1
|
Bhuller Y, Avey M, Deonandan R, Hartung T, Hilton GM, Marles RJ, Trombetti S, Krewski D. Ethical principles for regulatory risk decision-making. Regul Toxicol Pharmacol 2025; 159:105813. [PMID: 40122155 DOI: 10.1016/j.yrtph.2025.105813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/13/2025] [Accepted: 03/20/2025] [Indexed: 03/25/2025]
Abstract
Risk assessors, managers, and decision-makers are responsible for evaluating diverse human, environmental, and animal health risks. Although the critical elements of risk assessment and management are well-described in national and international documents, the ethical issues involved in risk decision-making have received comparatively little attention to date. To address this aspect, this article elaborates fundamental ethical principles designed to support fair, balanced, and equitable risk-based decision-making practices. Experts and global thinkers in risk, health, regulatory, and animal sciences were convened to share their lived experiences in relation to the intersection between risk science and analysis, regulatory science, and public health. Through a participatory and knowledge translation approach, an integrated risk decision-making model, with ethical principles and considerations, was developed and applied using diverse, contemporary risk decision-making and regulatory contexts. The ten principles - autonomy, minimize harm, maintain respect and trust, adaptability, reduce disparities, holistic, fair and just, open and transparent, stakeholder engagement, and One Health lens - demonstrate how public sector values and moral norms (i.e., ethics) are relevant to risk decision-making. We also hope these principles and considerations stimulate further discussion, debate, and an increased awareness of the application of ethics in identifying, assessing, and managing health risks.
Collapse
Affiliation(s)
- Yadvinder Bhuller
- Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, ON, Canada.
| | - Marc Avey
- Standards at Canadian Council on Animal Care, Ottawa, ON, Canada
| | - Raywat Deonandan
- Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Thomas Hartung
- Center for Alternatives to Animal Testing (CAAT), Bloomberg School of Public Health and Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA; CAAT-Europe, University of Konstanz, Konstanz, Germany
| | - Gina M Hilton
- PETA Science Consortium International e.V., Stuttgart, Germany
| | - Robin J Marles
- Health Products and Food Branch (Scientist Emeritus), Health Canada, Ottawa, ON, Canada
| | - Stefania Trombetti
- Public Sector Senior Executive (Ret.), Health Canada, Ottawa, ON, Canada
| | - Daniel Krewski
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
2
|
Macpherson I, Guardia JJ, Morales I, Zárate B, Belda I, Simon WR. Risk management during times of health uncertainty in Spain: A qualitative analysis of ethical challenges. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2025; 45:710-721. [PMID: 39210694 PMCID: PMC11954723 DOI: 10.1111/risa.17638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The study examines the reflections of various experts in risk management when asked about uncertainty generated by a health threat and the response to such a threat: what criteria should guide action when potential harm is anticipated, but not known with certainty? The objective of the research is to obtain a holistic perspective of ethical conflicts in risk management, based on experts' accounts within the Spanish territory. A qualitative study was conducted through semi-structured interviews with 27 experts from various fields related to health risk management and its ethical implications, following the grounded theory method. The method includes theory generation through an inductive approach, based on the identified categories. The 27 narratives obtained revealed a variety of fundamental issues grouped into 8 subcategories and subsequently grouped into three main categories. The first category focuses on human vulnerability in health matters. The second category explores the agents and instruments for decision-making that arise from uncertain or traumatic social events. The third category refers to the need for common ethical paradigms for all humanity that implement justice over universal values. A main theory was suggested on the concept of responsibility in a global common good. There is an urgent need to assume this integrative responsibility as an inherent strategy in decision-making. To achieve this, the involved actors must acquire specific humanistic training, conceptualizing fundamental ethical principles, and emphasizing skills more related to humanistic virtues than technical knowledge.
Collapse
Affiliation(s)
- Ignacio Macpherson
- Bioethics Unit, Department of HumanitiesUniversitat Internacional de CatalunyaSant Cugat del VallèsBarcelonaSpain
| | - Juan J. Guardia
- Bioethics Unit, Department of HumanitiesUniversitat Internacional de CatalunyaSant Cugat del VallèsBarcelonaSpain
| | - Isabel Morales
- Bioethics Unit, Department of HumanitiesUniversitat Internacional de CatalunyaSant Cugat del VallèsBarcelonaSpain
| | - Belén Zárate
- Bioethics Unit, Department of HumanitiesUniversitat Internacional de CatalunyaSant Cugat del VallèsBarcelonaSpain
| | - Ignasi Belda
- Bioethics Unit, Department of HumanitiesUniversitat Internacional de CatalunyaSant Cugat del VallèsBarcelonaSpain
| | - Wendy R. Simon
- Bioethics Unit, Department of HumanitiesUniversitat Internacional de CatalunyaSant Cugat del VallèsBarcelonaSpain
| |
Collapse
|
3
|
Bhuller Y, Bancroft X, Deonandan R, Grudniewicz A, Wiles A, Krewski D. Key attributes of health and environmental risk decision-making: A scoping review. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2025. [PMID: 39894676 DOI: 10.1111/risa.17715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/09/2024] [Accepted: 01/13/2025] [Indexed: 02/04/2025]
Abstract
Government agencies, international institutions, and independent experts have published approaches for the assessment and management of health and environmental risks. This includes evidence-based strategies and publications supporting risk decision-making frameworks reflecting contemporary practices, the overarching context, and governance structures for addressing known and emerging risk issues. This scoping review surveys the literature, over the last five decades, to identify key attributes of health and environmental risk decision-making and how these inherent characteristics are related to the overarching regulatory decision-making context. The findings provide insights on how these publications accounted for the circumstances and triggers at that time. This includes incorporating factors reflecting advances in science and technology, a better understanding of underlying values (e.g., societal), and an expansion in the scope and complexity required for conducting different evaluations relevant to health and environmental risks. Consequently, the evolution from linear to more expanded and holistic decision-making frameworks incorporates foundational elements, such as the well-established steps for assessing risks, while adding aspects reflecting transformative changes and paradigm shifts (e.g., the use of non-animal testing strategies for evaluating human safety). Our analysis also resulted in the generation of a consolidated listing of ten attributes: trigger/issue, regulatory context, regulatory factors, core values, risk decision-making principles, cross-cutting attributes, design (scope and steps), structure, decision-making pathway, and evidence-knowledge requirements for risk decision-making. A better understanding of this evolution in risk decision-making and the listing of key attributes will be used in future work aimed at developing considerations for next generation decision-making approaches for health and environmental risks.
Collapse
Affiliation(s)
- Yadvinder Bhuller
- Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Xaand Bancroft
- Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Raywat Deonandan
- Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Agnes Grudniewicz
- Telfer School of Management, University of Ottawa, Ottawa, Ontario, Canada
| | - Anne Wiles
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| | - Daniel Krewski
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
4
|
Lu EH, Rusyn I, Chiu WA. Incorporating new approach methods (NAMs) data in dose-response assessments: The future is now! JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2025; 28:28-62. [PMID: 39390665 PMCID: PMC11614695 DOI: 10.1080/10937404.2024.2412571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Regulatory dose-response assessments traditionally rely on in vivo data and default assumptions. New Approach Methods (NAMs) present considerable opportunities to both augment traditional dose-response assessments and accelerate the evaluation of new/data-poor chemicals. This review aimed to determine the potential utilization of NAMs through a unified conceptual framework that compartmentalizes derivation of toxicity values into five sequential Key Dose-response Modules (KDMs): (1) point-of-departure (POD) determination, (2) test system-to-human (e.g. inter-species) toxicokinetics and (3) toxicodynamics, (4) human population (intra-species) variability in toxicodynamics, and (5) toxicokinetics. After using several "traditional" dose-response assessments to illustrate this framework, a review is presented where existing NAMs, including in silico, in vitro, and in vivo approaches, might be applied across KDMs. Further, the false dichotomy between "traditional" and NAMs-derived data sources is broken down by organizing dose-response assessments into a matrix where each KDM has Tiers of increasing precision and confidence: Tier 0: Default/generic values, Tier 1: Computational predictions, Tier 2: Surrogate measurements, and Tier 3: Direct measurements. These findings demonstrated that although many publications promote the use of NAMs in KDMs (1) for POD determination and (5) for human population toxicokinetics, the proposed matrix of KDMs and Tiers reveals additional immediate opportunities for NAMs to be integrated across other KDMs. Further, critical needs were identified for developing NAMs to improve in vitro dosimetry and quantify test system and human population toxicodynamics. Overall, broadening the integration of NAMs across the steps of dose-response assessment promises to yield higher throughput, less animal-dependent, and more science-based toxicity values for protecting human health.
Collapse
Affiliation(s)
- En-Hsuan Lu
- Interdisciplinary Faculty of Toxicology and Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, United States of America
| | - Ivan Rusyn
- Interdisciplinary Faculty of Toxicology and Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, United States of America
| | - Weihsueh A. Chiu
- Interdisciplinary Faculty of Toxicology and Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, United States of America
| |
Collapse
|
5
|
Singh AV, Bhardwaj P, Laux P, Pradeep P, Busse M, Luch A, Hirose A, Osgood CJ, Stacey MW. AI and ML-based risk assessment of chemicals: predicting carcinogenic risk from chemical-induced genomic instability. FRONTIERS IN TOXICOLOGY 2024; 6:1461587. [PMID: 39659701 PMCID: PMC11628524 DOI: 10.3389/ftox.2024.1461587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
Chemical risk assessment plays a pivotal role in safeguarding public health and environmental safety by evaluating the potential hazards and risks associated with chemical exposures. In recent years, the convergence of artificial intelligence (AI), machine learning (ML), and omics technologies has revolutionized the field of chemical risk assessment, offering new insights into toxicity mechanisms, predictive modeling, and risk management strategies. This perspective review explores the synergistic potential of AI/ML and omics in deciphering clastogen-induced genomic instability for carcinogenic risk prediction. We provide an overview of key findings, challenges, and opportunities in integrating AI/ML and omics technologies for chemical risk assessment, highlighting successful applications and case studies across diverse sectors. From predicting genotoxicity and mutagenicity to elucidating molecular pathways underlying carcinogenesis, integrative approaches offer a comprehensive framework for understanding chemical exposures and mitigating associated health risks. Future perspectives for advancing chemical risk assessment and cancer prevention through data integration, advanced machine learning techniques, translational research, and policy implementation are discussed. By implementing the predictive capabilities of AI/ML and omics technologies, researchers and policymakers can enhance public health protection, inform regulatory decisions, and promote sustainable development for a healthier future.
Collapse
Affiliation(s)
- Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Preeti Bhardwaj
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Peter Laux
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Prachi Pradeep
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Madleen Busse
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Akihiko Hirose
- Chemicals Evaluation and Research Institute, Tokyo, Japan
| | - Christopher J. Osgood
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, United States
| | - Michael W. Stacey
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, United States
| |
Collapse
|
6
|
Bhuller Y, Deonandan R, Krewski D. Relevance and feasibility of principles for health and environmental risk decision-making. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2024; 27:189-211. [PMID: 38743482 DOI: 10.1080/10937404.2024.2338078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Globally, national regulatory authorities are both responsible and accountable for health and environmental decisions related to diverse products and risk decision contexts. These authorities provided regulatory oversight and expedited market authorizations of vaccines and other therapeutic products during the COVID-19 pandemic. Regulatory decisions regarding such products and situations depend upon well-established risk assessment and management steps. The underlying processes supporting such decisions were outlined in frameworks describing the complex interactions between factors including risk assessment and management steps as well as principles which help guide risk decision-making. In 2022, experts in risk science proposed a set of 10 guiding principles, further examining the intersection and utility of these principles using 10 diverse risk contexts, and inviting a broader discourse on the application of these principles in risk decision-making. To add to this information, Canadian regulatory practitioners responsible for evaluating health and environmental risks and establishing policies convened at a Health Canada workshop on Principles for Risk Decision-Making. This review reports the results derived from this interactive engagement and provides a first pragmatic analysis of the relevance, importance, and feasibility of such principles for health and environmental risk decision-making within the Canadian regulatory context.
Collapse
Affiliation(s)
- Yadvinder Bhuller
- Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Raywat Deonandan
- Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Daniel Krewski
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
7
|
Chen CC, Liu CC, Wang YH, Wu CF, Tsai YC, Li SS, Hsieh TJ, Wu MT. Benchmark Dose of Melamine Exposure for a Renal Injury Marker Mediated by Oxidative Stress: Examples in Patients with Urolithiasis and Occupational Workers. TOXICS 2024; 12:584. [PMID: 39195686 PMCID: PMC11359403 DOI: 10.3390/toxics12080584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024]
Abstract
Establishing a safe exposure level from epidemiological studies while providing direct hazard characterization in humans often faces uncertainty in causality, especially cross-sectional data. With advances in molecular epidemiology, it is reasonable to integrate identified intermediate biomarkers into health risk assessment. In this study, by considering the mediation of the oxidative stress marker malondialdehyde (MDA), we explored the exposure threshold of melamine on the early renal injury marker N-acetyl-β-D glucosaminidase (NAG). The benchmark dose (BMD) was derived from model averaging of the composite direct effect of melamine exposure and the indirect effect through the mediation of MDA on NAG levels. As illustrative examples, we analyzed 309 adult patients with calcium urolithiasis and 80 occupational workers for the corresponding exposure thresholds. The derived threshold was subpopulation-dependent, with the one-sided lower bound BMDL10 for the patients with urolithiasis with (without) the mediator MDA for the patients with kidney stones and the occupational workers being 0.88 (0.96) μg/kg_bw/day and 22.82 (18.09) μg/kg_bw/day, respectively. The derived threshold levels, considering the oxidative stress marker MDA, were consistent with those without adjusting for the mediation effect. However, the study outcomes were further supported by the suggested mechanism pathway. The threshold for the patients with urolithiasis was up to two orders lower than the current tolerable daily intake level of 200 μg/kg_bw/day recommended by the WHO (EFSA).
