1
|
Im H, Lee J, Oh JE, Song J, Jeong S. Epigenetic and Gene Expression Responses of Daphnia magna to Polyethylene and Polystyrene Microplastics. Molecules 2025; 30:1608. [PMID: 40286217 PMCID: PMC11990502 DOI: 10.3390/molecules30071608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 04/29/2025] Open
Abstract
Microplastics (MPs), ubiquitous environmental pollutants, pose substantial threats to aquatic ecosystems and organisms, including the model species Daphnia magna. This study examined the effects of polyethylene (PE) and polystyrene (PS) MPs on D. magna, focusing on their ingestion, epigenetic alterations, and transcriptional responses. Exposure experiments revealed a concentration-dependent accumulation of MPs, with PS particles showing higher ingestion rates due to their higher density and propensity for aggregation. Epigenetic analyses demonstrated that exposure to PE MPs significantly reduced the global DNA methylation (5-mC) of Daphnia magna, suggesting hypomethylation as a potential stress response. Conversely, the DNA hydroxymethylation (5-hmC) of Daphnia magna displayed variability under PS exposure. Transcriptional analysis identified a marked downregulation of Vitellogenin 1 (v1) and upregulation of Ecdysone Receptor B (ecr-b), highlighting the occurrence of stress-related and adaptive molecular responses. These findings enhance our understanding of the molecular and epigenetic effects of MPs on aquatic organisms, offering critical insights for the development of effective environmental management and conservation strategies in the face of escalating MP pollution.
Collapse
Affiliation(s)
- Hyungjoon Im
- Institute for Environment and Energy, Pusan National University, Busan 46241, Republic of Korea; (H.I.); (J.L.); (J.-E.O.)
| | - Jieun Lee
- Institute for Environment and Energy, Pusan National University, Busan 46241, Republic of Korea; (H.I.); (J.L.); (J.-E.O.)
| | - Jeong-Eun Oh
- Institute for Environment and Energy, Pusan National University, Busan 46241, Republic of Korea; (H.I.); (J.L.); (J.-E.O.)
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Jinyoung Song
- Center for Ecotoxicology and Environmental Future Research, Korea Institute of Toxicology, Jinju 52834, Republic of Korea;
| | - Sanghyun Jeong
- Institute for Environment and Energy, Pusan National University, Busan 46241, Republic of Korea; (H.I.); (J.L.); (J.-E.O.)
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
2
|
Altered expression of DNA methyltransferases and methylation status of the TLR4 and TNF-α promoters in COVID-19. Arch Virol 2023; 168:95. [PMID: 36840831 PMCID: PMC9959945 DOI: 10.1007/s00705-023-05722-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 01/10/2023] [Indexed: 02/26/2023]
Abstract
Epigenetic modifications play a significant role in the host's immune response to viral infection. Two epigenetic events, DNA methylation and histone acetylation, are crucial for modifying the chromatin architecture and the location of regulatory elements such as promoters and enhancers. In this case-control study, we evaluated the expression of genes involved in epigenetic machinery (DNMT1, DNMT3A, DNMT3B, HDAC2, and HDAC3) and the degree of methylation of promoters of immune response genes (IFITM1/2/3, TLR3/4, TNF-α, NF-κB, and MYD88) as well as global methylation (LINE-1 and global 5-mC) in blood samples from 120 COVID-19 patients (30 mild, 30 moderate, 30 severe, and 30 critical) and 30 healthy subjects without COVID-19. In contrast to previous reports, DNMT3A and DNMT3B expression was found to be significantly downregulated in COVID-19 cases, whereas DNMT1, HDAC2, and HDAC3 expression did not change. DNMT1 and DNMT3A were negatively correlated with COVID-19 severity. Critically ill patients had lower HDAC3 expression levels. TLR4 and TNF-α had increased promoter methylation, whereas IFITM1/2/3, TLR3, NF-κB, MYD88, and LINE-1 did not differ between cases and controls. Methylation of the TNF-α promoter increased as disease severity increased. Significantly less methylation of the TLR3 promoter was observed in patients with a positive outcome (recovery). We also found a correlation between the expression of DNMT3B and the methylation level of the TLR4 promoter. In milder cases, the global 5-mC levels were lower than that in more severe cases. Our findings suggest the exclusion of DNMTs inhibitors previously recommended for COVID-19 treatment and the need for additional research in this area.
Collapse
|
3
|
Awada Z, Bouaoun L, Nasr R, Tfayli A, Cuenin C, Akika R, Boustany RM, Makoukji J, Tamim H, Zgheib NK, Ghantous A. LINE-1 methylation mediates the inverse association between body mass index and breast cancer risk: A pilot study in the Lebanese population. ENVIRONMENTAL RESEARCH 2021; 197:111094. [PMID: 33839117 DOI: 10.1016/j.envres.2021.111094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/28/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
INTRODUCTION Lebanon is among the top countries worldwide in combined incidence and mortality of breast cancer, which raises concern about risk factors peculiar to this country. The underlying molecular mechanisms of breast cancer require elucidation, particularly epigenetics, which is recognized as a molecular sensor to environmental exposures. PURPOSE We aim to explore whether DNA methylation levels of AHRR (marker of cigarette smoking), SLC1A5 and TXLNA (markers of alcohol consumption), and LINE-1 (a genome-wide repetitive retrotransposon) can act as molecular mediators underlying putative associations between breast cancer risk and pertinent extrinsic (tobacco smoking and alcohol consumption) and intrinsic factors [age and body mass index (BMI)]. METHODS This is a cross-sectional pilot study which includes breast cancer cases (N = 65) and controls (N = 54). DNA methylation levels were measured using bisulfite pyrosequencing on available peripheral blood samples (N = 119), and Multivariate Imputation by Chained Equations (MICE) was used to impute missing DNA methylation values in remaining samples. Multiple mediation analysis was performed to assess direct and indirect (via DNA methylation) effects of intrinsic and extrinsic factors on breast cancer risk. RESULTS In relation to exposure, AHRR hypo-methylation was associated with cigarette but not waterpipe smoking, suggesting potentially different biomarkers of these two forms of tobacco use; SLC1A5 and TXLNA methylation were not associated with alcohol consumption; LINE-1 methylation was inversely associated with BMI (β-value [95% confidence interval (CI)] = -0.04 [-0.07, -0.02]), which remained significant after adjustment for age, smoking and alcohol consumption. In relation to breast cancer, there was no detectable association between AHRR, SLC1A5 or TXLNA methylation and cancer risk, but LINE-1 methylation was significantly higher in breast cancer cases when compared to controls (mean ± SD: 72.00 ± 0.66 versus 70.89 ± 0.73, P = 4.67 × 10-14). This difference remained significant after adjustment for confounders (odds ratio (OR) [95% CI] = 9.75[3.74, 25.39]). Moreover, LINE-1 hypo-methylation mediated 83% of the inverse effect of BMI on breast cancer risk. CONCLUSION This pilot study demonstrates that alterations in blood LINE-1 methylation mediate the inverse effect of BMI on breast cancer risk. This warrants large scale studies and stratification based on clinic-pathological types of breast cancer.
Collapse
Affiliation(s)
- Zainab Awada
- Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine, Beirut, Lebanon; International Agency for Research on Cancer, Lyon, France
| | | | - Rihab Nasr
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut Faculty of Medicine, Beirut, Lebanon
| | - Arafat Tfayli
- Division of Hematology and Oncology, Department of Internal Medicine, American University of Beirut Faculty of Medicine, Beirut, Lebanon
| | - Cyrille Cuenin
- International Agency for Research on Cancer, Lyon, France
| | - Reem Akika
- Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine, Beirut, Lebanon
| | - Rose-Mary Boustany
- Department of Biochemistry and Molecular Genetics, American University of Beirut Faculty of Medicine, Beirut, Lebanon; Department of Neurology, American University of Beirut Faculty of Medicine, Beirut, Lebanon
| | - Joelle Makoukji
- Department of Biochemistry and Molecular Genetics, American University of Beirut Faculty of Medicine, Beirut, Lebanon
| | - Hani Tamim
- Department of Internal Medicine and Clinical Research Institute, American University of Beirut Faculty of Medicine, Beirut, Lebanon
| | - Nathalie K Zgheib
- Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine, Beirut, Lebanon.
| | - Akram Ghantous
- International Agency for Research on Cancer, Lyon, France.
| |
Collapse
|
4
|
Nava-Rivera LE, Betancourt-Martínez ND, Lozoya-Martínez R, Carranza-Rosales P, Guzmán-Delgado NE, Carranza-Torres IE, Delgado-Aguirre H, Zambrano-Ortíz JO, Morán-Martínez J. Transgenerational effects in DNA methylation, genotoxicity and reproductive phenotype by chronic arsenic exposure. Sci Rep 2021; 11:8276. [PMID: 33859283 PMCID: PMC8050275 DOI: 10.1038/s41598-021-87677-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/24/2021] [Indexed: 12/25/2022] Open
Abstract
An emerging concern is the influences of early life exposure to environmental toxicants on offspring characteristics in later life. Since recent evidence suggests a transgenerational transference of aberrant phenotypes from exposed-parents to non-exposed offspring related to adult-onset diseases including reproductive phenotype. The transgenerational potential of arsenic a well know genotoxic and epigenetic modifier agent has not been assessed in mammals until now. In this experimental study, we evaluated the transgenerational effects of arsenic in a rat model with chronic exposure to arsenic. Rats chronically exposed to arsenic in drinking water (1 mg As2O3/mL) (F0) were mated to produce the arsenic lineage (F1, F2, and F3). The arsenic toxic effects on were evaluated over the four generations by analyzing the DNA methylation percentage, genotoxicity in WBC and physical and reproductive parameters, including sperm quality parameters and histopathological evaluation of the gonads. Chronic exposure to arsenic caused genotoxic damage (F0-F3) different methylation patterns, alterations in physical and reproductive parameters, aberrant morphology in the ovaries (F0 and F1) and testicles (F1-F3), and a decrease in the quality of sperm (F0-F3, except F2). Parental chronic arsenic exposure causes transgenerational genotoxicity and changes in global DNA methylation which might be associated with reproductive defects in rats. Combined with recent studies reveal that disturbances in the early life of an individual can affect the health of later generations.
Collapse
Affiliation(s)
- Lydia Enith Nava-Rivera
- Departamento de Biología Celular y Ultraestructura, Centro de Investigación Biomédica, Facultad de Medicina, Universidad Autónoma de Coahuila Unidad Torreón, Gregorio A. García No. 198 sur. Colonia centro, Torreón, Coahuila, CP 27000, México
| | - Nadia Denys Betancourt-Martínez
- Departamento de Biología Celular y Ultraestructura, Centro de Investigación Biomédica, Facultad de Medicina, Universidad Autónoma de Coahuila Unidad Torreón, Gregorio A. García No. 198 sur. Colonia centro, Torreón, Coahuila, CP 27000, México
| | - Rodrigo Lozoya-Martínez
- Departamento de Biología Celular y Ultraestructura, Centro de Investigación Biomédica, Facultad de Medicina, Universidad Autónoma de Coahuila Unidad Torreón, Gregorio A. García No. 198 sur. Colonia centro, Torreón, Coahuila, CP 27000, México
| | - Pilar Carranza-Rosales
- Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, Nuevo León, Mexico
| | - Nancy Elena Guzmán-Delgado
- División de Investigación en Salud, Unidad Médica de Alta Especialidad, Hospital de Cardiología #34, Instituto Mexicano del Seguro Social, Monterrey, Nuevo León, Mexico
| | - Irma Edith Carranza-Torres
- Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, Nuevo León, Mexico
| | - Hector Delgado-Aguirre
- Laboratorio de Histocompatibilidad, Unidad Médica de Alta Especialidad (UMAE) # 71, Instituto Mexicano del Seguro Social, Torreón, Coahuila, Mexico
| | - José Omar Zambrano-Ortíz
- Departamento de Biología Celular y Ultraestructura, Centro de Investigación Biomédica, Facultad de Medicina, Universidad Autónoma de Coahuila Unidad Torreón, Gregorio A. García No. 198 sur. Colonia centro, Torreón, Coahuila, CP 27000, México
| | - Javier Morán-Martínez
- Departamento de Biología Celular y Ultraestructura, Centro de Investigación Biomédica, Facultad de Medicina, Universidad Autónoma de Coahuila Unidad Torreón, Gregorio A. García No. 198 sur. Colonia centro, Torreón, Coahuila, CP 27000, México.
| |
Collapse
|
5
|
Oldenburg J, Fürhacker M, Hartmann C, Steinbichl P, Banaderakhshan R, Haslberger A. Different bisphenols induce non-monotonous changes in miRNA expression and LINE-1 methylation in two cell lines. ENVIRONMENTAL EPIGENETICS 2021; 7:dvab011. [PMID: 34858639 PMCID: PMC8633614 DOI: 10.1093/eep/dvab011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/17/2021] [Accepted: 10/20/2021] [Indexed: 05/12/2023]
Abstract
4,4'-Isopropylidenediphenol (bisphenol A, BPA), a chemical substance that is widely used mainly as a monomer in the production of polycarbonates, in epoxy resins, and in thermal papers, is suspected to cause epigenetic modifications with potentially toxic consequences. Due to its negative health effects, BPA is banned in several products and is replaced by other bisphenols such as bisphenol S and bisphenol F. The present study examined the effects of BPA, bisphenol S, bisphenol F, p,p'-oxybisphenol, and the BPA metabolite BPA β-d-glucuronide on the expression of a set of microRNAs (miRNAs) as well as long interspersed nuclear element-1 methylation in human lung fibroblast and Caco-2 cells. The results demonstrated a significant modulation of the expression of different miRNAs in both cell lines including miR-24, miR-155, miR-21, and miR-146a, known for their regulatory functions of cell cycle, metabolism, and inflammation. At concentrations between 0.001 and 10 µg/ml, especially the data of miR-155 and miR-24 displayed non-monotonous and often significant dose-response curves that were U- or bell-shaped for different substances. Additionally, BPA β-d-glucuronide also exerted significant changes in the miRNA expression. miRNA prediction analysis indicated effects on multiple molecular pathways with relevance for toxicity. Besides, long interspersed nuclear element-1 methylation, a marker for the global DNA methylation status, was significantly modulated by two concentrations of BPA and p,p'-oxybisphenol. This pilot study suggests that various bisphenols, including BPA β-d-glucuronide, affect epigenetic mechanisms, especially miRNAs. These results should stimulate extended toxicological studies of multiple bisphenols and a potential use of miRNAs as markers.
