1
|
He J, Lin X, Tan C, Li Y, Su L, Lin G, Tan YQ, Tu C. Molecular insights into sperm head shaping and its role in human male fertility. Hum Reprod Update 2025:dmaf003. [PMID: 40037590 DOI: 10.1093/humupd/dmaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/16/2024] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Sperm head shaping, controlled by the acrosome-acroplaxome-manchette complex, represents a significant morphological change during spermiogenesis and involves numerous proteins expressed in a spatially and temporally specific manner. Defects in sperm head shaping frequently lead to teratozoospermia concomitant with oligozoospermia and asthenozoospermia, but the pathogenic mechanism underlying sperm head shaping, and its role in male infertility, remain poorly understood. OBJECTIVE AND RATIONALE This review aims to summarize the mechanism underlying sperm head shaping, reveal the relationship between gene defects associated with sperm head shaping and male infertility in humans and mice, and explore potential clinical improvements in ICSI treatment. SEARCH METHODS We searched the PubMed database for articles published in English using the keyword 'sperm head shaping' in combination with the following terms: 'acrosome formation', 'proacrosomal vesicles (PAVs)', 'manchette', 'perinuclear theca (PT)', 'chromatin condensation', 'linker of nucleoskeleton and cytoskeleton (LINC) complex', 'histone-to-protamine (HTP) transition', 'male infertility', 'ICSI', and 'artificial oocyte activation (AOA)'. The selected publications until 1 August 2024 were critically summarized, integrated, and thoroughly discussed, and the irrelevant literature were excluded. OUTCOMES A total of 6823 records were retrieved. After careful screening, integrating relevant literature, and excluding articles unrelated to the topic of this review, 240 articles were ultimately included in the analysis. Firstly, we reviewed the important molecular events and structures integral to sperm head shaping, including PAV formation to fusion, acrosome attachment to the nucleus, structure and function of the manchette, PT, chromatin condensation, and HTP transition. Then, we set forth human male infertility associated with sperm head shaping and identified genes related to sperm head shaping resulting in teratozoospermia concomitant with oligozoospermia and asthenozoospermia. Finally, we summarized the outcomes of ICSI in cases of male infertility resulting from mutations in the genes associated with sperm head shaping, as well as the ICSI outcomes through AOA for infertile men with impaired sperm head. WIDER IMPLICATIONS Understanding the molecular mechanisms of sperm head shaping and its relationship with human male infertility holds profound clinical implications, which may contribute to risk prediction, genetic diagnosis, and the potential treatment of human male infertility.
Collapse
Affiliation(s)
- Jiaxin He
- Institute of Reproduction and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Xiangya Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Xinle Lin
- Institute of Reproduction and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Xiangya Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Chen Tan
- Institute of Reproduction and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Xiangya Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Yong Li
- Institute of Reproduction and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Xiangya Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Lilan Su
- Institute of Reproduction and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Xiangya Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Ge Lin
- Institute of Reproduction and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Xiangya Basic Medical Sciences, Central South University, Changsha, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan, China
| | - Yue-Qiu Tan
- Institute of Reproduction and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Xiangya Basic Medical Sciences, Central South University, Changsha, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan, China
| | - Chaofeng Tu
- Institute of Reproduction and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Xiangya Basic Medical Sciences, Central South University, Changsha, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan, China
| |
Collapse
|
2
|
Zhang X, Huo H, Fu G, Li C, Lin W, Dai H, Xi X, Zhai L, Yuan Q, Zhao G, Huo J. Long-read and short-read RNA-seq reveal the transcriptional regulation characteristics of PICK1 in Baoshan pig testis. Anim Reprod 2024; 21:e20240047. [PMID: 39371543 PMCID: PMC11452158 DOI: 10.1590/1984-3143-ar2024-0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/04/2024] [Indexed: 10/08/2024] Open
Abstract
PICK1 plays a crucial role in mammalian spermatogenesis. Here, we integrated single-molecule long-read and short-read sequencing to comprehensively examine PICK1 expression patterns in adult Baoshan pig (BS) testes. We identified the most important transcript ENSSSCT00000000120 of PICK1, obtaining its full-length coding sequence (CDS) spanning 1254 bp. Gene structure analysis located PICK1 on pig chromosome 5 with 14 exons. Protein structure analysis reflected that PICK1 consisted of 417 amino acids containing two conserved domains, PDZ and BAR_PICK1. Phylogenetic analysis underscored the evolutionary conservation and homology of PICK1 across different mammalian species. Evaluation of protein interaction network, KEGG, and GO pathways implied that interacted with 50 proteins, predominantly involved in glutamatergic synapses, amphetamine addiction, neuroactive ligand-receptor interactions, dopaminergic synapses, and synaptic vesicle recycling, and PICK1 exhibited significant correlation with DLG4 and TBC1D20. Functional annotation identified that PICK1 was involved in 9 GOs, including seven cellular components and two molecular functions. ceRNA network analysis suggested BS PICK1 was regulated by seven miRNA targets. Moreover, qPCR expression analysis across 15 tissues highlighted that PICK1 was highly expressed in the bulbourethral gland and testis. Subcellular localization analysis in ST (Swine Tesits) cells demonstrated that PICK1 significantly localized within the cytoplasm. Overall, our findings shed new light on PICK1's role in BS reproduction, providing a foundation for further functional studies of PICK1.
Collapse
Affiliation(s)
- Xia Zhang
- Department of Biological and Food Engineering, Lyuliang University, Lvliang, Shanxi, China
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Hailong Huo
- Yunnan Open University, Kunming, Yunnan, China
- Yunnan Vocational and Technical College of Agriculture, Kunming, Yunnan, China
| | - Guowen Fu
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Changyao Li
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Wan Lin
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Hongmei Dai
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Xuemin Xi
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Lan Zhai
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Qingting Yuan
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Guiying Zhao
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Jinlong Huo
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
3
|
Lai JHC, Tsogka M, Xia J. Sodium arsenite induces aggresome formation by promoting PICK1 BAR domain homodimer formation. Mol Biol Cell 2024; 35:ar128. [PMID: 39083353 PMCID: PMC11481693 DOI: 10.1091/mbc.e24-05-0201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024] Open
Abstract
The aggresome is a perinuclear structure that sequesters misfolded proteins. It is implicated in various neurodegenerative diseases. The perinuclear structure enriched with protein interacting with C kinase 1 (PICK1) was found to be inducible by cellular stressors, colocalizing with microtubule-organizing center markers and ubiquitin, hence classifying it as an aggresome. Sodium arsenite but not arsenate was found to potently induce aggresome formation through an integrated stress response-independent pathway. In HEK293T cells, under arsenite stress, PICK1 localization to the aggresome was prioritized, and formation of PICK1 homodimers was favored. Additionally, PICK1 could enhance protein entry into aggresomes. This study shows that arsenite can induce the formation of both RNA stress granules and aggresomes at the same time, and that PICK1 shows conditional localization to aggresomes, suggesting a possible involvement of PICK1 in neurodegenerative diseases.
Collapse
Affiliation(s)
- John Ho Chun Lai
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, United Kingdom
| | - Marianthi Tsogka
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jun Xia
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- The Brain and Intelligence Research Institute, and Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, China
| |
Collapse
|
4
|
Jensen KL, Christensen NR, Goddard CM, Jager SE, Noes-Holt G, Kanneworff IB, Jakobsen A, Jiménez-Fernández L, Peck EG, Sivertsen L, Comaposada Baro R, Houser GA, Mayer FP, Diaz-delCastillo M, Topp ML, Hopkins C, Thomsen CD, Soltan ABI, Tidemand FG, Arleth L, Heegaard AM, Sørensen AT, Madsen KL. Peripherally restricted PICK1 inhibitor mPD5 ameliorates pain behaviors in murine inflammatory and neuropathic pain models. JCI Insight 2024; 9:e170976. [PMID: 39287978 PMCID: PMC11530130 DOI: 10.1172/jci.insight.170976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/10/2024] [Indexed: 09/19/2024] Open
Abstract
Chronic pain is a complex, debilitating, and escalating health problem worldwide, impacting 1 in 5 adults. Current treatment is compromised by dose-limiting side effects, including high abuse liability, loss of ability to function socially and professionally, fatigue, drowsiness, and apathy. PICK1 has emerged as a promising target for the treatment of chronic pain conditions. Here, we developed and characterized a cell-permeable fatty acid-conjugated bivalent peptide inhibitor of PICK1 and assessed its effects on acute and chronic pain. The myristoylated PICK1 inhibitor, myr-NPEG4-(HWLKV)2 (mPD5), self-assembled into core-shell micelles that provided favorable pharmacodynamic properties and relieved evoked mechanical and thermal hypersensitivity as well as ongoing hypersensitivity and anxiodepressive symptoms in mouse models of neuropathic and inflammatory pain following subcutaneous administration. No overt side effects were associated with mPD5 administration, and it had no effect on acute nociception. Finally, neuropathic pain was relieved far into the chronic phase (18 weeks after spared nerve injury surgery) and while the effect of a single injection ceased after a few hours, repeated administration provided pain relief lasting up to 20 hours after the last injection.
Collapse
Affiliation(s)
| | - Nikolaj Riis Christensen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, and
| | | | - Sara Elgaard Jager
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience
| | - Gith Noes-Holt
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience
| | - Ida Buur Kanneworff
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alexander Jakobsen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience
| | | | - Emily G. Peck
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Line Sivertsen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience
| | | | - Grace Anne Houser
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience
| | - Felix Paul Mayer
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience
| | - Marta Diaz-delCastillo
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marie Løth Topp
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience
| | - Chelsea Hopkins
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cecilie Dubgaard Thomsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ahmed Barakat Ibrahim Soltan
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Frederik Grønbæk Tidemand
- X-ray and Neutron Science, Niels Bohr Institute, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Lise Arleth
- X-ray and Neutron Science, Niels Bohr Institute, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Anne-Marie Heegaard
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
5
|
Ibrahim H, Balboa D, Saarimäki-Vire J, Montaser H, Dyachok O, Lund PE, Omar-Hmeadi M, Kvist J, Dwivedi OP, Lithovius V, Barsby T, Chandra V, Eurola S, Ustinov J, Tuomi T, Miettinen PJ, Barg S, Tengholm A, Otonkoski T. RFX6 haploinsufficiency predisposes to diabetes through impaired beta cell function. Diabetologia 2024; 67:1642-1662. [PMID: 38743124 PMCID: PMC11343796 DOI: 10.1007/s00125-024-06163-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/21/2024] [Indexed: 05/16/2024]
Abstract
AIMS/HYPOTHESIS Regulatory factor X 6 (RFX6) is crucial for pancreatic endocrine development and differentiation. The RFX6 variant p.His293LeufsTer7 is significantly enriched in the Finnish population, with almost 1:250 individuals as a carrier. Importantly, the FinnGen study indicates a high predisposition for heterozygous carriers to develop type 2 and gestational diabetes. However, the precise mechanism of this predisposition remains unknown. METHODS To understand the role of this variant in beta cell development and function, we used CRISPR technology to generate allelic series of pluripotent stem cells. We created two isogenic stem cell models: a human embryonic stem cell model; and a patient-derived stem cell model. Both were differentiated into pancreatic islet lineages (stem-cell-derived islets, SC-islets), followed by implantation in immunocompromised NOD-SCID-Gamma mice. RESULTS Stem cell models of the homozygous variant RFX6-/- predictably failed to generate insulin-secreting pancreatic beta cells, mirroring the phenotype observed in Mitchell-Riley syndrome. Notably, at the pancreatic endocrine stage, there was an upregulation of precursor markers NEUROG3 and SOX9, accompanied by increased apoptosis. Intriguingly, heterozygous RFX6+/- SC-islets exhibited RFX6 haploinsufficiency (54.2% reduction in protein expression), associated with reduced beta cell maturation markers, altered calcium signalling and impaired insulin secretion (62% and 54% reduction in basal and high glucose conditions, respectively). However, RFX6 haploinsufficiency did not have an impact on beta cell number or insulin content. The reduced insulin secretion persisted after in vivo implantation in mice, aligning with the increased risk of variant carriers to develop diabetes. CONCLUSIONS/INTERPRETATION Our allelic series isogenic SC-islet models represent a powerful tool to elucidate specific aetiologies of diabetes in humans, enabling the sensitive detection of aberrations in both beta cell development and function. We highlight the critical role of RFX6 in augmenting and maintaining the pancreatic progenitor pool, with an endocrine roadblock and increased cell death upon its loss. We demonstrate that RFX6 haploinsufficiency does not affect beta cell number or insulin content but does impair function, predisposing heterozygous carriers of loss-of-function variants to diabetes. DATA AVAILABILITY Ultra-deep bulk RNA-seq data for pancreatic differentiation stages 3, 5 and 7 of H1 RFX6 genotypes are deposited in the Gene Expression Omnibus database with accession code GSE234289. Original western blot images are deposited at Mendeley ( https://data.mendeley.com/datasets/g75drr3mgw/2 ).
Collapse
Affiliation(s)
- Hazem Ibrahim
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Diego Balboa
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jonna Saarimäki-Vire
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Hossam Montaser
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Oleg Dyachok
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Per-Eric Lund
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | | | - Jouni Kvist
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Om P Dwivedi
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, Helsinki, Finland
- Research Program of Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| | - Väinö Lithovius
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tom Barsby
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Vikash Chandra
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Solja Eurola
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jarkko Ustinov
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tiinamaija Tuomi
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, Helsinki, Finland
- Research Program of Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Finland
- Abdominal Center, Endocrinology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Päivi J Miettinen
- Department of Pediatrics, Helsinki University Hospital, Helsinki, Finland
| | - Sebastian Barg
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Anders Tengholm
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Timo Otonkoski
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Department of Pediatrics, Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
6
|
Fadahunsi N, Petersen J, Metz S, Jakobsen A, Vad Mathiesen C, Silke Buch-Rasmussen A, Kurgan N, Kjærgaard Larsen J, Andersen RC, Topilko T, Svendsen C, Apuschkin M, Skovbjerg G, Hendrik Schmidt J, Houser G, Elgaard Jager S, Bach A, Deshmukh AS, Kilpeläinen TO, Strømgaard K, Madsen KL, Clemmensen C. Targeting postsynaptic glutamate receptor scaffolding proteins PSD-95 and PICK1 for obesity treatment. SCIENCE ADVANCES 2024; 10:eadg2636. [PMID: 38427737 PMCID: PMC10906926 DOI: 10.1126/sciadv.adg2636] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/29/2024] [Indexed: 03/03/2024]
Abstract
Human genome-wide association studies (GWAS) suggest a functional role for central glutamate receptor signaling and plasticity in body weight regulation. Here, we use UK Biobank GWAS summary statistics of body mass index (BMI) and body fat percentage (BF%) to identify genes encoding proteins known to interact with postsynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-d-aspartate (NMDA) receptors. Loci in/near discs large homolog 4 (DLG4) and protein interacting with C kinase 1 (PICK1) reached genome-wide significance (P < 5 × 10-8) for BF% and/or BMI. To further evaluate the functional role of postsynaptic density protein-95 (PSD-95; gene name: DLG4) and PICK1 in energy homeostasis, we used dimeric PSD-95/disc large/ZO-1 (PDZ) domain-targeting peptides of PSD-95 and PICK1 to demonstrate that pharmacological inhibition of PSD-95 and PICK1 induces prolonged weight-lowering effects in obese mice. Collectively, these data demonstrate that the glutamate receptor scaffolding proteins, PICK1 and PSD-95, are genetically linked to obesity and that pharmacological targeting of their PDZ domains represents a promising therapeutic avenue for sustained weight loss.
Collapse
Affiliation(s)
- Nicole Fadahunsi
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Jonas Petersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Sophia Metz
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Alexander Jakobsen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cecilie Vad Mathiesen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Alberte Silke Buch-Rasmussen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark
| | - Nigel Kurgan
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Jeppe Kjærgaard Larsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Rita C. Andersen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Charlotte Svendsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Mia Apuschkin
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Grethe Skovbjerg
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Gubra, Hørsholm, Denmark
| | - Jan Hendrik Schmidt
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Grace Houser
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sara Elgaard Jager
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders Bach
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Atul S. Deshmukh
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Tuomas O. Kilpeläinen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Strømgaard
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Kenneth L. Madsen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christoffer Clemmensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Jin J, Li K, Du Y, Gao F, Wang Z, Li W. Multi-omics study identifies that PICK1 deficiency causes male infertility by inhibiting vesicle trafficking in Sertoli cells. Reprod Biol Endocrinol 2023; 21:114. [PMID: 38001535 PMCID: PMC10675906 DOI: 10.1186/s12958-023-01163-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Infertility affects approximately 10-15% of reproductive-age men worldwide, and genetic causes play a role in one-third of cases. As a Bin-Amphiphysin-Rvs (BAR) domain protein, protein interacting with C-kinase 1 (PICK1) deficiency could lead to impairment of acrosome maturation. However, its effects on auxiliary germ cells such as Sertoli cells are unknown. PURPOSE The present work was aimed to use multi-omics analysis to research the effects of PICK1 deficiency on Sertoli cells and to identify effective biomarkers to distinguish fertile males from infertile males caused by PICK1 deficiency. METHODS Whole-exome sequencing (WES) was performed on 20 infertility patients with oligozoospermia to identify pathogenic PICK1 mutations. Multi-omics analysis of a PICK1 knockout (KO) mouse model was utilized to identify pathogenic mechanism. Animal and cell function experiments of Sertoli cell-specific PICK1 KO mouse were performed to verify the functional impairment of Sertoli cells. RESULTS Two loss-of-function deletion mutations c.358delA and c.364delA in PICK1 resulting in transcription loss of BAR functional domain were identified in infertility patients with a specific decrease in serum inhibin B, indicating functional impairment of Sertoli cells. Multi-omics analysis of PICK1 KO mouse illustrated that targeted genes of differentially expressed microRNAs and mRNAs are significantly enriched in the negative regulatory role in the vesicle trafficking pathway, while metabolomics analysis showed that the metabolism of amino acids, lipids, cofactors, vitamins, and endocrine factors changed. The phenotype of PICK1 KO mouse showed a reduction in testis volume, a decreased number of mature spermatozoa and impaired secretory function of Sertoli cells. In vitro experiments confirmed that the expression of growth factors secreted by Sertoli cells in PICK1 conditional KO mouse such as Bone morphogenetic protein 4 (BMP4) and Fibroblast growth factor 2 (FGF2) were decreased. CONCLUSIONS Our study attributed male infertility caused by PICK1 deficiency to impaired vesicle-related secretory function of Sertoli cells and identified a variety of significant candidate biomarkers for male infertility induced by PICK1 deficiency.
Collapse
Affiliation(s)
- Jing Jin
- Laboratory Medicine Center, Zhejiang Center for Clinical Laboratories, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310000, Zhejiang, China
| | - Kaiqiang Li
- Laboratory Medicine Center, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310000, Zhejiang, China
| | - Yaoqiang Du
- Laboratory Medicine Center, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310000, Zhejiang, China
| | - Fang Gao
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310000, Zhejiang, China
| | - Zhen Wang
- Laboratory Medicine Center, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310000, Zhejiang, China.
| | - Weixing Li
- Laboratory Medicine Center, Zhejiang Center for Clinical Laboratories, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310000, Zhejiang, China.
| |
Collapse
|
8
|
Loh YP, Xiao L, Park JJ. Trafficking of hormones and trophic factors to secretory and extracellular vesicles: a historical perspective and new hypothesis. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2023; 4:568-587. [PMID: 38435713 PMCID: PMC10906782 DOI: 10.20517/evcna.2023.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
It is well known that peptide hormones and neurotrophic factors are intercellular messengers that are packaged into secretory vesicles in endocrine cells and neurons and released by exocytosis upon the stimulation of the cells in a calcium-dependent manner. These secreted molecules bind to membrane receptors, which then activate signal transduction pathways to mediate various endocrine/trophic functions. Recently, there is evidence that these molecules are also in extracellular vesicles, including small extracellular vesicles (sEVs), which appear to be taken up by recipient cells. This finding raised the hypothesis that they may have functions differentiated from their classical secretory hormone/neurotrophic factor actions. In this article, the historical perspective and updated mechanisms for the sorting and packaging of hormones and neurotrophic factors into secretory vesicles and their transport in these organelles for release at the plasma membrane are reviewed. In contrast, little is known about the packaging of hormones and neurotrophic factors into extracellular vesicles. One proposal is that these molecules could be sorted at the trans-Golgi network, which then buds to form Golgi-derived vesicles that can fuse to endosomes and subsequently form intraluminal vesicles. They are then taken up by multivesicular bodies to form extracellular vesicles, which are subsequently released. Other possible mechanisms for packaging RSP proteins into sEVs are discussed. We highlight some studies in the literature that suggest the dual vesicular pathways for the release of hormones and neurotrophic factors from the cell may have some physiological significance in intercellular communication.
Collapse
Affiliation(s)
- Y. Peng Loh
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lan Xiao
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joshua J. Park
- Scientific Review Branch, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
9
|
Hummer BH, Carter T, Sellers BL, Triplett JD, Asensio CS. Identification of the functional domain of the dense core vesicle biogenesis factor HID-1. PLoS One 2023; 18:e0291977. [PMID: 37751424 PMCID: PMC10522040 DOI: 10.1371/journal.pone.0291977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023] Open
Abstract
Large dense core vesicles (LDCVs) mediate the regulated release of neuropeptides and peptide hormones. HID-1 is a trans-Golgi network (TGN) localized peripheral membrane protein contributing to LDCV formation. There is no information about HID-1 structure or domain architecture, and thus it remains unknown how HID-1 binds to the TGN and performs its function. We report that the N-terminus of HID-1 mediates membrane binding through a myristoyl group with a polybasic amino acid patch but lacks specificity for the TGN. In addition, we show that the C-terminus serves as the functional domain. Indeed, this isolated domain, when tethered to the TGN, can rescue the neuroendocrine secretion and sorting defects observed in HID-1 KO cells. Finally, we report that a point mutation within that domain, identified in patients with endocrine and neurological deficits, leads to loss of function.