Collapse
Affiliation(s)
- Chu-Chih Chen
- Institute of Population Health Sciences, National Health Research Institutes, 35 Keyan Road, Miaoli 350401, Taiwan;
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Room 721, CS Research Building, 100 Shih-Chuan 1st Road, Kaohsiung 807378, Taiwan; (C.-C.L.); (C.-F.W.); (Y.-C.T.); (S.-S.L.); (T.-J.H.)
| | - Chia-Chu Liu
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Room 721, CS Research Building, 100 Shih-Chuan 1st Road, Kaohsiung 807378, Taiwan; (C.-C.L.); (C.-F.W.); (Y.-C.T.); (S.-S.L.); (T.-J.H.)
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Department of Urology, Pingtung Hospital, Ministry of Health and Welfare, Pingtung City 90054, Taiwan
| | - Yin-Han Wang
- Institute of Population Health Sciences, National Health Research Institutes, 35 Keyan Road, Miaoli 350401, Taiwan;
| | - Chia-Fang Wu
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Room 721, CS Research Building, 100 Shih-Chuan 1st Road, Kaohsiung 807378, Taiwan; (C.-C.L.); (C.-F.W.); (Y.-C.T.); (S.-S.L.); (T.-J.H.)
- International Master Program of Translational Medicine, National United University, Miaoli 360301, Taiwan
| | - Yi-Chun Tsai
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Room 721, CS Research Building, 100 Shih-Chuan 1st Road, Kaohsiung 807378, Taiwan; (C.-C.L.); (C.-F.W.); (Y.-C.T.); (S.-S.L.); (T.-J.H.)
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Sih-Syuan Li
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Room 721, CS Research Building, 100 Shih-Chuan 1st Road, Kaohsiung 807378, Taiwan; (C.-C.L.); (C.-F.W.); (Y.-C.T.); (S.-S.L.); (T.-J.H.)
| | - Tusty-Jiuan Hsieh
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Room 721, CS Research Building, 100 Shih-Chuan 1st Road, Kaohsiung 807378, Taiwan; (C.-C.L.); (C.-F.W.); (Y.-C.T.); (S.-S.L.); (T.-J.H.)
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Department of Marine Biotechnology and Resources, College of Marine Sciences, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
| | - Ming-Tsang Wu
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Room 721, CS Research Building, 100 Shih-Chuan 1st Road, Kaohsiung 807378, Taiwan; (C.-C.L.); (C.-F.W.); (Y.-C.T.); (S.-S.L.); (T.-J.H.)
- Department of Public Health, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Ph.D. Program in Environmental and Occupational Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| |
Collapse
|
8
|
Zhou Y, Ning C, Tan Y, Li Y, Wang J, Shu Y, Liang S, Liu Z, Wang Y. ToxMPNN: A deep learning model for small molecule toxicity prediction. J Appl Toxicol 2024; 44:953-964. [PMID: 38409892 DOI: 10.1002/jat.4591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/23/2024] [Accepted: 02/02/2024] [Indexed: 02/28/2024]
Abstract
Machine learning (ML) has shown a great promise in predicting toxicity of small molecules. However, the availability of data for such predictions is often limited. Because of the unsatisfactory performance of models trained on a single toxicity endpoint, we collected toxic small molecules with multiple toxicity endpoints from previous study. The dataset comprises 27 toxic endpoints categorized into seven toxicity classes, namely, carcinogenicity and mutagenicity, acute oral toxicity, respiratory toxicity, irritation and corrosion, cardiotoxicity, CYP450, and endocrine disruption. In addition, a binary classification Common-Toxicity task was added based on the aforementioned dataset. To improve the performance of the models, we added marketed drugs as negative samples. This study presents a toxicity predictive model, ToxMPNN, based on the message passing neural network (MPNN) architecture, aiming to predict the toxicity of small molecules. The results demonstrate that ToxMPNN outperforms other models in capturing toxic features within the molecular structure, resulting in more precise predictions with the ROC_AUC testing score of 0.886 for the Toxicity_drug dataset. Furthermore, it was observed that adding marketed drugs as negative samples not only improves the predictive performance of the binary classification Common-Toxicity task but also enhances the stability of the model prediction. It shows that the graph-based deep learning (DL) algorithms in this study can be used as a trustworthy and effective tool to assess small molecule toxicity in the development of new drugs.
Collapse
Affiliation(s)
- Yini Zhou
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, China
| | - Chao Ning
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, China
| | - Yijun Tan
- School of Computer and Communication Engineering, Changsha University of Science and Technology, Changsha, China
| | - Yaqi Li
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, China
| | - Jiaxu Wang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, China
| | - Yuanyuan Shu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, China
| | - Songping Liang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, China
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, China
| | - Ying Wang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, China
| |
Collapse
|
9
|
Yu M, Yang Z, Zhou Y, Guo W, Tian L, Zhang L, Li X, Chen J. Mode of action exploration of reproductive toxicity induced by bisphenol S using human normal ovarian epithelial cells through ERβ-MAPK signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116037. [PMID: 38301581 DOI: 10.1016/j.ecoenv.2024.116037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/03/2024]
Abstract
BACKGROUND In the plastics production sector, bisphenol S (BPS) has gained popularity as a replacement for bisphenol A (BPA). However, the mode of action (MOA) of female reproductive toxicity caused by BPS remains unclear and the safety of BPS is controversial. METHODS Human normal ovarian epithelial cell line, IOSE80, were exposed to BPS at human-relevant levels for short-term exposure at 24 h or 48 h, or for long-term exposure at 28 days, either alone or together with five signaling pathway inhibitors: ICI 18,2780 (estrogen receptor [ER] antagonist), G15 (GPR30 specific inhibitor), U0126 (extracellular regulated protein kinase [ERK] 1/2 inhibitor), SP600125 (c-Jun N-terminal kinase [JNK] inhibitor) or SB203580 (p38 mitogen‑activated protein kinase [p38MAPK] inhibitor). MOA through ERβ-MAPK signaling pathway interruption was explored, and potential thresholds were estimated by the benchmark dose method. RESULTS For short-term exposure, BPS exposure at human-relevant levels elevated the ESR2 and MAPK8 mRNA levels, along with the percentage of the G0/G1 phase. For long-term exposure, BPS raised the MAPK1 and EGFR mRNA levels, the ERβ, p-ERK, and p-JNK protein levels, and the percentage of the G0/G1 phase, which was partly suppressed by U0126. The benchmark dose lower confidence limit (BMDL) of the percentage of the S phase after 24 h exposure was the lowest among all the BMDLs of a good fit, with BMDL5 of 9.55 μM. CONCLUSIONS The MOA of female reproductive toxicity caused by BPS at human-relevant levels might involve: molecular initiating event (MIE)-BPS binding to ERβ receptor, key event (KE)1-the interrupted expression of GnRH, KE2-the activation of JNK (for short-term exposure) and ERK pathway (for long-term exposure), KE3-cell cycle arrest (the increased percentage of the G0/G1 phase), and KE4-interruption of cell proliferation (only for short-term exposure). The BMDL of the percentage of the S phase after 24 h exposure was the lowest among all the BMDLs of a good fit, with BMDL5 of 9.55 μM.
Collapse
Affiliation(s)
- Mengqi Yu
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Zhirui Yang
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Yongru Zhou
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Wanqing Guo
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Lin Tian
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Lishi Zhang
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Xiaomeng Li
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China.
| | - Jinyao Chen
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China.
| |
Collapse
|
10
|
Wang X, Li F, Meng X, Xia C, Ji C, Wu H. Abnormality of mussel in the early developmental stages induced by graphene and triphenyl phosphate: In silico toxicogenomic data-mining, in vivo, and toxicity pathway-oriented approach. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 263:106674. [PMID: 37666107 DOI: 10.1016/j.aquatox.2023.106674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/06/2023]
Abstract
Increasing number of complex mixtures of organic pollutants in coastal area (especially for nanomaterials and micro/nanoplastics associated chemicals) threaten aquatic ecosystems and their joint hazards are complex and demanding tasks. Mussels are the most sensitive marine faunal groups in the world, and their early developmental stages (embryo and larvae) are particularly susceptible to environmental contaminants, which can distinguish the probable mechanisms of mixture-induced growth toxicity. In this study, the potential critical target and biological processes affected by graphene and triphenyl phosphate (TPP) were developed by mining public toxicogenomic data. And their combined toxic effects were verified by toxicological assay at early developmental stages in filter-feeding mussels (embryo and larvae). It showed that interactions among graphene/TPP with 111 genes (ABCB1, TP53, SOD, CAT, HSP, etc.) affected phenotypes along conceptual framework linking these chemicals to developmental abnormality endpoints. The PPAR signaling pathway, monocarboxylic acid metabolic process, regulation of lipid metabolic process, response to oxidative stress, and gonad development were noted as the key molecular pathways that contributed to the developmental abnormality. Enriched phenotype analysis revealed biological processes (cell proliferation, cell apoptosis, inflammatory response, response to oxidative stress, and lipid metabolism) affected by the investigated mixture. Combined, our results supported that adverse effects induced by contaminants/ mixture could not only be mediated by single receptor signaling or be predicted by the simple additive effect of contaminants. The results offer a framework for better comprehending the developmental toxicity of environmental contaminants in mussels and other invertebrate species, which have considerable potential for hazard assessment of coastal mixture.
Collapse
Affiliation(s)
- Xiaoqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China.
| | - Xiangjing Meng
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chunlei Xia
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China
| |
Collapse
|
11
|
Bahl A, Ibrahim C, Plate K, Haase A, Dengjel J, Nymark P, Dumit VI. PROTEOMAS: a workflow enabling harmonized proteomic meta-analysis and proteomic signature mapping. J Cheminform 2023; 15:34. [PMID: 36935498 PMCID: PMC10024914 DOI: 10.1186/s13321-023-00710-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/13/2023] [Indexed: 03/21/2023] Open
Abstract
Toxicological evaluation of substances in regulation still often relies on animal experiments. Understanding the substances' mode-of-action is crucial to develop alternative test strategies. Omics methods are promising tools to achieve this goal. Until now, most attention was focused on transcriptomics, while proteomics is not yet routinely applied in toxicology despite the large number of datasets available in public repositories. Exploiting the full potential of these datasets is hampered by differences in measurement procedures and follow-up data processing. Here we present the tool PROTEOMAS, which allows meta-analysis of proteomic data from public origin. The workflow was designed for analyzing proteomic studies in a harmonized way and to ensure transparency in the analysis of proteomic data for regulatory purposes. It agrees with the Omics Reporting Framework guidelines of the OECD with the intention to integrate proteomics to other omic methods in regulatory toxicology. The overarching aim is to contribute to the development of AOPs and to understand the mode of action of substances. To demonstrate the robustness and reliability of our workflow we compared our results to those of the original studies. As a case study, we performed a meta-analysis of 25 proteomic datasets to investigate the toxicological effects of nanomaterials at the lung level. PROTEOMAS is an important contribution to the development of alternative test strategies enabling robust meta-analysis of proteomic data. This workflow commits to the FAIR principles (Findable, Accessible, Interoperable and Reusable) of computational protocols.
Collapse
Affiliation(s)
- Aileen Bahl
- Department of Chemicals and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Celine Ibrahim
- Department of Chemicals and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Kristina Plate
- Department of Chemicals and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Andrea Haase
- Department of Chemicals and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | | | - Penny Nymark
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Verónica I Dumit
- Department of Chemicals and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany.
| |
Collapse
|
12
|
Chen CC, Wang YH, Wu CF, Hsieh CJ, Wang SL, Chen ML, Tsai HJ, Li SS, Liu CC, Tsai YC, Hsieh TJ, Wu MT. Benchmark dose in the presence of coexposure to melamine and diethylhexyl phthalate and urinary renal injury markers in pregnant women. ENVIRONMENTAL RESEARCH 2022; 215:114187. [PMID: 36037918 DOI: 10.1016/j.envres.2022.114187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 05/26/2023]
Abstract
Environmental exposures to mixtures of toxic chemicals have potential interaction effects that may lead to hazard index values exceeding one. However, current regulation levels, such as tolerable daily intake (TDI), are mostly based on experimental studies conducted with a single chemical compound. In this study, we assessed the relationships between melamine and di-(2-ethylhexyl) phthalate (DEHP) exposure and their coexposure with the early renal injury markers N-acetyl -D-glucosaminidase (NAG), albumin/creatinine ratio (ACR), and microalbuminuria in 1236 pregnant women. Various generalized linear models with interaction terms and Bayesian kernel machine regression models were used for the (co-)exposure response associations. We derived the benchmark dose (BMD) and the corresponding one-sided 95% confidence bound BMDL based on the estimated (covariate-adjusted) average daily intake of melamine and DEHP metabolites measured in spot urine of the women collected during the third trimester. Given a benchmark response of 0.1, the BMDL level of melamine (DEHP) exposure on NAG (ACR, microalbuminuria) was 2.67 (11.20, 4.45) μg/kg_bw/day, and it decreased to as low as 1.46 (3.83, 2.73) μg/kg_bw/day when considering coexposure to DEHP (melamine) up to the 90th percentile. Both the exposure threshold levels of melamine and DEHP for early renal injuries in pregnant women were several-fold to one order lower than the current recommended TDIs by the WHO and the US FDA and EPA and were even lower considering coexposure. Because of concurrent exposures in real-world environments, more stringent regulation levels are recommended in susceptible populations, such as pregnant women, due to potential synergistic mixture effects.
