1
|
Yu Z, Shao Y, Zhang Y, Cheng F, Fang P, Tu J, Song X, Qi K, Wang Z. LAMP Assay Coupled with a Pyrococcus furiosus Argonaute System for the Rapid Detection of Porcine Epidemic Diarrhea Virus. ACS Synth Biol 2025; 14:689-698. [PMID: 39964196 DOI: 10.1021/acssynbio.4c00446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Porcine epidemic diarrhea virus (PEDV) infection can lead to serious acute intestinal infectious disease, bringing huge economic losses to the pig industry. In addition to triggering an extremely high mortality rate for lactating piglets, there is currently a lack of effective treatments and vaccines. Therefore, rapid, accurate, sensitive, and specific detection of PEDV is critical for timely control. In this study, a nucleic acid detection method combining reverse transcription loop-mediated isothermal amplification (RT-LAMP) and Pyrococcus furiosus Argonaute (PfAgo) was established for the detection of PEDV and performed after optimizing the system (mainly for the design and screening of the LAMP primers and PfAgo gDNA). The optimized system had a detection limit as low as 2.4 copies/μL. To reach more timely on-site detection of PEDV and overcome the reliance on bulky and complex equipment, a lateral flow strip was introduced into the system, which could detect the target as low as 24 copies/μL. This RT-LAMP-PfAgo system took about 35 min to react, and the results could be observed and clarified with the naked eyes. Moreover, the method was highly specific and had no cross-reactivity with other swine pathogens. The detection results for the clinical samples were consistent with those obtained by the gold standard method, reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR), proving its applicability. In conclusion, the established RT-LAMP-PfAgo system can provide a new solution for the development of a portable, visual PEDV testing platform.
Collapse
Affiliation(s)
- Zhaorong Yu
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Ying Shao
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Yu Zhang
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Fanyu Cheng
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Peng Fang
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Jian Tu
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Xiangjun Song
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Kezong Qi
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Zhenyu Wang
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| |
Collapse
|
2
|
Li Z, Huang Y, Zhang Y, Zhao D, Wang L, Wang Z, Hu Q, Yang L, Wu T, Hou Y. Chebulinic acid suppresses porcine epidemic diarrhea virus infection by inhibiting viral entry and viral main protease. Front Cell Infect Microbiol 2025; 15:1531415. [PMID: 40171162 PMCID: PMC11958964 DOI: 10.3389/fcimb.2025.1531415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/18/2025] [Indexed: 04/03/2025] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) has resulted in significant economic losses in the global swine industry, making the development of effective therapeutic approaches a pressing need. In this study, we found that chebulinic acid significantly restrained PEDV replication in CCL-81 and LLC-PK1 cells, demonstrated by reductions in viral genome, viral protein, and titer. Molecular docking analysis made it clear that chebulinic acid might bind the key amino acids of binding pocket and the active center of PEDV main protease. Subsequent in vitro experiments confirmed the inhibitory effects of chebulinic acid on PEDV main protease, with an IC50 value of 61.53 ± 2.12 μM determined through a fluorescence resonance energy transfer (FRET) assay. Additional investigations demonstrated that chebulinic acid could inhibit the attachment and penetration processes of PEDV infection. Overall, our results provide experimental evidence supporting the inhibitory effects of chebulinic acid on PEDV infection by targeting viral entry and the inhibitory effects on main protease. The results of this study offer potential for creating new treatments for porcine epidemic diarrhea.
Collapse
Affiliation(s)
- Zhonghua Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Yizhi Huang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
- Hubei Horwath Biotechnology Co., Ltd., Xianning, China
| | - Yi Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Di Zhao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Lei Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Zhanchang Wang
- Forestry and Fruit Tree Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Qunbing Hu
- Hubei Horwath Biotechnology Co., Ltd., Xianning, China
| | - Ling Yang
- Hubei Horwath Biotechnology Co., Ltd., Xianning, China
| | - Tao Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Yongqing Hou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
3
|
Jian Y, Dong S, Zhang Q, Pan J, Hu R, Ding Z, Wu H, Ke S, Chen Z. In vitro inhibitory activity of indole alkaloid derivatives against porcine epidemic diarrhea virus. Arch Virol 2025; 170:67. [PMID: 40053140 DOI: 10.1007/s00705-025-06251-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 12/08/2024] [Indexed: 03/29/2025]
Abstract
Porcine epidemic diarrhea virus (PEDV) is an enteric coronavirus that can cause acute diarrhea, vomiting, dehydration, and high mortality of newborn piglets, leading to huge economic losses to the world pig industry. Given the limited efficacy of current PEDV vaccines, there is an urgent need for the development of antiviral drugs. In this study, the antiviral effects of 17 synthesized indole alkaloid derivatives against PEDV were investigated. It was observed that indole alkaloid derivative no. 14 exhibited significant inhibition of PEDV replication in a dose-dependent manner. Furthermore, time-of-addition assays and quantitative real-time PCR (QPCR) showed that delayed administration of this compound resulted in a weaker inhibitory effect on PEDV compared to early treatment. Mechanistic analysis revealed that this compound exerts its inhibitory effects during the entry stage of the PEDV life cycle. This study demonstrates the anti-PEDV effects of indole alkaloid derivative no. 14, suggesting its potential as a candidate drug for treating PEDV infections.
Collapse
Affiliation(s)
- Yaoying Jian
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Siqi Dong
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Qianyi Zhang
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jiali Pan
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Ruiming Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zhen Ding
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Huansheng Wu
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Shaoyong Ke
- Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China.
| | - Zheng Chen
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
4
|
Yu R, Zhang L, Wang D, Yang J, Zhou P, Wen Y, Li M, Bai Y, Zhang Z, Peng Y, Lu Y, Li D, He J, Wang Y, Guo H, Pan L, Liu X. Characterization of a cell-adapted completely attenuated genotype GIIa porcine epidemic diarrhea virus strain. Virology 2025; 604:110407. [PMID: 39862751 DOI: 10.1016/j.virol.2025.110407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/02/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025]
Abstract
Porcine epidemic diarrhea virus (PEDV) has caused significant harm to the global pig industry since its discovery. In this study, a highly pathogenic strain of GIIa PEDV CH/HBXT/2018, isolated previously, was continuously passaged in Vero cells up to passage (P)240, resulting in a completely attenuated virus. The proliferation characteristics of different passages of the strain in Vero cells, pathogenicity in newborn piglets, and mutations in S gene sequence indicated that as the passage number increased, the replication efficiency of PEDV in Vero cells gradually improved, with a more pronounced cytopathic effect. However, its pathogenicity in piglets decreased progressively, evident as reduced viral loads in the feces and intestinal tissues, less-severe clinical symptoms, less-severe histopathological damage, and lower antigen expression in intestinal tissues. At P240, the strain was completely attenuated. A sequence analysis revealed 17 amino acid mutations in the structural spike protein, which may have contributed to the biological changes observed at P240. Furthermore, compared with P10, the strain's dependence on trypsin had decreased significantly at P200. A differential transcriptomic analysis revealed 1712 differentially expressed genes (DEGs) between the P10 and P200 infection groups, of which 458 were upregulated and 1254 downregulated. These DEGs were primarily involved in signaling pathways such as cytokine-cytokine receptor interaction, inflammatory response, and MHC protein complex. Our findings provide valuable insights into the mechanisms of PEDV attenuation and should facilitate the development of live vaccines.
Collapse
Affiliation(s)
- Ruiming Yu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China; College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Liping Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China.
| | - Dongsheng Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China.
| | - Jun Yang
- Hunan Institute of Animal and Veterinary Science, Changsha, 410131, China.
| | - Peng Zhou
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China.
| | - Yuhan Wen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China.
| | - Mingxia Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China.
| | - Yingjie Bai
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China.
| | - Zhongwang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China.
| | - Yousheng Peng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China.
| | - Yanzhen Lu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China.
| | - Dan Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China.
| | - Jian He
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China.
| | - Yonglu Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China.
| | - Huichen Guo
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China.
| | - Li Pan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China.
| | - Xinsheng Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China.
| |
Collapse
|
5
|
Xu M, Yang Z, Yang N, Li H, Ma H, Yi J, Hou H, Han F, Ma Z, Chen C. Development and Immunogenicity Study of Subunit Vaccines Based on Spike Proteins of Porcine Epidemic Diarrhea Virus and Porcine Transmissible Gastroenteritis Virus. Vet Sci 2025; 12:106. [PMID: 40005866 PMCID: PMC11860644 DOI: 10.3390/vetsci12020106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/15/2025] [Accepted: 01/26/2025] [Indexed: 02/27/2025] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) and transmissible gastroenteritis virus (TGEV) are responsible for significant economic losses in the swine industry. The S1 proteins of these viruses serve as key targets for vaccine development. In this study, prokaryotic expression vectors for pCZN1-PEDV S1, pCZN1-TGEV S1, and pCZN1-PEDV S1-TGEV S1 were constructed. The corresponding proteins were expressed, purified, and used to prepare monovalent, bivalent, and mixed (PEDV S1 + TGEV S1) vaccines. Kunming (KM) mice were immunized with subunit vaccines, with PBS as the negative control (NC) and a commercial inactivated vaccine as the positive control (PC). Immune responses, including specific antibody (IgG, IgG1, IgG2a) levels, virus neutralization, and IFN-γ production, were evaluated. All vaccines induced high levels of specific IgG, IgG1, and IgG2a antibodies. At weeks 2 and 8, the PEDV S1 + TGEV S1 vaccine induced significantly higher levels of specific IgG and IgG1 compared to the PC (p < 0.001). The PEDV S1 vaccine also induced significantly higher specific IgG2a levels than the PC at week 4 (p < 0.0001). Virus neutralization assays demonstrated that the subunit vaccines induced neutralizing antibody levels comparable to or exceeding those of the PC. Furthermore, IFN-γ levels were significantly elevated in all vaccinated groups compared to the NC (p < 0.0001), indicating a robust immune response. These results suggest that the subunit vaccines are promising candidates for the safe and effective control of both PEDV and TGEV infections.
Collapse
Affiliation(s)
- Mingguo Xu
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (M.X.); (Z.Y.); (H.L.); (J.Y.); (H.H.)
| | - Zhonglian Yang
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (M.X.); (Z.Y.); (H.L.); (J.Y.); (H.H.)
| | - Ningning Yang
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang 464000, China;
| | - Honghuan Li
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (M.X.); (Z.Y.); (H.L.); (J.Y.); (H.H.)
| | - Hailong Ma
- Department of Biotechnology, Linxia Modern Career Academy, Linxia 731100, China;
| | - Jihai Yi
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (M.X.); (Z.Y.); (H.L.); (J.Y.); (H.H.)
| | - Huilin Hou
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (M.X.); (Z.Y.); (H.L.); (J.Y.); (H.H.)
| | - Fangfang Han
- The College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China;
| | - Zhongchen Ma
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (M.X.); (Z.Y.); (H.L.); (J.Y.); (H.H.)
| | - Chuangfu Chen
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (M.X.); (Z.Y.); (H.L.); (J.Y.); (H.H.)
| |
Collapse
|
6
|
Sun J, Cheng J, Shi D, Xu X, Liu Y, Ying J, Zhao Y, Zheng H, Yan J, Sun D, Song H, Su M. Genetic Epidemiology of Porcine Epidemic Diarrhea Virus Circulating in China From 2010 to 2024: Characterization of Phylogenetic and Genetic Diversity of S1-Based Genes. J Med Virol 2025; 97:e70198. [PMID: 39891595 DOI: 10.1002/jmv.70198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/10/2025] [Accepted: 01/21/2025] [Indexed: 02/03/2025]
Abstract
As a porcine alphacoronavirus, porcine epidemic diarrhea virus (PEDV) frequently undergoes mutations that significantly reduce the effectiveness of current prevention and control strategies, leading to recurrent outbreaks in China. This study investigates the genetic evolution and mutation patterns of the S1 protein to characterize PEDV variation in China. Genetic evolutionary analysis of 804 PEDV S1 genes, including 620 Chinese PEDV strains, revealed that 78.06% of the Chinese PEDV strains belong to the G2a-subgroup, further divided into seven branches (G2a-Clade 1-7), with the predominant strains from 2020 to 2024 being in G2a-Clade 4 (68.00%). From 2021 to 2024, 32 novel substitutions, 25 deletions, and 8 insertions were identified in the S1 protein of Chinese strains compared to those from 2010 to 2011. Notably, complete mutations were observed at amino acid sites N139D, H189Y, L229P, I287M, F345L, A361T, T499I, and A520S. Moreover, protein homology modeling analysis displayed that these deletion-insertion mutations significantly altered the surface structure of the S protein, particularly in the N-terminal domain (NTD) and receptor-binding domain (RBD) regions of S1 protein. The predictive analysis using AlphaFold3 indicated that deletion-insertion mutations in the S1-RBD region notably affected the binding affinity of the S protein to porcine DC-SIGN. These findings enhance our understanding of the genetic evolution of PEDV in China.
Collapse
Affiliation(s)
- Jing Sun
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Jiongze Cheng
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Da Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiangwen Xu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Yijia Liu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Jiale Ying
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Yulin Zhao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Huihua Zheng
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Junfang Yan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Dongbo Sun
- Laboratory for the Prevention and Control of Swine Infectious Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Houhui Song
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Mingjun Su
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
7
|
Zhao Y, Yi W, Yang Q, Li J, Shan Y, Liu F. Development of a Portable Rapid Detection Method for Porcine Epidemic Diarrhea Virus Using Reverse Transcription-Recombinase-Aided Amplification Technology. Animals (Basel) 2025; 15:281. [PMID: 39858281 PMCID: PMC11761192 DOI: 10.3390/ani15020281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) continues to spread globally, causing clinical symptoms in piglets, including watery diarrhea, vomiting, and dehydration. Its exceptionally high morbidity and mortality rate contributes significantly to the economic losses of the swine industry. The continuous genetic mutations of PEDV have compromised the effectiveness of classical strain vaccines. Early detection and accurate diagnosis are therefore crucial for controlling its further spread. Developing a detection method that is user-friendly, highly sensitive, and efficient is crucial for disease control. In this study, a point-of-care rapid detection method for PEDV was successfully established using reverse transcription-recombinase-aided amplification (RT-RAA) technology. This method enables results to be obtained within 20 min of amplification at a constant temperature of 42 °C. It demonstrates high sensitivity, with a detection limit as low as 1 copy/μL, and shows strong specificity, with no cross-reactivity observed with seven other common swine pathogens. When applied to clinical samples, the results were 100% consistent with those obtained by RT-qPCR. This method is distinguished by its portable instrumentation and simple operation, making it particularly suitable for resource-constrained settings.