Collapse
Affiliation(s)
- Blake H. Hummer
- Department of Biological Sciences, University of Denver, Denver, CO, United States of America
| | - Theodore Carter
- Department of Biological Sciences, University of Denver, Denver, CO, United States of America
| | - Breanna L. Sellers
- Department of Biological Sciences, University of Denver, Denver, CO, United States of America
| | - Jenna D. Triplett
- Department of Biological Sciences, University of Denver, Denver, CO, United States of America
| | - Cedric S. Asensio
- Department of Biological Sciences, University of Denver, Denver, CO, United States of America
| |
Collapse
|
10
|
Toledo PL, Vazquez DS, Gianotti AR, Abate MB, Wegbrod C, Torkko JM, Solimena M, Ermácora MR. Condensation of the β-cell secretory granule luminal cargoes pro/insulin and ICA512 RESP18 homology domain. Protein Sci 2023; 32:e4649. [PMID: 37159024 PMCID: PMC10201709 DOI: 10.1002/pro.4649] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/10/2023]
Abstract
ICA512/PTPRN is a receptor tyrosine-like phosphatase implicated in the biogenesis and turnover of the insulin secretory granules (SGs) in pancreatic islet beta cells. Previously we found biophysical evidence that its luminal RESP18 homology domain (RESP18HD) forms a biomolecular condensate and interacts with insulin in vitro at close-to-neutral pH, that is, in conditions resembling those present in the early secretory pathway. Here we provide further evidence for the relevance of these findings by showing that at pH 6.8 RESP18HD interacts also with proinsulin-the physiological insulin precursor found in the early secretory pathway and the major luminal cargo of β-cell nascent SGs. Our light scattering analyses indicate that RESP18HD and proinsulin, but also insulin, populate nanocondensates ranging in size from 15 to 300 nm and 10e2 to 10e6 molecules. Co-condensation of RESP18HD with proinsulin/insulin transforms the initial nanocondensates into microcondensates (size >1 μm). The intrinsic tendency of proinsulin to self-condensate implies that, in the ER, a chaperoning mechanism must arrest its spontaneous intermolecular condensation to allow for proper intramolecular folding. These data further suggest that proinsulin is an early driver of insulin SG biogenesis, in a process in which its co-condensation with RESP18HD participates in their phase separation from other secretory proteins in transit through the same compartments but destined to other routes. Through the cytosolic tail of ICA512, proinsulin co-condensation with RESP18HD may further orchestrate the recruitment of cytosolic factors involved in membrane budding and fission of transport vesicles and nascent SGs.
Collapse
Affiliation(s)
- Pamela L. Toledo
- Departamento de Ciencia y TecnologíaUniversidad Nacional de QuilmesProvincia de Buenos AiresArgentina
- Grupo de Biología Estructural y Biotecnología, IMBICE, CONICETUniversidad Nacional de QuilmesProvincia de Buenos AiresArgentina
| | - Diego S. Vazquez
- Departamento de Ciencia y TecnologíaUniversidad Nacional de QuilmesProvincia de Buenos AiresArgentina
- Grupo de Biología Estructural y Biotecnología, IMBICE, CONICETUniversidad Nacional de QuilmesProvincia de Buenos AiresArgentina
| | - Alejo R. Gianotti
- Departamento de Ciencia y TecnologíaUniversidad Nacional de QuilmesProvincia de Buenos AiresArgentina
- Grupo de Biología Estructural y Biotecnología, IMBICE, CONICETUniversidad Nacional de QuilmesProvincia de Buenos AiresArgentina
| | - Milagros B. Abate
- Departamento de Ciencia y TecnologíaUniversidad Nacional de QuilmesProvincia de Buenos AiresArgentina
- Grupo de Biología Estructural y Biotecnología, IMBICE, CONICETUniversidad Nacional de QuilmesProvincia de Buenos AiresArgentina
| | - Carolin Wegbrod
- Department of Molecular DiabetologyUniversity Hospital and Faculty of Medicine, TU DresdenDresdenGermany
- Paul Langerhans Institute Dresden of Helmholtz Munich at the University Hospital and Faculty of Medicine, TU DresdenDresdenGermany
- German Center for Diabetes Research (DZD e.V.)NeuherbergGermany
| | - Juha M. Torkko
- Department of Molecular DiabetologyUniversity Hospital and Faculty of Medicine, TU DresdenDresdenGermany
- Paul Langerhans Institute Dresden of Helmholtz Munich at the University Hospital and Faculty of Medicine, TU DresdenDresdenGermany
- German Center for Diabetes Research (DZD e.V.)NeuherbergGermany
| | - Michele Solimena
- Department of Molecular DiabetologyUniversity Hospital and Faculty of Medicine, TU DresdenDresdenGermany
- Paul Langerhans Institute Dresden of Helmholtz Munich at the University Hospital and Faculty of Medicine, TU DresdenDresdenGermany
- German Center for Diabetes Research (DZD e.V.)NeuherbergGermany
| | - Mario R. Ermácora
- Departamento de Ciencia y TecnologíaUniversidad Nacional de QuilmesProvincia de Buenos AiresArgentina
- Grupo de Biología Estructural y Biotecnología, IMBICE, CONICETUniversidad Nacional de QuilmesProvincia de Buenos AiresArgentina
| |
Collapse
|
11
|
Chiu SL, Chen CM, Huganir RL. ICA69 regulates activity-dependent synaptic strengthening and learning and memory. Front Mol Neurosci 2023; 16:1171432. [PMID: 37251649 PMCID: PMC10213502 DOI: 10.3389/fnmol.2023.1171432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/13/2023] [Indexed: 05/31/2023] Open
Abstract
Long-term potentiation (LTP) is one of the major cellular mechanisms for learning and memory. Activity-dependent increases in surface AMPA receptors (AMPARs) are important for enhanced synaptic efficacy during LTP. Here, we report a novel function of a secretory trafficking protein, ICA69, in AMPAR trafficking, synaptic plasticity, and animal cognition. ICA69 is first identified as a diabetes-associated protein well characterized for its function in the biogenesis of secretory vesicles and trafficking of insulin from ER, Golgi to post-Golgi in pancreatic beta cells. In the brain, ICA69 is found in the AMPAR protein complex through its interaction with PICK1, which binds directly to GluA2 or GluA3 AMPAR subunits. Here, we showed that ICA69 regulates PICK1's distribution in neurons and stability in the mouse hippocampus, which in turn can impact AMPAR function in the brain. Biochemical analysis of postsynaptic density (PSD) proteins from hippocampi of mice lacking ICA69 (Ica1 knockout) and their wild-type littermates revealed comparable AMPAR protein levels. Electrophysiological recording and morphological analysis of CA1 pyramidal neurons from Ica1 knockout also showed normal AMPAR-mediated currents and dendrite architecture, indicating that ICA69 does not regulate synaptic AMPAR function and neuron morphology at the basal state. However, genetic deletion of ICA69 in mice selectively impairs NMDA receptor (NMDAR)-dependent LTP but not LTD at Schaffer collateral to CA1 synapses, which correlates with behavioral deficits in tests of spatial and associative learning and memory. Together, we identified a critical and selective role of ICA69 in LTP, linking ICA69-mediated synaptic strengthening to hippocampus-dependent learning and memory.
Collapse
Affiliation(s)
- Shu-Ling Chiu
- Institute of Cellular and Organismic Biology and Neuroscience Program of Academia Sinica (NPAS), Academia Sinica, Taipei, Taiwan
- Solomon H. Snyder Department of Neuroscience and Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Chih-Ming Chen
- Solomon H. Snyder Department of Neuroscience and Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Richard L. Huganir
- Solomon H. Snyder Department of Neuroscience and Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
12
|
Backe MB, Andersen RC, Jensen M, Jin C, Hundahl C, Dmytriyeva O, Treebak JT, Hansen JB, Gerhart-Hines Z, Madsen KL, Holst B. PICK1-Deficient Mice Maintain Their Glucose Tolerance During Diet-Induced Obesity. J Endocr Soc 2023; 7:bvad057. [PMID: 37200849 PMCID: PMC10185814 DOI: 10.1210/jendso/bvad057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Indexed: 05/20/2023] Open
Abstract
Context Metabolic disorders such as obesity represent a major health challenge. Obesity alone has reached epidemic proportions, with at least 2.8 million people worldwide dying annually from diseases caused by overweight or obesity. The brain-metabolic axis is central to maintain homeostasis under metabolic stress via an intricate signaling network of hormones. Protein interacting with C kinase 1 (PICK1) is important for the biogenesis of various secretory vesicles, and we have previously shown that PICK1-deficient mice have impaired secretion of insulin and growth hormone. Objective The aim was to investigate how global PICK1-deficient mice respond to high-fat diet (HFD) and assess its role in insulin secretion in diet-induced obesity. Methods We characterized the metabolic phenotype through assessment of body weight, composition, glucose tolerance, islet morphology insulin secretion in vivo, and glucose-stimulated insulin secretion ex vivo. Results PICK1-deficient mice displayed similar weight gain and body composition as wild-type (WT) mice following HFD. While HFD impaired glucose tolerance of WT mice, PICK1-deficient mice were resistant to further deterioration of their glucose tolerance compared with already glucose-impaired chow-fed PICK1-deficient mice. Surprisingly, mice with β-cell-specific knockdown of PICK1 showed impaired glucose tolerance both on chow and HFD similar to WT mice. Conclusion Our findings support the importance of PICK1 in overall hormone regulation. However, importantly, this effect is independent of the PICK1 expression in the β-cell, whereby global PICK1-deficient mice resist further deterioration of their glucose tolerance following diet-induced obesity.
Collapse
Affiliation(s)
- Marie Balslev Backe
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Clinical Epidemiology, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
| | - Rita Chan Andersen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Morten Jensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Chunyu Jin
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Cecilie Hundahl
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Oksana Dmytriyeva
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jakob Bondo Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Zach Gerhart-Hines
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kenneth L Madsen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Birgitte Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
13
|
Sørensen AT, Rombach J, Gether U, Madsen KL. The Scaffold Protein PICK1 as a Target in Chronic Pain. Cells 2022; 11:1255. [PMID: 35455935 PMCID: PMC9031029 DOI: 10.3390/cells11081255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/23/2022] [Accepted: 03/30/2022] [Indexed: 02/05/2023] Open
Abstract
Well-tolerated and effective drugs for treating chronic pain conditions are urgently needed. Most chronic pain patients are not effectively relieved from their pain and suffer from debilitating drug side effects. This has not only drastic negative consequences for the patients' quality of life, but also constitute an enormous burden on society. It is therefore of great interest to explore new potent targets for effective pain treatment with fewer side effects and without addiction liability. A critical component of chronic pain conditions is central sensitization, which involves the reorganization and strengthening of synaptic transmission within nociceptive pathways. Such changes are considered as maladaptive and depend on changes in the surface expression and signaling of AMPA-type glutamate receptors (AMPARs). The PDZ-domain scaffold protein PICK1 binds the AMPARs and has been suggested to play a key role in these maladaptive changes. In the present paper, we review the regulation of AMPARs by PICK1 and its relation to pain pathology. Moreover, we highlight other pain-relevant PICK1 interactions, and we evaluate various compounds that target PICK1 and have been successfully tested in pain models. Finally, we evaluate the potential on-target side effects of interfering with the action of PICK1 action in CNS and beyond. We conclude that PICK1 constitutes a valid drug target for the treatment of inflammatory and neuropathic pain conditions without the side effects and abuse liability associated with current pain medication.
Collapse
Affiliation(s)
| | | | | | - Kenneth Lindegaard Madsen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark; (A.T.S.); (J.R.); (U.G.)
| |
Collapse
|
14
|
Connexin 43 gap junction-mediated astrocytic network reconstruction attenuates isoflurane-induced cognitive dysfunction in mice. J Neuroinflammation 2022; 19:64. [PMID: 35255943 PMCID: PMC8903726 DOI: 10.1186/s12974-022-02424-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/23/2022] [Indexed: 01/18/2023] Open
Abstract
Background Postoperative cognitive dysfunction (POCD) is a common complication following anesthesia and surgery. General anesthetic isoflurane has potential neurotoxicity and induces cognitive impairments, but the exact mechanism remains unclear. Astrocytes form interconnected networks in the adult brain through gap junctions (GJs), which primarily comprise connexin 43 (Cx43), and play important roles in brain homeostasis and functions such as memory. However, the role of the GJ-Cx43-mediated astrocytic network in isoflurane-induced cognitive dysfunction has not been defined. Methods 4-month-old male C57BL/6 mice were exposure to long-term isoflurane to induce cognitive impairment. To simulate an in vitro isoflurane-induced cognitive dysfunction‐like condition, primary mouse astrocytes were subjected to long-term isoflurane exposure. Cognitive function was assessed by Y-maze and fear conditioning tests. Western blot was used to determine the expression levels of different functional configurations of Cx43. The morphology of the GJs-Cx43 was evaluated by immunofluorescence staining. Levels of IL-1β and IL-6 were examined by ELISA. The ability of GJs-Cx43-mediated intercellular communication was examined by lucifer yellow dye transfer assay. Ethidium bromide uptake assays were used to measure the activity of Cx43 hemichannels. The ultrastructural morphology of astrocyte gap junctions and tripartite synapse were observed by transmission electron microscopy. Results After long-term isoflurane anesthesia, the GJs formed by Cx43 in the mouse hippocampus and primary mouse astrocytes were significantly reduced, GJs function was impaired, hemichannel activity was enhanced, the levels of IL-1β and IL-6 were increased, and mice showed significant cognitive impairment. After treatment with the novel GJ-Cx43 enhancer ZP1609, GJ-Cx43-mediated astrocytic network function was enhanced, neuroinflammation was alleviated, and ameliorated cognition dysfunction induced by long-term isoflurane exposure. However, ZP1609 enhances the astrocytic network by promoting Cx43 to form GJs without affecting hemichannel activity. Additionally, our data showed that long-term isoflurane exposure does not alter the structure of tripartite synapse. Conclusion Our results reveal a novel mechanism of the GJ-Cx43-mediated astrocytic network involved in isoflurane-induced neuroinflammation and cognitive impairments, which provides new mechanistic insight into the pathogenesis of POCD and identifies potential targets for its treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02424-y.
Collapse
|
15
|
Binkle L, Klein M, Borgmeyer U, Kuhl D, Hermey G. The adaptor protein PICK1 targets the sorting receptor SorLA. Mol Brain 2022; 15:18. [PMID: 35183222 PMCID: PMC8858569 DOI: 10.1186/s13041-022-00903-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/07/2022] [Indexed: 11/26/2022] Open
Abstract
SorLA is a member of the Vps10p-domain (Vps10p-D) receptor family of type-I transmembrane proteins conveying neuronal endosomal sorting. The extracellular/luminal moiety of SorLA has a unique mosaic domain composition and interacts with a large number of different and partially unrelated ligands, including the amyloid precursor protein as well as amyloid-β. Several studies support a strong association of SorLA with sporadic and familial forms of Alzheimer’s disease (AD). Although SorLA seems to be an important factor in AD, the large number of different ligands suggests a role as a neuronal multifunctional receptor with additional intracellular sorting capacities. Therefore, understanding the determinants of SorLA’s subcellular targeting might be pertinent for understanding neuronal endosomal sorting mechanisms in general. A number of cytosolic adaptor proteins have already been demonstrated to determine intracellular trafficking of SorLA. Most of these adaptors and several ligands of the extracellular/luminal moiety are shared with the Vps10p-D receptor Sortilin. Although SorLA and Sortilin show both a predominant intracellular and endosomal localization, they are targeted to different endosomal compartments. Thus, independent adaptor proteins may convey their differential endosomal targeting. Here, we hypothesized that Sortilin and SorLA interact with the cytosolic adaptors PSD95 and PICK1 which have been shown to bind the Vps10p-D receptor SorCS3. We observed only an interaction for SorLA and PICK1 in mammalian-two-hybrid, pull-down and cellular recruitment experiments. We demonstrate by mutational analysis that the C-terminal minimal PDZ domain binding motif VIA of SorLA mediates the interaction. Moreover, we show co-localization of SorLA and PICK1 at vesicular structures in primary neurons. Although the physiological role of the interaction between PICK1 and SorLA remains unsolved, our study suggests that PICK1 partakes in regulating SorLA’s intracellular itinerary.
Collapse
|
16
|
Andersen RC, Schmidt JH, Rombach J, Lycas MD, Christensen NR, Lund VK, Stapleton DS, Pedersen SS, Olsen MA, Stoklund M, Noes-Holt G, Nielsen TT, Keller MP, Jansen AM, Herlo R, Pietropaolo M, Simonsen JB, Kjærulff O, Holst B, Attie AD, Gether U, Madsen KL. Coding variants identified in diabetic patients alter PICK1 BAR domain function in insulin granule biogenesis. J Clin Invest 2022; 132:144904. [PMID: 35077398 PMCID: PMC8884907 DOI: 10.1172/jci144904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/14/2022] [Indexed: 11/17/2022] Open
Abstract
Bin/amphiphysin/Rvs (BAR) domains are positively charged crescent-shaped modules that mediate curvature of negatively charged lipid membranes during remodeling processes. The BAR domain proteins PICK1, ICA69, and the arfaptins have recently been demonstrated to coordinate the budding and formation of immature secretory granules (ISGs) at the trans-Golgi network. Here, we identify 4 coding variants in the PICK1 gene from a whole-exome screening of Danish patients with diabetes that each involve a change in positively charged residues in the PICK1 BAR domain. All 4 coding variants failed to rescue insulin content in INS-1E cells upon knock down of endogenous PICK1. Moreover, 2 variants showed dominant-negative properties. In vitro assays addressing BAR domain function suggested that the coding variants compromised BAR domain function but increased the capacity to cause fission of liposomes. Live confocal microscopy and super-resolution microscopy further revealed that PICK1 resides transiently on ISGs before egress via vesicular budding events. Interestingly, this egress of PICK1 was accelerated in the coding variants. We propose that PICK1 assists in or complements the removal of excess membrane and generic membrane trafficking proteins, and possibly also insulin, from ISGs during the maturation process; and that the coding variants may cause premature budding, possibly explaining their dominant-negative function.
Collapse
Affiliation(s)
- Rita C. Andersen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jan H. Schmidt
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Joscha Rombach
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Matthew D. Lycas
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nikolaj R. Christensen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Viktor K. Lund
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Donnie S. Stapleton
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Signe S. Pedersen
- Beta Cell Biology Group, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mathias A. Olsen
- Beta Cell Biology Group, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel Stoklund
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gith Noes-Holt
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tommas T.E. Nielsen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mark P. Keller
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Anna M. Jansen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Herlo
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Massimo Pietropaolo
- Diabetes Research Center, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Jens B. Simonsen
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ole Kjærulff
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alan D. Attie
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Ulrik Gether
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kenneth L. Madsen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
17
|
Jensen KL, Noes-Holt G, Sørensen AT, Madsen KL. A Novel Peripheral Action of PICK1 Inhibition in Inflammatory Pain. Front Cell Neurosci 2021; 15:750902. [PMID: 34975407 PMCID: PMC8714954 DOI: 10.3389/fncel.2021.750902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/25/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic pain is a major healthcare problem that impacts one in five adults across the globe. Current treatment is compromised by dose-limiting side effects including drowsiness, apathy, fatigue, loss of ability to function socially and professionally as well as a high abuse liability. Most of these side effects result from broad suppression of excitatory neurotransmission. Chronic pain states are associated with specific changes in the efficacy of synaptic transmission in the pain pathways leading to amplification of non-noxious stimuli and spontaneous pain. Consequently, a reversal of these specific changes may pave the way for the development of efficacious pain treatment with fewer side effects. We have recently described a high-affinity, bivalent peptide TAT-P4-(C5)2, enabling efficient targeting of the neuronal scaffold protein, PICK1, a key protein in mediating chronic pain sensitization. In the present study, we demonstrate that in an inflammatory pain model, the peptide does not only relieve mechanical allodynia by targeting PICK1 involved in central sensitization, but also by peripheral actions in the inflamed paw. Further, we assess the effects of the peptide on novelty-induced locomotor activity, abuse liability, and memory performance without identifying significant side effects.
Collapse
Affiliation(s)
- Kathrine Louise Jensen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Kenneth Lindegaard Madsen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Lund VK, Lycas MD, Schack A, Andersen RC, Gether U, Kjaerulff O. Rab2 drives axonal transport of dense core vesicles and lysosomal organelles. Cell Rep 2021; 35:108973. [PMID: 33852866 DOI: 10.1016/j.celrep.2021.108973] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 02/10/2021] [Accepted: 03/19/2021] [Indexed: 12/18/2022] Open
Abstract
Fast axonal transport of neuropeptide-containing dense core vesicles (DCVs), endolysosomal organelles, and presynaptic components is critical for maintaining neuronal functionality. How the transport of DCVs is orchestrated remains an important unresolved question. The small GTPase Rab2 mediates DCV biogenesis and endosome-lysosome fusion. Here, we use Drosophila to demonstrate that Rab2 also plays a critical role in bidirectional axonal transport of DCVs, endosomes, and lysosomal organelles, most likely by controlling molecular motors. We further show that the lysosomal motility factor Arl8 is required as well for axonal transport of DCVs, but unlike Rab2, it is also critical for DCV exit from cell bodies into axons. We also provide evidence that the upstream regulators of Rab2 and Arl8, Ema and BORC, activate these GTPases during DCV transport. Our results uncover the mechanisms underlying axonal transport of DCVs and reveal surprising parallels between the regulation of DCV and lysosomal motility.
