1
|
Byatt TC, Razaghi E, Tüzüner S, Simões FC. Immune-mediated cardiac development and regeneration. Semin Cell Dev Biol 2025; 171:103613. [PMID: 40315634 DOI: 10.1016/j.semcdb.2025.103613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/18/2025] [Accepted: 04/16/2025] [Indexed: 05/04/2025]
Abstract
The complex interplay between the immune and cardiovascular systems during development, homeostasis and regeneration represents a rapidly evolving field in cardiac biology. Single cell technologies, spatial mapping and computational analysis have revolutionised our understanding of the diversity and functional specialisation of immune cells within the heart. From the earliest stages of cardiogenesis, where primitive macrophages guide heart tube formation, to the complex choreography of inflammation and its resolution during regeneration, immune cells emerge as central orchestrators of cardiac fate. Translating these fundamental insights into clinical applications represents a major challenge and opportunity for the field. In this Review, we decode the immunological blueprint of heart development and regeneration to transform cardiovascular disease treatment and unlock the regenerative capacity of the human heart.
Collapse
Affiliation(s)
- Timothy C Byatt
- Institute of Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Ehsan Razaghi
- Institute of Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Selin Tüzüner
- Institute of Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Filipa C Simões
- Institute of Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
2
|
Derrick CJ, Eley L, Alqahtani A, Henderson DJ, Chaudhry B. Zebrafish arterial valve development occurs through direct differentiation of second heart field progenitors. Cardiovasc Res 2025; 121:157-173. [PMID: 39460530 PMCID: PMC11998914 DOI: 10.1093/cvr/cvae230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/03/2024] [Accepted: 09/15/2024] [Indexed: 10/28/2024] Open
Abstract
AIMS Bicuspid aortic valve (BAV) is the most common congenital heart defect, affecting at least 2% of the population. The embryonic origins of BAV remain poorly understood, with few assays for validating patient variants, limiting the identification of causative genes for BAV. In both human and mouse, the left and right leaflets of the arterial valves arise from the outflow tract cushions, with interstitial cells originating from neural crest cells and the overlying endocardium through endothelial-to-mesenchymal transition (EndoMT). In contrast, an EndoMT-independent mechanism of direct differentiation of cardiac progenitors from the second heart field (SHF) is responsible for the formation of the anterior and posterior leaflets. Defects in either of these developmental mechanisms can result in BAV. Although zebrafish have been suggested as a model for human variant testing, their naturally bicuspid arterial valve has not been considered suitable for understanding human arterial valve development. Here, we have set out to investigate to what extent the processes involved in arterial valve development are conserved in zebrafish and, ultimately, whether functional testing of BAV variants could be carried out. METHODS AND RESULTS Using a combination of live imaging, immunohistochemistry, and Cre-mediated lineage tracing, we show that the zebrafish arterial valve primordia develop directly from SHF progenitors with no contribution from EndoMT or neural crest, in keeping with the human and mouse anterior and posterior leaflets. Moreover, once formed, these primordia share common subsequent developmental events with all three aortic valve leaflets. CONCLUSION Our work highlights a conserved ancestral mechanism of arterial valve leaflet formation from the SHF and identifies that development of the arterial valve is distinct from that of the atrioventricular valve in zebrafish. Crucially, this confirms the utility of zebrafish for understanding the development of specific BAV subtypes and arterial valve dysplasia, offering potential for high-throughput variant testing.