Collapse
Affiliation(s)
- Chu-Chih Chen
- Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Taiwan.
| | - Yin-Han Wang
- Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Taiwan
| | - Chia-Fang Wu
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Taiwan; International Master Program of Translational Medicine, National United University, Taiwan
| | - Chia-Jung Hsieh
- Department of Public Health, Tzu Chi University, Hualien, Taiwan
| | - Shu-Li Wang
- National Environmental Health Research Center, National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Mei-Lien Chen
- Institute of Environmental and Occupational Health Sciences, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hui-Ju Tsai
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Taiwan; Department of Family Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Sih-Syuan Li
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Taiwan
| | - Chia-Chu Liu
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Taiwan; Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Taiwan
| | - Yi-Chun Tsai
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Taiwan; Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tusty-Jiuan Hsieh
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Taiwan; Department of Marine Biotechnology and Resources, College of Marine Sciences, National Sun Yat-Sen University, Kaohsiung, 804201, Taiwan
| | - Ming-Tsang Wu
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Public Health, Kaohsiung Medical University, Taiwan; Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Taiwan; Ph.D. Program in Environmental and Occupational Medicine, Kaohsiung Medical University, Taiwan.
| |
Collapse
|
13
|
Ngara TR, Zeng P, Zhang H. mibPOPdb: An online database for microbial biodegradation of persistent organic pollutants. IMETA 2022; 1:e45. [PMID: 38867901 PMCID: PMC10989864 DOI: 10.1002/imt2.45] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 06/14/2024]
Abstract
Microbial biodegradation of persistent organic pollutants (POPs) is an attractive, ecofriendly, and cost-efficient clean-up technique for reclaiming POP-contaminated environments. In the last few decades, the number of publications documenting POP-degrading microbes, enzymes, and experimental data sets has continuously increased, necessitating the development of a dedicated web resource that catalogs consolidated information on POP-degrading microbes and tools to facilitate integrative analysis of POP degradation data sets. To address this knowledge gap, we developed the Microbial Biodegradation of Persistent Organic Pollutants Database (mibPOPdb) by accumulating microbial POP degradation information from the public domain and manually curating published scientific literature. Currently, in mibPOPdb, there are 9215 microbial strain entries, including 184 gene (sub)families, 100 enzymes, 48 biodegradation pathways, and 593 intermediate compounds identified in POP-biodegradation processes, and information on 32 toxic compounds listed under the Stockholm Convention environmental treaty. Besides the standard database functionalities, which include data searching, browsing, and retrieval of database entries, we provide a suite of bioinformatics services to facilitate comparative analysis of users' own data sets against mibPOPdb entries. Additionally, we built a Graph Neural Network-based prediction model for the biodegradability classification of chemicals. The predictive model exhibited a good biodegradability classification performance and high prediction accuracy. mibPOPdb is a free data-sharing platform designated to promote research in microbial-based biodegradation of POPs and fills a long-standing gap in environmental protection research. Database URL: http://mibpop.genome-mining.cn/.
Collapse
Affiliation(s)
- Tanyaradzwa R. Ngara
- Department of Biotechnology, College of Life Science and Technology, MOE KEY Laboratory of Molecular BiophysicsHuazhong University of Science and TechnologyWuhanChina
| | - Peiji Zeng
- Department of Biotechnology, College of Life Science and Technology, MOE KEY Laboratory of Molecular BiophysicsHuazhong University of Science and TechnologyWuhanChina
| | - Houjin Zhang
- Department of Biotechnology, College of Life Science and Technology, MOE KEY Laboratory of Molecular BiophysicsHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
14
|
Krewski D, Saunders-Hastings P, Baan RA, Barton-Maclaren TS, Browne P, Chiu WA, Gwinn M, Hartung T, Kraft AD, Lam J, Lewis RJ, Sanaa M, Morgan RL, Paoli G, Rhomberg L, Rooney A, Sand S, Schünemann HJ, Straif K, Thayer KA, Tsaioun K. Development of an Evidence-Based Risk Assessment Framework. ALTEX 2022; 39:667-693. [PMID: 36098377 PMCID: PMC10080579 DOI: 10.14573/altex.2004041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/29/2021] [Indexed: 11/23/2022]
Abstract
Assessment of potential human health risks associated with environmental and other agents requires careful evaluation of all available and relevant evidence for the agent of interest, including both data-rich and data-poor agents. With the advent of new approach methodologies in toxicological risk assessment, guidance on integrating evidence from mul-tiple evidence streams is needed to ensure that all available data is given due consideration in both qualitative and quantitative risk assessment. The present report summarizes the discussions among academic, government, and private sector participants from North America and Europe in an international workshop convened to explore the development of an evidence-based risk assessment framework, taking into account all available evidence in an appropriate manner in order to arrive at the best possible characterization of potential human health risks and associated uncertainty. Although consensus among workshop participants was not a specific goal, there was general agreement on the key consider-ations involved in evidence-based risk assessment incorporating 21st century science into human health risk assessment. These considerations have been embodied into an overarching prototype framework for evidence integration that will be explored in more depth in a follow-up meeting.
Collapse
Affiliation(s)
- Daniel Krewski
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
- McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, Canada
- Risk Sciences International, Ottawa, Canada
| | | | - Robert A. Baan
- The IARC Monographs Programme, International Agency for Research on Cancer, Lyon, France (retired)
| | | | - Patience Browne
- Organization for Economic Cooperation and Development, Paris, France
| | - Weihsueh A. Chiu
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas, USA
| | - Maureen Gwinn
- Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, USA
| | - Thomas Hartung
- Chair for Evidence-based Toxicology and Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Baltimore, USA
- CAAT-Europe, University of Konstanz, Konstanz, Germany
| | - Andrew D. Kraft
- Center for Public Health and Environmental Assessment, Chemical & Pollutant Assessment Division, US EPA, DC, USA
| | - Juleen Lam
- Department of Public Health at California State University, East Bay, USA
| | - R. Jeffrey Lewis
- ExxonMobil Biomedical Sciences, Annandale, New Jersey, USA (retired)
| | - Moez Sanaa
- Agence Nationale Sécurité Sanitaire Alimentaire Nationale, Paris, France
| | | | - Greg Paoli
- Risk Sciences International, Ottawa, Canada
| | | | - Andrew Rooney
- Integrative Health Assessments Branch, National Toxicology Program, US National Institute of Environmental Health Sciences, Research Triangle Park, USA
| | - Salomon Sand
- Department of Risk and Benefit Assessment, Swedish Food Agency, Uppsala, Sweden
| | | | - Kurt Straif
- The IARC Monographs Programme, International Agency for Research on Cancer, Lyon, France (retired)
| | - Kristina A Thayer
- Center for Public Health and Environmental Assessment, Chemical & Pollutant Assessment Division, US EPA, NC, USA
| | - Katya Tsaioun
- Boston College, Chestnut Hill, MA, USA ISGlobal, Barcelona, Spain
| |
Collapse
|
15
|
Olker JH, Korte JJ, Haselman JT, Hornung MW, Degitz SJ. Cross-species comparison of chemical inhibition of human and Xenopus iodotyrosine deiodinase. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 249:106227. [PMID: 35767922 PMCID: PMC9887787 DOI: 10.1016/j.aquatox.2022.106227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 05/23/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
The transition to include in vitro-based data in chemical hazard assessment has resulted in the development and implementation of screening assays to cover a diversity of biological pathways, including recently added assays to interrogate chemical disruption of proteins relevant to thyroid signaling pathways. Iodotyrosine deiodinase (IYD), the iodide recycling enzyme, is one such thyroid-relevant endpoint for which a human-based screening assay has recently been developed and used to screen large libraries of chemicals. Presented here is the development of an amphibian IYD inhibition assay and its implementation to conduct a cross-species comparison between chemical inhibition of mammalian and non-mammalian IYD enzyme activity. The successful development of an amphibian IYD inhibition assay was based on demonstration of sufficient IYD enzyme activity in several tissues collected from larval Xenopus laevis. With this new assay, 154 chemicals were tested in concentration-response to provide a basis for comparison of relative chemical potency to results obtained from the human IYD assay. Most chemicals exhibited similar inhibition in both assays, with less than 25% variation in median inhibition for 120 of 154 chemicals and 85% concordance in categorization of "active" (potential IYD inhibitor) versus "inactive". For chemicals that produced 50% or greater inhibition in both assays, rank-order potency was similar, with the majority of the IC50s varying by less than 2-fold (and all within an order of magnitude). Most differences resulted from greater maximum inhibition or higher chemical potency observed with human IYD. This strong cross-species agreement suggests that results from the human-based assay would be conservatively predictive of chemical effects on amphibian IYD.
Collapse
Affiliation(s)
- Jennifer H Olker
- Great Lakes Toxicology and Ecology Division, Office of Research and Development, Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, 6201 Congdon Blvd, Duluth, MN 55804, USA.
| | - Joseph J Korte
- Great Lakes Toxicology and Ecology Division, Office of Research and Development, Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, 6201 Congdon Blvd, Duluth, MN 55804, USA
| | - Jonathan T Haselman
- Great Lakes Toxicology and Ecology Division, Office of Research and Development, Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, 6201 Congdon Blvd, Duluth, MN 55804, USA
| | - Michael W Hornung
- Great Lakes Toxicology and Ecology Division, Office of Research and Development, Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, 6201 Congdon Blvd, Duluth, MN 55804, USA
| | - Sigmund J Degitz
- Great Lakes Toxicology and Ecology Division, Office of Research and Development, Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, 6201 Congdon Blvd, Duluth, MN 55804, USA
| |
Collapse
|
16
|
Shilnikova N, Karyakina N, Farhat N, Ramoju S, Cline B, Momoli F, Mattison D, Jensen N, Terrell R, Krewski D. Biomarkers of environmental manganese exposure. Crit Rev Toxicol 2022; 52:325-343. [PMID: 35894753 DOI: 10.1080/10408444.2022.2095979] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We conducted a critical review on biomarkers of environmental manganese (Mn) exposure to answer the following questions: 1) are there reliable biomarkers of internal Mn exposure (Mn in biological matrices) associated with external metrics of Mn exposure (Mn in environmental media)? and 2) are there accurate reference values (RVs) for Mn in biological matrices? Three bibliographic databases were searched for relevant references and identified references were screened by two independent reviewers. Of the 6342 unique references identified, 86 articles were retained for data abstraction. Our analysis of currently available evidence suggests that Mn levels in blood and urine are not useful biomarkers of Mn exposure in non-occupational settings. The strength of the association between Mn in environmental media and saliva was variable. Findings regarding the utility of hair Mn as a biomarker of environmental Mn exposure are inconsistent. Measurements of Mn in teeth are technically challenging and findings on Mn in tooth components are scarce. In non-occupationally exposed individuals, bone Mn measurements using in vivo neutron activation analysis (IVNAA) are associated with large uncertainties. Findings suggest that Mn in nails may reflect Mn in environmental media and discriminate between groups of individuals exposed to different environmental Mn levels, although more research is needed. Currently, there is no strong evidence for any biological matrix as a valid biomarker of Mn exposure in non-occupational settings. Because of methodological limitations in studies aimed at derivation of RVs for Mn in biological materials, accurate RVs are scarce.
Collapse
Affiliation(s)
- Natalia Shilnikova
- Risk Sciences International, Ottawa, Canada.,McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, Canada
| | - Nataliya Karyakina
- Risk Sciences International, Ottawa, Canada.,McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, Canada
| | - Nawal Farhat
- Risk Sciences International, Ottawa, Canada.,McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, Canada.,School of Mathematics and Statistics, Carleton University, Ottawa, Canada
| | | | | | - Franco Momoli
- Risk Sciences International, Ottawa, Canada.,School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| | - Donald Mattison
- Risk Sciences International, Ottawa, Canada.,School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada.,Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Natalie Jensen
- Risk Sciences International, Ottawa, Canada.,School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| | - Rowan Terrell
- Risk Sciences International, Ottawa, Canada.,School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| | - Daniel Krewski
- Risk Sciences International, Ottawa, Canada.,McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, Canada.,School of Mathematics and Statistics, Carleton University, Ottawa, Canada.,School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| |
Collapse
|
17
|
Krewski D, Saunders-Hastings P, Larkin P, Westphal M, Tyshenko MG, Leiss W, Dusseault M, Jerrett M, Coyle D. Principles of risk decision-making. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2022; 25:250-278. [PMID: 35980104 DOI: 10.1080/10937404.2022.2107591] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Risk management decisions in public health require consideration of a number of complex, often conflicting factors. The aim of this review was to propose a set of 10 fundamental principles to guide risk decision-making. Although each of these principles is sound in its own right, the guidance provided by different principles might lead the decision-maker in different directions. For example, where the precautionary principle advocates for preemptive risk management action under situations of scientific uncertainty and potentially catastrophic consequences, the principle of risk-based decision-making encourages decision-makers to focus on established and modifiable risks, where a return on the investment in risk management is all but guaranteed in the near term. To evaluate the applicability of the 10 principles in practice, one needs to consider 10 diverse risk issues of broad concern and explore which of these principles are most appropriate in different contexts. The 10 principles presented here afford substantive insight into the process of risk management decision-making, although decision-makers will ultimately need to exercise judgment in reaching appropriate risk decisions, accounting for all of the scientific and extra-scientific factors relevant to the risk decision at hand.
