, United States.
| | - Amanda W Carter
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, United States.
| | - Kimberly S Sheldon
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, United States.
| |
Collapse
|
31
|
Clark MS, Peck LS, Thyrring J. Resilience in Greenland intertidal Mytilus: The hidden stress defense. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144366. [PMID: 33434840 DOI: 10.1016/j.scitotenv.2020.144366] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 05/20/2023]
Abstract
The Arctic is experiencing particularly rapid rates of warming, consequently invasive boreal species are now able to survive the less extreme Arctic winter temperatures. Whilst persistence of intertidal and terrestrial species in the Arctic is primarily determined by their ability to tolerate the freezing winters, air temperatures in the Arctic summer can reach 36 °C in the intertidal, which is beyond the upper thermal limits of many marine species. This is normally lethal for the conspicuous ecosystem engineer Mytilus edulis. Transcriptomic analyses were undertaken on both in situ collected and experimentally warmed animals to understand whether M. edulis is able to tolerate these very high summer temperatures. Surprisingly there was no significant enrichment for Gene Ontology terms (GO) when comparing the inner and outer fjord intertidal animals with outer fjord subtidal (control) animals, representing animals collected at 27 °C, 19 °C and 3 °C respectively. This lack of differentiation indicated a wide acclimation ability in this species. Conversely, significant enrichment for processes such as signal transduction, cytoskeleton and cellular protein modification was identified in the expression profiles of the 22 °C and 32 °C experimentally heated animals. This difference in gene expression between in situ collected and experimentally warmed animals was almost certainly due to the former being acclimated to a fluctuating, but predictable, temperature regime, which has increased their thermal tolerances. Interestingly, there was no evidence for enrichment of the classical cellular stress response in any of the animals sampled. Identification of a massive expansion of the HSPA12 heat shock protein 70 kDa gene family presented the possibility of these genes acting as intertidal regulators underpinning thermal resilience. This expansion has resulted in a modified cellular stress response, as an evolutionary adaptation to the rigour of the invasive intertidal life style. Thus, M. edulis appear to have considerable capacity to withstand the current rates of Arctic warming, and the very large attendant thermal variation.
Collapse
Affiliation(s)
- Melody S Clark
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK.
| | - Lloyd S Peck
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK
| | - Jakob Thyrring
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK; Department of Zoology, University of British Columbia, 4200 - 6270 University Blvd., V6T 1Z4 Vancouver, British Columbia, Canada; Department of Bioscience - Marine Ecology, Aarhus University, Vejlsøvej 25, Silkeborg 8600, Denmark
| |
Collapse
|
32
|
Nielsen MB, Vogensen TK, Thyrring J, Sørensen JG, Sejr MK. Freshening increases the susceptibility to heat stress in intertidal mussels (Mytilus edulis) from the Arctic. J Anim Ecol 2021; 90:1515-1524. [PMID: 33713446 DOI: 10.1111/1365-2656.13472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/25/2021] [Indexed: 12/29/2022]
Abstract
Temperatures in the Arctic are increasing at a faster pace than at lower latitudes resulting in range expansion of boreal species. In Greenland, the warming also drives accelerating melt of the Greenland Ice Sheet resulting in more meltwater entering Greenland fjords in summer. Our aim was to determine if increasing summer temperatures combined with lower salinity can induce the expression of stress-related proteins, for example, heat shock protein, in boreal intertidal mussels in Greenland, and whether low salinity reduces the upper thermal limit at which mortality occurs. We conducted a mortality experiment, using 12 different combinations of salinity and air temperature treatments during a simulated tidal regime, and quantified the change in mRNA levels of five stress-related genes (hsp24, hsp70, hsp90, sod and p38) in surviving mussels to discern the level of sublethal stress. Heat-induced mortality occurred in mussels exposed to an air temperature of 30°C and mortality was higher in treatments with lowered salinity (5 and 15‰), which confirms that low habitat salinity decreases the upper thermal limit of Mytilus edulis. The gene expression analysis supported the mortality results, with the highest gene expression found at combinations of high temperature and low salinity. Combined with seasonal measurements of intertidal temperatures in Greenland, we suggest heat stress occurs in low salinity intertidal area, and that further lowered salinity in coastal water due to increased run-off can make intertidal bivalves more susceptible to summer heat stress. This study thus provides an example of how different impacts of climate warming can work synergistically to stress marine organisms.
