1
|
Cheng C, Hu J, Mannan R, He T, Bhattacharyya R, Magnuson B, Wisniewski JP, Peters S, Karim SA, MacLean DJ, Karabürk H, Zhang L, Rossiter NJ, Zheng Y, Xiao L, Li C, Awad D, Mahapatra S, Bao Y, Zhang Y, Cao X, Wang Z, Mehra R, Morlacchi P, Sahai V, Pasca di Magliano M, Shah YM, Weisman LS, Morton JP, Ding K, Qiao Y, Lyssiotis CA, Chinnaiyan AM. Targeting PIKfyve-driven lipid metabolism in pancreatic cancer. Nature 2025:10.1038/s41586-025-08917-z. [PMID: 40269157 DOI: 10.1038/s41586-025-08917-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 03/19/2025] [Indexed: 04/25/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) subsists in a nutrient-deregulated microenvironment, making it particularly susceptible to treatments that interfere with cancer metabolism1,2. For example, PDAC uses, and is dependent on, high levels of autophagy and other lysosomal processes3-5. Although targeting these pathways has shown potential in preclinical studies, progress has been hampered by the difficulty in identifying and characterizing favourable targets for drug development6. Here, we characterize PIKfyve, a lipid kinase that is integral to lysosomal functioning7, as a targetable vulnerability in PDAC. Using a genetically engineered mouse model, we established that PIKfyve is essential to PDAC progression. Furthermore, through comprehensive metabolic analyses, we found that PIKfyve inhibition forces PDAC to upregulate a distinct transcriptional and metabolic program favouring de novo lipid synthesis. In PDAC, the KRAS-MAPK signalling pathway is a primary driver of de novo lipid synthesis. Accordingly, simultaneously targeting PIKfyve and KRAS-MAPK resulted in the elimination of the tumour burden in numerous preclinical human and mouse models. Taken together, these studies indicate that disrupting lipid metabolism through PIKfyve inhibition induces synthetic lethality in conjunction with KRAS-MAPK-directed therapies for PDAC.
Collapse
Affiliation(s)
- Caleb Cheng
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
| | - Jing Hu
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Rahul Mannan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Tongchen He
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Urology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Rupam Bhattacharyya
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Brian Magnuson
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Jasmine P Wisniewski
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Sydney Peters
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | | | | | - Hüseyin Karabürk
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Li Zhang
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Nicholas J Rossiter
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
| | - Yang Zheng
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Lanbo Xiao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Chungen Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Dominik Awad
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Somnath Mahapatra
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yi Bao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yuping Zhang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Xuhong Cao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
| | - Zhen Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Rohit Mehra
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | | | - Vaibhav Sahai
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Marina Pasca di Magliano
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Yatrik M Shah
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA
| | - Lois S Weisman
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Jennifer P Morton
- CRUK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Ke Ding
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yuanyuan Qiao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA.
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA.
| | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA.
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA.
- Department of Urology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Small L, Nguyen TV, Larance M, Saunders DN, Hoy AJ, Schmitz-Peiffer C, Cooney GJ, Brandon AE. Liver proteomics identifies a disconnect between proteins associated with de novo lipogenesis and triglyceride storage. J Lipid Res 2024; 65:100687. [PMID: 39490929 PMCID: PMC11626007 DOI: 10.1016/j.jlr.2024.100687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024] Open
Abstract
De novo lipogenesis (DNL) has been implicated in the development and progression of liver steatosis. Hepatic DNL is strongly influenced by dietary macronutrient composition with diets high in carbohydrate increasing DNL while diets high in fat decrease DNL. The enzymes in the core DNL pathway have been well characterized; however, less is known about other liver proteins that play accessory or regulatory roles. In the current study, we associate measured rates of hepatic DNL and fat content with liver proteomic analysis in mice to identify known and unknown proteins that may have a role in DNL. Male mice were fed either a standard chow diet, a semipurified high starch or high-fat diet. Both semipurified diets resulted in increased body weight, fat mass, and liver triglyceride content compared to chow controls, and hepatic DNL was increased in the high starch and decreased in high fat-fed mice. Proteomic analysis identified novel proteins associated with DNL that are involved in taurine metabolism, suggesting a link between these pathways. There was no relationship between proteins that associated with DNL and those associated with liver triglyceride content. Further analysis identified proteins that are differentially regulated when comparing a nonpurified chow diet to either of the semipurified diets, which provide a set of proteins that are influenced by dietary complexity. Finally, we compared the liver proteome between 4- and 30-week diet-fed mice and found remarkable similarity suggesting that metabolic remodeling of the liver occurs rapidly in response to differing dietary components. Together, these findings highlight novel proteins associated with hepatic DNL independently of liver fat content and suggest rapid liver metabolic remodeling in response to dietary composition changes.
Collapse
Affiliation(s)
- Lewin Small
- School of Life and Environmental Sciences, Charles Perkins Centre, Faculty of Science, The University of Sydney, Sydney, NSW, Australia; Garvan Institute, Sydney, NSW, Australia.
| | | | - Mark Larance
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Darren N Saunders
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Andrew J Hoy
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Carsten Schmitz-Peiffer
- School of Life and Environmental Sciences, Charles Perkins Centre, Faculty of Science, The University of Sydney, Sydney, NSW, Australia; Garvan Institute, Sydney, NSW, Australia
| | - Gregory J Cooney
- Garvan Institute, Sydney, NSW, Australia; School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Amanda E Brandon
- School of Life and Environmental Sciences, Charles Perkins Centre, Faculty of Science, The University of Sydney, Sydney, NSW, Australia; Garvan Institute, Sydney, NSW, Australia.
| |
Collapse
|
3
|
Luciani M, Garsia C, Beretta S, Cifola I, Peano C, Merelli I, Petiti L, Miccio A, Meneghini V, Gritti A. Human iPSC-derived neural stem cells displaying radial glia signature exhibit long-term safety in mice. Nat Commun 2024; 15:9433. [PMID: 39487141 PMCID: PMC11530573 DOI: 10.1038/s41467-024-53613-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/17/2024] [Indexed: 11/04/2024] Open
Abstract
Human induced pluripotent stem cell-derived neural stem/progenitor cells (hiPSC-NSCs) hold promise for treating neurodegenerative and demyelinating disorders. However, comprehensive studies on their identity and safety remain limited. In this study, we demonstrate that hiPSC-NSCs adopt a radial glia-associated signature, sharing key epigenetic and transcriptional characteristics with human fetal neural stem cells (hfNSCs) while exhibiting divergent profiles from glioblastoma stem cells. Long-term transplantation studies in mice showed robust and stable engraftment of hiPSC-NSCs, with predominant differentiation into glial cells and no evidence of tumor formation. Additionally, we identified the Sterol Regulatory Element Binding Transcription Factor 1 (SREBF1) as a regulator of astroglial differentiation in hiPSC-NSCs. These findings provide valuable transcriptional and epigenetic reference datasets to prospectively define the maturation stage of NSCs derived from different hiPSC sources and demonstrate the long-term safety of hiPSC-NSCs, reinforcing their potential as a viable alternative to hfNSCs for clinical applications.
Collapse
Affiliation(s)
- Marco Luciani
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Garsia
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Stefano Beretta
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Ingrid Cifola
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), via F.lli Cervi 93, 20054 Segrate, Milan, Italy
| | - Clelia Peano
- Institute of Genetics and Biomedical Research, UoS of Milan, National Research Council, Rozzano, Milan, Italy
- Human Technopole, Via Rita Levi Montalcini 1, Milan, Italy
| | - Ivan Merelli
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Luca Petiti
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), via F.lli Cervi 93, 20054 Segrate, Milan, Italy
| | - Annarita Miccio
- IMAGINE Institute, Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Vasco Meneghini
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| | - Angela Gritti
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
4
|
Scoles DR, Pulst SM. Control of innate immunity and lipid biosynthesis in neurodegeneration. Front Mol Neurosci 2024; 17:1402055. [PMID: 39156128 PMCID: PMC11328406 DOI: 10.3389/fnmol.2024.1402055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/09/2024] [Indexed: 08/20/2024] Open
Abstract
The cGAS-STING innate immunity pathway and the SREBP-activated cholesterol and fatty acid synthesis pathway are abnormally co-regulated in neurodegenerative disease. Activation of STING signaling occurs at the endoplasmic reticulum (ER) membrane with STING anchored by INSIG1 along with SREBP and the sterol-bound SREBP cleavage activating protein (SCAP) when sterols are in abundance. When sterols are low, the INSIG-dependent STING pathway is inactivated and the SREBP-SCAP complex is translocated to the Golgi where SREBP is cleaved and translocated to the nucleus to transactivate genes for cholesterol and fatty acid synthesis. Thus, there is inverse activation of STING vs. SREBP: when innate immunity is active, pathways for cholesterol and fatty acid synthesis are suppressed, and vice versa. The STING pathway is stimulated by foreign viral cytoplasmic nucleic acids interacting with the cyclic GMP-AMP synthase (cGAS) DNA sensor or RIG-I and MDA5 dsRNA sensors, but with neurodegeneration innate immunity is also activated by self-DNAs and double-stranded RNAs that accumulate with neuronal death. Downstream, activated STING recruits TBK1 and stimulates the transactivation of interferon stimulated genes and the autophagy pathway, which are both protective. However, chronic activation of innate immunity contributes to microglia activation, neuroinflammation and autophagy failure leading to neurodegeneration. STING is also a proton channel that when activated stimulates proton exit from STING vesicles leading to cell death. Here we review the salient features of the innate immunity and cholesterol and fatty acid synthesis pathways, observations of abnormal STING and SREBP signaling in neurodegenerative disease, and relevant therapeutic approaches.
Collapse
Affiliation(s)
- Daniel R. Scoles
- Department of Neurology, University of Utah, Salt Lake City, UT, United States
| | - Stefan M. Pulst
- Department of Neurology, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
5
|
Jaso-Vera ME, Takaoka S, Patel I, Ruan X. Integrative regulation of hLMR1 by dietary and genetic factors in nonalcoholic fatty liver disease and hyperlipidemia. Hum Genet 2024; 143:897-906. [PMID: 38493444 DOI: 10.1007/s00439-024-02654-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 02/05/2024] [Indexed: 03/19/2024]
Abstract
Long non-coding RNA (lncRNA) genes represent a large class of transcripts that are widely expressed across species. As most human lncRNAs are non-conserved, we recently employed a unique humanized liver mouse model to study lncRNAs expressed in human livers. We identified a human hepatocyte-specific lncRNA, hLMR1 (human lncRNA metabolic regulator 1), which is induced by feeding and promotes hepatic cholesterol synthesis. Recent genome-wide association studies (GWAS) found that several single-nucleotide polymorphisms (SNPs) from the hLMR1 gene locus are associated with blood lipids and markers of liver damage. These results suggest that dietary and genetic factors may regulate hLMR1 to affect disease progression. In this study, we first screened for nutritional/hormonal factors and found that hLMR1 was robustly induced by insulin/glucose in cultured human hepatocytes, and this induction is dependent on the transcription factor SREBP1. We then tested if GWAS SNPs genetically linked to hLMR1 could regulate hLMR1 expression. We found that DNA sequences flanking rs9653945, a SNP from the last exon of the hLMR1 gene, functions as an enhancer that can be robustly activated by SREBP1c depending on the presence of rs9653945 major allele (G). We further performed CRISPR base editing in human HepG2 cells and found that rs9653945 major (G) to minor (A) allele modification resulted in blunted insulin/glucose-induced expression of hLMR1. Finally, we performed genotyping and gene expression analyses using a published human NAFLD RNA-seq dataset and found that individuals homozygous for rs9653945-G have a higher expression of hLMR1 and risk of NAFLD. Taken together, our data support a model that rs9653945-G predisposes individuals to insulin/glucose-induced hLMR1, contributing to the development of hyperlipidemia and NAFLD.
Collapse
Affiliation(s)
- Marcos E Jaso-Vera
- Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute for Fundamental Biomedical Research, Johns Hopkins All Childrens Hospital, 600 Fifth Street S., St. Petersburg, FL, 33701, USA
| | - Shohei Takaoka
- Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute for Fundamental Biomedical Research, Johns Hopkins All Childrens Hospital, 600 Fifth Street S., St. Petersburg, FL, 33701, USA
| | - Ishika Patel
- Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute for Fundamental Biomedical Research, Johns Hopkins All Childrens Hospital, 600 Fifth Street S., St. Petersburg, FL, 33701, USA
| | - Xiangbo Ruan
- Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Institute for Fundamental Biomedical Research, Johns Hopkins All Childrens Hospital, 600 Fifth Street S., St. Petersburg, FL, 33701, USA.
| |
Collapse
|
6
|
Kubota CS, Myers SL, Seppälä TT, Burkhart RA, Espenshade PJ. In vivo CRISPR screening identifies geranylgeranyl diphosphate as a pancreatic cancer tumor growth dependency. Mol Metab 2024; 85:101964. [PMID: 38823776 PMCID: PMC11217740 DOI: 10.1016/j.molmet.2024.101964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/04/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024] Open
Abstract
OBJECTIVE Cancer cells must maintain lipid supplies for their proliferation and do so by upregulating lipogenic gene programs. The sterol regulatory element-binding proteins (SREBPs) act as modulators of lipid homeostasis by acting as transcriptional activators of genes required for fatty acid and cholesterol synthesis and uptake. SREBPs have been recognized as chemotherapeutic targets in multiple cancers, however it is not well understood which SREBP target genes are essential for tumorigenesis. In this study, we examined the requirement of SREBP target genes for pancreatic ductal adenocarcinoma (PDAC) tumor growth. METHODS Here we constructed a custom CRISPR knockout library containing known SREBP target genes and performed in vitro 2D culture and in vivo orthotopic xenograft CRISPR screens using a patient-derived PDAC cell line. In vitro, we grew cells in medium supplemented with 10% fetal bovine serum (FBS) or 10% lipoprotein-deficient serum (LPDS) to examine differences in gene essentiality in different lipid environments. In vivo, we injected cells into the pancreata of nude mice and collected tumors after 4 weeks. RESULTS We identified terpenoid backbone biosynthesis genes as essential for PDAC tumor development. Specifically, we identified the non-sterol isoprenoid product of the mevalonate pathway, geranylgeranyl diphosphate (GGPP), as an essential lipid for tumor growth. Mechanistically, we observed that restricting mevalonate pathway activity using statins and SREBP inhibitors synergistically induced apoptosis and caused disruptions in small G protein prenylation that have pleiotropic effects on cellular signaling pathways. Finally, we demonstrated that geranylgeranyl diphosphate synthase 1 (GGPS1) knockdown significantly reduces tumor burden in an orthotopic xenograft mouse model. CONCLUSIONS These findings indicate that PDAC tumors selectively require GGPP over other lipids such as cholesterol and fatty acids and that this is a targetable vulnerability of pancreatic cancer cells.