Collapse
Affiliation(s)
- Daniel Krewski
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, ON, Canada
| | - Patrick Saunders-Hastings
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, ON, Canada
| | - Patricia Larkin
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, ON, Canada
| | - Margit Westphal
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, ON, Canada
| | | | - William Leiss
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, ON, Canada
| | - Maurice Dusseault
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Michael Jerrett
- Department of Environmental Health Sciences, Fielding School of Public Health, UCLA, Los Angeles, CA, USA
| | - Doug Coyle
- School of Epidemiology and Public Health, University of Ottawa, ON, Canada
| |
Collapse
|
18
|
Ceger P, Garcia-Reyero Vinas N, Allen D, Arnold E, Bloom R, Brennan JC, Clarke C, Eisenreich K, Fay K, Hamm J, Henry PFP, Horak K, Hunter W, Judkins D, Klein P, Kleinstreuer N, Koehrn K, LaLone CA, Laurenson JP, Leet JK, Lowit A, Lynn SG, Norberg-King T, Perkins EJ, Petersen EJ, Rattner BA, Sprankle CS, Steeger T, Warren JE, Winfield S, Odenkirchen E. Current ecotoxicity testing needs among selected U.S. federal agencies. Regul Toxicol Pharmacol 2022; 133:105195. [PMID: 35660046 PMCID: PMC9623878 DOI: 10.1016/j.yrtph.2022.105195] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
Abstract
U.S. regulatory and research agencies use ecotoxicity test data to assess the hazards associated with substances that may be released into the environment, including but not limited to industrial chemicals, pharmaceuticals, pesticides, food additives, and color additives. These data are used to conduct hazard assessments and evaluate potential risks to aquatic life (e.g., invertebrates, fish), birds, wildlife species, or the environment. To identify opportunities for regulatory uses of non-animal replacements for ecotoxicity tests, the needs and uses for data from tests utilizing animals must first be clarified. Accordingly, the objective of this review was to identify the ecotoxicity test data relied upon by U.S. federal agencies. The standards, test guidelines, guidance documents, and/or endpoints that are used to address each of the agencies' regulatory and research needs regarding ecotoxicity testing are described in the context of their application to decision-making. Testing and information use, needs, and/or requirements relevant to the regulatory or programmatic mandates of the agencies taking part in the Interagency Coordinating Committee on the Validation of Alternative Methods Ecotoxicology Workgroup are captured. This information will be useful for coordinating efforts to develop and implement alternative test methods to reduce, refine, or replace animal use in chemical safety evaluations.
Collapse
Affiliation(s)
- Patricia Ceger
- Integrated Laboratory Systems, LLC, P.O. Box 13501, Research Triangle Park, NC, 27709, USA.
| | | | - David Allen
- Integrated Laboratory Systems, LLC, P.O. Box 13501, Research Triangle Park, NC, 27709, USA.
| | - Elyssa Arnold
- U.S. Environmental Protection Agency, Office of Pesticide Programs, MC7507P, 1200 Pennsylvania Avenue NW, Washington, DC, 20460, USA.
| | - Raanan Bloom
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA.
| | - Jennifer C Brennan
- U.S. Environmental Protection Agency, Office of Pollution Prevention and Toxics, 7401M, 1200 Pennsylvania Avenue NW, Washington, DC, 20460, USA.
| | - Carol Clarke
- U.S. Department of Agriculture, 1400 Independence Ave. SW, Washington, DC, 20250, USA.
| | - Karen Eisenreich
- U.S. Environmental Protection Agency, Office of Pollution Prevention and Toxics, 7401M, 1200 Pennsylvania Avenue NW, Washington, DC, 20460, USA.
| | - Kellie Fay
- U.S. Environmental Protection Agency, Office of Pollution Prevention and Toxics, 7401M, 1200 Pennsylvania Avenue NW, Washington, DC, 20460, USA.
| | - Jonathan Hamm
- Integrated Laboratory Systems, LLC, P.O. Box 13501, Research Triangle Park, NC, 27709, USA.
| | - Paula F P Henry
- U.S. Geological Survey, Eastern Ecological Science Center, 12100 Beech Forest Rd, Laurel, MD, 20708, USA.
| | - Katherine Horak
- U.S. Department of Agriculture, Wildlife Services National Wildlife Research Center, 4101 LaPorte Ave. Fort Collins, CO, 80521, USA.
| | - Wesley Hunter
- U.S. Food and Drug Administration, Center for Veterinary Medicine, HFV-161, 7500 Standish Place, Rockville, MD, 20855, USA.
| | - Donna Judkins
- U.S. Environmental Protection Agency, Office of Pesticide Programs, MC7507P, 1200 Pennsylvania Avenue NW, Washington, DC, 20460, USA.
| | - Patrice Klein
- U.S. Department of Agriculture, 1400 Independence Ave. SW, Washington, DC, 20250, USA.
| | - Nicole Kleinstreuer
- National Institute of Environmental Health Sciences, National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, P.O. Box 12233, Research Triangle Park, NC, 27709, USA.
| | - Kara Koehrn
- U.S. Environmental Protection Agency, Office of Pollution Prevention and Toxics, 7401M, 1200 Pennsylvania Avenue NW, Washington, DC, 20460, USA.
| | - Carlie A LaLone
- U.S. Environmental Protection Agency, Office of Research and Development, 8101R, 6201 Congdon Blvd., Duluth, MN, 55804, USA.
| | - James P Laurenson
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA.
| | - Jessica K Leet
- U.S. Geological Survey, Columbia Environmental Research Center (CERC), Columbia, MO, 65201, USA.
| | - Anna Lowit
- U.S. Environmental Protection Agency, Office of Pesticide Programs, MC7507P, 1200 Pennsylvania Avenue NW, Washington, DC, 20460, USA.
| | - Scott G Lynn
- U.S. Environmental Protection Agency, Office of Pesticide Programs, MC7507P, 1200 Pennsylvania Avenue NW, Washington, DC, 20460, USA.
| | - Teresa Norberg-King
- U.S. Environmental Protection Agency, Office of Research and Development, 8101R, 6201 Congdon Blvd., Duluth, MN, 55804, USA.
| | - Edward J Perkins
- U.S. Army Engineer Research and Development Center, 3909 Halls Ferry Rd., Vicksburg, MS, 39180, USA.
| | - Elijah J Petersen
- U.S. Department of Commerce, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 2089, USA.
| | - Barnett A Rattner
- U.S. Geological Survey, Eastern Ecological Science Center, 10300 Baltimore Ave, BARC-EAST Bldg. 308, Beltsville, MD, 20705, USA.
| | - Catherine S Sprankle
- Integrated Laboratory Systems, LLC, P.O. Box 13501, Research Triangle Park, NC, 27709, USA.
| | - Thomas Steeger
- U.S. Environmental Protection Agency, Office of Pesticide Programs, MC7507P, 1200 Pennsylvania Avenue NW, Washington, DC, 20460, USA.
| | - Jim E Warren
- U.S. Department of Agriculture, 1400 Independence Ave. SW, Washington, DC, 20250, USA.
| | - Sarah Winfield
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, 5001 Campus Drive, HFS-009, College Park, MD, 20740, USA.
| | - Edward Odenkirchen
- U.S. Environmental Protection Agency, Office of Pesticide Programs, MC7507P, 1200 Pennsylvania Avenue NW, Washington, DC, 20460, USA.
| |
Collapse
|
19
|
Li X, Ni M, Xiong W, Tian L, Yang Z, Zhang L, Chen J. Transcriptomics analysis and benchmark concentration estimating-based in vitro test with IOSE80 cells to unveil the mode of action for female reproductive toxicity of bisphenol A at human-relevant levels. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 237:113523. [PMID: 35429799 DOI: 10.1016/j.ecoenv.2022.113523] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/05/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Bisphenol A (BPA) is of great concern in public health, of which female reproductive toxicity is one major adverse health effect with the unclear mode of action (MOA) yet. Based on the principle of Toxicity Testing in the 21st Century, the purpose of this study is to explore the MOA for female reproductive toxicity using human normal ovarian epithelial cells IOSE80 at 28-day human-relevant-level exposure. A physiological based pharmacokinetic model was used to select the administration concentrations according to the BPA levels in female gonads at human actual exposure scenario. Enrichment KEGG pathways interrupted by BPA consisted of RNA transport, ribosome biogenesis in eukaryotes, cell cycle, cellular senescence, progesterone-mediated oocyte maturation, and oocyte meiosis. Increased relative mRNA and protein expressions of ERK and CDKN3, and proportion of S phase, as well as decreased proportion of G0/G1 phase were observed with increasing BPA concentrations, which could be partially inhibited by ERK inhibitor U0126. Among all the benchmark concentration lower confidence limits, mRNA expression of MAPK3 served as the lowest. In conclusion, the MOA of BPA induced female reproductive toxicity at human-relevant levels may include: key event (KE)1-ERK activation, KE2-increased expression of CDKN3, and KE3-cell cycle arrest. However, more in vivo studies may be needed to complete the MOA.
Collapse
Affiliation(s)
- Xiaomeng Li
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Mengmei Ni
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Wei Xiong
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Lin Tian
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Zhirui Yang
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Lishi Zhang
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Jinyao Chen
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China.
| |
Collapse
|
20
|
Olker JH, Elonen CM, Pilli A, Anderson A, Kinziger B, Erickson S, Skopinski M, Pomplun A, LaLone CA, Russom CL, Hoff D. The ECOTOXicology Knowledgebase: A Curated Database of Ecologically Relevant Toxicity Tests to Support Environmental Research and Risk Assessment. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:1520-1539. [PMID: 35262228 PMCID: PMC9408435 DOI: 10.1002/etc.5324] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/25/2021] [Accepted: 02/28/2022] [Indexed: 05/19/2023]
Abstract
The need for assembled existing and new toxicity data has accelerated as the amount of chemicals introduced into commerce continues to grow and regulatory mandates require safety assessments for a greater number of chemicals. To address this evolving need, the ECOTOXicology Knowledgebase (ECOTOX) was developed starting in the 1980s and is currently the world's largest compilation of curated ecotoxicity data, providing support for assessments of chemical safety and ecological research through systematic and transparent literature review procedures. The recently released version of ECOTOX (Ver 5, www.epa.gov/ecotox) provides single-chemical ecotoxicity data for over 12,000 chemicals and ecological species with over one million test results from over 50,000 references. Presented is an overview of ECOTOX, detailing the literature review and data curation processes within the context of current systematic review practices and discussing how recent updates improve the accessibility and reusability of data to support the assessment, management, and research of environmental chemicals. Relevant and acceptable toxicity results are identified from studies in the scientific literature, with pertinent methodological details and results extracted following well-established controlled vocabularies and newly extracted toxicity data added quarterly to the public website. Release of ECOTOX, Ver 5, included an entirely redesigned user interface with enhanced data queries and retrieval options, visualizations to aid in data exploration, customizable outputs for export and use in external applications, and interoperability with chemical and toxicity databases and tools. This is a reliable source of curated ecological toxicity data for chemical assessments and research and continues to evolve with accessible and transparent state-of-the-art practices in literature data curation and increased interoperability to other relevant resources. Environ Toxicol Chem 2022;41:1520-1539. © 2022 SETAC. This article has been contributed to by US Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Jennifer H. Olker
- US Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804, USA
- Corresponding author: USEPA, 6201 Congdon Blvd, Duluth, MN 55804 USA, . Tel: 218-529-5119
| | - Colleen M. Elonen
- US Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804, USA
| | - Anne Pilli
- General Dynamics Information Technology, 6201 Congdon Blvd., Duluth, MN 55804, USA
| | - Arne Anderson
- General Dynamics Information Technology, 6201 Congdon Blvd., Duluth, MN 55804, USA
| | - Brian Kinziger
- General Dynamics Information Technology, 6201 Congdon Blvd., Duluth, MN 55804, USA
| | - Stephen Erickson
- General Dynamics Information Technology, 6201 Congdon Blvd., Duluth, MN 55804, USA
| | - Michael Skopinski
- General Dynamics Information Technology, 6201 Congdon Blvd., Duluth, MN 55804, USA
| | - Anita Pomplun
- General Dynamics Information Technology, 6201 Congdon Blvd., Duluth, MN 55804, USA
| | - Carlie A. LaLone
- US Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804, USA
| | - Christine L. Russom
- US Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804, USA
| | - Dale Hoff
- US Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804, USA
| |
Collapse
|
21
|
van der Stel W, Yang H, le Dévédec SE, van de Water B, Beltman JB, Danen EHJ. High-content high-throughput imaging reveals distinct connections between mitochondrial morphology and functionality for OXPHOS complex I, III, and V inhibitors. Cell Biol Toxicol 2022:10.1007/s10565-022-09712-6. [PMID: 35505273 DOI: 10.1007/s10565-022-09712-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 04/07/2022] [Indexed: 11/02/2022]
Abstract
Cells can adjust their mitochondrial morphology by altering the balance between mitochondrial fission and fusion to adapt to stressful conditions. The connection between a chemical perturbation, changes in mitochondrial function, and altered mitochondrial morphology is not well understood. Here, we made use of high-throughput high-content confocal microscopy to assess the effects of distinct classes of oxidative phosphorylation (OXPHOS) complex inhibitors on mitochondrial parameters in a concentration and time resolved manner. Mitochondrial morphology phenotypes were clustered based on machine learning algorithms and mitochondrial integrity patterns were mapped. In parallel, changes in mitochondrial membrane potential (MMP), mitochondrial and cellular ATP levels, and viability were microscopically assessed. We found that inhibition of MMP, mitochondrial ATP production, and oxygen consumption rate (OCR) using sublethal concentrations of complex I and III inhibitors did not trigger mitochondrial fragmentation. Instead, complex V inhibitors that suppressed ATP and OCR but increased MMP provoked a more fragmented mitochondrial morphology. In agreement, complex V but not complex I or III inhibitors triggered proteolytic cleavage of the mitochondrial fusion protein, OPA1. The relation between increased MMP and fragmentation did not extend beyond OXPHOS complex inhibitors: increasing MMP by blocking the mPTP pore did not lead to OPA1 cleavage or mitochondrial fragmentation and the OXPHOS uncoupler FCCP was associated with OPA1 cleavage and MMP reduction. Altogether, our findings connect vital mitochondrial functions and phenotypes in a high-throughput high-content confocal microscopy approach that help understanding of chemical-induced toxicity caused by OXPHOS complex perturbing chemicals.