Collapse
Affiliation(s)
- Martin B Nielsen
- Department of Biology, Arctic Research Centre, Aarhus University, Aarhus C, Denmark
| | - Trine K Vogensen
- Department of Biology, Arctic Research Centre, Aarhus University, Aarhus C, Denmark
| | - Jakob Thyrring
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada.,Department of Bioscience, Marine Ecology, Aarhus University, Silkeborg, Denmark.,British Antarctic Survey, Natural Environment Research Council, Cambridge, UK.,Homerton College, University of Cambridge, Cambridge, UK
| | - Jesper G Sørensen
- Department of Biology, Section for Genetics, Ecology and Evolution, Aarhus University, Aarhus C, Denmark
| | - Mikael K Sejr
- Department of Biology, Arctic Research Centre, Aarhus University, Aarhus C, Denmark.,Department of Bioscience, Marine Ecology, Aarhus University, Silkeborg, Denmark
| |
Collapse
|
33
|
Ndhlovu A, McQuaid CD, Monaco CJ. Ectoparasites reduce scope for growth in a rocky-shore mussel (Perna perna) by raising maintenance costs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:142020. [PMID: 32911171 DOI: 10.1016/j.scitotenv.2020.142020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Endolithic cyanobacteria are ubiquitous colonisers of organic and inorganic carbonate substrata that frequently attack the shells of mussels, eroding the shell to extract carbon, often with population infestation rates of >80%. This reduces host physiological condition and ultimately leads to shell collapse and mortality, compromising the services provided by these important ecosystem engineers. While the ecological implications of this and similar interactions have been examined, our understanding of the underlying mechanisms driving the physiological responses of infested hosts remains limited. Using field and laboratory experiments, we assessed the energetic costs of cyanobacterial infestation to the intertidal brown mussel (Perna perna). In the field we found that growth (measured as both increase in shell length and rate of biomineralization) and reproductive potential of clean mussels are greater than those of infested individuals. To explore the mechanisms behind these effects, we compared the energy allocation of parasite-free and infested mussels using the scope for growth (SFG) framework. This revealed a lower SFG in parasitized mussels attributed to an energetic imbalance caused by increased standard metabolic rates, without compensation through increased feeding or reduced excretion of ammonia. Separate laboratory assays showed no differences in calcium uptake rates, indicating that infested mussels do not compensate for shell erosion through increased mineralization. This suggests that the increased maintenance costs detected reflect repair of the organic component of the inner nacreous layer of the shell, an energetically more demanding process than mineralization. Thus, parasite-inflicted damage reduces SFG directly through the need for increased basal metabolic rate to drive shell repair without compensatory increases in energy intake. This study provides a first perspective of the physiological mechanisms underlying this parasite-host interaction, a critical step towards a comprehensive understanding of the ecological processes driving dynamics of this intertidal ecosystem engineer.
Collapse
Affiliation(s)
- Aldwin Ndhlovu
- Department of Zoology and Entomology, Rhodes University, Grahamstown 6140, South Africa.
| | - Christopher D McQuaid
- Department of Zoology and Entomology, Rhodes University, Grahamstown 6140, South Africa
| | - Cristián J Monaco
- Department of Zoology and Entomology, Rhodes University, Grahamstown 6140, South Africa; IFREMER, IRD, Institut Louis-Malardé, Univ Polynésie française, EIO, Taravao, F-98719 Tahiti, Polynésie française, France
| |
Collapse
|
34
|
Díaz-Jaramillo M, Pinoni S, Matos B, Marcoval A, Diniz MS. Stress responses to warming in the mussel Brachidontes rodriguezii (d'Orbigny, 1842) from different environmental scenarios. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 228:105647. [PMID: 33038724 DOI: 10.1016/j.aquatox.2020.105647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 09/09/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
The intertidal mussel B. rodriguezii is a representative species from hard bottom substrates where both anthropogenic and natural stressors are present. Pre-exposure to these different stressors can modify the tolerance to additional stressors such as warming. Moreover, this tolerance can vary depending on intraspecific variables such as the organism's sex. The effects of warming and its intraspecific variability in representative coastal species are crucial to understanding the tolerance to future environmental scenarios. The mussels were collected in different environmental scenarios, including low (Control), chemical (Harbour) and natural stressed (Estuary) sites, and then exposed to different water temperatures (10-30 °C) for 14 days. Lethal and sublethal responses were evaluated in different mussel populations. Thus, cumulative death rate, air survival time, heat shock proteins (HSC70/HSP70), total ubiquitin, catalase (CAT), glutathione-s-transferase (GST) and lipid peroxidation (TBARS) were assessed in mussels from different areas and different sexes. The results revealed diminished air survival time and high cumulative mortality rate in mussels collected at the harbour and those exposed to higher temperatures, respectively. The sublethal responses of the field animals showed different patterns according to the different areas investigated. Besides, the results revealed that these differences were also observed between sexes. Regarding the sublethal responses in mussels exposed to warming, the interactive effects of temperature and sites showed a strong influence on all biochemical parameters analyzed (p < 0.001). Therefore, harbour mussels showed a distinct pattern compared to other locations and reflecting the most damaging effects of warming. The influence of sex and its interactions with warming were also crucial in most of the sublethal responses (p < 0.05). Multivariate analysis was performed with all sublethal responses, and the different warming scenarios showed different groups according to the sites. In the predicted warming scenarios, males showed no differences between sites. In contrast to males, females showed differences between sites in the predicted and the worse-case warming scenarios. Our results highlight the importance of compensatory mechanisms in the mussel warming tolerance like HSP70. The influence of sex is also crucial in understanding warming tolerance in mussels chronically exposed to pollutants in their natural environment. Also, lethal endpoints are essential for understanding the non-reversibility signature of the observed biochemical responses.