Collapse
Affiliation(s)
- Yiran Zhao
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education, Single Molecule Biochemistry & Biomedicine Laboratory (Sinmolab), College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Y.Z.); (W.Y.); (Q.Y.); (F.L.)
| | - Weijie Yi
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education, Single Molecule Biochemistry & Biomedicine Laboratory (Sinmolab), College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Y.Z.); (W.Y.); (Q.Y.); (F.L.)
| | - Qicheng Yang
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education, Single Molecule Biochemistry & Biomedicine Laboratory (Sinmolab), College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Y.Z.); (W.Y.); (Q.Y.); (F.L.)
| | - Jiahao Li
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Yanke Shan
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education, Single Molecule Biochemistry & Biomedicine Laboratory (Sinmolab), College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Y.Z.); (W.Y.); (Q.Y.); (F.L.)
| | - Fei Liu
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education, Single Molecule Biochemistry & Biomedicine Laboratory (Sinmolab), College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Y.Z.); (W.Y.); (Q.Y.); (F.L.)
| |
Collapse
|
8
|
Wang S, Hu X, Xiong T, Cao L, Zhang X, Song Z. Isolation of porcine epidemic diarrhea virus strain CHCQ-2023 from Chongqing Province and analysis of S gene recombination. BMC Vet Res 2024; 20:565. [PMID: 39695646 DOI: 10.1186/s12917-024-04390-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND In recent years, the prevalence and incidence of porcine epidemic diarrhea virus (PEDV) infection have been on the rise. The occurrence of multiviral infections and recombination mutations has led to accelerated viral evolution and reduced vaccine efficacy. In the present study, a PEDV strain was isolated from a pig farm (Chongqing Province, China) with an outbreak of porcine diarrhea, and its S gene was found to be recombinant. RESULTS The optimal trypsin concentration for blind passage of PEDV in Vero cells was determined to be 7.5 µg/mL. Following two blind passages of the virus in Vero cells, the virus was unable to adapt to the cells. Therefore, PEDV was blindly passaged in IPEC-J2 cells using the optimal concentration of trypsin (5 µg/mL). Next, a series of characterization experiments were performed. Recombination analyses of the isolates using software revealed that the S gene of strain CHCQ-2023 was derived from the primary parent strain PEDV-1 C and secondary parent strain SQ2014, with recombination occurring at a 3152 bp breakpoint. Furthermore, a specific B-cell antigenic epitope was predicted on the S2 subunit of the S protein. CONCLUSION A PEDV strain was isolated and characterized, and its S gene was characterized. The findings provide a bioinformatic basis for the study of PEDV strain variation due to genetic recombination.
Collapse
Affiliation(s)
- Siying Wang
- College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, China
| | - Xia Hu
- College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, China
| | - Tao Xiong
- Animal Epidemic Prevention and Quarantine Center of Cuiping District, Yibin, 644000, China
| | - Lijing Cao
- Chongqing Rongchang District Vocational Education Centre, Rongchang, Chongqing, 402460, China
| | - Xingcui Zhang
- College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, China.
| | - Zhenhui Song
- College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, China.
| |
Collapse
|
9
|
Su M, Wang Y, Yan J, Xu X, Zheng H, Cheng J, Du X, Liu Y, Ying J, Zhao Y, Wang Z, Duan X, Yang Y, Cheng C, Ye Z, Sun J, Sun D, Song H. Isolation and characterization of a novel S1-gene insertion porcine epidemic diarrhea virus with low pathogenicity in newborn piglets. Virulence 2024; 15:2397512. [PMID: 39282989 PMCID: PMC11407387 DOI: 10.1080/21505594.2024.2397512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/10/2024] [Accepted: 08/13/2024] [Indexed: 09/19/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) causes diarrhea and vomiting in piglets, leading to a mortality rate of 100%. Due to the high frequency of mutation, it is important to monitor the evolution of PEDV and develop potential vaccine candidates. In this study, two PEDV strains (ZJ2022 and ZQ2022) were identified by PCR. These strains were subsequently isolated, and their genome sequences, growth characteristics, and pathogenicity were compared. Phylogenetic and recombination analyses revealed that both strains belonged to GIIa-subgroup, and ZQ2022 was identified as a recombinant strain derived from ZJ2022. Further sequence analysis showed that the ZJ2022 strain had a modified top region of the S1 protein due to a three amino acid insertion (T380_Y380insGGE) in the S1 gene. According to the virus growth curve, ZJ2022 exhibited better cellular adaptation than ZQ2022, with higher viral titers from 8 hpi to 24 hpi. Additionally, ZQ2022 exhibited a high level of pathogenicity, causing severe diarrhea in piglets at 36 hpi and a 100% mortality rate by 96 hpi. In contrast, ZJ2022 showed lower pathogenicity, inducing severe diarrhea in piglets at 60 hpi, with a mortality rate of 60% at 96 hpi and 100% at 120 hpi. In summary, our findings provided evidence of the undergoing mutations in Chinese PEDV strains. Furthermore, the S gene insertion strain ZJ2022 exhibited strong cellular adaptability and low pathogenicity, making it a potential candidate strain for vaccine development.
Collapse
Affiliation(s)
- Mingjun Su
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
- Ningbo Creator Animal Pharmaceutical Co. Ltd, Ningbo, Zhejiang Province, PR China
| | - Yutao Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Junfang Yan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Xiangwen Xu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Huihua Zheng
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Jiongze Cheng
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Xiaoxu Du
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Yijia Liu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Jiale Ying
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Yulin Zhao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Ziqi Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Xing Duan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Yang Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Changyong Cheng
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Zhihui Ye
- Ningbo Creator Animal Pharmaceutical Co. Ltd, Ningbo, Zhejiang Province, PR China
| | - Jing Sun
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Dongbo Sun
- Laboratory for the Prevention and Control of Swine Infectious Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, PR China
| | - Houhui Song
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
10
|
Zhang D, Xie Y, Liao Q, Jiao Z, Liang R, Zhang J, Zhang Y, Tan Y, Wang H, Zhang W, Xiao S, Peng G, Shi Y. Development of a safe and broad-spectrum attenuated PEDV vaccine candidate by S2 subunit replacement. J Virol 2024; 98:e0042924. [PMID: 39404450 PMCID: PMC11575183 DOI: 10.1128/jvi.00429-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/09/2024] [Indexed: 11/20/2024] Open
Abstract
Porcine epidemic diarrhea (PED) has caused serious economic losses to the swine livestock industry. Due to the rapid variation in the PEDV) genome, especially the spike (S) protein, the cross-protection ability of antibodies between different vaccine strains is weakened. Hence, the rapid development of safe, broad-spectrum and highly effective attenuated PEDV vaccine still needs further research. Here, we found that the replacement of the S2 subunit had little effect on S protein immunogenicity. Moreover, the chimeric virus (YN-S2DR13), the S protein of the YN strain was replaced by the DR13 S2 subunit, which lost its trypsin tropism and increased its propagation ability (approximately 1 titer) in Vero cells. Then, the pathogenesis of YN-S2DR13 was evaluated in neonatal piglets. Importantly, quantitative real-time PCR, histopathology, and immunohistochemistry confirmed that the virulence of YN-S2DR13 was significantly reduced compared with that of YN. Immunization with YN-S2DR13 induced neutralizing antibodies against both YN and DR13 in weaned piglets. In vitro passaging data also showed that YN-S2DR13 had good genetic stability. Collectively, these results suggest that YN-S2DR13 has significant advantages as a novel vaccine candidate, including a capacity for viral propagation to high titers with no trypsin requirement and the potential to provide protection against both PEDV G1 and G2 strains infections. Our results also suggests that S2 subunit replacement using reverse genetics can be a rapid strategy for the rational design of live attenuated vaccines for PEDV. IMPORTANCE Emerging highly virulent porcine epidemic diarrhea virus (PEDV) G2 strains has caused substantial economic losses worldwide. Vaccination with a live attenuated vaccine is a promising method to prevent and control PED because it can induce a strong immune response (including T- and B-cell immunity). Previous studies have demonstrated that the S2 subunit of the PEDV spike (S) protein is the determinant of PEDV trypsin independence. Here, we evaluated the pathogenicity, tissue tropism, and immunogenicity of the chimeric virus (YN-S2DR13) via animal experiments. We demonstrated that YN-S2DR13 strain, as a trypsin independent strain, increased intracellular proliferation capacity, significantly reduced virulence, and induced broad-spectrum neutralization protection against PEDV G1 and G2 strains. In vitro passaging data also validated the stability of YN-S2DR13. Our results showed that generating a chimeric PEDV strain that is trypsin-independent by replacing the S2 subunit is a promising approach for designing a live attenuated vaccine for PEDV in the future.
Collapse
Affiliation(s)
- Ding Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yunfei Xie
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Qi Liao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zhe Jiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Rui Liang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Jintao Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yu Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yubei Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Huanbin Wang
- Department of Animal Nutrition and Feed Science College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wanpo Zhang
- Veterinary Pathology Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Guiqing Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yuejun Shi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
11
|
Cheng J, He J, Feng S, Tan L, Bai B, Dong W, Li B, Wen L, Wang A, Yuan X. IFITM1 is a host restriction factor that inhibits porcine epidemic diarrhea virus infection. J Nanobiotechnology 2024; 22:677. [PMID: 39501328 PMCID: PMC11536902 DOI: 10.1186/s12951-024-02884-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 09/27/2024] [Indexed: 11/09/2024] Open
Abstract
BACKGROUND Porcine epidemic diarrhea virus (PEDV) infection and transmission pose a serious threat to the global swine industry. The search for a new host factor with anti-PEDV effect may be an effective potential target for the development of novel antiviral drugs. Interferon-induced transmembrane proteins (IFITMs) play a crucial role in the innate immune response triggered by viral infection, and it has been suggested that IFITMs can block the early stages of viral replication, but the mechanism of action is currently unclear. The current study sheds light on the role of IFITM1 in PEDV infection. Specifically, overexpression of IFITM1 suppresses PEDV proliferation in IPEC-J2 cells, while knockdown of IFITM1 has the opposite effect. Collectively, these findings underscore IFITM1's inhibitory role in PEDV infection, with critical implications for the residues and structural motifs within its CTD. RESULTS The study demonstrates that IFITM1, an interferon-induced transmembrane protein, plays a critical role in the antiviral response against Porcine Epidemic Diarrhea Virus (PEDV). Notably: Overexpression of IFITM1 suppresses PEDV proliferation.IFITM1 co-localizes with PEDV virions in the cytoplasm surrounding the nucleus.Immunocolloidal gold electron microscopy reveals IFITM proteins embedded on the surface of PEDV virions.IFITM1 directly interacts with the N protein of PEDV.C-terminal domain mutations in IFITM1 compromise its inhibitory function against PEDV, with specific amino acid residues playing a pronounced role.These findings enhance our understanding of innate immunity and antiviral defense mechanisms, with potential implications for therapeutic strategies against PEDV infection. CONCLUSIONS The study establishes IFITM1 as a key player in the antiviral response against PEDV. Its inhibitory function, co-localization with virions, and interaction with the N protein provide valuable insights. Notably, the CTD mutations of IFITM1 have a fundamental impact on its modulatory action. These findings contribute to our understanding of innate immunity and antiviral defense mechanisms, with potential implications for therapeutic strategies against PEDV infection.
Collapse
Affiliation(s)
- Jiahao Cheng
- College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, 410128, China
| | - Jiayi He
- College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, 410128, China
| | - Simeng Feng
- College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, 410128, China
| | - Lei Tan
- College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, 410128, China
- College of Animal Science, Yangtze University, Jingzhou, 434100, China
| | - Binghan Bai
- College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, 410128, China
| | - Wei Dong
- College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, 410128, China
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China
| | - Lixin Wen
- College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, 410128, China
- Institute of Yunnan Circular Agricultural Industry, Kunming, 650201, Yunnan, China
- Changsha Green Leaf Bio Technology Co., LTD, Changsha, 410119, Hunan, China
| | - Aibing Wang
- College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, 410128, China
- PCB Biotechnology LLC, Rockville, MD, 20852, USA
| | - Xiaomin Yuan
- College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, 410128, China.
| |
Collapse
|
12
|
He C, Zhang R, Yang L, Xiang B. RETRACTED: Andrographolide inhibits porcine epidemic diarrhea virus by inhibiting the JAK2-STAT3 pathway and promoting apoptosis. Vet Microbiol 2024; 298:110235. [PMID: 39213728 DOI: 10.1016/j.vetmic.2024.110235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/23/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/policies/article-withdrawal). This article has been retracted at the request of the Authors and the Editor-in-Chief. After acceptance of the manuscript, the Authors discovered that the animal experimental control group was infected, which makes the findings presented in the paper invalid. Specifically, they noted that the intestinal villus in pathological tissue sections of the negative group exhibited slight shedding, resembling PEDV infection. Further investigation revealed that the pig farms supplying the experimental animals experienced occasional outbreaks of PEDV infections. The Editor-in-Chief agreed that this article must be retracted and no longer has any confidence in the validity of the data presented in the manuscript.
Collapse
Affiliation(s)
- Cong He
- Guangdong Provincial Biotechnology Research Institute (Guangdong Provincial Laboratory Animals Monitoring Center), Guangzhou, 510663, China
| | - Rongjie Zhang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, China
| | - Liangyu Yang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, China.
| | - Bin Xiang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
13
|
Chen X, Chen X, Qu Q, Lin Y, Chen R, Zhu Y, Lv W, Guo S. Lizhong decoction inhibits porcine epidemic diarrhea virus in vitro and in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118428. [PMID: 38852639 DOI: 10.1016/j.jep.2024.118428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lizhong decoction (LZD) is a frequently utilized traditional Chinese remedy for diarrhea. It is unknown how effective it is as an antiviral against PEDV infection. AIM OF THE STUDY In vitro and in vivo PEDV infection models were used to evaluate the anti-PEDV potential of LZD extract. MATERIALS AND METHODS LC-MS was used for qualitative analysis of LZD. The antiviral effect of LZD against PEDV using flow cytometry (FC), Quantitative real-time polymerase chain reaction (QPCR), immunofluorescence assay (IFA) analysis in Vero and IPEC-J2 cells. Additionally, we measured the survival rate, clinical symptoms, body weights, fecal scores, temperature, histological analysis, and viral load in a model of newborn piglets infected with PEDV in order to assess the antiviral impact of LZD in vivo. RESULTS In total, 648 compounds were identified, including 144 Alkaloids, 128 Terpenoids, etc. LZD effectively suppressed PEDV replication in vitro. According to time of addition experiments, LZD mostly inhibited PEDV during the viral life cycle's replication stages. During PEDV infection, LZD can Significantly decrease the apoptotic rate of IPEC-J2 cells and Vero cells. In comparison to the model group, LZD was able to decrease the viral titers in the infected piglets' intestinal and visceral tissues, ameliorate their intestinal pathology, cause a significant increase in body weight growth and increase the piglet survival rate. CONCLUSION Our findings indicate that the aqueous solution derived from LZD suppressed PEDV replication both in vitro and in vivo, indicating its potential as a candidate for pharmaceutical development.
Collapse
Affiliation(s)
- Xiaoli Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xingyu Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qian Qu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yulin Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Rong Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yongqi Zhu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Weijie Lv
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
| | - Shining Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Guangdong Research Center for Veterinary Traditional Chinese Medicine and Natural Medicine Engineering Technology, Guangzhou, Guangdong, 510642, China.
| |
Collapse
|
14
|
Peng Q, Fu P, Zhou Y, Lang Y, Zhao S, Wen Y, Wang Y, Wu R, Zhao Q, Du S, Cao S, Huang X, Yan Q. Phylogenetic Analysis of Porcine Epidemic Diarrhea Virus (PEDV) during 2020-2022 and Isolation of a Variant Recombinant PEDV Strain. Int J Mol Sci 2024; 25:10878. [PMID: 39456662 PMCID: PMC11507624 DOI: 10.3390/ijms252010878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Porcine epidemic diarrhea (PED) is an acute, highly contagious, and infectious disease caused by porcine epidemic diarrhea virus (PEDV). PEDV can affect pigs of all ages, with 50~100% mortality in neonatal piglets and substantial economic losses in the swine industry. In the present study, 347 fecal and intestinal samples were collected from seven regions in China during 2020-2022. A comprehensive molecular investigation of the spike (S) gene of PEDV strains was carried out, which included phylogenetic analysis of the obtained PEDV sequences. Epidemiological surveillance data indicate that the GIIc subgroup strains are widely distributed among pigs. A PEDV strain was successfully isolated from positive small intestine samples and identified through RT-PCR detection using specific N gene primers of PEDV, indirect immunofluorescence assay (IFA), TEM analysis, genome sequencing, and full-length S gene analysis, named PEDV/SC/2022. RDP and SimPlot analysis showed that the isolate originated from the recombination of PEDV/AH2012 and PEDV/AJ1102. In conclusion, our findings contribute to the current understanding of PEDV epidemiology and provide valuable information for the control of PED outbreaks in China.