Collapse
Affiliation(s)
- Wanda van der Stel
- Division of Drug Discovery and Safety, Leiden Academic Centre of Drug Research, Leiden University, Einsteinweg, 55, 2333 CC, Leiden, The Netherlands
| | - Huan Yang
- Division of Drug Discovery and Safety, Leiden Academic Centre of Drug Research, Leiden University, Einsteinweg, 55, 2333 CC, Leiden, The Netherlands
| | - Sylvia E le Dévédec
- Division of Drug Discovery and Safety, Leiden Academic Centre of Drug Research, Leiden University, Einsteinweg, 55, 2333 CC, Leiden, The Netherlands
| | - Bob van de Water
- Division of Drug Discovery and Safety, Leiden Academic Centre of Drug Research, Leiden University, Einsteinweg, 55, 2333 CC, Leiden, The Netherlands
| | - Joost B Beltman
- Division of Drug Discovery and Safety, Leiden Academic Centre of Drug Research, Leiden University, Einsteinweg, 55, 2333 CC, Leiden, The Netherlands
| | - Erik H J Danen
- Division of Drug Discovery and Safety, Leiden Academic Centre of Drug Research, Leiden University, Einsteinweg, 55, 2333 CC, Leiden, The Netherlands.
| |
Collapse
|
22
|
Jensen N, Terrell R, Ramoju S, Shilnikova N, Farhat N, Karyakina N, Cline BH, Momoli F, Mattison D, Krewski D. Magnetic resonance imaging T1 indices of the brain as biomarkers of inhaled manganese exposure. Crit Rev Toxicol 2022; 52:358-370. [PMID: 36412542 DOI: 10.1080/10408444.2022.2128719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Excessive exposure to manganese (Mn) is linked to its accumulation in the brain and adverse neurological effects. Paramagnetic properties of Mn allow the use of magnetic resonance imaging (MRI) techniques to identify it in biological tissues. A critical review was conducted to evaluate whether MRI techniques could be used as a diagnostic tool to detect brain Mn accumulation as a quantitative biomarker of inhaled exposure. A comprehensive search was conducted in MEDLINE, EMBASE, and PubMed to identify potentially relevant studies published prior to 9 May 2022. Two reviewers independently screened identified references using a two-stage process. Of the 6452 unique references identified, 36 articles were retained for data abstraction. Eligible studies used T1-weighted MRI techniques and reported direct or indirect T1 measures to characterize Mn accumulation in the brain. Findings demonstrate that, in subjects exposed to high levels of Mn, deposition in the brain is widespread, accumulating both within and outside the basal ganglia. Available evidence indicates that T1 MRI techniques can be used to distinguish Mn-exposed individuals from unexposed. Additionally, T1 MRI may be useful for semi-quantitative evaluation of inhaled Mn exposure, particularly when interpreted along with other exposure indices. T1 MRI measures appear to have a nonlinear relationship to Mn exposure duration, with R1 signal only increasing after critical thresholds. The strength of the association varied depending on the regions of interest imaged and the method of exposure measurement. Overall, available evidence suggests potential for future clinical and risk assessment applications of MRI as a diagnostic tool.
Collapse
Affiliation(s)
- N Jensen
- Risk Sciences International, Ottawa, Canada.,School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| | - R Terrell
- Risk Sciences International, Ottawa, Canada.,School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| | - S Ramoju
- Risk Sciences International, Ottawa, Canada
| | - N Shilnikova
- Risk Sciences International, Ottawa, Canada.,McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, Canada
| | - N Farhat
- Risk Sciences International, Ottawa, Canada.,School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada.,School of Mathematics and Statistics, Carleton University, Ottawa, Canada
| | - N Karyakina
- Risk Sciences International, Ottawa, Canada.,McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, Canada
| | - B H Cline
- International Manganese Institute, Paris, France
| | - F Momoli
- Risk Sciences International, Ottawa, Canada.,School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| | - D Mattison
- Risk Sciences International, Ottawa, Canada.,School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada.,Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - D Krewski
- Risk Sciences International, Ottawa, Canada.,School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada.,McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, Canada.,School of Mathematics and Statistics, Carleton University, Ottawa, Canada
| |
Collapse
|
23
|
Bizjak T, Kontić D, Kontić B. Practical Opportunities to Improve the Impact of Health Risk Assessment on Environmental and Public Health Decisions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19074200. [PMID: 35409883 PMCID: PMC8998966 DOI: 10.3390/ijerph19074200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 01/27/2023]
Abstract
Following alerts about the diminishing role of health risk assessment (HRA) in informing public health decisions, this study examines specific HRA topics with the aim of identifying possible solutions for addressing this compelling situation. The study administered a survey among different groups of stakeholders involved in HRA or decision-making, or both. The responses show various understandings of HRA in the decision-making context-including confusion with the health impact assessment (HIA)-and confirm recurring foundational issues within the risk analysis field that contribute to the growth of inconsistency in the HRA praxis. This inconsistency lowers the effectiveness of HRA to perform its primary purpose of informing public health decisions. Opportunities for improving this situation come at the beginning of the assessment process, where greater attention should be given to defining the assessment and decision-making contexts. Both must reflect the concerns and expectations of the stakeholders regarding the needs and purpose of an HRA on one side, and the methodological and procedural topics relevant for the decision case at hand on the other. The HRA process should end with a decision follow-up step with targeted auditing and the participation of stakeholders to measure its success.
Collapse
Affiliation(s)
- Tine Bizjak
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia;
- Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia;
- Correspondence:
| | - Davor Kontić
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia;
| | - Branko Kontić
- Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia;
| |
Collapse
|
24
|
Price PS, Hubbell BJ, Hagiwara S, Paoli GM, Krewski D, Guiseppi‐Elie A, Gwinn MR, Adkins NL, Thomas RS. A Framework that Considers the Impacts of Time, Cost, and Uncertainty in the Determination of the Cost Effectiveness of Toxicity-Testing Methodologies. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2022; 42:707-729. [PMID: 34490933 PMCID: PMC9290960 DOI: 10.1111/risa.13810] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/06/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Regulatory agencies are required to evaluate the impacts of thousands of chemicals. Toxicological tests currently used in such evaluations are time-consuming and resource intensive; however, advances in toxicology and related fields are providing new testing methodologies that reduce the cost and time required for testing. The selection of a preferred methodology is challenging because the new methodologies vary in duration and cost, and the data they generate vary in the level of uncertainty. This article presents a framework for performing cost-effectiveness analyses (CEAs) of toxicity tests that account for cost, duration, and uncertainty. This is achieved by using an output metric-the cost per correct regulatory decision-that reflects the three elements. The framework is demonstrated in two example CEAs, one for a simple decision of risk acceptability and a second, more complex decision, involving the selection of regulatory actions. Each example CEA evaluates five hypothetical toxicity-testing methodologies which differ with respect to cost, time, and uncertainty. The results of the examples indicate that either a fivefold reduction in cost or duration can be a larger driver of the selection of an optimal toxicity-testing methodology than a fivefold reduction in uncertainty. Uncertainty becomes of similar importance to cost and duration when decisionmakers are required to make more complex decisions that require the determination of small differences in risk predictions. The framework presented in this article may provide a useful basis for the identification of cost-effective methods for toxicity testing of large numbers of chemicals.
Collapse
Affiliation(s)
- Paul S. Price
- Center for Computational Toxicology and ExposureUS Environmental Protection Agency, Research Triangle ParkDurhamNCUSA
| | - Bryan J. Hubbell
- Air, Climate, and Energy Research ProgramUS Environmental Protection Agency, Research Triangle ParkDurhamNCUSA
| | - Shintaro Hagiwara
- School of Mathematics and StatisticsCarleton UniversityOttawaCanada
- Risk Sciences InternationalOttawaCanada
| | | | - Daniel Krewski
- McLaughlin Centre for Population Health Risk AssessmentUniversity of OttawaOttawaCanada
| | - Annette Guiseppi‐Elie
- Center for Computational Toxicology and ExposureUS Environmental Protection Agency, Research Triangle ParkDurhamNCUSA
| | - Maureen R. Gwinn
- Sustainable and Healthy Communities Research ProgramUS Environmental Protection Agency, Research Triangle ParkNCUSA
| | - Norman L. Adkins
- Center for Computational Toxicology and ExposureUS Environmental Protection Agency, Research Triangle ParkDurhamNCUSA
| | - Russell S. Thomas
- Center for Computational Toxicology and ExposureUS Environmental Protection Agency, Research Triangle ParkDurhamNCUSA
| |
Collapse
|
25
|
Bhuller Y, Ramsingh D, Beal M, Kulkarni S, Gagne M, Barton-Maclaren TS. Canadian Regulatory Perspective on Next Generation Risk Assessments for Pest Control Products and Industrial Chemicals. FRONTIERS IN TOXICOLOGY 2022; 3:748406. [PMID: 35295100 PMCID: PMC8915837 DOI: 10.3389/ftox.2021.748406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/11/2021] [Indexed: 12/24/2022] Open
Abstract
In 2012, the Council of Canadian Academies published the expert panel on integrated testing of pesticide’s report titled: Integrating emerging technologies into chemical safety assessment. This report was prepared for the Government of Canada in response to a request from the Minister of Health and on behalf of the Pest Management Regulatory Agency. It examined the scientific status of the use of integrated testing strategies for the regulatory health risk assessment of pesticides while noting the data-rich/poor dichotomy that exists when comparing pesticide formulations to most industrial chemicals. It also noted that the adoption of integrated approaches to testing and assessment (IATA) strategies may refine and streamline testing of chemicals, as well as improve results in the future. Moreover, the experts expected to see an increase in the use of integrated testing strategies over the next decade, resulting in improved evidence-based decision-making. Subsequent to this report, there has been great advancements in IATA strategies, which includes the incorporation of adverse outcome pathways (AOPs) and new approach methodologies (NAMs). This perspective provides the first Canadian regulatory update on how Health Canada is also advancing the incorporation of alternative, non-animal strategies, using a weight of evidence approach, for the evaluation of pest control products and industrial chemicals. It will include specific initiatives and describe how this work is leading to the creation of next generation risk assessments. It also reflects Health Canada’s commitment towards implementing the 3Rs of animal testing: reduce, refine and replace the need for animal studies, whenever possible.