Collapse
Affiliation(s)
- Christopher J Derrick
- International Centre for Life, Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Lorraine Eley
- International Centre for Life, Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Ahlam Alqahtani
- International Centre for Life, Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Deborah J Henderson
- International Centre for Life, Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Bill Chaudhry
- International Centre for Life, Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| |
Collapse
|
3
|
Depret N, Gleizes M, Moreau MM, Poirault-Chassac S, Quiedeville A, Carvalho SDS, Venugopal V, Abed ASA, Ezan J, Barthet G, Mulle C, Desmedt A, Marighetto A, Racca C, Montcouquiol M, Sans N. The correct connectivity of the DG-CA3 circuits involved in declarative memory processes depends on Vangl2-dependent planar cell polarity signaling. Prog Neurobiol 2025; 246:102728. [PMID: 39956311 DOI: 10.1016/j.pneurobio.2025.102728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/18/2025]
Abstract
In the hippocampus, dentate gyrus granule cells connect to CA3 pyramidal cells via their axons, the mossy fibers (Mf). The synaptic terminals of Mfs (Mf boutons, MfBs) form large and complex synapses with thorny excrescences (TE) on the proximal dendrites of CA3 pyramidal cells (PCs). MfB/TE synapses have distinctive "detonator" properties due to low initial release probability and large presynaptic facilitation. The molecular mechanisms shaping the morpho-functional properties of MfB/TE synapses are still poorly understood, though alterations in their morphology are associated with Down syndrome, intellectual disabilities, and Alzheimer's disease. Here, we identify the core PCP gene Vangl2 as essential to the morphogenesis and function of MfB/TE synapses. Vangl2 colocalises with the presynaptic heparan sulfate proteoglycan glypican 4 (GPC4) to stabilise the postsynaptic orphan receptor GPR158. Embryonic loss of Vangl2 disrupts the morphology of MfBs and TEs, impairs ultrastructural and molecular organisation, resulting in defective synaptic transmission and plasticity. In adult, the early loss of Vangl2 results in a number of hippocampus-dependent memory deficits including characteristic flexibility of declarative memory, organisation and retention of working / everyday-like memory. These deficits also lead to abnormal generalisation of memories to salient cues and diminished ability to form detailed contextual memories. Together, these results establish Vangl2 as a key regulator of DG-CA3 connectivity and functions.
Collapse
Affiliation(s)
- Noémie Depret
- Univ. Bordeaux, Inserm, Neurocentre Magendie, U1215, Bordeaux F-33000, France
| | - Marie Gleizes
- Univ. Bordeaux, Inserm, Neurocentre Magendie, U1215, Bordeaux F-33000, France
| | - Maïté Marie Moreau
- Univ. Bordeaux, Inserm, Neurocentre Magendie, U1215, Bordeaux F-33000, France
| | | | - Anne Quiedeville
- Univ. Bordeaux, Inserm, Neurocentre Magendie, U1215, Bordeaux F-33000, France
| | | | - Vasika Venugopal
- Univ. Bordeaux, Inserm, Neurocentre Magendie, U1215, Bordeaux F-33000, France
| | - Alice Shaam Al Abed
- Univ. Bordeaux, Inserm, Neurocentre Magendie, U1215, Bordeaux F-33000, France
| | - Jérôme Ezan
- Univ. Bordeaux, Inserm, Neurocentre Magendie, U1215, Bordeaux F-33000, France
| | - Gael Barthet
- Univ. Bordeaux, CNRS, IINS, UMR 5297, Bordeaux F-33000, France
| | | | - Aline Desmedt
- Univ. Bordeaux, Inserm, Neurocentre Magendie, U1215, Bordeaux F-33000, France
| | - Aline Marighetto
- Univ. Bordeaux, Inserm, Neurocentre Magendie, U1215, Bordeaux F-33000, France
| | - Claudia Racca
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Nathalie Sans
- Univ. Bordeaux, Inserm, Neurocentre Magendie, U1215, Bordeaux F-33000, France.
| |
Collapse
|
4
|
Arriagada C, Lin E, Schonning M, Astrof S. Mesodermal fibronectin controls cell shape, polarity, and mechanotransduction in the second heart field during cardiac outflow tract development. Dev Cell 2025; 60:62-84.e7. [PMID: 39413783 PMCID: PMC11706711 DOI: 10.1016/j.devcel.2024.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/06/2024] [Accepted: 09/13/2024] [Indexed: 10/18/2024]
Abstract
Failure in the elongation of the cardiac outflow tract (OFT) results in congenital heart disease due to the misalignment of the great arteries with the left and right ventricles. The OFT lengthens via the accretion of progenitors from the second heart field (SHF). SHF cells are exquisitely regionalized and organized into an epithelial-like layer, forming the dorsal pericardial wall (DPW). Tissue tension, cell polarity, and proliferation within the DPW are important for the addition of SHF-derived cells to the heart and OFT elongation. However, the genes controlling these processes are not completely characterized. Using conditional mutagenesis in the mouse, we show that fibronectin (FN1) synthesized by the mesoderm coordinates multiple cellular behaviors in the anterior DPW. FN1 is enriched in the anterior DPW and plays a role in OFT elongation by maintaining a balance between pro- and anti-adhesive cell-extracellular matrix (ECM) interactions and controlling DPW cell shape, polarity, cohesion, proliferation, and mechanotransduction.