Collapse
Affiliation(s)
- Julia Oldenburg
- Department of Nutritional Sciences, University of Vienna, Althanstraße 14 (UZA II), Vienna 1090, Austria
| | - Maria Fürhacker
- Department of WAU, Institute of Sanitary Engineering and Water Pollution Control, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, Vienna 1190, Austria
| | | | | | - Rojin Banaderakhshan
- Department of WAU, Institute of Sanitary Engineering and Water Pollution Control, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, Vienna 1190, Austria
| | - Alexander Haslberger
- **Correspondence address. Department of Nutritional Sciences, University of Vienna, Althanstraße 14 (UZA II), Vienna 1090, Austria. Tel: +4369912211212; E-mail:
| |
Collapse
|
6
|
Goodrich JM, Hector EC, Tang L, LaBarre JL, Dolinoy DC, Mercado-Garcia A, Cantoral A, Song PX, Téllez-Rojo MM, Peterson KE. Integrative Analysis of Gene-Specific DNA Methylation and Untargeted Metabolomics Data from the ELEMENT Cohort. Epigenet Insights 2020; 13:2516865720977888. [PMID: 33354655 PMCID: PMC7734565 DOI: 10.1177/2516865720977888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/04/2020] [Indexed: 12/18/2022] Open
Abstract
Epigenetic modifications, such as DNA methylation, influence gene expression and cardiometabolic phenotypes that are manifest in developmental periods in later life, including adolescence. Untargeted metabolomics analysis provide a comprehensive snapshot of physiological processes and metabolism and have been related to DNA methylation in adults, offering insights into the regulatory networks that influence cellular processes. We analyzed the cross-sectional correlation of blood leukocyte DNA methylation with 3758 serum metabolite features (574 of which are identifiable) in 238 children (ages 8-14 years) from the Early Life Exposures in Mexico to Environmental Toxicants (ELEMENT) study. Associations between these features and percent DNA methylation in adolescent blood leukocytes at LINE-1 repetitive elements and genes that regulate early life growth (IGF2, H19, HSD11B2) were assessed by mixed effects models, adjusting for sex, age, and puberty status. After false discovery rate correction (FDR q < 0.05), 76 metabolites were significantly associated with LINE-1 DNA methylation, 27 with HSD11B2, 103 with H19, and 4 with IGF2. The ten identifiable metabolites included dicarboxylic fatty acids (five associated with LINE-1 or H19 methylation at q < 0.05) and 1-octadecanoyl-rac-glycerol (q < 0.0001 for association with H19 and q = 0.04 for association with LINE-1). We then assessed the association between these ten known metabolites and adiposity 3 years later. Two metabolites, dicarboxylic fatty acid 17:3 and 5-oxo-7-octenoic acid, were inversely associated with measures of adiposity (P < .05) assessed approximately 3 years later in adolescence. In stratified analyses, sex-specific and puberty-stage specific (Tanner stage = 2 to 5 vs Tanner stage = 1) associations were observed. Most notably, hundreds of statistically significant associations were observed between H19 and LINE-1 DNA methylation and metabolites among children who had initiated puberty. Understanding relationships between subclinical molecular biomarkers (DNA methylation and metabolites) may increase our understanding of genes and biological pathways contributing to metabolic changes that underlie the development of adiposity during adolescence.
Collapse
Affiliation(s)
- Jaclyn M Goodrich
- Deptartment of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Emily C Hector
- Deptartment of Biostatistics, University of Michigan, Ann Arbor, MI, USA.,Deptartment of Statistics, North Carolina State University, USA
| | - Lu Tang
- Deptartment of Biostatistics, University of Pittsburgh, USA
| | - Jennifer L LaBarre
- Deptartment of Nutritional Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Dana C Dolinoy
- Deptartment of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA.,Deptartment of Nutritional Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Adriana Mercado-Garcia
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Morelos, México
| | - Alejandra Cantoral
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Morelos, México
| | - Peter Xk Song
- Deptartment of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Martha Maria Téllez-Rojo
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Morelos, México
| | - Karen E Peterson
- Deptartment of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA.,Deptartment of Nutritional Sciences, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
7
|
Aparecida Silveira E, Vaseghi G, de Carvalho Santos AS, Kliemann N, Masoudkabir F, Noll M, Mohammadifard N, Sarrafzadegan N, de Oliveira C. Visceral Obesity and Its Shared Role in Cancer and Cardiovascular Disease: A Scoping Review of the Pathophysiology and Pharmacological Treatments. Int J Mol Sci 2020; 21:E9042. [PMID: 33261185 PMCID: PMC7730690 DOI: 10.3390/ijms21239042] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
The association between obesity, cancer and cardiovascular disease (CVD) has been demonstrated in animal and epidemiological studies. However, the specific role of visceral obesity on cancer and CVD remains unclear. Visceral adipose tissue (VAT) is a complex and metabolically active tissue, that can produce different adipokines and hormones, responsible for endocrine-metabolic comorbidities. This review explores the potential mechanisms related to VAT that may also be involved in cancer and CVD. In addition, we discuss the shared pharmacological treatments which may reduce the risk of both diseases. This review highlights that chronic inflammation, molecular aspects, metabolic syndrome, secretion of hormones and adiponectin associated to VAT may have synergistic effects and should be further studied in relation to cancer and CVD. Reductions in abdominal and visceral adiposity improve insulin sensitivity, lipid profile and cytokines, which consequently reduce the risk of CVD and some cancers. Several medications have shown to reduce visceral and/or subcutaneous fat. Further research is needed to investigate the pathophysiological mechanisms by which visceral obesity may cause both cancer and CVD. The role of visceral fat in cancer and CVD is an important area to advance. Public health policies to increase public awareness about VAT's role and ways to manage or prevent it are needed.
Collapse
Affiliation(s)
- Erika Aparecida Silveira
- Department of Epidemiology & Public Health, Institute of Epidemiology & Health Care, University College London, London WC1E 6BT, UK;
- Postgraduate Program in Health Sciences, Faculty of Medicine, Federal University of Goiás, Goiânia 74690-900, Goiás, Brazil; (A.S.d.C.S.); (M.N.)
| | - Golnaz Vaseghi
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8158388994, Iran;
| | - Annelisa Silva de Carvalho Santos
- Postgraduate Program in Health Sciences, Faculty of Medicine, Federal University of Goiás, Goiânia 74690-900, Goiás, Brazil; (A.S.d.C.S.); (M.N.)
- United Faculty of Campinas, Goiânia 74525-020, Goiás, Brazil
| | - Nathalie Kliemann
- Nutritional Epidemiology Group, Nutrition and Metabolism Section, International Agency for Research on Cancer, World Health Organization, 69372 Lyon, France;
| | - Farzad Masoudkabir
- Cardiac Primary Prevention Research Center, Tehran Heart Center, Tehran University of Medical Sciences, Tehran 1416753955, Iran;
- Department of Cardiology, Tehran Heart Center, Tehran University of Medical Sciences, Tehran 1411713138, Iran
| | - Matias Noll
- Postgraduate Program in Health Sciences, Faculty of Medicine, Federal University of Goiás, Goiânia 74690-900, Goiás, Brazil; (A.S.d.C.S.); (M.N.)
- Instituto Federal Goiano, Ceres 76300-000, Goiás, Brazil
| | - Noushin Mohammadifard
- Hypertension Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8158388994, Iran;
| | - Nizal Sarrafzadegan
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8158388994, Iran
- School of Population and Public Health, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Cesar de Oliveira
- Department of Epidemiology & Public Health, Institute of Epidemiology & Health Care, University College London, London WC1E 6BT, UK;
| |
Collapse
|
8
|
Wu Y, Goodrich JM, Dolinoy DC, Sánchez BN, Ruiz-Narváez EA, Banker M, Cantoral A, Mercado-Garcia A, Téllez-Rojo MM, Peterson KE. Accelerometer-measured Physical Activity, Reproductive Hormones, and DNA Methylation. Med Sci Sports Exerc 2020; 52:598-607. [PMID: 31652236 DOI: 10.1249/mss.0000000000002175] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION/PURPOSE Limited studies have examined the association of physical activity with reproductive hormones, DNA methylation, and pubertal status among adolescents. METHODS Among 248 boys and 271 girls, we estimated daily physical activity levels based on 7 d of wrist-worn accelerometer data. We used an isotemporal substitution paradigm and sex-stratified regression models to examine the association of physical activity levels with 1) testosterone, cortisol, progesterone, and androstenedione concentrations; 2) DNA methylation of long interspersed nucleotide (LINE-1) repeats and the genes H19, hydroxysteroid (11-Beta) dehydrogenase 2 (HSD11B2), and peroxisome proliferator-activated receptor alpha (PPARA) from blood leukocytes; and 3) Tanner stages, adjusted for age, BMI, and socioeconomic status. RESULTS In boys, substituting 30 min of moderate physical activity for 30 min of sedentary behavior per day was associated with 29% (-49%, 0%) of lower testosterone and 29% (4%, 61%) of higher progesterone. Substituting 30 min of light physical activity for sedentary behavior was associated with 13% (-22%, -2%) of lower progesterone. Among girls, 30 min of additional sedentary behavior was associated with 8% (-15%, 0%) of lower testosterone and 24% (8%, 42%) of higher progesterone concentrations. Substituting 30 min of moderate physical activity for sedentary behavior was associated with 15% (0%, 31%) of higher cortisol, whereas substituting the same amount of light physical activity for sedentary behavior was associated with 22% (-39%, 0%) of lower progesterone. Substituting 30 min of vigorous physical activity for sedentary behavior per day was associated with almost six times higher levels (5.83, 95% confidence interval = 1.79-9.86) of HSD11B2 methylation in boys. CONCLUSIONS Accelerometer-measured daily physical activity was associated with reproductive hormones and HSD11B2 DNA methylation, differed by sex and activity intensity levels.
Collapse
Affiliation(s)
- Yue Wu
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI
| | - Jaclyn M Goodrich
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI
| | | | - Brisa N Sánchez
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI
| | - Edward A Ruiz-Narváez
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI
| | - Margaret Banker
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI
| | - Alejandra Cantoral
- Center for Research on Nutrition and Health, National Institute of Public Health, Cuernavaca, Morelos, MEXICO
| | - Adriana Mercado-Garcia
- Center for Research on Nutrition and Health, National Institute of Public Health, Cuernavaca, Morelos, MEXICO
| | - Martha M Téllez-Rojo
- Center for Research on Nutrition and Health, National Institute of Public Health, Cuernavaca, Morelos, MEXICO
| | - Karen E Peterson
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI
| |
Collapse
|
9
|
Adherence to the Mediterranean diet partially mediates socioeconomic differences in leukocyte LINE-1 methylation: evidence from a cross-sectional study in Italian women. Sci Rep 2020; 10:14360. [PMID: 32873815 PMCID: PMC7463235 DOI: 10.1038/s41598-020-71352-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 08/07/2020] [Indexed: 12/11/2022] Open
Abstract
Although previous research demonstrated that socioeconomic status (SES) might affect DNA methylation, social inequalities alone do not completely explain this relationship. We conducted a cross-sectional study on 349 women (Catania, Italy) to investigate whether behaviors might mediate the association between SES and long interspersed nuclear elements (LINE-1) methylation, a surrogate marker of global DNA methylation. Educational level, used as an indicator of SES, and data on behaviors (i.e. diet, smoking habits, physical activity, and weight status) were collected using structured questionnaires. Adherence to Mediterranean diet (MD) was assessed by the Mediterranean Diet Score (MDS). Leukocyte LINE-1 methylation was assessed by pyrosequencing. Mediation analysis was conducted using the procedure described by Preacher and Hayes. Women with high educational level exhibited higher MDS (β = 0.669; 95%CI 0.173-1.165; p < 0.01) and LINE-1 methylation level (β = 0.033; 95%CI 0.022-0.043; p < 0.001) than their less educated counterpart. In line with this, mediation analysis demonstrated a significant indirect effect of high educational level on LINE-1 methylation through the adherence to MD (β = 0.003; 95%CI 0.001-0.006). Specifically, the mediator could account for 9.5% of the total effect. To our knowledge, this is the first study demonstrating the mediating effect of diet in the relationship between SES and DNA methylation. Although these findings should be confirmed by prospective research, they add value to the promotion of healthy dietary habits in social disadvantaged people.
Collapse
|
10
|
Kaur G, Batra S. Regulation of DNA methylation signatures on NF-κB and STAT3 pathway genes and TET activity in cigarette smoke extract-challenged cells/COPD exacerbation model in vitro. Cell Biol Toxicol 2020; 36:459-480. [PMID: 32342329 DOI: 10.1007/s10565-020-09522-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/19/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a global health problem. Currently, there is a lack of knowledge about the pathobiology of this disease and available therapies are ineffective. Cigarette smoking is the leading cause of COPD; however, not all smokers develop COPD. Exacerbations of COPD caused by microbes are common and detrimental. Approximately 20-50% of patient exacerbations are caused by bacterial colonization in the lower airways. It is generally accepted that epigenetic mechanisms, especially DNA methylation, play an important role during progression of COPD. Thus, we hypothesized that DNA methylation patterns vary significantly following smoke exposure and during exacerbations caused by bacterial infections. To test our hypothesis, we used an in vitro study model that mimics COPD exacerbations and performed extensive studies to understand the role of CpG promoter methylation of NF-κB and STAT3-mediated pathway genes. Both NF-κB and STAT3 transcription factors play critical roles in orchestrating inflammatory responses during cigarette smoke exposure. In brief, human lung adenocarcinoma cells with type II alveolar epithelium characteristics (A549) were challenged with cigarette smoke extract (CSE) or DMSO (control) followed by a 3-h challenge with bacterial lipopolysaccharide (LPS; from Pseudomonas aeruginosa) prior to the termination of CSE exposure (COPD exacerbation group). The production of cytokines/chemokines, regulation of transcription factors, and DNA methylation of specific genes were then assessed. We also studied changes in the expression and activity of ten-eleven translocases (TETs), the enzymes responsible for DNA demethylation, and assessed their role in regulating DNA methylation in the CSE-challenged group. RESULTS There was a significant increase in the release of cytokines/chemokines (IL-8, MCP-1, IL-6 and CCL5) in the COPD exacerbation group as compared to the control group. Hypomethylation of NF-κB-mediated pathway genes correlated with their induction in our COPD exacerbation study model. Further, we observed an important role of TET1/2 in regulating the DNA methylation of NF-κB, STAT3, IKK, and NIK genes and cytokine/chemokine production by A549 cells during CSE challenge. CONCLUSIONS Studies to further define the role of TETs in CSE-mediated epigenetic regulation may lead to the development of better and more effective therapeutic intervention strategies for COPD.
Collapse
Affiliation(s)
- Gagandeep Kaur
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Sanjay Batra
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, 70813, USA.
| |
Collapse
|
11
|
Agrimi J, Baroni C, Anakor E, Lionetti V. Perioperative Heart-Brain Axis Protection in Obese Surgical Patients: The Nutrigenomic Approach. Curr Med Chem 2020; 27:258-281. [PMID: 30324875 DOI: 10.2174/0929867325666181015145225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/01/2018] [Accepted: 09/25/2018] [Indexed: 02/06/2023]
Abstract
The number of obese patients undergoing cardiac and noncardiac surgery is rapidly increasing because they are more prone to concomitant diseases, such as diabetes, thrombosis, sleep-disordered breathing, cardiovascular and cerebrovascular disorders. Even if guidelines are already available to manage anesthesia and surgery of obese patients, the assessment of the perioperative morbidity and mortality from heart and brain disorders in morbidly obese surgical patients will be challenging in the next years. The present review will recapitulate the new mechanisms underlying the Heart-brain Axis (HBA) vulnerability during the perioperative period in healthy and morbidly obese patients. Finally, we will describe the nutrigenomics approach, an emerging noninvasive dietary tool, to maintain a healthy body weight and to minimize the HBA propensity to injury in obese individuals undergoing all types of surgery by personalized intake of plant compounds that may regulate the switch from health to disease in an epigenetic manner. Our review provides current insights into the mechanisms underlying HBA response in obese surgical patients and how they are modulated by epigenetically active food constituents.