Collapse
Affiliation(s)
- Viktor Karlovich Lund
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Matthew Domenic Lycas
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Anders Schack
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Rita Chan Andersen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Ulrik Gether
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Ole Kjaerulff
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark.
| |
Collapse
|
19
|
Burns CH, Yau B, Rodriguez A, Triplett J, Maslar D, An YS, van der Welle REN, Kossina RG, Fisher MR, Strout GW, Bayguinov PO, Veenendaal T, Chitayat D, Fitzpatrick JAJ, Klumperman J, Kebede MA, Asensio CS. Pancreatic β-Cell-Specific Deletion of VPS41 Causes Diabetes Due to Defects in Insulin Secretion. Diabetes 2021; 70:436-448. [PMID: 33168621 PMCID: PMC7881869 DOI: 10.2337/db20-0454] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022]
Abstract
Insulin secretory granules (SGs) mediate the regulated secretion of insulin, which is essential for glucose homeostasis. The basic machinery responsible for this regulated exocytosis consists of specific proteins present both at the plasma membrane and on insulin SGs. The protein composition of insulin SGs thus dictates their release properties, yet the mechanisms controlling insulin SG formation, which determine this molecular composition, remain poorly understood. VPS41, a component of the endolysosomal tethering homotypic fusion and vacuole protein sorting (HOPS) complex, was recently identified as a cytosolic factor involved in the formation of neuroendocrine and neuronal granules. We now find that VPS41 is required for insulin SG biogenesis and regulated insulin secretion. Loss of VPS41 in pancreatic β-cells leads to a reduction in insulin SG number, changes in their transmembrane protein composition, and defects in granule-regulated exocytosis. Exploring a human point mutation, identified in patients with neurological but no endocrine defects, we show that the effect on SG formation is independent of HOPS complex formation. Finally, we report that mice with a deletion of VPS41 specifically in β-cells develop diabetes due to severe depletion of insulin SG content and a defect in insulin secretion. In sum, our data demonstrate that VPS41 contributes to glucose homeostasis and metabolism.
Collapse
Affiliation(s)
| | - Belinda Yau
- Discipline of Physiology, School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | | | - Jenna Triplett
- Department of Biological Sciences, University of Denver, Denver, CO
| | - Drew Maslar
- Department of Biological Sciences, University of Denver, Denver, CO
| | - You Sun An
- Discipline of Physiology, School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Reini E N van der Welle
- Section of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Ross G Kossina
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO
| | - Max R Fisher
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO
| | - Gregory W Strout
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO
| | - Peter O Bayguinov
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO
| | - Tineke Veenendaal
- Section of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - David Chitayat
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, Canada
| | - James A J Fitzpatrick
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO
- Departments of Neuroscience and Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO
| | - Judith Klumperman
- Section of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Melkam A Kebede
- Discipline of Physiology, School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Cedric S Asensio
- Department of Biological Sciences, University of Denver, Denver, CO
| |
Collapse
|
20
|
Liu M, Huang Y, Xu X, Li X, Alam M, Arunagiri A, Haataja L, Ding L, Wang S, Itkin-Ansari P, Kaufman RJ, Tsai B, Qi L, Arvan P. Normal and defective pathways in biogenesis and maintenance of the insulin storage pool. J Clin Invest 2021; 131:142240. [PMID: 33463547 PMCID: PMC7810482 DOI: 10.1172/jci142240] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Both basal and glucose-stimulated insulin release occur primarily by insulin secretory granule exocytosis from pancreatic β cells, and both are needed to maintain normoglycemia. Loss of insulin-secreting β cells, accompanied by abnormal glucose tolerance, may involve simple exhaustion of insulin reserves (which, by immunostaining, appears as a loss of β cell identity), or β cell dedifferentiation, or β cell death. While various sensing and signaling defects can result in diminished insulin secretion, somewhat less attention has been paid to diabetes risk caused by insufficiency in the biosynthetic generation and maintenance of the total insulin granule storage pool. This Review offers an overview of insulin biosynthesis, beginning with the preproinsulin mRNA (translation and translocation into the ER), proinsulin folding and export from the ER, and delivery via the Golgi complex to secretory granules for conversion to insulin and ultimate hormone storage. All of these steps are needed for generation and maintenance of the total insulin granule pool, and defects in any of these steps may, weakly or strongly, perturb glycemic control. The foregoing considerations have obvious potential relevance to the pathogenesis of type 2 diabetes and some forms of monogenic diabetes; conceivably, several of these concepts might also have implications for β cell failure in type 1 diabetes.
Collapse
Affiliation(s)
- Ming Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Yumeng Huang
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Xiaoxi Xu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Xin Li
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Maroof Alam
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Anoop Arunagiri
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Leena Haataja
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Li Ding
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Shusen Wang
- Organ Transplant Center, Tianjin First Central Hospital, Tianjin, China
| | | | - Randal J. Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Billy Tsai
- Department of Cell and Developmental Biology, and
| | - Ling Qi
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Peter Arvan
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
21
|
The adaptor protein APPL2 controls glucose-stimulated insulin secretion via F-actin remodeling in pancreatic β-cells. Proc Natl Acad Sci U S A 2020; 117:28307-28315. [PMID: 33122440 DOI: 10.1073/pnas.2016997117] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Filamentous actin (F-actin) cytoskeletal remodeling is critical for glucose-stimulated insulin secretion (GSIS) in pancreatic β-cells, and its dysregulation causes type 2 diabetes. The adaptor protein APPL1 promotes first-phase GSIS by up-regulating soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein expression. However, whether APPL2 (a close homology of APPL1 with the same domain organization) plays a role in β-cell functions is unknown. Here, we show that APPL2 enhances GSIS by promoting F-actin remodeling via the small GTPase Rac1 in pancreatic β-cells. β-cell specific abrogation of APPL2 impaired GSIS, leading to glucose intolerance in mice. APPL2 deficiency largely abolished glucose-induced first- and second-phase insulin secretion in pancreatic islets. Real-time live-cell imaging and phalloidin staining revealed that APPL2 deficiency abolished glucose-induced F-actin depolymerization in pancreatic islets. Likewise, knockdown of APPL2 expression impaired glucose-stimulated F-actin depolymerization and subsequent insulin secretion in INS-1E cells, which were attributable to the impairment of Ras-related C3 botulinum toxin substrate 1 (Rac1) activation. Treatment with the F-actin depolymerization chemical compounds or overexpression of gelsolin (a F-actin remodeling protein) rescued APPL2 deficiency-induced defective GSIS. In addition, APPL2 interacted with Rac GTPase activating protein 1 (RacGAP1) in a glucose-dependent manner via the bin/amphiphysin/rvs-pleckstrin homology (BAR-PH) domain of APPL2 in INS-1E cells and HEK293 cells. Concomitant knockdown of RacGAP1 expression reverted APPL2 deficiency-induced defective GSIS, F-actin remodeling, and Rac1 activation in INS-1E cells. Our data indicate that APPL2 interacts with RacGAP1 and suppresses its negative action on Rac1 activity and F-actin depolymerization thereby enhancing GSIS in pancreatic β-cells.
Collapse
|
22
|
Yong XLH, Cousin MA, Anggono V. PICK1 Controls Activity-Dependent Synaptic Vesicle Cargo Retrieval. Cell Rep 2020; 33:108312. [PMID: 33113376 DOI: 10.1016/j.celrep.2020.108312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/03/2020] [Accepted: 10/05/2020] [Indexed: 12/23/2022] Open
Abstract
Efficient retrieval of synaptic vesicles (SVs) is crucial to sustain synaptic transmission. Protein interacting with C-kinase 1 (PICK1) is a unique PDZ (postsynaptic density-95/disc-large/zona-occluden-1)- and BAR (Bin-Amphiphysin-Rvs )-domain-containing protein that regulates the trafficking of postsynaptic glutamate receptors. It is also expressed in presynaptic terminals and is associated with the SVs; however, its role in regulating SV recycling remains unknown. Here, we show that PICK1 loss of function selectively slows the kinetics of SV endocytosis in primary hippocampal neurons during high-frequency stimulation. PICK1 knockdown also causes surface stranding and mislocalization of major SV proteins, synaptophysin and vGlut1, along the axon. A functional PDZ domain of PICK1 and its interaction with the core endocytic adaptor protein (AP)-2 are required for the proper targeting and clustering of synaptophysin. Furthermore, PICK1 and its interaction with AP-2 are required for efficient SV endocytosis and sustained glutamate release. Our findings, therefore, identify PICK1 as a key regulator of presynaptic vesicle recycling in central synapses.
Collapse
Affiliation(s)
- Xuan Ling Hilary Yong
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Michael A Cousin
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, Scotland, UK; Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh EH8 9XD, Scotland, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, Scotland, UK
| | - Victor Anggono
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
23
|
Chen L, Tao F, Zhang Y, Shu C, Xiang W, Yang L, Chen X, Hong Y, Chen B, Li K, Zhang W, Hao K, Ge F, Wang Z, Lyu J. Islet-cell autoantigen 69 accelerates liver regeneration by downregulating Tgfbr1 and attenuating Tgfβ signaling in mice. FEBS Lett 2020; 594:2881-2893. [PMID: 32531799 DOI: 10.1002/1873-3468.13859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/12/2020] [Accepted: 05/19/2020] [Indexed: 11/08/2022]
Abstract
Regeneration is a unique defense mechanism of liver tissue in response to functional cell loss induced by toxic chemicals or surgical resection. In this study, we found that Islet-cell autoantigen 69 (Ica69) accelerates liver regeneration in mice. Following 70% partial hepatectomy, both Ica69 mRNA and protein are significantly upregulated in mouse hepatocytes at the early stage of liver regeneration. Compared with the wild-type mice, Ica69-deficient mice have more severe liver injury, delayed liver regeneration, and high surgical accidental mortality following hepatectomy. Mechanistically, Ica69 interacts with Pick1 protein to regulate Tgfbr1 protein expression and Tgfβ-induced Smad2 phosphorylation. Our findings suggest that Ica69 in liver tissue is a new potential target for promoting liver regeneration.
Collapse
Affiliation(s)
- Linjie Chen
- Laboratory Medical School, Hangzhou Medical College, China.,Research Center of Blood Transfusion Medicine, Ministry of Education Key Laboratory People's Hospital, People's Hospital of Hangzhou Medical College, China
| | - Fei Tao
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, China
| | | | - Chongyi Shu
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, China
| | - Weiling Xiang
- Laboratory Medical School, Hangzhou Medical College, China.,Research Center of Blood Transfusion Medicine, Ministry of Education Key Laboratory People's Hospital, People's Hospital of Hangzhou Medical College, China
| | - Leixiang Yang
- Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, China
| | - Xiaopan Chen
- Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, China
| | - Yeting Hong
- Laboratory Medical School, Hangzhou Medical College, China
| | - Bingyu Chen
- Laboratory Medical School, Hangzhou Medical College, China.,Research Center of Blood Transfusion Medicine, Ministry of Education Key Laboratory People's Hospital, People's Hospital of Hangzhou Medical College, China.,Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, China
| | - Kaiqiang Li
- Laboratory Medical School, Hangzhou Medical College, China.,Research Center of Blood Transfusion Medicine, Ministry of Education Key Laboratory People's Hospital, People's Hospital of Hangzhou Medical College, China.,Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, China
| | - Wei Zhang
- Research Center of Blood Transfusion Medicine, Ministry of Education Key Laboratory People's Hospital, People's Hospital of Hangzhou Medical College, China.,Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, China
| | - Ke Hao
- Laboratory Medical School, Hangzhou Medical College, China.,Research Center of Blood Transfusion Medicine, Ministry of Education Key Laboratory People's Hospital, People's Hospital of Hangzhou Medical College, China.,Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, China
| | - Feihang Ge
- Laboratory Medical School, Hangzhou Medical College, China.,Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, China
| | - Zhen Wang
- Laboratory Medical School, Hangzhou Medical College, China.,Research Center of Blood Transfusion Medicine, Ministry of Education Key Laboratory People's Hospital, People's Hospital of Hangzhou Medical College, China.,Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, China
| | - Jianxin Lyu
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, China
| |
Collapse
|
24
|
Christensen NR, De Luca M, Lever MB, Richner M, Hansen AB, Noes-Holt G, Jensen KL, Rathje M, Jensen DB, Erlendsson S, Bartling CR, Ammendrup-Johnsen I, Pedersen SE, Schönauer M, Nissen KB, Midtgaard SR, Teilum K, Arleth L, Sørensen AT, Bach A, Strømgaard K, Meehan CF, Vaegter CB, Gether U, Madsen KL. A high-affinity, bivalent PDZ domain inhibitor complexes PICK1 to alleviate neuropathic pain. EMBO Mol Med 2020; 12:e11248. [PMID: 32352640 PMCID: PMC7278562 DOI: 10.15252/emmm.201911248] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 04/01/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022] Open
Abstract
Maladaptive plasticity involving increased expression of AMPA-type glutamate receptors is involved in several pathologies, including neuropathic pain, but direct inhibition of AMPARs is associated with side effects. As an alternative, we developed a cell-permeable, high-affinity (~2 nM) peptide inhibitor, Tat-P4 -(C5)2 , of the PDZ domain protein PICK1 to interfere with increased AMPAR expression. The affinity is obtained partly from the Tat peptide and partly from the bivalency of the PDZ motif, engaging PDZ domains from two separate PICK1 dimers to form a tetrameric complex. Bivalent Tat-P4 -(C5)2 disrupts PICK1 interaction with membrane proteins on supported cell membrane sheets and reduce the interaction of AMPARs with PICK1 and AMPA-receptor surface expression in vivo. Moreover, Tat-P4 -(C5)2 administration reduces spinal cord transmission and alleviates mechanical hyperalgesia in the spared nerve injury model of neuropathic pain. Taken together, our data reveal Tat-P4 -(C5)2 as a novel promising lead for neuropathic pain treatment and expand the therapeutic potential of bivalent inhibitors to non-tandem protein-protein interaction domains.
Collapse
Affiliation(s)
- Nikolaj R Christensen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, Faculty of Health and Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Marta De Luca
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael B Lever
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Richner
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Astrid B Hansen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gith Noes-Holt
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kathrine L Jensen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Rathje
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dennis Bo Jensen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Simon Erlendsson
- Structural biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Christian Ro Bartling
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, Faculty of Health and Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ina Ammendrup-Johnsen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sofie E Pedersen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michèle Schönauer
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, Faculty of Health and Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Klaus B Nissen
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, Faculty of Health and Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Søren R Midtgaard
- Structural Biophysics, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Kaare Teilum
- Structural biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Lise Arleth
- Structural Biophysics, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Andreas T Sørensen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders Bach
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, Faculty of Health and Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Strømgaard
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, Faculty of Health and Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Claire F Meehan
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian B Vaegter
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Ulrik Gether
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kenneth L Madsen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
25
|
Torz LJ, Osborne-Lawrence S, Rodriguez J, He Z, Cornejo MP, Mustafá ER, Jin C, Petersen N, Hedegaard MA, Nybo M, Damonte VM, Metzger NP, Mani BK, Williams KW, Raingo J, Perello M, Holst B, Zigman JM. Metabolic insights from a GHSR-A203E mutant mouse model. Mol Metab 2020; 39:101004. [PMID: 32339772 PMCID: PMC7242877 DOI: 10.1016/j.molmet.2020.101004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/13/2020] [Accepted: 04/16/2020] [Indexed: 02/02/2023] Open
Abstract
Objective Binding of ghrelin to its receptor, growth hormone secretagogue receptor (GHSR), stimulates GH release, induces eating, and increases blood glucose. These processes may also be influenced by constitutive (ghrelin-independent) GHSR activity, as suggested by findings in short people with naturally occurring GHSR-A204E mutations and reduced food intake and blood glucose in rodents administered GHSR inverse agonists, both of which impair constitutive GHSR activity. In this study, we aimed to more fully determine the physiologic relevance of constitutive GHSR activity. Methods We generated mice with a GHSR mutation that replaces alanine at position 203 with glutamate (GHSR-A203E), which corresponds to the previously described human GHSR-A204E mutation, and used them to conduct ex vivo neuronal electrophysiology and in vivo metabolic assessments. We also measured signaling within COS-7 and HEK293T cells transfected with wild-type GHSR (GHSR-WT) or GHSR-A203E constructs. Results In COS-7 cells, GHSR-A203E resulted in lower baseline IP3 accumulation than GHSR-WT; ghrelin-induced IP3 accumulation was observed in both constructs. In HEK293T cells co-transfected with voltage-gated CaV2.2 calcium channel complex, GHSR-A203E had no effect on basal CaV2.2 current density while GHSR-WT did; both GHSR-A203E and GHSR-WT inhibited CaV2.2 current in the presence of ghrelin. In cultured hypothalamic neurons from GHSR-A203E and GHSR-deficient mice, native calcium currents were greater than those in neurons from wild-type mice; ghrelin inhibited calcium currents in cultured hypothalamic neurons from both GHSR-A203E and wild-type mice. In brain slices, resting membrane potentials of arcuate NPY neurons from GHSR-A203E mice were hyperpolarized compared to those from wild-type mice; the same percentage of arcuate NPY neurons from GHSR-A203E and wild-type mice depolarized upon ghrelin exposure. The GHSR-A203E mutation did not significantly affect body weight, body length, or femur length in the first ∼6 months of life, yet these parameters were lower in GHSR-A203E mice after 1 year of age. During a 7-d 60% caloric restriction regimen, GHSR-A203E mice lacked the usual marked rise in plasma GH and demonstrated an exaggerated drop in blood glucose. Administered ghrelin also exhibited reduced orexigenic and GH secretagogue efficacies in GHSR-A203E mice. Conclusions Our data suggest that the A203E mutation ablates constitutive GHSR activity and that constitutive GHSR activity contributes to the native depolarizing conductance of GHSR-expressing arcuate NPY neurons. Although the A203E mutation does not block ghrelin-evoked signaling as assessed using in vitro and ex vivo models, GHSR-A203E mice lack the usual acute food intake response to administered ghrelin in vivo. The GHSR-A203E mutation also blunts GH release, and in aged mice leads to reduced body length and femur length, which are consistent with the short stature of human carriers of the GHSR-A204E mutation. We generated mice with a GHSR mutation replacing Ala at position 203 with Glu. The A203E mutation ablates constitutive GHSR activity & hyperpolarizes NPY neurons. GHSR-A203E mice lack the usual orexigenic response to administered ghrelin. The GHSR-A203E mutation blunts GH release and causes reduced body length. This finding is consistent with short stature in human carriers of the GHSR-A204E mutation.
Collapse
Affiliation(s)
- Lola J Torz
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Sherri Osborne-Lawrence
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Juan Rodriguez
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Zhenyan He
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Emilio Román Mustafá
- Laboratory of Electrophysiology of the Multidisciplinary Institute of Cell Biology [Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA)], La Plata, Buenos Aires, Argentina
| | - Chunyu Jin
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Natalia Petersen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten A Hedegaard
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maja Nybo
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Valentina Martínez Damonte
- Laboratory of Electrophysiology of the Multidisciplinary Institute of Cell Biology [Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA)], La Plata, Buenos Aires, Argentina
| | - Nathan P Metzger
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Bharath K Mani
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Kevin W Williams
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jesica Raingo
- Laboratory of Electrophysiology of the Multidisciplinary Institute of Cell Biology [Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA)], La Plata, Buenos Aires, Argentina
| | - Mario Perello
- Laboratory of Neurophysiology, La Plata, Buenos Aires, Argentina
| | - Birgitte Holst
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark.
| | - Jeffrey M Zigman
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
26
|
Turner C, De Luca M, Wolfheimer J, Hernandez N, Madsen KL, Schmidt HD. Administration of a novel high affinity PICK1 PDZ domain inhibitor attenuates cocaine seeking in rats. Neuropharmacology 2020; 164:107901. [PMID: 31805281 PMCID: PMC6954965 DOI: 10.1016/j.neuropharm.2019.107901] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/27/2019] [Accepted: 12/02/2019] [Indexed: 12/17/2022]
Abstract
Protein interacting with C kinase-1 (PICK1) regulates intra-cellular trafficking of GluA2-containing AMPA receptors, a process known to play a critical role in cocaine-seeking behavior. This suggests that PICK1 may represent a molecular target for developing novel pharmacotherapies to treat cocaine craving-induced relapse. Emerging evidence indicates that inhibition of PICK1 attenuates the reinstatement of cocaine-seeking behavior, an animal model of relapse. Here, we show that systemic administration of TAT-P4-(DATC5)2, a novel high-affinity peptide inhibitor of the PICK1 PDZ domain, dose-dependently attenuated the reinstatement of cocaine seeking in rats at doses that did not produce operant learning deficits or suppress locomotor activity. We also show that systemic TAT-P4-(DATC5)2 penetrated the brain where it was visualized in the nucleus accumbens shell. Consistent with these effects, infusions of TAT-P4-(DATC5)2 directly into the accumbens shell reduced cocaine, but not sucrose, seeking. The effects of TAT-P4-(DATC5)2 on cocaine seeking are likely due, in part, to inhibition of PICK1 in medium spiny neurons (MSNs) of the accumbens shell as TAT-P4-(DATC5)2 was shown to accumulate in striatal neurons and bind PICK1. Taken together, these findings highlight a novel role for PICK1 in the reinstatement of cocaine seeking and support future studies examining the efficacy of peptide inhibitors of PICK1 in animal and human models of cocaine relapse.
Collapse
Affiliation(s)
- Christopher Turner
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Marta De Luca
- Department of Neurosciences, Faculty of Health Sciences, University of Copenhagen Blegdamsvej 3, DK, 2200, Copenhagen, Denmark
| | - Jordan Wolfheimer
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nicole Hernandez
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kenneth Lindegaard Madsen
- Department of Neurosciences, Faculty of Health Sciences, University of Copenhagen Blegdamsvej 3, DK, 2200, Copenhagen, Denmark
| | - Heath D Schmidt
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
27
|
Qiu H, Ma L, Feng F. PICK1 attenuates high glucose-induced pancreatic β-cell death through the PI3K/Akt pathway and is negatively regulated by miR-139-5p. Biochem Biophys Res Commun 2020; 522:14-20. [DOI: 10.1016/j.bbrc.2019.11.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 11/07/2019] [Indexed: 02/06/2023]
|
28
|
Topalidou I, Cattin-Ortolá J, Hummer B, Asensio CS, Ailion M. EIPR1 controls dense-core vesicle cargo retention and EARP complex localization in insulin-secreting cells. Mol Biol Cell 2019; 31:59-79. [PMID: 31721635 PMCID: PMC6938272 DOI: 10.1091/mbc.e18-07-0469] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Dense-core vesicles (DCVs) are secretory vesicles found in neurons and endocrine cells. DCVs package and release cargoes including neuropeptides, biogenic amines, and peptide hormones. We recently identified the endosome-associated recycling protein (EARP) complex and the EARP-interacting-protein EIPR-1 as proteins important for controlling levels of DCV cargoes in Caenorhabditis elegans neurons. Here we determine the role of mammalian EIPR1 in insulinoma cells. We find that in Eipr1 KO cells, there is reduced insulin secretion, and mature DCV cargoes such as insulin and carboxypeptidase E (CPE) accumulate near the trans-Golgi network and are not retained in mature DCVs in the cell periphery. In addition, we find that EIPR1 is required for the stability of the EARP complex subunits and for the localization of EARP and its association with membranes, but EIPR1 does not affect localization or function of the related Golgi-associated retrograde protein (GARP) complex. EARP is localized to two distinct compartments related to its function: an endosomal compartment and a DCV biogenesis-related compartment. We propose that EIPR1 functions with EARP to control both endocytic recycling and DCV maturation.