Collapse
Affiliation(s)
- Qianling Peng
- Swine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Ping Fu
- Swine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yutong Zhou
- Swine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yifei Lang
- Swine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shan Zhao
- Swine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yiping Wen
- Swine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yiping Wang
- Swine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Rui Wu
- Swine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Qin Zhao
- Swine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Senyan Du
- Swine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Sanjie Cao
- Swine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaobo Huang
- Swine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Qigui Yan
- Swine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
15
|
Jiao XQ, Liu Y, Chen XM, Wang CY, Cui JT, Zheng LL, Ma SJ, Chen HY. Construction and Immunogenicity of a Recombinant Porcine Pseudorabies Virus (PRV) Expressing the Major Neutralizing Epitope Regions of S1 Protein of Variant PEDV. Viruses 2024; 16:1580. [PMID: 39459914 PMCID: PMC11512226 DOI: 10.3390/v16101580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/30/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) infection causes severe diarrhea and high mortality in neonatal piglets. Pseudorabies causes acute and often fatal infections in young piglets, respiratory disorders in growing pigs, and reproductive failure in sows. In late 2011, pseudorabies virus (PRV) variants occurred in Bartha-K61-vaccine-immunized swine herds, resulting in economic losses to the global pig industry. Therefore, it is essential to develop a safe and effective vaccine against both PEDV and PRV infections. In this study, we constructed a recombinant virus rPRV-PEDV S1 expressing the major neutralizing epitope region (COE, SS2, and SS6) of the PEDV S1 protein by homologous recombination technology and CRISPR/Cas9 gene editing technology, and then evaluated its biological characteristics in vitro and immunogenicity in pigs. The recombinant virus rPRV-PEDV S1 had similar growth kinetics in vitro to the parental rPRV NY-gE-/gI-/TK- strain, and was proven genetically stable in swine testicle (ST) cells and safe for piglets. PEDV S1-specific antibodies were detected in piglets immunized with rPRV-PEDV S1 on the 7th day post-immunization (dpi), and the antibody level increased rapidly at 14-21 dpi. Moreover, the immunized piglets receiving the recombinant virus exhibited alleviated clinical signs and reduced viral load compared to the unvaccinated group following a virulent PEDV HN2021 strain challenge. Also, piglets immunized with rPRV-PEDV S1 developed a PRV-specific humoral immune response and elicited complete protection against a lethal PRV NY challenge. These data indicate that the recombinant rPRV-PEDV S1 is a promising vaccine candidate strain for the prevention and control of PEDV and PRV infections.
Collapse
MESH Headings
- Animals
- Porcine epidemic diarrhea virus/immunology
- Porcine epidemic diarrhea virus/genetics
- Swine
- Herpesvirus 1, Suid/immunology
- Herpesvirus 1, Suid/genetics
- Swine Diseases/prevention & control
- Swine Diseases/virology
- Swine Diseases/immunology
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Viral Vaccines/immunology
- Viral Vaccines/genetics
- Epitopes/immunology
- Epitopes/genetics
- Coronavirus Infections/prevention & control
- Coronavirus Infections/veterinary
- Coronavirus Infections/immunology
- Coronavirus Infections/virology
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/genetics
- Pseudorabies/prevention & control
- Pseudorabies/immunology
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/administration & dosage
Collapse
Affiliation(s)
- Xian-Qin Jiao
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (X.-Q.J.); (Y.L.); (X.-M.C.); (C.-Y.W.); (J.-T.C.); (L.-L.Z.)
| | - Ying Liu
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (X.-Q.J.); (Y.L.); (X.-M.C.); (C.-Y.W.); (J.-T.C.); (L.-L.Z.)
| | - Xi-Meng Chen
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (X.-Q.J.); (Y.L.); (X.-M.C.); (C.-Y.W.); (J.-T.C.); (L.-L.Z.)
| | - Cheng-Yuan Wang
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (X.-Q.J.); (Y.L.); (X.-M.C.); (C.-Y.W.); (J.-T.C.); (L.-L.Z.)
| | - Jian-Tao Cui
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (X.-Q.J.); (Y.L.); (X.-M.C.); (C.-Y.W.); (J.-T.C.); (L.-L.Z.)
- Animal Health Supervision Institute, Honghu 433200, China
| | - Lan-Lan Zheng
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (X.-Q.J.); (Y.L.); (X.-M.C.); (C.-Y.W.); (J.-T.C.); (L.-L.Z.)
| | - Shi-Jie Ma
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (X.-Q.J.); (Y.L.); (X.-M.C.); (C.-Y.W.); (J.-T.C.); (L.-L.Z.)
| | - Hong-Ying Chen
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (X.-Q.J.); (Y.L.); (X.-M.C.); (C.-Y.W.); (J.-T.C.); (L.-L.Z.)
| |
Collapse
|
16
|
Yan S, Luo Y, Zhan N, Xu H, Yao Y, Liu X, Dong X, Kang L, Zhang G, Liu P. Intranasal delivery of a recombinant adenovirus vaccine encoding the PEDV COE elicits potent mucosal and systemic antibody responses in mice. Microbiol Spectr 2024; 12:e0069224. [PMID: 39145626 PMCID: PMC11448059 DOI: 10.1128/spectrum.00692-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/15/2024] [Indexed: 08/16/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is an enteropathogenic coronavirus that causes substantial economic loss to the global pig industry. The emergence of PEDV variants has increased the need for new vaccines, as commercial vaccines confer inferior protection against currently circulating strains. It is well established that the induction of mucosal immunity is crucial for PEDV vaccines to provide better protection against PEDV infection. In this study, we constructed a recombinant adenovirus expressing the core neutralization epitope (COE) of G2b PEDV based on human adenovirus serotype 5 (Ad5). We evaluated the effects of different administration routes and doses of vaccine immunogenicity in Balb/c mice. Both intramuscular (IM) and intranasal (IN) administration elicited significant humoral responses, including COE-specific IgG in serum and mucosal secretions, along with serum-neutralizing antibodies. Moreover, IN delivery was more potent than IM in stimulating IgA in serum and mucosal samples and in dampening the immune response to the Ad5 vector. The immune response was stronger after high versus low dose IM injection, whereas no significant difference was observed between high and low IN doses. In summary, our findings provide important insights for developing novel PEDV vaccines.IMPORTANCEPorcine epidemic diarrhea (PED) is a highly contagious disease that has severe economic implications for the pork industry. Developing an effective vaccine against PEDV remains a necessity. Here, we generated a recombinant adenovirus vaccine based on Ad5 to express the COE protein of PEDV (rAd5-PEDV-COE) and systematically evaluated the immunogenicity of the adenovirus-vectored vaccine using different administration routes (intramuscular and intranasal) and doses in a mouse model. Our results show that rAd5-PEDV-COE induced potent systemic humoral response regardless of the dose or immunization route. Notably, intranasal delivery was superior to induce peripheral and mucosal IgA antibodies compared with intramuscular injection. Our data provide valuable insights into designing novel PEDV vaccines.
Collapse
MESH Headings
- Animals
- Mice
- Porcine epidemic diarrhea virus/immunology
- Porcine epidemic diarrhea virus/genetics
- Mice, Inbred BALB C
- Administration, Intranasal
- Immunity, Mucosal
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Swine
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/blood
- Female
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Viral Vaccines/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/genetics
- Coronavirus Infections/prevention & control
- Coronavirus Infections/immunology
- Coronavirus Infections/veterinary
- Adenoviridae/genetics
- Adenoviridae/immunology
- Humans
- Swine Diseases/prevention & control
- Swine Diseases/immunology
- Swine Diseases/virology
- Antibody Formation/immunology
- Immunoglobulin A
- Genetic Vectors/genetics
Collapse
Affiliation(s)
- Shijie Yan
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yi Luo
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ningjia Zhan
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Haoran Xu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yao Yao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiang Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaoqing Dong
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Li Kang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Guozhong Zhang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Pinghuang Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
17
|
Hu Z, Li Y, Zhang B, Zhao Y, Guan R, Zhou Y, Du J, Zhang Z, Li X. Serum IgA antibody level against porcine epidemic diarrhea virus is a potential pre-evaluation indicator of immunization effects in sows during parturition under field conditions. Porcine Health Manag 2024; 10:32. [PMID: 39228006 PMCID: PMC11373460 DOI: 10.1186/s40813-024-00382-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/24/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Porcine Epidemic Diarrhea (PED) is a highly contagious disease caused by Porcine Epidemic Diarrhea Virus (PEDV), resulting in a mortality rate of suckling piglets as high as 100%. Vaccination is the primary strategy for controlling PEDV infection, however, there is currently a lack of reliable methods for assessing the efficacy of vaccination. This study aimed to analyze serum and colostrum samples from 75 parturient sows with a specific vaccination strategy to measure levels of IgG, IgA, and neutralizing antibodies (nAbs) against PEDV, and to investigate the correlation between serum and colostrum antibody levels, as well as to identify potential biomarkers that can be used to evaluate immunization effects under field conditions. RESULTS The findings of correlation analysis between antibody levels of IgA, IgG, and nAbs in serum or colostrum samples revealed that IgG demonstrated the most robust correlation with nAbs exhibiting a correlation coefficient of 0.64 in serum samples. Conversely, IgA exhibited the highest correlation with nAbs, with a correlation coefficient of 0.47 in colostrum samples. Additionally, the correlation analysis of antibody levels between serum and colostrum samples indicated that serum IgA displayed the strongest correlation with colostrum IgA, with a coefficient of 0.63, indicating that serum IgA may serve as a viable alternative indicator for evaluating IgA levels in colostrum samples. To further evaluate the suitability of serum IgA as a substitute marker for colostrum IgA, levels of IgA antibodies in serum samples from sows were examined both pre- and post-parturition. The findings indicated that serum IgA levels were initially low prior to the initial immunization, experienced a notable rise 21 days after immunization, and maintained a significant elevation compared to pre-immunization levels from 21 days pre-parturition to 14 days postpartum, spanning a total of 35 days. CONCLUSIONS Serum anti-PEDV IgA antibody levels may serve as a valuable predictor for immunization effects, allowing for the assessment of colostrum IgA antibody levels up to 21 days in advance. This insight could enable veterinarians to timely adjust or optimize immunization strategies prior to parturition, thereby ensuring adequate passive immunity is conferred to piglets through colostral transfer postpartum.
Collapse
Affiliation(s)
- Zhiqiang Hu
- College of Animal Science, Xichang University, No.1 Xuefu Road, Anning Town, Xichang, 615013, Sichuan Province, P. R. China
- Shandong Engineering Research Center of Pig and Poultry Health Breeding and Important Infectious Disease Purification, Shandong New Hope Liuhe Group Co., Ltd, No. 592-26 Jiushui East Road Laoshan District, 266100, Qingdao, Shandong, P. R. China
| | - Yang Li
- Shandong Engineering Research Center of Pig and Poultry Health Breeding and Important Infectious Disease Purification, Shandong New Hope Liuhe Group Co., Ltd, No. 592-26 Jiushui East Road Laoshan District, 266100, Qingdao, Shandong, P. R. China
| | - Bingzhou Zhang
- Shandong Engineering Research Center of Pig and Poultry Health Breeding and Important Infectious Disease Purification, Shandong New Hope Liuhe Group Co., Ltd, No. 592-26 Jiushui East Road Laoshan District, 266100, Qingdao, Shandong, P. R. China
| | - Ying Zhao
- College of Animal Science, Xichang University, No.1 Xuefu Road, Anning Town, Xichang, 615013, Sichuan Province, P. R. China
| | - Ran Guan
- College of Animal Science, Xichang University, No.1 Xuefu Road, Anning Town, Xichang, 615013, Sichuan Province, P. R. China
- Shandong Engineering Research Center of Pig and Poultry Health Breeding and Important Infectious Disease Purification, Shandong New Hope Liuhe Group Co., Ltd, No. 592-26 Jiushui East Road Laoshan District, 266100, Qingdao, Shandong, P. R. China
| | - Yapeng Zhou
- College of Animal Science, Xichang University, No.1 Xuefu Road, Anning Town, Xichang, 615013, Sichuan Province, P. R. China
| | - Jiafa Du
- Shandong Engineering Research Center of Pig and Poultry Health Breeding and Important Infectious Disease Purification, Shandong New Hope Liuhe Group Co., Ltd, No. 592-26 Jiushui East Road Laoshan District, 266100, Qingdao, Shandong, P. R. China
| | - Zhimin Zhang
- College of Animal Science, Xichang University, No.1 Xuefu Road, Anning Town, Xichang, 615013, Sichuan Province, P. R. China.
| | - Xiaowen Li
- Shandong Engineering Research Center of Pig and Poultry Health Breeding and Important Infectious Disease Purification, Shandong New Hope Liuhe Group Co., Ltd, No. 592-26 Jiushui East Road Laoshan District, 266100, Qingdao, Shandong, P. R. China.
| |
Collapse
|
18
|
Wang Z, Li X, Shang Y, Wu J, Lan X. A novel and cost-effective real-time RT-PCR targeting 24 nucleotides deletion to differentiate PEDV wild-type and classical attenuated vaccine strains. J Virol Methods 2024; 329:114986. [PMID: 38914314 DOI: 10.1016/j.jviromet.2024.114986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/26/2024]
Abstract
Porcine Epidemic Diarrhea Virus (PEDV) poses a significant threat to the swine industry, causing severe disease and resulting in substantial economic losses. Despite China's implementation of a large-scale vaccine immunization strategy in recent years, various strains of PEDV, including classical attenuated vaccine strains, continue to emerge in immunized pig herds. Here, we established a one-step real-time fluorescent reverse transcription PCR (one-step real-time RT-PCR) assay targeting a 24-nucleotide deletion in the ORF1 region of three PEDV classical attenuated vaccine strains, derived from classical strains. This assay effectively distinguishes between PEDV classical attenuated vaccine strains and wild-type strains, and we also explore the causes of this discriminatory target deficiency of this method through phylogenetic and recombination analysis. We found that these three classical attenuated vaccine strains exhibit closer phylogenetic relationships and higher sequence similarity with five cell-adapted strains. Recombination analysis revealed that although recombination is widespread in the PEDV genome, the 24-nucleotide deletion site remains stable without undergoing recombination and can be utilized as a target for identification. Further analysis revealed there are no enzyme cleavage sites near the 24-nucleotide site, suggesting that this deletion may have been lost during the process of culturing these viral strains in cells.The detection method we have established exhibits high specificity and sensitivity to PEDV, without cross-reactivity with other viruses causing diarrheal diseases. A total of 117 swine fecal samples were analyzed using this established one-step real-time reverse transcription PCR assay, indicating the presence of classical attenuated vaccine strains in pig herds in Gansu province, China. Additionally, the designed primer pairs and two probes can be placed in a single reaction tube to differentiate between these two types of strains, effectively reducing detection costs. These findings offer an efficient and cost-effective technological platform for clinical rapid identification testing of both wild-type and classical attenuated vaccine strains of PEDV, as well as for precise investigation of clinical data on natural infections and vaccine immunity in pig herds.