Collapse
Affiliation(s)
- M Díaz-Jaramillo
- IIMyC, Estresores Múltiples en el Ambiente (EMA), FCEyN, UNMdP, CONICET, Funes 3350 (B7602AYL), Mar del Plata, 7600, Argentina.
| | - S Pinoni
- IIMyC, Estresores Múltiples en el Ambiente (EMA), FCEyN, UNMdP, CONICET, Funes 3350 (B7602AYL), Mar del Plata, 7600, Argentina
| | - B Matos
- UCIBIO-REQUIMTE, Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa. 2829-516, Caparica, Portugal
| | - A Marcoval
- IIMyC, Laboratorio de Acuicultura, FCEyN, UNMdP, CONICET, Funes 3350 (B7602AYL), Mar del Plata, 7600, Argentina
| | - M S Diniz
- UCIBIO-REQUIMTE, Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa. 2829-516, Caparica, Portugal
| |
Collapse
|
35
|
Kroeker KJ, Bell LE, Donham EM, Hoshijima U, Lummis S, Toy JA, Willis-Norton E. Ecological change in dynamic environments: Accounting for temporal environmental variability in studies of ocean change biology. GLOBAL CHANGE BIOLOGY 2020; 26:54-67. [PMID: 31743515 DOI: 10.1111/gcb.14868] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
The environmental conditions in the ocean have long been considered relatively more stable through time compared to the conditions on land. Advances in sensing technologies, however, are increasingly revealing substantial fluctuations in abiotic factors over ecologically and evolutionarily relevant timescales in the ocean, leading to a growing recognition of the dynamism of the marine environment as well as new questions about how this dynamism may influence species' vulnerability to global environmental change. In some instances, the diurnal or seasonal variability in major environmental change drivers, such as temperature, pH and seawater carbonate chemistry, and dissolved oxygen, can exceed the changes expected with continued anthropogenic global change. While ocean global change biologists have begun to experimentally test how variability in environmental conditions mediates species' responses to changes in the mean, the extensive literature on species' adaptations to temporal variability in their environment and the implications of this variability for their evolutionary responses has not been well integrated into the field. Here, we review the physiological mechanisms underlying species' responses to changes in temperature, pCO2 /pH (and other carbonate parameters), and dissolved oxygen, and discuss what is known about behavioral, plastic, and evolutionary strategies for dealing with variable environments. In addition, we discuss how exposure to variability may influence species' responses to changes in the mean conditions and highlight key research needs for ocean global change biology.
Collapse
Affiliation(s)
- Kristy J Kroeker
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Lauren E Bell
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Emily M Donham
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Umihiko Hoshijima
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Sarah Lummis
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Jason A Toy
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Ellen Willis-Norton
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| |
Collapse
|
36
|
Miller LP, Dowd WW. Repeatable patterns of small-scale spatial variation in intertidal mussel beds and their implications for responses to climate change. Comp Biochem Physiol A Mol Integr Physiol 2019; 236:110516. [DOI: 10.1016/j.cbpa.2019.06.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/20/2019] [Accepted: 06/24/2019] [Indexed: 12/25/2022]
|
37
|
Boroda AV, Kipryushina YO, Odintsova NA. Chemical modulation of apoptosis in molluscan cell cultures. Cell Stress Chaperones 2019; 24:905-916. [PMID: 31230213 PMCID: PMC6717236 DOI: 10.1007/s12192-019-01014-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/28/2019] [Accepted: 05/31/2019] [Indexed: 12/11/2022] Open
Abstract
This study focused on the alterations that occur in larval molluscan cells after administration of apoptotic inducers and inhibitors used in mammalian cells in response to cold stress. This is the first report on apoptosis modulation in molluscan cells assessed by flow cytometry. Mitochondrial activity, general caspase activation, and membrane integrity of control molluscan cells were compared to those processes in frozen-thawed molluscan cells, primary mouse embryonic fibroblasts, and human colon tumor cells prior to treatment and after incubation with apoptotic inducers or inhibitors. We tested three apoptotic inducers (staurosporine, camptothecin, and mitomycin C, routinely used for the chemical induction of apoptosis in different mammalian cells) and found that only staurosporine resulted in an evident apoptotic increase in molluscan cell cultures: 9.06% early apoptotic cells in comparison with 5.63% in control frozen-thawed cells and 20.6% late apoptotic cells in comparison with 10.68% in controls. Camptothecin did not significantly induce molluscan cell apoptosis but did cause a slight increase in the number of active cells after thawing. Mitomycin C produced similar results, but its effect was less pronounced. In addition, we hypothesize that the use of the apoptotic inhibitors could reduce apoptosis, which is significant after cryopreservation in molluscan cells; however, our attempts failed. Development in this direction is important for understanding the mechanisms of marine organisms' cold susceptibility.