Collapse
Affiliation(s)
- Irini Topalidou
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | | | - Blake Hummer
- Department of Biological Sciences, University of Denver, Denver, CO 80210
| | - Cedric S Asensio
- Department of Biological Sciences, University of Denver, Denver, CO 80210
| | - Michael Ailion
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| |
Collapse
|
29
|
Christensen NR, Čalyševa J, Fernandes EFA, Lüchow S, Clemmensen LS, Haugaard‐Kedström LM, Strømgaard K. PDZ Domains as Drug Targets. ADVANCED THERAPEUTICS 2019; 2:1800143. [PMID: 32313833 PMCID: PMC7161847 DOI: 10.1002/adtp.201800143] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/25/2019] [Indexed: 12/14/2022]
Abstract
Protein-protein interactions within protein networks shape the human interactome, which often is promoted by specialized protein interaction modules, such as the postsynaptic density-95 (PSD-95), discs-large, zona occludens 1 (ZO-1) (PDZ) domains. PDZ domains play a role in several cellular functions, from cell-cell communication and polarization, to regulation of protein transport and protein metabolism. PDZ domain proteins are also crucial in the formation and stability of protein complexes, establishing an important bridge between extracellular stimuli detected by transmembrane receptors and intracellular responses. PDZ domains have been suggested as promising drug targets in several diseases, ranging from neurological and oncological disorders to viral infections. In this review, the authors describe structural and genetic aspects of PDZ-containing proteins and discuss the current status of the development of small-molecule and peptide modulators of PDZ domains. An overview of potential new therapeutic interventions in PDZ-mediated protein networks is also provided.
Collapse
Affiliation(s)
- Nikolaj R. Christensen
- Center for BiopharmaceuticalsDepartment of Drug Design and PharmacologyUniversity of CopenhagenUniversitetsparken 22100CopenhagenDenmark
| | - Jelena Čalyševa
- European Molecular Biology Laboratory (EMBL)Structural and Computational Biology UnitMeyerhofstraße 169117HeidelbergGermany
- EMBL International PhD ProgrammeFaculty of BiosciencesEMBL–Heidelberg UniversityGermany
| | - Eduardo F. A. Fernandes
- Center for BiopharmaceuticalsDepartment of Drug Design and PharmacologyUniversity of CopenhagenUniversitetsparken 22100CopenhagenDenmark
| | - Susanne Lüchow
- Department of Chemistry – BMCUppsala UniversityBox 576SE75123UppsalaSweden
| | - Louise S. Clemmensen
- Center for BiopharmaceuticalsDepartment of Drug Design and PharmacologyUniversity of CopenhagenUniversitetsparken 22100CopenhagenDenmark
| | - Linda M. Haugaard‐Kedström
- Center for BiopharmaceuticalsDepartment of Drug Design and PharmacologyUniversity of CopenhagenUniversitetsparken 22100CopenhagenDenmark
| | - Kristian Strømgaard
- Center for BiopharmaceuticalsDepartment of Drug Design and PharmacologyUniversity of CopenhagenUniversitetsparken 22100CopenhagenDenmark
| |
Collapse
|
30
|
Xu L, Chen Y, Shen T, Lin C, Zhang B. Genetic Analysis of PICK1 Gene in Alzheimer's Disease: A Study for Finding a New Gene Target. Front Neurol 2019; 9:1169. [PMID: 30687223 PMCID: PMC6333664 DOI: 10.3389/fneur.2018.01169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 12/17/2018] [Indexed: 01/19/2023] Open
Abstract
Background: Alzheimer's disease (AD) is a neurodegenerative disease with no effective treatment. Researchers have focused on exploring biomarkers for its early diagnosis, especially on finding a new gene target. Recent studies have shown that protein interacting with C-kinase-1(PICK1) is related to AD through regulating hippocampal synaptic plasticity. PICK1 gene polymorphisms have been identified in psychological and other related disorders. Methods: This study included 133 sporadic AD patients and 173 healthy controls. All coding exons and intron-exon boundaries of the PICK1 gene were amplified by polymerase chain reaction (PCR), which were subsequently sequenced and analyzed. Results: This is the first genetic association study to investigate the association between PICK1 gene and AD risk in Chinese Han population. Seven single nucleotide polymorphisms (SNPs) were found in our research (rs397780637, rs713729, rs2076369, rs58230476, rs7289911, rs149474436; and rs146770324 for patient M1659 only). Frequencies of the T allele (p = 0.002; OR, 0.083; 95%CI, 0.011-0.634) and TT/TC genotypes (p = 0.001) of rs149474436 were lower in AD patients than in the controls. The GG homozygotes of rs397780637 were found to be associated with an increased risk of AD (p = 0.018) in APOEε4 allele carriers, while the frequency of the T allele of rs149474436 was significantly lower among AD patients in APOEε4 non-carriers (p = 0.005). Conclusions: Our results suggest that PICK1 gene SNPs are associated with AD susceptibility in East Asian population, T allele of rs149474436 may play as a protective factor while the rs397780637 GG homozygotes may be associated with an increased risk of AD. Further studies should be considered in a larger cohort of patients with diverse demographics.
Collapse
Affiliation(s)
- Lingjia Xu
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Neurology, The Second Hospital of Shaoxing, Shaoxing, China
| | - Yanxing Chen
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ting Shen
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Caixiu Lin
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Baorong Zhang
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
31
|
Erlendsson S, Thorsen TS, Vauquelin G, Ammendrup-Johnsen I, Wirth V, Martinez KL, Teilum K, Gether U, Madsen KL. Mechanisms of PDZ domain scaffold assembly illuminated by use of supported cell membrane sheets. eLife 2019; 8:39180. [PMID: 30605082 PMCID: PMC6345565 DOI: 10.7554/elife.39180] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 01/02/2019] [Indexed: 01/07/2023] Open
Abstract
PDZ domain scaffold proteins are molecular modules orchestrating cellular signalling in space and time. Here, we investigate assembly of PDZ scaffolds using supported cell membrane sheets, a unique experimental setup enabling direct access to the intracellular face of the cell membrane. Our data demonstrate how multivalent protein-protein and protein-lipid interactions provide critical avidity for the strong binding between the PDZ domain scaffold proteins, PICK1 and PSD-95, and their cognate transmembrane binding partners. The kinetics of the binding were remarkably slow and binding strength two-three orders of magnitude higher than the intrinsic affinity for the isolated PDZ interaction. Interestingly, discrete changes in the intrinsic PICK1 PDZ affinity did not affect overall binding strength but instead revealed dual scaffold modes for PICK1. Our data supported by simulations suggest that intrinsic PDZ domain affinities are finely tuned and encode specific cellular responses, enabling multiplexed cellular functions of PDZ scaffolds. Inside a cell, many different signals carry information that is essential for the cell to remain healthy and perform its role in the body. It is, therefore, very important that the signals are sent to the right places at the right times. Scaffold proteins play an essential role in organizing these signals by bringing specific proteins and other molecules into close contact at particular times and locations within the cell. Defects in scaffolding proteins can lead to cancer, psychiatric disorders and other diseases, so these proteins represent potential new targets for medicinal drugs. Many scaffolding proteins assemble groups of proteins on the surface of the membrane that surrounds the cell. Previous studies have shown that scaffolding proteins are able to bind to several other proteins as well as the membrane itself at the same time. However, the precise way in which scaffolding proteins assemble such groups is not clear because it is technically challenging to study this process in living cells. To overcome this challenge, Erlendsson, Thorsen et al. used a new experimental setup known as supported cell membrane sheets – which provides direct access to the side of the cell membrane that usually faces into the cell – to study two scaffolding proteins known as PICK1 and PSD-95. The experiments show that PICK1 and PSD-95 bind to their partner proteins up to 100 times more strongly than previously observed using other approaches. This is due to the scaffolding proteins binding more strongly to both their partners and the membrane. Unexpectedly, the experiments show that the shape and physical characteristics of the partner protein have no effect on the increase in the strength of the binding. Further experiments suggest that altering the ability of the PDZ domain of PICK1 to bind to partner proteins changes the mode of action of the PICK1 protein so that it can activate different responses in the cell. Together these findings imply that the ability of scaffolding proteins to bind to their partner proteins is finely tuned to encode specific responses in cells in different situations – a hypothesis that Erlendsson, Thorsen et al. are planning to test in intact cells.
Collapse
Affiliation(s)
- Simon Erlendsson
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark.,Structural Biology and NMR Laboratory, Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Thor Seneca Thorsen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Georges Vauquelin
- Molecular and Biochemical Pharmacology, Department of Biotechnology, Free University Brussels (VUB), Brussels, Belgium
| | - Ina Ammendrup-Johnsen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Volker Wirth
- Bionanotechnology and Nanomedicine Laboratory, Department of Chemistry, Nano-science Center, University of Copenhagen, Copenhagen, Denmark
| | - Karen L Martinez
- Bionanotechnology and Nanomedicine Laboratory, Department of Chemistry, Nano-science Center, University of Copenhagen, Copenhagen, Denmark
| | - Kaare Teilum
- Structural Biology and NMR Laboratory, Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Ulrik Gether
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Kenneth Lindegaard Madsen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
32
|
Backe MB, Jin C, Andreone L, Sankar A, Agger K, Helin K, Madsen AN, Poulsen SS, Bysani M, Bacos K, Ling C, Perone MJ, Holst B, Mandrup-Poulsen T. The Lysine Demethylase KDM5B Regulates Islet Function and Glucose Homeostasis. J Diabetes Res 2019; 2019:5451038. [PMID: 31467927 PMCID: PMC6701283 DOI: 10.1155/2019/5451038] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/06/2019] [Accepted: 06/04/2019] [Indexed: 12/17/2022] Open
Abstract
AIMS Posttranslational modifications of histones and transcription factors regulate gene expression and are implicated in beta-cell failure and diabetes. We have recently shown that preserving H3K27 and H3K4 methylation using the lysine demethylase inhibitor GSK-J4 reduces cytokine-induced destruction of beta-cells and improves beta-cell function. Here, we investigate the therapeutic potential of GSK-J4 to prevent diabetes development and examine the importance of H3K4 methylation for islet function. MATERIALS AND METHODS We used two mouse models of diabetes to investigate the therapeutic potential of GSK-J4. To clarify the importance of H3K4 methylation, we characterized a mouse strain with knockout (KO) of the H3K4 demethylase KDM5B. RESULTS GSK-J4 administration failed to prevent the development of experimental diabetes induced by multiple low-dose streptozotocin or adoptive transfer of splenocytes from acutely diabetic NOD to NODscid mice. KDM5B-KO mice were growth retarded with altered body composition, had low IGF-1 levels, and exhibited reduced insulin secretion. Interestingly, despite secreting less insulin, KDM5B-KO mice were able to maintain normoglycemia following oral glucose tolerance test, likely via improved insulin sensitivity, as suggested by insulin tolerance testing and phosphorylation of proteins belonging to the insulin signaling pathway. When challenged with high-fat diet, KDM5B-deficient mice displayed similar weight gain and insulin sensitivity as wild-type mice. CONCLUSION Our results show a novel role of KDM5B in metabolism, as KDM5B-KO mice display growth retardation and improved insulin sensitivity.
Collapse
Affiliation(s)
- Marie Balslev Backe
- Immuno-endocrinology Laboratory, Department of Biomedical Sciences, University of Copenhagen, Denmark
- Institute of Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, Denmark
| | - Chunyu Jin
- Institute of Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, Denmark
| | - Luz Andreone
- Immuno-endocrinology, Diabetes & Metabolism Laboratory, Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, CONICET–Universidad Austral, Argentina
| | - Aditya Sankar
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Denmark
- The Novo Nordisk Foundation Center for Stem Cell Biology, Denmark
| | - Karl Agger
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Denmark
- The Novo Nordisk Foundation Center for Stem Cell Biology, Denmark
| | - Kristian Helin
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Denmark
- The Novo Nordisk Foundation Center for Stem Cell Biology, Denmark
| | - Andreas Nygaard Madsen
- Institute of Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, Denmark
| | - Steen Seier Poulsen
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Madhusudhan Bysani
- Unit for Epigenetics and Diabetes, Department of Clinical Sciences, Lund University, Scania University Hospital, Malmo, Sweden
| | - Karl Bacos
- Unit for Epigenetics and Diabetes, Department of Clinical Sciences, Lund University, Scania University Hospital, Malmo, Sweden
| | - Charlotte Ling
- Unit for Epigenetics and Diabetes, Department of Clinical Sciences, Lund University, Scania University Hospital, Malmo, Sweden
| | - Marcelo Javier Perone
- Immuno-endocrinology Laboratory, Department of Biomedical Sciences, University of Copenhagen, Denmark
- Immuno-endocrinology, Diabetes & Metabolism Laboratory, Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, CONICET–Universidad Austral, Argentina
| | - Birgitte Holst
- Institute of Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, Denmark
| | - Thomas Mandrup-Poulsen
- Immuno-endocrinology Laboratory, Department of Biomedical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
33
|
BAR domain proteins-a linkage between cellular membranes, signaling pathways, and the actin cytoskeleton. Biophys Rev 2018; 10:1587-1604. [PMID: 30456600 DOI: 10.1007/s12551-018-0467-7] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/17/2018] [Indexed: 12/23/2022] Open
Abstract
Actin filament assembly typically occurs in association with cellular membranes. A large number of proteins sit at the interface between actin networks and membranes, playing diverse roles such as initiation of actin polymerization, modulation of membrane curvature, and signaling. Bin/Amphiphysin/Rvs (BAR) domain proteins have been implicated in all of these functions. The BAR domain family of proteins comprises a diverse group of multi-functional effectors, characterized by their modular architecture. In addition to the membrane-curvature sensing/inducing BAR domain module, which also mediates antiparallel dimerization, most contain auxiliary domains implicated in protein-protein and/or protein-membrane interactions, including SH3, PX, PH, RhoGEF, and RhoGAP domains. The shape of the BAR domain itself varies, resulting in three major subfamilies: the classical crescent-shaped BAR, the more extended and less curved F-BAR, and the inverse curvature I-BAR subfamilies. Most members of this family have been implicated in cellular functions that require dynamic remodeling of the actin cytoskeleton, such as endocytosis, organelle trafficking, cell motility, and T-tubule biogenesis in muscle cells. Here, we review the structure and function of mammalian BAR domain proteins and the many ways in which they are interconnected with the actin cytoskeleton.
Collapse
|
34
|
Ifie E, Russell MA, Dhayal S, Leete P, Sebastiani G, Nigi L, Dotta F, Marjomäki V, Eizirik DL, Morgan NG, Richardson SJ. Unexpected subcellular distribution of a specific isoform of the Coxsackie and adenovirus receptor, CAR-SIV, in human pancreatic beta cells. Diabetologia 2018; 61:2344-2355. [PMID: 30074059 PMCID: PMC6182664 DOI: 10.1007/s00125-018-4704-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 07/02/2018] [Indexed: 12/16/2022]
Abstract
AIMS/HYPOTHESIS The Coxsackie and adenovirus receptor (CAR) is a transmembrane cell-adhesion protein that serves as an entry receptor for enteroviruses and may be essential for their ability to infect cells. Since enteroviral infection of beta cells has been implicated as a factor that could contribute to the development of type 1 diabetes, it is often assumed that CAR is displayed on the surface of human beta cells. However, CAR exists as multiple isoforms and it is not known whether all isoforms subserve similar physiological functions. In the present study, we have determined the profile of CAR isoforms present in human beta cells and monitored the subcellular localisation of the principal isoform within the cells. METHODS Formalin-fixed, paraffin-embedded pancreatic sections from non-diabetic individuals and those with type 1 diabetes were studied. Immunohistochemistry, confocal immunofluorescence, electron microscopy and western blotting with isoform-specific antisera were employed to examine the expression and cellular localisation of the five known CAR isoforms. Isoform-specific qRT-PCR and RNA sequencing (RNAseq) were performed on RNA extracted from isolated human islets. RESULTS An isoform of CAR with a terminal SIV motif and a unique PDZ-binding domain was expressed at high levels in human beta cells at the protein level. A second isoform, CAR-TVV, was also present. Both forms were readily detected by qRT-PCR and RNAseq analysis in isolated human islets. Immunocytochemical studies indicated that CAR-SIV was the principal isoform in islets and was localised mainly within the cytoplasm of beta cells, rather than at the plasma membrane. Within the cells it displayed a punctate pattern of immunolabelling, consistent with its retention within a specific membrane-bound compartment. Co-immunofluorescence analysis revealed significant co-localisation of CAR-SIV with zinc transporter protein 8 (ZnT8), prohormone convertase 1/3 (PC1/3) and insulin, but not proinsulin. This suggests that CAR-SIV may be resident mainly in the membranes of insulin secretory granules. Immunogold labelling and electron microscopic analysis confirmed that CAR-SIV was localised to dense-core (insulin) secretory granules in human islets, whereas no immunolabelling of the protein was detected on the secretory granules of adjacent exocrine cells. Importantly, CAR-SIV was also found to co-localise with protein interacting with C-kinase 1 (PICK1), a protein recently demonstrated to play a role in insulin granule maturation and trafficking. CONCLUSIONS/INTERPRETATION The SIV isoform of CAR is abundant in human beta cells and is localised mainly to insulin secretory granules, implying that it may be involved in granule trafficking and maturation. We propose that this subcellular localisation of CAR-SIV contributes to the unique sensitivity of human beta cells to enteroviral infection.
Collapse
Affiliation(s)
- Eseoghene Ifie
- Islet Biology Exeter (IBEx), Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, RILD Building (Level 4), Barrack Road, Exeter, EX2 5DW, UK
| | - Mark A Russell
- Islet Biology Exeter (IBEx), Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, RILD Building (Level 4), Barrack Road, Exeter, EX2 5DW, UK
| | - Shalinee Dhayal
- Islet Biology Exeter (IBEx), Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, RILD Building (Level 4), Barrack Road, Exeter, EX2 5DW, UK
| | - Pia Leete
- Islet Biology Exeter (IBEx), Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, RILD Building (Level 4), Barrack Road, Exeter, EX2 5DW, UK
| | - Guido Sebastiani
- Department of Medicine, Surgery and Neurosciences, University of Siena and Fondazione Umberto Di Mario ONLUS-Toscana Life Sciences, Siena, Italy
| | - Laura Nigi
- Department of Medicine, Surgery and Neurosciences, University of Siena and Fondazione Umberto Di Mario ONLUS-Toscana Life Sciences, Siena, Italy
| | - Francesco Dotta
- Department of Medicine, Surgery and Neurosciences, University of Siena and Fondazione Umberto Di Mario ONLUS-Toscana Life Sciences, Siena, Italy
| | - Varpu Marjomäki
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Decio L Eizirik
- Université Libre de Bruxelles (ULB) Center for Diabetes Research and Welbio, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Noel G Morgan
- Islet Biology Exeter (IBEx), Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, RILD Building (Level 4), Barrack Road, Exeter, EX2 5DW, UK
| | - Sarah J Richardson
- Islet Biology Exeter (IBEx), Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, RILD Building (Level 4), Barrack Road, Exeter, EX2 5DW, UK.
| |
Collapse
|
35
|
Tani N, Ikeda T, Watanabe M, Toyomura J, Ohyama A, Ishikawa T. Prolactin selectively transported to cerebrospinal fluid from blood under hypoxic/ischemic conditions. PLoS One 2018; 13:e0198673. [PMID: 29949606 PMCID: PMC6021042 DOI: 10.1371/journal.pone.0198673] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/23/2018] [Indexed: 12/04/2022] Open
Abstract
Aim The aim of this study was to determine and to verify the correlation between the amount of prolactin (PRL) levels in the blood and in the cerebrospinal fluid (CSF) by various causes of death as an indicator for acute hypoxia in autopsy cases. It is to confirm the cause of the change in prolactin level in CSF by in vitro system. Materials and methods In autopsy materials, the PRL levels in blood from the right heart ventricle and in the CSF were measured by chemiluminescent enzyme immunoassay, and changes in the percentage of PRL-positive cells in the pituitary gland were examined using an immunohistochemical method. Furthermore, an inverted culture method was used as an in vitro model of the blood-CSF barrier using epithelial cells of the human choroid plexus (HIBCPP cell line) and SDR-P-1D5 or MSH-P3 (PRL-secreting cell line derived from miniature swine hypophysis) under normoxic or hypoxic (5% oxygen) conditions, and as an index of cell activity, we used Vascular Endothelial Growth Factor (VEGF). Results and discussion Serum PRL levels were not significantly different between hypoxia/ischemia cases and other causes of death. However, PRL levels in CSF were three times higher in cases of hypoxia/ischemia than in those of the other causes of death. In the cultured cell under the hypoxia condition, PRL and VEGF showed a high concentration at 10 min. We established a brain-CSF barrier model to clarify the mechanism of PRL transport to CSF from blood, the PRL concentrations from blood to CSF increased under hypoxic conditions from 5 min. These results suggested that PRL moves in CSF through choroidal epithelium from blood within a short time. PRL is hypothesized to protect the hypoxic/ischemic brain, and this may be because of the increased transportation of the choroid plexus epithelial cells.