Collapse
Affiliation(s)
- Zhilin Wang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, PR China
| | - Xuerui Li
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, PR China
| | - Youjun Shang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, PR China
| | - Jinyan Wu
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, PR China
| | - Xi Lan
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, PR China.
| |
Collapse
|
19
|
Shi K, Li B, Shi Y, Feng S, Yin Y, Long F, Pan Y, Wei Y. Phylogenetic and Evolutionary Analysis of Porcine Epidemic Diarrhea Virus in Guangxi Province, China, during 2020 and 2024. Viruses 2024; 16:1126. [PMID: 39066288 PMCID: PMC11281377 DOI: 10.3390/v16071126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/28/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
The variant porcine epidemic diarrhea virus (PEDV) has caused considerable economic losses to the global pig industry since 2010. In this study, a total of 5859 diarrhea samples were collected from different pig farms in China's Guangxi province during January 2020 and March 2024 and tested for PEDV using RT-qPCR. The positivity rate of PEDV was 11.90% (697/5859). Ninety-two PEDV-positive samples were selected based on sampling time, and the sampling region for amplification, sequencing, and analysis of the S1, M, and N genes. Phylogenetic analysis of the S1 gene revealed that all strains from Guangxi province were distributed in three subgroups, i.e., 81.5% (75/92) in the G2a subgroup, 4.3% (4/92) in the G2b subgroup, and 14.1% (13/92) in the G2c subgroup. The sequence analysis revealed that the S1 gene sequences from Guangxi province had higher homology with the variant strains than with the classical strains, showing as high as 99.2% with the variant strain AJ1102 and only 94.3% with the classical strain CV777. Recombination analysis revealed that the GX-BS08-2023 strain (G2c) from Guangxi province originated from inter-lineage recombination between the GX-BS09-2023 (G2a) and CH-JN547228-2011 (G1a) strains. In addition, the S1 gene of the G2a and G2b subgroup strains shared many mutations and insertions. There were common mutations of N143D and P235L in the G2a subgroup. Evolutionary analysis revealed that all Guangxi strains belonged to the G2 genotype. These strains have spread rapidly since the PEDV variant strains that emerged in 2010, weakened until 2021, and then remained stable. In conclusion, the results revealed the latest genetic evolution of circulating PEDV strains in Guangxi province in recent years, providing important information for preventing and controlling PEDV infection. Currently, the G2a subgroup strains are the predominant strains circulating in pig herds in Guangxi province, southern China.
Collapse
Affiliation(s)
- Kaichuang Shi
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise 533000, China
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China
| | - Biao Li
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Yuwen Shi
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Shuping Feng
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China
| | - Yanwen Yin
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China
| | - Feng Long
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China
| | - Yi Pan
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise 533000, China
| | - Yingyi Wei
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| |
Collapse
|
20
|
Tian Y, Wang Z, Sun J, Gu J, Xu X, Cai X. Surface display of the COE antigen of porcine epidemic diarrhoea virus on Bacillus subtilis spores. Microb Biotechnol 2024; 17:e14518. [PMID: 38953907 PMCID: PMC11218686 DOI: 10.1111/1751-7915.14518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/14/2024] [Indexed: 07/04/2024] Open
Abstract
Porcine epidemic diarrhoea virus (PEDV) infects pigs of all ages by invading small intestine, causing acute diarrhoea, vomiting, and dehydration with high morbidity and mortality among newborn piglets. However, current PEDV vaccines are not effective to protect the pigs from field epidemic strains because of poor mucosal immune response and strain variation. Therefore, it is indispensable to develop a novel oral vaccine based on epidemic strains. Bacillus subtilis spores are attractive delivery vehicles for oral vaccination on account of the safety, high stability, and low cost. In this study, a chimeric gene CotC-Linker-COE (CLE), comprising of the B. subtilis spore coat gene cotC fused to the core neutralizing epitope CO-26 K equivalent (COE) of the epidemic strain PEDV-AJ1102 spike protein gene, was constructed. Then recombinant B. subtilis displaying the CLE on the spore surface was developed by homologous recombination. Mice were immunized by oral route with B. subtilis 168-CLE, B. subtilis 168, or phosphate-buffered saline (PBS) as control. Results showed that the IgG antibodies and cytokine (IL-4, IFN-γ) levels in the B. subtilis 168-CLE group were significantly higher than the control groups. This study demonstrates that B. subtilis 168-CLE can generate specific systemic immune and mucosal immune responses and is a potential vaccine candidate against PEDV infection.
Collapse
Affiliation(s)
- Yanhong Tian
- National Key Laboratory of Agricultural Microbiology, College of Veterinary MedicineHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Preventive Veterinary Medicine in Hubei ProvinceCooperative Innovation Center for Sustainable Pig ProductionWuhanChina
| | - Zhichao Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary MedicineHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Preventive Veterinary Medicine in Hubei ProvinceCooperative Innovation Center for Sustainable Pig ProductionWuhanChina
| | - Ju Sun
- National Key Laboratory of Agricultural Microbiology, College of Veterinary MedicineHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Preventive Veterinary Medicine in Hubei ProvinceCooperative Innovation Center for Sustainable Pig ProductionWuhanChina
| | - Jiayun Gu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary MedicineHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Preventive Veterinary Medicine in Hubei ProvinceCooperative Innovation Center for Sustainable Pig ProductionWuhanChina
| | - Xiaojuan Xu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary MedicineHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Preventive Veterinary Medicine in Hubei ProvinceCooperative Innovation Center for Sustainable Pig ProductionWuhanChina
| | - Xuwang Cai
- National Key Laboratory of Agricultural Microbiology, College of Veterinary MedicineHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Preventive Veterinary Medicine in Hubei ProvinceCooperative Innovation Center for Sustainable Pig ProductionWuhanChina
| |
Collapse
|
21
|
Wang J, Sun H, Su M, Li Z, Li L, Zhao F, Zhang Y, Bai W, Yu S, Yang X, Qi S, Yang D, Guo D, Li C, Zhu Q, Xing X, Sun D. Natural hyperoside extracted from hawthorn exhibits antiviral activity against porcine epidemic diarrhea virus in vitro and in vivo. Virology 2024; 594:110037. [PMID: 38498965 DOI: 10.1016/j.virol.2024.110037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/20/2024]
Abstract
Porcine epidemic diarrhea virus (PEDV) causes severe diarrhea and death in piglets, resulting in significant economic losses for the pork industry. There is an urgent need for new treatment strategies. Here, we focused on optimizing the process of purifying natural hyperoside (nHYP) from hawthorn and evaluating its effectiveness against PEDV both in vitro and in vivo. Our findings demonstrated that nHYP with a purity >98% was successfully isolated from hawthorn with an extraction rate of 0.42 mg/g. Furthermore, nHYP exhibited strong inhibitory effects on PEDV replication in cells, with a selection index of 9.72. nHYP significantly reduced the viral load in the intestines of piglets and protected three of four piglets from death caused by PEDV infection. Mechanistically, nHYP could intervene in the interaction of PEDV N protein and p53. The findings implicate nHYP as having promising therapeutic potential for combating PEDV infections.
Collapse
Affiliation(s)
- Jun Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Haibo Sun
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Mingjun Su
- College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, 666 Wusu Street, Linan District, Hangzhou, Zhejiang Province, 311300, China
| | - Zijian Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Lu Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Feiyu Zhao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Yongchen Zhang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Wenfei Bai
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Shiping Yu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Xu Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Shanshan Qi
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Dan Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Donghua Guo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Chunqiu Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Qinghe Zhu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Xiaoxu Xing
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China.
| | - Dongbo Sun
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China.
| |
Collapse
|
22
|
Yang D, Su M, Guo D, Zhao F, Wang M, Liu J, Zhou J, Sun Y, Yang X, Qi S, Li Z, Zhu Q, Xing X, Li C, Cao Y, Feng L, Sun D. Combination of S1-N-Terminal and S1-C-Terminal Domain Antigens Targeting Double Receptor-Binding Domains Bolsters Protective Immunity of a Nanoparticle Vaccine against Porcine Epidemic Diarrhea Virus. ACS NANO 2024; 18:12235-12260. [PMID: 38696217 DOI: 10.1021/acsnano.4c00809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
Abstract
Variants of coronavirus porcine epidemic diarrhea virus (PEDV) frequently emerge, causing an incomplete match between the vaccine and variant strains, which affects vaccine efficacy. Designing vaccines with rapidly replaceable antigens and high efficacy is a promising strategy for the prevention of infection with PEDV variant strains. In our study, three different types of self-assembled nanoparticles (nps) targeting receptor-binding N-terminal domain (NTD) and C-terminal domain (CTD) of S1 protein, named NTDnps, CTDnps, and NTD/CTDnps, were constructed and evaluated as vaccine candidates against PEDV. NTDnps and CTDnps vaccines mediated significantly higher neutralizing antibody (NAb) titers than NTD and CTD recombinant proteins in mice. The NTD/CTDnps in varying ratios elicited significantly higher NAb titers when compared with NTDnps and CTDnps alone. The NTD/CTDnps (3:1) elicited NAb with titers up to 92.92% of those induced by the commercial vaccine. Piglets immunized with NTD/CTDnps (3:1) achieved a passive immune protection rate of 83.33% of that induced by the commercial vaccine. NTD/CTDnps (3:1) enhanced the capacity of mononuclear macrophages and dendritic cells to take up and present antigens by activating major histocompatibility complex I and II molecules to stimulate humoral and cellular immunity. These data reveal that a combination of S1-NTD and S1-CTD antigens targeting double receptor-binding domains strengthens the protective immunity of nanoparticle vaccines against PEDV. Our findings will provide a promising vaccine candidate against PEDV.
Collapse
Affiliation(s)
- Dan Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, P. R. China
| | - Mingjun Su
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, P. R. China
| | - Donghua Guo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, P. R. China
| | - Feiyu Zhao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, P. R. China
| | - Meijiao Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, P. R. China
| | - Jiaying Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, P. R. China
| | - Jingxuan Zhou
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, P. R. China
| | - Ying Sun
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, P. R. China
| | - Xu Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, P. R. China
| | - Shanshan Qi
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, P. R. China
| | - Zhen Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, P. R. China
| | - Qinghe Zhu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, P. R. China
| | - Xiaoxu Xing
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, P. R. China
| | - Chunqiu Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, P. R. China
| | - Yang Cao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, P. R. China
| | - Li Feng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, P. R. China
| | - Dongbo Sun
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, P. R. China
| |
Collapse
|
23
|
Zhang J, Zhao L, Bai Y, Li S, Zhang M, Wei B, Wang X, Xue Y, Li L, Ma G, Tang Y, Wang X. An ascidian Polycarpa aurata-derived pan-inhibitor against coronaviruses targeting M pro. Bioorg Med Chem Lett 2024; 103:129706. [PMID: 38508325 DOI: 10.1016/j.bmcl.2024.129706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 03/22/2024]
Abstract
Coronaviruses (CoVs) are responsible for a wide range of illnesses in both animals and human. The main protease (Mpro) of CoVs is an attractive drug target, owing its critical and highly conserved role in viral replication. Here, we developed and refined an enzymatic technique to identify putative Mpro inhibitors from 189 marine chemicals and 46 terrestrial natural products. The IC50 values of Polycarpine (1a), a marine natural substance we studied and synthesized, are 30.0 ± 2.5 nM for SARS-CoV-2 Mpro and 0.12 ± 0.05 μM for PEDV Mpro. Our research further demonstrated that pretreatment with Polycarpine (1a) inhibited the betacoronavirus SARS-CoV-2 and alphacoronavirus PEDV multiplication in Vero-E6 cells. As a result, Polycarpine (1a), a pan-inhibitor of Mpro, will function as an effective and promising antiviral option to combat CoVs infection and as a foundation for further therapeutic research.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Center for Innovation Marine Drug Screening & Evaluation of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Lili Zhao
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Center for Innovation Marine Drug Screening & Evaluation of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; Marine Biomedical Research Institute of Qingdao, Qingdao 266003, China.
| | - Yuxin Bai
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Marine Biomedical Research Institute of Qingdao, Qingdao 266003, China
| | - Shanshan Li
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Center for Innovation Marine Drug Screening & Evaluation of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Meifang Zhang
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Center for Innovation Marine Drug Screening & Evaluation of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Bo Wei
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Center for Innovation Marine Drug Screening & Evaluation of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Xianyang Wang
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yan Xue
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao 266000, China
| | - Li Li
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Center for Innovation Marine Drug Screening & Evaluation of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; Marine Biomedical Research Institute of Qingdao, Qingdao 266003, China
| | - Guiliang Ma
- Department of General Surgery, Qingdao Municipal Hospital, No. 5, Donghaizhong Road, Qingdao 266071, China.
| | - Yu Tang
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Marine Biomedical Research Institute of Qingdao, Qingdao 266003, China.
| | - Xin Wang
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Center for Innovation Marine Drug Screening & Evaluation of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; Marine Biomedical Research Institute of Qingdao, Qingdao 266003, China.
| |
Collapse
|
24
|
Mohiuddin M, Deng S, Zhu L, Wang G, Jia A. Genetic evolution and phylogenetic analysis of porcine epidemic diarrhea virus strains circulating in and outside China with reference to a wild type virulent genotype CHYJ130330 reported from Guangdong Province, China. Gut Pathog 2024; 16:21. [PMID: 38589948 PMCID: PMC11003062 DOI: 10.1186/s13099-024-00597-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 01/02/2024] [Indexed: 04/10/2024] Open
Abstract
During the last decade, porcine epidemic diarrhea virus has detrimental consequences on swine industry, due to severe outbreaks especially in the suckling piglets. In March 2013, an outbreak was reported on a commercial swine farm in Guangdong Province, Southern China. A wild-type PEDV strain named as CHYJ130330 was identified, complete genome was sequenced and deposited in GenBank (accession no. KJ020932). The molecular epidemiological including evolutionary characteristics and pathogenicity assessment were explored during this study with particular interest and focus to develop this candidate strain for new vaccine. The isolates from China pre- and post-2013 shared 96.5-97.2% and 97-99% nt identity respectively with wild-type CHYJ130330 strain which during experimental studies has demonstrated high virulence and 100% mortality in 104 TCID50 group piglets within 5 days. The 22 reference strains selected from other parts of the world shared 98-99% identity with our sequence except Chinese (CV777) and S. Korean (vir.DR13, SM98 and atten.DR13) strains sharing 96.8, 97.6, 96.6 and 97.1% identity respectively. The phylogenetic tree revealed most strains reported after 2013 in GII genogroup while the prototype (CV777), S.korean and earlier Chinese (JS2008, 85-7mutant, Atten.vaccine, SD-M, LZC and CH/S) were GI Group. The amino acid sequence of CHYJ130330 E and M protein is highly conserved while ORF3 and N protein having 9 and 17 amino acid substitutions respectively in comparison to CV777 strain. The comparison of full length genome and the structural proteins revealed variations signifying that PEDV variant strains are still the main source of outbreaks in spite of continuous vaccination and also explain the variable trend of large scale outbreaks during this decade as compared to sporadic tendency of disease found before 2010. It is evident from this study that Chinese strains display significant level of mixing with the strains reported from other countries. The strain CHYJ130330 was also adapted successfully to Vero cell line and has shown high virulence in piglets. The information/findings will be helpful to develop a strategy for control of PEDV and have also shown that CHYJ130330 strain has strong virulence and is a more popular clinical strain in recent years, which has the potential to be developed into PEDV vaccine.
Collapse
Affiliation(s)
- Mudassar Mohiuddin
- Guangdong Haid Institute of Animal Husbandry and Veterinary, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Pig Raising and Disease Control, Guangzhou, People's Republic of China
- Department of Microbiology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Shengchao Deng
- Guangdong Haid Institute of Animal Husbandry and Veterinary, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Pig Raising and Disease Control, Guangzhou, People's Republic of China
| | - Lisai Zhu
- Guangdong Haid Institute of Animal Husbandry and Veterinary, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Pig Raising and Disease Control, Guangzhou, People's Republic of China
| | - Guiping Wang
- Guangdong Haid Institute of Animal Husbandry and Veterinary, Guangzhou, Guangdong, People's Republic of China.
- Guangdong Provincial Key Laboratory of Pig Raising and Disease Control, Guangzhou, People's Republic of China.
| | - Aiqing Jia
- Guangdong Haid Institute of Animal Husbandry and Veterinary, Guangzhou, Guangdong, People's Republic of China.