Collapse
Affiliation(s)
- Jacopo Agrimi
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Carlotta Baroni
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Ekene Anakor
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Vincenzo Lionetti
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,UOS Anesthesiology, Fondazione Toscana G. Monasterio, Pisa, Italy
| |
Collapse
|
12
|
DNA methylation and one-carbon metabolism related nutrients and polymorphisms: analysis after mandatory flour fortification with folic acid. Br J Nutr 2020; 123:23-29. [PMID: 31583988 DOI: 10.1017/s0007114519002526] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
There is a growing research interest in determining whether changes in the global status of DNA methylation are related to the environment, in particular, to one-carbon metabolism. So, our aim was to investigate the effect of dietary methyl-group donor intake (methionine, folate, choline, betaine, vitamins B2, B6 and B12), biomarkers (total folate, unmetabolised folic acid (FA), 5-methyltetrahydrofolate, homocysteine, vitamins B6 and B12 concentrations) and genetic variants (polymorphisms involved in one-carbon metabolism) on global DNA methylation in a population exposed to mandatory flour fortification with FA. A cross-sectional study of health and living conditions was conducted among a representative sample of residents in São Paulo, Brazil. The mean of global DNA methylation was lower in young people than in adults and the elderly (P = 0·049). No differences between genotypes of polymorphism and global DNA methylation mean were identified. We observed that the increase in betaine intake led to an absolute change in percentage of DNA methylation (β = 0·0005, P = 0·024) using multiple regression. Betaine intake alone was associated with an absolute change in percentage of global DNA methylation. The study did not find an association between global DNA methylation and folate status even in a population exposed to mandatory flour fortification with FA.
Collapse
|
13
|
Huang KT, Shen YL, Lee CN, Chu KY, Ku WC, Liu CY, Huang RFS. Using Differential Threshold Effects of Individual and Combined Periconceptional Methyl Donor Status on Maternal Genomic LINE-1 and Imprinted H19 DNA Methylation to Predict Birth Weight Variance in the Taiwan Pregnancy-Newborn Epigenetics (TPNE) Cohort Study. J Nutr 2020; 150:108-117. [PMID: 31504733 DOI: 10.1093/jn/nxz204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Few studies have comprehensively examined the effect of methyl donor status on maternal DNA methylation and birth outcomes. OBJECTIVES This study examined associations between periconceptional methyl donor status and genome-wide and specific imprinted gene methylation and fetal growth indices in the Taiwan Pregnancy-Newborn Epigenetics cohort. METHODS Plasma folate, choline (free form), and betaine concentrations of the participants enrolled at 7-10 weeks of gestation were analyzed. DNA methylation at regulatory sequences of the imprinted H19 gene and genomic long interspersed nuclear element 1 (LINE-1) were measured in maternal lymphocytes using bisulfite/high-resolution melt polymerase chain reaction. Associations with birth weight (BW) were estimated through multiple regressions from 112 mother-newborn pairs. RESULTS A nonlinear "L-shaped" relation and an inverse association between maternal plasma folate in T1 (mean ± SE: 17.6 ± 5.1 nmol/L) and lymphocytic LINE-1 methylation (β: -0.49, P = 0.027) were characterized. After adjusting for LINE-1 methylation, individual maternal folate concentrations were positively associated with BW variance (β = 0.24, P = 0.035), and the association was more pronounced in mothers with choline in T1 (mean ± SE: 5.4 ± 0.6 μmol/L; β: 0.40, P = 0.039). Choline status of the mothers in T2 (mean ± SE: 7.2 ± 0.6 μmol/L) was inversely associated with LINE-1 methylation (β: -0.43, P = 0.035), and a positive association was evident between T1 choline and H19 methylation (β: 0.48, P = 0.011). After adjusting for epigenetic modification, maternal choline status predicted a positive association with BW (β: 0.56, P = 0.005), but the effect was limited to mothers with high betaine concentrations in T3 (mean ± SE: 36.4 ± 8.8 μmol/L), depending on folate status. CONCLUSIONS Our data highlight the differential threshold effects of periconceptional folate, choline, and betaine status on genomic LINE-1 and H19 DNA methylation and how their interplay has a long-term effect on BW variance.
Collapse
Affiliation(s)
- Kuang-Ta Huang
- PhD Program in Nutrition and Food Science, Fu Jen Catholic University, New Taipei City, Taiwan.,Loving Care Maternity and Children's Health Centers, New Taipei City, Taiwan
| | - Yu-Li Shen
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Chien-Nan Lee
- Department of Gynecology and Obstetrics, National Taiwan University Hospital, Taipei City, Taiwan
| | - Kuan-Yu Chu
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Wei-Chi Ku
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Chieh-Yu Liu
- Biostatistical Consultant Lab, Department of Speech Language Pathology and Audiology, National Taipei University of Nursing and Health Sciences, Taipei City, Taiwan
| | - Rwei-Fen S Huang
- PhD Program in Nutrition and Food Science, Fu Jen Catholic University, New Taipei City, Taiwan.,Department of Nutritional Science, Fu Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|
14
|
Jiang Y, Li J, Ren F, Ji C, Aniagu S, Chen T. PM2.5-induced extensive DNA methylation changes in the heart of zebrafish embryos and the protective effect of folic acid. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113331. [PMID: 31614245 DOI: 10.1016/j.envpol.2019.113331] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/29/2019] [Accepted: 09/29/2019] [Indexed: 06/10/2023]
Abstract
We previously found that folic acid (FA) attenuated cardiac defects in zebrafish embryos exposed to extractable organic matter (EOM) from PM2.5, but the underlining mechanisms remain to be elucidated. Since DNA methylation is crucial to cardiac development, we hypothesized that EOM-induced aberrant DNA methylation changes could be diminished by FA supplementation. In this study, zebrafish embryos were exposed to EOM in the absence or presence of FA. Genomic-wide DNA methylation analysis identified both DNA hypo- and hyper-methylation changes in CCGG sites in zebrafish embryos exposed to EOM, which were attenuated by FA supplementation. We identified a total of 316 genes with extensive DNA methylation changes in EOM samples but little or no DNA methylation changes in EOM plus FA samples. The genes were involved in critical cellular processes and signaling pathways important for embryo development. In addition, the EOM-decreased SAM/SAH ratio was counteracted by FA supplementation. Furthermore, FA attenuated the EOM-induced changes in the expression of genes involved in the regulation of DNA methylation and in folate biosynthesis. In conclusion, our data suggest that FA supplementation protected zebrafish embryos from the cardiac developmental toxicity of PM2.5 by alleviating EOM-induced DNA methylation changes.
Collapse
Affiliation(s)
- Yan Jiang
- Medical College of Soochow University, Suzhou, China
| | - Jianxiang Li
- Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Fei Ren
- Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Cheng Ji
- Medical College of Soochow University, Suzhou, China
| | - Stanley Aniagu
- Toxicology, Risk Assessment and Research Division, Texas Commission on Environmental Quality, 12015 Park 35 Cir, Austin, TX, USA
| | - Tao Chen
- Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China.
| |
Collapse
|
15
|
Dietary Patterns are Associated with Leukocyte LINE-1 Methylation in Women: A Cross-Sectional Study in Southern Italy. Nutrients 2019; 11:nu11081843. [PMID: 31395820 PMCID: PMC6722720 DOI: 10.3390/nu11081843] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/30/2019] [Accepted: 08/07/2019] [Indexed: 12/13/2022] Open
Abstract
Bioactive food compounds have different effects on global DNA methylation, an epigenetic mechanism associated with chromosomal stability and genome function. Since the diet is characterized by a mixture of foods, we aimed to identify dietary patterns in women, and to evaluate their association with long interspersed nuclear elements (LINE-1) methylation, a surrogate marker of global DNA methylation. We conducted an observational cross-sectional study of 349 women from Southern Italy, with no history of severe diseases. Dietary patterns were derived by food frequency questionnaire and principal component analysis. LINE-1 methylation of leukocyte DNA was assessed by pyrosequencing. We observed that intake of wholemeal bread, cereals, fish, fruit, raw and cooked vegetables, legumes, soup, potatoes, fries, rice, and pizza positively correlated with LINE-1 methylation levels. By contrast, vegetable oil negatively correlated with LINE-1 methylation levels. Next, we demonstrated that adherence to a prudent dietary pattern—characterized by high intake of potatoes, cooked and raw vegetables, legumes, soup and fish—was positively associated with LINE-1 methylation. In particular, women in the 3rd tertile exhibited higher LINE-1 methylation level than those in the 1st tertile (median = 66.7 %5mC; IQR = 4.67 %5mC vs. median = 63.1 %5mC; IQR = 12.3 %5mC; p < 0.001). Linear regression confirmed that women in the 3rd tertile had higher LINE-1 methylation than those in the 1st tertile (β = 0.022; SE = 0.003; p < 0.001), after adjusting for age, educational level, employment status, smoking status, use of folic acid supplement, total energy intake and body mass index. By contrast, no differences in LINE-1 methylation across tertiles of adherence to the Western dietary pattern were evident. Interestingly, women who exclusively adhered to the prudent dietary pattern had a higher average LINE-1 methylation level than those who exclusively or preferably adhered to the Western dietary pattern (β = 0.030; SE = 0.004; p < 0.001; β = 0.023; SE = 0.004; p < 0.001; respectively), or those with no preference for a specific dietary pattern (β = 0.013; SE = 0.004; p = 0.002). Our study suggested a remarkable link between diet and DNA methylation; however, further mechanistic studies should be encouraged to understand the causal relationship between dietary intake and DNA methylation.
Collapse
|
16
|
Song Y, Zhou T, Zong Y, Gu B, Tan X, Yang L. Arsenic inhibited cholesterol efflux of THP-1 macrophages via ROS-mediated ABCA1 hypermethylation. Toxicology 2019; 424:152225. [DOI: 10.1016/j.tox.2019.05.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/15/2019] [Accepted: 05/27/2019] [Indexed: 12/24/2022]
|
17
|
Sooklert K, Nilyai S, Rojanathanes R, Jindatip D, Sae-Liang N, Kitkumthorn N, Mutirangura A, Sereemaspun A. N-acetylcysteine reverses the decrease of DNA methylation status caused by engineered gold, silicon, and chitosan nanoparticles. Int J Nanomedicine 2019; 14:4573-4587. [PMID: 31296987 PMCID: PMC6599212 DOI: 10.2147/ijn.s204372] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/16/2019] [Indexed: 11/30/2022] Open
Abstract
Introduction: Engineered nanoparticles (ENPs) are one of the most widely used types of nanomaterials. Recently, ENPs have been shown to cause cellular damage by inducing ROS (reactive oxygen species) both directly and indirectly, leading to the changes in DNA methylation levels, which is an important epigenetic mechanism. In this study, we investigated the effect of ENP-induced ROS on DNA methylation. Materials and methods: Human embryonic kidney and human keratinocyte (HaCaT) cells were exposed to three different types of ENPs: gold nanoparticles, silicon nanoparticles (SiNPs), and chitosan nanoparticles (CSNPs). We then evaluated the cytotoxicity of the ENPs by measuring cell viability, morphology, cell apoptosis, cell proliferation, cell cycle distribution and ROS levels. Global DNA methylation levels was measured using 5-methylcytosine immunocytochemical staining and HPLC analysis. DNA methylation levels of the transposable elements, long interspersed element-1 (LINE-1) and Alu, were also measured using combined bisulfite restriction analysis technique. DNA methylation levels of the TEs LINE-1 and Alu were also measured using combined bisulfite restriction analysis technique. Results: We found that HaCaT cells that were exposed to SiNPs exhibited increased ROS levels, whereas HaCaT cells that were exposed to SiNPs and CSNPs experienced global and Alu hypomethylation, with no change in LINE-1 being observed in either cell line. The demethylation of Alu in HaCaT cells following exposure to SiNPs and CSNPs was prevented when the cells were pretreated with an antioxidant. Conclusion: The global DNA methylation that is observed in cells exposed to ENPs is associated with methylation of the Alu elements. However, the change in DNA methylation levels following ENP exposure is specific to particular ENP and cell types and independent of ROS, being induced indirectly through disruption of the oxidative defense process.
Collapse
Affiliation(s)
- Kanidta Sooklert
- Nanomedicine Research Unit, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Siwaporn Nilyai
- Nanomedicine Research Unit, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Rojrit Rojanathanes
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Depicha Jindatip
- Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nutchanart Sae-Liang
- Nanomedicine Research Unit, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nakarin Kitkumthorn
- Department of Oral Biology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - Apiwat Mutirangura
- Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Amornpun Sereemaspun
- Nanomedicine Research Unit, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
18
|
Tarr IS, McCann EP, Benyamin B, Peters TJ, Twine NA, Zhang KY, Zhao Q, Zhang ZH, Rowe DB, Nicholson GA, Bauer D, Clark SJ, Blair IP, Williams KL. Monozygotic twins and triplets discordant for amyotrophic lateral sclerosis display differential methylation and gene expression. Sci Rep 2019; 9:8254. [PMID: 31164693 PMCID: PMC6547746 DOI: 10.1038/s41598-019-44765-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 05/23/2019] [Indexed: 12/02/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterised by the loss of upper and lower motor neurons. ALS exhibits high phenotypic variability including age and site of onset, and disease duration. To uncover epigenetic and transcriptomic factors that may modify an ALS phenotype, we used a cohort of Australian monozygotic twins (n = 3 pairs) and triplets (n = 1 set) that are discordant for ALS and represent sporadic ALS and the two most common types of familial ALS, linked to C9orf72 and SOD1. Illumina Infinium HumanMethylation450K BeadChip, EpiTYPER and RNA-Seq analyses in these ALS-discordant twins/triplets and control twins (n = 2 pairs), implicated genes with consistent longitudinal differential DNA methylation and/or gene expression. Two identified genes, RAD9B and C8orf46, showed significant differential methylation in an extended cohort of >1000 ALS cases and controls. Combined longitudinal methylation-transcription analysis within a single twin set implicated CCNF, DPP6, RAMP3, and CCS, which have been previously associated with ALS. Longitudinal transcriptome data showed an 8-fold enrichment of immune function genes and under-representation of transcription and protein modification genes in ALS. Examination of these changes in a large Australian sporadic ALS cohort suggest a broader role in ALS. Furthermore, we observe that increased methylation age is a signature of ALS in older patients.
Collapse
Affiliation(s)
- Ingrid S Tarr
- Centre for Motor Neuron Disease Research, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Emily P McCann
- Centre for Motor Neuron Disease Research, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Beben Benyamin
- Australian Centre for Precision Health, University of South Australia Cancer Research Institute, School of Health Sciences, University of South Australia, Adelaide, Australia.,South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.,Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Timothy J Peters
- Epigenetics Research Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Natalie A Twine
- Health and Biosecurity Business Unit, Commonwealth Scientific and Industrial Research Organisation, Sydney, New South Wales, Australia
| | - Katharine Y Zhang
- Centre for Motor Neuron Disease Research, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Qiongyi Zhao
- Queensland Brain Institute, University of Queensland, Queensland, Australia
| | - Zong-Hong Zhang
- Queensland Brain Institute, University of Queensland, Queensland, Australia
| | - Dominic B Rowe
- Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Garth A Nicholson
- ANZAC Research Institute, University of Sydney, Sydney, New South Wales, Australia.,Molecular Medicine Laboratory, Concord Hospital, Sydney, New South Wales, Australia
| | - Denis Bauer
- Health and Biosecurity Business Unit, Commonwealth Scientific and Industrial Research Organisation, Sydney, New South Wales, Australia
| | - Susan J Clark
- Epigenetics Research Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.,St Vincent's Clinical School, UNSW Sydney, New South Wales, Australia
| | - Ian P Blair
- Centre for Motor Neuron Disease Research, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Kelly L Williams
- Centre for Motor Neuron Disease Research, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia.
| |
Collapse
|
19
|
Wang H, Lou D, Wang Z. Crosstalk of Genetic Variants, Allele-Specific DNA Methylation, and Environmental Factors for Complex Disease Risk. Front Genet 2019; 9:695. [PMID: 30687383 PMCID: PMC6334214 DOI: 10.3389/fgene.2018.00695] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 12/12/2018] [Indexed: 01/04/2023] Open
Abstract
Over the past decades, genome-wide association studies (GWAS) have identified thousands of phenotype-associated DNA sequence variants for potential explanations of inter-individual phenotypic differences and disease susceptibility. However, it remains a challenge for translating the associations into causative mechanisms for complex diseases, partially due to the involved variants in the noncoding regions and the inconvenience of functional studies in human population samples. So far, accumulating evidence has suggested a complex crosstalk among genetic variants, allele-specific binding of transcription factors (ABTF), and allele-specific DNA methylation patterns (ASM), as well as environmental factors for disease risk. This review aims to summarize the current studies regarding the interactions of the aforementioned factors with a focus on epigenetic insights. We present two scenarios of single nucleotide polymorphisms (SNPs) in coding regions and non-coding regions for disease risk, via potentially impacting epigenetic patterns. While a SNP in a coding region may confer disease risk via altering protein functions, a SNP in non-coding region may cause diseases, via SNP-altering ABTF, ASM, and allele-specific gene expression (ASE). The allelic increases or decreases of gene expression are key for disease risk during development. Such ASE can be achieved via either a "SNP-introduced ABTF to ASM" or a "SNP-introduced ASM to ABTF." Together with our additional in-depth review on insulator CTCF, we are convinced to propose a working model that the small effect of a SNP acts through altered ABTF and/or ASM, for ASE and eventual disease outcome (named as a "SNP intensifier" model). In summary, the significance of complex crosstalk among genetic factors, epigenetic patterns, and environmental factors requires further investigations for disease susceptibility.