Collapse
Affiliation(s)
- Naoto Tani
- Department of Legal Medicine, Osaka City University Medical School, Osaka, Japan
- Forensic Autopsy Section, Medico-legal Consultation and Postmortem Investigation Support Center, Osaka, Japan
- * E-mail:
| | - Tomoya Ikeda
- Department of Legal Medicine, Osaka City University Medical School, Osaka, Japan
- Forensic Autopsy Section, Medico-legal Consultation and Postmortem Investigation Support Center, Osaka, Japan
| | - Miho Watanabe
- Department of NDU Life Sciences, School of Life Dentistry at Tokyo, The Nippon Dental University, Tokyo, Japan
- Field of Oral and Maxillofacial Surgery and System Medicine, Course of Clinical Science, Nippon Dental University, Graduate School of Life Dentistry at Niigata, Niigata, Japan
| | - Junko Toyomura
- Department of NDU Life Sciences, School of Life Dentistry at Tokyo, The Nippon Dental University, Tokyo, Japan
| | - Akihiro Ohyama
- Department of NDU Life Sciences, School of Life Dentistry at Tokyo, The Nippon Dental University, Tokyo, Japan
| | - Takaki Ishikawa
- Department of Legal Medicine, Osaka City University Medical School, Osaka, Japan
- Forensic Autopsy Section, Medico-legal Consultation and Postmortem Investigation Support Center, Osaka, Japan
| |
Collapse
|
36
|
Herlo R, Lund VK, Lycas MD, Jansen AM, Khelashvili G, Andersen RC, Bhatia V, Pedersen TS, Albornoz PB, Johner N, Ammendrup-Johnsen I, Christensen NR, Erlendsson S, Stoklund M, Larsen JB, Weinstein H, Kjærulff O, Stamou D, Gether U, Madsen KL. An Amphipathic Helix Directs Cellular Membrane Curvature Sensing and Function of the BAR Domain Protein PICK1. Cell Rep 2018; 23:2056-2069. [DOI: 10.1016/j.celrep.2018.04.074] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/05/2018] [Accepted: 04/17/2018] [Indexed: 11/16/2022] Open
|
37
|
Hussain SS, Harris MT, Kreutzberger AJB, Inouye CM, Doyle CA, Castle AM, Arvan P, Castle JD. Control of insulin granule formation and function by the ABC transporters ABCG1 and ABCA1 and by oxysterol binding protein OSBP. Mol Biol Cell 2018. [PMID: 29540530 PMCID: PMC5935073 DOI: 10.1091/mbc.e17-08-0519] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In pancreatic β-cells, insulin granule membranes are enriched in cholesterol and are both recycled and newly generated. Cholesterol’s role in supporting granule membrane formation and function is poorly understood. ATP binding cassette transporters ABCG1 and ABCA1 regulate intracellular cholesterol and are important for insulin secretion. RNAi interference–induced depletion in cultured pancreatic β-cells shows that ABCG1 is needed to stabilize newly made insulin granules against lysosomal degradation; ABCA1 is also involved but to a lesser extent. Both transporters are also required for optimum glucose-stimulated insulin secretion, likely via complementary roles. Exogenous cholesterol addition rescues knockdown-induced granule loss (ABCG1) and reduced secretion (both transporters). Another cholesterol transport protein, oxysterol binding protein (OSBP), appears to act proximally as a source of endogenous cholesterol for granule formation. Its knockdown caused similar defective stability of young granules and glucose-stimulated insulin secretion, neither of which were rescued with exogenous cholesterol. Dual knockdowns of OSBP and ABC transporters support their serial function in supplying and concentrating cholesterol for granule formation. OSBP knockdown also decreased proinsulin synthesis consistent with a proximal endoplasmic reticulum defect. Thus, membrane cholesterol distribution contributes to insulin homeostasis at production, packaging, and export levels through the actions of OSBP and ABCs G1 and A1.
Collapse
Affiliation(s)
- Syed Saad Hussain
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Megan T Harris
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Alex J B Kreutzberger
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22908.,Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Candice M Inouye
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Catherine A Doyle
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Anna M Castle
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Peter Arvan
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan Medical School, Ann Arbor, MI 48105
| | - J David Castle
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908.,Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, VA 22908
| |
Collapse
|
38
|
Li J, Mao Z, Huang J, Xia J. PICK1 is essential for insulin production and the maintenance of glucose homeostasis. Mol Biol Cell 2018; 29:587-596. [PMID: 29298842 PMCID: PMC6004578 DOI: 10.1091/mbc.e17-03-0204] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 12/22/2017] [Accepted: 12/27/2017] [Indexed: 01/11/2023] Open
Abstract
Protein interacting with C-kinase 1 (PICK1) is a peripheral membrane protein that controls insulin granule formation, trafficking, and maturation in INS-1E cells. However, global Pick1-knockout mice showed only a subtle diabetes-like phenotype. This raises the possibility that compensatory effects from tissues other than pancreatic beta cells may obscure the effects of insulin deficiency. To explore the role of PICK1 in pancreatic islets, we generated mice harboring a conditional Pick1 allele in a C57BL/6J background. The conditional Pick1-knockout mice exhibited impaired glucose tolerance, profound insulin deficiency, and hyperglycemia. In vitro experiments showed that the ablation of Pick1 in pancreatic beta cells selectively decreased the initial rapid release of insulin and the total insulin levels in the islets. Importantly, the specific ablation of Pick1 induced elevated proinsulin levels in the circulation and in the islets, accompanied by a reduction in the proinsulin processing enzymes prohormone convertase 1/3 (PC1/3). The deletion of Pick1 triggered the specific elimination of chromogranin B in pancreatic beta cells, which is believed to control granule formation and release. Collectively, these data demonstrate the critical role of PICK1 in secretory granule biogenesis, proinsulin processing, and beta cell function. We conclude that the beta cell-specific deletion of Pick1 in mice led to hyperglycemia and eventually to diabetes.
Collapse
Affiliation(s)
- Jia Li
- Department of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
- College of Life Science, Shaanxi Normal University, Shaanxi 710119, China
| | - Zhuo Mao
- Department of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
- Center for Diabetes, Obesity and Metabolism, Department of Physiology, Shenzhen University Health Science Center, Shenzhen, Guangdong 518061, China
| | - Jiandong Huang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- HKU-Shenzhen Institute of Research and Innovation, Shenzhen 518057, China
- Shenzhen Institute of Advanced Technologies, Shenzhen 518055, China
| | - Jun Xia
- Department of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| |
Collapse
|
39
|
Huang LO, Loos RJF, Kilpeläinen TO. Evidence of genetic predisposition for metabolically healthy obesity and metabolically obese normal weight. Physiol Genomics 2017; 50:169-178. [PMID: 29341865 DOI: 10.1152/physiolgenomics.00044.2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Obesity has evolved into a global pandemic that constitutes a major threat to public health. The majority of obesity-related health care costs are due to cardiometabolic complications, such as insulin resistance, dyslipidemia, and hypertension, which are risk factors for Type 2 diabetes and cardiovascular disease. However, many obese individuals, often called metabolically healthy obese (MHO), seem to be protected from these cardiometabolic complications. Conversely, there is a group of individuals who suffer from cardiometabolic complications despite being of normal weight; a condition termed metabolically obese normal weight (MONW). Recent large-scale genomic studies have provided evidence that a number of genetic variants show an association with increased adiposity but a favorable cardiometabolic profile, an indicator for the genetic basis of the MHO and MONW phenotypes. Many of these loci are located in or near genes that implicate pathways involved in adipogenesis, fat distribution, insulin signaling, and insulin resistance. It has been suggested that a threshold for subcutaneous adipose tissue expandability may be at play in the manifestation of MHO and MONW, where expiry of adipose tissue storage capacity could lead to ectopic lipid accumulation in non-adipose tissues such as liver, muscle, heart, and pancreatic beta cells. Understanding the genetic aspects of the mechanisms that underpin MHO and MONW is crucial to define appropriate public health action points and to develop effective intervention measures.
Collapse
Affiliation(s)
- Lam O Huang
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section for Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai , New York, New York.,The Genetics of Obesity and Related Metabolic Traits Program, The Icahn School of Medicine at Mount Sinai , New York, New York.,The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai , New York, New York
| | - Tuomas O Kilpeläinen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section for Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark.,Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai , New York, New York
| |
Collapse
|
40
|
Hummer BH, de Leeuw NF, Burns C, Chen L, Joens MS, Hosford B, Fitzpatrick JAJ, Asensio CS. HID-1 controls formation of large dense core vesicles by influencing cargo sorting and trans-Golgi network acidification. Mol Biol Cell 2017; 28:3870-3880. [PMID: 29074564 PMCID: PMC5739301 DOI: 10.1091/mbc.e17-08-0491] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/05/2017] [Accepted: 10/16/2017] [Indexed: 12/19/2022] Open
Abstract
The peripheral membrane protein HID-1 localizes to the trans-Golgi network, where it contributes to the formation of large dense core vesicles of neuroendocrine cells by influencing cargo sorting and trans-Golgi network acidification. Large dense core vesicles (LDCVs) mediate the regulated release of neuropeptides and peptide hormones. They form at the trans-Golgi network (TGN), where their soluble content aggregates to form a dense core, but the mechanisms controlling biogenesis are still not completely understood. Recent studies have implicated the peripheral membrane protein HID-1 in neuropeptide sorting and insulin secretion. Using CRISPR/Cas9, we generated HID-1 KO rat neuroendocrine cells, and we show that the absence of HID-1 results in specific defects in peptide hormone and monoamine storage and regulated secretion. Loss of HID-1 causes a reduction in the number of LDCVs and affects their morphology and biochemical properties, due to impaired cargo sorting and dense core formation. HID-1 KO cells also exhibit defects in TGN acidification together with mislocalization of the Golgi-enriched vacuolar H+-ATPase subunit isoform a2. We propose that HID-1 influences early steps in LDCV formation by controlling dense core formation at the TGN.
Collapse
Affiliation(s)
- Blake H Hummer
- Department of Biological Sciences, University of Denver, Denver, CO 80210
| | - Noah F de Leeuw
- Department of Biological Sciences, University of Denver, Denver, CO 80210
| | - Christian Burns
- Department of Biological Sciences, University of Denver, Denver, CO 80210
| | - Lan Chen
- Department of Biological Sciences, University of Denver, Denver, CO 80210
| | - Matthew S Joens
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO 63110
| | - Bethany Hosford
- Department of Biological Sciences, University of Denver, Denver, CO 80210
| | - James A J Fitzpatrick
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO 63110
| | - Cedric S Asensio
- Department of Biological Sciences, University of Denver, Denver, CO 80210
| |
Collapse
|
41
|
Cattin-Ortolá J, Topalidou I, Dosey A, Merz AJ, Ailion M. The dense-core vesicle maturation protein CCCP-1 binds RAB-2 and membranes through its C-terminal domain. Traffic 2017; 18:720-732. [PMID: 28755404 DOI: 10.1111/tra.12507] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 07/26/2017] [Accepted: 07/26/2017] [Indexed: 12/18/2022]
Abstract
Dense-core vesicles (DCVs) are secretory organelles that store and release modulatory neurotransmitters from neurons and endocrine cells. Recently, the conserved coiled-coil protein CCCP-1 was identified as a component of the DCV biogenesis pathway in the nematode Caenorhabditis elegans. CCCP-1 binds the small GTPase RAB-2 and colocalizes with it at the trans-Golgi. Here, we report a structure-function analysis of CCCP-1 to identify domains of the protein important for its localization, binding to RAB-2, and function in DCV biogenesis. We find that the CCCP-1 C-terminal domain (CC3) has multiple activities. CC3 is necessary and sufficient for CCCP-1 localization and for binding to RAB-2, and is required for the function of CCCP-1 in DCV biogenesis. In addition, CCCP-1 binds membranes directly through its CC3 domain, indicating that CC3 may comprise a previously uncharacterized lipid-binding motif. We conclude that CCCP-1 is a coiled-coil protein that binds an activated Rab and localizes to the Golgi via its C-terminus, properties similar to members of the golgin family of proteins. CCCP-1 also shares biophysical features with golgins; it has an elongated shape and forms oligomers.
Collapse
Affiliation(s)
| | - Irini Topalidou
- Department of Biochemistry, University of Washington, Seattle, Washington
| | - Annie Dosey
- Department of Biochemistry, University of Washington, Seattle, Washington
| | - Alexey J Merz
- Department of Biochemistry, University of Washington, Seattle, Washington.,Department of Physiology and Biophysics, University of Washington, Seattle, Washington
| | - Michael Ailion
- Department of Biochemistry, University of Washington, Seattle, Washington
| |
Collapse
|
42
|
Li Y, Li F, Bai B, Wu Z, Hou X, Shen Y, Wang Y. Protein interacting with C‑kinase 1 modulates exocytosis and KATP conductance in pancreatic β cells. Mol Med Rep 2017; 16:4247-4252. [PMID: 28731156 DOI: 10.3892/mmr.2017.7056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 04/06/2017] [Indexed: 11/06/2022] Open
Abstract
It has been previously identified that α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptors (AMPARs) are expressed in pancreatic β cells and regulate exocytosis and insulin release. It is known that protein interacting with C‑kinase 1 (PICK1) regulates trafficking and synaptic targeting of AMPARs in the central nervous system. However, it is unknown whether PICK1 regulates glutamate‑induced insulin release in β cells. The present study demonstrated that glutamate‑induced exocytosis was increased in β cells derived from PICK1‑knockout mice. In agreement with this result, adding PICK1 in β cells reduced glutamate‑induced exocytosis, whereas adding EVKI, a peptide that interrupts the interaction between AMPARs and PICK1, increased the exocytosis of β cells with the application of glutamate. Furthermore, the conductance of ATP‑sensitive potassium (KATP) channels was reduced in PICK1‑knockout mice, which was reversed by the overexpression of PICK1. In addition, PICK1 application reduced voltage oscillation induced by the closure of KATP. Taken together, the results indicate that PICK1 regulates glutamate‑induced exocytosis in β cells.
Collapse
Affiliation(s)
- Yunhong Li
- Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Basic Medical College of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Fan Li
- Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Basic Medical College of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Bin Bai
- Department of Endocrinology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Zhenyong Wu
- Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China
| | - Xiaolin Hou
- Department of Endocrinology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Ying Shen
- Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China
| | - Yin Wang
- Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Basic Medical College of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| |
Collapse
|
43
|
Delestre-Delacour C, Carmon O, Laguerre F, Estay-Ahumada C, Courel M, Elias S, Jeandel L, Rayo MV, Peinado JR, Sengmanivong L, Gasman S, Coudrier E, Anouar Y, Montero-Hadjadje M. Myosin 1b and F-actin are involved in the control of secretory granule biogenesis. Sci Rep 2017; 7:5172. [PMID: 28701771 PMCID: PMC5507975 DOI: 10.1038/s41598-017-05617-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 05/31/2017] [Indexed: 12/22/2022] Open
Abstract
Hormone secretion relies on secretory granules which store hormones in endocrine cells and release them upon cell stimulation. The molecular events leading to hormone sorting and secretory granule formation at the level of the TGN are still elusive. Our proteomic analysis of purified whole secretory granules or secretory granule membranes uncovered their association with the actomyosin components myosin 1b, actin and the actin nucleation complex Arp2/3. We found that myosin 1b controls the formation of secretory granules and the associated regulated secretion in both neuroendocrine cells and chromogranin A-expressing COS7 cells used as a simplified model of induced secretion. We show that F-actin is also involved in secretory granule biogenesis and that myosin 1b cooperates with Arp2/3 to recruit F-actin to the Golgi region where secretory granules bud. These results provide the first evidence that components of the actomyosin complex promote the biogenesis of secretory granules and thereby regulate hormone sorting and secretion.
Collapse
Affiliation(s)
- Charlène Delestre-Delacour
- Normandie Univ, UNIROUEN, INSERM, U1239, Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, 76000, Rouen, France
| | - Ophélie Carmon
- Normandie Univ, UNIROUEN, INSERM, U1239, Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, 76000, Rouen, France
| | - Fanny Laguerre
- Normandie Univ, UNIROUEN, INSERM, U1239, Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, 76000, Rouen, France
| | - Catherine Estay-Ahumada
- Université de Strasbourg, CNRS UPR 3212, Institut des Neurosciences Cellulaires et Intégratives, 67000, Strasbourg, France
| | - Maïté Courel
- Normandie Univ, UNIROUEN, INSERM, U1239, Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, 76000, Rouen, France.,CNRS-UPMC FRE3402, Pierre et Marie Curie University, 75252, Paris, Cedex 05, France
| | - Salah Elias
- Normandie Univ, UNIROUEN, INSERM, U1239, Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, 76000, Rouen, France.,University of Oxford, Sir William Dunn School of Pathology, Oxford, Oxfordshire, United Kingdom
| | - Lydie Jeandel
- Normandie Univ, UNIROUEN, INSERM, U1239, Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, 76000, Rouen, France
| | - Margarita Villar Rayo
- Instituto de Investigación en Recursos Cinegéticos, Proteomics Core Facility, 13071, Ciudad Real, Spain
| | - Juan R Peinado
- Laboratory of oxidative stress and neurodegeneration, Facultad de Medicina de Ciudad Real, 13071, Ciudad Real, Spain
| | - Lucie Sengmanivong
- Institut Curie - PSL Research University, Membrane Dynamics and Mechanics of Intracellular Signaling Laboratory, Nikon Imaging Centre, 75005, Paris, France
| | - Stéphane Gasman
- Université de Strasbourg, CNRS UPR 3212, Institut des Neurosciences Cellulaires et Intégratives, 67000, Strasbourg, France
| | - Evelyne Coudrier
- CNRS UMR 144 Cell Signaling and Morphogenesis, Institut Curie, 75005, Paris, France
| | - Youssef Anouar
- Normandie Univ, UNIROUEN, INSERM, U1239, Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, 76000, Rouen, France.
| | - Maité Montero-Hadjadje
- Normandie Univ, UNIROUEN, INSERM, U1239, Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, 76000, Rouen, France.
| |
Collapse
|
44
|
Molecular regulation of insulin granule biogenesis and exocytosis. Biochem J 2017; 473:2737-56. [PMID: 27621482 DOI: 10.1042/bcj20160291] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 04/19/2016] [Indexed: 12/15/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterized by hyperglycemia, insulin resistance and hyperinsulinemia in early disease stages but a relative insulin insufficiency in later stages. Insulin, a peptide hormone, is produced in and secreted from pancreatic β-cells following elevated blood glucose levels. Upon its release, insulin induces the removal of excessive exogenous glucose from the bloodstream primarily by stimulating glucose uptake into insulin-dependent tissues as well as promoting hepatic glycogenesis. Given the increasing prevalence of T2DM worldwide, elucidating the underlying mechanisms and identifying the various players involved in the synthesis and exocytosis of insulin from β-cells is of utmost importance. This review summarizes our current understanding of the route insulin takes through the cell after its synthesis in the endoplasmic reticulum as well as our knowledge of the highly elaborate network that controls insulin release from the β-cell. This network harbors potential targets for anti-diabetic drugs and is regulated by signaling cascades from several endocrine systems.
Collapse
|
45
|
Matsunaga K, Taoka M, Isobe T, Izumi T. Rab2a and Rab27a cooperatively regulate the transition from granule maturation to exocytosis through the dual effector Noc2. J Cell Sci 2016; 130:541-550. [PMID: 27927751 DOI: 10.1242/jcs.195479] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/28/2016] [Indexed: 11/20/2022] Open
Abstract
Exocytosis of secretory granules entails budding from the trans-Golgi network, sorting and maturation of cargo proteins, and trafficking and fusion to the plasma membrane. Rab27a regulates the late steps in this process, such as granule recruitment to the fusion site, whereas Rab2a functions in the early steps, such as granule biogenesis and maturation. Here, we demonstrate that these two small GTPases simultaneously bind to Noc2 (also known as RPH3AL) in a GTP-dependent manner, although Rab2a binds only after Rab27a has bound. In pancreatic β-cells, the ternary Rab2a-Noc2-Rab27a complex specifically localizes on perinuclear immature granules, whereas the binary Noc2-Rab27a complex localizes on peripheral mature granules. In contrast to the wild type, Noc2 mutants defective in binding to Rab2a or Rab27a fail to promote glucose-stimulated insulin secretion. Although knockdown of any component of the ternary complex markedly inhibits insulin secretion, only knockdown of Rab2a or Noc2, and not that of Rab27a, impairs cargo processing from proinsulin to insulin. These results suggest that the dual effector, Noc2, regulates the transition from Rab2a-mediated granule biogenesis to Rab27a-mediated granule exocytosis.
Collapse
Affiliation(s)
- Kohichi Matsunaga
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan
| | - Masato Taoka
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Toshiaki Isobe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Tetsuro Izumi
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan .,Research Program for Signal Transduction, Division of Endocrinology, Metabolism and Signal Research, Gunma University Initiative for Advanced Research, Gunma University, Maebashi 371-8512, Japan
| |
Collapse
|
46
|
Du W, Zhou M, Zhao W, Cheng D, Wang L, Lu J, Song E, Feng W, Xue Y, Xu P, Xu T. HID-1 is required for homotypic fusion of immature secretory granules during maturation. eLife 2016; 5. [PMID: 27751232 PMCID: PMC5094852 DOI: 10.7554/elife.18134] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 10/17/2016] [Indexed: 02/06/2023] Open
Abstract
Secretory granules, also known as dense core vesicles, are generated at the trans-Golgi network and undergo several maturation steps, including homotypic fusion of immature secretory granules (ISGs) and processing of prehormones to yield active peptides. The molecular mechanisms governing secretory granule maturation are largely unknown. Here, we investigate a highly conserved protein named HID-1 in a mouse model. A conditional knockout of HID-1 in pancreatic β cells leads to glucose intolerance and a remarkable increase in the serum proinsulin/insulin ratio caused by defective proinsulin processing. Large volume three-dimensional electron microscopy and immunofluorescence imaging reveal that ISGs are much more abundant in the absence of HID-1. We further demonstrate that HID-1 deficiency prevented secretory granule maturation by blocking homotypic fusion of immature secretory granules. Our data identify a novel player during the early maturation of immature secretory granules.