Collapse
Affiliation(s)
- Cecilia Arriagada
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers Biomedical and Health Sciences, 185 South Orange Ave., Newark, NJ 07103, USA
| | - Evan Lin
- Princeton Day School, Princeton, NJ, USA
| | - Michael Schonning
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers Biomedical and Health Sciences, 185 South Orange Ave., Newark, NJ 07103, USA
| | - Sophie Astrof
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers Biomedical and Health Sciences, 185 South Orange Ave., Newark, NJ 07103, USA.
| |
Collapse
|
5
|
Guijarro C, Song S, Aigouy B, Clément R, Villoutreix P, Kelly RG. Single-cell morphometrics reveals T-box gene-dependent patterns of epithelial tension in the Second Heart field. Nat Commun 2024; 15:9512. [PMID: 39496595 PMCID: PMC11535409 DOI: 10.1038/s41467-024-53612-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/17/2024] [Indexed: 11/06/2024] Open
Abstract
The vertebrate heart tube extends by progressive addition of epithelial second heart field (SHF) progenitor cells from the dorsal pericardial wall. The interplay between epithelial mechanics and genetic mechanisms during SHF deployment is unknown. Here, we present a quantitative single-cell morphometric analysis of SHF cells during heart tube extension, including force inference analysis of epithelial stress. Joint spatial Principal Component Analysis reveals that cell orientation and stress direction are the main parameters defining apical cell morphology and distinguishes cells adjacent to the arterial and venous poles. Cell shape and mechanical forces display a dynamic relationship during heart tube formation. Moreover, while the T-box transcription factor Tbx1 is necessary for cell orientation towards the arterial pole, activation of Tbx5 in the posterior SHF correlates with the establishment of epithelial stress and SHF deletion of Tbx5 relaxes the progenitor epithelium. Integrating findings from cell-scale feature patterning and mechanical stress provides new insights into cardiac morphogenesis.
Collapse
Affiliation(s)
- Clara Guijarro
- Aix-Marseille Université, CNRS UMR 7288, IBDM, Turing Centre for Living Systems, Marseille, France
- Aix-Marseille Université, LIS, UMR 7020, Turing Centre for Living Systems, Marseille, France
- Aix-Marseille Université, MMG, Inserm U1251, Turing Centre for Living Systems, Marseille, France
| | - Solène Song
- Aix-Marseille Université, LIS, UMR 7020, Turing Centre for Living Systems, Marseille, France
- Aix-Marseille Université, MMG, Inserm U1251, Turing Centre for Living Systems, Marseille, France
| | - Benoit Aigouy
- Aix-Marseille Université, CNRS UMR 7288, IBDM, Turing Centre for Living Systems, Marseille, France
| | - Raphaël Clément
- Aix-Marseille Université, CNRS UMR 7288, IBDM, Turing Centre for Living Systems, Marseille, France
| | - Paul Villoutreix
- Aix-Marseille Université, LIS, UMR 7020, Turing Centre for Living Systems, Marseille, France.
- Aix-Marseille Université, MMG, Inserm U1251, Turing Centre for Living Systems, Marseille, France.
| | - Robert G Kelly
- Aix-Marseille Université, CNRS UMR 7288, IBDM, Turing Centre for Living Systems, Marseille, France.
| |
Collapse
|
6
|
Guijarro C, Kelly RG. On the involvement of the second heart field in congenital heart defects. C R Biol 2024; 347:9-18. [PMID: 38488639 DOI: 10.5802/crbiol.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 03/19/2024]
Abstract
Congenital heart defects (CHD) affect 1 in 100 live births and result from defects in cardiac development. Growth of the early heart tube occurs by the progressive addition of second heart field (SHF) progenitor cells to the cardiac poles. The SHF gives rise to ventricular septal, right ventricular and outflow tract myocardium at the arterial pole, and atrial, including atrial septal myocardium, at the venous pole. SHF deployment creates the template for subsequent cardiac septation and has been implicated in cardiac looping and in orchestrating outflow tract development with neural crest cells. Genetic or environmental perturbation of SHF deployment thus underlies a spectrum of common forms of CHD affecting conotruncal and septal morphogenesis. Here we review the major properties of SHF cells as well as recent insights into the developmental programs that drive normal cardiac progenitor cell addition and the origins of CHD.