Collapse
Affiliation(s)
- Huishan Wang
- Laboratory of Human Environmental Epigenome, Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
- Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Dan Lou
- Laboratory of Human Environmental Epigenome, Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Zhibin Wang
- Laboratory of Human Environmental Epigenome, Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
20
|
Childebayeva A, Jones TR, Goodrich JM, Leon-Velarde F, Rivera-Chira M, Kiyamu M, Brutsaert TD, Dolinoy DC, Bigham AW. LINE-1 and EPAS1 DNA methylation associations with high-altitude exposure. Epigenetics 2019; 14:1-15. [PMID: 30574831 DOI: 10.1080/15592294.2018.1561117] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recent discoveries indicate a genetic basis for high-altitude adaptation among human groups who have resided at high altitude for millennia, including Andeans, Tibetans, and Ethiopians. Yet, genetics alone does not explain the extent of variation in altitude-adaptive phenotypes. Current and past environments may also play a role, and one way to determine the effect of the environment is through the epigenome. To characterize if Andean adaptive responses to high altitude have an epigenetic component, we analyzed DNA methylation of the promoter region of EPAS1 and LINE-1 repetitive element among 572 Quechua individuals from high- (4,388 m) and low-altitude (0 m) in Peru. Participants recruited at high altitude had lower EPAS1 DNA methylation and higher LINE-1 methylation. Altitude of birth was associated with higher LINE-1 methylation, not with EPAS1 methylation. The number of years lived at high altitude was negatively associated with EPAS1 methylation and positively associated with LINE-1 methylation. We found four one-carbon metabolism SNPs (MTHFD1 rs2236225, TYMS rs502396, FOLH1 rs202676, GLDC rs10975681) that cumulatively explained 11.29% of the variation in average LINE-1 methylation. And identified an association between LINE-1 methylation and genome-wide SNP principal component 1 that distinguishes European from Indigenous American ancestry suggesting that European admixture decreases LINE-1 methylation. Our results indicate that both current and lifetime exposure to high-altitude hypoxia have an effect on EPAS1 and LINE-1 methylation among Andean Quechua, suggesting that epigenetic modifications may play a role in high-altitude adaptation.
Collapse
Affiliation(s)
- Ainash Childebayeva
- a Department of Anthropology , University of Michigan , Ann Arbor , MI , USA.,b Department of Environmental Health Sciences , School of Public Health, University of Michigan , Ann Arbor , MI , USA
| | - Tamara R Jones
- b Department of Environmental Health Sciences , School of Public Health, University of Michigan , Ann Arbor , MI , USA
| | - Jaclyn M Goodrich
- b Department of Environmental Health Sciences , School of Public Health, University of Michigan , Ann Arbor , MI , USA
| | - Fabiola Leon-Velarde
- c Departamento de Ciencias Biológicas y Fisiológicas , Universidad Peruana Cayetano Heredia , Lima , Peru
| | - Maria Rivera-Chira
- c Departamento de Ciencias Biológicas y Fisiológicas , Universidad Peruana Cayetano Heredia , Lima , Peru
| | - Melisa Kiyamu
- c Departamento de Ciencias Biológicas y Fisiológicas , Universidad Peruana Cayetano Heredia , Lima , Peru
| | - Tom D Brutsaert
- d Department of Exercise Science , Syracuse University , Syracuse , NY , USA
| | - Dana C Dolinoy
- b Department of Environmental Health Sciences , School of Public Health, University of Michigan , Ann Arbor , MI , USA.,e Department of Nutritional Sciences , School of Public Health, University of Michigan , Ann Arbor , MI , USA
| | - Abigail W Bigham
- a Department of Anthropology , University of Michigan , Ann Arbor , MI , USA
| |
Collapse
|
21
|
Barchitta M, Maugeri A, Quattrocchi A, Barone G, Mazzoleni P, Catalfo A, De Guidi G, Iemmolo MG, Crimi N, Agodi A. Mediterranean Diet and Particulate Matter Exposure Are Associated With LINE-1 Methylation: Results From a Cross-Sectional Study in Women. Front Genet 2018; 9:514. [PMID: 30425730 PMCID: PMC6218419 DOI: 10.3389/fgene.2018.00514] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/12/2018] [Indexed: 11/30/2022] Open
Abstract
Emerging evidence suggests that air pollution increases the risk of cardiovascular disease (CVD) and metabolic disorders, adding to the global burden of disease attributable to lifestyle and behavioral factors. Although long interspersed nucleotide elements 1 (LINE-1) methylation has been associated with these disorders, no studies have simultaneously examined the effects of diet and air pollution exposure on DNA methylation. Herein, we evaluated the association of particulate matter (PM with aerodynamic diameters of less than 10 mm) exposure and adherence to Mediterranean Diet (MD) with LINE-1 methylation. Healthy women (n = 299), aged 15 to 80 years, were enrolled in a cross-sectional study. Dietary data and adherence to MD were assessed by a Food Frequency Questionnaire (FFQ) and Mediterranean Diet Score (MDS). PM10 levels during 1-month before recruitment were recorded by monitoring stations and assigned to each woman based on their residential address and day of recruitment. LINE-1 methylation in blood samples was assessed by pyrosequencing and reported as percentage of 5-methylcytosine (5mC). The Mann–Whitney U test, Spearman’s rank correlation test and linear regression models were applied. Our results demonstrated, for the first time, an inverse association between adherence to MD and exposure to PM10 with LINE-1 methylation: while higher monthly PM10 exposure decreases LINE-1 methylation level (β = −0.121; p = 0.037), the adherence to MD increases it (β = 0.691; p < 0.001). MDS seemed to interact with PM10 levels (p = 0.002) on LINE-1 methylation, as such we confirmed that the effect of MD decreased with increasing PM10 levels (β = 0.657; p < 0.001 in the first tertile; β = 0.573; p < 0.001 in the second tertile; β = 0.551; p < 0.001 in the third tertile). Thus, we suggest that LINE-1 methylation is a possible mechanism underpinning environment-related health effects, and encourage further research to evaluate whether the adherence to the MD could counteract the negative effect of PM10 exposure.
Collapse
Affiliation(s)
- Martina Barchitta
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Catania, Italy
| | - Andrea Maugeri
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Catania, Italy
| | - Annalisa Quattrocchi
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Catania, Italy
| | - Germana Barone
- Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| | - Paolo Mazzoleni
- Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| | - Alfio Catalfo
- Department of Chemical Science, Section of Photochemistry and Photobiology, University of Catania, Catania, Italy
| | - Guido De Guidi
- Department of Chemical Science, Section of Photochemistry and Photobiology, University of Catania, Catania, Italy.,Research Centre for the Analysis, the Monitoring and Methodology for Environmental Risk Assessment, University of Catania, Catania, Italy
| | | | - Nunzio Crimi
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Antonella Agodi
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Catania, Italy
| |
Collapse
|
22
|
Nash AJ, Mandaviya PR, Dib MJ, Uitterlinden AG, van Meurs J, Heil SG, Andrew T, Ahmadi KR. Interaction between plasma homocysteine and the MTHFR c.677C > T polymorphism is associated with site-specific changes in DNA methylation in humans. FASEB J 2018; 33:833-843. [PMID: 30080444 DOI: 10.1096/fj.201800400r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
One-carbon metabolism provides a direct link among dietary folate/vitamin B12 exposure, the activity of the enzyme methylenetetrahydrofolate reductase (MTHFR), and epigenetic regulation of the genome via DNA methylation. Previously, it has been shown that the common c.677C > T polymorphism in MTHFR influences global DNA methylation status through a direct interaction with folate status and (indirectly) with total homocysteine (tHcy) levels. To build on that and other more recent observations that have further highlighted associations among MTHFR c.677C > T, tHcy, and aberrations in DNA methylation, we investigated whether the interaction between mildly elevated plasma tHcy and the c.677C > T polymorphism is associated with site-specific changes in DNA methylation in humans. We used data on plasma tHcy levels, c.677C > T polymorphism, and site-specific DNA methylation levels for a total of 915 white women and 335 men from the TwinsUK registry ( n = 610) and the Rotterdam study ( n = 670). We performed methylome-wide association analyses in each cohort to model the interaction between levels of tHcy and c.677C > T genotypes on DNA methylation β values. Our meta-analysis identified 13 probes significantly associated with rs1801133 × tHcy levels [false-discovery rate (FDR) < 0.05]. The most significant associations were with a cluster of probes at the AGTRAP-MTHFR-NPPA/B gene locus on chromosome 1 (FDR = 1.3E-04), with additional probes on chromosomes 2, 3, 4, 7, 12, 16, and 19. Our top 2 hits on chromosome 1 were functionally associated with variability in expression of the TNF receptor superfamily member 8 ( TNFRSF8) gene/locus on that chromosome. This is the first study, to our knowledge, to provide a direct link between perturbations in 1-carbon metabolism, through an interaction of tHcy and the activity of MTHFR enzyme on epigenetic regulation of the genome via DNA methylation.-Nash, A. J., Mandaviya, P. R., Dib, M.-J., Uitterlinden, A. G., van Meurs, J., Heil, S. G., Andrew, T., Ahmadi, K. R. Interaction between plasma homocysteine and the MTHFR c.677C>T polymorphism is associated with site-specific changes in DNA methylation in humans.
Collapse
Affiliation(s)
- Alexander J Nash
- Institute of Clinical Sciences and Medical Research Council (MRC) London Institute of Medical Sciences, Imperial College, London, United Kingdom
| | - Pooja R Mandaviya
- Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marie-Joe Dib
- Department of Genomics of Common Disease, Imperial College, London, United Kingdom; and
| | - André G Uitterlinden
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Joyce van Meurs
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Sandra G Heil
- Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Toby Andrew
- Department of Genomics of Common Disease, Imperial College, London, United Kingdom; and
| | - Kourosh R Ahmadi
- Department of Nutritional Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
23
|
Strakovsky RS, Schantz SL. Impacts of bisphenol A (BPA) and phthalate exposures on epigenetic outcomes in the human placenta. ENVIRONMENTAL EPIGENETICS 2018; 4:dvy022. [PMID: 30210810 PMCID: PMC6128378 DOI: 10.1093/eep/dvy022] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 05/18/2023]
Abstract
The placenta guides fetal growth and development. Bisphenol A (BPA) and phthalates are widespread environmental contaminants and endocrine disruptors, and the placental epigenetic response to these chemicals is an area of growing research interest. Therefore, our objective was to summarize research linking BPA or phthalate exposure to placental outcomes in human pregnancies, with a particular focus on epigenetic endpoints. In PubMed, studies were selected for review (without limiting start date and ending on 1 May 2018) if they reported any direct effects of BPA or phthalates on the placenta in humans. Collectively, available studies suggest that BPA and phthalate exposures are associated with changes to placental micro-RNA expression, DNA methylation, and genomic imprinting. Furthermore, several studies suggest that fetal sex may be an important modifier of placental outcomes in response to these chemicals. Studies in humans demonstrate associations of BPA and phthalate exposure with adverse placental outcomes. Moving forward, more studies should consider sex differences (termed "placental sex") in the measured outcomes, and should utilize appropriate statistical approaches to assess modification by fetal sex. Furthermore, more consistent sample collection and molecular outcome assessment paradigms will be indispensable for making progress in the field. These advances, together with improved non-invasive tools for measuring placental function and outcomes across pregnancy, will be critical for understanding the mechanisms driving placental epigenetic disruption in response to BPA and phthalates, and how these disruptions translate into placental and fetal health.
Collapse
Affiliation(s)
- Rita S Strakovsky
- The Department of Food Science and Human Nutrition, Michigan State University, 236C Trout Building, 469 Wilson Road, East Lansing, MI, USA
- Correspondence address. The Department of Food Science and Human Nutrition, Michigan State University, 236C Trout Building, 469 Wilson Road, East Lansing, MI 48823, USA. Tel: 517-353-3352; Fax: 517-353-8963; E-mail:
| | - Susan L Schantz
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, 405 N. Mathews Ave, Urbana, IL, USA
- Department of Comparative Biosciences, 2347 Beckman Institute, University of Illinois Urbana-Champaign, 405 N. Mathews Ave, Urbana, IL, USA
| |
Collapse
|
24
|
DNA Methylation Status of the Interspersed Repetitive Sequences for LINE-1, Alu, HERV-E, and HERV-K in Trabeculectomy Specimens from Glaucoma Eyes. J Ophthalmol 2018; 2018:9171536. [PMID: 29651348 PMCID: PMC5831604 DOI: 10.1155/2018/9171536] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/06/2017] [Indexed: 11/17/2022] Open
Abstract
Background/Aims Epigenetic mechanisms via DNA methylation may be related to glaucoma pathogenesis. This study aimed to determine the global DNA methylation level of the trabeculectomy specimens among patients with different types of glaucoma and normal subjects. Methods Trabeculectomy sections from 16 primary open-angle glaucoma (POAG), 12 primary angle-closure glaucoma (PACG), 16 secondary glaucoma patients, and 10 normal controls were assessed for DNA methylation using combined-bisulfite restriction analysis. The percentage of global methylation level of the interspersed repetitive sequences for LINE-1, Alu, HERV-E, and HERV-K were compared between the 4 groups. Results There were no significant differences in the methylation for LINE-1 and HERV-E between patients and normal controls. For the Alu marker, the methylation was significantly lower in all types of glaucoma patients compared to controls (POAG 52.19% versus control 52.83%, p = 0.021; PACG 51.50% versus control, p = 0.005; secondary glaucoma 51.95% versus control, p = 0.014), whereas the methylation level of HERV-K was statistically higher in POAG patients compared to controls (POAG 49.22% versus control 48.09%, p = 0.017). Conclusions The trabeculectomy sections had relative DNA hypomethylation of Alu in all glaucoma subtypes and relative DNA hypermethylation of HERV-K in POAG patients. These methylation changes may lead to the fibrotic phenotype in the trabecular meshwork.