Collapse
Affiliation(s)
- Andrey Victorovich Boroda
- National Scientific Center of Marine Biology of the Far Eastern Branch of the Russian Academy of Sciences, 17 Palchevsky St, Vladivostok, Primorsky krai, 690041, Russia.
| | - Yulia Olegovna Kipryushina
- National Scientific Center of Marine Biology of the Far Eastern Branch of the Russian Academy of Sciences, 17 Palchevsky St, Vladivostok, Primorsky krai, 690041, Russia
- Far Eastern Federal University, Vladivostok, Russia
| | - Nelly Adolphovna Odintsova
- National Scientific Center of Marine Biology of the Far Eastern Branch of the Russian Academy of Sciences, 17 Palchevsky St, Vladivostok, Primorsky krai, 690041, Russia
- Far Eastern Federal University, Vladivostok, Russia
| |
Collapse
|
38
|
Burnett NP, Sarà G. Functional responses of intertidal bivalves to repeated sub-lethal, physical disturbances. MARINE ENVIRONMENTAL RESEARCH 2019; 147:32-36. [PMID: 31000356 DOI: 10.1016/j.marenvres.2019.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 06/09/2023]
Abstract
In coastal habitats, physical disturbances of benthic organisms can be caused by natural events like wave-born objects and human activity like trampling, and these disturbances can be sub-lethal (e.g., resulting in the organism's displacement). We know little of how sessile organisms respond to physical disturbances such as displacements. Using Mytilaster minimus, a mussel that is native to the Mediterranean Sea, we tested how byssus production and oxygen uptake rates changed in response to different frequencies of disturbance events (10-60 events h-1). Mussels increased oxygen uptake rates but not byssus production with increasing disturbance frequencies (50-60 events h-1). Our results show that sub-lethal, physical disturbances can cause increased physiological rates in mussels if disturbances repeat rapidly. Therefore, sub-lethal, physical disturbances can have negative consequences for benthic organisms even if they do not cause immediate damage or mortality.
Collapse
Affiliation(s)
- Nicholas P Burnett
- Department of Integrative Biology, University of California, Berkeley, CA, 94720, United States.
| | - Gianluca Sarà
- Dipartimento di Scienze della Terra e del Mare, Università degli Studi di Palermo, Viale delle Scienze Ed. 16, 90128, Palermo, Italy
| |
Collapse
|
39
|
Gleason LU, Strand EL, Hizon BJ, Dowd WW. Plasticity of thermal tolerance and its relationship with growth rate in juvenile mussels ( Mytilus californianus). Proc Biol Sci 2019; 285:rspb.2017.2617. [PMID: 29669896 DOI: 10.1098/rspb.2017.2617] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/23/2018] [Indexed: 12/29/2022] Open
Abstract
Complex life cycles characterized by uncertainty at transitions between larval/juvenile and adult environments could favour irreversible physiological plasticity at such transitions. To assess whether thermal tolerance of intertidal mussels (Mytilus californianus) adjusts to post-settlement environmental conditions, we collected juveniles from their thermally buffered microhabitat from high- and low-shore locations at cool (wave-exposed) and warm (wave-protected) sites. Juveniles were transplanted to unsheltered cages at the two low sites or placed in a common garden. Juveniles transplanted to the warm site for one month in summer had higher thermal tolerance, regardless of origin site. By contrast, common-garden juveniles from all sites had lower tolerance indistinguishable from exposed site transplants. After six months in the field plus a common garden period, there was a trend for higher thermal tolerance at the protected site, while reduced thermal tolerance at both sites indicated seasonal acclimatization. Thermal tolerance and growth rate were inversely related after one but not six months; protected-site transplants were more tolerant but grew more slowly. In contrast to juveniles, adults from low-shore exposed and protected sites retained differences in thermal tolerance after common garden treatment in summer. Both irreversible and reversible forms of plasticity must be considered in organismal responses to changing environments.