Collapse
|
7
|
Dutta D, Kanca O, Shridharan RV, Marcogliese PC, Steger B, Morimoto M, Frost FG, Macnamara E, Wangler MF, Yamamoto S, Jenny A, Adams D, Malicdan MC, Bellen HJ. Loss of the endoplasmic reticulum protein Tmem208 affects cell polarity, development, and viability. Proc Natl Acad Sci U S A 2024; 121:e2322582121. [PMID: 38381787 PMCID: PMC10907268 DOI: 10.1073/pnas.2322582121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/26/2024] [Indexed: 02/23/2024] Open
Abstract
Nascent proteins destined for the cell membrane and the secretory pathway are targeted to the endoplasmic reticulum (ER) either posttranslationally or cotranslationally. The signal-independent pathway, containing the protein TMEM208, is one of three pathways that facilitates the translocation of nascent proteins into the ER. The in vivo function of this protein is ill characterized in multicellular organisms. Here, we generated a CRISPR-induced null allele of the fruit fly ortholog CG8320/Tmem208 by replacing the gene with the Kozak-GAL4 sequence. We show that Tmem208 is broadly expressed in flies and that its loss causes lethality, although a few short-lived flies eclose. These animals exhibit wing and eye developmental defects consistent with impaired cell polarity and display mild ER stress. Tmem208 physically interacts with Frizzled (Fz), a planar cell polarity (PCP) receptor, and is required to maintain proper levels of Fz. Moreover, we identified a child with compound heterozygous variants in TMEM208 who presents with developmental delay, skeletal abnormalities, multiple hair whorls, cardiac, and neurological issues, symptoms that are associated with PCP defects in mice and humans. Additionally, fibroblasts of the proband display mild ER stress. Expression of the reference human TMEM208 in flies fully rescues the loss of Tmem208, and the two proband-specific variants fail to rescue, suggesting that they are loss-of-function alleles. In summary, our study uncovers a role of TMEM208 in development, shedding light on its significance in ER homeostasis and cell polarity.
Collapse
Affiliation(s)
- Debdeep Dutta
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX77030
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX77030
| | - Rishi V. Shridharan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX77030
| | - Paul C. Marcogliese
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX77030
| | - Benjamin Steger
- NIH Undiagnosed Diseases Program, National Human Genome Research Institute, NIH, Bethesda, MD20892
| | - Marie Morimoto
- NIH Undiagnosed Diseases Program, National Human Genome Research Institute, NIH, Bethesda, MD20892
| | - F. Graeme Frost
- NIH Undiagnosed Diseases Program, National Human Genome Research Institute, NIH, Bethesda, MD20892
| | - Ellen Macnamara
- NIH Undiagnosed Diseases Program, National Human Genome Research Institute, NIH, Bethesda, MD20892
| | | | - Michael F. Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX77030
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX77030
| | - Andreas Jenny
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, NY10461
- Department of Genetics, Albert Einstein College of Medicine, New York, NY10461
| | - David Adams
- NIH Undiagnosed Diseases Program, National Human Genome Research Institute, NIH, Bethesda, MD20892
| | - May C. Malicdan
- NIH Undiagnosed Diseases Program, National Human Genome Research Institute, NIH, Bethesda, MD20892
| | - Hugo J. Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX77030
| |
Collapse
|
8
|
Noël ES. Cardiac construction-Recent advances in morphological and transcriptional modeling of early heart development. Curr Top Dev Biol 2024; 156:121-156. [PMID: 38556421 DOI: 10.1016/bs.ctdb.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
During human embryonic development the early establishment of a functional heart is vital to support the growing fetus. However, forming the embryonic heart is an extremely complex process, requiring spatiotemporally controlled cell specification and differentiation, tissue organization, and coordination of cardiac function. These complexities, in concert with the early and rapid development of the embryonic heart, mean that understanding the intricate interplay between these processes that help shape the early heart remains highly challenging. In this review I focus on recent insights from animal models that have shed new light on the earliest stages of heart development. This includes specification and organization of cardiac progenitors, cell and tissue movements that make and shape the early heart tube, and the initiation of the first beat in the developing heart. In addition I highlight relevant in vitro models that could support translation of findings from animal models to human heart development. Finally I discuss challenges that are being addressed in the field, along with future considerations that together may help move us towards a deeper understanding of how our hearts are made.