Collapse
Affiliation(s)
- Yadvinder Bhuller
- Health Evaluation Directorate, Pest Management Regulatory Agency, Health Canada, Ottawa, ON, Canada
| | - Deborah Ramsingh
- Health Evaluation Directorate, Pest Management Regulatory Agency, Health Canada, Ottawa, ON, Canada
| | - Marc Beal
- Safe Environments Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, Canada
| | - Sunil Kulkarni
- Safe Environments Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, Canada
| | - Matthew Gagne
- Safe Environments Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, Canada
| | - Tara S Barton-Maclaren
- Safe Environments Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, Canada
| |
Collapse
|
26
|
Human Biomonitoring Data in Health Risk Assessments Published in Peer-Reviewed Journals between 2016 and 2021: Confronting Reality after a Preliminary Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19063362. [PMID: 35329058 PMCID: PMC8955248 DOI: 10.3390/ijerph19063362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 02/01/2023]
Abstract
Human biomonitoring (HBM) is a rapidly developing field that is emphasized as an important approach for the assessment of health risks. However, its value for health risk assessment (HRA) remains to be clarified. We performed a review of publications concerned with applications of HBM in the assessment of health risks. The selection of publications for this review was limited by the search engines used (only PubMed and Scopus) and a timeframe of the last five years. The review focused on the clarity of 10 HRA elements, which influence the quality of HRA. We show that the usage of HBM data in HRA is limited and unclear. Primarily, the key HRA elements are not consistently applied or followed when using HBM in such assessments, and secondly, there are inconsistencies regarding the understanding of fundamental risk analysis principles and good practices in risk analysis. Our recommendations are as follows: (i) potential usage of HBM data in HRA should not be non-critically overestimated but rather limited and aligned to a specific value for exposure assessment or for the interpretation of health damage; (ii) improvements to HRA approaches, using HBM information or not, are needed and should strictly follow theoretical foundations of risk analysis.
Collapse
|
27
|
Ventura C, Torres V, Vieira L, Gomes B, Rodrigues AS, Rueff J, Penque D, Silva MJ. New “Omics” Approaches as Tools to Explore Mechanistic Nanotoxicology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1357:179-194. [DOI: 10.1007/978-3-030-88071-2_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
28
|
Maertens A, Golden E, Luechtefeld TH, Hoffmann S, Tsaioun K, Hartung T. Probabilistic risk assessment - the keystone for the future of toxicology. ALTEX 2022; 39:3-29. [PMID: 35034131 PMCID: PMC8906258 DOI: 10.14573/altex.2201081] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Indexed: 12/12/2022]
Abstract
Safety sciences must cope with uncertainty of models and results as well as information gaps. Acknowledging this uncer-tainty necessitates embracing probabilities and accepting the remaining risk. Every toxicological tool delivers only probable results. Traditionally, this is taken into account by using uncertainty / assessment factors and worst-case / precautionary approaches and thresholds. Probabilistic methods and Bayesian approaches seek to characterize these uncertainties and promise to support better risk assessment and, thereby, improve risk management decisions. Actual assessments of uncertainty can be more realistic than worst-case scenarios and may allow less conservative safety margins. Most importantly, as soon as we agree on uncertainty, this defines room for improvement and allows a transition from traditional to new approach methods as an engineering exercise. The objective nature of these mathematical tools allows to assign each methodology its fair place in evidence integration, whether in the context of risk assessment, sys-tematic reviews, or in the definition of an integrated testing strategy (ITS) / defined approach (DA) / integrated approach to testing and assessment (IATA). This article gives an overview of methods for probabilistic risk assessment and their application for exposure assessment, physiologically-based kinetic modelling, probability of hazard assessment (based on quantitative and read-across based structure-activity relationships, and mechanistic alerts from in vitro studies), indi-vidual susceptibility assessment, and evidence integration. Additional aspects are opportunities for uncertainty analysis of adverse outcome pathways and their relation to thresholds of toxicological concern. In conclusion, probabilistic risk assessment will be key for constructing a new toxicology paradigm - probably!
Collapse
Affiliation(s)
- Alexandra Maertens
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD, USA
| | - Emily Golden
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD, USA
| | - Thomas H. Luechtefeld
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD, USA
- ToxTrack, Baltimore, MD, USA
| | - Sebastian Hoffmann
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD, USA
- seh consulting + services, Paderborn, Germany
| | - Katya Tsaioun
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD, USA
| | - Thomas Hartung
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD, USA
- CAAT Europe, University of Konstanz, Konstanz, Germany
| |
Collapse
|
29
|
Burnett SD, Karmakar M, Murphy WJ, Chiu WA, Rusyn I. A new approach method for characterizing inter-species toxicodynamic variability. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:1020-1039. [PMID: 34427174 PMCID: PMC8530970 DOI: 10.1080/15287394.2021.1966861] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Inter-species differences in toxicodynamics are often a critical source of uncertainty in safety evaluations and typically dealt with using default adjustment factors. In vitro studies that use cells from different species demonstrated some success for estimating the relationships between life span and/or body weight and sensitivity to cytotoxicity; however, no apparent investigation evaluated the utility of these models for risk assessment. It was hypothesized that an in vitro model using dermal fibroblasts derived from diverse species and individuals might be utilized to inform the extent of inter-species and inter-individual variability in toxicodynamics. To test this hypothesis and characterize both inter-species and inter-individual variability in cytotoxicity, concentration-response cytotoxicity screening of 40 chemicals in primary dermal fibroblasts from 68 individuals of 54 diverse species was conducted. Chemicals examined included drugs, environmental pollutants, and food/flavor/fragrance agents; most of these were previously assessed either in vivo or in vitro for inter-species or inter-individual variation. Species included humans, the typical preclinical species and representatives from other orders of mammals and birds. Data demonstrated that both inter-species and inter-individual components of variability contribute to the observed differences in sensitivity to cell death. Further, it was found that the magnitude of the observed inter-species and inter-individual differences was chemical-dependent. This study contributes to the paradigm shift in risk assessment from reliance on in vivo toxicity testing to higher-throughput in vitro or alternative approaches, extending the strategy to replace use of default adjustment factors with experimental characterization of toxicodynamic inter-individual variability and to also address toxicodynamic inter-species variability.
Collapse
Affiliation(s)
- Sarah D. Burnett
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4458, USA
| | - Moumita Karmakar
- Department of Statistics, Texas A&M University, College Station, TX 77843-4458, USA
| | - William J. Murphy
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4458, USA
| | - Weihsueh A. Chiu
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4458, USA
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4458, USA
| |
Collapse
|
30
|
Petersen EJ, Ceger P, Allen DG, Coyle J, Derk R, Reyero NG, Gordon J, Kleinstreuer N, Matheson J, McShan D, Nelson BC, Patri AK, Rice P, Rojanasakul L, Sasidharan A, Scarano L, Chang X. U.S. Federal Agency interests and key considerations for new approach methodologies for nanomaterials. ALTEX 2021; 39:183–206. [PMID: 34874455 PMCID: PMC9115850 DOI: 10.14573/altex.2105041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 12/02/2021] [Indexed: 12/22/2022]
Abstract
Engineered nanomaterials (ENMs) come in a wide array of shapes, sizes, surface coatings, and compositions, and often possess novel or enhanced properties compared to larger sized particles of the same elemental composition. To ensure the safe commercialization of products containing ENMs, it is important to thoroughly understand their potential risks. Given that ENMs can be created in an almost infinite number of variations, it is not feasible to conduct in vivo testing on each type of ENM. Instead, new approach methodologies (NAMs) such as in vitro or in chemico test methods may be needed, given their capacity for higher throughput testing, lower cost, and ability to provide information on toxicological mechanisms. However, the different behaviors of ENMs compared to dissolved chemicals may challenge safety testing of ENMs using NAMs. In this study, member agencies within the Interagency Coordinating Committee on the Validation of Alternative Methods were queried about what types of ENMs are of agency interest and whether there is agency-specific guidance for ENM toxicity testing. To support the ability of NAMs to provide robust results in ENM testing, two key issues in the usage of NAMs, namely dosimetry and interference/bias controls, are thoroughly discussed.
Collapse
Affiliation(s)
- Elijah J. Petersen
- U.S. Department of Commerce, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Patricia Ceger
- Integrated Laboratory Systems LLC, Research Triangle Park, NC, USA
| | - David G. Allen
- Integrated Laboratory Systems LLC, Research Triangle Park, NC, USA
| | - Jayme Coyle
- National Institute for Occupational Safety and Health, Health Effects Laboratory Division, Morgantown, WV, USA
- Current affiliation: UES, Inc., Dayton, OH, USA
| | - Raymond Derk
- National Institute for Occupational Safety and Health, Health Effects Laboratory Division, Morgantown, WV, USA
| | | | - John Gordon
- U.S. Consumer Product Safety Commission, Bethesda, MD, USA
| | - Nicole Kleinstreuer
- National Institute of Environmental Health Sciences, National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, Research Triangle Park, NC, USA
| | | | - Danielle McShan
- U.S. Environmental Protection Agency, Office of Pesticide Programs, Washington, DC, USA
| | - Bryant C. Nelson
- U.S. Department of Commerce, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Anil K. Patri
- U.S. Food and Drug Administration, National Center for Toxicological Research, Jefferson, AR, USA
| | - Penelope Rice
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD, USA
| | - Liying Rojanasakul
- National Institute for Occupational Safety and Health, Health Effects Laboratory Division, Morgantown, WV, USA
| | - Abhilash Sasidharan
- U.S. Environmental Protection Agency, Office of Pollution Prevention and Toxics, Washington, DC, USA
| | - Louis Scarano
- U.S. Environmental Protection Agency, Office of Pollution Prevention and Toxics, Washington, DC, USA
| | - Xiaoqing Chang
- Integrated Laboratory Systems LLC, Research Triangle Park, NC, USA
| |
Collapse
|
31
|
Yan Z, Xue Y, Lou Y. Risk and protective factors for intuitive and rational judgment of cybersecurity risks in a large sample of K-12 students and teachers. COMPUTERS IN HUMAN BEHAVIOR 2021. [DOI: 10.1016/j.chb.2021.106791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
32
|
Exploration of Mental Readiness for Enhancing Dentistry in an Inter-Professional Climate. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18137038. [PMID: 34280975 PMCID: PMC8297289 DOI: 10.3390/ijerph18137038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022]
Abstract
Competencies required for dentistry go far beyond the academic or scientific spheres. They incorporate important mental readiness concepts at its core with an appropriate balance of operational readiness (i.e., technical, physical, mental readiness). The aim of this exploratory study was to investigate the importance of mental readiness for optimal performance in the daily challenges faced by dentists using an Operational Readiness Framework. One-on-one interviews were conducted with a select group of seasoned dentists to determine their mental readiness before, during and after successfully performing in challenging situations. Quantitative and qualitative analyses of mental readiness were applied. Study findings were compared with a Wheel of Excellence based on results from other high-performance domains such as surgery, policing, social services and Olympic athletics. The analysis revealed that specific mental practices are required to achieve peak performance, and the balance between physical, technical and mental readiness underpins these dentists' competency. Common elements of success were found-commitment, confidence, visualization, mental preparation, focus, distraction control, and evaluation and coping. This exploration confirmed many similarities in mental readiness practices engaged across high-risk professions. Universities, clinics and hospitals are looking for innovative ways to build teamwork and capacity through inter-professional collaboration. Results from these case studies warrant further investigation and may be significant enough to stimulate innovative curriculum design. Based on these preliminary dentistry findings, three training/evaluation tools from other professions in population health were adapted to demonstrate future application.
Collapse
|
33
|
Valdiviezo A, Luo YS, Chen Z, Chiu WA, Rusyn I. Quantitative in Vitro-to-in Vivo Extrapolation for Mixtures: A Case Study of Superfund Priority List Pesticides. Toxicol Sci 2021; 183:60-69. [PMID: 34142158 DOI: 10.1093/toxsci/kfab076] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In vitro cell-based toxicity testing methods generate large amounts of data informative for risk-based evaluations. To allow extrapolation of the quantitative outputs from cell-based tests to the equivalent exposure levels in humans, reverse toxicokinetic (RTK) modeling is used to conduct in vitro-to-in vivo extrapolation (IVIVE) from in vitro effective concentrations to in vivo oral dose equivalents. IVIVE modeling approaches for individual chemicals are well-established; however, the potential implications of chemical-to-chemical interactions in mixture settings on IVIVE remains largely unexplored. We hypothesized that chemical co-exposures could modulate both protein binding efficiency and hepatocyte clearance of the chemicals in a mixture, which would in turn affect the quantitative IVIVE toxicokinetic parameters. To test this hypothesis, we used 20 pesticides from the Agency for Toxic Substances and Disease Registry (ATSDR) Substance Priority List, both individually and as equimolar mixtures, and investigated the concentration-dependent effects of chemical interactions on in vitro toxicokinetic parameters. Plasma protein binding efficiency was determined by using ultracentrifugation, and hepatocyte clearance was estimated in suspensions of cryopreserved primary human hepatocytes. We found that for single chemicals, the protein binding efficiencies were similar at different test concentrations. In a mixture, however, both protein binding efficiency and hepatocyte clearance were affected. When IVIVE was conducted using mixture-derived toxicokinetic data, more conservative estimates of Activity-to-Exposure Ratios (AERs) were produced as compared to using data from single chemical experiments. Because humans are exposed to mixtures of chemicals, this study is significant as it demonstrates the importance of incorporating mixture-derived parameters into IVIVE for in vitro bioactivity data in order to accurately prioritize risks and facilitate science-based decision-making.