Collapse
Affiliation(s)
- Lani U Gleason
- Department of Biology, Loyola Marymount University, 1 LMU Drive, Los Angeles, CA 90045, USA .,Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA 95819, USA
| | - Emma L Strand
- Department of Biology, Loyola Marymount University, 1 LMU Drive, Los Angeles, CA 90045, USA
| | - Brian J Hizon
- Department of Biology, Loyola Marymount University, 1 LMU Drive, Los Angeles, CA 90045, USA
| | - W Wesley Dowd
- Department of Biology, Loyola Marymount University, 1 LMU Drive, Los Angeles, CA 90045, USA.,School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA 99164, USA
| |
Collapse
|
40
|
Han GD, Cartwright SR, Ganmanee M, Chan BKK, Adzis KAA, Hutchinson N, Wang J, Hui TY, Williams GA, Dong YW. High thermal stress responses of Echinolittorina snails at their range edge predict population vulnerability to future warming. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 647:763-771. [PMID: 30092533 DOI: 10.1016/j.scitotenv.2018.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 07/26/2018] [Accepted: 08/01/2018] [Indexed: 06/08/2023]
Abstract
Populations at the edge of their species' distribution ranges are typically living at the physiological extreme of the environmental conditions they can tolerate. As a species' response to global change is likely to be largely determined by its physiological performance, subsequent changes in environmental conditions can profoundly influence populations at range edges, resulting in range extensions or retractions. To understand the differential physiological performance among populations at their distribution range edge and center, we measured levels of mRNA for heat shock protein 70 (hsp70) as an indicator of temperature sensitivity in two high-shore littorinid snails, Echinolittorina malaccana and E. radiata, between 1°N to 36°N along the NW Pacific coast. These Echinolittorina snails are extremely heat-tolerant and frequently experience environmental temperatures in excess of 55 °C when emersed. It was assumed that animals exhibiting high temperature sensitivity will synthesize higher levels of mRNA, which will thus lead to higher energetic costs for thermal defense. Populations showed significant geographic variation in temperature sensitivity along their range. Snails at the northern range edge of E. malaccana and southern range edge of E. radiata exhibited higher levels of hsp70 expression than individuals collected from populations at the center of their respective ranges. The high levels of hsp70 mRNA in populations at the edge of a species' distribution range may serve as an adaptive response to locally stressful thermal environments, suggesting populations at the edge of their distribution range are potentially more sensitive to future global warming.
Collapse
Affiliation(s)
- Guo-Dong Han
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Stephen R Cartwright
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region
| | - Monthon Ganmanee
- Faculty of Agricultural Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Benny K K Chan
- Research Centre for Biodiversity, Academia Sinica, Taipei 115, Taiwan
| | - Kee A A Adzis
- Marine Ecosystem Research Center, National University of Malaysia, 43600 UKM Bangi, Malaysia; SEAlutions Sdn Bhd, B-11-1, Viva building, No 378, Jalan Ipoh, 51200 Kuala Lumpur, Malaysia
| | - Neil Hutchinson
- TropWATER-Centre for Tropical Water and Aquatic Ecosystem Research, James Cook University Singapore, 149 Sims Drive, Singapore 387380, Singapore
| | - Jie Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Tommy Y Hui
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region
| | - Gray A Williams
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region.
| | - Yun-Wei Dong
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
41
|
Moyen NE, Somero GN, Denny MW. Impact of heating rate on cardiac thermal tolerance in the California mussel, Mytilus californianus. J Exp Biol 2019; 222:jeb.203166. [DOI: 10.1242/jeb.203166] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 08/01/2019] [Indexed: 01/06/2023]
Abstract
Intertidal communities of wave-swept rocky shores have served as a powerful model system for experiments in ecology, and mussels (the dominant competitor for space in the mid-intertidal zone) play a central role in determining community structure in this physically stressful habitat. Consequently, our ability to account for mussels’ physiological responses to thermal stress affects ecologists’ abilities to predict the impacts of a warming climate on this ecosystem. Here, we examine the effect of heating rate on cardiac thermal tolerance in the ribbed mussel, Mytilus californianus, comparing populations from high and low sites in the intertidal zone where emersion duration leads to different mean daily heating rates. Two temperature-related cardiac variables were examined: 1) the critical temperature (Hcrit) at which heart rate (HR) precipitously declines, and 2) flatline temperature (FLT) where HR reaches zero. Mussels were heated in air at slow, moderate, and fast rates, and heart rate was measured via an infrared sensor affixed to the shell. Faster heating rates significantly increased Hcrit in high-, but not low-zone mussels, and Hcrit was higher in high vs. - mussels, especially at the fastest heating rate. By contrast, FLT did not differ between zones, and was minimally affected by heating rate. Since heating rate significantly impacted high- but not low-zone mussels’ cardiac thermal tolerance, realistic zone-specific heating rates must be used in laboratory tests if those tests are to provide accurate information for ecological models attempting to predict the effects of increasing temperature on intertidal communities.