Collapse
Affiliation(s)
- Emily S Noël
- School of Biosciences and Bateson Centre, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
9
|
Derrick CJ, Szenker-Ravi E, Santos-Ledo A, Alqahtani A, Yusof A, Eley L, Coleman AHL, Tohari S, Ng AYJ, Venkatesh B, Alharby E, Mansard L, Bonnet-Dupeyron MN, Roux AF, Vaché C, Roume J, Bouvagnet P, Almontashiri NAM, Henderson DJ, Reversade B, Chaudhry B. Functional analysis of germline VANGL2 variants using rescue assays of vangl2 knockout zebrafish. Hum Mol Genet 2024; 33:150-169. [PMID: 37815931 PMCID: PMC10772043 DOI: 10.1093/hmg/ddad171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/11/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023] Open
Abstract
Developmental studies have shown that the evolutionarily conserved Wnt Planar Cell Polarity (PCP) pathway is essential for the development of a diverse range of tissues and organs including the brain, spinal cord, heart and sensory organs, as well as establishment of the left-right body axis. Germline mutations in the highly conserved PCP gene VANGL2 in humans have only been associated with central nervous system malformations, and functional testing to understand variant impact has not been performed. Here we report three new families with missense variants in VANGL2 associated with heterotaxy and congenital heart disease p.(Arg169His), non-syndromic hearing loss p.(Glu465Ala) and congenital heart disease with brain defects p.(Arg135Trp). To test the in vivo impact of these and previously described variants, we have established clinically-relevant assays using mRNA rescue of the vangl2 mutant zebrafish. We show that all variants disrupt Vangl2 function, although to different extents and depending on the developmental process. We also begin to identify that different VANGL2 missense variants may be haploinsufficient and discuss evidence in support of pathogenicity. Together, this study demonstrates that zebrafish present a suitable pipeline to investigate variants of unknown significance and suggests new avenues for investigation of the different developmental contexts of VANGL2 function that are clinically meaningful.
Collapse
Affiliation(s)
- Christopher J Derrick
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | | | - Adrian Santos-Ledo
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Ahlam Alqahtani
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Amirah Yusof
- Genome Institute of Singapore (GIS), A*STAR, 60 Biopolis St, 138672, Singapore
| | - Lorraine Eley
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Alistair H L Coleman
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Sumanty Tohari
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Dr, Proteos, 138673, Singapore
| | - Alvin Yu-Jin Ng
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Dr, Proteos, 138673, Singapore
- MGI Tech Singapore Pte Ltd, 21 Biopolis Rd, 138567, Singapore
| | - Byrappa Venkatesh
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Dr, Proteos, 138673, Singapore
| | - Essa Alharby
- Center for Genetics and Inherited Diseases, Taibah University, 7534 Abdul Muhsin Ibn Abdul Aziz, Al Ihn, Al-Madinah al-Munawwarah 42318, Saudi Arabia
- Faculty of Applied Medical Sciences, Taibah University, Janadah Bin Umayyah Road, Tayba, Al-Madinah al-Munawwarah 42353, Saudi Arabia
| | - Luke Mansard
- Molecular Genetics Laboratory, University of Montpellier, CHU Montpellier, 163 Rue Auguste Broussonnet, 34090 Montpellier, France
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, 80 Av. Augustin Fliche, 34000 Montpellier, France
| | | | - Anne-Francoise Roux
- Molecular Genetics Laboratory, University of Montpellier, CHU Montpellier, 163 Rue Auguste Broussonnet, 34090 Montpellier, France
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, 80 Av. Augustin Fliche, 34000 Montpellier, France
| | - Christel Vaché
- Molecular Genetics Laboratory, University of Montpellier, CHU Montpellier, 163 Rue Auguste Broussonnet, 34090 Montpellier, France
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, 80 Av. Augustin Fliche, 34000 Montpellier, France
| | - Joëlle Roume
- Département de Génétique, CHI Poissy, St Germain-en-Laye, 10 Rue du Champ Gaillard, 78300 Poissy, France
| | - Patrice Bouvagnet
- CPDPN, Hôpital MFME, CHU de Martinique, Fort de France, Fort-de-France 97261, Martinique, France
| | - Naif A M Almontashiri
- Center for Genetics and Inherited Diseases, Taibah University, 7534 Abdul Muhsin Ibn Abdul Aziz, Al Ihn, Al-Madinah al-Munawwarah 42318, Saudi Arabia
- Faculty of Applied Medical Sciences, Taibah University, Janadah Bin Umayyah Road, Tayba, Al-Madinah al-Munawwarah 42353, Saudi Arabia
| | - Deborah J Henderson
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Bruno Reversade
- Genome Institute of Singapore (GIS), A*STAR, 60 Biopolis St, 138672, Singapore
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Dr, Proteos, 138673, Singapore
- Smart-Health Initiative, BESE, KAUST, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Medical Genetics Department, Koç Hospital Davutpaşa Caddesi 34010 Topkapı Istanbul, Istanbul, Turkey
| | - Bill Chaudhry
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom
| |
Collapse
|
10
|
Kelly RG. Molecular Pathways and Animal Models of Tetralogy of Fallot and Double Outlet Right Ventricle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:645-659. [PMID: 38884739 DOI: 10.1007/978-3-031-44087-8_37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Tetralogy of Fallot and double-outlet right ventricle are outflow tract (OFT) alignment defects situated on a continuous disease spectrum. A myriad of upstream causes can impact on ventriculoarterial alignment that can be summarized as defects in either i) OFT elongation during looping morphogenesis or ii) OFT remodeling during cardiac septation. Embryological processes underlying these two developmental steps include deployment of second heart field cardiac progenitor cells, establishment and transmission of embryonic left/right information driving OFT rotation and OFT cushion and valve morphogenesis. The formation and remodeling of pulmonary trunk infundibular myocardium is a critical component of both steps. Defects in myocardial, endocardial, or neural crest cell lineages can result in alignment defects, reflecting the complex intercellular signaling events that coordinate arterial pole development. Importantly, however, OFT alignment is mechanistically distinct from neural crest-driven OFT septation, although neural crest cells impact indirectly on alignment through their role in modulating signaling during SHF development. As yet poorly understood nongenetic causes of alignment defects that impact the above processes include hemodynamic changes, maternal exposure to environmental teratogens, and stochastic events. The heterogeneity of causes converging on alignment defects characterizes the OFT as a hotspot of congenital heart defects.