- Guangdong Provincial Key Laboratory of Pig Raising and Disease Control, Guangzhou, People's Republic of China.
| |
Collapse
|
25
|
Wei MZ, Chen L, Zhang R, Chen Z, Shen YJ, Zhou BJ, Wang KG, Shan CL, Zhu EP, Cheng ZT. Overview of the recent advances in porcine epidemic diarrhea vaccines. Vet J 2024; 304:106097. [PMID: 38479492 DOI: 10.1016/j.tvjl.2024.106097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/04/2024] [Accepted: 03/04/2024] [Indexed: 03/18/2024]
Abstract
Vaccination is the most effective means of preventing and controlling porcine epidemic diarrhea (PED). Conventional vaccines developed from porcine epidemic diarrhea virus (PEDV) GI-a subtypes (CV777 and SM98) have played a vital role in preventing classical PED. However, with the emergence of PEDV mutants in 2010, conventional PEDV GI-a subtype-targeting vaccines no longer provide adequate protection against PEDV GII mutants, thereby making novel-type PED vaccine development an urgent concern to be addressed. Novel vaccines, including nucleic acid vaccines, genetically engineered subunit vaccines, and live vector vaccines, are associated with several advantages, such as high safety and stability, clear targeting, high yield, low cost, and convenient usage. These vaccines can be combined with corresponding ELISA kits to differentiate infected from vaccinated animals, which is beneficial for disease confirmation. This review provides a detailed overview of the recent advancements in PED vaccines, emphasizing on the research and application evaluation of novel PED vaccines. It also considers the future directions and challenges in advancing these vaccines to widespread use in clinics.
Collapse
Affiliation(s)
- Miao-Zhan Wei
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Lan Chen
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Rong Zhang
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Ze Chen
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Yan-Juan Shen
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Bi-Jun Zhou
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Kai-Gong Wang
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Chun-Lan Shan
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Er-Peng Zhu
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang 550025, China.
| | - Zhen-Tao Cheng
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
26
|
Bai W, Zhu Q, Wang J, Jiang L, Guo D, Li C, Xing X, Sun D. Licorice extract inhibits porcine epidemic diarrhea virus in vitro and in vivo. J Gen Virol 2024; 105:001964. [PMID: 38471043 PMCID: PMC10999743 DOI: 10.1099/jgv.0.001964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 02/13/2024] [Indexed: 03/14/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) causes severe diarrhea and even death in piglets, resulting in significant economic losses to the pig industry. Because of the ongoing mutation of PEDV, there might be variations between the vaccine strain and the prevailing strain, causing the vaccine to not offer full protection against different PEDV variant strains. Therefore, it is necessary to develop anti-PEDV drugs to compensate for vaccines. This study confirmed the anti-PEDV effect of licorice extract (Le) in vitro and in vivo. Le inhibited PEDV replication in a dose-dependent manner in vitro. By exploring the effect of Le on the life cycle of PEDV, we found that Le inhibited the attachment, internalization, and replication stages of the virus. In vivo, all five piglets in the PEDV-infected group died within 72 h. In comparison, the Le-treated group had a survival rate of 80 % at the same time, with significant relief of clinical symptoms, pathological damage, and viral loads in the jejunum and ileum. Our results suggested that Le can exert anti-PEDV effects in vitro and in vivo. Le is effective and inexpensive; therefore it has the potential to be developed as a new anti-PEDV drug.
Collapse
Affiliation(s)
- Wenfei Bai
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China
| | - Qinghe Zhu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China
| | - Jun Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China
| | - Limin Jiang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China
| | - Donghua Guo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China
| | - Chunqiu Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China
| | - Xiaoxu Xing
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China
| | - Dongbo Sun
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China
| |
Collapse
|
27
|
Chen H, Wan J, Wei M, Liu P, Kong L, Xin X. Expression and immunogenicity of non-structural protein 8 of porcine epidemic diarrhea virus. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2024; 15:65-73. [PMID: 38465319 PMCID: PMC10924293 DOI: 10.30466/vrf.2023.2009322.3977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/05/2023] [Indexed: 03/12/2024]
Abstract
The non-structural protein (nsp) 8 of the porcine epidemic diarrhea virus (PEDV) is highly stable across different PEDV strains and plays an important role in PEDV virulence. In current study, nsp8 prokaryotic expression vectors were constructed based on parental vectors pMAL-c2x-maltose binding protein (MBP) and pET-28a (+). Subsequently, the optimization of expression conditions in Escherichia coli, including induced temperature, time and isopropyl β-D-thiogalactopyranoside concentration were performed to obtain a stable expression of MBP-nsp8 and nsp8. The nsp8 fused with MBP increased the water solubility of the expressed products. Target proteins were further purified from E. coli culture and their immunogenicities were evaluated in vivo by mice. The antibody titers of serum from nsp8 immunized mice were up to 1:7,750,000 when measured by indirect enzyme-linked immunosorbent assay; meanwhile, the mice immunized with MBP-nsp8 gave an antibody titer reaching 1:1,000,000. In all, the expression and purification system of PEDV nsp8 and MBP-nsp8 were successfully established in this work and a strong immune response was elicited in mice by both purified nsp8 and MBP-nsp8, providing a basis for the study of the structure and function of PEDV nsp8.
Collapse
Affiliation(s)
- Hong Chen
- Institute of Pathogenic Microbiology, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, China;
- Nanchang Key Laboratory of Animal Virus and Genetic Engineering, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, China.
| | - Jiawu Wan
- Institute of Pathogenic Microbiology, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, China;
- Nanchang Key Laboratory of Animal Virus and Genetic Engineering, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, China.
| | - Meihua Wei
- Institute of Pathogenic Microbiology, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, China;
- Nanchang Key Laboratory of Animal Virus and Genetic Engineering, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, China.
| | - Ping Liu
- Institute of Pathogenic Microbiology, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, China;
- Nanchang Key Laboratory of Animal Virus and Genetic Engineering, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, China.
| | - Lingbao Kong
- Institute of Pathogenic Microbiology, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, China;
- Nanchang Key Laboratory of Animal Virus and Genetic Engineering, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, China.
| | - Xiu Xin
- Institute of Pathogenic Microbiology, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, China;
- Nanchang Key Laboratory of Animal Virus and Genetic Engineering, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, China.
| |
Collapse
|
28
|
Li M, Wang M, Xi Y, Qiu S, Zeng Q, Pan Y. Isolation and Identification of a Tibetan Pig Porcine Epidemic Diarrhoea Virus Strain and Its Biological Effects on IPEC-J2 Cells. Int J Mol Sci 2024; 25:2200. [PMID: 38396878 PMCID: PMC10889329 DOI: 10.3390/ijms25042200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 01/31/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Porcine epidemic diarrhoea virus (PEDV) is a coronavirus that can cause severe watery diarrhoea in piglets, with high morbidity and mortality rates, seriously hindering the healthy development of the global swine industry. In this study, we isolated a strain of PEDV from Tibetan pigs and named it CH/GS/2022. Subsequently, we screened the apoptosis signals of PEDV-infected IPEC-J2 cells and studied the correlation between apoptosis signals and cell apoptosis. The results showed that different infections of PEDV induced different degrees of apoptosis in cells, and PEDV-induced cell apoptosis was dose-dependent. We then detected the expression of the p53, p38, JNK, Bax, and Bcl-2 genes in the apoptosis signal pathway. The results showed that 24 h after PEDV infection, the expression of the p53, p38, JNK, and Bax genes in IPEC-J2 cells increased significantly, while the expression of the Bcl-2 gene decreased significantly (p < 0.05). Subsequently, we used Western blot to detect the protein levels of these five genes, and the results showed that PEDV infection upregulated the expression of p53, p38, JNK, and Bax proteins (p < 0.05) while downregulating the expression of Bcl-2 protein (p < 0.05). Thus, it was initially inferred that PEDV infection could regulate cell apoptosis by activating the p53, p38, and JNK signalling pathways. Finally, we further investigated the apoptosis of the cells through the use of inhibitors. The results indicated that the p53 inhibitor Pifithrin-α has a significant inhibitory effect on the expression of the p53 protein after PEDV infection and can reverse the expression levels of Bax and Bcl-2 proteins. This suggested that p53 is involved in PEDV-induced cell apoptosis. Similarly, the p38 MAPK inhibitor SB203580 has an inhibitory effect on the expression of the p38 protein and can reverse the expression levels of Bax and Bcl-2 proteins. This suggested that p38 is also involved in PEDV-induced cell apoptosis. On the other hand, the JNK inhibitor SP600125 has no inhibitory effect on the expression of the JNK protein after PEDV infection, but the expression levels of Bax and Bcl-2 proteins have changed. Furthermore, it is noteworthy that SP600125 can inhibit the activity of apoptotic proteins but not their levels, resulting in reduced cell apoptosis. These preliminary results indicated that JNK may be involved in PEDV-induced IPEC-J2 cell apoptosis.
Collapse
Affiliation(s)
- Mei Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (M.L.); (M.W.); (Y.X.); (S.Q.)
| | - Meng Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (M.L.); (M.W.); (Y.X.); (S.Q.)
| | - Yao Xi
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (M.L.); (M.W.); (Y.X.); (S.Q.)
| | - Shantong Qiu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (M.L.); (M.W.); (Y.X.); (S.Q.)
| | - Qiaoying Zeng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (M.L.); (M.W.); (Y.X.); (S.Q.)
| | - Yangyang Pan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (M.L.); (M.W.); (Y.X.); (S.Q.)
- Technology and Research Center of Gansu Province for Embryonic Engineering of Bovine and Sheep & Goat, Lanzhou 730070, China
| |
Collapse
|
29
|
Wang C, Zhang Q, Ji C, Hu Y, Yi D, Wu T, Wang L, Zhao D, Hou Y. Effects of monolaurin on intestinal barrier, blood biochemical profile, immunity and antioxidant function in porcine epidemic diarrhoea virus-infected piglets. Br J Nutr 2024; 131:185-192. [PMID: 37589127 DOI: 10.1017/s0007114523001721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
The effects of monolaurin (ML) on the health of piglets infected with porcine epidemic diarrhoea virus (PEDV) have not been fully understood. This study aimed to investigate its role in blood biochemical profile, intestinal barrier function, antioxidant function and the expression of antiviral genes in piglets infected with PEDV. Thirty-two piglets were randomly divided into four groups: control group, ML group, PEDV group and ML + PEDV group. Piglets were orally administrated with ML at a dose of 100 mg/kg·BW for 7 d before PEDV infection. Results showed that PEDV infection significantly decreased D-xylose content and increased intestinal fatty acid-binding protein content, indicating that PEDV infection destroyed intestinal barrier and absorption function. While it could be repaired by ML administration. Moreover, ML administration significantly decreased plasma blood urea nitrogen and total protein content upon PEDV infection. These results suggested ML may increase protein utilisation efficiency. ML administration significantly decreased the number of large unstained cells and Hb and increased the number of leucocytes and eosinophils in the blood of PEDV-infected piglets, indicating ML could improve the immune defense function of the body. In the presence of PEDV infection, ML administration significantly increased superoxide dismutase and catalase activities in blood and colon, respectively, indicating ML could improve antioxidant capacity. Besides, ML administration reversed the expression of ISG15, IFIT3 and IL-29 throughout the small intestine and Mx1 in jejunum and ileum, indicating the body was in recovery from PEDV infection. This study suggests that ML could be used as a kind of feed additive to promote swine health upon PEDV infection.
Collapse
Affiliation(s)
- Chao Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Qian Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Changzheng Ji
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Yuyan Hu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Dan Yi
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Tao Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Lei Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Di Zhao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Yongqing Hou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
30
|
Guo Y, Sui L, Kong D, Liu D, Gao Y, Jiang Y, Cui W, Li J, Li Y, Wang L. Porcine epidemic diarrhea virus strain CH/HLJ/18 isolated in China: characterization and phylogenetic analysis. Virol J 2024; 21:28. [PMID: 38268010 PMCID: PMC10807084 DOI: 10.1186/s12985-023-02233-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/06/2023] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Porcine epidemic diarrhea (PED) is an infectious disease of the digestive tract caused by the porcine epidemic diarrhea virus (PEDV), characterized by vomiting, severe diarrhea, and high mortality rates in piglets. In recent years, the distribution of this disease in China has remarkably increased, and its pathogenicity has also increased. PEDV has been identified as the main cause of viral diarrhea in piglets. This study aimed to understand the genetic evolution and diversity of PEDV to provide a theoretical basis for the development of new vaccines and the prevention and treatment of PED. METHODS A PEDV strain was isolated from the small intestine of a diarrheal piglet using Vero cells. The virus was identified using reverse transcription-polymerase chain reaction (RT-PCR), indirect immunofluorescence assay (IFA), and transmission electron microscopy. The whole genome sequence was sequenced, phylogenetic analysis was conducted using MEGA (version 7.0), and recombination analysis was performed using RDP4 and SimPlot. The S protein amino acid sequence was aligned using Cluster X (version 2.0), and the S protein was modeled using SWISS-MODEL to compare differences in structure and antigenicity. Finally, the piglets were inoculated with PEDV to evaluate its pathogenicity in newborn piglets. RESULT PEDV strain CH/HLJ/18 was isolated. CH/HLJ/18 shared 89.4-99.2% homology with 52 reference strains of PEDV belonging to the GII-a subgroup. It was a recombinant strain of PEDV BJ-2011-1 and PEDV CH_hubei_2016 with a breakpoint located in ORF1b. Unique amino acid deletions and mutations were observed in the CH/HLJ/18 S protein. The piglets then developed severe watery diarrhea and died within 7 d of inoculation with CH/HLJ/18, suggesting that CH/HLJ/18 was highly pathogenic to newborn piglets. CONCLUSION A highly pathogenic recombinant PEDV GII-a strain, CH/HLJ/18, was identified in China, with unique deletion and mutation of amino acids in the S protein that may lead to changes in protein structure and antigenicity. These results will be crucial for understanding the prevalence and variation of PEDV and for preventing and controlling PED.
Collapse
Affiliation(s)
- Yuyao Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China
| | - Ling Sui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China
| | - Deming Kong
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China
| | - Dan Liu
- China Institute of Veterinary Drug Control, Beijing, 100081, China
| | - Yueyi Gao
- China Institute of Veterinary Drug Control, Beijing, 100081, China
| | - Yanping Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China
| | - Wen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China
| | - Jiaxuan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China
| | - Yijing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China.
| | - Li Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China.
| |
Collapse
|
31
|
Lei J, Miao Y, Bi W, Xiang C, Li W, Zhang R, Li Q, Yang Z. Porcine Epidemic Diarrhea Virus: Etiology, Epidemiology, Antigenicity, and Control Strategies in China. Animals (Basel) 2024; 14:294. [PMID: 38254462 PMCID: PMC10812628 DOI: 10.3390/ani14020294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is a porcine enteric coronavirus, which is one of the main causative agents of porcine epidemic diarrhea (PED), with 100% morbidity and 80-100% mortality in neonatal piglets. Since 2010, large-scale PED caused by highly pathogenic variants of PEDV has occurred successively in China and other countries in the world, posing a great threat to the global pig industry. It has been demonstrated in many investigations that the classic attenuated vaccine strain, PEDV CV777, is insufficient to fully protect against the PEDV variants. Moreover, the maternally derived antibodies elicited by inactivated vaccines also cannot completely protect piglets from infection. In addition, feedback feeding poses a risk of periodic PEDV recurrence in pig farms, making it challenging to successfully limit the spread of PEDV in China. This review focuses on the etiology, epidemiology, antigenicity, and control strategies of PEDV in China and provides information for the formulation of effective control measures.