Collapse
|
25
|
Urinary 1-hydroxypyrene and smoking are determinants of LINE-1 and AhRR promoter methylation in coke oven workers. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 826:33-40. [PMID: 29412867 DOI: 10.1016/j.mrgentox.2018.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 12/28/2017] [Accepted: 01/09/2018] [Indexed: 12/15/2022]
Abstract
Coke oven emissions (COE) containing polycyclic aromatic hydrocarbons (PAHs) are predominant toxic constituents of particulate air pollution that have been linked to increased risk of lung cancer. Aberrant DNA methylation is one of the best known epigenetic changes in human cancers and healthy subjects exposed to carcinogens. The purpose of this study is to explore the factors influencing the methylation of long interspersed nuclear element-1 (LINE-1) and aryl-hydrocarbon receptor repressor (AhRR) in coke oven workers. The study population is composed by coke oven workers (348) and water treatment workers (131). And their urinary PAH metabolites were analyzed by high performance liquid chromatography; DNA methylation were measured by pyrosequencing. The urinary PAHs metabolites were significantly elevated in coke oven workers (P < 0.01). The results from multivariate logistic regression analysis showed that a high level of urinary 1-hydroxypyrene was associated with a significantly increased risk of hypomethylation of LINE-1 (OR: 1.80; 95% CI: 1.25, 2.60), and heavy smoking was associated with a significantly increased risk of hypomethylation of AhRR (OR: 1.44; 95% CI: 1.04, 2.00). Our findings demonstrate that urinary 1-hydroxypyrene may be a useful biomarker for evaluating the role of PAHs exposure on hypomethylation of LINE-1 among coke oven workers and that smoking may be an important factor affecting hypomethylation of AhRR.
Collapse
|
26
|
Cai J, Zhao Y, Liu P, Xia B, Zhu Q, Wang X, Song Q, Kan H, Zhang Y. Exposure to particulate air pollution during early pregnancy is associated with placental DNA methylation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 607-608:1103-1108. [PMID: 28724248 DOI: 10.1016/j.scitotenv.2017.07.029] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/02/2017] [Accepted: 07/03/2017] [Indexed: 05/06/2023]
Abstract
Maternal exposure to particulate matter with aerodynamic diameter <10μm (PM10) during pregnancy results in adverse birth outcomes. Changes in placental DNA methylation might mediate those adverse effects. In this study, we examined the associations between prenatal PM10 exposure and DNA methylation of LINE1, HSD11B2 and NR3C1 in human placenta. One hundred and eighty-one mother newborn pairs (80 fetal growth restriction newborns, 101 normal newborns) participated in this study. The average PM10 exposure of each trimester and of the whole pregnancy was calculated using daily air pollution concentration data. Placental DNA methylation was measured by quantitative polymerase chain reaction-pyrosequencing. Placental LINE-1 DNA methylation was reversely associated with first trimester PM10 exposure 1.78% (-β=1.78, 95% CI: -3.35, -0.22%), while placental HSD11B2 DNA methylation was associated with both first and second trimester PM10 exposure, and relatively increased by 1.03% (95% CI: 0.07, 1.98%) and 2.33% (95% CI: 0.69, 3.76%) for each 10μg/m3 increase in exposure to PM10. Those associations were much more evident in fetal growth restriction newborns than those in normal newborns. In summary, early pregnancy PM10 exposure was associated with placental DNA methylation of LINE1 and HSD11B2, suggesting that such methylation alterations might mediate PM-induced reproductive and developmental toxicity.
Collapse
Affiliation(s)
- Jing Cai
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, China
| | - Yan Zhao
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, China
| | | | - Bin Xia
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, China
| | - Qingyang Zhu
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, China
| | - Xiu Wang
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, China
| | - Qi Song
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, China
| | - Haidong Kan
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, China.
| | - Yunhui Zhang
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, China.
| |
Collapse
|
27
|
Barchitta M, Quattrocchi A, Maugeri A, Canto C, La Rosa N, Cantarella MA, Spampinato G, Scalisi A, Agodi A. LINE-1 hypermethylation in white blood cell DNA is associated with high-grade cervical intraepithelial neoplasia. BMC Cancer 2017; 17:601. [PMID: 28854904 PMCID: PMC5577847 DOI: 10.1186/s12885-017-3582-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 08/22/2017] [Indexed: 12/23/2022] Open
Abstract
Background Long Interspersed Nuclear Elements-1 (LINEs-1) methylation from white blood cells (WBCs) DNA has been proposed as biomarker associated with different types of cancer. The aim of the present study was to investigate the degree of WBCs LINE-1 methylation, according to high-risk Human Papilloma Virus (hrHPV) status in a healthy population, and the association with high-grade Cervical Intraepithelial Neoplasia (CIN2+) in hrHPV positive women. Methods Women with abnormal cervical cells were enrolled and classified by histological diagnosis and hrHPV infection. A structured questionnaire was used to obtain information on socio-demographic variables and lifestyle factors. LINE-1 methylation level in WBCs was measured by pyrosequencing-based methylation analysis after bisulfite conversion. Results Among 252 women diagnosed with normal cervical epithelium, with regard to LINE-1 methylation level no significant difference was observed between hrHPV positive and hrHPV negative women, also adjusting for known risk factors of infection. The association between WBCs LINE-1 methylation and CIN2+ status was analyzed in hrHPV positive women. The median value of LINE-1 methylation levels was higher in cases (CIN2+) than in controls (75.00% versus 73.17%; p = 0.002). For a one-unit increase in LINE-1 methylation level, the odds of being diagnosed with CIN2+ increased by 10%, adjusting for known factors related to LINE-1 methylation (adjOR: 1.10; 95% CI:1.01–1.20; p = 0.032). The Receiver-Operating Characteristic (ROC) curve analysis identified the cut-off value of 73.8% as the best threshold to separate cases from controls (sensitivity: 63.4% and specificity: 61.8%). Conclusions LINE-1 methylation status in WBCs DNA may represent a cost-effective and tissue-accessible biomarker for high-grade CIN in hrHPV positive women. However, LINE-1 hypermethylation cannot be considered specific for cervical cancer (CC) and a model based solely on LINE-1 methylation levels has limited performance. Further investigations are necessary to propose and validate a novel methylation biomarker panel, based on LINE-1 methylation and other differentially methylated regions, for the screening of women at risk of CC.
Collapse
Affiliation(s)
- Martina Barchitta
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, via S. Sofia, 87, 95121, Catania, Italy
| | - Annalisa Quattrocchi
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, via S. Sofia, 87, 95121, Catania, Italy
| | - Andrea Maugeri
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, via S. Sofia, 87, 95121, Catania, Italy
| | | | - Nadia La Rosa
- Unità Operativa di Screening Ginecologico, Azienda Sanitaria Provinciale 3, Catania, Italy
| | | | - Giuseppa Spampinato
- Unità Operativa di Screening Ginecologico, Azienda Sanitaria Provinciale 3, Catania, Italy
| | - Aurora Scalisi
- Unità Operativa di Screening Ginecologico, Azienda Sanitaria Provinciale 3, Catania, Italy
| | - Antonella Agodi
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, via S. Sofia, 87, 95121, Catania, Italy.
| |
Collapse
|
28
|
Yang R, Stöcker S, Schott S, Heil J, Marme F, Cuk K, Chen B, Golatta M, Zhou Y, Sutter C, Wappenschmidt B, Schmutzler R, Bugert P, Qu B, Bartram CR, Sohn C, Schneeweiss A, Burwinkel B. The association between breast cancer and S100P methylation in peripheral blood by multicenter case-control studies. Carcinogenesis 2017; 38:312-320. [PMID: 28426874 DOI: 10.1093/carcin/bgx004] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 01/12/2017] [Indexed: 12/15/2022] Open
Abstract
Breast cancer (BC) is the leading cancer in women worldwide. Changes in DNA methylation in peripheral blood could be associated with malignant diseases. Making use of screening results by llumina 27K Methylation Assay, we validated demethylation of five CpG sites of S100P gene in blood cell DNA of BC patients by three independent retrospective studies with subjects from different centers (Validation I: 235 familial BC case and 206 controls, odds ratio per -1% methylation > 1.03, and P < 6.00 × 10-8 for all five CpG sites; Validation II: 189 sporadic BC case and 189 controls, odds ratio per -1% methylation > 1.03, P < 8.0 × 10-5 for four CpG sites; Validation III: 156 sporadic BC case and 151 controls, odds ratio per -1% methylation > 1.03, P < 6.0 × 10-4 for four CpG sites). In addition, the blood-based S100P methylation pattern was similar among BC patients with differential clinical characteristics regardless of stage, receptor status and menopause status. The observed BC-associated decreased S100P methylation in blood mainly originates from the leucocytes subpopulations but not B cells. The methylation levels of most S100P CpG sites were inversely correlated with the expression of S100P in leucocytes (P < 1.2 × 10-4) and in tissue (P < 1.1 × 10-4). This study reveals significant association between blood-based decreased S100P methylation and BC, and provides another proof for the application of altered DNA methylation signatures from blood cells as potential markers for the detection of BC, especially for the early stage.
Collapse
Affiliation(s)
- Rongxi Yang
- Molecular Biology of Breast Cancer.,Department of Gynecology and Obstetrics, University Women's Clinic, 69120 Heidelberg, Germany
| | - Sarah Stöcker
- Molecular Biology of Breast Cancer.,Molecular Epidemiology (C080), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sarah Schott
- Department of Gynecology and Obstetrics, University Women's Clinic, 69120 Heidelberg, Germany
| | - Jörg Heil
- Department of Gynecology and Obstetrics, University Women's Clinic, 69120 Heidelberg, Germany
| | - Frederik Marme
- Department of Gynecology and Obstetrics, University Women's Clinic, 69120 Heidelberg, Germany
| | - Katarina Cuk
- Molecular Biology of Breast Cancer.,Molecular Epidemiology (C080), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Bowang Chen
- Division of Molecular Genetic Epidemiology (C050), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,Department of Biology, South University of Science and Technology of China, 518055 Shenzhen, China
| | - Michael Golatta
- Department of Gynecology and Obstetrics, University Women's Clinic, 69120 Heidelberg, Germany
| | - Yan Zhou
- Department of Biophysics, Saarland University, 66421 Homburg (Saar), Germany
| | - Christian Sutter
- Institute of Human Genetics, University of Heidelberg, 69120 Heidelberg, Germany
| | - Barbara Wappenschmidt
- Department of Gynecology and Obstetrics, Clinical Center of University of Cologne, 50931 Cologne, Germany
| | - Rita Schmutzler
- Department of Gynecology and Obstetrics, Clinical Center of University of Cologne, 50931 Cologne, Germany
| | - Peter Bugert
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, University of Heidelberg, German Red Cross Blood Service Baden-Württemberg - Hessen, 68167 Mannheim, Germany and
| | - Bin Qu
- Department of Biophysics, Saarland University, 66421 Homburg (Saar), Germany
| | - Claus R Bartram
- Institute of Human Genetics, University of Heidelberg, 69120 Heidelberg, Germany
| | - Christof Sohn
- Department of Gynecology and Obstetrics, University Women's Clinic, 69120 Heidelberg, Germany
| | - Andreas Schneeweiss
- Department of Gynecology and Obstetrics, University Women's Clinic, 69120 Heidelberg, Germany.,Division Gynecologic Oncology, National Center for Tumor Diseases (NCT) 69120 Heidelberg, Germany
| | - Barbara Burwinkel
- Molecular Biology of Breast Cancer.,Molecular Epidemiology (C080), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
29
|
Pinto-Medel MJ, Oliver-Martos B, Urbaneja-Romero P, Hurtado-Guerrero I, Ortega-Pinazo J, Serrano-Castro P, Fernández Ó, Leyva L. Global methylation correlates with clinical status in multiple sclerosis patients in the first year of IFNbeta treatment. Sci Rep 2017; 7:8727. [PMID: 28821874 PMCID: PMC5562733 DOI: 10.1038/s41598-017-09301-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/25/2017] [Indexed: 02/08/2023] Open
Abstract
The alteration of DNA methylation patterns are a key component of disease onset and/or progression. Our objective was to evaluate the differences in Long Interspersed Nuclear Element-1 (LINE-1) methylation levels, as a surrogate marker of global DNA methylation, between multiple sclerosis (MS) patients and healthy controls. In addition, we assessed the association of LINE-1 methylation with clinical disease activity in patients treated with IFNbeta (IFNβ). We found that individuals with high levels of LINE-1 methylation showed 6-fold increased risk of suffering MS. Additionally, treated MS patients who bear high LINE-1 methylation levels had an 11-fold increased risk of clinical activity. Moreover, a negative correlation between treatment duration and percentage of LINE-1 methylation, that was statistically significant exclusively in the group of patients without clinical activity, was observed. Our data suggest that in MS patients, a slight global DNA hypermethylation occurs that may be related to the pathophysiology of the disease. In addition, global DNA methylation levels could play a role as a biomarker for the differential clinical response to IFNβ.
Collapse
Affiliation(s)
- María Jesús Pinto-Medel
- UGC Neurociencias, Laboratorio de Investigación. Instituto de Investigación Biomedica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga (UMA), Málaga, Spain.
| | - Begoña Oliver-Martos
- UGC Neurociencias, Laboratorio de Investigación. Instituto de Investigación Biomedica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga (UMA), Málaga, Spain
| | - Patricia Urbaneja-Romero
- UGC Neurociencias, Servicio de Neurología, Fundación Pública Andaluza para la Investigación de Málaga en Biomedicina y Salud (FIMABIS), Málaga, Spain
| | - Isaac Hurtado-Guerrero
- UGC Neurociencias, Laboratorio de Investigación. Instituto de Investigación Biomedica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga (UMA), Málaga, Spain
| | - Jesús Ortega-Pinazo
- UGC Neurociencias, Laboratorio de Investigación. Instituto de Investigación Biomedica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga (UMA), Málaga, Spain
| | - Pedro Serrano-Castro
- UGC Neurociencias, Servicio de Neurología, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Óscar Fernández
- UGC Neurociencias, Laboratorio de Investigación. Instituto de Investigación Biomedica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga (UMA), Málaga, Spain
| | - Laura Leyva
- UGC Neurociencias, Laboratorio de Investigación. Instituto de Investigación Biomedica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga (UMA), Málaga, Spain
| |
Collapse
|
30
|
Magnet U, Urbanek C, Gaisberger D, Tomeva E, Dum E, Pointner A, Haslberger A. Topical equol preparation improves structural and molecular skin parameters. Int J Cosmet Sci 2017; 39:535-542. [DOI: 10.1111/ics.12408] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/30/2017] [Indexed: 12/29/2022]
Affiliation(s)
- U. Magnet
- Department for Nutritional Sciences; University of Vienna; Vienna 1090 Austria
| | - C. Urbanek
- HealthBioCare; Mooslackengasse 17 Vienna 1090 Austria
| | - D. Gaisberger
- HealthBioCare; Mooslackengasse 17 Vienna 1090 Austria
| | - E. Tomeva
- Department for Nutritional Sciences; University of Vienna; Vienna 1090 Austria
| | - E. Dum
- Department for Nutritional Sciences; University of Vienna; Vienna 1090 Austria
| | - A. Pointner
- Department for Nutritional Sciences; University of Vienna; Vienna 1090 Austria
| | - A.G. Haslberger
- Department for Nutritional Sciences; University of Vienna; Vienna 1090 Austria
| |
Collapse
|
31
|
Breton CV, Marsit CJ, Faustman E, Nadeau K, Goodrich JM, Dolinoy DC, Herbstman J, Holland N, LaSalle JM, Schmidt R, Yousefi P, Perera F, Joubert BR, Wiemels J, Taylor M, Yang IV, Chen R, Hew KM, Freeland DMH, Miller R, Murphy SK. Small-Magnitude Effect Sizes in Epigenetic End Points are Important in Children's Environmental Health Studies: The Children's Environmental Health and Disease Prevention Research Center's Epigenetics Working Group. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:511-526. [PMID: 28362264 PMCID: PMC5382002 DOI: 10.1289/ehp595] [Citation(s) in RCA: 211] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/24/2016] [Accepted: 09/27/2016] [Indexed: 05/15/2023]
Abstract
BACKGROUND Characterization of the epigenome is a primary interest for children's environmental health researchers studying the environmental influences on human populations, particularly those studying the role of pregnancy and early-life exposures on later-in-life health outcomes. OBJECTIVES Our objective was to consider the state of the science in environmental epigenetics research and to focus on DNA methylation and the collective observations of many studies being conducted within the Children's Environmental Health and Disease Prevention Research Centers, as they relate to the Developmental Origins of Health and Disease (DOHaD) hypothesis. METHODS We address the current laboratory and statistical tools available for epigenetic analyses, discuss methods for validation and interpretation of findings, particularly when magnitudes of effect are small, question the functional relevance of findings, and discuss the future for environmental epigenetics research. DISCUSSION A common finding in environmental epigenetic studies is the small-magnitude epigenetic effect sizes that result from such exposures. Although it is reasonable and necessary that we question the relevance of such small effects, we present examples in which small effects persist and have been replicated across populations and across time. We encourage a critical discourse on the interpretation of such small changes and further research on their functional relevance for children's health. CONCLUSION The dynamic nature of the epigenome will require an emphasis on future longitudinal studies in which the epigenome is profiled over time, over changing environmental exposures, and over generations to better understand the multiple ways in which the epigenome may respond to environmental stimuli.