Collapse
Affiliation(s)
- Robert G Kelly
- Aix Marseille Université, Institut de Biologie du Dévelopment de Marseille, Marseille, France.
| |
Collapse
|
11
|
Hikspoors JPJM, Kruepunga N, Mommen GMC, Köhler SE, Anderson RH, Lamers WH. Human Cardiac Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:3-55. [PMID: 38884703 DOI: 10.1007/978-3-031-44087-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Many aspects of heart development are topographically complex and require three-dimensional (3D) reconstruction to understand the pertinent morphology. We have recently completed a comprehensive primer of human cardiac development that is based on firsthand segmentation of structures of interest in histological sections. We visualized the hearts of 12 human embryos between their first appearance at 3.5 weeks and the end of the embryonic period at 8 weeks. The models were presented as calibrated, interactive, 3D portable document format (PDF) files. We used them to describe the appearance and the subsequent remodeling of around 70 different structures incrementally for each of the reconstructed stages. In this chapter, we begin our account by describing the formation of the single heart tube, which occurs at the end of the fourth week subsequent to conception. We describe its looping in the fifth week, the formation of the cardiac compartments in the sixth week, and, finally, the septation of these compartments into the physically separated left- and right-sided circulations in the seventh and eighth weeks. The phases are successive, albeit partially overlapping. Thus, the basic cardiac layout is established between 26 and 32 days after fertilization and is described as Carnegie stages (CSs) 9 through 14, with development in the outlet component trailing that in the inlet parts. Septation at the venous pole is completed at CS17, equivalent to almost 6 weeks of development. During Carnegie stages 17 and 18, in the seventh week, the outflow tract and arterial pole undergo major remodeling, including incorporation of the proximal portion of the outflow tract into the ventricles and transfer of the spiraling course of the subaortic and subpulmonary channels to the intrapericardial arterial trunks. Remodeling of the interventricular foramen, with its eventual closure, is complete at CS20, which occurs at the end of the seventh week. We provide quantitative correlations between the age of human and mouse embryos as well as the Carnegie stages of development. We have also set our descriptions in the context of variations in the timing of developmental features.
Collapse
Affiliation(s)
- Jill P J M Hikspoors
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands.
| | - Nutmethee Kruepunga
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
- Present address: Department of Anatomy, Mahidol University, Bangkok, Thailand
| | - Greet M C Mommen
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
| | - S Eleonore Köhler
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
| | - Robert H Anderson
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Wouter H Lamers
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Buckingham M, Kelly RG. Cardiac Progenitor Cells of the First and Second Heart Fields. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:103-124. [PMID: 38884707 DOI: 10.1007/978-3-031-44087-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The heart forms from the first and second heart fields, which contribute to distinct regions of the myocardium. This is supported by clonal analyses, which identify corresponding first and second cardiac cell lineages in the heart. Progenitor cells of the second heart field and its sub-domains are controlled by a gene regulatory network and signaling pathways, which determine their behavior. Multipotent cells in this field can also contribute cardiac endothelial and smooth muscle cells. Furthermore, the skeletal muscles of the head and neck are clonally related to myocardial cells that form the arterial and venous poles of the heart. These lineage relationships, together with the genes that regulate the heart fields, have major implications for congenital heart disease.