Collapse
Affiliation(s)
- Jianlin Lei
- College of Agriculture and Forestry Science and Technology, Longdong University, Qingyang 745000, China;
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (Y.M.); (W.B.); (C.X.); (W.L.); (R.Z.); (Z.Y.)
| | - Yongqiang Miao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (Y.M.); (W.B.); (C.X.); (W.L.); (R.Z.); (Z.Y.)
| | - Wenrui Bi
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (Y.M.); (W.B.); (C.X.); (W.L.); (R.Z.); (Z.Y.)
| | - Chaohui Xiang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (Y.M.); (W.B.); (C.X.); (W.L.); (R.Z.); (Z.Y.)
| | - Wei Li
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (Y.M.); (W.B.); (C.X.); (W.L.); (R.Z.); (Z.Y.)
| | - Riteng Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (Y.M.); (W.B.); (C.X.); (W.L.); (R.Z.); (Z.Y.)
| | - Qian Li
- College of Agriculture and Forestry Science and Technology, Longdong University, Qingyang 745000, China;
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (Y.M.); (W.B.); (C.X.); (W.L.); (R.Z.); (Z.Y.)
| |
Collapse
|
32
|
Li M, Wang Y, Wang Y, Li R, Wang S, Ding P, Zhang G. Accurate location of two conserved linear epitopes of PEDV utilizing monoclonal antibodies induced by S1 protein nanoparticles. Int J Biol Macromol 2023; 253:127276. [PMID: 37804887 DOI: 10.1016/j.ijbiomac.2023.127276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Porcine Epidemic diarrhea virus (PEDV), which can result in severe vomiting, diarrhea, dehydration and death in newborn piglets, poses a great threat to the pig industry around the world. The S1 subunit of S protein is crucial for triggering neutralizing antibodies binding to the receptor. Based on the advantages of high immunogenicity and precise assembly of nanoparticles, the mi3 nanoparticles and truncated S1 protein were assembled by the SpyTag/SpyCatcher system and then expressed in HEK293F cells, whereafter high-efficiency monoclonal antibodies (mAbs) were produced and identified. The obtained five mAbs can bind to various genotypes of PEDV, including a mAb (12G) which can neutralize G1 and G2 genotypes of PEDV in vitro. By further identification of monoclonal antibody target sequences, 507FNDHSF512 and 553LFYNVTNSYG562 were first identified as B-cell linear epitopes, in which 553LFYNVTNSYG562 was a neutralizing epitope. Alanine scans identified the key amino acid sites of two epitopes. Moreover, the results of multiple sequence alignment analysis showed that these two epitopes were highly conserved in various subtype variants. In brief, these findings can serve as a basis for additional research of PEDV and prospective resources for the creation of later detection and diagnostic techniques.
Collapse
Affiliation(s)
- Minghui Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Yue Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Yanan Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Ruiqi Li
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Siqiao Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Peiyang Ding
- College of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Longhu Laboratory, Zhengzhou, China.
| | - Gaiping Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; College of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Longhu Laboratory, Zhengzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
33
|
Kong F, Jia H, Xiao Q, Fang L, Wang Q. Prevention and Control of Swine Enteric Coronaviruses in China: A Review of Vaccine Development and Application. Vaccines (Basel) 2023; 12:11. [PMID: 38276670 PMCID: PMC10820180 DOI: 10.3390/vaccines12010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Swine enteric coronaviruses (SECs) cause significant economic losses to the pig industry in China. Although many commercialized vaccines against transmissible gastroenteritis virus (TGEV) and porcine epidemic diarrhea virus (PEDV) are available, viruses are still widespread. The recent emergence of porcine deltacoronavirus (PDCoV) and swine acute diarrhea syndrome coronavirus (SADS-CoV), for which no vaccines are available, increases the disease burden. In this review, we first introduced the genomic organization and epidemiology of SECs in China. Then, we discussed the current vaccine development and application in China, aiming to provide suggestions for better prevention and control of SECs in China and other countries.
Collapse
Affiliation(s)
- Fanzhi Kong
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China; (F.K.); (H.J.); (Q.X.)
| | - Huilin Jia
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China; (F.K.); (H.J.); (Q.X.)
| | - Qi Xiao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China; (F.K.); (H.J.); (Q.X.)
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Qiuhong Wang
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
34
|
Peng Q, Fan B, Song X, He W, Wang C, Zhao Y, Guo W, Zhang X, Liu S, Gao J, Li K, Zhang B, Zhou J, Li Y, Guo R, Li B. Genetic signatures associated with the virulence of porcine epidemic diarrhea virus AH2012/12. J Virol 2023; 97:e0106323. [PMID: 37732788 PMCID: PMC10617547 DOI: 10.1128/jvi.01063-23] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 07/26/2023] [Indexed: 09/22/2023] Open
Abstract
IMPORTANCE Porcine epidemic diarrhea (PED) caused by PED virus (PEDV) remains a big threat to the swine industry worldwide. Vaccination with live attenuated vaccine is a promising method to prevent and control PED, because it can elicit a more protective immunity than the killed vaccine, subunit vaccine, and so on. In this study, we found two obvious deletions in the genome of a high passage of AH2012/12. We further confirmed the second deletion which contains seven amino acids at the carboxy-terminus of the S2 gene and the start codon of ORF3 can reduce its pathogenicity in vivo. Animal experiments indicated that the recombinant PEDV with deleted carboxy-terminus of S gene showed higher IgG, IgA, neutralization antibodies, and protection effects against virus challenge than the killed vaccine. These data reveal that the engineering of the carboxy-terminus of the S2 gene may be a promising method to develop live attenuated vaccine candidates of PEDV.
Collapse
Affiliation(s)
- Qi Peng
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Baochao Fan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, Jiangsu, China
| | - Xu Song
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu, China
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, China
| | - Wenlong He
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu, China
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, China
| | - Chuanhong Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu, China
- Academy of Life Science, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yongxiang Zhao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Weilu Guo
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu, China
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu, China
| | - Xue Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Shiyu Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jie Gao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Kemang Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Baotai Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu, China
- College of Animal Science, Guizhou University, Guiyang, Guizhou, China
| | - Jinzhu Zhou
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yunchuan Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Rongli Guo
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, Jiangsu, China
| |
Collapse
|
35
|
Li Y, Bao Y, Li Y, Duan X, Dong S, Lin J, Chang X, Tan Y, Zhang H, Shan H. RSL3 Inhibits Porcine Epidemic Diarrhea Virus Replication by Activating Ferroptosis. Viruses 2023; 15:2080. [PMID: 37896857 PMCID: PMC10612067 DOI: 10.3390/v15102080] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is a highly contagious coronavirus that induces diarrhea and death in neonatal piglets, resulting in substantial economic losses to the global swine industry. The mechanisms of PEDV infection and the roles of host factors are still under exploration. In this study, we used the ferroptosis pathway downstream target activator (1S,3R)-RSL3 compound as a starting point, combined with the interactions of N-acetylcysteine and deferoxamine, to elucidate the effects of a series of compounds on PEDV proliferation. We also established glutathione peroxidase 4 (GPX4) gene overexpression to further elucidate the relationship between the ferroptosis pathway and PEDV. (1S,3R)-RSL3 inhibited PEDV replication in Vero cells, while N-acetylcysteine and deferoxamine promoted its proliferation. In addition, (1S,3R)-RSL3 mainly affected the replication stage of PEDV. Overexpression of GPX4 promoted PEDV proliferation, indicating that the ferroptosis pathway could influence PEDV replication in Vero cells. This study focused on the mechanism of (1S,3R)-RSL3 inhibition on PEDV, laying the foundation for exploring the pathogenic mechanisms of PEDV and drug development.
Collapse
Affiliation(s)
- Yingguang Li
- College of Veterinary Medicine, Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, Qingdao Agricultural University, Qingdao 266109, China; (Y.L.); (Y.B.); (S.D.); (J.L.); (X.C.); (Y.T.); (H.S.)
| | - Yuwei Bao
- College of Veterinary Medicine, Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, Qingdao Agricultural University, Qingdao 266109, China; (Y.L.); (Y.B.); (S.D.); (J.L.); (X.C.); (Y.T.); (H.S.)
| | - Yan Li
- Qingdao Animal Disease Prevention and Control Center, Qingdao 266100, China; (Y.L.); (X.D.)
| | - Xiaoxiao Duan
- Qingdao Animal Disease Prevention and Control Center, Qingdao 266100, China; (Y.L.); (X.D.)
| | - Shaoming Dong
- College of Veterinary Medicine, Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, Qingdao Agricultural University, Qingdao 266109, China; (Y.L.); (Y.B.); (S.D.); (J.L.); (X.C.); (Y.T.); (H.S.)
| | - Jiaxu Lin
- College of Veterinary Medicine, Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, Qingdao Agricultural University, Qingdao 266109, China; (Y.L.); (Y.B.); (S.D.); (J.L.); (X.C.); (Y.T.); (H.S.)
| | - Xiaoyun Chang
- College of Veterinary Medicine, Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, Qingdao Agricultural University, Qingdao 266109, China; (Y.L.); (Y.B.); (S.D.); (J.L.); (X.C.); (Y.T.); (H.S.)
| | - Yue Tan
- College of Veterinary Medicine, Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, Qingdao Agricultural University, Qingdao 266109, China; (Y.L.); (Y.B.); (S.D.); (J.L.); (X.C.); (Y.T.); (H.S.)
| | - Hongliang Zhang
- College of Veterinary Medicine, Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, Qingdao Agricultural University, Qingdao 266109, China; (Y.L.); (Y.B.); (S.D.); (J.L.); (X.C.); (Y.T.); (H.S.)
| | - Hu Shan
- College of Veterinary Medicine, Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, Qingdao Agricultural University, Qingdao 266109, China; (Y.L.); (Y.B.); (S.D.); (J.L.); (X.C.); (Y.T.); (H.S.)
| |
Collapse
|
36
|
Zhang B, Qing J, Yan Z, Shi Y, Wang Z, Chen J, Li J, Li S, Wu W, Hu X, Li Y, Zhang X, Wu L, Zhu S, Yan Z, Wang Y, Guo X, Yu L, Li X. Investigation and analysis of porcine epidemic diarrhea cases and evaluation of different immunization strategies in the large-scale swine farming system. Porcine Health Manag 2023; 9:36. [PMID: 37537653 PMCID: PMC10401829 DOI: 10.1186/s40813-023-00331-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/30/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Porcine epidemic diarrhea (PED) is a contagious intestinal disease caused by porcine epidemic diarrhea virus (PEDV) characterized by vomiting, diarrhea, anorexia, and dehydration, which has caused huge economic losses around the world. However, it is very hard to find completely valid approaches to control the transmission of PEDV. At present, vaccine immunity remains the most effective method. To better control the spread of PED and evaluate the validity of different immunization strategies, 240 PED outbreak cases from 577 swine breeding farms were collected and analyzed. The objective of the present study was to analyze the epidemic regularity of PEDV and evaluate two kinds of different immunization strategies for controlling PED. RESULTS The results showed that the main reasons which led to the outbreak of PED were the movement of pig herds between different pig farms (41.7%) and delaying piglets from the normal production flow (15.8%). The prevalence of PEDV in the hot season (May to October) was obviously higher than that in the cold season (January to April, November to December). Results of different vaccine immunity cases showed that immunization with the highly virulent live vaccine (NH-TA2020 strain) and the commercial inactivated vaccine could significantly decrease the frequency of swine breeding farms (5.9%), the duration of PED epidemic (1.70 weeks), and the week batches of dead piglets (0.48 weeks weaned piglets), compared with immunization with commercial attenuated vaccines and inactivated vaccine of PED. Meanwhile, immunization with the highly virulent live vaccine and the commercial inactivated vaccine could bring us more cash flows of Y̶275,274 per year than immunization with commercial live attenuated vaccine and inactivated vaccine in one 3000 sow pig farm within one year. CONCLUSION Therefore, immunization with highly virulent live vaccine and inactivated vaccine of PED is more effective and economical in the prevention and control of PED in the large-scale swine farming system.
Collapse
Affiliation(s)
- Bingzhou Zhang
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd. (NHLH Academy of Swine Research), Dezhou, 253034, China
- Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd, Dezhou, 253200, China
- China Agriculture Research System-Yangling Comprehensive test Station, Xianyang, 712100, China
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Qingdao, China
| | - Jie Qing
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd. (NHLH Academy of Swine Research), Dezhou, 253034, China
- Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd, Dezhou, 253200, China
- China Agriculture Research System-Yangling Comprehensive test Station, Xianyang, 712100, China
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Qingdao, China
| | - Zhong Yan
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd. (NHLH Academy of Swine Research), Dezhou, 253034, China
- Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd, Dezhou, 253200, China
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Qingdao, China
| | - Yuntong Shi
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd. (NHLH Academy of Swine Research), Dezhou, 253034, China
- Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd, Dezhou, 253200, China
- China Agriculture Research System-Yangling Comprehensive test Station, Xianyang, 712100, China
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Qingdao, China
| | - Zewei Wang
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd. (NHLH Academy of Swine Research), Dezhou, 253034, China
- Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd, Dezhou, 253200, China
- China Agriculture Research System-Yangling Comprehensive test Station, Xianyang, 712100, China
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Qingdao, China
| | - Jing Chen
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd. (NHLH Academy of Swine Research), Dezhou, 253034, China
- Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd, Dezhou, 253200, China
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Qingdao, China
| | - Junxian Li
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd. (NHLH Academy of Swine Research), Dezhou, 253034, China
- Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd, Dezhou, 253200, China
- China Agriculture Research System-Yangling Comprehensive test Station, Xianyang, 712100, China
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Qingdao, China
| | - Shuangxi Li
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd. (NHLH Academy of Swine Research), Dezhou, 253034, China
- Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd, Dezhou, 253200, China
- China Agriculture Research System-Yangling Comprehensive test Station, Xianyang, 712100, China
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Qingdao, China
| | - Weisheng Wu
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd. (NHLH Academy of Swine Research), Dezhou, 253034, China
- Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd, Dezhou, 253200, China
- China Agriculture Research System-Yangling Comprehensive test Station, Xianyang, 712100, China
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Qingdao, China
| | - Xiaofang Hu
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd. (NHLH Academy of Swine Research), Dezhou, 253034, China
- Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd, Dezhou, 253200, China
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Qingdao, China
| | - Yang Li
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd. (NHLH Academy of Swine Research), Dezhou, 253034, China
- Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd, Dezhou, 253200, China
- China Agriculture Research System-Yangling Comprehensive test Station, Xianyang, 712100, China
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Qingdao, China
| | - Xiaoyang Zhang
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd. (NHLH Academy of Swine Research), Dezhou, 253034, China
- Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd, Dezhou, 253200, China
- China Agriculture Research System-Yangling Comprehensive test Station, Xianyang, 712100, China
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Qingdao, China
| | - Lili Wu
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd. (NHLH Academy of Swine Research), Dezhou, 253034, China
- Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd, Dezhou, 253200, China
- China Agriculture Research System-Yangling Comprehensive test Station, Xianyang, 712100, China
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Qingdao, China
| | - Shouyue Zhu
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd. (NHLH Academy of Swine Research), Dezhou, 253034, China
- Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd, Dezhou, 253200, China
- China Agriculture Research System-Yangling Comprehensive test Station, Xianyang, 712100, China
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Qingdao, China
| | - Zheng Yan
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd. (NHLH Academy of Swine Research), Dezhou, 253034, China
- Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd, Dezhou, 253200, China
- China Agriculture Research System-Yangling Comprehensive test Station, Xianyang, 712100, China
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Qingdao, China
| | - Yongquan Wang
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd. (NHLH Academy of Swine Research), Dezhou, 253034, China
- Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd, Dezhou, 253200, China
- China Agriculture Research System-Yangling Comprehensive test Station, Xianyang, 712100, China
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Qingdao, China
| | - Xiaoli Guo
- Research Center of Information Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Ligen Yu
- Research Center of Information Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
| | - Xiaowen Li
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd. (NHLH Academy of Swine Research), Dezhou, 253034, China.
- Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd, Dezhou, 253200, China.
- China Agriculture Research System-Yangling Comprehensive test Station, Xianyang, 712100, China.