Collapse
Affiliation(s)
| | | | | | - Kari Nadeau
- Stanford University, Palo Alto, California, USA
- University of California, Berkeley, Berkeley, California, USA
| | | | | | | | - Nina Holland
- University of California, Berkeley, Berkeley, California, USA
| | | | | | - Paul Yousefi
- University of California, Berkeley, Berkeley, California, USA
| | | | - Bonnie R. Joubert
- National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina
| | - Joseph Wiemels
- University of California at San Francisco, San Francisco, California, USA
| | | | - Ivana V. Yang
- University of Colorado, Denver, Colorado, USA
- National Jewish Health, Denver, Colorado, USA
| | - Rui Chen
- Stanford University, Palo Alto, California, USA
| | | | | | | | | |
Collapse
|
32
|
Wolff F, Leisch M, Greil R, Risch A, Pleyer L. The double-edged sword of (re)expression of genes by hypomethylating agents: from viral mimicry to exploitation as priming agents for targeted immune checkpoint modulation. Cell Commun Signal 2017; 15:13. [PMID: 28359286 PMCID: PMC5374693 DOI: 10.1186/s12964-017-0168-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/21/2017] [Indexed: 12/20/2022] Open
Abstract
Hypomethylating agents (HMAs) have been widely used over the last decade, approved for use in myelodysplastic syndrome (MDS), chronic myelomonocytic leukemia (CMML) and acute myeloid leukemia (AML). The proposed central mechanism of action of HMAs, is the reversal of aberrant methylation in tumor cells, thus reactivating CpG-island promoters and leading to (re)expression of tumor suppressor genes. Recent investigations into the mode of action of azacitidine (AZA) and decitabine (DAC) have revealed new molecular mechanisms that impinge on tumor immunity via induction of an interferon response, through activation of endogenous retroviral elements (ERVs) that are normally epigenetically silenced. Although the global demethylation of DNA by HMAs can induce anti-tumor effects, it can also upregulate the expression of inhibitory immune checkpoint receptors and their ligands, resulting in secondary resistance to HMAs. Recent studies have, however, suggested that this could be exploited to prime or (re)sensitize tumors to immune checkpoint inhibitor therapies. In recent years, immune checkpoints have been targeted by novel therapies, with the aim of (re)activating the host immune system to specifically eliminate malignant cells. Antibodies blocking checkpoint receptors have been FDA-approved for some solid tumors and a plethora of clinical trials testing these and other checkpoint inhibitors are under way. This review will discuss AZA and DAC novel mechanisms of action resulting from the re-expression of pathologically hypermethylated promoters of gene sets that are related to interferon signaling, antigen presentation and inflammation. We also review new insights into the molecular mechanisms of action of transient, low-dose HMAs on various tumor types and discuss the potential of new treatment options and combinations.
Collapse
Affiliation(s)
- Florian Wolff
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Michael Leisch
- 3rd Medical Department with Hematology and Medical Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Laboratory for Immunological and Molecular Cancer Research, Oncologic Center, Paracelsus Medical University Salzburg, Müllner Hauptstraße 48, A-5020, Salzburg, Austria
| | - Richard Greil
- 3rd Medical Department with Hematology and Medical Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Laboratory for Immunological and Molecular Cancer Research, Oncologic Center, Paracelsus Medical University Salzburg, Müllner Hauptstraße 48, A-5020, Salzburg, Austria.,Salzburg Cancer Research Institute - Center for Clinical Cancer and Immunology Trials, Salzburg, Austria.,Cancer Cluster Salzburg, Salzburg, Austria
| | - Angela Risch
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria.,Cancer Cluster Salzburg, Salzburg, Austria
| | - Lisa Pleyer
- 3rd Medical Department with Hematology and Medical Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Laboratory for Immunological and Molecular Cancer Research, Oncologic Center, Paracelsus Medical University Salzburg, Müllner Hauptstraße 48, A-5020, Salzburg, Austria. .,Salzburg Cancer Research Institute - Center for Clinical Cancer and Immunology Trials, Salzburg, Austria. .,Cancer Cluster Salzburg, Salzburg, Austria.
| |
Collapse
|
33
|
Wen KX, Miliç J, El-Khodor B, Dhana K, Nano J, Pulido T, Kraja B, Zaciragic A, Bramer WM, Troup J, Chowdhury R, Ikram MA, Dehghan A, Muka T, Franco OH. The Role of DNA Methylation and Histone Modifications in Neurodegenerative Diseases: A Systematic Review. PLoS One 2016; 11:e0167201. [PMID: 27973581 PMCID: PMC5156363 DOI: 10.1371/journal.pone.0167201] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 11/10/2016] [Indexed: 12/11/2022] Open
Abstract
IMPORTANCE Epigenetic modifications of the genome, such as DNA methylation and histone modifications, have been reported to play a role in neurodegenerative diseases (ND) such as Alzheimer's disease (AD) and Parkinson's disease (PD). OBJECTIVE To systematically review studies investigating epigenetic marks in AD or PD. METHODS Eleven bibliographic databases (Embase.com, Medline (Ovid), Web-of-Science, Scopus, PubMed, Cinahl (EBSCOhost), Cochrane Central, ProQuest, Lilacs, Scielo and Google Scholar) were searched until July 11th 2016 to identify relevant articles. We included all randomized controlled trials, cohort, case-control and cross-sectional studies in humans that examined associations between epigenetic marks and ND. Two independent reviewers, with a third reviewer available for disagreements, performed the abstract and full text selection. Data was extracted using a pre-designed data collection form. RESULTS Of 6,927 searched references, 73 unique case-control studies met our inclusion criteria. Overall, 11,453 individuals were included in this systematic review (2,640 AD and 2,368 PD outcomes). There was no consistent association between global DNA methylation pattern and any ND. Studies reported epigenetic regulation of 31 genes (including cell communication, apoptosis, and neurogenesis genes in blood and brain tissue) in relation to AD and PD. Methylation at the BDNF, SORBS3 and APP genes in AD were the most consistently reported associations. Methylation of α-synuclein gene (SNCA) was also found to be associated with PD. Seven studies reported histone protein alterations in AD and PD. CONCLUSION Many studies have investigated epigenetics and ND. Further research should include larger cohort or longitudinal studies, in order to identify clinically significant epigenetic changes. Identifying relevant epigenetic changes could lead to interventional strategies in ND.
Collapse
Affiliation(s)
- Ke-xin Wen
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - Jelena Miliç
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - Bassem El-Khodor
- Research and Development, Metagenics, Inc, United States of America
| | - Klodian Dhana
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - Jana Nano
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - Tammy Pulido
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - Bledar Kraja
- Department of Biomedical Sciences, Faculty of Medicine, University of Medicine, Tirana, Albania
- University Clinic of Gastrohepatology, University Hospital Center Mother Teresa, Tirana, Albania
| | - Asija Zaciragic
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | | | - John Troup
- Research and Development, Metagenics, Inc, United States of America
| | - Rajiv Chowdhury
- Department of Public Health & Primary Care, Cardiovascular Epidemiology Unit, University of Cambridge, Cambridge, CB1 8RN, United Kingdom
| | - M. Arfam Ikram
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - Abbas Dehghan
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - Taulant Muka
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - Oscar H. Franco
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| |
Collapse
|
34
|
Desaulniers D, Cummings-Lorbetskie C, Li N, Xiao GH, Marro L, Khan N, Leingartner K. Sodium bisulfite pyrosequencing revealed that developmental exposure to environmental contaminant mixtures does not affect DNA methylation of DNA repeats in Sprague-Dawley rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2016; 80:32-52. [PMID: 27905861 DOI: 10.1080/15287394.2016.1231644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 08/29/2016] [Indexed: 06/06/2023]
Abstract
Hypomethylation of DNA repeats has been linked to diseases and cancer predisposition. Human studies suggest that higher blood concentrations of environmental contaminants (EC) correlate with levels of hypomethylation of DNA repeats in blood. The objective of this study was to examine the effect of in utero and/or lactational exposure to EC on the methylation of DNA repeats (LINE-1 and identifier element) in Sprague-Dawley rat pups at birth, at postnatal day (PND) 21, and in adulthood (PND78-86). From gestation day 0 to PND20, dams were exposed to a mixture "M" of polychlorinated biphenyls (PCB), pesticides, and methylmercury (MeHg), at 0.5 or 1 mg/kg/d (0.5M and M). At birth, some control (C) and M litters were cross-fostered to create the following in utero/postnatal exposure groups: C/C, M/C, C/M, M/M. Additional dams received 1.8 ng/kg/d of a mixture of aryl-hydrocarbon receptor (AhR) agonists (non-ortho-PCB, PC-dibenzodioxins, and PC-dibenzofurans) without or with 0.5M (0.5MAhR). Measurements of EC residue levels confirmed differences in their accumulation across treatments, age, and tissues. Although induction of hepatic detoxification enzyme activities (cytochrome P-450) demonstrated biological effects of treatments, the assessment of methylation in DNA repeats by sodium bisulfite pyrosequencing of liver, spleen, and thymus samples revealed no marked treatment-related effects but significant tissue- and age-related methylation differences. Further studies are required to determine whether absence of significant observable treatment effects on methylation of DNA repeats in the rat relate to tissue, strain, or species differences.
Collapse
Affiliation(s)
- Daniel Desaulniers
- a Health Canada, Healthy Environments and Consumer Safety Branch, Environmental Health Sciences and Research Bureau , Ottawa , Ontario , Canada
| | - Cathy Cummings-Lorbetskie
- a Health Canada, Healthy Environments and Consumer Safety Branch, Environmental Health Sciences and Research Bureau , Ottawa , Ontario , Canada
| | - Nanqin Li
- a Health Canada, Healthy Environments and Consumer Safety Branch, Environmental Health Sciences and Research Bureau , Ottawa , Ontario , Canada
| | - Gong-Hua Xiao
- a Health Canada, Healthy Environments and Consumer Safety Branch, Environmental Health Sciences and Research Bureau , Ottawa , Ontario , Canada
| | - Leonora Marro
- a Health Canada, Healthy Environments and Consumer Safety Branch, Environmental Health Sciences and Research Bureau , Ottawa , Ontario , Canada
| | - Nasrin Khan
- a Health Canada, Healthy Environments and Consumer Safety Branch, Environmental Health Sciences and Research Bureau , Ottawa , Ontario , Canada
| | - Karen Leingartner
- a Health Canada, Healthy Environments and Consumer Safety Branch, Environmental Health Sciences and Research Bureau , Ottawa , Ontario , Canada
| |
Collapse
|
35
|
Kochmanski J, Marchlewicz EH, Savidge M, Montrose L, Faulk C, Dolinoy DC. Longitudinal effects of developmental bisphenol A and variable diet exposures on epigenetic drift in mice. Reprod Toxicol 2016; 68:154-163. [PMID: 27496716 DOI: 10.1016/j.reprotox.2016.07.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/18/2016] [Accepted: 07/31/2016] [Indexed: 12/13/2022]
Abstract
Environmental factors, including exogenous exposures and nutritional status, can affect DNA methylation across the epigenome, but effects of exposures on age-dependent epigenetic drift remain unclear. Here, we tested the hypothesis that early-life exposure to bisphenol A (BPA) and/or variable diet results in altered epigenetic drift, as measured longitudinally via target loci methylation in paired mouse tail tissue (3 wks/10 mos old). Methylation was quantified at two repetitive elements (LINE-1, IAP), two imprinted genes (Igf2, H19), and one non-imprinted gene (Esr1) in isogenic mice developmentally exposed to Control, Control+BPA (50μg/kg diet), Mediterranean, Western, Mediterranean+BPA, or Western+BPA diets. Across age, methylation levels significantly (p<0.050) decreased at LINE-1, IAP, and H19, and increased at Esr1. Igf2 demonstrated Western-specific changes in early-life methylation (p=0.027), and IAP showed marginal negative modification of drift in Western (p=0.058) and Western+BPA (p=0.051). Thus, DNA methylation drifts across age, and developmental nutritional exposures can alter age-related methylation patterns.
Collapse
Affiliation(s)
- Joseph Kochmanski
- Environmental Health Sciences, University of Michigan, School of Public Health, 1415 Washington Heights Ann Arbor, MI, 48109, USA.
| | - Elizabeth H Marchlewicz
- Environmental Health Sciences, University of Michigan, School of Public Health, 1415 Washington Heights Ann Arbor, MI, 48109, USA.
| | - Matthew Savidge
- Environmental Health Sciences, University of Michigan, School of Public Health, 1415 Washington Heights Ann Arbor, MI, 48109, USA.
| | - Luke Montrose
- Environmental Health Sciences, University of Michigan, School of Public Health, 1415 Washington Heights Ann Arbor, MI, 48109, USA.
| | - Christopher Faulk
- Environmental Health Sciences, University of Michigan, School of Public Health, 1415 Washington Heights Ann Arbor, MI, 48109, USA; Department of Animal Science, University of Minnesota, 1364 Eckles Ave, Falcon Heights, MN 55108, USA.
| | - Dana C Dolinoy
- Environmental Health Sciences, University of Michigan, School of Public Health, 1415 Washington Heights Ann Arbor, MI, 48109, USA; Nutritional Sciences, University of Michigan, School of Public Health, 1415 Washington Heights Ann Arbor, MI, 48109, USA.
| |
Collapse
|
36
|
Muka T, Nano J, Voortman T, Braun KVE, Ligthart S, Stranges S, Bramer WM, Troup J, Chowdhury R, Dehghan A, Franco OH. The role of global and regional DNA methylation and histone modifications in glycemic traits and type 2 diabetes: A systematic review. Nutr Metab Cardiovasc Dis 2016; 26:553-566. [PMID: 27146363 DOI: 10.1016/j.numecd.2016.04.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 04/04/2016] [Accepted: 04/04/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND New evidence suggests the potential involvement of epigenetic mechanisms in type 2 diabetes (T2D) as a crucial interface between the effects of genetic predisposition and environmental influences. AIM To systematically review studies investigating the association between epigenetic marks (DNA methylation and histone modifications) with T2D and glycemic traits (glucose and insulin levels, insulin resistance measured by HOMA-IR). METHOD AND RESULTS Six bibliographic databases (Embase.com, Medline (Ovid), Web-of-Science, PubMed, Cochrane Central and Google Scholar) were screened until 28th August 2015. We included randomized controlled trials, cohort, case-control and cross-sectional studies in humans that examined the association between epigenetic marks (global, candidate or genome-wide methylation of DNA and histone modifications) with T2D, glucose and insulin levels and insulin metabolism. Of the initially identified 3879 references, 53 articles, based on 47 unique studies met our inclusion criteria. Overall, data were available on 10,823 participants, with a total of 3358 T2D cases. There was no consistent evidence for an association between global DNA-methylation with T2D, glucose, insulin and insulin resistance. The studies reported epigenetic regulation of several candidate genes for diabetes susceptibility in blood cells, muscle, adipose tissue and placenta to be related with T2D without any general overlap between them. Histone modifications in relation to T2D were reported only in 3 observational studies. CONCLUSIONS AND RELEVANCE Current evidence supports an association between epigenetic marks and T2D. However, overall evidence is limited, highlighting the need for further larger-scale and prospective investigations to establish whether epigenetic marks may influence the risk of developing T2D.