Collapse
Affiliation(s)
- Casie S Kubota
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Stephanie L Myers
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Molecular & Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Toni T Seppälä
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Richard A Burkhart
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Peter J Espenshade
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Giovanis Institute for Translational Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
7
|
Kubota CS, Myers SL, Seppälä TT, Burkhart RA, Espenshade PJ. In vivo CRISPR screening identifies geranylgeranyl diphosphate as a pancreatic cancer tumor growth dependency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592368. [PMID: 38746286 PMCID: PMC11092789 DOI: 10.1101/2024.05.03.592368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Cancer cells must maintain lipid supplies for their proliferation and do so by upregulating lipogenic gene programs. The sterol regulatory element-binding proteins (SREBPs) act as modulators of lipid homeostasis by acting as transcriptional activators of genes required for fatty acid and cholesterol synthesis and uptake. SREBPs have been recognized as chemotherapeutic targets in multiple cancers, however it is not well understood which SREBP target genes are essential for tumorigenesis. Using parallel in vitro and in vivo CRISPR knockout screens, we identified terpenoid backbone biosynthesis genes as essential for pancreatic ductal adenocarcinoma (PDAC) tumor development. Specifically, we identified the non-sterol isoprenoid product of the mevalonate pathway, geranylgeranyl diphosphate (GGPP), as an essential lipid for tumor growth. Mechanistically, we observed that restricting mevalonate pathway activity using statins and SREBP inhibitors synergistically induced apoptosis and caused disruptions in small G protein prenylation that have pleiotropic effects on cellular signaling pathways. Finally, we demonstrated that geranylgeranyl diphosphate synthase 1 ( GGPS1 ) knockdown significantly reduces tumor burden in an orthotopic xenograft mouse model. These findings indicate that PDAC tumors selectively require GGPP over other lipids such as cholesterol and fatty acids and that this is a targetable vulnerability of pancreatic cancer cells.
Collapse
|
8
|
Harvey TN, Gillard GB, Røsæg LL, Grammes F, Monsen Ø, Vik JO, Hvidsten TR, Sandve SR. The genome regulatory landscape of Atlantic salmon liver through smoltification. PLoS One 2024; 19:e0302388. [PMID: 38648207 PMCID: PMC11034671 DOI: 10.1371/journal.pone.0302388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/02/2024] [Indexed: 04/25/2024] Open
Abstract
The anadromous Atlantic salmon undergo a preparatory physiological transformation before seawater entry, referred to as smoltification. Key molecular developmental processes involved in this life stage transition, such as remodeling of gill functions, are known to be synchronized and modulated by environmental cues like photoperiod. However, little is known about the photoperiod influence and genome regulatory processes driving other canonical aspects of smoltification such as the large-scale changes in lipid metabolism and energy homeostasis in the developing smolt liver. Here we generate transcriptome, DNA methylation, and chromatin accessibility data from salmon livers across smoltification under different photoperiod regimes. We find a systematic reduction of expression levels of genes with a metabolic function, such as lipid metabolism, and increased expression of energy related genes such as oxidative phosphorylation, during smolt development in freshwater. However, in contrast to similar studies of the gill, smolt liver gene expression prior to seawater transfer was not impacted by photoperiodic history. Integrated analyses of gene expression, chromatin accessibility, and transcription factor (TF) binding signatures highlight chromatin remodeling and TF dynamics underlying smolt gene regulatory changes. Differential peak accessibility patterns largely matched differential gene expression patterns during smoltification and we infer that ZNF682, KLFs, and NFY TFs are important in driving a liver metabolic shift from synthesis to break down of organic compounds in freshwater. Overall, chromatin accessibility and TFBS occupancy were highly correlated to changes in gene expression. On the other hand, we identified numerous differential methylation patterns across the genome, but associated genes were not functionally enriched or correlated to observed gene expression changes across smolt development. Taken together, this work highlights the relative importance of chromatin remodeling during smoltification and demonstrates that metabolic remodeling occurs as a preadaptation to life at sea that is not to a large extent driven by photoperiod history.
Collapse
Affiliation(s)
- Thomas N. Harvey
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Gareth B. Gillard
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Line L. Røsæg
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | | | - Øystein Monsen
- Michael Sars Centre, University of Bergen, Bergen, Norway
| | - Jon Olav Vik
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Torgeir R. Hvidsten
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Simen R. Sandve
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
9
|
Kleiboeker B, He A, Tan M, Lu D, Hu D, Liu X, Goodarzi P, Hsu FF, Razani B, Semenkovich CF, Lodhi IJ. Adipose tissue peroxisomal lipid synthesis orchestrates obesity and insulin resistance through LXR-dependent lipogenesis. Mol Metab 2024; 82:101913. [PMID: 38458567 PMCID: PMC10950804 DOI: 10.1016/j.molmet.2024.101913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024] Open
Abstract
OBJECTIVE Adipose tissue mass is maintained by a balance between lipolysis and lipid storage. The contribution of adipose tissue lipogenesis to fat mass, especially in the setting of high-fat feeding, is considered minor. Here we investigated the effect of adipose-specific inactivation of the peroxisomal lipid synthetic protein PexRAP on fatty acid synthase (FASN)-mediated lipogenesis and its impact on adiposity and metabolic homeostasis. METHODS To explore the role of PexRAP in adipose tissue, we metabolically phenotyped mice with adipose-specific knockout of PexRAP. Bulk RNA sequencing was used to determine transcriptomic responses to PexRAP deletion and 14C-malonyl CoA allowed us to measure de novo lipogenic activity in adipose tissue of these mice. In vitro cell culture models were used to elucidate the mechanism of cellular responses to PexRAP deletion. RESULTS Adipose-specific PexRAP deletion promoted diet-induced obesity and insulin resistance through activation of de novo lipogenesis. Mechanistically, PexRAP inactivation inhibited the flux of carbons to ethanolamine plasmalogens. This increased the nuclear PC/PE ratio and promoted cholesterol mislocalization, resulting in activation of liver X receptor (LXR), a nuclear receptor known to be activated by increased intracellular cholesterol. LXR activation led to increased expression of the phospholipid remodeling enzyme LPCAT3 and induced FASN-mediated lipogenesis, which promoted diet-induced obesity and insulin resistance. CONCLUSIONS These studies reveal an unexpected role for peroxisome-derived lipids in regulating LXR-dependent lipogenesis and suggest that activation of lipogenesis, combined with dietary lipid overload, exacerbates obesity and metabolic dysregulation.
Collapse
Affiliation(s)
- Brian Kleiboeker
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Anyuan He
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Min Tan
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Dongliang Lu
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Donghua Hu
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xuejing Liu
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Parniyan Goodarzi
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Fong-Fu Hsu
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Babak Razani
- Cardiovascular Division, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Clay F Semenkovich
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Irfan J Lodhi
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
10
|
Cheng C, Hu J, Mannan R, Bhattacharyya R, Rossiter NJ, Magnuson B, Wisniewski JP, Zheng Y, Xiao L, Li C, Awad D, He T, Bao Y, Zhang Y, Cao X, Wang Z, Mehra R, Morlacchi P, Sahai V, di Magliano MP, Shah YM, Ding K, Qiao Y, Lyssiotis CA, Chinnaiyan AM. Targeting PIKfyve-driven lipid homeostasis as a metabolic vulnerability in pancreatic cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585580. [PMID: 38562800 PMCID: PMC10983929 DOI: 10.1101/2024.03.18.585580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) subsists in a nutrient-deregulated microenvironment, making it particularly susceptible to treatments that interfere with cancer metabolism12. For example, PDAC utilizes and is dependent on high levels of autophagy and other lysosomal processes3-5. Although targeting these pathways has shown potential in preclinical studies, progress has been hampered by the challenge of identifying and characterizing favorable targets for drug development6. Here, we characterize PIKfyve, a lipid kinase integral to lysosomal functioning7, as a novel and targetable vulnerability in PDAC. In human patient and murine PDAC samples, we discovered that PIKFYVE is overexpressed in PDAC cells compared to adjacent normal cells. Employing a genetically engineered mouse model, we established the essential role of PIKfyve in PDAC progression. Further, through comprehensive metabolic analyses, we found that PIKfyve inhibition obligated PDAC to upregulate de novo lipid synthesis, a relationship previously undescribed. PIKfyve inhibition triggered a distinct lipogenic gene expression and metabolic program, creating a dependency on de novo lipid metabolism pathways, by upregulating genes such as FASN and ACACA. In PDAC, the KRAS-MAPK signaling pathway is a primary driver of de novo lipid synthesis, specifically enhancing FASN and ACACA levels. Accordingly, the simultaneous targeting of PIKfyve and KRAS-MAPK resulted in the elimination of tumor burden in a syngeneic orthotopic model and tumor regression in a xenograft model of PDAC. Taken together, these studies suggest that disrupting lipid metabolism through PIKfyve inhibition induces synthetic lethality in conjunction with KRAS-MAPK-directed therapies for PDAC.
Collapse
Affiliation(s)
- Caleb Cheng
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
| | - Jing Hu
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, PRC
| | - Rahul Mannan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Rupam Bhattacharyya
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Nicholas J Rossiter
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
| | - Brian Magnuson
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Jasmine P Wisniewski
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yang Zheng
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Lanbo Xiao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Chungen Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, PRC
| | - Dominik Awad
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Tongchen He
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, USA
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, PRC
| | - Yi Bao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yuping Zhang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Xuhong Cao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
| | - Zhen Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, PRC
| | - Rohit Mehra
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | | | - Vaibhav Sahai
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Marina Pasca di Magliano
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Yatrik M Shah
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA
| | - Ke Ding
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, PRC
| | - Yuanyuan Qiao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Costas A Lyssiotis
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA
| | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
11
|
Hu C, Qiao W, Li X, Ning ZK, Liu J, Dalangood S, Li H, Yu X, Zong Z, Wen Z, Gui J. Tumor-secreted FGF21 acts as an immune suppressor by rewiring cholesterol metabolism of CD8 +T cells. Cell Metab 2024; 36:630-647.e8. [PMID: 38309268 DOI: 10.1016/j.cmet.2024.01.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/19/2023] [Accepted: 01/10/2024] [Indexed: 02/05/2024]
Abstract
Tumors employ diverse strategies for immune evasion. Unraveling the mechanisms by which tumors suppress anti-tumor immunity facilitates the development of immunotherapies. Here, we have identified tumor-secreted fibroblast growth factor 21 (FGF21) as a pivotal immune suppressor. FGF21 is upregulated in multiple types of tumors and promotes tumor progression. Tumor-secreted FGF21 significantly disrupts anti-tumor immunity by rewiring cholesterol metabolism of CD8+T cells. Mechanistically, FGF21 sustains the hyperactivation of AKT-mTORC1-sterol regulatory-element-binding protein 1 (SREBP1) signal axis in the activated CD8+T cells, resulting in the augment of cholesterol biosynthesis and T cell exhaustion. FGF21 knockdown or blockade using a neutralizing antibody normalizes AKT-mTORC1 signaling and reduces excessive cholesterol accumulation in CD8+T cells, thus restoring CD8+T cytotoxic function and robustly suppressing tumor growth. Our findings reveal FGF21 as a "secreted immune checkpoint" that hampers anti-tumor immunity, suggesting that inhibiting FGF21 could be a valuable strategy to enhance the cancer immunotherapy efficacy.
Collapse
Affiliation(s)
- Cegui Hu
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wen Qiao
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiang Li
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhi-Kun Ning
- Department of Gastroenterological Surgery, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Jiang Liu
- Department of Gastroenterological Surgery, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Sumiya Dalangood
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Hanjun Li
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiang Yu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhen Zong
- Department of Gastroenterological Surgery, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China.
| | - Zhenke Wen
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China.
| | - Jun Gui
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
12
|
Cui M, Bezprozvannaya S, Hao T, Elnwasany A, Szweda LI, Liu N, Bassel-Duby R, Olson EN. Transcription factor NFYa controls cardiomyocyte metabolism and proliferation during mouse fetal heart development. Dev Cell 2023; 58:2867-2880.e7. [PMID: 37972593 PMCID: PMC11000264 DOI: 10.1016/j.devcel.2023.10.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/22/2023] [Accepted: 10/24/2023] [Indexed: 11/19/2023]
Abstract
Cardiomyocytes are highly metabolic cells responsible for generating the contractile force in the heart. During fetal development and regeneration, these cells actively divide but lose their proliferative activity in adulthood. The mechanisms that coordinate their metabolism and proliferation are not fully understood. Here, we study the role of the transcription factor NFYa in developing mouse hearts. Loss of NFYa alters cardiomyocyte composition, causing a decrease in immature regenerative cells and an increase in trabecular and mature cardiomyocytes, as identified by spatial and single-cell transcriptome analyses. NFYa-deleted cardiomyocytes exhibited reduced proliferation and impaired mitochondrial metabolism, leading to cardiac growth defects and embryonic death. NFYa, interacting with cofactor SP2, activates genes linking metabolism and proliferation at the transcription level. Our study identifies a nodal role of NFYa in regulating prenatal cardiac growth and a previously unrecognized transcriptional control mechanism of heart metabolism, highlighting the importance of mitochondrial metabolism during heart development and regeneration.
Collapse
Affiliation(s)
- Miao Cui
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| | - Svetlana Bezprozvannaya
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine and Sen. Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Tian Hao
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Abdallah Elnwasany
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Luke I Szweda
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Ning Liu
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine and Sen. Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine and Sen. Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Eric N Olson
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine and Sen. Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| |
Collapse
|
13
|
Allu PKR, Cardamone MD, Gomes AS, Dall'agnese A, Cederquist C, Pan H, Dreyfuss JM, Enerbäck S, Kahn CR. FoxK1 associated gene regulatory network in hepatic insulin action and its relationship to FoxO1 and insulin receptor mediated transcriptional regulation. Mol Metab 2023; 78:101825. [PMID: 37852413 PMCID: PMC10641274 DOI: 10.1016/j.molmet.2023.101825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/28/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023] Open
Abstract
OBJECTIVE Insulin acts on the liver via changes in gene expression to maintain glucose and lipid homeostasis. This study aimed to the Forkhead box protein K1 (FOXK1) associated gene regulatory network as a transcriptional regulator of hepatic insulin action and to determine its role versus FoxO1 and possible actions of the insulin receptor at the DNA level. METHODS Genome-wide analysis of FoxK1 binding were studied by chromatin immunoprecipitation sequencing and compared to those for IR and FoxO1. These were validated by knockdown experiments and gene expression analysis. RESULTS Chromatin immunoprecipitation (ChIP) sequencing shows that FoxK1 binds to the proximal promoters and enhancers of over 4000 genes, and insulin enhances this interaction for about 75% of them. These include genes involved in cell cycle, senescence, steroid biosynthesis, autophagy, and metabolic regulation, including glucose metabolism and mitochondrial function and are enriched in a TGTTTAC consensus motif. Some of these genes are also bound by FoxO1. Comparing this FoxK1 ChIP-seq data to that of the insulin receptor (IR) reveals that FoxK1 may act as the transcription factor partner for some of the previously reported roles of IR in gene regulation, including for LARS1 and TIMM22, which are involved in rRNA processing and cell cycle. CONCLUSION These data demonstrate that FoxK1 is an important regulator of gene expression in response to insulin in liver and may act in concert with FoxO1 and IR in regulation of genes in metabolism and other important biological pathways.