Collapse
Affiliation(s)
- Nicole E. Moyen
- Hopkins Marine Station, Department of Biology, Stanford University, USA
| | - George N. Somero
- Hopkins Marine Station, Department of Biology, Stanford University, USA
| | - Mark W. Denny
- Hopkins Marine Station, Department of Biology, Stanford University, USA
| |
Collapse
|
42
|
George MN, Pedigo B, Carrington E. Hypoxia weakens mussel attachment by interrupting DOPA cross-linking during adhesive plaque curing. J R Soc Interface 2018; 15:20180489. [PMID: 30355807 PMCID: PMC6228490 DOI: 10.1098/rsif.2018.0489] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/25/2018] [Indexed: 12/12/2022] Open
Abstract
Marine mussels (Mytilus spp.) attach to a wide variety of surfaces underwater using a network of byssal threads, each tipped with a protein-based adhesive plaque that uses the surrounding seawater environment as a curing agent. Plaques undergo environmental post-processing, requiring a basic seawater pH be maintained for up to 8 days for the adhesive to strengthen completely. Given the sensitivity of plaques to local pH conditions long after deposition, we investigated the effect of other aspects of the seawater environment that are known to vary in nearshore habitats on plaque curing. The effect of seawater temperature, salinity and dissolved oxygen concentration were investigated using tensile testing, atomic force microscopy and amino acid compositional analysis. High temperature (30°C) and hyposalinity (1 PSU) had no effect on adhesion strength, while incubation in hypoxia (0.9 mg l-1) caused plaques to have a mottled coloration and prematurely peel from substrates, leading to a 51% decrease in adhesion strength. AFM imaging of the plaque cuticle found that plaques cured in hypoxia had regions of lower stiffness throughout, indicative of reductions in DOPA cross-linking between adhesive proteins. A better understanding of the dynamics of plaque curing could aid in the design of better synthetic adhesives, particularly in medicine where adhesion must take place within wet body cavities.
Collapse
Affiliation(s)
- Matthew N George
- Friday Harbor Laboratories, 620 University Road, Friday Harbor, WA 98250, USA
- Department of Biology, University of Washington, 24 Kincaid Hall, Seattle, WA 98195, USA
| | - Benjamin Pedigo
- Department of Bioengineering, University of Washington, 720 15th Avenue NE, Seattle, WA 98105, USA
| | - Emily Carrington
- Friday Harbor Laboratories, 620 University Road, Friday Harbor, WA 98250, USA
- Department of Biology, University of Washington, 24 Kincaid Hall, Seattle, WA 98195, USA
| |
Collapse
|
43
|
Péden R, Rocher B, Chan P, Vaudry D, Poret A, Olivier S, Le Foll F, Bultelle F. Highly polluted life history and acute heat stress, a hazardous mix for blue mussels. MARINE POLLUTION BULLETIN 2018; 135:594-606. [PMID: 30301078 DOI: 10.1016/j.marpolbul.2018.07.066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 07/16/2018] [Accepted: 07/23/2018] [Indexed: 06/08/2023]
Abstract
Intertidal sessile organisms constitute through their life history unintended stress recorders. This study focuses on the impact of pollution on Mytilus edulis ability to cope with an additional stress. For this purpose, two acclimation stages to different temperatures were conducted before an acute stress exposure in mussels collected from a heavily polluted site. Gill proteomes were analyzed by 2DE and regulated proteins identified. Massive mortality was observed for organisms acclimated to colder temperatures. Despite this major difference, both groups shared a common response with a strong representation of proteoforms corresponding to "folding, sorting and degradation" processes. Nevertheless, surviving mussels exhibit a marked increase in protein degradation consistent with the observed decrease of cell defense proteins. Mussels acclimated to warmer temperature response is essentially characterized by an improved heat shock response. These results show the differential ability of mussels to face both pollution and acute heat stress, particularly for low-acclimated organisms.
Collapse
Affiliation(s)
- Romain Péden
- Laboratory of Ecotoxicology, UMR-I 02 SEBIO, Le Havre University, Normandy University, France; Université de Lorraine, CNRS, LIEC, F-57000 Metz, France.