Collapse
Affiliation(s)
- Margaret Buckingham
- Department of Developmental and Stem Cell Biology, CNRS UMR 3738, Institut Pasteur, Paris, France.
| | - Robert G Kelly
- Aix Marseille Université, Institut de Biologie du Dévelopment de Marseille, Marseille, France.
| |
Collapse
|
13
|
Bernheim S, Borgel A, Le Garrec JF, Perthame E, Desgrange A, Michel C, Guillemot L, Sart S, Baroud CN, Krezel W, Raimondi F, Bonnet D, Zaffran S, Houyel L, Meilhac SM. Identification of Greb1l as a genetic determinant of crisscross heart in mice showing torsion of the heart tube by shortage of progenitor cells. Dev Cell 2023; 58:2217-2234.e8. [PMID: 37852253 DOI: 10.1016/j.devcel.2023.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/28/2023] [Accepted: 09/20/2023] [Indexed: 10/20/2023]
Abstract
Despite their burden, most congenital defects remain poorly understood, due to lack of knowledge of embryological mechanisms. Here, we identify Greb1l mutants as a mouse model of crisscross heart. Based on 3D quantifications of shape changes, we demonstrate that torsion of the atrioventricular canal occurs together with supero-inferior ventricles at E10.5, after heart looping. Mutants phenocopy partial deficiency in retinoic acid signaling, which reflect overlapping pathways in cardiac precursors. Spatiotemporal gene mapping and cross-correlated transcriptomic analyses further reveal the role of Greb1l in maintaining a pool of dorsal pericardial wall precursor cells during heart tube elongation, likely by controlling ribosome biogenesis and cell differentiation. Consequently, we observe growth arrest and malposition of the outflow tract, which are predictive of abnormal tube remodeling in mutants. Our work on a rare cardiac malformation opens novel perspectives on the origin of a broader spectrum of congenital defects associated with GREB1L in humans.
Collapse
Affiliation(s)
- Ségolène Bernheim
- Université Paris Cité, Imagine-Institut Pasteur, Unit of Heart Morphogenesis, INSERM UMR1163, 75015 Paris, France
| | - Adrien Borgel
- Université Paris Cité, Imagine-Institut Pasteur, Unit of Heart Morphogenesis, INSERM UMR1163, 75015 Paris, France
| | - Jean-François Le Garrec
- Université Paris Cité, Imagine-Institut Pasteur, Unit of Heart Morphogenesis, INSERM UMR1163, 75015 Paris, France
| | - Emeline Perthame
- Université Paris Cité, Imagine-Institut Pasteur, Unit of Heart Morphogenesis, INSERM UMR1163, 75015 Paris, France; Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, 75015 Paris, France
| | - Audrey Desgrange
- Université Paris Cité, Imagine-Institut Pasteur, Unit of Heart Morphogenesis, INSERM UMR1163, 75015 Paris, France
| | - Cindy Michel
- Université Paris Cité, Imagine-Institut Pasteur, Unit of Heart Morphogenesis, INSERM UMR1163, 75015 Paris, France
| | - Laurent Guillemot
- Université Paris Cité, Imagine-Institut Pasteur, Unit of Heart Morphogenesis, INSERM UMR1163, 75015 Paris, France
| | - Sébastien Sart
- Institut Pasteur, Université Paris Cité, Physical Microfluidics and Bio-Engineering, Department of Genomes and Genetics, 75015 Paris, France
| | - Charles N Baroud
- Institut Pasteur, Université Paris Cité, Physical Microfluidics and Bio-Engineering, Department of Genomes and Genetics, 75015 Paris, France; Laboratoire d'Hydrodynamique, CNRS, École polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Wojciech Krezel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Institut de la Santé et de la Recherche Médicale (U1258), Centre National de la Recherche Scientifique (UMR7104), Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, 67404 Illkirch, France
| | - Francesca Raimondi
- Pediatric Radiology Unit, Hôpital universitaire Necker-Enfants Malades, APHP, Université Paris Cité, 149 Rue de Sèvres, 75015 Paris, France; M3C-Necker, Hôpital universitaire Necker-Enfants Malades, APHP, Université Paris Cité, 149 Rue de Sèvres, 75015 Paris, France
| | - Damien Bonnet
- M3C-Necker, Hôpital universitaire Necker-Enfants Malades, APHP, Université Paris Cité, 149 Rue de Sèvres, 75015 Paris, France
| | | | - Lucile Houyel
- M3C-Necker, Hôpital universitaire Necker-Enfants Malades, APHP, Université Paris Cité, 149 Rue de Sèvres, 75015 Paris, France
| | - Sigolène M Meilhac
- Université Paris Cité, Imagine-Institut Pasteur, Unit of Heart Morphogenesis, INSERM UMR1163, 75015 Paris, France.