Collapse
Affiliation(s)
- Prasanna K R Allu
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | | | - Antonio S Gomes
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | | | - Carly Cederquist
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Hui Pan
- Bioinformatics and Biostatistics Core, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Jonathan M Dreyfuss
- Bioinformatics and Biostatistics Core, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Sven Enerbäck
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - C Ronald Kahn
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
14
|
Liu K, Hu S, Qiu L, Wang M, Zhang Z, Sun G, Zhang Y. Nrf1 is not a direct target gene of SREBP1, albeit both are integrated into the rapamycin-responsive regulatory network in human hepatoma cells. PLoS One 2023; 18:e0294508. [PMID: 38011090 PMCID: PMC10681226 DOI: 10.1371/journal.pone.0294508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 11/02/2023] [Indexed: 11/29/2023] Open
Abstract
The essential role of protein degradation by ubiquitin-proteasome system is exerted primarily for maintaining cellular protein homeostasis. The transcriptional activation of proteasomal genes by mTORC1 signaling depends on Nrf1, but whether this process is directly via SREBP1 remains elusive. In this study, our experiment evidence revealed that Nrf1 is not a direct target of SREBP1, although both are involved in the rapamycin-responsive regulatory networks. Closely scrutinizing two distinct transcriptomic datasets unraveled no significant changes in transcriptional expression of Nrf1 and almost all proteasomal subunits in either siSREBP2-silencing cells or SREBP1-∕-MEFs, when compared to equivalent controls. However, distinct upstream signaling to Nrf1 dislocation by p97 and its processing by DDI1/2, along with downstream proteasomal expression, may be monitored by mTOR signaling, to various certain extents, depending on distinct experimental settings in different types of cells. Our further evidence has been obtained from DDI1-∕-(DDI2insC) cells, demonstrating that putative effects of mTOR on the rapamycin-responsive signaling to Nrf1 and proteasomes may also be executed partially through a DDI1/2-independent mechanism, albeit the detailed regulatory events remain to be determined.
Collapse
Affiliation(s)
- Keli Liu
- Bioengineering College, Chongqing University, Shapingba District, Chongqing, China
- Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, Jiangjin District, Chongqing, China
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering, Chongqing University, Shapingba District, Chongqing, China
| | - Shaofan Hu
- Bioengineering College, Chongqing University, Shapingba District, Chongqing, China
- Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, Jiangjin District, Chongqing, China
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering, Chongqing University, Shapingba District, Chongqing, China
| | - Lu Qiu
- Bioengineering College, Chongqing University, Shapingba District, Chongqing, China
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering, Chongqing University, Shapingba District, Chongqing, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Meng Wang
- Bioengineering College, Chongqing University, Shapingba District, Chongqing, China
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering, Chongqing University, Shapingba District, Chongqing, China
| | - Zhengwen Zhang
- Laboratory of Neuroscience, Institute of Cognitive Neuroscience and School of Pharmacy, University College London, London, England, United Kingdom
| | - Guiyin Sun
- Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, Jiangjin District, Chongqing, China
| | - Yiguo Zhang
- Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, Jiangjin District, Chongqing, China
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering, Chongqing University, Shapingba District, Chongqing, China
| |
Collapse
|
15
|
Xiong X, James BT, Boix CA, Park YP, Galani K, Victor MB, Sun N, Hou L, Ho LL, Mantero J, Scannail AN, Dileep V, Dong W, Mathys H, Bennett DA, Tsai LH, Kellis M. Epigenomic dissection of Alzheimer's disease pinpoints causal variants and reveals epigenome erosion. Cell 2023; 186:4422-4437.e21. [PMID: 37774680 PMCID: PMC10782612 DOI: 10.1016/j.cell.2023.08.040] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 04/04/2023] [Accepted: 08/29/2023] [Indexed: 10/01/2023]
Abstract
Recent work has identified dozens of non-coding loci for Alzheimer's disease (AD) risk, but their mechanisms and AD transcriptional regulatory circuitry are poorly understood. Here, we profile epigenomic and transcriptomic landscapes of 850,000 nuclei from prefrontal cortexes of 92 individuals with and without AD to build a map of the brain regulome, including epigenomic profiles, transcriptional regulators, co-accessibility modules, and peak-to-gene links in a cell-type-specific manner. We develop methods for multimodal integration and detecting regulatory modules using peak-to-gene linking. We show AD risk loci are enriched in microglial enhancers and for specific TFs including SPI1, ELF2, and RUNX1. We detect 9,628 cell-type-specific ATAC-QTL loci, which we integrate alongside peak-to-gene links to prioritize AD variant regulatory circuits. We report differential accessibility of regulatory modules in late AD in glia and in early AD in neurons. Strikingly, late-stage AD brains show global epigenome dysregulation indicative of epigenome erosion and cell identity loss.
Collapse
Affiliation(s)
- Xushen Xiong
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, MA 02139, USA; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
| | - Benjamin T James
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, MA 02139, USA; The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Carles A Boix
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, MA 02139, USA; The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Yongjin P Park
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, MA 02139, USA; The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA; Department of Pathology and Laboratory Medicine, Department of Statistics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Kyriaki Galani
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, MA 02139, USA; The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Matheus B Victor
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Na Sun
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, MA 02139, USA; The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Lei Hou
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, MA 02139, USA; The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Li-Lun Ho
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, MA 02139, USA; The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Julio Mantero
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, MA 02139, USA; The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Aine Ni Scannail
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Vishnu Dileep
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Weixiu Dong
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hansruedi Mathys
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Li-Huei Tsai
- The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA; Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Manolis Kellis
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, MA 02139, USA; The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA.
| |
Collapse
|
16
|
Pan Y, van der Watt PJ, Kay SA. E-box binding transcription factors in cancer. Front Oncol 2023; 13:1223208. [PMID: 37601651 PMCID: PMC10437117 DOI: 10.3389/fonc.2023.1223208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/27/2023] [Indexed: 08/22/2023] Open
Abstract
E-boxes are important regulatory elements in the eukaryotic genome. Transcription factors can bind to E-boxes through their basic helix-loop-helix or zinc finger domain to regulate gene transcription. E-box-binding transcription factors (EBTFs) are important regulators of development and essential for physiological activities of the cell. The fundamental role of EBTFs in cancer has been highlighted by studies on the canonical oncogene MYC, yet many EBTFs exhibit common features, implying the existence of shared molecular principles of how they are involved in tumorigenesis. A comprehensive analysis of TFs that share the basic function of binding to E-boxes has been lacking. Here, we review the structure of EBTFs, their common features in regulating transcription, their physiological functions, and their mutual regulation. We also discuss their converging functions in cancer biology, their potential to be targeted as a regulatory network, and recent progress in drug development targeting these factors in cancer therapy.
Collapse
Affiliation(s)
- Yuanzhong Pan
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Pauline J. van der Watt
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Steve A. Kay
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
17
|
Okada N, Ueki C, Shimazaki M, Tsujimoto G, Kohno S, Muranaka H, Yoshikawa K, Takahashi C. NFYA promotes malignant behavior of triple-negative breast cancer in mice through the regulation of lipid metabolism. Commun Biol 2023; 6:596. [PMID: 37268670 DOI: 10.1038/s42003-023-04987-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 05/26/2023] [Indexed: 06/04/2023] Open
Abstract
Two splicing variants exist in NFYA that exhibit high expression in many human tumour types. The balance in their expression correlates with prognosis in breast cancer, but functional differences remain unclear. Here, we demonstrate that NFYAv1, a long-form variant, upregulates the transcription of essential lipogenic enzymes ACACA and FASN to enhance the malignant behavior of triple-negative breast cancer (TNBC). Loss of the NFYAv1-lipogenesis axis strongly suppresses malignant behavior in vitro and in vivo, indicating that the NFYAv1-lipogenesis axis is essential for TNBC malignant behavior and that the axis might be a potential therapeutic target for TNBC. Furthermore, mice deficient in lipogenic enzymes, such as Acly, Acaca, and Fasn, exhibit embryonic lethality; however, Nfyav1-deficient mice exhibited no apparent developmental abnormalities. Our results indicate that the NFYAv1-lipogenesis axis has tumour-promoting effects and that NFYAv1 may be a safe therapeutic target for TNBC.
Collapse
Affiliation(s)
- Nobuhiro Okada
- Graduate School of Interdisciplinary Science & Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan.
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan.
| | - Chihiro Ueki
- Graduate School of Interdisciplinary Science & Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
| | - Masahiro Shimazaki
- Laboratory for Malignancy Control Research, Medical Innovation Center, Kyoto University, Kyoto, 606-8501, Japan
| | - Goki Tsujimoto
- Graduate School of Interdisciplinary Science & Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
| | - Susumu Kohno
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Hayato Muranaka
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa, 920-1192, Japan
- Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Kiyotsugu Yoshikawa
- Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyoto, 610-0395, Japan
| | - Chiaki Takahashi
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa, 920-1192, Japan
| |
Collapse
|
18
|
de Klerk JA, Beulens JWJ, Mei H, Bijkerk R, van Zonneveld AJ, Koivula RW, Elders PJM, 't Hart LM, Slieker RC. Altered blood gene expression in the obesity-related type 2 diabetes cluster may be causally involved in lipid metabolism: a Mendelian randomisation study. Diabetologia 2023; 66:1057-1070. [PMID: 36826505 PMCID: PMC10163084 DOI: 10.1007/s00125-023-05886-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 01/17/2023] [Indexed: 02/25/2023]
Abstract
AIMS/HYPOTHESIS The aim of this study was to identify differentially expressed long non-coding RNAs (lncRNAs) and mRNAs in whole blood of people with type 2 diabetes across five different clusters: severe insulin-deficient diabetes (SIDD), severe insulin-resistant diabetes (SIRD), mild obesity-related diabetes (MOD), mild diabetes (MD) and mild diabetes with high HDL-cholesterol (MDH). This was to increase our understanding of different molecular mechanisms underlying the five putative clusters of type 2 diabetes. METHODS Participants in the Hoorn Diabetes Care System (DCS) cohort were clustered based on age, BMI, HbA1c, C-peptide and HDL-cholesterol. Whole blood RNA-seq was used to identify differentially expressed lncRNAs and mRNAs in a cluster compared with all others. Differentially expressed genes were validated in the Innovative Medicines Initiative DIabetes REsearCh on patient straTification (IMI DIRECT) study. Expression quantitative trait loci (eQTLs) for differentially expressed RNAs were obtained from a publicly available dataset. To estimate the causal effects of RNAs on traits, a two-sample Mendelian randomisation analysis was performed using public genome-wide association study (GWAS) data. RESULTS Eleven lncRNAs and 175 mRNAs were differentially expressed in the MOD cluster, the lncRNA AL354696.2 was upregulated in the SIDD cluster and GPR15 mRNA was downregulated in the MDH cluster. mRNAs and lncRNAs that were differentially expressed in the MOD cluster were correlated among each other. Six lncRNAs and 120 mRNAs validated in the IMI DIRECT study. Using two-sample Mendelian randomisation, we found 52 mRNAs to have a causal effect on anthropometric traits (n=23) and lipid metabolism traits (n=10). GPR146 showed a causal effect on plasma HDL-cholesterol levels (p = 2×10-15), without evidence for reverse causality. CONCLUSIONS/INTERPRETATION Multiple lncRNAs and mRNAs were found to be differentially expressed among clusters and particularly in the MOD cluster. mRNAs in the MOD cluster showed a possible causal effect on anthropometric traits, lipid metabolism traits and blood cell fractions. Together, our results show that individuals in the MOD cluster show aberrant RNA expression of genes that have a suggested causal role on multiple diabetes-relevant traits.
Collapse
Affiliation(s)
- Juliette A de Klerk
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, the Netherlands
| | - Joline W J Beulens
- Amsterdam Public Health Institute, Amsterdam UMC, Amsterdam, the Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Epidemiology and Data Science, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands
| | - Hailiang Mei
- Sequencing Analysis Support Core, Leiden University Medical Center, Leiden, the Netherlands
| | - Roel Bijkerk
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, the Netherlands
| | - Anton Jan van Zonneveld
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, the Netherlands
| | - Robert W Koivula
- Department of Clinical Sciences, Lund University, Genetic and Molecular Epidemiology, CRC, Skåne University Hospital Malmö, Malmö, Sweden
| | - Petra J M Elders
- Amsterdam Public Health Institute, Amsterdam UMC, Amsterdam, the Netherlands
- Department of General Practice and Elderly Care Medicine, Amsterdam Public Health Research Institute, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands
| | - Leen M 't Hart
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
- Amsterdam Public Health Institute, Amsterdam UMC, Amsterdam, the Netherlands
- Department of Epidemiology and Data Science, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Roderick C Slieker
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands.
- Amsterdam Public Health Institute, Amsterdam UMC, Amsterdam, the Netherlands.