Collapse
Affiliation(s)
- T Muka
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - J Nano
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - T Voortman
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - K V E Braun
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - S Ligthart
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - S Stranges
- Department of Population Health, Luxembourg Institute of Health, Luxembourg
| | - W M Bramer
- Medical Library, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - J Troup
- Research and Development, Metagenics, Inc, USA
| | - R Chowdhury
- Department of Public Health & Primary Care, Cardiovascular Epidemiology Unit, University of Cambridge, Cambridge, CB1 8RN, United Kingdom
| | - A Dehghan
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - O H Franco
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
37
|
The role of epigenetic modifications in cardiovascular disease: A systematic review. Int J Cardiol 2016; 212:174-83. [DOI: 10.1016/j.ijcard.2016.03.062] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 03/14/2016] [Accepted: 03/16/2016] [Indexed: 01/11/2023]
|
38
|
Knothe C, Shiratori H, Resch E, Ultsch A, Geisslinger G, Doehring A, Lötsch J. Disagreement between two common biomarkers of global DNA methylation. Clin Epigenetics 2016; 8:60. [PMID: 27222668 PMCID: PMC4877994 DOI: 10.1186/s13148-016-0227-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/10/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The quantification of global DNA methylation has been established in epigenetic screening. As more practicable alternatives to the HPLC-based gold standard, the methylation analysis of CpG islands in repeatable elements (LINE-1) and the luminometric methylation assay (LUMA) of overall 5-methylcytosine content in "CCGG" recognition sites are most widely used. Both methods are applied as virtually equivalent, despite the hints that their results only partly agree. This triggered the present agreement assessments. RESULTS Three different human cell types (cultured MCF7 and SHSY5Y cell lines treated with different chemical modulators of DNA methylation and whole blood drawn from pain patients and healthy volunteers) were submitted to the global DNA methylation assays employing LINE-1 or LUMA-based pyrosequencing measurements. The agreement between the two bioassays was assessed using generally accepted approaches to the statistics for laboratory method comparison studies. Although global DNA methylation levels measured by the two methods correlated, five different lines of statistical evidence consistently rejected the assumption of complete agreement. Specifically, a bias was observed between the two methods. In addition, both the magnitude and direction of bias were tissue-dependent. Interassay differences could be grouped based on Bayesian statistics, and these groups allowed in turn to re-identify the originating tissue. CONCLUSIONS Although providing partly correlated measurements of DNA methylation, interchangeability of the quantitative results obtained with LINE-1 and LUMA was jeopardized by a consistent bias between the results. Moreover, the present analyses strongly indicate a tissue specificity of the differences between the two methods.
Collapse
Affiliation(s)
- Claudia Knothe
- />Institute of Clinical Pharmacology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Hiromi Shiratori
- />Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Eduard Resch
- />Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Alfred Ultsch
- />DataBionics Research Group, University of Marburg, Hans-Meerwein-Straße, 35032 Marburg, Germany
| | - Gerd Geisslinger
- />Institute of Clinical Pharmacology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- />Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Alexandra Doehring
- />Institute of Clinical Pharmacology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Jörn Lötsch
- />Institute of Clinical Pharmacology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- />Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| |
Collapse
|
39
|
Marsit CJ, Brummel SS, Kacanek D, Seage GR, Spector SA, Armstrong DA, Lester BM, Rich K. Infant peripheral blood repetitive element hypomethylation associated with antiretroviral therapy in utero. Epigenetics 2016; 10:708-16. [PMID: 26067216 DOI: 10.1080/15592294.2015.1060389] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The use of combination antiretroviral therapy (cART) to prevent HIV mother-to-child transmission during pregnancy and delivery is generally considered safe. However, vigilant assessment of potential risks of these agents remains warranted. Epigenetic changes including DNA methylation are considered potential mechanisms linking the in utero environment with long-term health outcomes. Few studies have examined the epigenetic effects of prenatal exposure to pharmaceutical agents, including antiretroviral therapies, on children. In this study, we examined the methylation status of the LINE-1 and ALU-Yb8 repetitive elements as markers of global DNA methylation alteration in peripheral blood mononuclear cells obtained from newborns participating in the Pediatric HIV/AIDS Cohort Study SMARTT cohort of HIV-exposed, cART-exposed uninfected infants compared to a historical cohort of HIV-exposed, antiretroviral-unexposed infants from the Women and Infants Transmission Study Cohort. In linear regression models controlling for potential confounders, we found the adjusted mean difference of AluYb8 methylation of the cART-exposed compared to the -unexposed was -0.568 (95% CI: -1.023, -0.149) and for LINE-1 methylation was -1.359 (95% CI: -1.860, -0.857). Among those exposed to cART, subjects treated with atazanavir (ATV), compared to those on other treatments, had less AluYb8 methylation (-0.524, 95% CI: -0.025, -1.024). Overall, these results suggest a small but statistically significant reduction in the methylation of these repetitive elements in an HIV-exposed, cART-exposed cohort compared to an HIV-exposed, cART-unexposed historic cohort. The potential long-term implications of these differences are worthy of further examination.
Collapse
Affiliation(s)
- Carmen J Marsit
- a Departments of Pharmacology and Toxicology and of Epidemiology; Geisel School of Medicine at Dartmouth ; Hanover , NH USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Motzek A, Knežević J, Switzeny OJ, Cooper A, Barić I, Beluzić R, Strauss KA, Puffenberger EG, Mudd SH, Vugrek O, Zechner U. Abnormal Hypermethylation at Imprinting Control Regions in Patients with S-Adenosylhomocysteine Hydrolase (AHCY) Deficiency. PLoS One 2016; 11:e0151261. [PMID: 26974671 PMCID: PMC4790936 DOI: 10.1371/journal.pone.0151261] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/25/2016] [Indexed: 12/14/2022] Open
Abstract
S-adenosylhomocysteine hydrolase (AHCY) deficiency is a rare autosomal recessive disorder in methionine metabolism caused by mutations in the AHCY gene. Main characteristics are psychomotor delay including delayed myelination and myopathy (hypotonia, absent tendon reflexes etc.) from birth, mostly associated with hypermethioninaemia, elevated serum creatine kinase levels and increased genome wide DNA methylation. The prime function of AHCY is to hydrolyse and efficiently remove S-adenosylhomocysteine, the by-product of transmethylation reactions and one of the most potent methyltransferase inhibitors. In this study, we set out to more specifically characterize DNA methylation changes in blood samples from patients with AHCY deficiency. Global DNA methylation was increased in two of three analysed patients. In addition, we analysed the DNA methylation levels at differentially methylated regions (DMRs) of six imprinted genes (MEST, SNRPN, LIT1, H19, GTL2 and PEG3) as well as Alu and LINE1 repetitive elements in seven patients. Three patients showed a hypermethylation in up to five imprinted gene DMRs. Abnormal methylation in Alu and LINE1 repetitive elements was not observed. We conclude that DNA hypermethylation seems to be a frequent but not a constant feature associated with AHCY deficiency that affects different genomic regions to different degrees. Thus AHCY deficiency may represent an ideal model disease for studying the molecular origins and biological consequences of DNA hypermethylation due to impaired cellular methylation status.
Collapse
Affiliation(s)
- Antje Motzek
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jelena Knežević
- Institute Ruđer Bošković, Division of Molecular Medicine, Zagreb, Croatia
| | - Olivier J. Switzeny
- Institute for Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Alexis Cooper
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Ivo Barić
- Department of Pediatrics, University Hospital Center Zagreb & University of Zagreb, School of Medicine, Zagreb, Croatia
| | - Robert Beluzić
- Institute Ruđer Bošković, Division of Molecular Medicine, Zagreb, Croatia
| | - Kevin A. Strauss
- Clinic for Special Children, Strasburg, Pennsylvania, United States of America
- Franklin and Marshall College, Lancaster, Pennsylvania, United States of America
| | - Erik G. Puffenberger
- Clinic for Special Children, Strasburg, Pennsylvania, United States of America
- Franklin and Marshall College, Lancaster, Pennsylvania, United States of America
| | - S. Harvey Mudd
- Laboratory of Molecular Biology, National Institute of Mental Health, Bethesda, Maryland, United States of America
| | - Oliver Vugrek
- Institute Ruđer Bošković, Division of Molecular Medicine, Zagreb, Croatia
- * E-mail: (OV); (UZ)
| | - Ulrich Zechner
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- * E-mail: (OV); (UZ)
| |
Collapse
|
41
|
Marsit CJ. Influence of environmental exposure on human epigenetic regulation. ACTA ACUST UNITED AC 2015; 218:71-9. [PMID: 25568453 DOI: 10.1242/jeb.106971] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Environmental toxicants can alter epigenetic regulatory features such as DNA methylation and microRNA expression. As the sensitivity of epigenomic regulatory features may be greatest during the in utero period, when critical windows are narrow, and when epigenomic profiles are being set, this review will highlight research focused on that period. I will focus on work in human populations, where the impact of environmental toxicants in utero, including cigarette smoke and toxic trace metals such as arsenic, mercury and manganese, on genome-wide, gene-specific DNA methylation has been assessed. In particular, arsenic is highlighted, as this metalloid has been the focus of a number of studies and its detoxification mechanisms are well understood. Importantly, the tissues and cells being examined must be considered in context in order to interpret the findings of these studies. For example, by studying the placenta, it is possible to identify potential epigenetic adaptations of key genes and pathways that may alter the developmental course in line with the developmental origins of health and disease paradigm. Alternatively, studies of newborn cord blood can be used to examine how environmental exposure in utero can impact the composition of cells within the peripheral blood, leading to immunological effects of exposure. The results suggest that in humans, like other vertebrates, there is a susceptibility for epigenomic alteration by the environment during intrauterine development, and this may represent a mechanism of plasticity of the organism in response to its environment as well as a mechanism through which long-term health consequences can be shaped.
Collapse
Affiliation(s)
- Carmen J Marsit
- Department of Pharmacology and Toxicology and Section of Epidemiology and Biostatistics in the Department of Community and Family Medicine, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| |
Collapse
|
42
|
van Veldhoven K, Polidoro S, Baglietto L, Severi G, Sacerdote C, Panico S, Mattiello A, Palli D, Masala G, Krogh V, Agnoli C, Tumino R, Frasca G, Flower K, Curry E, Orr N, Tomczyk K, Jones ME, Ashworth A, Swerdlow A, Chadeau-Hyam M, Lund E, Garcia-Closas M, Sandanger TM, Flanagan JM, Vineis P. Epigenome-wide association study reveals decreased average methylation levels years before breast cancer diagnosis. Clin Epigenetics 2015; 7:67. [PMID: 26244061 PMCID: PMC4524428 DOI: 10.1186/s13148-015-0104-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/29/2015] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Interest in the potential of DNA methylation in peripheral blood as a biomarker of cancer risk is increasing. We aimed to assess whether epigenome-wide DNA methylation measured in peripheral blood samples obtained before onset of the disease is associated with increased risk of breast cancer. We report on three independent prospective nested case-control studies from the European Prospective Investigation into Cancer and Nutrition (EPIC-Italy; n = 162 matched case-control pairs), the Norwegian Women and Cancer study (NOWAC; n = 168 matched pairs), and the Breakthrough Generations Study (BGS; n = 548 matched pairs). We used the Illumina 450k array to measure methylation in the EPIC and NOWAC cohorts. Whole-genome bisulphite sequencing (WGBS) was performed on the BGS cohort using pooled DNA samples, combined to reach 50× coverage across ~16 million CpG sites in the genome including 450k array CpG sites. Mean β values over all probes were calculated as a measurement for epigenome-wide methylation. RESULTS In EPIC, we found that high epigenome-wide methylation was associated with lower risk of breast cancer (odds ratio (OR) per 1 SD = 0.61, 95 % confidence interval (CI) 0.47-0.80; -0.2 % average difference in epigenome-wide methylation for cases and controls). Specifically, this was observed in gene bodies (OR = 0.51, 95 % CI 0.38-0.69) but not in gene promoters (OR = 0.92, 95 % CI 0.64-1.32). The association was not replicated in NOWAC (OR = 1.03 95 % CI 0.81-1.30). The reasons for heterogeneity across studies are unclear. However, data from the BGS cohort was consistent with epigenome-wide hypomethylation in breast cancer cases across the overlapping 450k probe sites (difference in average epigenome-wide methylation in case and control DNA pools = -0.2 %). CONCLUSIONS We conclude that epigenome-wide hypomethylation of DNA from pre-diagnostic blood samples may be predictive of breast cancer risk and may thus be useful as a clinical biomarker.