Collapse
Affiliation(s)
- Alan Valdiviezo
- Interdisciplinary Faculty of Toxicology and Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843
| | - Yu-Syuan Luo
- Interdisciplinary Faculty of Toxicology and Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843
| | - Zunwei Chen
- Interdisciplinary Faculty of Toxicology and Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843
| | - Weihsueh A Chiu
- Interdisciplinary Faculty of Toxicology and Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843
| | - Ivan Rusyn
- Interdisciplinary Faculty of Toxicology and Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843
| |
Collapse
|
34
|
Anastas PT, Zimmerman JB. Moving from Protection to Prosperity: Evolving the U.S. Environmental Protection Agency for the next 50 years. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:2779-2789. [PMID: 33586973 DOI: 10.1021/acs.est.0c07287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The people of the United States and the world owe the United States Environmental Protection Agency (U.S. EPA) a debt of gratitude for preserving, protecting, and defending human health and the environment for the past half century. As we celebrate the 50th anniversary of the founding of the U.S. EPA, there are two truths about the agency that are difficult to deny: (1) U.S. EPA and its people constitute a renowned agency that has greatly improved both environmental and public health in the United States, and has served as the leading model for nations around the world; and (2) the approaches, tools, structures, and legal frameworks that created the achievements of the U.S. EPA must evolve-and grow-to deal with the issues facing the country and the planet in the next 50 years. Building on the creativity, innovation, and brilliance of individuals and groups working at the U.S. EPA over the course of the last half century, we present 10 recommendations organized in three areas: organization, paradigms, and strategies and tools. Underlying these recommendations are the frameworks of sustainability and systems thinking and guiding these recommendations is the goal of evolving the Environmental Protection Agency to the Environmental Prosperity Agency.
Collapse
|
35
|
Lübbeke A, Smith JA, Prieto-Alhambra D, Carr AJ. The case for an academic discipline of medical device science. EFORT Open Rev 2021; 6:160-163. [PMID: 33841914 PMCID: PMC8025702 DOI: 10.1302/2058-5241.6.200094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Medical devices are a very important but largely under-recognized and fragmented component of healthcare.The limited regulation of the past and the lack of systematic rigorous evaluation of devices leading to numerous high-profile failures will now be replaced by stricter legal requirements and more transparent evaluation processes.This constitutes an unprecedented opportunity, but it also uncovers urgent needs in landscaping, methodology development, and independent comprehensive assessment of device risks and benefits for individual patients and society, especially in the context of increasingly complex devices.We argue that an academic discipline of 'medical device science' is well placed to lead and coordinate the efforts necessary to achieve much needed improvement in the medical device sector.Orthopaedics and traumatology could contribute and benefit considerably as one of the medical specialties with the highest use of medical devices. Cite this article: EFORT Open Rev 2021;6:160-163. DOI: 10.1302/2058-5241.6.200094.
Collapse
Affiliation(s)
- Anne Lübbeke
- Division of Orthopaedic Surgery and Traumatology, Geneva University Hospitals and University of Geneva, Switzerland.,Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - James A Smith
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK.,National Institute for Health Research Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| | - Daniel Prieto-Alhambra
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Andrew J Carr
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK.,National Institute for Health Research Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
36
|
Li X, Ni M, Yang Z, Chen X, Zhang L, Chen J. Bioinformatics analysis and quantitative weight of evidence assessment to map the potential mode of actions of bisphenol A. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 273:116469. [PMID: 33460868 DOI: 10.1016/j.envpol.2021.116469] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/03/2021] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Bisphenol A (BPA) is a classical chemical contaminant in food, and the mode of action (MOA) of BPA remains unclear, constraining the progress of risk assessment. This study aims to assess the potential MOAs of BPA regarding reproductive/developmental toxicity, neurological toxicity, and proliferative effects on the mammary gland and the prostate potentially related to carcinogenesis by using the Comparative Toxicogenomics Database (CTD)-based bioinformatics analysis and the quantitative weight of evidence (QWOE) approach on the basis of the principles of Toxicity Testing in the 21st Century. The CTD-based bioinformatics analysis results showed that estrogen receptor 1, estrogen receptor 2, mitogen-activated protein kinase (MAPK) 1, MAPK3, BCL2 apoptosis regulator, caspase 3, BAX, androgen receptor, and AKT serine/threonine kinase 1 could be the common target genes, and the apoptotic process, cell proliferation, testosterone biosynthetic process, and estrogen biosynthetic process might be the shared phenotypes for different target organs. In addition, the KEGG pathways of the BPA-induced action might involve the estrogen signaling pathway and pathways in cancer. After the QWOE evaluation, two potential estrogen receptor-related MOAs of BPA-induced testis dysfunction and learning-memory deficit were proposed. However, the confidence and the human relevance of the two MOAs were moderate, prompting studies to improve the MOA-based risk assessment of BPA.
Collapse
Affiliation(s)
- Xiaomeng Li
- West China School of Public Health/West China Fourth Hospital and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Mengmei Ni
- West China School of Public Health/West China Fourth Hospital and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Zhirui Yang
- West China School of Public Health/West China Fourth Hospital and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Xuxi Chen
- West China School of Public Health/West China Fourth Hospital and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Lishi Zhang
- West China School of Public Health/West China Fourth Hospital and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Jinyao Chen
- West China School of Public Health/West China Fourth Hospital and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China.
| |
Collapse
|
37
|
Moné MJ, Pallocca G, Escher SE, Exner T, Herzler M, Bennekou SH, Kamp H, Kroese ED, Leist M, Steger-Hartmann T, van de Water B. Setting the stage for next-generation risk assessment with non-animal approaches: the EU-ToxRisk project experience. Arch Toxicol 2020; 94:3581-3592. [PMID: 32886186 PMCID: PMC7502065 DOI: 10.1007/s00204-020-02866-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 08/12/2020] [Indexed: 01/22/2023]
Abstract
In 2016, the European Commission launched the EU-ToxRisk research project to develop and promote animal-free approaches in toxicology. The 36 partners of this consortium used in vitro and in silico methods in the context of case studies (CSs). These CSs included both compounds with a highly defined target (e.g. mitochondrial respiratory chain inhibitors) as well as compounds with poorly defined molecular initiation events (e.g. short-chain branched carboxylic acids). The initial project focus was on developing a science-based strategy for read-across (RAx) as an animal-free approach in chemical risk assessment. Moreover, seamless incorporation of new approach method (NAM) data into this process (= NAM-enhanced RAx) was explored. Here, the EU-ToxRisk consortium has collated its scientific and regulatory learnings from this particular project objective. For all CSs, a mechanistic hypothesis (in the form of an adverse outcome pathway) guided the safety evaluation. ADME data were generated from NAMs and used for comprehensive physiological-based kinetic modelling. Quality assurance and data management were optimized in parallel. Scientific and Regulatory Advisory Boards played a vital role in assessing the practical applicability of the new approaches. In a next step, external stakeholders evaluated the usefulness of NAMs in the context of RAx CSs for regulatory acceptance. For instance, the CSs were included in the OECD CS portfolio for the Integrated Approach to Testing and Assessment project. Feedback from regulators and other stakeholders was collected at several stages. Future chemical safety science projects can draw from this experience to implement systems toxicology-guided, animal-free next-generation risk assessment.
Collapse
Affiliation(s)
- M J Moné
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - G Pallocca
- CAAT-Europe at the University of Konstanz, Constance, Germany
| | - S E Escher
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - T Exner
- Edelweiss Connect GmbH, Basel, Switzerland
| | - M Herzler
- German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | | | - H Kamp
- BASF SE, Ludwigshafen, Germany
| | - E D Kroese
- TNO Innovation for Life, Utrecht, The Netherlands
| | - Marcel Leist
- CAAT-Europe at the University of Konstanz, Constance, Germany.
- In Vitro Toxicology and Biomedicine, Department Inaugurated By the Doerenkamp-Zbinden Foundation at the University of Konstanz, University of Konstanz, 78457, Constance, Germany.
| | - T Steger-Hartmann
- Investigational Toxicology, Bayer AG, Pharmaceuticals, Berlin, Germany
| | - B van de Water
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
38
|
Ecotoxicological QSARs of Personal Care Products and Biocides. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2020. [DOI: 10.1007/978-1-0716-0150-1_16] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
39
|
Krewski D, Andersen ME, Tyshenko MG, Krishnan K, Hartung T, Boekelheide K, Wambaugh JF, Jones D, Whelan M, Thomas R, Yauk C, Barton-Maclaren T, Cote I. Toxicity testing in the 21st century: progress in the past decade and future perspectives. Arch Toxicol 2019; 94:1-58. [DOI: 10.1007/s00204-019-02613-4] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 11/05/2019] [Indexed: 12/19/2022]
|
40
|
Finding synergies for the 3Rs – Repeated Dose Toxicity testing: Report from an EPAA Partners' Forum. Regul Toxicol Pharmacol 2019; 108:104470. [DOI: 10.1016/j.yrtph.2019.104470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/30/2019] [Accepted: 08/30/2019] [Indexed: 11/21/2022]
|
41
|
Krewski D, Bird M, Al-Zoughool M, Birkett N, Billard M, Milton B, Rice JM, Grosse Y, Cogliano VJ, Hill MA, Baan RA, Little J, Zielinski JM. Key characteristics of 86 agents known to cause cancer in humans. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2019; 22:244-263. [PMID: 31637961 DOI: 10.1080/10937404.2019.1643536] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Since the inception of the International Agency for Research on Cancer (IARC) in the early 1970s, the IARC Monographs Programme has evaluated more than 1000 agents with respect to carcinogenic hazard; of these, up to and including Volume 119 of the IARC Monographs, 120 agents met the criteria for classification as carcinogenic to humans (Group 1). Volume 100 of the IARC Monographs provided a review and update of Group 1 carcinogens. These agents were divided into six broad categories: (I) pharmaceuticals; (II) biological agents; (III) arsenic, metals, fibers, and dusts; (IV) radiation; (V) personal habits and indoor combustions; and (VI) chemical agents and related occupations. Data on biological mechanisms of action (MOA) were extracted from the Monographs to assemble a database on the basis of ten key characteristics attributed to human carcinogens. After some grouping of similar agents, the characteristic profiles were examined for 86 Group 1 agents for which mechanistic information was available in the IARC Monographs up to and including Volume 106, based upon data derived from human in vivo, human in vitro, animal in vivo, and animal in vitro studies. The most prevalent key characteristic was "is genotoxic", followed by "alters cell proliferation, cell death, or nutrient supply" and "induces oxidative stress". Most agents exhibited several of the ten key characteristics, with an average of four characteristics per agent, a finding consistent with the notion that cancer development in humans involves multiple pathways. Information on the key characteristics was often available from multiple sources, with many agents demonstrating concordance between human and animal sources, particularly with respect to genotoxicity. Although a detailed comparison of the characteristics of different types of agents was not attempted here, the overall characteristic profiles for pharmaceutical agents and for chemical agents and related occupations appeared similar. Further in-depth analyses of this rich database of characteristics of human carcinogens are expected to provide additional insights into the MOA of human cancer development.
Collapse
Affiliation(s)
- Daniel Krewski
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Risk Sciences International, Ottawa, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| | - Michael Bird
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Mustafa Al-Zoughool
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Department of Community and Environmental Health, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Nicholas Birkett
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| | - Mélissa Billard
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Jerry M Rice
- Department of Oncology, Georgetown University Medical Center, Georgetown University, Washington, DC, USA
| | - Yann Grosse
- IARC Monographs Programme, International Agency for Research on Cancer, Lyon, France
| | - Vincent J Cogliano
- National Center for Environmental Assessment, U.S. Environmental Protection Agency, Washington, DC, USA
| | - Mark A Hill
- Department of Oncology, University of Oxford, Oxford, UK
| | - Robert A Baan
- International Agency for Research on Cancer (retired), Lyon, France
| | - Julian Little
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| | - Jan M Zielinski
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
42
|
Kosnik MB, Reif DM. Determination of chemical-disease risk values to prioritize connections between environmental factors, genetic variants, and human diseases. Toxicol Appl Pharmacol 2019; 379:114674. [PMID: 31323264 PMCID: PMC6708494 DOI: 10.1016/j.taap.2019.114674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/05/2019] [Accepted: 07/15/2019] [Indexed: 12/18/2022]
Abstract
Traditional methods for chemical risk assessment are too time-consuming and resource-intensive to characterize either the diversity of chemicals to which humans are exposed or how that diversity may manifest in population susceptibility differences. The advent of novel toxicological data sources and their integration with bioinformatic databases affords opportunities for modern approaches that consider gene-environment (GxE) interactions in population risk assessment. Here, we present an approach that systematically links multiple data sources to relate chemical risk values to diseases and gene-disease variants. These data sources include high-throughput screening (HTS) results from Tox21/ToxCast, chemical-disease relationships from the Comparative Toxicogenomics Database (CTD), hazard data from resources like the Integrated Risk Information System, exposure data from the ExpoCast initiative, and gene-variant-disease information from the DisGeNET database. We use these integrated data to identify variants implicated in chemical-disease enrichments and develop a new value that estimates the risk of these associations toward differential population responses. Finally, we use this value to prioritize chemical-disease associations by exploring the genomic distribution of variants implicated in high-risk diseases. We offer this modular approach, termed DisQGOS (Disease Quotient Genetic Overview Score), for relating overall chemical-disease risk to potential for population variable responses, as a complement to methods aiming to modernize aspects of risk assessment.