- Department of Epidemiology and Data Science, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands.
| |
Collapse
|
19
|
Wierenga KA, Riemers FM, Westendorp B, Harkema JR, Pestka JJ. Single cell analysis of docosahexaenoic acid suppression of sequential LPS-induced proinflammatory and interferon-regulated gene expression in the macrophage. Front Immunol 2022; 13:993614. [PMID: 36405730 PMCID: PMC9669445 DOI: 10.3389/fimmu.2022.993614] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/22/2022] [Indexed: 11/06/2022] Open
Abstract
Preclinical and clinical studies suggest that consumption of long chain omega-3 polyunsaturated fatty acids (PUFAs) reduces severity of chronic inflammatory and autoimmune diseases. While these ameliorative effects are conventionally associated with downregulated expression of proinflammatory cytokine and chemokine genes, our laboratory has recently identified Type 1 interferon (IFN1)-regulated gene expression to be another key target of omega-3 PUFAs. Here we used single cell RNA sequencing (scRNAseq) to gain new mechanistic perspectives on how the omega-3 PUFA docosahexaenoic acid (DHA) influences TLR4-driven proinflammatory and IFN1-regulated gene expression in a novel self-renewing murine fetal liver-derived macrophage (FLM) model. FLMs were cultured with 25 µM DHA or vehicle for 24 h, treated with modest concentration of LPS (20 ng/ml) for 1 and 4 h, and then subjected to scRNAseq using the 10X Chromium System. At 0 h (i.e., in the absence of LPS), DHA increased expression of genes associated with the NRF2 antioxidant response (e.g. Sqstm1, Hmox1, Chchd10) and metal homeostasis (e.g.Mt1, Mt2, Ftl1, Fth1), both of which are consistent with DHA-induced polarization of FLMs to a more anti-inflammatory phenotype. At 1 h post-LPS treatment, DHA inhibited LPS-induced cholesterol synthesis genes (e.g. Scd1, Scd2, Pmvk, Cyp51, Hmgcs1, and Fdps) which potentially could contribute to interference with TLR4-mediated inflammatory signaling. At 4 h post-LPS treatment, LPS-treated FLMs reflected a more robust inflammatory response including upregulation of proinflammatory cytokine (e.g. Il1a, Il1b, Tnf) and chemokine (e.g.Ccl2, Ccl3, Ccl4, Ccl7) genes as well as IFN1-regulated genes (e.g. Irf7, Mx1, Oasl1, Ifit1), many of which were suppressed by DHA. Using single-cell regulatory network inference and clustering (SCENIC) to identify gene expression networks, we found DHA modestly downregulated LPS-induced expression of NF-κB-target genes. Importantly, LPS induced a subset of FLMs simultaneously expressing NF-κB- and IRF7/STAT1/STAT2-target genes that were conspicuously absent in DHA-pretreated FLMs. Thus, DHA potently targeted both the NF-κB and the IFN1 responses. Altogether, scRNAseq generated a valuable dataset that provides new insights into multiple overlapping mechanisms by which DHA may transcriptionally or post-transcriptionally regulate LPS-induced proinflammatory and IFN1-driven responses in macrophages.
Collapse
Affiliation(s)
- Kathryn A. Wierenga
- Department of Biochemistry and Molecular Biology, Michigan State University, Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, Lansing, MI, United States
| | - Frank M. Riemers
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Bart Westendorp
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Jack R. Harkema
- Institute for Integrative Toxicology, Michigan State University, Lansing, MI, United States
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, Lansing, MI, United States
| | - James J. Pestka
- Institute for Integrative Toxicology, Michigan State University, Lansing, MI, United States
- Department of Microbiology and Molecular Genetics, Michigan State University, Lansing, MI, United States
- Department of Food Science and Human Nutrition, Michigan State University, Lansing, MI, United States
| |
Collapse
|
20
|
Li Q, Yao H, Wang Y, Wu Y, Thorne RF, Zhu Y, Wu M, Liu L. circPRKAA1 activates a Ku80/Ku70/SREBP-1 axis driving de novo fatty acid synthesis in cancer cells. Cell Rep 2022; 41:111707. [DOI: 10.1016/j.celrep.2022.111707] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/22/2022] [Accepted: 11/01/2022] [Indexed: 11/23/2022] Open
|
21
|
Cheng J, Xu D, Chen L, Guo W, Hu G, Liu J, Fu S. CIDEA Regulates De Novo Fatty Acid Synthesis in Bovine Mammary Epithelial Cells by Targeting the AMPK/PPARγ Axis and Regulating SREBP1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11324-11335. [PMID: 36040348 DOI: 10.1021/acs.jafc.2c05226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cell-death-inducing DNA fragmentation factor-α-like effector A (CIDEA) is a lipid-droplet-associated protein that helps to promote lipid metabolism in adipocytes of mice and humans. However, studies on the regulatory mechanism of CIDEA on lipid metabolism in the mammary glands of dairy cows are rare. Therefore, the role of CIDEA in bovine mammary epithelial cells (bMECs) was investigated in this study. The CIDEA expression levels in the mammary glands of high-fat-milk-producing cows were significantly higher compared to those in low-fat-milk-producing cows. Results of in vitro studies in bMECs showed that the inhibition of CIDEA inhibited the expression of fatty acid synthesis-related genes and triglyceride (TAG) synthesis-related genes. Conversely, the overexpression of CIDEA leads to an increase in the content of TAG and fatty acid. The results of mechanistic studies indicated that the overexpression of CIDEA inhibits AMP-activated protein kinase (AMPK) activity, which enhances the expression of peroxisome proliferator-activated receptor-γ (PPARγ) and consequently increases the TAG content. Furthermore, the overexpression of CIDEA promoted the nuclear translocation of sterol regulatory element-binding protein 1 (SREBP1). Therefore, a theoretical framework is provided by this study for the regulation of lipid metabolism in dairy cows by means of nutrition and the hormone targeting of CIDEA.
Collapse
Affiliation(s)
- Ji Cheng
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, Jilin130062, China
| | - Dianwen Xu
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, Jilin130062, China
| | - Lisha Chen
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, Jilin130062, China
| | - Wenjin Guo
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, Jilin130062, China
| | - Guiqiu Hu
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, Jilin130062, China
| | - Juxiong Liu
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, Jilin130062, China
| | - Shoupeng Fu
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, Jilin130062, China
| |
Collapse
|
22
|
Branche E, Wang YT, Viramontes KM, Valls Cuevas JM, Xie J, Ana-Sosa-Batiz F, Shafee N, Duttke SH, McMillan RE, Clark AE, Nguyen MN, Garretson AF, Crames JJ, Spann NJ, Zhu Z, Rich JN, Spector DH, Benner C, Shresta S, Carlin AF. SREBP2-dependent lipid gene transcription enhances the infection of human dendritic cells by Zika virus. Nat Commun 2022; 13:5341. [PMID: 36097162 PMCID: PMC9465152 DOI: 10.1038/s41467-022-33041-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 08/29/2022] [Indexed: 02/07/2023] Open
Abstract
The emergence of Zika virus (ZIKV) as a global health threat has highlighted the unmet need for ZIKV-specific vaccines and antiviral treatments. ZIKV infects dendritic cells (DC), which have pivotal functions in activating innate and adaptive antiviral responses; however, the mechanisms by which DC function is subverted to establish ZIKV infection are unclear. Here we develop a genomics profiling method that enables discrete analysis of ZIKV-infected versus neighboring, uninfected primary human DCs to increase the sensitivity and specificity with which ZIKV-modulated pathways can be identified. The results show that ZIKV infection specifically increases the expression of genes enriched for lipid metabolism-related functions. ZIKV infection also increases the recruitment of sterol regulatory element-binding protein (SREBP) transcription factors to lipid gene promoters, while pharmacologic inhibition or genetic silencing of SREBP2 suppresses ZIKV infection of DCs. Our data thus identify SREBP2-activated transcription as a mechanism for promoting ZIKV infection amenable to therapeutic targeting.
Collapse
Affiliation(s)
- Emilie Branche
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Ying-Ting Wang
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Karla M Viramontes
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Joan M Valls Cuevas
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Jialei Xie
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Fernanda Ana-Sosa-Batiz
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Norazizah Shafee
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Sascha H Duttke
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, 99163, USA
| | - Rachel E McMillan
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
- Biomedical Sciences Graduate Program, University of California, La Jolla, CA, 92093, USA
| | - Alex E Clark
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Michael N Nguyen
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Aaron F Garretson
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Jan J Crames
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Nathan J Spann
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Zhe Zhu
- Department of Medicine, Division of Regenerative Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, 92037, USA
| | - Jeremy N Rich
- Department of Medicine, Division of Regenerative Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Neurology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15232, USA
| | - Deborah H Spector
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Christopher Benner
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Sujan Shresta
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA.
| | - Aaron F Carlin
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
23
|
Drosophila transcription factor NF-Y suppresses transcription of the lipase 4 gene, a key gene for lipid storage. Exp Cell Res 2022; 420:113307. [PMID: 36028059 DOI: 10.1016/j.yexcr.2022.113307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/31/2022] [Accepted: 08/04/2022] [Indexed: 11/23/2022]
Abstract
The CCAAT motif-binding factor NF-Y consists of three different subunits, NF-YA, NF-YB, and NF-YC. Although it is suggested that NF-Y activity is essential for normal tissue homeostasis, survival, and metabolic function, its precise role in lipid metabolism is not clarified yet. In Drosophila, eye disc specific knockdown of Drosophila NF-YA (dNF-YA) induced aberrant morphology of the compound eye, the rough eye phenotype in adults and mutation of the lipase 4 (lip4) gene suppressed the rough eye phenotype. RNA-seq analyses with dNF-YA knockdown third instar larvae identified the lip4 gene as one of the genes that are up-regulated by the dNF-YA knockdown. We identified three dNF-Y-binding consensuses in the 5'flanking region of the lip4 gene, and a chromatin immunoprecipitation assay with the specific anti-dNF-YA IgG demonstrated dNF-Y binding to this genomic region. The luciferase transient expression assay with cultured Drosophila S2 cells and the lip4 promoter-luciferase fusion genes with and without mutations in the dNF-Y-binding consensuses showed that each of the three dNF-Y consensus sequences negatively regulated lip4 gene promoter activity. Consistent with these results, qRT-PCR analysis with the dNF-YA knockdown third instar larvae revealed that endogenous lip4 mRNA levels were increased by the knockdown of dNF-YA in vivo. The specific knockdown of dNF-YA in the fat body with the collagen-GAL4 driver resulted in smaller oil droplets in the fat body cells. Collectively, these results suggest that dNF-Y is involved in lipid storage through its negative regulation of lip4 gene transcription.
Collapse
|
24
|
Bathish B, Robertson H, Dillon JF, Dinkova-Kostova AT, Hayes JD. Nonalcoholic steatohepatitis and mechanisms by which it is ameliorated by activation of the CNC-bZIP transcription factor Nrf2. Free Radic Biol Med 2022; 188:221-261. [PMID: 35728768 DOI: 10.1016/j.freeradbiomed.2022.06.226] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 12/11/2022]
Abstract
Non-alcoholic steatohepatitis (NASH) represents a global health concern. It is characterised by fatty liver, hepatocyte cell death and inflammation, which are associated with lipotoxicity, endoplasmic reticulum (ER) stress, mitochondrial dysfunction, iron overload and oxidative stress. NF-E2 p45-related factor 2 (Nrf2) is a transcription factor that combats oxidative stress. Remarkably, Nrf2 is downregulated during the development of NASH, which probably accelerates disease, whereas in pre-clinical studies the upregulation of Nrf2 inhibits NASH. We now review the scientific literature that proposes Nrf2 downregulation during NASH involves its increased ubiquitylation and proteasomal degradation, mediated by Kelch-like ECH-associated protein 1 (Keap1) and/or β-transducin repeat-containing protein (β-TrCP) and/or HMG-CoA reductase degradation protein 1 (Hrd1, also called synoviolin (SYVN1)). Additionally, downregulation of Nrf2-mediated transcription during NASH may involve diminished recruitment of coactivators by Nrf2, due to increased levels of activating transcription factor 3 (ATF3) and nuclear factor-kappaB (NF-κB) p65, or competition for promoter binding due to upregulation of BTB and CNC homology 1 (Bach1). Many processes that downregulate Nrf2 are triggered by transforming growth factor-beta (TGF-β), with oxidative stress amplifying its signalling. Oxidative stress may also increase suppression of Nrf2 by β-TrCP through facilitating formation of the DSGIS-containing phosphodegron in Nrf2 by glycogen synthase kinase-3. In animal models, knockout of Nrf2 increases susceptibility to NASH, while pharmacological activation of Nrf2 by inducing agents that target Keap1 inhibits development of NASH. These inducing agents probably counter Nrf2 downregulation affected by β-TrCP, Hrd1/SYVN1, ATF3, NF-κB p65 and Bach1, by suppressing oxidative stress. Activation of Nrf2 is also likely to inhibit NASH by ameliorating lipotoxicity, inflammation, ER stress and iron overload. Crucially, pharmacological activation of Nrf2 in mice in which NASH has already been established supresses liver steatosis and inflammation. There is therefore compelling evidence that pharmacological activation of Nrf2 provides a comprehensive multipronged strategy to treat NASH.
Collapse
Affiliation(s)
- Boushra Bathish
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - Holly Robertson
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK; Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - John F Dillon
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - John D Hayes
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK.
| |
Collapse
|
25
|
Luo W, Ye L, Hu XT, Wang MH, Wang MX, Jin LM, Xiao ZX, Qian JC, Wang Y, Zuo W, Huang LJ, Liang G. MD2 deficiency prevents high-fat diet-induced AMPK suppression and lipid accumulation through regulating TBK1 in non-alcoholic fatty liver disease. Clin Transl Med 2022; 12:e777. [PMID: 35343085 PMCID: PMC8958353 DOI: 10.1002/ctm2.777] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is the most predominant form of liver diseases worldwide. Recent evidence shows that myeloid differentiation factor 2 (MD2), a protein in innate immunity and inflammation, regulates liver injury in models of NAFLD. Here, we investigated a new mechanism by which MD2 participates in the pathogenesis of experimental NAFLD. METHODS Wild-type, Md2-/- and bone marrow reconstitution mice fed with high-fat diet (HFD) were used to identify the role of hepatocyte MD2 in NAFLD. Transcriptomic RNA-seq and pathway enrich analysis were performed to explore the potential mechanisms of MD2. In vitro, primary hepatocytes and macrophages were cultured for mechanistic studies. RESULTS Transcriptome analysis and bone marrow reconstitution studies showed that hepatocyte MD2 may participate in regulating lipid metabolism in models with NAFLD. We then discovered that Md2 deficiency in mice prevents HFD-mediated suppression of AMP-activated protein kinase (AMPK). This preservation of AMPK in Md2-deficient mice was associated with normalized sterol regulatory element binding protein 1 (SREBP1) transcriptional program and a lack of lipid accumulation in both hepatocytes and liver. We then showed that hepatocyte MD2 links HFD to AMPK/SREBP1 through TANK binding kinase 1 (TBK1). In addition, MD2-increased inflammatory factor from macrophages induces hepatic TBK1 activation and AMPK suppression. CONCLUSION Hepatocyte MD2 plays a pathogenic role in NAFLD through TBK1-AMPK/SREBP1 and lipid metabolism pathway. These studies provide new insight into a non-inflammatory function of MD2 and evidence for the important role of MD2 in NALFD.