Collapse
Affiliation(s)
- Karin van Veldhoven
- MRC-PHE Centre for Environment and Health, Imperial College London, London, W2 1PG UK.,HuGeF Foundation, 52, Via Nizza, Torino, 10126 Italy
| | | | | | | | | | - Salvatore Panico
- Departimento di Medicina Clinica e Chirurgia, Federico II University, Naples, Italy
| | - Amalia Mattiello
- Departimento di Medicina Clinica e Chirurgia, Federico II University, Naples, Italy
| | - Domenico Palli
- Molecular and Nutritional Epidemiology Unit, Cancer Research and Prevention Institute-ISPO, Florence, Italy
| | - Giovanna Masala
- Molecular and Nutritional Epidemiology Unit, Cancer Research and Prevention Institute-ISPO, Florence, Italy
| | - Vittorio Krogh
- Epidemiology and Prevention Unit Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Claudia Agnoli
- Epidemiology and Prevention Unit Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | | | - Kirsty Flower
- Epigenetics Unit, Division of Cancer, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, 4th Floor IRDB, Hammersmith Campus, Du Cane Road, London, W12 0NN UK
| | - Ed Curry
- Epigenetics Unit, Division of Cancer, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, 4th Floor IRDB, Hammersmith Campus, Du Cane Road, London, W12 0NN UK
| | - Nicholas Orr
- Division of Breast Cancer Research, The Institute of Cancer Research, London, UK
| | - Katarzyna Tomczyk
- Division of Breast Cancer Research, The Institute of Cancer Research, London, UK
| | - Michael E Jones
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Alan Ashworth
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| | - Anthony Swerdlow
- Division of Breast Cancer Research, The Institute of Cancer Research, London, UK.,Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Marc Chadeau-Hyam
- MRC-PHE Centre for Environment and Health, Imperial College London, London, W2 1PG UK
| | - Eiliv Lund
- Department of Community Medicine, UiT-the Arctic University of Norway, Tromsø, Norway
| | - Montserrat Garcia-Closas
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, UK.,Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Torkjel M Sandanger
- Department of Community Medicine, UiT-the Arctic University of Norway, Tromsø, Norway
| | - James M Flanagan
- Epigenetics Unit, Division of Cancer, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, 4th Floor IRDB, Hammersmith Campus, Du Cane Road, London, W12 0NN UK
| | - Paolo Vineis
- MRC-PHE Centre for Environment and Health, Imperial College London, London, W2 1PG UK.,HuGeF Foundation, 52, Via Nizza, Torino, 10126 Italy
| |
Collapse
|
43
|
Delgado-Cruzata L, Vin-Raviv N, Tehranifar P, Flom J, Reynolds D, Gonzalez K, Santella RM, Terry MB. Correlations in global DNA methylation measures in peripheral blood mononuclear cells and granulocytes. Epigenetics 2015; 9:1504-10. [PMID: 25482109 DOI: 10.4161/15592294.2014.983364] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Alterations in global DNA methylation levels have been associated with chronic diseases. Despite the increase in the number of studies measuring markers of global methylation, few have adequately examined within-individual differences by source of DNA and whether within-individual differences by source of DNA differ by age, race and other lifestyle factors. We examined correlations between peripheral mononuclear cell (PBMC) and granulocyte DNA methylation levels measured by the luminometric methylation assay (LUMA), and in LINE-1, Sat2, and Alu by MethyLight and pyrosequencing, in the same individual in 112 women participating in The New York City Multiethnic Breast Cancer Project. Levels of DNA methylation of Sat2 by MethyLight (r = 0.57; P < 0.01) and LINE-1 by pyrosequencing (r = 0.30; P < 0.01) were correlated between PBMC and granulocyte DNA of the same individuals, but LUMA and Alu levels were not. The magnitude of the correlations for Sat2 and LINE-1 varied when stratified by selected demographic and lifestyle factors, although the study sample size limited our comparisons across subgroups. These results lend further support to the importance of considering the source of DNA in epidemiologic studies of white blood cell DNA methylation. Results from studies that combine individuals with different available DNA sources need to be interpreted with caution.
Collapse
Affiliation(s)
- Lissette Delgado-Cruzata
- a Department of Environmental Health Sciences ; Columbia University Medical Center; Mailman School of Public Health ; New York , NY USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Cordero F, Ferrero G, Polidoro S, Fiorito G, Campanella G, Sacerdote C, Mattiello A, Masala G, Agnoli C, Frasca G, Panico S, Palli D, Krogh V, Tumino R, Vineis P, Naccarati A. Differentially methylated microRNAs in prediagnostic samples of subjects who developed breast cancer in the European Prospective Investigation into Nutrition and Cancer (EPIC-Italy) cohort. Carcinogenesis 2015; 36:1144-53. [DOI: 10.1093/carcin/bgv102] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 07/08/2015] [Indexed: 12/20/2022] Open
|
45
|
Zhao Y, Shi HJ, Xie CM, Chen J, Laue H, Zhang YH. Prenatal phthalate exposure, infant growth, and global DNA methylation of human placenta. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2015; 56:286-92. [PMID: 25327576 DOI: 10.1002/em.21916] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 09/02/2014] [Accepted: 09/25/2014] [Indexed: 05/21/2023]
Abstract
Prenatal phthalate exposure has been shown to be associated with reduced fetal growth. Epigenetic changes such as DNA methylation might be a molecular mechanism through which phthalate exposure affects fetal growth. In this study, we examined associations between prenatal phthalate exposure, infant growth, and global DNA methylation in human placenta samples. We measured global DNA methylation of 119 subjects [55 fetal growth restriction (FGR) cases and 64 normal controls], as assessed by long interspersed nuclear element-1 (LINE-1) methylation, via quantitative polymerase chain reaction-pyrosequencing. Prenatal phthalate exposure was assessed by measuring maternal urinary phthalate metabolites concentrations using high-performance liquid chromatography-tandem mass spectrometry. Concentrations of mono (2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), mono (2-ethyl-5-oxohexyl) phthalate (MEOHP), and SumDEHP (molar sum of MEHP, MEHHP, and MEOHP) were significantly higher in FGR cases than those in normal controls (P = 0.002, 0.003, and 0.002, respectively). Placental LINE-1 methylation were found to be positively associated with fetal birth weight standard deviation scores, and negatively associated with urinary phthalate metabolites concentrations (MEHHP and SumDEHP). Every natural-log unit increase in urinary concentrations of MEHHP and SumDEHP was associated with 0.015 (β = -0.015, P = 0.150) and 0.012 kg (β = -0.012, P = 0.167) decrease in birth weight mediated through LINE-1 methylation. These findings suggest that changes in placental LINE-1 methylation might be part of the underlying biological pathway between prenatal phthalate exposure and adverse fetal growth.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
46
|
Karami S, Andreotti G, Liao LM, Pfeiffer RM, Weinstein SJ, Purdue MP, Hofmann JN, Albanes D, Mannisto S, Moore LE. LINE1 methylation levels in pre-diagnostic leukocyte DNA and future renal cell carcinoma risk. Epigenetics 2015; 10:282-92. [PMID: 25647181 DOI: 10.1080/15592294.2015.1006505] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Higher levels of LINE1 methylation in blood DNA have been associated with increased kidney cancer risk using post-diagnostically collected samples; however, this association has never been examined using pre-diagnostic samples. We examined the association between LINE1 %5mC and renal cell carcinoma (RCC) risk using pre-diagnostic blood DNA from the United States-based, Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO) (215 cases/436 controls), and the Alpha-tocopherol, Beta-carotene Cancer Prevention Study (ATBC) of Finnish male smokers (191 cases/575 controls). Logistic regression adjusted for age at blood draw, study center, pack-years of smoking, body mass index, hypertension, dietary alcohol intake, family history of cancer, and sex was used to calculate odds ratios (ORs) and 95% confidence intervals (CIs) using cohort and sex-specific methylation categories. In PLCO, higher, although non-significant, RCC risk was observed for participants at or above median methylation level (M2) compared to those below the median (M1) (OR: 1.37, 95% CI: 0.96-1.95). The association was stronger in males (M2 vs. M1, OR: 1.54, 95% CI: 1.00-2.39) and statistically significant among male smokers (M2 vs. M1, OR: 2.60, 95% CI: 1.46-4.63). A significant interaction for smoking was also detected (P-interaction: 0.01). No association was found among females or female smokers. Findings for male smokers were replicated in ATBC (M2 vs. M1, OR: 1.31, 95% CI: 1.07-1.60). In a pooled analysis of PLCO and ATBC male smokers (281 cases/755 controls), the OR among subjects at or above median methylation level (M2) compared to those below the median (M1) was 1.89 (95% CI: 1.34-2.67, P-value: 3 x 10(-4)); a trend was also observed by methylation quartile (P-trend: 0.002). These findings suggest that higher LINE1 methylation levels measured prior to cancer diagnosis may be a biomarker of future RCC risk among male smokers.
Collapse
Affiliation(s)
- Sara Karami
- a Division of Cancer Epidemiology and Genetics (DCEG); US National Cancer Institute (NCI); National Institutes of Health (NIH); Department of Health and Human Services (DHHS) ; Rockville , MD USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Barchitta M, Quattrocchi A, Maugeri A, Vinciguerra M, Agodi A. LINE-1 hypomethylation in blood and tissue samples as an epigenetic marker for cancer risk: a systematic review and meta-analysis. PLoS One 2014; 9:e109478. [PMID: 25275447 PMCID: PMC4183594 DOI: 10.1371/journal.pone.0109478] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 08/31/2014] [Indexed: 01/07/2023] Open
Abstract
Objective A systematic review and a meta-analysis were carried out in order to summarize the current published studies and to evaluate LINE-1 hypomethylation in blood and other tissues as an epigenetic marker for cancer risk. Methods A systematic literature search in the Medline database, using PubMed, was conducted for epidemiological studies, published before March 2014. The random-effects model was used to estimate weighted mean differences (MDs) with 95% Confidence Intervals (CIs). Furthermore, subgroup analyses were conducted by sample type (tissue or blood samples), cancer types, and by assays used to measure global DNA methylation levels. The Cochrane software package Review Manager 5.2 was used. Results A total of 19 unique articles on 6107 samples (2554 from cancer patients and 3553 control samples) were included in the meta-analysis. LINE-1 methylation levels were significantly lower in cancer patients than in controls (MD: −6.40, 95% CI: −7.71, −5.09; p<0.001). The significant difference in methylation levels was confirmed in tissue samples (MD −7.55; 95% CI: −9.14, −65.95; p<0.001), but not in blood samples (MD: −0.26, 95% CI: −0.69, 0.17; p = 0.23). LINE-1 methylation levels were significantly lower in colorectal and gastric cancer patients than in controls (MD: −8.33; 95% CI: −10.56, −6.10; p<0.001 and MD: −5.75; 95% CI: −7.75, −3.74; p<0.001) whereas, no significant difference was observed for hepatocellular cancer. Conclusions The present meta-analysis adds new evidence to the growing literature on the role of LINE-1 hypomethylation in human cancer and demonstrates that LINE-1 methylation levels were significantly lower in cancer patients than in control samples, especially in certain cancer types. This result was confirmed in tissue samples, both fresh/frozen or FFPE specimens, but not in blood. Further studies are needed to better clarify the role of LINE-1 methylation in specific subgroups, considering both cancer and sample type, and the methods of measurement.
Collapse
Affiliation(s)
| | | | - Andrea Maugeri
- Department GF Ingrassia, University of Catania, Catania, Italy
| | - Manlio Vinciguerra
- University College London, Institute for Liver and Digestive Health, Royal Free Campus, London, United Kingdom
- Gastroenterology Unit, Department of Medical Sciences, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
- * E-mail: (AA); (MV)
| | - Antonella Agodi
- Department GF Ingrassia, University of Catania, Catania, Italy
- * E-mail: (AA); (MV)
| |
Collapse
|
48
|
Fu Y, Wang T, Fu Q, Wang P, Lu Y. Associations between serum concentrations of perfluoroalkyl acids and serum lipid levels in a Chinese population. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 106:246-52. [PMID: 24863755 DOI: 10.1016/j.ecoenv.2014.04.039] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 04/25/2014] [Accepted: 04/26/2014] [Indexed: 05/18/2023]
Abstract
Perfluoroalkyl acids (PFAAs) have been used in a variety of products for many years and have been detected worldwide in human serum. Previous studies have suggested the potential effects of PFAAs on serum lipids. To investigate the associations between serum concentrations of PFAAs and serum lipid levels, 133 participants were randomly selected from the people coming for health check-up in Yuanyang Red Cross Hospital of Henan, China. Linear regression analysis revealed that perfluoro-octanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluorodecanoic acid (PFDA), with a median concentration of 1.43, 0.37, and 0.19 ng/mL, respectively, were positively associated with total cholesterol (TC). Those in the highest quartile of PFOA exposure had ln-TC levels 0.24 mmol/L higher than those in the lowest quartile. For PFNA and PFDA, effect estimates were 0.25 and 0.16 mmol/L, respectively. A positive association between high-density lipoprotein cholesterol (HDLC) and PFDA was found, and there was a 0.18 mmol/L increase of HDLC for the top PFDA quartile compared with the lowest quartile. PFOA and PFNA were positively associated with low-density lipoprotein cholesterol (LDLC). Ln-LDLC levels of people in both top PFOA and PFNA quartiles were 0.33 mmol/L higher than those in the lowest quartiles. Logistic regression analysis indicated that increased PFOA and PFOS quartiles were positively associated with an increased risk of abnormal TC and LDLC when controlling for no confounding factors.
Collapse
Affiliation(s)
- Yaning Fu
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tieyu Wang
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Quanliang Fu
- Red Cross Hospital of Yuanyang, Yuanyang County, Henan 453500, China
| | - Pei Wang
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yonglong Lu
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
49
|
Nair-Shalliker V, Dhillon V, Clements M, Armstrong BK, Fenech M. The association between personal sun exposure, serum vitamin D and global methylation in human lymphocytes in a population of healthy adults in South Australia. Mutat Res 2014; 765:6-10. [PMID: 24727138 DOI: 10.1016/j.mrfmmm.2014.04.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 03/25/2014] [Accepted: 04/01/2014] [Indexed: 05/12/2023]
Abstract
BACKGROUND There is a positive association between solar UV exposure and micronucleus frequency in peripheral blood lymphocytes (PBL) and this association may be stronger when serum vitamin D (25(OH)D) levels are insufficient (<50 nmol/L). Micronucleus formation can result from global hypomethylation of DNA repeat sequences. The aim of this analysis was to evaluate the relationship between solar UV exposure and methylation pattern in LINE-1 repetitive elements in PBL DNA and to see if serum 25(OH)D levels modify it. METHOD Personal solar UV exposure was estimated from hours of outdoor exposure over 6 weeks recalled at the time of blood collection in 208 male and female participants living in South Australia. Methylation in LINE-1 repetitive elements was assessed in PBL using pyrosequencing. RESULTS Methylation in LINE-1 decreased with increasing solar UV exposure (% decrease = 0.5% per doubling of sUV; 95%CI: -0.7 to -0.2 p(value) = 0.00003). Although there was no correlation between LINE-1 methylation and micronucleus frequency, there was a 4.3% increase (95%CI: 0.6-8.1 p-value = 0.02) in nucleoplasmic bridges and a 4.3% increase in necrosis (CI: 1.9-6.8 p-value = 0.0005) for every 1% increase in LINE-1 methylation. Serum 25(OH)D was not associated with DNA methylation; or did it modify the association of solar UV with DNA methylation. CONCLUSION Exposure to solar UV radiation may reduce DNA methylation in circulating lymphocytes. This association does not appear to be influenced or mediated by vitamin D status.
Collapse
Affiliation(s)
| | | | - Mark Clements
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Sweden
| | | | | |
Collapse
|
50
|
Searles Nielsen S, Checkoway H, Butler RA, Nelson HH, Farin FM, Longstreth WT, Franklin GM, Swanson PD, Kelsey KT. LINE-1 DNA methylation, smoking and risk of Parkinson's disease. JOURNAL OF PARKINSONS DISEASE 2014; 2:303-8. [PMID: 23938260 DOI: 10.3233/jpd-012129] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Long interspersed nucleotide element-1 (LINE-1) retrotransposons are located throughout the human genome. Those retaining an intact 5' promoter can copy and insert themselves into the DNA of neural progenitor cells that express tyrosine hydroxylase, which may influence differentiation and survival of these cells. LINE-1 promoter methylation is associated with decreased LINE-1 propagation. OBJECTIVE To investigate whether LINE-1 promoter methylation is associated with Parkinson's disease (PD). METHODS We compared LINE-1 methylation profiles in blood mononuclear cells between 292 newly diagnosed PD cases and 401 unrelated, neurologically normal controls, all non-Hispanic Caucasians in western Washington state. RESULTS Overall, PD was not associated with percent methylation of the LINE-1 promoter. However, the predictable inverse association between PD and ever smoking tobacco was strongest for men and women with the lowest LINE-1 promoter methylation, and less apparent as LINE-1 methylation increased. Underlying this possible interaction, ever regularly smoking tobacco was associated with decreased LINE-1 methylation in controls (age- and sex-adjusted linear regression β = -0.24, 95% confidence interval [CI] -0.43, -0.04), but not in cases (β = 0.06, 95% CI -0.17, 0.28, interaction p = 0.06). CONCLUSION PD cases may have innate differences in their ability to respond to tobacco smoke.
Collapse
Affiliation(s)
- Susan Searles Nielsen
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|