| | - Béatrice Rocher
- Laboratory of Ecotoxicology, UMR-I 02 SEBIO, Le Havre University, Normandy University, France
| | - Philippe Chan
- Platform in proteomics PISSARO IRIB, Rouen University, Normandy University, France
| | - David Vaudry
- Platform in proteomics PISSARO IRIB, Rouen University, Normandy University, France; Laboratory of Neuronal and Neuroendocrine Differenciation and Communication, INSERM U982, Rouen University, Normandy University, France
| | - Agnès Poret
- Laboratory of Ecotoxicology, UMR-I 02 SEBIO, Le Havre University, Normandy University, France
| | - Stéphanie Olivier
- Laboratory of Ecotoxicology, UMR-I 02 SEBIO, Le Havre University, Normandy University, France
| | - Frank Le Foll
- Laboratory of Ecotoxicology, UMR-I 02 SEBIO, Le Havre University, Normandy University, France
| | - Florence Bultelle
- Laboratory of Ecotoxicology, UMR-I 02 SEBIO, Le Havre University, Normandy University, France
| |
Collapse
|
44
|
Putnam HM, Barott KL, Ainsworth TD, Gates RD. The Vulnerability and Resilience of Reef-Building Corals. Curr Biol 2018; 27:R528-R540. [PMID: 28586690 DOI: 10.1016/j.cub.2017.04.047] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Reef-building corals provide the foundation for the structural and biological diversity of coral-reef ecosystems. These massive biological structures, which can be seen from space, are the culmination of complex interactions between the tiny polyps of the coral animal in concert with its unicellular symbiotic algae and a wide diversity of closely associated microorganisms (bacteria, archaea, fungi, and viruses). While reef-building corals have persisted in various forms for over 200 million years, human-induced conditions threaten their function and persistence. The scope for loss associated with the destruction of coral reef systems is economically, biologically, physically and culturally immense. Here, we provide a micro-to-macro perspective on the biology of scleractinian corals and discuss how cellular processes of the host and symbionts potentially affect the response of these reef builders to the wide variety of both natural and anthropogenic stressors encountered by corals in the Anthropocene. We argue that the internal physicochemical settings matter to both the performance of the host and microbiome, as bio-physical feedbacks may enhance stress tolerance through environmentally mediated host priming and effects on microbiome ecological and evolutionary dynamics.
Collapse
Affiliation(s)
- Hollie M Putnam
- University of Rhode Island, Department of Biological Sciences, Kingston, RI, USA.
| | - Katie L Barott
- University of Pennsylvania, Department of Biology, Philadelphia, PA, USA; Hawaii Institute for Marine Biology, University of Hawai'i, Manoa, HI, USA
| | - Tracy D Ainsworth
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Australia
| | - Ruth D Gates
- Hawaii Institute for Marine Biology, University of Hawai'i, Manoa, HI, USA
| |
Collapse
|
45
|
Jurgens LJ, Gaylord B. Physical effects of habitat‐forming species override latitudinal trends in temperature. Ecol Lett 2017; 21:190-196. [DOI: 10.1111/ele.12881] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/04/2017] [Accepted: 10/19/2017] [Indexed: 01/08/2023]
Affiliation(s)
- L. J. Jurgens
- Bodega Marine Laboratory and Department of Evolution and Ecology University of California at Davis Bodega Bay CA USA
| | - B. Gaylord
- Bodega Marine Laboratory and Department of Evolution and Ecology University of California at Davis Bodega Bay CA USA
| |
Collapse
|
46
|
Passow CN, Henpita C, Shaw JH, Quackenbush CR, Warren WC, Schartl M, Arias-Rodriguez L, Kelley JL, Tobler M. The roles of plasticity and evolutionary change in shaping gene expression variation in natural populations of extremophile fish. Mol Ecol 2017; 26:6384-6399. [PMID: 28926156 DOI: 10.1111/mec.14360] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 12/22/2022]
Abstract
The notorious plasticity of gene expression responses and the complexity of environmental gradients complicate the identification of adaptive differences in gene regulation among populations. We combined transcriptome analyses in nature with common-garden and exposure experiments to establish cause-effect relationships between the presence of a physiochemical stressor and expression differences, as well as to test how evolutionary change and plasticity interact to shape gene expression variation in natural systems. We studied two evolutionarily independent population pairs of an extremophile fish (Poecilia mexicana) living in toxic, hydrogen sulphide (H2 S)-rich springs and adjacent nontoxic habitats and assessed genomewide expression patterns of wild-caught and common-garden-raised individuals exposed to different concentrations of H2 S. We found that 7.7% of genes that were differentially expressed between sulphidic and nonsulphidic ecotypes remained differentially expressed in the laboratory, indicating that sources of selection other than H2 S-or plastic responses to other environmental factors-contribute substantially to gene expression patterns observed in the wild. Concordantly differentially expressed genes in the wild and the laboratory were primarily associated with H2 S detoxification, sulphur processing and metabolic physiology. While shared, ancestral plasticity played a minor role in shaping gene expression variation observed in nature, we documented evidence for evolved population differences in the constitutive expression as well as the H2 S inducibility of candidate genes. Mechanisms underlying gene expression variation also varied substantially across the two ecotype pairs. These results provide a springboard for studying evolutionary modifications of gene regulatory mechanisms that underlie expression variation in locally adapted populations.