Collapse
Affiliation(s)
- Wen Du
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Maoge Zhou
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wei Zhao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Dongwan Cheng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Lifen Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jingze Lu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Eli Song
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Wei Feng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yanhong Xue
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Pingyong Xu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Tao Xu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
47
|
Multiple faces of protein interacting with C kinase 1 (PICK1): Structure, function, and diseases. Neurochem Int 2016; 98:115-21. [DOI: 10.1016/j.neuint.2016.03.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 03/02/2016] [Accepted: 03/02/2016] [Indexed: 11/19/2022]
|
48
|
Topalidou I, Cattin-Ortolá J, Pappas AL, Cooper K, Merrihew GE, MacCoss MJ, Ailion M. The EARP Complex and Its Interactor EIPR-1 Are Required for Cargo Sorting to Dense-Core Vesicles. PLoS Genet 2016; 12:e1006074. [PMID: 27191843 PMCID: PMC4871572 DOI: 10.1371/journal.pgen.1006074] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 04/30/2016] [Indexed: 12/15/2022] Open
Abstract
The dense-core vesicle is a secretory organelle that mediates the regulated release of peptide hormones, growth factors, and biogenic amines. Dense-core vesicles originate from the trans-Golgi of neurons and neuroendocrine cells, but it is unclear how this specialized organelle is formed and acquires its specific cargos. To identify proteins that act in dense-core vesicle biogenesis, we performed a forward genetic screen in Caenorhabditis elegans for mutants defective in dense-core vesicle function. We previously reported the identification of two conserved proteins that interact with the small GTPase RAB-2 to control normal dense-core vesicle cargo-sorting. Here we identify several additional conserved factors important for dense-core vesicle cargo sorting: the WD40 domain protein EIPR-1 and the endosome-associated recycling protein (EARP) complex. By assaying behavior and the trafficking of dense-core vesicle cargos, we show that mutants that lack EIPR-1 or EARP have defects in dense-core vesicle cargo-sorting similar to those of mutants in the RAB-2 pathway. Genetic epistasis data indicate that RAB-2, EIPR-1 and EARP function in a common pathway. In addition, using a proteomic approach in rat insulinoma cells, we show that EIPR-1 physically interacts with the EARP complex. Our data suggest that EIPR-1 is a new interactor of the EARP complex and that dense-core vesicle cargo sorting depends on the EARP-dependent trafficking of cargo through an endosomal sorting compartment. Animal cells package and store many important signaling molecules in specialized compartments called dense-core vesicles. Molecules stored in dense-core vesicles include peptide hormones like insulin and small molecule neurotransmitters like dopamine. Defects in the release of these compounds can lead to a wide range of metabolic and mental disorders in humans, including diabetes, depression, and drug addiction. However, it is not well understood how dense-core vesicles are formed in cells and package the appropriate molecules. Here we use a genetic screen in the microscopic worm C. elegans to identify proteins that are important for early steps in the generation of dense-core vesicles, such as packaging the correct molecular cargos in the vesicles. We identify several factors that are conserved between worms and humans and point to a new role for a protein complex that had previously been shown to be important for controlling trafficking in other cellular compartments. The identification of this complex suggests new cellular trafficking events that may be important for the generation of dense-core vesicles.
Collapse
Affiliation(s)
- Irini Topalidou
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Jérôme Cattin-Ortolá
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Andrea L. Pappas
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Kirsten Cooper
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Gennifer E. Merrihew
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Michael J. MacCoss
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Michael Ailion
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
49
|
Syntabulin regulates the trafficking of PICK1-containing vesicles in neurons. Sci Rep 2016; 6:20924. [PMID: 26868290 PMCID: PMC4751430 DOI: 10.1038/srep20924] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/08/2016] [Indexed: 11/08/2022] Open
Abstract
PICK1 (protein interacting with C-kinase 1) is a peripheral membrane protein that interacts with diverse membrane proteins. PICK1 has been shown to regulate the clustering and membrane localization of synaptic receptors such as AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptors, metabotropic glutamate receptor 7, and ASICs (acid-sensing ion channels). Moreover, recent evidence suggests that PICK1 can mediate the trafficking of various vesicles out from the Golgi complex in several cell systems, including neurons. However, how PICK1 affects vesicle-trafficking dynamics remains unexplored. Here, we show that PICK1 mediates vesicle trafficking by interacting with syntabulin, a kinesin-binding protein that mediates the trafficking of both synaptic vesicles and mitochondria in axons. Syntabulin recruits PICK1 onto microtubule structures and mediates the trafficking of PICK1-containing vesicles along microtubules. In neurons, syntabulin alters PICK1 expression by recruiting PICK1 into axons and regulates the trafficking dynamics of PICK1-containing vesicles. Furthermore, we show that syntabulin forms a complex with PICK1 and ASICs, regulates ASIC protein expression in neurons, and participates in ASIC-induced acidotoxicity.
Collapse
|
50
|
Lu Y, Day FR, Gustafsson S, Buchkovich ML, Na J, Bataille V, Cousminer DL, Dastani Z, Drong AW, Esko T, Evans DM, Falchi M, Feitosa MF, Ferreira T, Hedman ÅK, Haring R, Hysi PG, Iles MM, Justice AE, Kanoni S, Lagou V, Li R, Li X, Locke A, Lu C, Mägi R, Perry JRB, Pers TH, Qi Q, Sanna M, Schmidt EM, Scott WR, Shungin D, Teumer A, Vinkhuyzen AAE, Walker RW, Westra HJ, Zhang M, Zhang W, Zhao JH, Zhu Z, Afzal U, Ahluwalia TS, Bakker SJL, Bellis C, Bonnefond A, Borodulin K, Buchman AS, Cederholm T, Choh AC, Choi HJ, Curran JE, de Groot LCPGM, De Jager PL, Dhonukshe-Rutten RAM, Enneman AW, Eury E, Evans DS, Forsen T, Friedrich N, Fumeron F, Garcia ME, Gärtner S, Han BG, Havulinna AS, Hayward C, Hernandez D, Hillege H, Ittermann T, Kent JW, Kolcic I, Laatikainen T, Lahti J, Leach IM, Lee CG, Lee JY, Liu T, Liu Y, Lobbens S, Loh M, Lyytikäinen LP, Medina-Gomez C, Michaëlsson K, Nalls MA, Nielson CM, Oozageer L, Pascoe L, Paternoster L, Polašek O, Ripatti S, Sarzynski MA, Shin CS, Narančić NS, Spira D, Srikanth P, Steinhagen-Thiessen E, Sung YJ, Swart KMA, Taittonen L, Tanaka T, et alLu Y, Day FR, Gustafsson S, Buchkovich ML, Na J, Bataille V, Cousminer DL, Dastani Z, Drong AW, Esko T, Evans DM, Falchi M, Feitosa MF, Ferreira T, Hedman ÅK, Haring R, Hysi PG, Iles MM, Justice AE, Kanoni S, Lagou V, Li R, Li X, Locke A, Lu C, Mägi R, Perry JRB, Pers TH, Qi Q, Sanna M, Schmidt EM, Scott WR, Shungin D, Teumer A, Vinkhuyzen AAE, Walker RW, Westra HJ, Zhang M, Zhang W, Zhao JH, Zhu Z, Afzal U, Ahluwalia TS, Bakker SJL, Bellis C, Bonnefond A, Borodulin K, Buchman AS, Cederholm T, Choh AC, Choi HJ, Curran JE, de Groot LCPGM, De Jager PL, Dhonukshe-Rutten RAM, Enneman AW, Eury E, Evans DS, Forsen T, Friedrich N, Fumeron F, Garcia ME, Gärtner S, Han BG, Havulinna AS, Hayward C, Hernandez D, Hillege H, Ittermann T, Kent JW, Kolcic I, Laatikainen T, Lahti J, Leach IM, Lee CG, Lee JY, Liu T, Liu Y, Lobbens S, Loh M, Lyytikäinen LP, Medina-Gomez C, Michaëlsson K, Nalls MA, Nielson CM, Oozageer L, Pascoe L, Paternoster L, Polašek O, Ripatti S, Sarzynski MA, Shin CS, Narančić NS, Spira D, Srikanth P, Steinhagen-Thiessen E, Sung YJ, Swart KMA, Taittonen L, Tanaka T, Tikkanen E, van der Velde N, van Schoor NM, Verweij N, Wright AF, Yu L, Zmuda JM, Eklund N, Forrester T, Grarup N, Jackson AU, Kristiansson K, Kuulasmaa T, Kuusisto J, Lichtner P, Luan J, Mahajan A, Männistö S, Palmer CD, Ried JS, Scott RA, Stancáková A, Wagner PJ, Demirkan A, Döring A, Gudnason V, Kiel DP, Kühnel B, Mangino M, Mcknight B, Menni C, O'Connell JR, Oostra BA, Shuldiner AR, Song K, Vandenput L, van Duijn CM, Vollenweider P, White CC, Boehnke M, Boettcher Y, Cooper RS, Forouhi NG, Gieger C, Grallert H, Hingorani A, Jørgensen T, Jousilahti P, Kivimaki M, Kumari M, Laakso M, Langenberg C, Linneberg A, Luke A, Mckenzie CA, Palotie A, Pedersen O, Peters A, Strauch K, Tayo BO, Wareham NJ, Bennett DA, Bertram L, Blangero J, Blüher M, Bouchard C, Campbell H, Cho NH, Cummings SR, Czerwinski SA, Demuth I, Eckardt R, Eriksson JG, Ferrucci L, Franco OH, Froguel P, Gansevoort RT, Hansen T, Harris TB, Hastie N, Heliövaara M, Hofman A, Jordan JM, Jula A, Kähönen M, Kajantie E, Knekt PB, Koskinen S, Kovacs P, Lehtimäki T, Lind L, Liu Y, Orwoll ES, Osmond C, Perola M, Pérusse L, Raitakari OT, Rankinen T, Rao DC, Rice TK, Rivadeneira F, Rudan I, Salomaa V, Sørensen TIA, Stumvoll M, Tönjes A, Towne B, Tranah GJ, Tremblay A, Uitterlinden AG, van der Harst P, Vartiainen E, Viikari JS, Vitart V, Vohl MC, Völzke H, Walker M, Wallaschofski H, Wild S, Wilson JF, Yengo L, Bishop DT, Borecki IB, Chambers JC, Cupples LA, Dehghan A, Deloukas P, Fatemifar G, Fox C, Furey TS, Franke L, Han J, Hunter DJ, Karjalainen J, Karpe F, Kaplan RC, Kooner JS, McCarthy MI, Murabito JM, Morris AP, Bishop JAN, North KE, Ohlsson C, Ong KK, Prokopenko I, Richards JB, Schadt EE, Spector TD, Widén E, Willer CJ, Yang J, Ingelsson E, Mohlke KL, Hirschhorn JN, Pospisilik JA, Zillikens MC, Lindgren C, Kilpeläinen TO, Loos RJF. New loci for body fat percentage reveal link between adiposity and cardiometabolic disease risk. Nat Commun 2016; 7:10495. [PMID: 26833246 PMCID: PMC4740398 DOI: 10.1038/ncomms10495] [Show More Authors] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 12/16/2015] [Indexed: 12/24/2022] Open
Abstract
To increase our understanding of the genetic basis of adiposity and its links to cardiometabolic disease risk, we conducted a genome-wide association meta-analysis of body fat percentage (BF%) in up to 100,716 individuals. Twelve loci reached genome-wide significance (P<5 × 10(-8)), of which eight were previously associated with increased overall adiposity (BMI, BF%) and four (in or near COBLL1/GRB14, IGF2BP1, PLA2G6, CRTC1) were novel associations with BF%. Seven loci showed a larger effect on BF% than on BMI, suggestive of a primary association with adiposity, while five loci showed larger effects on BMI than on BF%, suggesting association with both fat and lean mass. In particular, the loci more strongly associated with BF% showed distinct cross-phenotype association signatures with a range of cardiometabolic traits revealing new insights in the link between adiposity and disease risk.
Collapse
Affiliation(s)
- Yingchang Lu
- The Charles Bronfman Institute for Personalized Medicine, The
Icahn School of Medicine at Mount Sinai, New York, New
York
10029, USA
- The Department of Preventive Medicine, The Icahn School of
Medicine at Mount Sinai, New York, New York
10029, USA
| | - Felix R. Day
- MRC Epidemiology Unit, University of Cambridge School of
Clinical Medicine, Institute of Metabolic Science, University of Cambridge,
Cambridge Biomedical Campus, Cambridge
CB2 0QQ, UK
| | - Stefan Gustafsson
- Science for Life Laboratory, Uppsala University, 750
85
Uppsala, Sweden
- Department of Medical Sciences, Molecular Epidemiology, Uppsala
University, 751 85
Uppsala, Sweden
| | - Martin L. Buchkovich
- Department of Genetics, University of North Carolina,
Chapel Hill, North Carolina
27599, USA
| | - Jianbo Na
- Department of Developmental and Regenerative Biology, The Icahn
School of Medicine at Mount Sinai, New York, New York
10029, USA
| | - Veronique Bataille
- West Herts NHS Trust, Herts
HP2 4AD, UK
- Department of Twin Research and Genetic Epidemiology,
King's College London, London
SE1 7EH, UK
| | - Diana L. Cousminer
- Institute for Molecular Medicine Finland, University of
Helsinki, FI-00290
Helsinki, Finland
| | - Zari Dastani
- Department Epidemiology, Biostatistics and Human Genetics, Lady
Davis Institute, Jewish General Hospital, McGill University,
Montréal, Quebec, Canada
H3T1E2
| | - Alexander W. Drong
- Wellcome Trust Centre for Human Genetics, University of
Oxford, Oxford
OX3 7BN, UK
| | - Tõnu Esko
- Estonian Genome Center, Univeristy of Tartu,
Tartu, 51010, Estonia
- Broad Institute of the Massachusetts Institute of Technology
and Harvard University, Cambridge
2142, USA
- Divisions of Endocrinology and Genetics and Center for Basic
and Translational Obesity Research, Boston Children's Hospital,
Boston, Massachusetts
02115, USA
- Department of Genetics, Harvard Medical School,
Boston, Massachusetts
02115, USA
| | - David M. Evans
- University of Queensland Diamantina Institute, Translational
Research Institute, Brisbane, Queensland
4102, Australia
- MRC Integrative Epidemiology Unit, School of Social and
Community Medicine, University of Bristol, Bristol
BS82BN, UKnited
| | - Mario Falchi
- Department of Twin Research and Genetic Epidemiology,
King's College London, London
SE1 7EH, UK
- Department of Genomics of Common Disease, School of Public
Health, Imperial College London, London
W12 0NN, UK
| | - Mary F. Feitosa
- Division of Statistical Genomics, Department of Genetics,
Washington University School of Medicine, St Louis,
Missouri
63108, USA
| | - Teresa Ferreira
- Wellcome Trust Centre for Human Genetics, University of
Oxford, Oxford
OX3 7BN, UK
| | - Åsa K. Hedman
- Science for Life Laboratory, Uppsala University, 750
85
Uppsala, Sweden
- Department of Medical Sciences, Molecular Epidemiology, Uppsala
University, 751 85
Uppsala, Sweden
- Wellcome Trust Centre for Human Genetics, University of
Oxford, Oxford
OX3 7BN, UK
| | - Robin Haring
- Institute of Clinical Chemistry and Laboratory Medicine,
University Medicine Greifswald, 17475
Greifswald, Germany
- European University of Applied Sciences, Faculty of Applied
Public Health, 18055
Rostock, Germany
| | - Pirro G. Hysi
- Department of Twin Research and Genetic Epidemiology,
King's College London, London
SE1 7EH, UK
| | - Mark M. Iles
- Leeds Institute of Cancer and Pathology, Cancer Research UK
Leeds Centre, University of Leeds, Leeds
LS9 7TF, UK
| | - Anne E. Justice
- Department of Epidemiology, University of North Carolina at
Chapel Hill, Chapel Hill, North Carolina
27599, USA
| | - Stavroula Kanoni
- William Harvey Research Institute, Barts and The London School
of Medicine and Dentistry, Queen Mary University of London,
London
EC1M 6BQ, UK
- Wellcome Trust Sanger Institute, Human Genetics,
Hinxton, Cambridge
CB10 1SA, UK
| | - Vasiliki Lagou
- Wellcome Trust Centre for Human Genetics, University of
Oxford, Oxford
OX3 7BN, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism,
University of Oxford, Churchill Hospital, Oxford
OX3 7LJ, UK
| | - Rui Li
- Department Epidemiology, Biostatistics and Human Genetics, Lady
Davis Institute, Jewish General Hospital, McGill University,
Montréal, Quebec, Canada
H3T1E2
| | - Xin Li
- Department of Epidemiology, Harvard School of Public
Health, Boston, Massachusetts
02115, USA
| | - Adam Locke
- Center for Statistical Genetics, Department of Biostatistics,
University of Michigan, Ann Arbor, Michigan
48109, USA
| | - Chen Lu
- Department of Biostatistics, Boston University School of Public
Health, Boston, Massachusetts
02118, USA
| | - Reedik Mägi
- Wellcome Trust Centre for Human Genetics, University of
Oxford, Oxford
OX3 7BN, UK
- Estonian Genome Center, Univeristy of Tartu,
Tartu, 51010, Estonia
| | - John R. B. Perry
- MRC Epidemiology Unit, University of Cambridge School of
Clinical Medicine, Institute of Metabolic Science, University of Cambridge,
Cambridge Biomedical Campus, Cambridge
CB2 0QQ, UK
| | - Tune H. Pers
- Divisions of Endocrinology and Genetics and Center for Basic
and Translational Obesity Research, Boston Children's Hospital,
Boston, Massachusetts
02115, USA
- Department of Genetics, Harvard Medical School,
Boston, Massachusetts
02115, USA
- Novo Nordisk Foundation Center for Basic Metabolic Research,
Section of Metabolic Genetics, Faculty of Health and Medical Sciences,
University of Copenhagen, 2100
Copenhagen, Denmark
- Medical and Population Genetics Program, Broad Institute of MIT
and Harvard, Cambridge
02142, USA
- Department of Epidemiology Research, Statens Serum
Institut, 2100
Copenhagen, Denmark
| | - Qibin Qi
- Department of Epidemiology and Popualtion Health, Albert
Einstein College of Medicine, Bronx, New York
10461, USA
| | - Marianna Sanna
- Department of Twin Research and Genetic Epidemiology,
King's College London, London
SE1 7EH, UK
- Department of Genomics of Common Disease, School of Public
Health, Imperial College London, London
W12 0NN, UK
| | - Ellen M. Schmidt
- Department of Computational Medicine and Bioinformatics,
University of Michigan, Ann Arbor, Michigan
48109, USA
| | - William R. Scott
- Department of Epidemiology and Biostatistics, Imperial College
London, London
W2 1PG, UK
- Ealing Hospital NHS Trust, Middlesex
UB1 3HW, UK
| | - Dmitry Shungin
- Lund University Diabetes Centre, Department of Clinical
Science, Genetic and Molecular Epidemiology Unit, Skåne University
Hosptial, 205 02
Malmö, Sweden
- Department of Public Health and Clinical Medicine, Unit of
Medicine, Umeå University, 901 87
Umeå, Sweden
- Department of Odontology, Umeå University,
901 85
Umeå, Sweden
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine
Greifswald, 17475
Greifswald, Germany
- Interfaculty Institute for Genetics and Functional Genomics,
University Medicine Greifswald, 17475
Greifswald, Germany
| | | | - Ryan W. Walker
- The Charles Bronfman Institute for Personalized Medicine, The
Icahn School of Medicine at Mount Sinai, New York, New
York
10029, USA
- The Department of Preventive Medicine, The Icahn School of
Medicine at Mount Sinai, New York, New York
10029, USA
| | - Harm-Jan Westra
- Program in Medical and Population Genetics, Broad Institute of
Harvard and Massachusetts Institute of Technology, Cambridge,
Massachusetts
02142, USA
- Divisions of Genetics and Rheumatology, Department of Medicine,
Brigham and Women's Hospital and Harvard Medical School,
Boston, Massachusetts
02446, USA
- Partners Center for Personalized Genetic Medicine,
Boston, Massachusetts
02446, USA
| | - Mingfeng Zhang
- Department of Dermatology, Brigham and Women's
Hospital, Boston, Massachusetts
02115, USA
| | - Weihua Zhang
- Department of Epidemiology and Biostatistics, Imperial College
London, London
W2 1PG, UK
- Ealing Hospital NHS Trust, Middlesex
UB1 3HW, UK
| | - Jing Hua Zhao
- MRC Epidemiology Unit, University of Cambridge School of
Clinical Medicine, Institute of Metabolic Science, University of Cambridge,
Cambridge Biomedical Campus, Cambridge
CB2 0QQ, UK
| | - Zhihong Zhu
- Queensland Brain Institute, The University of Queensland,
Brisbane
4072, Australia
| | - Uzma Afzal
- Department of Epidemiology and Biostatistics, Imperial College
London, London
W2 1PG, UK
- Ealing Hospital NHS Trust, Middlesex
UB1 3HW, UK
| | - Tarunveer Singh Ahluwalia
- Novo Nordisk Foundation Center for Basic Metabolic Research,
Section of Metabolic Genetics, Faculty of Health and Medical Sciences,
University of Copenhagen, 2100
Copenhagen, Denmark
- Copenhagen Prospective Studies on Asthma in Childhood, Faculty
of Health and Medical Sceinces, University of Copenhagen, 2200
Copenhagen, Denmark
- Danish Pediatric Asthma Center, Gentofte Hospital, The Capital
Region, 2200
Copenhagen, Denmark
- Steno Diabetes Center A/S, DK-2820
Gentofte, Denmark
| | - Stephan J. L. Bakker
- University of Groningen, University Medical Center Groningen,
Department of Medicine, 9700 RB
Groningen, The Netherlands
| | - Claire Bellis
- Department of Genetics, Texas Biomedical Research
Institute, San Antonio, Texas
78245, USA
| | - Amélie Bonnefond
- CNRS UMR 8199, F-59019
Lille, France
- European Genomic Institute for Diabetes, 59000
Lille, France
- Université de Lille 2, 59000
Lille, France