Collapse
Affiliation(s)
- Wu Luo
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- Medical Research Center, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Lin Ye
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xue-Ting Hu
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Mei-Hong Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Min-Xiu Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lei-Ming Jin
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhong-Xiang Xiao
- Affiliated Yueqing Hospital, Wenzhou Medical University, Yueqing, China
| | - Jian-Chang Qian
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wei Zuo
- Affiliated Yueqing Hospital, Wenzhou Medical University, Yueqing, China
| | - Li-Jiang Huang
- Affiliated Xiangshan Hospital, Wenzhou Medial University (Xiangshan First People's Hospital Medical and Health Group), Xiangshan, China
| | - Guang Liang
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
26
|
Hasegawa Y, Struhl K. Different SP1 binding dynamics at individual genomic loci in human cells. Proc Natl Acad Sci U S A 2021; 118:e2113579118. [PMID: 34764224 PMCID: PMC8609546 DOI: 10.1073/pnas.2113579118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2021] [Indexed: 11/18/2022] Open
Abstract
Using a tamoxifen-inducible time-course ChIP-sequencing (ChIP-seq) approach, we show that the ubiquitous transcription factor SP1 has different binding dynamics at its target sites in the human genome. SP1 very rapidly reaches maximal binding levels at some sites, but binding kinetics at other sites is biphasic, with rapid half-maximal binding followed by a considerably slower increase to maximal binding. While ∼70% of SP1 binding sites are located at promoter regions, loci with slow SP1 binding kinetics are enriched in enhancer and Polycomb-repressed regions. Unexpectedly, SP1 sites with fast binding kinetics tend to have higher quality and more copies of the SP1 sequence motif. Different cobinding factors associate near SP1 binding sites depending on their binding kinetics and on their location at promoters or enhancers. For example, NFY and FOS are preferentially associated near promoter-bound SP1 sites with fast binding kinetics, whereas DNA motifs of ETS and homeodomain proteins are preferentially observed at sites with slow binding kinetics. At promoters but not enhancers, proteins involved in sumoylation and PML bodies associate more strongly with slow SP1 binding sites than with the fast binding sites. The speed of SP1 binding is not associated with nucleosome occupancy, and it is not necessarily coupled to higher transcriptional activity. These results with SP1 are in contrast to those of human TBP, indicating that there is no common mechanism affecting transcription factor binding kinetics. The biphasic kinetics at some SP1 target sites suggest the existence of distinct chromatin states at these loci in different cells within the overall population.
Collapse
Affiliation(s)
- Yuko Hasegawa
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Kevin Struhl
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
27
|
SREBP-1c and lipogenesis in the liver: an update1. Biochem J 2021; 478:3723-3739. [PMID: 34673919 DOI: 10.1042/bcj20210071] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 12/13/2022]
Abstract
Sterol Regulatory Element Binding Protein-1c is a transcription factor that controls the synthesis of lipids from glucose in the liver, a process which is of utmost importance for the storage of energy. Discovered in the early nineties by B. Spiegelman and by M. Brown and J. Goldstein, it has generated more than 5000 studies in order to elucidate its mechanism of activation and its role in physiology and pathology. Synthetized as a precursor found in the membranes of the endoplasmic reticulum, it has to be exported to the Golgi and cleaved by a mechanism called regulated intramembrane proteolysis. We reviewed in 2002 its main characteristics, its activation process and its role in the regulation of hepatic glycolytic and lipogenic genes. We particularly emphasized that Sterol Regulatory Element Binding Protein-1c is the mediator of insulin effects on these genes. In the present review, we would like to update these informations and focus on the response to insulin and to another actor in Sterol Regulatory Element Binding Protein-1c activation, the endoplasmic reticulum stress.
Collapse
|
28
|
Doridot L, Hannou SA, Krawczyk SA, Tong W, Kim MS, McElroy GS, Fowler AJ, Astapova II, Herman MA. A Systems Approach Dissociates Fructose-Induced Liver Triglyceride from Hypertriglyceridemia and Hyperinsulinemia in Male Mice. Nutrients 2021; 13:3642. [PMID: 34684643 PMCID: PMC8540719 DOI: 10.3390/nu13103642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/01/2021] [Accepted: 10/13/2021] [Indexed: 12/13/2022] Open
Abstract
The metabolic syndrome (MetS), defined as the co-occurrence of disorders including obesity, dyslipidemia, insulin resistance, and hepatic steatosis, has become increasingly prevalent in the world over recent decades. Dietary and other environmental factors interacting with genetic predisposition are likely contributors to this epidemic. Among the involved dietary factors, excessive fructose consumption may be a key contributor. When fructose is consumed in large amounts, it can quickly produce many of the features of MetS both in humans and mice. The mechanisms by which fructose contributes to metabolic disease and its potential interactions with genetic factors in these processes remain uncertain. Here, we generated a small F2 genetic cohort of male mice derived from crossing fructose-sensitive and -resistant mouse strains to investigate the interrelationships between fructose-induced metabolic phenotypes and to identify hepatic transcriptional pathways that associate with these phenotypes. Our analysis indicates that the hepatic transcriptional pathways associated with fructose-induced hypertriglyceridemia and hyperinsulinemia are distinct from those that associate with fructose-mediated changes in body weight and liver triglyceride. These results suggest that multiple independent mechanisms and pathways may contribute to different aspects of fructose-induced metabolic disease.
Collapse
Affiliation(s)
- Ludivine Doridot
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; (L.D.); (S.A.K.); (M.-S.K.); (G.S.M.); (A.J.F.)
| | - Sarah A. Hannou
- Duke Molecular Physiology Institute, Duke University, Durham, NC 27701, USA; (S.A.H.); (W.T.); (I.I.A.)
| | - Sarah A. Krawczyk
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; (L.D.); (S.A.K.); (M.-S.K.); (G.S.M.); (A.J.F.)
| | - Wenxin Tong
- Duke Molecular Physiology Institute, Duke University, Durham, NC 27701, USA; (S.A.H.); (W.T.); (I.I.A.)
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27705, USA
| | - Mi-Sung Kim
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; (L.D.); (S.A.K.); (M.-S.K.); (G.S.M.); (A.J.F.)
| | - Gregory S. McElroy
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; (L.D.); (S.A.K.); (M.-S.K.); (G.S.M.); (A.J.F.)
| | - Alan J. Fowler
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; (L.D.); (S.A.K.); (M.-S.K.); (G.S.M.); (A.J.F.)
| | - Inna I. Astapova
- Duke Molecular Physiology Institute, Duke University, Durham, NC 27701, USA; (S.A.H.); (W.T.); (I.I.A.)
| | - Mark A. Herman
- Duke Molecular Physiology Institute, Duke University, Durham, NC 27701, USA; (S.A.H.); (W.T.); (I.I.A.)
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27705, USA
- Division of Endocrinology and Metabolism and Nutrition, Duke University, Durham, NC 27710, USA
| |
Collapse
|
29
|
Jog R, Chen G, Wang J, Leff T. Hormonal regulation of glycine decarboxylase and its relationship to oxidative stress. Physiol Rep 2021; 9:e14991. [PMID: 34342168 PMCID: PMC8329434 DOI: 10.14814/phy2.14991] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 01/16/2023] Open
Abstract
In both humans and rodent models, circulating glycine levels are significantly reduced in obesity, glucose intolerance, type II diabetes, and non-alcoholic fatty liver disease. The glycine cleavage system and its rate-limiting enzyme, glycine decarboxylase (GLDC), is a major determinant of plasma glycine levels. The goals of this study were to determine if the increased expression of GLDC contributes to the reduced plasma glycine levels seen in disease states, to characterize the hormonal regulation of GLDC gene expression, and to determine if altered GLDC expression has physiological effects that might affect the development of diabetes. The findings presented here show that hepatic GLDC gene expression is elevated in mouse models of obesity and diabetes, as well as by fasting. We demonstrated that GLDC gene expression is strongly regulated by the metabolic hormones glucagon and insulin, and we identified the signaling pathways involved in this regulation. Finally, we found that GLDC expression is linked to glutathione levels, with increased expression associated with elevated levels of glutathione and reduced expression associated with a suppression of glutathione and increased cellular ROS levels. These findings suggest that the hormonal regulation of GLDC contributes not only to the changes in circulating glycine levels seen in metabolic disease, but also affects glutathione production, possibly as a defense against metabolic disease-associated oxidative stress.
Collapse
Affiliation(s)
- Ruta Jog
- Department of PathologyCenter for Integrative Endocrine and Metabolic ResearchWayne State University School of MedicineDetroitMIUSA
| | - Guohua Chen
- Department of PathologyCenter for Integrative Endocrine and Metabolic ResearchWayne State University School of MedicineDetroitMIUSA
| | - Jian Wang
- Department of PathologyCenter for Integrative Endocrine and Metabolic ResearchWayne State University School of MedicineDetroitMIUSA
| | - Todd Leff
- Department of PathologyCenter for Integrative Endocrine and Metabolic ResearchWayne State University School of MedicineDetroitMIUSA
| |
Collapse
|
30
|
Schneidewind T, Brause A, Schölermann B, Sievers S, Pahl A, Sankar MG, Winzker M, Janning P, Kumar K, Ziegler S, Waldmann H. Combined morphological and proteome profiling reveals target-independent impairment of cholesterol homeostasis. Cell Chem Biol 2021; 28:1780-1794.e5. [PMID: 34214450 DOI: 10.1016/j.chembiol.2021.06.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/11/2021] [Accepted: 06/08/2021] [Indexed: 12/19/2022]
Abstract
Unbiased profiling approaches are powerful tools for small-molecule target or mode-of-action deconvolution as they generate a holistic view of the bioactivity space. This is particularly important for non-protein targets that are difficult to identify with commonly applied target identification methods. Thereby, unbiased profiling can enable identification of novel bioactivity even for annotated compounds. We report the identification of a large bioactivity cluster comprised of numerous well-characterized drugs with different primary targets using a combination of the morphological Cell Painting Assay and proteome profiling. Cluster members alter cholesterol homeostasis and localization due to their physicochemical properties that lead to protonation and accumulation in lysosomes, an increase in lysosomal pH, and a disturbed cholesterol homeostasis. The identified cluster enables identification of modulators of cholesterol homeostasis and links regulation of genes or proteins involved in cholesterol synthesis or trafficking to physicochemical properties rather than to nominal targets.
Collapse
Affiliation(s)
- Tabea Schneidewind
- Max-Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany; Technical University Dortmund, Faculty of Chemistry and Chemical Biology, Otto-Hahn-Strasse 6, Dortmund 44227, Germany
| | - Alexandra Brause
- Max-Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Beate Schölermann
- Max-Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Sonja Sievers
- Max-Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Axel Pahl
- Max-Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Muthukumar G Sankar
- Max-Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Michael Winzker
- Max-Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Petra Janning
- Max-Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Kamal Kumar
- Max-Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Slava Ziegler
- Max-Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Herbert Waldmann
- Max-Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany; Technical University Dortmund, Faculty of Chemistry and Chemical Biology, Otto-Hahn-Strasse 6, Dortmund 44227, Germany.
| |
Collapse
|
31
|
Di Pardo A, Monyror J, Morales LC, Kadam V, Lingrell S, Maglione V, Wozniak RW, Sipione S. Mutant huntingtin interacts with the sterol regulatory element-binding proteins and impairs their nuclear import. Hum Mol Genet 2021; 29:418-431. [PMID: 31875875 DOI: 10.1093/hmg/ddz298] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/14/2019] [Accepted: 12/05/2019] [Indexed: 02/06/2023] Open
Abstract
Brain cholesterol homeostasis is altered in Huntington's disease (HD), a neurodegenerative disorder caused by the expansion of a CAG nucleotide repeat in the HTT gene. Genes involved in the synthesis of cholesterol and fatty acids were shown to be downregulated shortly after the expression of mutant huntingtin (mHTT) in inducible HD cells. Nuclear levels of the transcription factors that regulate lipid biogenesis, the sterol regulatory element-binding proteins (SREBP1 and SREBP2), were found to be decreased in HD models compared to wild-type, but the underlying causes were not known. SREBPs are synthesized as inactive endoplasmic reticulum-localized precursors. Their mature forms (mSREBPs) are generated upon transport of the SREBP precursors to the Golgi and proteolytic cleavage, and are rapidly imported into the nucleus by binding to importin β. We show that, although SREBP2 processing into mSREBP2 is not affected in YAC128 HD mice, mSREBP2 is mislocalized to the cytoplasm. Chimeric mSREBP2-and mSREBP1-EGFP proteins are also mislocalized to the cytoplasm in immortalized striatal cells expressing mHTT, in YAC128 neurons and in fibroblasts from HD patients. We further show that mHTT binds to the SREBP2/importin β complex required for nuclear import and sequesters it in the cytoplasm. As a result, HD cells fail to upregulate cholesterogenic genes under sterol-depleted conditions. These findings provide mechanistic insight into the downregulation of genes involved in the synthesis of cholesterol and fatty acids in HD models, and have potential implications for other pathways modulated by SREBPs, including autophagy and excitotoxicity.
Collapse
Affiliation(s)
- Alba Di Pardo
- Department of Pharmacology, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - John Monyror
- Department of Pharmacology, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Luis Carlos Morales
- Department of Pharmacology, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Vaibhavi Kadam
- Department of Pharmacology, University of Alberta, Edmonton, AB, T6G 2H7, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Susanne Lingrell
- Department of Pharmacology, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Vittorio Maglione
- Department of Pharmacology, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Richard W Wozniak
- Department of Cell Biology, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Simonetta Sipione
- Department of Pharmacology, University of Alberta, Edmonton, AB, T6G 2H7, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| |
Collapse
|
32
|
mTOR Driven Gene Transcription Is Required for Cholesterol Production in Neurons of the Developing Cerebral Cortex. Int J Mol Sci 2021; 22:ijms22116034. [PMID: 34204880 PMCID: PMC8199781 DOI: 10.3390/ijms22116034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/15/2021] [Accepted: 05/28/2021] [Indexed: 12/13/2022] Open
Abstract
Dysregulated mammalian target of rapamycin (mTOR) activity is associated with various neurodevelopmental disorders ranging from idiopathic autism spectrum disorders (ASD) to syndromes caused by single gene defects. This suggests that maintaining mTOR activity levels in a physiological range is essential for brain development and functioning. Upon activation, mTOR regulates a variety of cellular processes such as cell growth, autophagy, and metabolism. On a molecular level, however, the consequences of mTOR activation in the brain are not well understood. Low levels of cholesterol are associated with a wide variety of neurodevelopmental disorders. We here describe numerous genes of the sterol/cholesterol biosynthesis pathway to be transcriptionally regulated by mTOR complex 1 (mTORC1) signaling in vitro in primary neurons and in vivo in the developing cerebral cortex of the mouse. We find that these genes are shared targets of the transcription factors SREBP, SP1, and NF-Y. Prenatal as well as postnatal mTORC1 inhibition downregulated expression of these genes which directly translated into reduced cholesterol levels, pointing towards a substantial metabolic function of the mTORC1 signaling cascade. Altogether, our results indicate that mTORC1 is an essential transcriptional regulator of the expression of sterol/cholesterol biosynthesis genes in the developing brain. Altered expression of these genes may be an important factor contributing to the pathogenesis of neurodevelopmental disorders associated with dysregulated mTOR signaling.