Collapse
Affiliation(s)
| | - Chathurika Henpita
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| | - Jennifer H Shaw
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| | - Corey R Quackenbush
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Wesley C Warren
- McDonnell Genome Institute, Washington University, St. Louis, MO, USA
| | - Manfred Schartl
- Physiological Chemistry, University of Würzburg, Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, University Clinic Würzburg, Würzburg, Germany.,Hagler Institute for Advanced Studies and Department of Biology, Texas A&M University, College Station, TX, USA
| | - Lenin Arias-Rodriguez
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, México
| | - Joanna L Kelley
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Michael Tobler
- Division of Biology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
47
|
Jiang R, Qi LD, Du YZ, Li YX. Thermotolerance and Heat-Shock Protein Gene Expression Patterns in Bemisia tabaci (Hemiptera: Aleyrodidae) Mediterranean in Relation to Developmental Stage. JOURNAL OF ECONOMIC ENTOMOLOGY 2017; 110:2190-2198. [PMID: 28961720 DOI: 10.1093/jee/tox224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Indexed: 06/07/2023]
Abstract
Temperature plays an important role in the growth, development, and geographic distribution of insects. There is convincing evidence that heat-shock proteins (HSPs) play important roles in helping organisms adapt to thermal stress. To better understand the physiological and ecological influence of thermal stress on the different development stages of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) Mediterranean species (MED), nymphs and adults were shocked with temperatures of 35, 38, and 41℃ for 1 and 2 h, respectively, and the survival rate, fecundity, and developmental duration were investigated in the laboratory. The expression levels of the hsp40, hsp70, and hsp90 genes were assessed using real-time PCR. The results indicate that the survival rates of the nymphs and adults decreased with increased temperature. A 2-h heat shock at 41℃ induced a significant reduction in fecundity in adults and an increase in developmental duration in young nymphs. Hsp90 showed higher temperature responses to thermal stress than hsp40 or hsp70. The expression levels of the hsps in the adults were significantly down-regulated by a 2-h heat shock at 41℃ compared with that by a 1-h treatment. A significant decrease in the expression levels of the hsps also occurred in the adults when the temperature increased from 38 to 41℃ for the 2-h treatment, whereas no significant decrease occurred in the nymphs. Compared with previous studies, we provide some evidence indicating that MED has the potential to adapt to a wider temperature range than the Middle East-Asia Minor 1 species.
Collapse
Affiliation(s)
- Rui Jiang
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Lan-Da Qi
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yu-Zhou Du
- Institute of Applied Entomology, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yuan-Xi Li
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| |
Collapse
|
48
|
Lucas ER, Romiguier J, Keller L. Gene expression is more strongly influenced by age than caste in the ant Lasius niger. Mol Ecol 2017; 26:5058-5073. [DOI: 10.1111/mec.14256] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/20/2017] [Accepted: 06/28/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Eric R. Lucas
- Department of Ecology and Evolution; Biophore, University of Lausanne; Lausanne Switzerland
- Department of Vector Biology; Liverpool School of Tropical Medicine; Liverpool UK
| | - Jonathan Romiguier
- Department of Ecology and Evolution; Biophore, University of Lausanne; Lausanne Switzerland
| | - Laurent Keller
- Department of Ecology and Evolution; Biophore, University of Lausanne; Lausanne Switzerland
| |
Collapse
|
49
|
Liu Y, Ma D, Zhao C, Xiao Z, Xu S, Xiao Y, Wang Y, Liu Q, Li J. The expression pattern of hsp70 plays a critical role in thermal tolerance of marine demersal fish: Multilevel responses of Paralichthys olivaceus and its hybrids (P. olivaceus ♀ × P. dentatus ♂) to chronic and acute heat stress. MARINE ENVIRONMENTAL RESEARCH 2017; 129:386-395. [PMID: 28689860 DOI: 10.1016/j.marenvres.2017.06.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 05/10/2017] [Accepted: 06/22/2017] [Indexed: 06/07/2023]
Abstract
Ocean warming has multifaceted impacts on marine organisms. This study investigated the different responses of Paralichthys olivaceus and the hybrids (P. olivaceus ♀ × P. dentatus ♂) to chronic and acute heat stress. By comparing their survival, behavioural and histological changes, we found that the hybrids possess a better thermal tolerance with a higher cumulative survival rate (CSR), relatively fewer behavioural changes and less gill damage. Moreover, we analysed the relationship between thermal tolerance and the hsp70 expression pattern and found that thermal tolerant species (the hybrids) exhibited higher threshold induction temperature, shorter durations, stronger magnitudes and a delay in hsp70 expression. We speculated that the expression mode of hsp70, rather than itself, plays a critical role in thermal tolerance. These findings would improve the understanding of hsp70 in future marine climate research and help clarify the profound effects of rising temperature on marine demersal fishes.
Collapse
Affiliation(s)
- Yifan Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Daoyuan Ma
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Chunyan Zhao
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhizhong Xiao
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Shihong Xu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yongshuang Xiao
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yanfeng Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Qinghua Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Jun Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
50
|
Cocci P, Capriotti M, Mosconi G, Palermo FA. Transcriptional variations in biomarkers of Mytilus galloprovincialis sampled from Central Adriatic coastal waters (Marche region, Italy). Biomarkers 2017; 22:537-547. [DOI: 10.1080/1354750x.2017.1315614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Paolo Cocci
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Martina Capriotti
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Gilberto Mosconi
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | | |
Collapse
|