| | - Katja Borodulin
- National Institute for Health and Welfare,
FI-00271
Helsinki, Finland
| | - Aron S. Buchman
- Rush Alzheimer's Disease Center, Rush University
Medical Center, Chicago, Illinois
60612, USA
| | - Tommy Cederholm
- Department of Public Health and Caring Sciences, Clinical
Nutrition and Metabolism, Uppsala University, 751 85
Uppsala, Sweden
| | - Audrey C. Choh
- Lifespan Health Research Center, Wright State University
Boonshoft School of Medicine, Dayton, Ohio
45420, USA
| | - Hyung Jin Choi
- Department of Anatomy, Seoul National University College of
Medicine, Seoul
03080, Korea
| | - Joanne E. Curran
- South Texas Diabetes and Obesity Institute, University of Texas
Rio Grande Valley, Brownsville, Texas
78520
| | | | - Philip L. De Jager
- Program in Medical and Population Genetics, Broad Institute of
Harvard and Massachusetts Institute of Technology, Cambridge,
Massachusetts
02142, USA
- Harvard Medical School, Boston,
Massachusetts
02115, USA
- Program in Translational NeuroPsychiatric Genomics, Department
of Neurology, Brigham and Women's Hospital, Boston,
Massachusetts
02115, USA
| | | | - Anke W. Enneman
- Department of Internal Medicine, Erasmus Medical Center,
3015GE
Rotterdam, The Netherlands
| | - Elodie Eury
- CNRS UMR 8199, F-59019
Lille, France
- European Genomic Institute for Diabetes, 59000
Lille, France
- Université de Lille 2, 59000
Lille, France
| | - Daniel S. Evans
- California Pacific Medical Center Research Institute,
San Francisco, California
94107, USA
| | - Tom Forsen
- Department of General Practice and Primary Health Care,
University of Helsinki, FI-00014
Helsinki, Finland
| | - Nele Friedrich
- Institute of Clinical Chemistry and Laboratory Medicine,
University Medicine Greifswald, 17475
Greifswald, Germany
| | - Frédéric Fumeron
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers,
F-75006
Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S
1138, Centre de Recherche des Cordeliers, F-75006
Paris, France
- Université Paris Descartes, Sorbonne Paris
Cité, UMR_S 1138, Centre de Recherche des Cordeliers,
F-75006
Paris, France
- Univ Paris Diderot, Sorbonne Paris Cité, UMR_S 1138,
Centre de Recherche des Cordeliers, F-75006
Paris, France
| | - Melissa E. Garcia
- Laboratory of Epidemiology and Population Sciences, National
Institute on Aging, Bethesda, Maryland
20892, USA
| | - Simone Gärtner
- Department of Medicine A, University Medicine Greifswald,
17475
Greifswald, Germany
| | - Bok-Ghee Han
- Center for Genome Science, National Institute of Health, Osong
Health Technology Administration Complex, Chungcheongbuk-do
370914, Korea
| | - Aki S. Havulinna
- National Institute for Health and Welfare,
FI-00271
Helsinki, Finland
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Molecular
Medicine, University of Edinburgh, Edinburgh
EH4 2XU, UK
| | - Dena Hernandez
- Laboratory of Neurogenetics, National Institute on Aging,
National Institutes of Health, Bethesda, Maryland
20892, USA
| | - Hans Hillege
- University of Groningen, University Medical Center Groningen,
Department of Cardiology, 9700 RB
Groningen, The Netherlands
| | - Till Ittermann
- Institute for Community Medicine, University Medicine
Greifswald, 17475
Greifswald, Germany
| | - Jack W. Kent
- Department of Genetics, Texas Biomedical Research
Institute, San Antonio, Texas
78245, USA
| | - Ivana Kolcic
- Department of Public Health, Faculty of Medicine, University of
Split, Split
21000, Croatia
| | - Tiina Laatikainen
- National Institute for Health and Welfare,
FI-00271
Helsinki, Finland
- Hospital District of North Karelia, FI-80210
Joensuu, Finland
- Institute of Public Health and Clinical Nutrition, University
of Eastern Finland, FI-70211
Kuopio, Finland
| | - Jari Lahti
- Folkhälsan Research Centre, FI-00290
Helsinki, Finland
- Institute of Behavioural Sciences, University of
Helsinki, FI-00014
Helsinki, Finland
| | - Irene Mateo Leach
- University of Groningen, University Medical Center Groningen,
Department of Cardiology, 9700 RB
Groningen, The Netherlands
| | - Christine G. Lee
- Department of Medicine, Oregon Health and Science
University, Portland, Oregon
97239, USA
- Research Service, Veterans Affairs Medical Center,
Portland, Oregon
97239, USA
| | - Jong-Young Lee
- Center for Genome Science, National Institute of Health, Osong
Health Technology Administration Complex, Chungcheongbuk-do
370914, Korea
| | - Tian Liu
- Max Planck Institute for Molecular Genetics, Department of
Vertebrate Genomics, 14195
Berlin, Germany
- Max Planck Institute for Human Development,
14194
Berlin, Germany
| | - Youfang Liu
- Thurston Arthritis Research Center, University of North
Carolina at Chapel Hill, Chaper Hill, North Carolina
27599-7280, USA
| | - Stéphane Lobbens
- CNRS UMR 8199, F-59019
Lille, France
- European Genomic Institute for Diabetes, 59000
Lille, France
- Université de Lille 2, 59000
Lille, France
| | - Marie Loh
- Department of Epidemiology and Biostatistics, Imperial College
London, London
W2 1PG, UK
- Translational Laboratory in Genetic Medicine (TLGM), Agency for
Science, Technology and Research (A*STAR), 8A Biomedical
Grove, Immunos, Level 5, Singapore
138648, Singapore
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, University of Tampere School
of Medicine, FI-33014
Tampere, Finland
- Department of Clinical Chemistry, Fimlab Laboratories and
School of Medicine, University of Tampere, FI-33520
Tampere, Finland
| | - Carolina Medina-Gomez
- Department of Internal Medicine, Erasmus Medical Center,
3015GE
Rotterdam, The Netherlands
- Netherlands Genomics Initiative (NGI)-sponsored Netherlands
Consortium for Healthy Aging (NCHA), Rotterdam
The Netherlands
- Department of Epidemiology, Erasmus Medical Center,
3015GE
Rotterdam, The Netherlands
| | - Karl Michaëlsson
- Department of Surgical Sciences, Orthopedics, Uppsala
University, 751 85
Uppsala, Sweden
| | - Mike A. Nalls
- Laboratory of Neurogenetics, National Institute on Aging,
National Institutes of Health, Bethesda, Maryland
20892, USA
| | - Carrie M. Nielson
- School of Public Health, Oregon Health & Science
University, Portland, Oregon
97239, USA
- Bone & Mineral Unit, Oregon Health & Science
University, Portland, Oregon
97239, USA
| | | | - Laura Pascoe
- Institute of Cell & Molecular Biosciences, Newcastle
University, Newcastle
NE1 7RU, UK
| | - Lavinia Paternoster
- MRC Integrative Epidemiology Unit, School of Social and
Community Medicine, University of Bristol, Bristol
BS82BN, UKnited
| | - Ozren Polašek
- Department of Public Health, Faculty of Medicine, University of
Split, Split
21000, Croatia
- Centre for Global Health Research, Usher Institute of
Population Health Sciences and Informatics, University of Edinburgh, Teviot
Place, Edinburgh
EH8 9AG, UK
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland, University of
Helsinki, FI-00290
Helsinki, Finland
- Wellcome Trust Sanger Institute, Human Genetics,
Hinxton, Cambridge
CB10 1SA, UK
- Hjelt Institute, University of Helsinki,
FI-00014
Helsinki, Finland
| | - Mark A. Sarzynski
- Human Genomics Laboratory, Pennington Biomedical Research
Center, Baton Rouge, Los Angeles
70808, USA
| | - Chan Soo Shin
- Department of Internal Medicine, Seoul National University
College of Medicine, Seoul
03080, Korea
| | | | - Dominik Spira
- The Berlin Aging Study II; Research Group on Geriatrics;
Charité—Universitätsmedizin Berlin,
13347
Berlin, Germany
- Lipid Clinic at the Interdisciplinary Metabolism Center,
Charité-Universitätsmedizin Berlin, 13353
Berlin, Germany
| | - Priya Srikanth
- School of Public Health, Oregon Health & Science
University, Portland, Oregon
97239, USA
- Bone & Mineral Unit, Oregon Health & Science
University, Portland, Oregon
97239, USA
| | - Elisabeth Steinhagen-Thiessen
- The Berlin Aging Study II; Research Group on Geriatrics;
Charité—Universitätsmedizin Berlin,
13347
Berlin, Germany
- Lipid Clinic at the Interdisciplinary Metabolism Center,
Charité-Universitätsmedizin Berlin, 13353
Berlin, Germany
| | - Yun Ju Sung
- Division of Biostatistics, Washington University School of
Medicine, St Louis, Missouri
63110, USA
| | - Karin M. A. Swart
- EMGO Institute for Health and Care Research, VU University
Medical Center, 1081 BT
Amsterdam, The Netherlands
- VUMC, Department of Epidemiology and Biostatistics,
1081 BT
Amsterdam, The Netherlands
| | - Leena Taittonen
- Department of Pediatrics, University of Oulu,
FI-90014
Oulu, Finland
- Department of Pediatrics, Vaasa Central Hospital,
FI-65100
Vaasa, Finland
| | - Toshiko Tanaka
- Translational Gerontology Branch, National Institute on
Aging, Baltimore, Maryland
21225, USA
| | - Emmi Tikkanen
- Institute for Molecular Medicine Finland, University of
Helsinki, FI-00290
Helsinki, Finland
- Hjelt Institute, University of Helsinki,
FI-00014
Helsinki, Finland
| | - Nathalie van der Velde
- Department of Internal Medicine, Erasmus Medical Center,
3015GE
Rotterdam, The Netherlands
| | - Natasja M. van Schoor
- EMGO Institute for Health and Care Research, VU University
Medical Center, 1081 BT
Amsterdam, The Netherlands
- VUMC, Department of Epidemiology and Biostatistics,
1081 BT
Amsterdam, The Netherlands
| | - Niek Verweij
- University of Groningen, University Medical Center Groningen,
Department of Cardiology, 9700 RB
Groningen, The Netherlands
| | - Alan F. Wright
- MRC Human Genetics Unit, Institute of Genetics and Molecular
Medicine, University of Edinburgh, Edinburgh
EH4 2XU, UK
| | - Lei Yu
- Rush Alzheimer's Disease Center, Rush University
Medical Center, Chicago, Illinois
60612, USA
| | - Joseph M. Zmuda
- Department of Epidemiology; University of Pittsburgh,
Pittsburgh, Pennsylvania
15261, USA
| | - Niina Eklund
- National Institute for Health and Welfare,
FI-00271
Helsinki, Finland
| | - Terrence Forrester
- Tropical Metabolism Research Unit, Tropical Medicine Research
Institute, University of the West Indies, Mona
JMAAW15, Jamaica
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research,
Section of Metabolic Genetics, Faculty of Health and Medical Sciences,
University of Copenhagen, 2100
Copenhagen, Denmark
| | - Anne U. Jackson
- Center for Statistical Genetics, Department of Biostatistics,
University of Michigan, Ann Arbor, Michigan
48109, USA
| | - Kati Kristiansson
- Institute for Molecular Medicine Finland, University of
Helsinki, FI-00290
Helsinki, Finland
- National Institute for Health and Welfare,
FI-00271
Helsinki, Finland
| | - Teemu Kuulasmaa
- Faculty of Health Sciences, Institute of Clinical Medicine,
Internal Medicine, University of Eastern Finland, 70210
Kuopio, Finland
| | - Johanna Kuusisto
- Faculty of Health Sciences, Institute of Clinical Medicine,
Internal Medicine, University of Eastern Finland, 70210
Kuopio, Finland
- Department of Medicine, University of Eastern Finland,
70210
Kuopio, Finland
- Kuopio University Hospital, 70029
Kuopio, Finland
| | - Peter Lichtner
- Institute of Human Genetics, Helmholtz Zentrum
München—German Research Center for Environmental
Health, 85764
Neuherberg, Germany
| | - Jian'an Luan
- MRC Epidemiology Unit, University of Cambridge School of
Clinical Medicine, Institute of Metabolic Science, University of Cambridge,
Cambridge Biomedical Campus, Cambridge
CB2 0QQ, UK
| | - Anubha Mahajan
- Wellcome Trust Centre for Human Genetics, University of
Oxford, Oxford
OX3 7BN, UK
| | - Satu Männistö
- National Institute for Health and Welfare,
FI-00271
Helsinki, Finland
| | - Cameron D. Palmer
- Broad Institute of the Massachusetts Institute of Technology
and Harvard University, Cambridge
2142, USA
- Divisions of Endocrinology and Genetics and Center for Basic
and Translational Obesity Research, Boston Children's Hospital,
Boston, Massachusetts
02115, USA
| | - Janina S. Ried
- Institute of Genetic Epidemiology, Helmholtz Zentrum
München—German Research Center for Environmental
Health, 85764
Neuherberg, Germany
| | - Robert A. Scott
- MRC Epidemiology Unit, University of Cambridge School of
Clinical Medicine, Institute of Metabolic Science, University of Cambridge,
Cambridge Biomedical Campus, Cambridge
CB2 0QQ, UK
| | - Alena Stancáková
- Department of Medicine, University of Eastern Finland and
Kuopio University Hospital, 70210
Kuopio, Finland
| | - Peter J. Wagner
- Institute for Molecular Medicine Finland, University of
Helsinki, FI-00290
Helsinki, Finland
- National Institute for Health and Welfare,
FI-00271
Helsinki, Finland
| | - Ayse Demirkan
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus
University Medical Center, 3015GE
Rotterdam, The Netherlands
| | - Angela Döring
- Institute of Epidemiology I, Helmholtz Zentrum
München—German Research Center for Environmental
Health, 85764
Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum
München—German Research Center for Environmental
Health, 85764
Neuherberg, Germany
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur
201, Iceland
- University of Iceland, Faculty of Medicine,
Reykjavik
101, Iceland
| | - Douglas P. Kiel
- Department of Medicine Beth Israel Deaconess Medical Center
and Harvard Medical School, Boston, Massachusetts
02115
- Institute for Aging Research Hebrew Senior Life,
Boston, Massachusetts
02131, USA
| | - Brigitte Kühnel
- Institute of Genetic Epidemiology, Helmholtz Zentrum
München—German Research Center for Environmental
Health, 85764
Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum
München—German Research Center for Environmental
Health, 85764
Neuherberg, Germany
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum
München—German Research Center for Environmental
Health, 85764
Neuherberg, Germany
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology,
King's College London, London
SE1 7EH, UK
| | - Barbara Mcknight
- Cardiovascular Health Research Unit, University of
Washington, Seattle, Washington
98101, USA
- Program in Biostatistics and Biomathematics, Divison of Public
Health Sciences, Fred Hutchinson Cancer Research Center,
Seattle, Washington
98109, USA
- Department of Biostatistics, University of Washington,
Seattle, Washington
98195, USA
| | - Cristina Menni
- Department of Twin Research and Genetic Epidemiology,
King's College London, London
SE1 7EH, UK
| | - Jeffrey R. O'Connell
- Program for Personalized and Genomic Medicine, Division of
Endocrinology, Diabetes and Nutrition, Department of Medicine, University of
Maryland School of Medicine, Baltimore, Maryland
21201, USA
| | - Ben A. Oostra
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus
University Medical Center, 3015GE
Rotterdam, The Netherlands
| | - Alan R. Shuldiner
- Program for Personalized and Genomic Medicine, Division of
Endocrinology, Diabetes and Nutrition, Department of Medicine, University of
Maryland School of Medicine, Baltimore, Maryland
21201, USA
- Geriatric Research and Education Clinical Center, Vetrans
Administration Medical Center, Baltimore, Maryland
21042, USA
| | - Kijoung Song
- Genetics, Projects Clinical Platforms and Sciences,
GlaxoSmithKline, Philadelphia, Pennsylvania
19112, USA
| | - Liesbeth Vandenput
- Centre for Bone and Arthritis Research, Department of Internal
Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy,
University of Gothenburg, 413 45
Gothenburg, Sweden
| | - Cornelia M. van Duijn
- Netherlands Genomics Initiative (NGI)-sponsored Netherlands
Consortium for Healthy Aging (NCHA), Rotterdam
The Netherlands
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus
University Medical Center, 3015GE
Rotterdam, The Netherlands
- Center for Medical Systems Biology, 2300
Leiden, The Netherlands
| | - Peter Vollenweider
- Department of Internal Medicine, University Hospital Lausanne
(CHUV) and University of Lausanne, 1011
Lausanne, Switzerland
| | - Charles C. White
- Department of Biostatistics, Boston University School of Public
Health, Boston, Massachusetts
02118, USA
| | - Michael Boehnke
- Center for Statistical Genetics, Department of Biostatistics,
University of Michigan, Ann Arbor, Michigan
48109, USA
| | - Yvonne Boettcher
- University of Leipzig, IFB Adiposity Diseases,
04103
Leipzig, Germany
- University of Leipzig, Department of Medicine,
04103
Leipzig, Germany
| | - Richard S. Cooper
- Department of Public Health Sciences, Stritch School of
Medicine, Loyola University Chicago, Maywood, Illinois
61053, USA
| | - Nita G. Forouhi
- MRC Epidemiology Unit, University of Cambridge School of
Clinical Medicine, Institute of Metabolic Science, University of Cambridge,
Cambridge Biomedical Campus, Cambridge
CB2 0QQ, UK
| | - Christian Gieger
- Institute of Genetic Epidemiology, Helmholtz Zentrum
München—German Research Center for Environmental
Health, 85764
Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum
München—German Research Center for Environmental
Health, 85764
Neuherberg, Germany
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum
München—German Research Center for Environmental
Health, 85764
Neuherberg, Germany
| | - Harald Grallert
- Institute of Epidemiology II, Helmholtz Zentrum
München—German Research Center for Environmental
Health, 85764
Neuherberg, Germany
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum
München—German Research Center for Environmental
Health, 85764
Neuherberg, Germany
- German Center for Diabetes Research (DZD),
85764
Neuherberg, Germany
| | - Aroon Hingorani
- Institute of Cardiovascular Science, University College
London, London
WC1E 6BT, UK
| | - Torben Jørgensen
- Department of Clinical Medicine, Faculty of Health and Medical
Sciences, University of Copenhagen, 2200
Copenhagen, Denmark
- Faculty of Medicine, University of Aalborg,
9220
Aalborg, Denmark
- Research Centre for Prevention and Health,
DK2600
Capital Region of Denmark, Denmark
| | - Pekka Jousilahti
- National Institute for Health and Welfare,
FI-00271
Helsinki, Finland
| | - Mika Kivimaki
- Department of Epidemiology and Public Health, UCL,
London
WC1E 6BT, UK
| | - Meena Kumari
- Department of Epidemiology and Public Health, UCL,
London
WC1E 6BT, UK
| | - Markku Laakso
- Faculty of Health Sciences, Institute of Clinical Medicine,
Internal Medicine, University of Eastern Finland, 70210
Kuopio, Finland
- Department of Medicine, University of Eastern Finland,
70210
Kuopio, Finland
- Kuopio University Hospital, 70029
Kuopio, Finland
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge School of
Clinical Medicine, Institute of Metabolic Science, University of Cambridge,
Cambridge Biomedical Campus, Cambridge
CB2 0QQ, UK
- Department of Epidemiology and Public Health, UCL,
London
WC1E 6BT, UK
| | - Allan Linneberg
- Research Centre for Prevention and Health, Glostrup
Hospital, 2600
Glostrup, Denmark
| | - Amy Luke
- Department of Public Health Sciences, Stritch School of
Medicine, Loyola University Chicago, Maywood, Illinois
61053, USA
| | - Colin A. Mckenzie
- Tropical Metabolism Research Unit, Tropical Medicine Research
Institute, University of the West Indies, Mona
JMAAW15, Jamaica
| | - Aarno Palotie
- Institute for Molecular Medicine Finland, University of
Helsinki, FI-00290
Helsinki, Finland
- Wellcome Trust Sanger Institute, Human Genetics,
Hinxton, Cambridge
CB10 1SA, UK
- Massachusetts General Hospital, Center for Human Genetic
Research, Psychiatric and Neurodevelopmental Genetics Unit,
Boston, Massachusetts
02114, USA
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research,
Section of Metabolic Genetics, Faculty of Health and Medical Sciences,
University of Copenhagen, 2100
Copenhagen, Denmark
| | - Annette Peters
- Institute of Epidemiology II, Helmholtz Zentrum
München—German Research Center for Environmental
Health, 85764
Neuherberg, Germany
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum
München—German Research Center for Environmental
Health, 85764
Neuherberg, Germany
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum
München—German Research Center for Environmental
Health, 85764
Neuherberg, Germany
- Institute of Medical Informatics, Biometry and Epidemiology,
Chair of Genetic Epidemiology, Ludwig-Maximilians-Universität,
81377
Munich, Germany
| | - Bamidele O. Tayo
- Department of Public Health Sciences, Stritch School of
Medicine, Loyola University Chicago, Maywood, Illinois
61053, USA
| | - Nicholas J. Wareham
- MRC Epidemiology Unit, University of Cambridge School of
Clinical Medicine, Institute of Metabolic Science, University of Cambridge,
Cambridge Biomedical Campus, Cambridge
CB2 0QQ, UK
| | - David A. Bennett
- Rush Alzheimer's Disease Center, Rush University
Medical Center, Chicago, Illinois
60612, USA