Collapse
|
33
|
Xie D, Chen C, Dong Y, You C, Wang S, Monroig Ó, Tocher DR, Li Y. Regulation of long-chain polyunsaturated fatty acid biosynthesis in teleost fish. Prog Lipid Res 2021; 82:101095. [PMID: 33741387 DOI: 10.1016/j.plipres.2021.101095] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/24/2021] [Accepted: 03/12/2021] [Indexed: 12/26/2022]
Abstract
Omega-3 (n-3) long-chain polyunsaturated fatty acids (LC-PUFA, C20-24), including eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3), are involved in numerous biological processes and have a range of health benefits. Fish have long been considered as the main source of n-3 LC-PUFA in human diets. However, the capacity for endogenous biosynthesis of LC-PUFA from C18 PUFA varies in fish species based on the presence, expression and activity of key enzymes including fatty acyl desaturases (Fads) and elongation of very long-chain fatty acids (Elovl) proteins. In this article, we review progress on the identified Fads and Elovl, as well as the regulatory mechanisms of LC-PUFA biosynthesis both at transcriptional and post-transcriptional levels in teleosts. The most comprehensive advances have been obtained in rabbitfish Siganus canaliculatus, a marine teleost demonstrated to have the entire pathway for LC-PUFA biosynthesis, including the roles of transcription factors hepatocyte nuclear factor 4α (Hnf4α), liver X receptor alpha (Lxrα), sterol regulatory element-binding protein 1 (Srebp-1), peroxisome proliferator-activated receptor gamma (Pparγ) and stimulatory protein 1 (Sp1), as well as post-transcriptional regulation by individual microRNA (miRNA) or clusters. This research has, for the first time, demonstrated the involvement of Hnf4α, Pparγ and miRNA in the regulation of LC-PUFA biosynthesis in vertebrates. The present review provides readers with a relatively comprehensive overview of the progress made into understanding LC-PUFA biosynthetic systems in teleosts, and some insights into improving endogenous LC-PUFA biosynthesis capacity aimed at reducing the dependence of aquafeeds on fish oil while maintaining or increasing flesh LC-PUFA content and the nutritional quality of farmed fish.
Collapse
Affiliation(s)
- Dizhi Xie
- College of Marine Sciences of South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Cuiying Chen
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Yewei Dong
- Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510642, China
| | - Cuihong You
- Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510642, China
| | - Shuqi Wang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China.
| | - Óscar Monroig
- Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), 12595 Castellón, Spain.
| | - Douglas R Tocher
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK94LA, Scotland, United Kingdom
| | - Yuanyou Li
- College of Marine Sciences of South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
34
|
Noto D, Giammanco A, Spina R, Fayer F, Cefalù AB, Averna MR. DeepSRE: Identification of sterol responsive elements and nuclear transcription factors Y proximity in human DNA by Convolutional Neural Network analysis. PLoS One 2021; 16:e0247402. [PMID: 33661949 PMCID: PMC7932541 DOI: 10.1371/journal.pone.0247402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/06/2021] [Indexed: 11/19/2022] Open
Abstract
SREBP1 and 2, are cholesterol sensors able to modulate cholesterol-related gene expression responses. SREBPs binding sites are characterized by the presence of multiple target sequences as SRE, NFY and SP1, that can be arranged differently in different genes, so that it is not easy to identify the binding site on the basis of direct DNA sequence analysis. This paper presents a complete workflow based on a one-dimensional Convolutional Neural Network (CNN) model able to detect putative SREBPs binding sites irrespective of target elements arrangements. The strategy is based on the recognition of SRE linked (less than 250 bp) to NFY sequences according to chromosomal localization derived from TF Immunoprecipitation (TF ChIP) experiments. The CNN is trained with several 100 bp sequences containing both SRE and NF-Y. Once trained, the model is used to predict the presence of SRE-NFY in the first 500 bp of all the known gene promoters. Finally, genes are grouped according to biological process and the processes enriched in genes containing SRE-NFY in their promoters are analyzed in details. This workflow allowed to identify biological processes enriched in SRE containing genes not directly linked to cholesterol metabolism and possible novel DNA patterns able to fill in for missing classical SRE sequences.
Collapse
Affiliation(s)
- Davide Noto
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
- * E-mail:
| | - Antonina Giammanco
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Rossella Spina
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Francesca Fayer
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Angelo B. Cefalù
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Maurizio R. Averna
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| |
Collapse
|
35
|
Gómez M, Campusano S, Gutiérrez MS, Sepúlveda D, Barahona S, Baeza M, Cifuentes V, Alcaíno J. Sterol regulatory element-binding protein Sre1 regulates carotenogenesis in the red yeast Xanthophyllomyces dendrorhous. J Lipid Res 2020; 61:1658-1674. [PMID: 32933952 PMCID: PMC7707178 DOI: 10.1194/jlr.ra120000975] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Xanthophyllomyces dendrorhous is a basidiomycete yeast that produces carotenoids, mainly astaxanthin. Astaxanthin is an organic pigment of commercial interest due to its antioxidant and coloring properties. X. dendrorhous has a functional SREBP pathway, and the Sre1 protein is the SREBP homolog in this yeast. However, how sterol regulatory element (Sre)1 promotes the biosynthesis of sterols and carotenoids in X. dendrorhous is unknown. In this work, comparative RNA-sequencing analysis between modified X. dendrorhous strains that have an active Sre1 protein and the WT was performed to identify Sre1-dependent genes. In addition, Sre1 direct target genes were identified through ChIP combined with lambda exonuclease digestion (ChIP-exo) assays. SRE motifs were detected in the promoter regions of several Sre1 direct target genes and were consistent with the SREs described in other yeast species. Sre1 directly regulates genes related to ergosterol biosynthesis as well as genes related to the mevalonate (MVA) pathway, which synthesizes the building blocks of isoprenoids, including carotenoids. Two carotenogenic genes, crtE and crtR, were also identified as Sre1 direct target genes. Thus, carotenogenesis in X. dendrorhous is regulated by Sre1 through the regulation of the MVA pathway and the regulation of the crtE and crtR genes. As the crtR gene encodes a cytochrome P450 reductase, Sre1 regulates pathways that include cytochrome P450 enzymes, such as the biosynthesis of carotenoids and sterols. These results demonstrate that Sre1 is a sterol master regulator that is conserved in X. dendrorhous.
Collapse
Affiliation(s)
- Melissa Gómez
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Sebastián Campusano
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - María Soledad Gutiérrez
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Dionisia Sepúlveda
- Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Salvador Barahona
- Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Marcelo Baeza
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile; Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Víctor Cifuentes
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile; Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Jennifer Alcaíno
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile; Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
36
|
Krause C, Geißler C, Tackenberg H, El Gammal AT, Wolter S, Spranger J, Mann O, Lehnert H, Kirchner H. Multi-layered epigenetic regulation of IRS2 expression in the liver of obese individuals with type 2 diabetes. Diabetologia 2020; 63:2182-2193. [PMID: 32710190 PMCID: PMC7476982 DOI: 10.1007/s00125-020-05212-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 04/30/2020] [Indexed: 12/15/2022]
Abstract
AIMS/HYPOTHESIS IRS2 is an important molecular switch that mediates insulin signalling in the liver. IRS2 dysregulation is responsible for the phenomenon of selective insulin resistance that is observed in type 2 diabetes. We hypothesise that epigenetic mechanisms are involved in the regulation of IRS2 in the liver of obese and type 2 diabetic individuals. METHODS DNA methylation of seven CpG sites was studied by bisulphite pyrosequencing and mRNA and microRNA (miRNA) expression was assessed by quantitative real-time PCR in liver biopsies of 50 obese non-diabetic and 31 obese type 2 diabetic participants, in a cross-sectional setting. Methylation-sensitive luciferase assays and electrophoretic mobility shift assays were performed. Furthermore, HepG2 cells were treated with insulin and high glucose concentrations to induce miRNA expression and IRS2 downregulation. RESULTS We found a significant downregulation of IRS2 expression in the liver of obese individuals with type 2 diabetes (0.84 ± 0.08-fold change; p = 0.0833; adjusted p value [pa] = 0.0417; n = 31) in comparison with non-diabetic obese participants (n = 50). This downregulation correlated with hepatic IRS2 DNA methylation at CpG5. Additionally, CpG6, which is located in intron 1 of IRS2, was hypomethylated in type 2 diabetes; this site spans the sterol regulatory element binding transcription factor 1 (SREBF1) recognition motif, which likely acts as transcriptional repressor. The adjacent polymorphism rs4547213 (G>A) was significantly associated with DNA methylation at a specificity-protein-1 (SP1) binding site (CpG3). Moreover, DNA methylation of cg25924746, a CpG site located in the shore region of the IRS2 promoter-associated CpG island, was increased in the liver of individuals with type 2 diabetes, as compared with those without diabetes. A second epigenetic mechanism, upregulation of hepatic miRNA hsa-let-7e-5p (let-7e-5p) in obese individuals with type 2 diabetes (n = 29) vs non-diabetic obese individuals (n = 49) (1.2 ± 0.08-fold change; p = 0.0332; pa = 0.0450), is likely to act synergistically with altered IRS2 DNA methylation to decrease IRS2 expression. Mechanistic in vitro experiments demonstrated an acute upregulation of let-7e-5p expression and simultaneous IRS2 downregulation in a liver (HepG2) cell line upon hyperinsulinaemic and hyperglycaemic conditions. CONCLUSIONS/INTERPRETATION Our study highlights a new multi-layered epigenetic network that could be involved in subtle dysregulation of IRS2 in the liver of individuals with type 2 diabetes. This might lead to fine-tuning of IRS2 expression and is likely to be supplementary to the already known factors regulating IRS2 expression. Thereby, our findings could support the discovery of new diagnostic and therapeutic strategies for type 2 diabetes. Graphical abstract.
Collapse
Affiliation(s)
- Christin Krause
- First Department of Medicine, Division of Epigenetics and Metabolism, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Cathleen Geißler
- First Department of Medicine, Division of Epigenetics and Metabolism, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Heidi Tackenberg
- First Department of Medicine, Division of Epigenetics and Metabolism, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Alexander T El Gammal
- Department of General, Visceral and Thoracic Surgery, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Wolter
- Department of General, Visceral and Thoracic Surgery, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Joachim Spranger
- Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Oliver Mann
- Department of General, Visceral and Thoracic Surgery, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Hendrik Lehnert
- First Department of Medicine, Division of Epigenetics and Metabolism, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Henriette Kirchner
- First Department of Medicine, Division of Epigenetics and Metabolism, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany.
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
| |
Collapse
|
37
|
Goh PT, Kuah MK, Chew YS, Teh HY, Shu-Chien AC. The requirements for sterol regulatory element-binding protein (Srebp) and stimulatory protein 1 (Sp1)-binding elements in the transcriptional activation of two freshwater fish Channa striata and Danio rerio elovl5 elongase. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:1349-1359. [PMID: 32239337 DOI: 10.1007/s10695-020-00793-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 03/11/2020] [Indexed: 06/11/2023]
Abstract
Fish are a major source of beneficial n-3 LC-PUFA in human diet, and there is considerable interest to elucidate the mechanism and regulatory aspects of LC-PUFA biosynthesis in farmed species. Long-chain polyunsaturated fatty acid (LC-PUFA) biosynthesis involves the activities of two groups of enzymes, the fatty acyl desaturase (Fads) and elongase of very long-chain fatty acid (Elovl). The promoters of elovl5 elongase, which catalyses the rate-limiting reaction of elongating polyunsaturated fatty acid (PUFA), have been previously described and characterized from several marine and diadromous teleost species. We report here the cloning and characterization of elovl5 promoter from two freshwater fish species, the carnivorous snakehead fish (Channa striata) and zebrafish. Results show the presence of sterol-responsive elements (SRE) in the core regulatory region of both promoters, suggesting the importance of sterol regulatory element-binding protein (Srebp) in the regulation of elovl5 for both species. Mutagenesis luciferase and electrophoretic mobility shift assays further validate the role of SRE for basal transcriptional activation. In addition, several Sp1-binding sites located in close proximity with SRE were present in the snakehead promoter, with one having a potential synergy with SRE in the regulation of elovl5 expression. The core zebrafish elovl5 promoter fragment also directed in vivo expression in the yolk syncytial layer of developing zebrafish embryos.
Collapse
Affiliation(s)
- Pei-Tian Goh
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Meng-Kiat Kuah
- Centre for Chemical Biology, Sains@USM, Blok B No. 10, Persiaran Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia
| | - Yen-Shan Chew
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Hui-Ying Teh
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Alexander Chong Shu-Chien
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
- Centre for Chemical Biology, Sains@USM, Blok B No. 10, Persiaran Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia.
| |
Collapse
|
38
|
Butler LM, Perone Y, Dehairs J, Lupien LE, de Laat V, Talebi A, Loda M, Kinlaw WB, Swinnen JV. Lipids and cancer: Emerging roles in pathogenesis, diagnosis and therapeutic intervention. Adv Drug Deliv Rev 2020; 159:245-293. [PMID: 32711004 PMCID: PMC7736102 DOI: 10.1016/j.addr.2020.07.013] [Citation(s) in RCA: 379] [Impact Index Per Article: 75.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/02/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023]
Abstract
With the advent of effective tools to study lipids, including mass spectrometry-based lipidomics, lipids are emerging as central players in cancer biology. Lipids function as essential building blocks for membranes, serve as fuel to drive energy-demanding processes and play a key role as signaling molecules and as regulators of numerous cellular functions. Not unexpectedly, cancer cells, as well as other cell types in the tumor microenvironment, exploit various ways to acquire lipids and extensively rewire their metabolism as part of a plastic and context-dependent metabolic reprogramming that is driven by both oncogenic and environmental cues. The resulting changes in the fate and composition of lipids help cancer cells to thrive in a changing microenvironment by supporting key oncogenic functions and cancer hallmarks, including cellular energetics, promoting feedforward oncogenic signaling, resisting oxidative and other stresses, regulating intercellular communication and immune responses. Supported by the close connection between altered lipid metabolism and the pathogenic process, specific lipid profiles are emerging as unique disease biomarkers, with diagnostic, prognostic and predictive potential. Multiple preclinical studies illustrate the translational promise of exploiting lipid metabolism in cancer, and critically, have shown context dependent actionable vulnerabilities that can be rationally targeted, particularly in combinatorial approaches. Moreover, lipids themselves can be used as membrane disrupting agents or as key components of nanocarriers of various therapeutics. With a number of preclinical compounds and strategies that are approaching clinical trials, we are at the doorstep of exploiting a hitherto underappreciated hallmark of cancer and promising target in the oncologist's strategy to combat cancer.