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Qingdao, China.
| |
Collapse
|
37
|
Zhang W, Shen H, Wang M, Fan X, Wang S, Wuri N, Zhang B, He H, Zhang C, Liu Z, Liao M, Zhang J, Li Y, Zhang J. Fangchinoline inhibits the PEDV replication in intestinal epithelial cells via autophagic flux suppression. Front Microbiol 2023; 14:1164851. [PMID: 37485535 PMCID: PMC10360400 DOI: 10.3389/fmicb.2023.1164851] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
Animal and human health are severely threatened by coronaviruses. The enteropathogenic coronavirus, porcine epidemic diarrhea virus (PEDV), is highly contagious, leading to porcine epidemic diarrhea (PED), which causes large economic losses in the world's swine industry. Piglets are not protected from emerging PEDV variants; therefore, new antiviral measures for PED control are urgently required. Herein, the anti-PEDV effects and potential mechanisms of fangchinoline (Fan) were investigated. Fan dose-dependently inhibited a PEDV infection at 24 h post-infection (EC50 value = 0.67 μM). We found that Fan mainly affected the PEDV replication phase but also inhibited PEDV at the attachment and internalization stages of the viral life cycle. Mechanistically, Fan blocked the autophagic flux in PEDV-infected cells by regulating the expression of autophagy-related proteins and changing PEDV virus particles. In summary, Fan inhibits PEDV infection by blocking the autophagic flux in cells. Our findings will help develop new strategies to prevent and treat PEDV infection.
Collapse
Affiliation(s)
- Weixiao Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Haiyan Shen
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Guangzhou, China
| | - Menglu Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xuelei Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Songqi Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Nile Wuri
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Bin Zhang
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Haiyan He
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Chunhong Zhang
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Guangzhou, China
| | - Zhicheng Liu
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Guangzhou, China
| | - Ming Liao
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Guangzhou, China
| | - Jianfeng Zhang
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Guangzhou, China
| | - Yugu Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jianmin Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
38
|
Song X, Qian J, Wang C, Wang D, Zhou J, Zhao Y, Wang W, Li J, Guo R, Li Y, Zhu X, Yang S, Zhang X, Fan B, Li B. Correlation between the IgG/IgA Antibody Response against PEDV Structural Protein and Virus Neutralization. Microbiol Spectr 2023; 11:e0523322. [PMID: 37022185 PMCID: PMC10269706 DOI: 10.1128/spectrum.05233-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/09/2023] [Indexed: 04/07/2023] Open
Abstract
Porcine epidemic diarrhea (PED) is a highly contagious intestinal infectious disease caused by porcine epidemic diarrhea virus (PEDV). Large-scale outbreaks of PEDV have caused huge economic losses to the pig industry since 2010. Neutralizing antibodies play a pivotal role in protecting piglets from enteric infections. However, there has been no systematic report on the correlations between neutralizing antibody titers (NTs) and absorbance values of IgG or IgA to all PEDV individual structural proteins in clinical serum, fecal, and colostrum samples. In this study, the spike protein S1 domain (S1), membrane protein (M), envelope protein (E), and nucleocapsid protein (N) of the variant PEDV strain AH2012/12 were expressed and purified by using the human embryonic kidney (HEK) 293F expression system. A total of 92 clinical serum samples, 46 fecal samples, and 33 colostrum samples were collected, and the correlations between IgG or IgA absorbance values and NTs were analyzed. R2 values revealed that anti-S1 IgA absorbance values show the highest agreement with NTs in all serum, fecal, and colostrum samples, followed by the N protein. The correlations between anti-E or M IgA and NTs were very low. However, in the colostrum samples, both IgG and IgA to S1 showed high correlations with NTs. In addition, compared with E and M, the highest correlations of IgA absorbance values were with N and S1 in serum and fecal samples. Overall, this study revealed the highest correlation between NTs and IgA to PEDV S1 protein. Therefore, the diagnostic method with anti-S1 IgA can be used as a powerful tool for assessing the immune status of pigs. IMPORTANCE The humoral immune response plays an important role in virus neutralization. Against PEDV, both IgG and the mucosal immune component IgA play roles in virus neutralization. However, which plays a more prominent role and whether there are differences in different tissue samples are not clearly reported. Additionally, the relationship between IgG and IgA against individual structural proteins and viral neutralization remains unclear. In this study, we systematically determined the relationship between IgG and IgA against all PEDV structural proteins and viral neutralization in different clinical samples and found the highest correlation between neutralization activity and IgA to PEDV S1 protein. Our data have important guiding implications in the evaluation of immune protection.
Collapse
Affiliation(s)
- Xu Song
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
- School of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Jiali Qian
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Chuanhong Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Dandan Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Junming Zhou
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Yongxiang Zhao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Wei Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Jizong Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Rongli Guo
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Yunchuan Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Xuejiao Zhu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Shanshan Yang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Xuehan Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Baochao Fan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
- School of Life Sciences, Jiangsu University, Zhenjiang, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
- School of Veterinary Medicine, Hebei Agricultural University, Baoding, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| |
Collapse
|
39
|
Hong Y, Ma B, Li J, Shuai J, Zhang X, Xu H, Zhang M. Triplex-Loop-Mediated Isothermal Amplification Combined with a Lateral Flow Immunoassay for the Simultaneous Detection of Three Pathogens of Porcine Viral Diarrhea Syndrome in Swine. Animals (Basel) 2023; 13:1910. [PMID: 37370420 DOI: 10.3390/ani13121910] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV), porcine bocavirus (PBoV), and porcine rotavirus (PoRV) are associated with porcine viral diarrhea. In this study, triplex loop-mediated isothermal amplification (LAMP) combined with a lateral flow dipstick (LFD) was established for the simultaneous detection of PEDV, PoRV, and PBoV. The PEDV-gp6, PoRV-vp6, and PBoV-vp1 genes were selected to design LAMP primers. The amplification could be carried out at 64 °C using a miniature metal bath within 30 min. The triplex LAMP-LFD assay exhibited no cross-reactions with other porcine pathogens. The limits of detection (LODs) of PEDV, PoRV, and PBoV were 2.40 × 101 copies/μL, 2.89 × 101 copies/μL, and 2.52 × 101 copies/μL, respectively. The consistency between rt-qPCR and the triplex LAMP-LFD was over 99% in field samples testing. In general, the triplex LAMP-LFD assay was suitable for the rapid and simultaneous detection of the three viruses in the field.
Collapse
Affiliation(s)
- Yi Hong
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China
| | - Biao Ma
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China
| | - Jiali Li
- Hangzhou Quickgene Sci-Tech. Co., Ltd., Hangzhou 310018, China
| | - Jiangbing Shuai
- Zhejiang Academy of Science and Technology for Inspection and Quarantine, Hangzhou 310016, China
| | - Xiaofeng Zhang
- Zhejiang Academy of Science and Technology for Inspection and Quarantine, Hangzhou 310016, China
| | - Hanyue Xu
- College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Mingzhou Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
40
|
Chen XN, Liang YF, Weng ZJ, Quan WP, Hu C, Peng YZ, Sun YS, Gao Q, Huang Z, Zhang GH, Gong L. Porcine Enteric Alphacoronavirus Entry through Multiple Pathways (Caveolae, Clathrin, and Macropinocytosis) Requires Rab GTPases for Endosomal Transport. J Virol 2023; 97:e0021023. [PMID: 36975780 PMCID: PMC10134835 DOI: 10.1128/jvi.00210-23] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/07/2023] [Indexed: 03/29/2023] Open
Abstract
Porcine enteric alphacoronavirus (PEAV) is a new bat HKU2-like porcine coronavirus, and its endemic outbreak has caused severe economic losses to the pig industry. Its broad cellular tropism suggests a potential risk of cross-species transmission. A limited understanding of PEAV entry mechanisms may hinder a rapid response to potential outbreaks. This study analyzed PEAV entry events using chemical inhibitors, RNA interference, and dominant-negative mutants. PEAV entry into Vero cells depended on three endocytic pathways: caveolae, clathrin, and macropinocytosis. Endocytosis requires dynamin, cholesterol, and a low pH. Rab5, Rab7, and Rab9 GTPases (but not Rab11) regulate PEAV endocytosis. PEAV particles colocalize with EEA1, Rab5, Rab7, Rab9, and Lamp-1, suggesting that PEAV translocates into early endosomes after internalization, and Rab5, Rab7, and Rab9 regulate trafficking to lysosomes before viral genome release. PEAV enters porcine intestinal cells (IPI-2I) through the same endocytic pathway, suggesting that PEAV may enter various cells through multiple endocytic pathways. This study provides new insights into the PEAV life cycle. IMPORTANCE Emerging and reemerging coronaviruses cause severe human and animal epidemics worldwide. PEAV is the first bat-like coronavirus to cause infection in domestic animals. However, the PEAV entry mechanism into host cells remains unknown. This study demonstrates that PEAV enters into Vero or IPI-2I cells through caveola/clathrin-mediated endocytosis and macropinocytosis, which does not require a specific receptor. Subsequently, Rab5, Rab7, and Rab9 regulate PEAV trafficking from early endosomes to lysosomes, which is pH dependent. The results advance our understanding of the disease and help to develop potential new drug targets against PEAV.
Collapse
Affiliation(s)
- Xiong-nan Chen
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, People’s Republic of China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, People’s Republic of China
| | - Yi-fan Liang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, People’s Republic of China
| | - Zhi-jun Weng
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, People’s Republic of China
| | - Wei-peng Quan
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, People’s Republic of China
| | - Chen Hu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Yun-zhao Peng
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, People’s Republic of China
| | - Ying-shuo Sun
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, People’s Republic of China
| | - Qi Gao
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, People’s Republic of China
| | - Zhao Huang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, People’s Republic of China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, People’s Republic of China
| | - Gui-hong Zhang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, People’s Republic of China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, People’s Republic of China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Lang Gong
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, People’s Republic of China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, People’s Republic of China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, People’s Republic of China
| |
Collapse
|
41
|
Su M, Yin B, Xing X, Li Z, Zhang J, Feng S, Li L, Zhao F, Yang X, Yu S, Wang J, Zhang Y, Shi D, Chen J, Feng L, Guo D, Sun D. Octyl gallate targeting the 3C-like protease exhibits highly efficient antiviral activity against swine enteric coronavirus PEDV. Vet Microbiol 2023; 281:109743. [PMID: 37062110 DOI: 10.1016/j.vetmic.2023.109743] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/18/2023]
Abstract
Infection with porcine epidemic diarrhea virus (PEDV) causes severe watery diarrhea in newborn piglets, leading to substantial financial losses for the swine industry. In this study, we screened small molecule drugs targeting 3 C-like protease (3CLpro) by molecular docking, and further evaluated the antiviral activity of the screened drugs against PEDV. Results showed that octyl gallate (OG), a widely used food additive, exhibited strong binding affinity with the 3CLpro active sites of PEDV. Bio-layer interferometry and fluorescence resonance energy transfer revealed that OG directly interacts with PEDV 3CLpro (KD = 549 nM) and inhibits 3CLpro activity (IC50 = 22.15 µM). OG showed a strong inhibition of PEDV replication in vitro. Virus titers were decreased by 0.58 and 0.71 log10 TCID50/mL for the CV777 and HM2017 strains, respectively. In vivo, all piglets in the PEDV-infected group died at 48 h post-infection (hpi), while 75% of piglets in the OG treatment group showed significant relief from the clinical symptoms, pathological damage, and viral loads in the jejunum and ileum. Moreover, the western blotting results showed that OG also has strong antiviral activity against other swine enteric coronaviruses, including transmissible gastroenteritis virus (TGEV), porcine deltacoronavirus (PDCoV), and swine acute diarrhea syndrome coronavirus (SADS-CoV). Our findings revealed that OG could be developed as a novel antiviral drug against PEDV. The OG exhibited a potential broad-spectrum antiviral drug for control of other swine enteric coronaviruses.
Collapse
Affiliation(s)
- Mingjun Su
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China; College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province 311300, PR China
| | - Baishuang Yin
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, PR China
| | - Xiaoxu Xing
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China
| | - Zijian Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China
| | - Jiyu Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Shufeng Feng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Lu Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China
| | - Feiyu Zhao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China
| | - Xu Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China
| | - Shiping Yu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China
| | - Jun Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China
| | - Yongchen Zhang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China
| | - Da Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Jianfei Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Li Feng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Donghua Guo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China
| | - Dongbo Sun
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China.
| |
Collapse
|
42
|
Qin Z, Nai Z, Li G, He X, Wang W, Xia J, Chao W, Li L, Jiang X, Liu D. The Oral Inactivated Porcine Epidemic Diarrhea Virus Presenting in the Intestine Induces Mucosal Immunity in Mice with Alginate-Chitosan Microcapsules. Animals (Basel) 2023; 13:ani13050889. [PMID: 36899746 PMCID: PMC10000104 DOI: 10.3390/ani13050889] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/05/2023] Open
Abstract
The porcine epidemic diarrhea virus, PEDV, which causes diarrhea, vomiting and death in piglets, causes huge economic losses. Therefore, understanding how to induce mucosal immune responses in piglets is essential in the mechanism and application against PEDV infection with mucosal immunity. A method of treatment in our research was used to make an oral vaccine that packaged the inactive PEDV with microencapsulation, which consisted of sodium alginate and chitosan, and adapted the condition of the gut in mice. The in vitro release experiment of microcapsules showed that inactive PEDV was not only easily released in saline and acid solutions but also had an excellent storage tolerance, and was suitable for use as an oral vaccine. Interestingly, both experimental groups with different doses of inactive virus enhanced the secretion of specific antibodies in the serum and intestinal mucus, which caused the effective neutralization against PEDV in the Vero cell by both IgG and IgA, respectively. Moreover, the microencapsulation could stimulate the differentiation of CD11b+ and CD11c+ dendritic cells, which means that the microencapsulation was also identified as an oral adjuvant to help phagocytosis of dendritic cells in mice. Flow cytometry revealed that the B220+ and CD23+ of the B cells could significantly increase antibody production with the stimulation from the antigens' PEDV groups, and the microencapsulation could also increase the cell viability of B cells, stimulating the secretion of antibodies such as IgG and IgA in mice. In addition, the microencapsulation promoted the expression of anti-inflammatory cytokines, such as IL-10 and TGF-β. Moreover, proinflammatory cytokines, such as IL-1, TNF-α, and IL-17, were inhibited by alginate and chitosan in the microencapsulation groups compared with the inactivated PEDV group. Taken together, our results demonstrate that the microparticle could play the role of mucosal adjuvant, and release inactivated PEDV in the gut, which can effectively stimulate mucosal and systemic immune responses in mice.
Collapse
Affiliation(s)
- Ziliang Qin
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Zida Nai
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Gang Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Xinmiao He
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture, Animal Husbandry Research Institute, Heilongjiang Academy of Agricultural Sciences, No. 368 Xuefu Road, Harbin 150086, China
| | - Wentao Wang
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture, Animal Husbandry Research Institute, Heilongjiang Academy of Agricultural Sciences, No. 368 Xuefu Road, Harbin 150086, China
| | - Jiqiao Xia
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Wang Chao
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture, Animal Husbandry Research Institute, Heilongjiang Academy of Agricultural Sciences, No. 368 Xuefu Road, Harbin 150086, China
| | - Lu Li
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture, Animal Husbandry Research Institute, Heilongjiang Academy of Agricultural Sciences, No. 368 Xuefu Road, Harbin 150086, China
| | - Xinpeng Jiang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
- Correspondence: (X.J.); (D.L.); Tel.: +86-451-55190722 (X.J. & D.L.)
| | - Di Liu
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture, Animal Husbandry Research Institute, Heilongjiang Academy of Agricultural Sciences, No. 368 Xuefu Road, Harbin 150086, China
- Correspondence: (X.J.); (D.L.); Tel.: +86-451-55190722 (X.J. & D.L.)
| |
Collapse
|
43
|
Chemokines induced by PEDV infection and chemotactic effects on monocyte, T and B cells. Vet Microbiol 2022; 275:109599. [DOI: 10.1016/j.vetmic.2022.109599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
|
44
|
Zhu Q, Su M, Wei S, Shi D, Li L, Wang J, Sun H, Wang M, Li C, Guo D, Sun D. Up-regulated 60S ribosomal protein L18 in PEDV N protein-induced S-phase arrested host cells promotes viral replication. Virus Res 2022; 321:198916. [PMID: 36084747 PMCID: PMC9446558 DOI: 10.1016/j.virusres.2022.198916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 12/24/2022]
Abstract
Coronavirus subverts the host cell cycle to create a favorable cellular environment that enhances viral replication in host cells. Previous studies have revealed that nucleocapsid (N) protein of the coronavirus porcine epidemic diarrhea virus (PEDV) interacts with p53 to induce cell cycle arrest in S-phase and promotes viral replication. However, the mechanism by which viral replication is increased in the PEDV N protein-induced S-phase arrested cells remains unknown. In the current study, the protein expression profiles of PEDV N protein-induced S-phase arrested Vero E6 cells and thymidine-induced S-phase arrested Vero E6 cells were characterized by tandem mass tag-labeled quantitative proteomic technology. The effect of differentially expressed proteins (DEPs) on PEDV replication was investigated. The results indicated that a total of 5709 proteins, including 20,560 peptides, were identified, of which 58 and 26 DEPs were identified in the PEDV N group and thymidine group, respectively (P < 0.05; ratio ≥ 1.2 or ≤ 0.8). The unique DEPs identified in the PEDV N group were mainly involved in DNA replication, transcription, and protein synthesis, of which 60S ribosomal protein L18 (RPL18) exhibited significantly up-regulated expression in the PEDV N protein-induced S-phase arrested Vero E6/IPEC-J2 cells and PEDV-infected IPEC-J2 cells (P < 0.05). Further studies revealed that the RPL18 protein could significantly enhance PEDV replication (P < 0.05). Our findings reveal a mechanism regarding increased viral replication when the PEDV N protein-induced host cells are in S-phase arrest. These data also provide evidence that PEDV maintains its own replication by utilizing protein synthesis-associated ribosomal proteins.