| | - Lars Bertram
- School of Public Health, Faculty of Medicine, Imperial College
London, London
W6 8RP, UK
- Lübeck Interdisciplinary Platform for Genome
Analytics, Institutes of Neurogenetics and Integrative and Experimental
Genomics, University of Lübeck, 23562
Lübeck, Germany
| | - John Blangero
- South Texas Diabetes and Obesity Institute, University of Texas
Rio Grande Valley, Brownsville, Texas
78520
| | - Matthias Blüher
- University of Leipzig, IFB Adiposity Diseases,
04103
Leipzig, Germany
- University of Leipzig, Department of Medicine,
04103
Leipzig, Germany
| | - Claude Bouchard
- Human Genomics Laboratory, Pennington Biomedical Research
Center, Baton Rouge, Los Angeles
70808, USA
| | - Harry Campbell
- Centre for Global Health Research, Usher Institute of
Population Health Sciences and Informatics, University of Edinburgh, Teviot
Place, Edinburgh
EH8 9AG, UK
| | - Nam H. Cho
- Ajou University School of Medicine, Department of Preventive
Medicine, Suwon Kyoung-gi
443-721, Korea
| | - Steven R. Cummings
- California Pacific Medical Center Research Institute,
San Francisco, California
94107, USA
| | - Stefan A. Czerwinski
- Lifespan Health Research Center, Wright State University
Boonshoft School of Medicine, Dayton, Ohio
45420, USA
| | - Ilja Demuth
- The Berlin Aging Study II; Research Group on Geriatrics;
Charité—Universitätsmedizin Berlin,
13347
Berlin, Germany
- Institute of Medical and Human Genetics,
Charité—Universitätsmedizin Berlin,
13353
Berlin, Germany
| | - Rahel Eckardt
- The Berlin Aging Study II; Research Group on Geriatrics;
Charité—Universitätsmedizin Berlin,
13347
Berlin, Germany
| | - Johan G. Eriksson
- National Institute for Health and Welfare,
FI-00271
Helsinki, Finland
- Department of General Practice and Primary Health Care,
University of Helsinki, FI-00014
Helsinki, Finland
- Folkhälsan Research Centre, FI-00290
Helsinki, Finland
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on
Aging, Baltimore, Maryland
21225, USA
| | - Oscar H. Franco
- Netherlands Genomics Initiative (NGI)-sponsored Netherlands
Consortium for Healthy Aging (NCHA), Rotterdam
The Netherlands
- Department of Epidemiology, Erasmus Medical Center,
3015GE
Rotterdam, The Netherlands
| | - Philippe Froguel
- CNRS UMR 8199, F-59019
Lille, France
- European Genomic Institute for Diabetes, 59000
Lille, France
- Université de Lille 2, 59000
Lille, France
| | - Ron T. Gansevoort
- University of Groningen, University Medical Center Groningen,
Department of Medicine, 9700 RB
Groningen, The Netherlands
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research,
Section of Metabolic Genetics, Faculty of Health and Medical Sciences,
University of Copenhagen, 2100
Copenhagen, Denmark
- Faculty of Health Sciences, University of Southern
Denmark, 5000
Odense, Denmark
| | - Tamara B. Harris
- Laboratory of Epidemiology and Population Sciences, National
Institute on Aging, Bethesda, Maryland
20892, USA
| | - Nicholas Hastie
- MRC Human Genetics Unit, Institute of Genetics and Molecular
Medicine, University of Edinburgh, Edinburgh
EH4 2XU, UK
| | - Markku Heliövaara
- National Institute for Health and Welfare,
FI-00271
Helsinki, Finland
| | - Albert Hofman
- Netherlands Genomics Initiative (NGI)-sponsored Netherlands
Consortium for Healthy Aging (NCHA), Rotterdam
The Netherlands
- Department of Epidemiology, Erasmus Medical Center,
3015GE
Rotterdam, The Netherlands
| | - Joanne M. Jordan
- Thurston Arthritis Research Center, University of North
Carolina at Chapel Hill, Chaper Hill, North Carolina
27599-7280, USA
| | - Antti Jula
- National Institute for Health and Welfare,
FI-00271
Helsinki, Finland
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University
Hospital, FI-33521
Tampere, Finland
- Department of Clinical Physiology, University of Tampere
School of Medicine, FI-33014
Tampere, Finland
| | - Eero Kajantie
- National Institute for Health and Welfare,
FI-00271
Helsinki, Finland
- Children's Hospital, Helsinki University Hospital and
University of Helsinki, FI-00029
Helsinki, Finland
- Department of Obstetrics and Gynecology, MRC Oulu, Oulu
University Hospital and University of Oulu, FI-90029
Oulu, Finland
| | - Paul B. Knekt
- National Institute for Health and Welfare,
FI-00271
Helsinki, Finland
| | - Seppo Koskinen
- National Institute for Health and Welfare,
FI-00271
Helsinki, Finland
| | - Peter Kovacs
- University of Leipzig, IFB Adiposity Diseases,
04103
Leipzig, Germany
| | - Terho Lehtimäki
- Department of Clinical Chemistry, University of Tampere School
of Medicine, FI-33014
Tampere, Finland
- Department of Clinical Chemistry, Fimlab Laboratories and
School of Medicine, University of Tampere, FI-33520
Tampere, Finland
| | - Lars Lind
- Department of Medical Sciences, Uppsala University,
751 85
Uppsala, Sweden
| | - Yongmei Liu
- Center for Human Genetics, Division of Public Health Sciences,
Wake Forest School of Medicine, Winston-Salem, North
Carolina
27157, USA
| | - Eric S. Orwoll
- Bone & Mineral Unit, Oregon Health & Science
University, Portland, Oregon
97239, USA
| | - Clive Osmond
- MRC Lifecourse Epidemiology Unit, University of Southampton,
Southampton General Hospital, Southampton
SO16 6YD, UK
| | - Markus Perola
- Institute for Molecular Medicine Finland, University of
Helsinki, FI-00290
Helsinki, Finland
- Estonian Genome Center, Univeristy of Tartu,
Tartu, 51010, Estonia
- National Institute for Health and Welfare,
FI-00271
Helsinki, Finland
| | - Louis Pérusse
- Department of Kinesiology, Laval University,
Québec City, Quebec, Canada
G1V 0A6
- Institute of Nutrition and Functional Foods, Laval
University, Québec City, Quebec,
Canada
G1V 0A6
| | - Olli T. Raitakari
- Department of Clinical Physiology and Nuclear Medicine, Turku
University Hospital, FI-20521
Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular
Medicine, University of Turku, FI-20520
Turku, Finland
| | - Tuomo Rankinen
- Human Genomics Laboratory, Pennington Biomedical Research
Center, Baton Rouge, Los Angeles
70808, USA
| | - D. C. Rao
- Division of Statistical Genomics, Department of Genetics,
Washington University School of Medicine, St Louis,
Missouri
63108, USA
- Division of Biostatistics, Washington University School of
Medicine, St Louis, Missouri
63110, USA
- Department of Psychiatry, Washington University School of
Medicine, St Louis, Missouri
63110, USA
| | - Treva K. Rice
- Division of Biostatistics, Washington University School of
Medicine, St Louis, Missouri
63110, USA
- Department of Psychiatry, Washington University School of
Medicine, St Louis, Missouri
63110, USA
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus Medical Center,
3015GE
Rotterdam, The Netherlands
- Netherlands Genomics Initiative (NGI)-sponsored Netherlands
Consortium for Healthy Aging (NCHA), Rotterdam
The Netherlands
- Department of Epidemiology, Erasmus Medical Center,
3015GE
Rotterdam, The Netherlands
| | - Igor Rudan
- Centre for Global Health Research, Usher Institute of
Population Health Sciences and Informatics, University of Edinburgh, Teviot
Place, Edinburgh
EH8 9AG, UK
| | - Veikko Salomaa
- National Institute for Health and Welfare,
FI-00271
Helsinki, Finland
| | - Thorkild I. A. Sørensen
- MRC Integrative Epidemiology Unit, School of Social and
Community Medicine, University of Bristol, Bristol
BS82BN, UKnited
- Novo Nordisk Foundation Center for Basic Metabolic Research,
Section of Metabolic Genetics, Faculty of Health and Medical Sciences,
University of Copenhagen, 2100
Copenhagen, Denmark
- Institute of Preventive Medicine, Bispebjerg and Frederiksberg
Hospital, The Capital Region, 2000
Frederiksberg, Denmark
| | - Michael Stumvoll
- University of Leipzig, IFB Adiposity Diseases,
04103
Leipzig, Germany
- University of Leipzig, Department of Medicine,
04103
Leipzig, Germany
| | - Anke Tönjes
- University of Leipzig, Department of Medicine,
04103
Leipzig, Germany
| | - Bradford Towne
- Lifespan Health Research Center, Wright State University
Boonshoft School of Medicine, Dayton, Ohio
45420, USA
| | - Gregory J. Tranah
- California Pacific Medical Center Research Institute,
San Francisco, California
94107, USA
| | - Angelo Tremblay
- Department of Kinesiology, Laval University,
Québec City, Quebec, Canada
G1V 0A6
| | - André G. Uitterlinden
- Department of Internal Medicine, Erasmus Medical Center,
3015GE
Rotterdam, The Netherlands
- Netherlands Genomics Initiative (NGI)-sponsored Netherlands
Consortium for Healthy Aging (NCHA), Rotterdam
The Netherlands
- Department of Epidemiology, Erasmus Medical Center,
3015GE
Rotterdam, The Netherlands
| | - Pim van der Harst
- University of Groningen, University Medical Center Groningen,
Department of Cardiology, 9700 RB
Groningen, The Netherlands
- Durrer Center for Cardiogenetic Research, Interuniversity
Cardiology Institute Netherlands-Netherlands Heart Institute, 3501
DG
Utrecht, The Netherlands
- Department of Genetics, University Medical Center Groningen,
University of Groningen, 9700 RB
Groningen, The Netherlands
| | - Erkki Vartiainen
- National Institute for Health and Welfare,
FI-00271
Helsinki, Finland
| | - Jorma S. Viikari
- Department of Medicine, University of Turku,
FI-20521
Turku, Finland
| | - Veronique Vitart
- MRC Human Genetics Unit, Institute of Genetics and Molecular
Medicine, University of Edinburgh, Edinburgh
EH4 2XU, UK
| | - Marie-Claude Vohl
- Institute of Nutrition and Functional Foods, Laval
University, Québec City, Quebec,
Canada
G1V 0A6
- School of Nutrition, Laval University,
Québec City, Quebec, Canada
G1V 0A6
| | - Henry Völzke
- Institute for Community Medicine, University Medicine
Greifswald, 17475
Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), partner site
Greifswald, 17475
Greifswald, Germany
- DZD (German Centre for Diabetes Research), partner site
Greifswald, 17475
Greifswald, Germany
| | - Mark Walker
- Program in Medical and Population Genetics, Broad Institute of
Harvard and Massachusetts Institute of Technology, Cambridge,
Massachusetts
02142, USA
- Institute of Cellular Medicine, Newcastle University,
Newcastle
NE2 4HH, UK
| | - Henri Wallaschofski
- Institute of Clinical Chemistry and Laboratory Medicine,
University Medicine Greifswald, 17475
Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), partner site
Greifswald, 17475
Greifswald, Germany
| | - Sarah Wild
- Centre for Population Health Sciences, Usher Institute of
Population Health Sciences and Informatics, University of Edinburgh,
Edinburgh
EH8 9AG, UK
| | - James F. Wilson
- MRC Human Genetics Unit, Institute of Genetics and Molecular
Medicine, University of Edinburgh, Edinburgh
EH4 2XU, UK
- Centre for Global Health Research, Usher Institute of
Population Health Sciences and Informatics, University of Edinburgh, Teviot
Place, Edinburgh
EH8 9AG, UK
| | - Loïc Yengo
- CNRS UMR 8199, F-59019
Lille, France
- European Genomic Institute for Diabetes, 59000
Lille, France
- Université de Lille 2, 59000
Lille, France
| | - D. Timothy Bishop
- Leeds Institute of Cancer and Pathology, Cancer Research UK
Leeds Centre, University of Leeds, Leeds
LS9 7TF, UK
| | - Ingrid B. Borecki
- Division of Statistical Genomics, Department of Genetics,
Washington University School of Medicine, St Louis,
Missouri
63108, USA
- Analytical Genetics Group, Regeneron Genetics Center,
Regeneron Pharmaceuticals, Inc., Tarrytown, New York
10591, USA
| | - John C. Chambers
- Department of Epidemiology and Biostatistics, Imperial College
London, London
W2 1PG, UK
- Ealing Hospital NHS Trust, Middlesex
UB1 3HW, UK
- Imperial College Healthcare NHS Trust, London
W12 0HS, UK
| | - L. Adrienne Cupples
- Department of Biostatistics, Boston University School of Public
Health, Boston, Massachusetts
02118, USA
- National Heart, Lung, and Blood Institute, the Framingham
Heart Study, Framingham, Massachusetts
01702, USA
| | - Abbas Dehghan
- Department of Epidemiology, Erasmus Medical Center,
3000CA
Rotterdam/Zuidholland, The Netherlands
| | - Panos Deloukas
- William Harvey Research Institute, Barts and The London School
of Medicine and Dentistry, Queen Mary University of London,
London
EC1M 6BQ, UK
- Wellcome Trust Sanger Institute, Human Genetics,
Hinxton, Cambridge
CB10 1SA, UK
- Princess Al-Jawhara Al-Brahim Centre of Excellence in Research
of Hereditary Disorders (PACER-HD), King Abdulaziz University,
Jeddah
21589, Saudi Arabia
| | - Ghazaleh Fatemifar
- MRC Integrative Epidemiology Unit, School of Social and
Community Medicine, University of Bristol, Bristol
BS82BN, UKnited
| | - Caroline Fox
- Harvard Medical School, Boston,
Massachusetts
02115, USA
- National Heart, Lung, and Blood Institute, the Framingham
Heart Study, Framingham, Massachusetts
01702, USA
| | - Terrence S. Furey
- Department of Genetics, University of North Carolina,
Chapel Hill, North Carolina
27599, USA
- Department of Biology, University of North Carolina,
Chapel Hill, North Carolina
27599, USA
| | - Lude Franke
- University of Groningen, University Medical Center Groningen,
Department of Cardiology, 9700 RB
Groningen, The Netherlands
- Department of Genetics, University Medical Center Groningen,
University of Groningen, 9700 RB
Groningen, The Netherlands
| | - Jiali Han
- Department of Epidemiology, Richard M. Fairbanks School of
Public Health, Melvin and Bren Simon Cancer Center,
Indianapolis, Indiana
46202, USA
| | - David J. Hunter
- Broad Institute of the Massachusetts Institute of Technology
and Harvard University, Cambridge
2142, USA
- Department of Epidemiology, Harvard School of Public
Health, Boston, Massachusetts
02115, USA
- Channing Division of Network Medicine, Department of Medicine,
Brigham and Women's Hospital and Harvard Medical School,
Boston, Massachusetts
02115, USA
- Department of Nutrition, Harvard School of Public
Health, Boston, Massachusetts
02115, USA
| | - Juha Karjalainen
- Department of Genetics, University Medical Center Groningen,
University of Groningen, 9700 RB
Groningen, The Netherlands
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology and Metabolism,
University of Oxford, Churchill Hospital, Oxford
OX3 7LJ, UK
- Oxford NIHR Biomedical Research Centre,
Oxford
OX3 7LJ, UK
| | - Robert C. Kaplan
- Department of Epidemiology and Popualtion Health, Albert
Einstein College of Medicine, Bronx, New York
10461, USA
| | - Jaspal S. Kooner
- Ealing Hospital NHS Trust, Middlesex
UB1 3HW, UK
- Imperial College Healthcare NHS Trust, London
W12 0HS, UK
- National Heart and Lung Institute, Imperial College
London, London
W12 0NN, UK
| | - Mark I. McCarthy
- Wellcome Trust Centre for Human Genetics, University of
Oxford, Oxford
OX3 7BN, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism,
University of Oxford, Churchill Hospital, Oxford
OX3 7LJ, UK
- Oxford NIHR Biomedical Research Centre,
Oxford
OX3 7LJ, UK
| | - Joanne M. Murabito
- Boston University School of Medicine, Department of Medicine,
Section of General Internal Medicine, Boston,
Massachusetts
02118, USA
- NHLBI's and Boston University's Framingham
Heart Study, Framingham, Massachusetts
01702, USA
| | - Andrew P. Morris
- Wellcome Trust Centre for Human Genetics, University of
Oxford, Oxford
OX3 7BN, UK
- Department of Biostatistics, University of Liverpool,
Liverpool
L69 3GA, UK
| | - Julia A. N. Bishop
- Leeds Institute of Cancer and Pathology, Cancer Research UK
Leeds Centre, University of Leeds, Leeds
LS9 7TF, UK
| | - Kari E. North
- Carolina Center for Genome Sciences and Department of
Epidemiology, University of North Carolina at Chapel Hill, Chapel
Hill, North Carolina
27599-7400, USA
| | - Claes Ohlsson
- Centre for Bone and Arthritis Research, Department of Internal
Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy,
University of Gothenburg, 413 45
Gothenburg, Sweden
| | - Ken K. Ong
- MRC Epidemiology Unit, University of Cambridge School of
Clinical Medicine, Institute of Metabolic Science, University of Cambridge,
Cambridge Biomedical Campus, Cambridge
CB2 0QQ, UK
- MRC Unit for Lifelong Health and Ageing at UCL,
London
WC1B 5JU, UK
- Department of Paediatrics, University of Cambridge,
Cambridge
CB2 0QQ, UK
| | - Inga Prokopenko
- Wellcome Trust Centre for Human Genetics, University of
Oxford, Oxford
OX3 7BN, UK
- Department of Genomics of Common Disease, School of Public
Health, Imperial College London, London
W12 0NN, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism,
University of Oxford, Churchill Hospital, Oxford
OX3 7LJ, UK
| | - J. Brent Richards
- Department Epidemiology, Biostatistics and Human Genetics, Lady
Davis Institute, Jewish General Hospital, McGill University,
Montréal, Quebec, Canada
H3T1E2
- Department of Medicine, Lady Davis Institute, Jewish General
Hospital, McGill University, Montréal,
Quebec, Canada
H3T1E2
- Department of Twin Research, King's College
London, London
SE1 1E7, UK
- Division of Endocrinology, Lady Davis Institute, Jewish
General Hospital, McGill University, Montréal,
Quebec, Canada
H3T1E2
| | - Eric E. Schadt
- Icahn Institute for Genomics and Multiscale Biology, Icahn
School of Medicine at Mount Sinai, New York, New York
10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of
Medicine at Mount Sinai, New York, New York
10029, USA
| | - Tim D. Spector
- Department of Twin Research and Genetic Epidemiology,
King's College London, London
SE1 7EH, UK
| | - Elisabeth Widén
- Institute for Molecular Medicine Finland, University of
Helsinki, FI-00290
Helsinki, Finland
| | - Cristen J. Willer
- Department of Computational Medicine and Bioinformatics,
University of Michigan, Ann Arbor, Michigan
48109, USA
- Department of Human Genetics, University of Michigan,
Ann Arbor, Michigan
48109, USA
- Department of Internal Medicine, Division of Cardiovascular
Medicine, University of Michigan, Ann Arbor, Michigan
48109, USA
| | - Jian Yang
- Queensland Brain Institute, The University of Queensland,
Brisbane
4072, Australia
| | - Erik Ingelsson
- Science for Life Laboratory, Uppsala University, 750
85
Uppsala, Sweden
- Department of Medical Sciences, Molecular Epidemiology, Uppsala
University, 751 85
Uppsala, Sweden
- Department of Medicine, Division of Cardiovascular Medicine,
Stanford University School of Medicine, Stanford,
California
94305, USA
| | - Karen L. Mohlke
- Department of Genetics, University of North Carolina,
Chapel Hill, North Carolina
27599, USA
| | - Joel N. Hirschhorn
- Broad Institute of the Massachusetts Institute of Technology
and Harvard University, Cambridge
2142, USA
- Divisions of Endocrinology and Genetics and Center for Basic
and Translational Obesity Research, Boston Children's Hospital,
Boston, Massachusetts
02115, USA
- Department of Genetics, Harvard Medical School,
Boston, Massachusetts
02115, USA
| | - John Andrew Pospisilik
- Department of Epigenetics, Max Planck Institute of
Immunobiology and Epigenetics, D-76108
Freiburg, Germany
| | - M. Carola Zillikens
- Department of Internal Medicine, Erasmus Medical Center,
3015GE
Rotterdam, The Netherlands
- Netherlands Genomics Initiative (NGI)-sponsored Netherlands
Consortium for Healthy Aging (NCHA), Rotterdam
The Netherlands
| | - Cecilia Lindgren
- Wellcome Trust Centre for Human Genetics, University of
Oxford, Oxford
OX3 7BN, UK
- Broad Institute of the Massachusetts Institute of Technology
and Harvard University, Cambridge
2142, USA
- The Big Data Institute, University of Oxford,
Oxford
OX3 7LJ, UK
| | - Tuomas Oskari Kilpeläinen
- MRC Epidemiology Unit, University of Cambridge School of
Clinical Medicine, Institute of Metabolic Science, University of Cambridge,
Cambridge Biomedical Campus, Cambridge
CB2 0QQ, UK
- Novo Nordisk Foundation Center for Basic Metabolic Research,
Section of Metabolic Genetics, Faculty of Health and Medical Sciences,
University of Copenhagen, 2100
Copenhagen, Denmark
| | - Ruth J. F. Loos
- The Charles Bronfman Institute for Personalized Medicine, The
Icahn School of Medicine at Mount Sinai, New York, New
York
10029, USA
- The Department of Preventive Medicine, The Icahn School of
Medicine at Mount Sinai, New York, New York
10029, USA
- MRC Epidemiology Unit, University of Cambridge School of
Clinical Medicine, Institute of Metabolic Science, University of Cambridge,
Cambridge Biomedical Campus, Cambridge
CB2 0QQ, UK
- The Genetics of Obesity and Related Metabolic Traits Program,
The Icahn School of Medicine at Mount Sinai, New York, New
York, 10029, USA
- The Mindich Child Health and Development Institute, The Icahn
School of Medicine at Mount Sinai, New York, New York
10029, USA
| |
Collapse
|