Collapse
Affiliation(s)
- Lisa M Butler
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, SA 5005, Australia; South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Ylenia Perone
- Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine, London, UK
| | - Jonas Dehairs
- Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Leslie E Lupien
- Program in Experimental and Molecular Medicine, Geisel School of Medicine at Dartmouth, 1 Medical Center Drive, Lebanon, NH 037560, USA
| | - Vincent de Laat
- Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Ali Talebi
- Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Massimo Loda
- Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - William B Kinlaw
- The Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, 1 Medical Center Drive, Lebanon, NH 03756, USA
| | - Johannes V Swinnen
- Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, 3000 Leuven, Belgium.
| |
Collapse
|
39
|
Ruiz CF, Montal ED, Haley JA, Bott AJ, Haley JD. SREBP1 regulates mitochondrial metabolism in oncogenic KRAS expressing NSCLC. FASEB J 2020; 34:10574-10589. [PMID: 32568455 DOI: 10.1096/fj.202000052r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/08/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022]
Abstract
Cancer cells require extensive metabolic reprograming in order to provide the bioenergetics and macromolecular precursors needed to sustain a malignant phenotype. Mutant KRAS is a driver oncogene that is well-known for its ability to regulate the ERK and PI3K signaling pathways. However, it is now appreciated that KRAS can promote the tumor growth via upregulation of anabolic metabolism. We recently reported that oncogenic KRAS promotes a gene expression program of de novo lipogenesis in non-small cell lung cancer (NSCLC). To define the mechanism(s) responsible, we focused on the lipogenic transcription factor SREBP1. We observed that KRAS increases SREBP1 expression and genetic knockdown of SREBP1 significantly inhibited the cell proliferation of mutant KRAS-expressing cells. Unexpectedly, lipogenesis was not significantly altered in cells subject to SREBP1 knockdown. Carbon tracing metabolic studies showed a significant decrease in oxidative phosphorylation and RNA-seq data revealed a significant decrease in mitochondrial encoded subunits of the electron transport chain (ETC). Taken together, these data support a novel role, distinct from lipogenesis, of SREBP1 on mitochondrial function in mutant KRAS NSCLC.
Collapse
Affiliation(s)
- Christian F Ruiz
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Emily D Montal
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John A Haley
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Alex J Bott
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - John D Haley
- Department of Pathology, Stony Brook University School of Medicine, Stony Brook, NY, USA
| |
Collapse
|
40
|
Sievert H, Krause C, Geißler C, Grohs M, El-Gammal AT, Wolter S, Mann O, Lehnert H, Kirchner H. Epigenetic Downregulation of FASN in Visceral Adipose Tissue of Insulin Resistant Subjects. Exp Clin Endocrinol Diabetes 2020; 129:674-682. [PMID: 32434239 DOI: 10.1055/a-1150-7446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE The risk to develop type 2 diabetes increases with the amount of visceral adiposity presumably due to increased lipolysis and subsequent lipid accumulation in visceral organs. However, data describing the molecular regulation of these pathways in humans are rare. We tested if genes of the lipogenic and lipolytic pathways are associated with glucose intolerance independently of obesity in visceral adipose tissue (VAT) of obese subjects. Moreover, we studied DNA methylation of FASN (fatty acid synthase), that catalyses the synthesis of long-chain fatty acids, in VAT of the same subjects and whether it is associated with metabolic traits. SUBJECTS AND METHODS Visceral adipose tissue biopsies and blood samples were taken from 93 severely obese subjects undergoing bariatric surgery. Subjects were grouped in low HbA1c (L-HbA1c, HbA1c<6.5 %) and high HbA1c (H-HbA1c, HbA1c≥6.5 %) groups and expression of genes from the lipogenic and lipolytic pathways was analysed by TaqMan qPCR. DNA methylation of FASN was quantified by bisulfite-pyrosequencing. RESULTS FASN expression was downregulated in visceral fat from subjects with high HbA1c (p = 0.00009). Expression of other lipogenetic (SCD, ELOVL6) or lipolytic genes (ADRB3, PNPLA2) and FABP4 was not changed. DNA methylation of FASN was increased at a regulatory ChoRE recognition site in the H-HbA1c-subgroup and correlated negatively with FASN mRNA (r = - 0.302, p = 0.0034) and positively with HbA1c (r = 0.296, p = 0.0040) and blood glucose (r = 0.363, p = 0.0005). CONCLUSIONS Epigenetic downregulation of FASN in visceral adipose tissue of obese subjects might contribute to limited de novo lipogenesis of important insulin sensitizing fatty acids and could thereby contribute to glucose intolerance and the development of type 2 diabetes independently of obesity.
Collapse
Affiliation(s)
- Helen Sievert
- First Medical Department, University of Lübeck, Lübeck, Germany
| | - Christin Krause
- First Medical Department, University of Lübeck, Lübeck, Germany
| | | | - Martina Grohs
- First Medical Department, University of Lübeck, Lübeck, Germany
| | - Alexander T El-Gammal
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Wolter
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Oliver Mann
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hendrik Lehnert
- First Medical Department, University of Lübeck, Lübeck, Germany.,German Diabetes Center (DZD), München-Neuherberg, Germany
| | - Henriette Kirchner
- First Medical Department, University of Lübeck, Lübeck, Germany.,German Diabetes Center (DZD), München-Neuherberg, Germany
| |
Collapse
|
41
|
Matsuoka H, Katayama M, Ohishi A, Miya K, Tokunaga R, Kobayashi S, Nishimoto Y, Hirooka K, Shima A, Michihara A. Orphan Nuclear Receptor RORα Regulates Enzymatic Metabolism of Cerebral 24S-Hydroxycholesterol through CYP39A1 Intronic Response Element Activation. Int J Mol Sci 2020; 21:ijms21093309. [PMID: 32392803 PMCID: PMC7246805 DOI: 10.3390/ijms21093309] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/28/2020] [Accepted: 05/06/2020] [Indexed: 12/22/2022] Open
Abstract
Oxysterols, important regulators of cholesterol homeostasis in the brain, are affected by neurodegenerative diseases. Early-onset Alzheimer’s disease is associated with higher levels of circulating brain-derived 24S-hydroxycholesterol (24S-OHC). Conversion of cholesterol to 24S-OHC is mediated by cholesterol 24S-hydroxylase in the brain, which is the major pathway for oxysterol elimination, followed by oxidation through hepatic first-pass metabolism by CYP39A1. Abnormal CYP39A1 expression results in accumulation of 24S-OHC, influencing neurodegenerative disease-related deterioration; thus, it is important to understand the normal elimination of 24S-OHC and the system regulating CYP39A1, a selective hepatic metabolic enzyme of 24S-OHC. We examined the role of transcriptional regulation by retinoic acid receptor-related orphan receptor α (RORα), a nuclear receptor that responds to oxysterol ligands. In humans, the promoter and first intronic regions of CYP39A1 contain two putative RORα response elements (ROREs). RORα binding and responses of these ROREs were assessed using electrophoretic mobility shift, chromatin immunoprecipitation, and luciferase reporter assays. CYP39A1 was upregulated by RORα overexpression in HEK293 cells, while RORα knockdown by siRNA significantly downregulated CYP39A1 expression in human hepatoma cells. Additionally, CYP39A1 was induced by RORα agonist treatment, suggesting that CYP39A1 expression is activated by RORα nuclear receptors. This may provide a way to increase CYP39A1 activity using RORα agonists, and help halt 24S-OHC accumulation in neurodegenerative illnesses.
Collapse
Affiliation(s)
- Hiroshi Matsuoka
- Laboratory of Genome Function and Pathophysiology, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima 729-0292, Japan; (M.K.); (A.O.); (K.M.); (R.T.); (S.K.); (Y.N.); (A.S.); (A.M.)
- Correspondence: ; Tel.: +81-84-936-2111
| | - Miyu Katayama
- Laboratory of Genome Function and Pathophysiology, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima 729-0292, Japan; (M.K.); (A.O.); (K.M.); (R.T.); (S.K.); (Y.N.); (A.S.); (A.M.)
| | - Ami Ohishi
- Laboratory of Genome Function and Pathophysiology, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima 729-0292, Japan; (M.K.); (A.O.); (K.M.); (R.T.); (S.K.); (Y.N.); (A.S.); (A.M.)
| | - Kaoruko Miya
- Laboratory of Genome Function and Pathophysiology, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima 729-0292, Japan; (M.K.); (A.O.); (K.M.); (R.T.); (S.K.); (Y.N.); (A.S.); (A.M.)
| | - Riki Tokunaga
- Laboratory of Genome Function and Pathophysiology, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima 729-0292, Japan; (M.K.); (A.O.); (K.M.); (R.T.); (S.K.); (Y.N.); (A.S.); (A.M.)
| | - Sou Kobayashi
- Laboratory of Genome Function and Pathophysiology, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima 729-0292, Japan; (M.K.); (A.O.); (K.M.); (R.T.); (S.K.); (Y.N.); (A.S.); (A.M.)
| | - Yuya Nishimoto
- Laboratory of Genome Function and Pathophysiology, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima 729-0292, Japan; (M.K.); (A.O.); (K.M.); (R.T.); (S.K.); (Y.N.); (A.S.); (A.M.)
| | - Kazutake Hirooka
- Department of Biotechnology, Faculty of Life Science and Biotechnology, Fukuyama University, Fukuyama, Hiroshima 729-0292, Japan;
| | - Akiho Shima
- Laboratory of Genome Function and Pathophysiology, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima 729-0292, Japan; (M.K.); (A.O.); (K.M.); (R.T.); (S.K.); (Y.N.); (A.S.); (A.M.)
| | - Akihiro Michihara
- Laboratory of Genome Function and Pathophysiology, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima 729-0292, Japan; (M.K.); (A.O.); (K.M.); (R.T.); (S.K.); (Y.N.); (A.S.); (A.M.)
| |
Collapse
|
42
|
Bratkovič T, Božič J, Rogelj B. Functional diversity of small nucleolar RNAs. Nucleic Acids Res 2020; 48:1627-1651. [PMID: 31828325 PMCID: PMC7038934 DOI: 10.1093/nar/gkz1140] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/17/2019] [Accepted: 12/05/2019] [Indexed: 12/22/2022] Open
Abstract
Small nucleolar RNAs (snoRNAs) are short non-protein-coding RNAs with a long-recognized role in tuning ribosomal and spliceosomal function by guiding ribose methylation and pseudouridylation at targeted nucleotide residues of ribosomal and small nuclear RNAs, respectively. SnoRNAs are increasingly being implicated in regulation of new types of post-transcriptional processes, for example rRNA acetylation, modulation of splicing patterns, control of mRNA abundance and translational efficiency, or they themselves are processed to shorter stable RNA species that seem to be the principal or alternative bioactive isoform. Intriguingly, some display unusual cellular localization under exogenous stimuli, or tissue-specific distribution. Here, we discuss the new and unforeseen roles attributed to snoRNAs, focusing on the presumed mechanisms of action. Furthermore, we review the experimental approaches to study snoRNA function, including high resolution RNA:protein and RNA:RNA interaction mapping, techniques for analyzing modifications on targeted RNAs, and cellular and animal models used in snoRNA biology research.
Collapse
Affiliation(s)
- Tomaž Bratkovič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, SI1000 Ljubljana, Slovenia
| | - Janja Božič
- Jozef Stefan Institute, Department of Biotechnology, Jamova cesta 39, SI1000 Ljubljana, Slovenia.,Biomedical Research Institute BRIS, Puhova ulica 10, SI1000 Ljubljana, Slovenia
| | - Boris Rogelj
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, SI1000 Ljubljana, Slovenia.,Jozef Stefan Institute, Department of Biotechnology, Jamova cesta 39, SI1000 Ljubljana, Slovenia.,Biomedical Research Institute BRIS, Puhova ulica 10, SI1000 Ljubljana, Slovenia.,University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, SI1000 Ljubljana, Slovenia
| |
Collapse
|
43
|
Collaborative interactions of heterogenous ribonucleoproteins contribute to transcriptional regulation of sterol metabolism in mice. Nat Commun 2020; 11:984. [PMID: 32080181 PMCID: PMC7033216 DOI: 10.1038/s41467-020-14711-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 01/29/2020] [Indexed: 02/07/2023] Open
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) are a group of functionally versatile proteins that play critical roles in the biogenesis, cellular localization and transport of RNA. Here, we outline a role for hnRNPs in gene regulatory circuits controlling sterol homeostasis. Specifically, we find that tissue-selective loss of the conserved hnRNP RALY enriches for metabolic pathways. Liver-specific deletion of RALY alters hepatic lipid content and serum cholesterol level. In vivo interrogation of chromatin architecture and genome-wide RALY-binding pattern reveal insights into its cooperative interactions and mode of action in regulating cholesterogenesis. Interestingly, we find that RALY binds the promoter region of the master metabolic regulator Srebp2 and show that it directly interacts with coactivator Nuclear Transcription Factor Y (NFY) to influence cholesterogenic gene expression. Our work offers insights into mechanisms orchestrating selective promoter activation in metabolic control and a model by which hnRNPs can impact health and disease states. Heterogeneous nuclear ribonucleoproteins (hnRNPs) play critical roles in the biogenesis, localization and transport of RNA. Here authors investigate a role for hnRNPs in sterol metabolism in mice and provide insights into their role in selective promoter activation.