Collapse
Affiliation(s)
- Qinghe Zhu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China
| | - Mingjun Su
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China,Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics and Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology and College of Veterinary Medicine of Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang 311300, China
| | - Shan Wei
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China
| | - Da Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Lu Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China
| | - Jun Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China
| | - Haibo Sun
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China
| | - Meijiao Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China
| | - Chunqiu Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China
| | - Donghua Guo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China
| | - Dongbo Sun
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China,Corresponding author
| |
Collapse
|
45
|
The Network of Interactions between the Porcine Epidemic Diarrhea Virus Nucleocapsid and Host Cellular Proteins. Viruses 2022; 14:v14102269. [PMID: 36298827 PMCID: PMC9611260 DOI: 10.3390/v14102269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022] Open
Abstract
Host–virus protein interactions are critical for intracellular viral propagation. Understanding the interactions between cellular and viral proteins may help us develop new antiviral strategies. Porcine epidemic diarrhea virus (PEDV) is a highly contagious coronavirus that causes severe damage to the global swine industry. Here, we employed co-immunoprecipitation and liquid chromatography-mass spectrometry to characterize 426 unique PEDV nucleocapsid (N) protein-binding proteins in infected Vero cells. A protein–protein interaction network (PPI) was created, and gene ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) database analyses revealed that the PEDV N-bound proteins belong to different cellular pathways, such as nucleic acid binding, ribonucleoprotein complex binding, RNA methyltransferase, and polymerase activities. Interactions of the PEDV N protein with 11 putative proteins: tripartite motif containing 21, DEAD-box RNA helicase 24, G3BP stress granule assembly factor 1, heat shock protein family A member 8, heat shock protein 90 alpha family class B member 1, YTH domain containing 1, nucleolin, Y-box binding protein 1, vimentin, heterogeneous nuclear ribonucleoprotein A2/B1, and karyopherin subunit alpha 1, were further confirmed by in vitro co-immunoprecipitation assay. In summary, studying an interaction network can facilitate the identification of antiviral therapeutic strategies and novel targets for PEDV infection.
Collapse
|
46
|
Olech M. Current State of Molecular and Serological Methods for Detection of Porcine Epidemic Diarrhea Virus. Pathogens 2022; 11:pathogens11101074. [PMID: 36297131 PMCID: PMC9612268 DOI: 10.3390/pathogens11101074] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV), a member of the Coronaviridae family, is the etiological agent of an acute and devastating enteric disease that causes moderate-to-high mortality in suckling piglets. The accurate and early detection of PEDV infection is essential for the prevention and control of the spread of the disease. Many molecular assays have been developed for the detection of PEDV, including reverse-transcription polymerase chain reaction (RT-PCR), real-time RT-PCR (qRT-PCR) and loop-mediated isothermal amplification assays. Additionally, several serological methods have been developed and are widely used for the detection of antibodies against PEDV. Some of them, such as the immunochromatography assay, can generate results very quickly and in field conditions. Molecular assays detect viral RNA in clinical samples rapidly, and with high sensitivity and specificity. Serological assays can determine prior immune exposure to PEDV, can be used to monitor the efficacy of vaccination strategies and may help to predict the duration of immunity in piglets. However, they are less sensitive than nucleic acid-based detection methods. Sanger and next-generation sequencing (NGS) allow the analysis of PEDV cDNA or RNA sequences, and thus, provide highly specific results. Furthermore, NGS based on nonspecific DNA cleavage in clustered regularly interspaced short palindromic repeats (CRISPR)–Cas systems promise major advances in the diagnosis of PEDV infection. The objective of this paper was to summarize the current serological and molecular PEDV assays, highlight their diagnostic performance and emphasize the advantages and drawbacks of the application of individual tests.
Collapse
Affiliation(s)
- Monika Olech
- Department of Pathology, National Veterinary Research Institute, 24-100 Puławy, Poland
| |
Collapse
|
47
|
Hu X, Lian Y, He Y, Liu X, Tian Z, Dai Y, Liu M, Fan H, Shi Y, Cong F. Molecular Characterization and Phylogenetic Analysis of a Variant Recombinant Porcine Epidemic Diarrhea Virus Strain in China. Animals (Basel) 2022; 12:ani12172189. [PMID: 36077908 PMCID: PMC9454955 DOI: 10.3390/ani12172189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Since 2010, a variant of porcine epidemic diarrhea virus (PEDV) has re-emerged in several provinces of China, resulting in severe economic losses for the pork industry. Here, we isolated and identified a variant PEDV strain, SC-YB73, in Guangdong Province, China. The pathological observations of jejunum showed atrophy of villi and edema in the lamina propria. The sequence analysis of the viral genome identified a six-nucleotide insertion in the E gene, which has not previously been detected in PEDV strains. Furthermore, 50 nucleotide sites were unique in SC-YB73 compared with 27 other PEDV strains. The phylogenetic analysis based on the complete genome showed that SC-YB73 was clustered in variant subgroup GII-a, which is widely prevalent in the Chinese pig population. The recombination analysis suggested that SC-YB73 originated from the recombination of GDS47, US PEDV prototype-like strains TW/Yunlin550/2018, and COL/Cundinamarca/2014. In the present study, we isolated and genetically characterized a variant PEDV strain, thus providing essential information for the control of PED outbreaks in China.
Collapse
Affiliation(s)
- Xiaoliang Hu
- Faculty of Agriculture, Forestry and Food Engineering, Yibin Key Laboratory of Zoological Diversity and Ecological Conservation, Yibin Animal and Plant Inspection and Quarantine Engineering Technology Research Center, Yibin University, Yibin 644000, China
| | - Yuexiao Lian
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou 510633, China
| | - Yucan He
- Faculty of Agriculture, Forestry and Food Engineering, Yibin Key Laboratory of Zoological Diversity and Ecological Conservation, Yibin Animal and Plant Inspection and Quarantine Engineering Technology Research Center, Yibin University, Yibin 644000, China
| | - Xiangxiao Liu
- Faculty of Agriculture, Forestry and Food Engineering, Yibin Key Laboratory of Zoological Diversity and Ecological Conservation, Yibin Animal and Plant Inspection and Quarantine Engineering Technology Research Center, Yibin University, Yibin 644000, China
| | - Zhige Tian
- Faculty of Agriculture, Forestry and Food Engineering, Yibin Key Laboratory of Zoological Diversity and Ecological Conservation, Yibin Animal and Plant Inspection and Quarantine Engineering Technology Research Center, Yibin University, Yibin 644000, China
| | - Yi Dai
- Faculty of Agriculture, Forestry and Food Engineering, Yibin Key Laboratory of Zoological Diversity and Ecological Conservation, Yibin Animal and Plant Inspection and Quarantine Engineering Technology Research Center, Yibin University, Yibin 644000, China
| | - Mengyuan Liu
- Faculty of Agriculture, Forestry and Food Engineering, Yibin Key Laboratory of Zoological Diversity and Ecological Conservation, Yibin Animal and Plant Inspection and Quarantine Engineering Technology Research Center, Yibin University, Yibin 644000, China
| | - Huayan Fan
- Faculty of Agriculture, Forestry and Food Engineering, Yibin Key Laboratory of Zoological Diversity and Ecological Conservation, Yibin Animal and Plant Inspection and Quarantine Engineering Technology Research Center, Yibin University, Yibin 644000, China
| | - Yue Shi
- Beijing Senkang Biotech Development Co., Ltd., Beijing 100000, China
| | - Feng Cong
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou 510633, China
- Correspondence:
| |
Collapse
|
48
|
Wang K, Hu Z, Fan M, Shao Z, Yu Q, Li X. Development of an indirect ELISA to detect PEDV specific IgA antibody based on a PEDV epidemic strain. BMC Vet Res 2022; 18:319. [PMID: 35982455 PMCID: PMC9386190 DOI: 10.1186/s12917-022-03419-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/10/2022] [Indexed: 11/15/2022] Open
Abstract
Background Porcine epidemic diarrhea (PED), a swine epidemic disease caused by porcine epidemic diarrhea virus (PEDV), is characterized by severe watery diarrhea, vomiting, dehydration and high mortality in piglets, and has caused serious economic losses to the global porcine industry. The level of PEDV IgA antibody is a key marker to assess the extent of passive immunity of the resistance against PEDV infection. However, current commercial structure proteins-based kits for detection of PEDV antibody are not affordable, and those kits require complicated antigen preparation procedures, which cannot meet the scope of economic benefits of many large-scale pig companies in China. Therefore, there is an urgent need to develop an accurate, simple, and economical method for IgA detection in clinical samples. In this study, an indirect ELISA (i-ELISA) method was developed based on a purified PEDV epidemic strain (NH-TA2020). Results The results show that optimal working dilution ratios of PEDV antigen and HRP anti-swine IgA are at 1: 1000 and 1:15000 respectively. The sensitivity of this method is high with the maximum dilution of samples up to 1:160, and coefficients of variation (CV) of both the intra assays and inter assays were no more than 15%. In addition, the relative sensitivities of the i-ELISA were above 90% compared with values from commercial kits in both serum and oral fluid samples. Conclusions Our results suggested that the i-ELISA developed in this study was an accurate, simple, and economical method for PEDV-IgA detection in clinical samples. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03419-w.
Collapse
Affiliation(s)
- Kun Wang
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd (NHLH Academy of Swine Research), Dezhou, China
| | - Zhiqiang Hu
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd (NHLH Academy of Swine Research), Dezhou, China
| | - Mingyu Fan
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd (NHLH Academy of Swine Research), Dezhou, China
| | - Zhenwen Shao
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd (NHLH Academy of Swine Research), Dezhou, China
| | - Qiannan Yu
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd (NHLH Academy of Swine Research), Dezhou, China
| | - Xiaowen Li
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd (NHLH Academy of Swine Research), Dezhou, China. .,Shandong Swine Health Data and Intelligent Monitoring Project Laboratory, Dezhou University, Dezhou, China. .,Quality Control for Feed and Products of Livestock and Poultry Key Laboratory of Sichuan Province, New Hope Liuhe Co., Ltd, Chengdu, China.
| |
Collapse
|
49
|
Sun P, Wang M, Li J, Qiu Y, Li H, Lv M, Bo Z, Shen H, Li L. Inhibitory effect of Buddlejasaponin IVb on porcine epidemic diarrhea virus in vivo and in vitro. Vet Microbiol 2022; 272:109516. [PMID: 35901581 DOI: 10.1016/j.vetmic.2022.109516] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/10/2022] [Accepted: 07/17/2022] [Indexed: 10/17/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV) is one of the main pathogens causing severe diarrhea in piglets. Infection of the host induces apoptosis, causing huge economic losses to the pig industry. At present, the preventive and therapeutic effects of commercial vaccines are not satisfactory, and it is necessary to develop new anti-PEDV drugs. In this study, we screened the PEDV-inhibiting drug Buddlejasaponin IVb from the natural product library, and determined the inhibitory effect of Buddlejasaponin IVb on PEDV proliferation in a dose-dependent manner. By exploring the effect of Buddlejasaponin IVb on the life cycle of PEDV, it was found that Buddlejasaponin IVb mainly inhibits the replication and release stages of PEDV, but there is no report at home and abroad. In addition, Buddlejasaponin IVb can inhibit PEDV-activated NF-κB signaling pathway by downregulating PEDV or LPS induced elevation of cytokine levels (IL-6, IL-8, IL-1β, TNF-α). Finally, we returned to in vivo experiments to explore the antiviral effects of the drug in pigs. The results show that Buddlejasaponin IVb can effectively relieve the clinical symptoms and intestinal damage caused by PEDV infection in pigs. Therefore, this study will provide an important basis for the research on antiviral drugs of PEDV and its members, and at the same time provide guidance for the actual production, which has important application prospects.
Collapse
Affiliation(s)
- Pei Sun
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Mingge Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Jie Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yanping Qiu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Hongyue Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Muze Lv
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Zongyi Bo
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Haixiao Shen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Liang Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China.
| |
Collapse
|
50
|
FUBP3 Degrades the Porcine Epidemic Diarrhea Virus Nucleocapsid Protein and Induces the Production of Type I Interferon. J Virol 2022; 96:e0061822. [PMID: 35695513 PMCID: PMC9278154 DOI: 10.1128/jvi.00618-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is the globally distributed alphacoronavirus that can cause lethal watery diarrhea in piglets, causing substantial economic damage. However, the current commercial vaccines cannot effectively the existing diseases. Thus, it is of great necessity to identify the host antiviral factors and the mechanism by which the host immune system responds against PEDV infection required to be explored. The current work demonstrated that the host protein, the far upstream element-binding protein 3 (FUBP3), could be controlled by the transcription factor TCFL5, which could suppress PEDV replication through targeting and degrading the nucleocapsid (N) protein of the virus based on selective autophagy. For the ubiquitination of the N protein, FUBP3 was found to recruit the E3 ubiquitin ligase MARCH8/MARCHF8, which was then identified, transported to, and degraded in autolysosomes via NDP52/CALCOCO2 (cargo receptors), resulting in impaired viral proliferation. Additionally, FUBP3 was found to positively regulate type-I interferon (IFN-I) signaling and activate the IFN-I signaling pathway by interacting and increasing the expression of tumor necrosis factor (TNF) receptor-associated factor 3 (TRAF3). Collectively, this study showed a novel mechanism of FUBP3-mediated virus restriction, where FUBP3 was found to degrade the viral N protein and induce IFN-I production, aiming to hinder the replication of PEDV. IMPORTANCE PEDV refers to the alphacoronavirus that is found globally and has re-emerged recently, causing severe financial losses. In PEDV infection, the host activates various host restriction factors to maintain innate antiviral responses to suppress virus replication. Here, FUBP3 was detected as a new host restriction factor. FUBP3 was found to suppress PEDV replication via the degradation of the PEDV-encoded nucleocapsid (N) protein via E3 ubiquitin ligase MARCH8 as well as the cargo receptor NDP52/CALCOCO2. Additionally, FUBP3 upregulated the IFN-I signaling pathway by interacting with and increasing tumor necrosis factor (TNF) receptor-associated factor 3 (TRAF3) expression. This study further demonstrated that another layer of complexity could be added to the selective autophagy and innate immune response against PEDV infection are complicated.
Collapse
|