Collapse
Affiliation(s)
- Marissa B Kosnik
- Toxicology Program, North Carolina State University, Raleigh, NC 27695-7617, United States of America; Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695-7617, United States of America; Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7617, United States of America.
| | - David M Reif
- Toxicology Program, North Carolina State University, Raleigh, NC 27695-7617, United States of America; Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695-7617, United States of America; Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7617, United States of America; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695-7617, United States of America.
| |
Collapse
|
43
|
Abstract
Quantitative in vitro to in vivo extrapolation (QIVIVE) is broadly considered a prerequisite bridge from in vitro findings to a dose paradigm. Quality and relevance of cell systems are the first prerequisite for QIVIVE. Information-rich and mechanistic endpoints (biomarkers) improve extrapolations, but a sophisticated endpoint does not make a bad cell model a good one. The next need is reverse toxicokinetics (TK), which estimates the dose necessary to reach a tissue concentration that is active in vitro. The Johns Hopkins Center for Alternatives to Animal Testing (CAAT) has created a roadmap for animal-free systemic toxicity testing, in which the needs and opportunities for TK are elaborated, in the context of different systemic toxicities. The report was discussed at two stakeholder forums in Brussels in 2012 and in Washington in 2013; the key recommendations are summarized herein. Contrary to common belief and the Paracelsus paradigm of everything is toxic, the majority of industrial chemicals do not exhibit toxicity. Strengthening the credibility of negative results of alternative approaches for hazard identification, therefore, avoids the need for QIVIVE. Here, especially the combination of methods in integrated testing strategies is most promising. Two further but very different approaches aim to overcome the problem of modeling in vivo complexity: The human-on-a-chip movement aims to reproduce large parts of living organism's complexity via microphysiological systems, that is, organ equivalents combined by microfluidics. At the same time, the Toxicity Testing in the 21st Century (Tox-21c) movement aims for mechanistic approaches (adverse outcome pathways as promoted by Organisation for Economic Co-operation and Development (OECD) or pathways of toxicity in the Human Toxome Project) for high-throughput screening, biological phenotyping, and ultimately a systems toxicology approach through integration with computer modeling. These 21st century approaches also require 21st century validation, for example, by evidence-based toxicology. Ultimately, QIVIVE is a prerequisite for extrapolating Tox-21c such approaches to human risk assessment.
Collapse
Affiliation(s)
- Thomas Hartung
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD.,University of Konstanz, Konstanz, Germany
| |
Collapse
|
44
|
Haddad N, Johnson N, Kathariou S, Métris A, Phister T, Pielaat A, Tassou C, Wells-Bennik MH, Zwietering MH. Next generation microbiological risk assessment—Potential of omics data for hazard characterisation. Int J Food Microbiol 2018; 287:28-39. [DOI: 10.1016/j.ijfoodmicro.2018.04.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 03/31/2018] [Accepted: 04/10/2018] [Indexed: 12/18/2022]
|
45
|
Guan Y, Shao C, Kang L, Li X, Ju M. Analysis of soil risk characteristics by comprehensive assessment in an industrial area of China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:32257-32268. [PMID: 30225692 DOI: 10.1007/s11356-018-3176-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/06/2018] [Indexed: 06/08/2023]
Abstract
Soil pollution in industrial areas poses a major challenge for China's environmental protection. In this study, comprehensive assessment methodologies for soil risk in industrial areas were developed. The comprehensive assessment covered ecological and human health risks of soil pollution, as well as vulnerability of different types of risk receptors. Comprehensive ecological risk assessment integrated potential ecological risk assessment and landscape vulnerability assessment. Comprehensive social risk assessment specialized human health risk assessment by introducing spatial distribution of population. A typical industrial area in China was studied, and the quantitative and spatial assessments of the comprehensive soil risk were presented. The results showed that the spatial distribution of soil comprehensive ecological and social risks differed. High-risk areas of soil comprehensive ecological risk in the study area were mainly farmlands and nature reserves. Inhabited areas and industrial zones were less affected by comprehensive ecological risk of soil. By contrast, the spatial distribution of soil comprehensive social risk and human activities showed a clear trend of convergence. Vulnerability assessment of the risk receptors provided a suitable complement to the risk assessment of soil pollution.
Collapse
Affiliation(s)
- Yang Guan
- Chinese Academy for Environmental Planning, Beijing, 100012, China
- College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Chaofeng Shao
- College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, China.
| | - Lei Kang
- Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Xin Li
- Chinese Academy for Environmental Planning, Beijing, 100012, China
| | - Meiting Ju
- College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| |
Collapse
|
46
|
Buse CG, Lai V, Cornish K, Parkes MW. Towards environmental health equity in health impact assessment: innovations and opportunities. Int J Public Health 2018; 64:15-26. [PMID: 29911285 DOI: 10.1007/s00038-018-1135-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 06/05/2018] [Accepted: 06/07/2018] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES As global environmental change drives inequitable health outcomes, novel health equity assessment methodologies are increasingly required. We review literatures on equity-focused HIA to clarify how equity is informing HIA practice, and to surface innovations for assessing health equity in relation to a range of exposures across geographic and temporal scales. METHODS A narrative review of the health equity and HIA literatures analysed English articles published between 2003 and 2017 across PubMed, PubMed Central, Biomed Central and Ovid Medline. Title and abstract reviews of 849 search results yielded 89 articles receiving full text review. RESULTS Considerations of equity in HIA increased over the last 5 years, but equity continues to be conflated with health disparities rather than their root causes (i.e. inequities). Lessons from six literatures to inform future HIA practice are described: HIA for healthy cities, climate change vulnerability assessment, cumulative health risk assessment, intersectionality-based policy analysis, corporate health impact assessment and global health impact assessment. CONCLUSIONS Academic reporting on incorporating equity in HIA practice has been limited. Nonetheless, significant methodological advancements are being made to examine the health equity implications of multiple environmental exposures.
Collapse
Affiliation(s)
- Chris G Buse
- School of Health Sciences, University of Northern British Columbia, Prince George, BC, Canada.
| | - Valerie Lai
- Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Katie Cornish
- School of Health Sciences, University of Northern British Columbia, Prince George, BC, Canada
| | - Margot W Parkes
- School of Health Sciences, University of Northern British Columbia, Prince George, BC, Canada
| |
Collapse
|
47
|
Dean JL, Zhao QJ, Lambert JC, Hawkins BS, Thomas RS, Wesselkamper SC. Editor's Highlight: Application of Gene Set Enrichment Analysis for Identification of Chemically Induced, Biologically Relevant Transcriptomic Networks and Potential Utilization in Human Health Risk Assessment. Toxicol Sci 2018; 157:85-99. [PMID: 28123101 DOI: 10.1093/toxsci/kfx021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The rate of new chemical development in commerce combined with a paucity of toxicity data for legacy chemicals presents a unique challenge for human health risk assessment. There is a clear need to develop new technologies and incorporate novel data streams to more efficiently inform derivation of toxicity values. One avenue of exploitation lies in the field of transcriptomics and the application of gene expression analysis to characterize biological responses to chemical exposures. In this context, gene set enrichment analysis (GSEA) was employed to evaluate tissue-specific, dose-response gene expression data generated following exposure to multiple chemicals for various durations. Patterns of transcriptional enrichment were evident across time and with increasing dose, and coordinated enrichment plausibly linked to the etiology of the biological responses was observed. GSEA was able to capture both transient and sustained transcriptional enrichment events facilitating differentiation between adaptive versus longer term molecular responses. When combined with benchmark dose (BMD) modeling of gene expression data from key drivers of biological enrichment, GSEA facilitated characterization of dose ranges required for enrichment of biologically relevant molecular signaling pathways, and promoted comparison of the activation dose ranges required for individual pathways. Median transcriptional BMD values were calculated for the most sensitive enriched pathway as well as the overall median BMD value for key gene members of significantly enriched pathways, and both were observed to be good estimates of the most sensitive apical endpoint BMD value. Together, these efforts support the application of GSEA to qualitative and quantitative human health risk assessment.
Collapse
Affiliation(s)
- Jeffry L Dean
- National Center for Environmental Assessment, U.S. Environmental Protection Agency, Cincinnati, Ohio, USA
| | - Q Jay Zhao
- National Center for Environmental Assessment, U.S. Environmental Protection Agency, Cincinnati, Ohio, USA
| | - Jason C Lambert
- National Center for Environmental Assessment, U.S. Environmental Protection Agency, Cincinnati, Ohio, USA
| | - Belinda S Hawkins
- National Center for Environmental Assessment, U.S. Environmental Protection Agency, Cincinnati, Ohio, USA
| | - Russell S Thomas
- National Center for Computational Toxicology, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Scott C Wesselkamper
- National Center for Environmental Assessment, U.S. Environmental Protection Agency, Cincinnati, Ohio, USA
| |
Collapse
|
48
|
Wignall JA, Muratov E, Sedykh A, Guyton KZ, Tropsha A, Rusyn I, Chiu WA. Conditional Toxicity Value (CTV) Predictor: An In Silico Approach for Generating Quantitative Risk Estimates for Chemicals. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:057008. [PMID: 29847084 PMCID: PMC6071978 DOI: 10.1289/ehp2998] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 03/25/2018] [Accepted: 04/16/2018] [Indexed: 05/03/2023]
Abstract
BACKGROUND Human health assessments synthesize human, animal, and mechanistic data to produce toxicity values that are key inputs to risk-based decision making. Traditional assessments are data-, time-, and resource-intensive, and they cannot be developed for most environmental chemicals owing to a lack of appropriate data. OBJECTIVES As recommended by the National Research Council, we propose a solution for predicting toxicity values for data-poor chemicals through development of quantitative structure-activity relationship (QSAR) models. METHODS We used a comprehensive database of chemicals with existing regulatory toxicity values from U.S. federal and state agencies to develop quantitative QSAR models. We compared QSAR-based model predictions to those based on high-throughput screening (HTS) assays. RESULTS QSAR models for noncancer threshold-based values and cancer slope factors had cross-validation-based Q2 of 0.25-0.45, mean model errors of 0.70-1.11 log10 units, and applicability domains covering >80% of environmental chemicals. Toxicity values predicted from QSAR models developed in this study were more accurate and precise than those based on HTS assays or mean-based predictions. A publicly accessible web interface to make predictions for any chemical of interest is available at http://toxvalue.org. CONCLUSIONS An in silico tool that can predict toxicity values with an uncertainty of an order of magnitude or less can be used to quickly and quantitatively assess risks of environmental chemicals when traditional toxicity data or human health assessments are unavailable. This tool can fill a critical gap in the risk assessment and management of data-poor chemicals. https://doi.org/10.1289/EHP2998.
Collapse
Affiliation(s)
| | - Eugene Muratov
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Alexander Sedykh
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kathryn Z Guyton
- Monographs Section, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Alexander Tropsha
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Weihsueh A Chiu
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
49
|
Gobas FA, Mayer P, Parkerton TF, Burgess RM, van de Meent D, Gouin T. A chemical activity approach to exposure and risk assessment of chemicals: Focus articles are part of a regular series intended to sharpen understanding of current and emerging topics of interest to the scientific community. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:1235-1251. [PMID: 29697868 PMCID: PMC5994922 DOI: 10.1002/etc.4091] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/16/2017] [Accepted: 01/11/2018] [Indexed: 05/29/2023]
Abstract
To support the goals articulated in the vision for exposure and risk assessment in the twenty-first century, we highlight the application of a thermodynamic chemical activity approach for the exposure and risk assessment of chemicals in the environment. The present article describes the chemical activity approach, its strengths and limitations, and provides examples of how this concept may be applied to the management of single chemicals and chemical mixtures. The examples demonstrate that the chemical activity approach provides a useful framework for 1) compiling and evaluating exposure and toxicity information obtained from many different sources, 2) expressing the toxicity of single and multiple chemicals, 3) conducting hazard and risk assessments of single and multiple chemicals, 4) identifying environmental exposure pathways, and 5) reducing error and characterizing uncertainty in risk assessment. The article further illustrates that the chemical activity approach can support an adaptive management strategy for environmental stewardship of chemicals where "safe" chemical activities are established based on toxicological studies and presented as guidelines for environmental quality in various environmental media that can be monitored by passive sampling and other techniques. Environ Toxicol Chem 2018;37:1235-1251. © 2018 The Authors. Published by Wiley Periodicals, Inc. on behalf of SETAC.
Collapse
Affiliation(s)
- Frank A.P.C. Gobas
- Resource and Environmental Management, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Philipp Mayer
- DTU Environment, Department of Environmental Engineering, Technical University of Denmark, Lyngby, Denmark
| | - Thomas F. Parkerton
- Toxicology & Environmental Science Division, ExxonMobil Biomedical Sciences, Houston, Texas, USA
| | - Robert M. Burgess
- US Environmental Protection Agency, ORD/NHEERL, Atlantic Ecology Division, Narragansett, Rhode Island
| | - Dik van de Meent
- Department of Environmental Science, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Todd Gouin
- TG Environmental Research, Sharnbrook, Bedfordshire, United Kingdom
| |
Collapse
|
50
|
Leveraging human genetic and adverse outcome pathway (AOP) data to inform susceptibility in human health risk assessment. Mamm Genome 2018; 29:190-204. [DOI: 10.1007/s00335-018-9738-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/31/2018] [Indexed: 12/19/2022]
|