Collapse
|
44
|
Mulugeta TD, Nome T, To TH, Gundappa MK, Macqueen DJ, Våge DI, Sandve SR, Hvidsten TR. SalMotifDB: a tool for analyzing putative transcription factor binding sites in salmonid genomes. BMC Genomics 2019; 20:694. [PMID: 31477007 PMCID: PMC6720087 DOI: 10.1186/s12864-019-6051-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 08/21/2019] [Indexed: 12/11/2022] Open
Abstract
Background Recently developed genome resources in Salmonid fish provides tools for studying the genomics underlying a wide range of properties including life history trait variation in the wild, economically important traits in aquaculture and the evolutionary consequences of whole genome duplications. Although genome assemblies now exist for a number of salmonid species, the lack of regulatory annotations are holding back our mechanistic understanding of how genetic variation in non-coding regulatory regions affect gene expression and the downstream phenotypic effects. Results We present SalMotifDB, a database and associated web and R interface for the analysis of transcription factors (TFs) and their cis-regulatory binding sites in five salmonid genomes. SalMotifDB integrates TF-binding site information for 3072 non-redundant DNA patterns (motifs) assembled from a large number of metazoan motif databases. Through motif matching and TF prediction, we have used these multi-species databases to construct putative regulatory networks in salmonid species. The utility of SalMotifDB is demonstrated by showing that key lipid metabolism regulators are predicted to regulate a set of genes affected by different lipid and fatty acid content in the feed, and by showing that our motif database explains a significant proportion of gene expression divergence in gene duplicates originating from the salmonid specific whole genome duplication. Conclusions SalMotifDB is an effective tool for analyzing transcription factors, their binding sites and the resulting gene regulatory networks in salmonid species, and will be an important tool for gaining a better mechanistic understanding of gene regulation and the associated phenotypes in salmonids. SalMotifDB is available at https://salmobase.org/apps/SalMotifDB. Electronic supplementary material The online version of this article (10.1186/s12864-019-6051-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Teshome Dagne Mulugeta
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Torfinn Nome
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Thu-Hien To
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Manu Kumar Gundappa
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK
| | - Daniel J Macqueen
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK
| | - Dag Inge Våge
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Simen Rød Sandve
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Torgeir R Hvidsten
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway.
| |
Collapse
|
45
|
Pauciullo A, Shuiep ET, Ogah MD, Cosenza G, Di Stasio L, Erhardt G. Casein Gene Cluster in Camelids: Comparative Genome Analysis and New Findings on Haplotype Variability and Physical Mapping. Front Genet 2019; 10:748. [PMID: 31555318 PMCID: PMC6726744 DOI: 10.3389/fgene.2019.00748] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 07/17/2019] [Indexed: 12/22/2022] Open
Abstract
The structure of casein genes has been fully understood in llamas, whereas in other camelids, this information is still incomplete. In fact, structure and polymorphisms have been identified in three (CSN1S1, αs1-CN; CSN2, β-CN; CSN3, κ-CN) out of four casein genes, whereas controversial information is available for the CSN1S2 (αs2-CN) in terms of structure and genetic diversity. Data from the genome analysis, whose assembly is available for feral camel, Bactrian, dromedary, and alpaca, can contribute to a better knowledge. However, a majority of the scaffolds available in GenBank are still unplaced, and the comparative annotation is often inaccurate or lacking.Therefore, the aims of this study are 1) to perform a comparative genome analysis and synthesize the literature data on camelids casein cluster; 2) to analyze the casein variability in two dromedary populations (Sudanese and Nigerian) using polymorphisms at CSN1S1 (c.150G > T), CSN2 (g.2126A > G), and CSN3 (g.1029T > C); and 3) to physically map the casein cluster in alpaca. Exon structures, gene and intergenic distances, large insertion/deletion events, SNPs, and microsatellites were annotated. In all camelids, the CSN1S2 consists of 17 exons, confirming the structure of llama CSN1S2 gene. The comparative analysis of the complete casein cluster (∼190kb) shows 12,818 polymorphisms. The most polymorphic gene is the CSN1S1 (99 SNPs in Bactrian vs. 248 in dromedary vs. 626 in alpaca). The less polymorphic is the CSN3 in the Bactrian (22 SNPs) and alpaca (301 SNPs), whereas it is the CSN1S2 in dromedary (79 SNPs). In the two investigated dromedary populations, the allele frequencies for the three markers are slightly different: the allele C at CSN1S1 is very rare in Nigerian (0.054) and Sudanese dromedaries (0.094), whereas the frequency of the allele G at CSN2 is almost inverted. Haplotype analysis evidenced GAC as the most frequent (0.288) and TGC as the rarest (0.005). The analysis of R-banding metaphases hybridized with specific probes mapped the casein genes on chromosome 2q21 in alpaca. These data deepen the information on the structure of the casein cluster in camelids and add knowledge on the cytogenetic map and haplotype variability.
Collapse
Affiliation(s)
- Alfredo Pauciullo
- Department of Agricultural, Forest and Food Sciences, University of Torino, Grugliasco, Italy
| | - El Tahir Shuiep
- Institute of Molecular Biology, University of Nyala, Nyala, Sudan
| | - Moses Danlami Ogah
- Department of Animal Science, Nasarawa State University, Keffi, Shabu-Lafia, Nigeria
| | - Gianfranco Cosenza
- Department of Agriculture, University of Napoli Federico II, Portici Italy
| | - Liliana Di Stasio
- Department of Agricultural, Forest and Food Sciences, University of Torino, Grugliasco, Italy
| | - Georg Erhardt
- Department for Animal Breeding and Genetics, Justus Liebig University, Gießen, Germany
| |
Collapse
|
46
|
Kusnadi A, Park SH, Yuan R, Pannellini T, Giannopoulou E, Oliver D, Lu T, Park-Min KH, Ivashkiv LB. The Cytokine TNF Promotes Transcription Factor SREBP Activity and Binding to Inflammatory Genes to Activate Macrophages and Limit Tissue Repair. Immunity 2019; 51:241-257.e9. [PMID: 31303399 PMCID: PMC6709581 DOI: 10.1016/j.immuni.2019.06.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 04/23/2019] [Accepted: 06/07/2019] [Indexed: 12/20/2022]
Abstract
Cytokine tumor necrosis factor (TNF)-mediated macrophage polarization is important for inflammatory disease pathogenesis, but the mechanisms regulating polarization are not clear. We performed transcriptomic and epigenomic analysis of the TNF response in primary human macrophages and revealed late-phase activation of SREBP2, the master regulator of cholesterol biosynthesis genes. TNF stimulation extended the genomic profile of SREBP2 occupancy to include binding to and activation of inflammatory and interferon response genes independently of its functions in sterol metabolism. Genetic ablation of SREBP function shifted the balance of macrophage polarization from an inflammatory to a reparative phenotype in peritonitis and skin wound healing models. Genetic ablation of SREBP activity in myeloid cells or topical pharmacological inhibition of SREBP improved skin wound healing under homeostatic and chronic inflammatory conditions. Our results identify a function and mechanism of action for SREBPs in augmenting TNF-induced macrophage activation and inflammation and open therapeutic avenues for promoting wound repair.
Collapse
Affiliation(s)
- Anthony Kusnadi
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA; Research Institute and the David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021, USA
| | - Sung Ho Park
- Research Institute and the David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021, USA; School of Life Sciences, Ulsan National Institute of Science & Technology (UNIST), Ulsan 44919, Korea
| | - Ruoxi Yuan
- Research Institute and the David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021, USA
| | - Tania Pannellini
- Research Institute and the David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021, USA
| | - Eugenia Giannopoulou
- Research Institute and the David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021, USA; Biological Sciences Department, New York City College of Technology, City University of New York, Brooklyn, NY 11201, USA
| | - David Oliver
- Research Institute and the David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021, USA
| | - Theresa Lu
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA; Research Institute and the David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021, USA
| | - Kyung-Hyun Park-Min
- BCMB Allied Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA; Research Institute and the David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021, USA.
| | - Lionel B Ivashkiv
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA; Research Institute and the David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021, USA.
| |
Collapse
|
47
|
Raghow R, Dong Q, Elam MB. Phosphorylation dependent proteostasis of sterol regulatory element binding proteins. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1145-1156. [DOI: 10.1016/j.bbalip.2019.04.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/19/2019] [Accepted: 04/28/2019] [Indexed: 12/17/2022]
|
48
|
SREBP1-dependent de novo fatty acid synthesis gene expression is elevated in malignant melanoma and represents a cellular survival trait. Sci Rep 2019; 9:10369. [PMID: 31316083 PMCID: PMC6637239 DOI: 10.1038/s41598-019-46594-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 07/01/2019] [Indexed: 02/07/2023] Open
Abstract
de novo fatty acid biosynthesis (DNFA) is a hallmark adaptation of many cancers that supports survival, proliferation, and metastasis. Here we elucidate previously unexplored aspects of transcription regulation and clinical relevance of DNFA in cancers. We show that elevated expression of DNFA genes is characteristic of many tumor types and correlates with poor prognosis, especially in melanomas. Elevated DNFA gene expression depends on the SREBP1 transcription factor in multiple melanoma cell lines. SREBP1 predominantly binds to the transcription start sites of DNFA genes, regulating their expression by recruiting RNA polymerase II to promoters for productive transcription elongation. We find that SREBP1-regulated DNFA represents a survival trait in melanoma cells, regardless of proliferative state and oncogenic mutation status. Indeed, malignant melanoma cells exhibit elevated DNFA gene expression after the BRAF/MEK signaling pathway is blocked (e.g. by BRAF inhibitors), and DNFA expression remains higher in melanoma cells resistant to vemurafenib treatment than in untreated cells. Accordingly, DNFA pathway inhibition, whether by direct targeting of SREBP1 with antisense oligonucleotides, or through combinatorial effects of multiple DNFA enzyme inhibitors, exerts potent cytotoxic effects on both BRAFi-sensitive and -resistant melanoma cells. Altogether, these results implicate SREBP1 and DNFA enzymes as enticing therapeutic targets in melanomas.
Collapse
|
49
|
Xiaoli AM, Song Z, Yang F. Lipogenic SREBP-1a/c transcription factors activate expression of the iron regulator hepcidin, revealing cross-talk between lipid and iron metabolisms. J Biol Chem 2019; 294:12743-12753. [PMID: 31270208 DOI: 10.1074/jbc.ra119.009644] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/01/2019] [Indexed: 12/17/2022] Open
Abstract
The sterol regulatory element-binding proteins (SREBPs) are a family of transcription factors best known for stimulating the expression of genes encoding key lipogenic enzymes. However, SREBP functions beyond lipid metabolism are less understood. Here, we show that hepcidin antimicrobial peptide (Hamp), encoding the hormone hepcidin essential for iron homeostasis and regulated by dietary iron and inflammation, is a target gene of the two SREBP isoforms SREBP-1a/c. We found that in tissue culture, mature, active, and nuclear forms of the SREBP-1a/c proteins induce endogenous Hamp gene expression and increase the Hamp promoter activity primarily via three regulatory sequences, including an E-box. Moreover, ChIP experiments revealed that SREBP-1a binds to the Hamp gene promoter. Overexpression of nuclear SREBP-1a under the control of the phosphoenolpyruvate carboxylase-1 (Pck1) promoter in mice increased hepatic Hamp mRNA and blood hepcidin levels, and as expected, caused fatty liver. Consistent with the known effects of Hamp up-regulation, SREBP-1a-overexpressing mice displayed signs of dysregulation in iron metabolism, including reduced serum iron and increased hepatic and splenic iron storage. Conversely, liver-specific depletion of the nuclear forms of SREBPs, as in SREBP cleavage-activating protein knockout mice, impaired lipopolysaccharide-induced up-regulation of hepatic Hamp Together, these results indicate that the SREBP-1a/c transcription regulators activate hepcidin expression and thereby contribute to the control of mammalian iron metabolism.
Collapse
Affiliation(s)
- Alus M Xiaoli
- Departments of Medicine and Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Ziyi Song
- Departments of Medicine and Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Fajun Yang
- Departments of Medicine and Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
50
|
Wang Q, Lin C, Zhang C, Wang H, Lu Y, Yao J, Wei Q, Xing G, Cao X. 25-hydroxycholesterol down-regulates oxysterol binding protein like 2 (OSBPL2) via the p53/SREBF2/NFYA signaling pathway. J Steroid Biochem Mol Biol 2019; 187:17-26. [PMID: 30391516 DOI: 10.1016/j.jsbmb.2018.10.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 10/23/2018] [Accepted: 10/26/2018] [Indexed: 12/21/2022]
Abstract
Oxysterol Binding Protein Like 2 (OSBPL2) is a lipid-binding protein implicated in various cellular processes. Previous studies have shown that depression of OSBPL2 significantly increases the level of cellular 25-hydroxycholesterol (25-OHC) which regulates the expression of lipid-metabolism-related genes. However, whether 25-OHC can regulate the expression of OSBPL2 remains unanswered. This study aimed to explore the molecular mechanism of 25-OHC regulating the expression of OSBPL2. Using dual-luciferase reporter assay, we found a decrease of nuclear transcription factor Y subunit alpha (NFYA) bound with OSBPL2 promoter when HeLa cells were treated with 25-OHC. Furthermore, transcriptome sequencing and RNA interference results revealed that the p53/sterol regulatory element binding transcription factor 2 (SREBF2) signaling pathway was involved in the NFYA-dependent transcription of OSBPL2 induced by 25-OHC. Based on these results, we concluded that pleomorphic adenoma gene 1 (PLAG1) and NFYA participated in the basal transcription of OSBPL2 and that 25-OHC decreased the transcription of OSBPL2 via the p53/SREBF2/NFYA signaling pathway. 25-OHC will accumulate over time in OSBPL2 knockdown cells. These results may provide a new insight into the deafness caused by OSBPL2 mutation.
Collapse
Affiliation(s)
- Quan Wang
- Department of Medical Genetics, School of Basic Medicinal Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Changsong Lin
- Department of Medical Genetics, School of Basic Medicinal Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Cui Zhang
- Department of Medical Genetics, School of Basic Medicinal Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Hongshun Wang
- Department of Medical Genetics, School of Basic Medicinal Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Yajie Lu
- Department of Medical Genetics, School of Basic Medicinal Sciences, Nanjing Medical University, Nanjing, 211166, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, 211166, China
| | - Jun Yao
- Department of Medical Genetics, School of Basic Medicinal Sciences, Nanjing Medical University, Nanjing, 211166, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, 211166, China
| | - Qinjun Wei
- Department of Medical Genetics, School of Basic Medicinal Sciences, Nanjing Medical University, Nanjing, 211166, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, 211166, China; The Laboratory Center for Basic Medical Sciences, School of Basic Medicinal Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Guangqian Xing
- Department of Otolaryngology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xin Cao
- Department of Medical Genetics, School of Basic Medicinal Sciences, Nanjing Medical University, Nanjing, 211166, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, 211166, China; The Laboratory Center for Basic Medical Sciences, School of Basic Medicinal Sciences, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|