| |
Collapse
|
14
|
Cheong SS, Luis TC, Stewart M, Hillier R, Hind M, Dean CH. A method for TAT-Cre recombinase-mediated floxed allele modification in ex vivo tissue slices. Dis Model Mech 2023; 16:dmm050267. [PMID: 37828896 PMCID: PMC10629676 DOI: 10.1242/dmm.050267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 10/06/2023] [Indexed: 10/14/2023] Open
Abstract
Precision-cut lung slices (PCLS) are used for a variety of applications. However, methods to manipulate genes in PCLS are currently limited. We developed a new method, TAT-Cre recombinase-mediated floxed allele modification in tissue slices (TReATS), to induce highly effective and temporally controlled gene deletion or activation in ex vivo PCLS. Treatment of PCLS from Rosa26-flox-stop-flox-EYFP mice with cell-permeant TAT-Cre recombinase induced ubiquitous EYFP protein expression, indicating successful Cre-mediated excision of the upstream loxP-flanked stop sequence. Quantitative real-time PCR confirmed induction of EYFP. We successfully replicated the TReATS method in PCLS from Vangl2flox/flox mice, leading to the deletion of loxP-flanked exon 4 of the Vangl2 gene. Cre-treated Vangl2flox/flox PCLS exhibited cytoskeletal abnormalities, a known phenotype caused by VANGL2 dysfunction. We report a new method that bypasses conventional Cre-Lox breeding, allowing rapid and highly effective gene manipulation in ex vivo tissue models.
Collapse
Affiliation(s)
- Sek-Shir Cheong
- National Heart and Lung Institute (NHLI), Imperial College London, London SW7 2AZ, UK
| | - Tiago C. Luis
- Centre for Inflammatory Diseases, Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Michelle Stewart
- The Mary Lyon Centre at MRC Harwell, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Rosie Hillier
- The Mary Lyon Centre at MRC Harwell, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Matthew Hind
- National Heart and Lung Institute (NHLI), Imperial College London, London SW7 2AZ, UK
- National Institute for Health Research (NIHR) Respiratory Biomedical Research Unit at the Royal Brompton and Harefield NHS Foundation Trust, London SW3 6NP, UK
| | - Charlotte H. Dean
- National Heart and Lung Institute (NHLI), Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
15
|
Jiang H, Bai L, Song S, Yin Q, Shi A, Zhou B, Lian H, Chen H, Xu CR, Wang Y, Nie Y, Hu S. EZH2 controls epicardial cell migration during heart development. Life Sci Alliance 2023; 6:e202201765. [PMID: 37037595 PMCID: PMC10087097 DOI: 10.26508/lsa.202201765] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 04/12/2023] Open
Abstract
Enhancer of zeste homolog 2 (EZH2) is an important transcriptional regulator in development that catalyzes H3K27me3. The role of EZH2 in epicardial development is still unknown. In this study, we show that EZH2 is expressed in epicardial cells during both human and mouse heart development. Ezh2 epicardial deletion resulted in impaired epicardial cell migration, myocardial hypoplasia, and defective coronary plexus development, leading to embryonic lethality. By using RNA sequencing, we identified that EZH2 controls the transcription of tissue inhibitor of metalloproteinase 3 (TIMP3) in epicardial cells during heart development. Loss-of-function studies revealed that EZH2 promotes epicardial cell migration by suppressing TIMP3 expression. We also found that epicardial Ezh2 deficiency-induced TIMP3 up-regulation leads to extracellular matrix reconstruction in the embryonic myocardium by mass spectrometry. In conclusion, our results demonstrate that EZH2 is required for epicardial cell migration because it blocks Timp3 transcription, which is vital for heart development. Our study provides new insight into the function of EZH2 in cell migration and epicardial development.
Collapse
Affiliation(s)
- Haobin Jiang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lina Bai
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shen Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qianqian Yin
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Anteng Shi
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Zhou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hong Lian
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Houzao Chen
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Cheng-Ran Xu
- Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yanchun Wang
- Haidian Maternal & Child Health Hospital, Beijing, China
| | - Yu Nie
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Fuwai Central-China Hospital, Central-China Branch of National Center for Cardiovascular Diseases, Zhengzhou, China
| | - Shengshou Hu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
16
|
Lin I, Wei A, Awamleh Z, Singh M, Ning A, Herrera A, Russell BE, Weksberg R, Arboleda VA. Multiomics of Bohring-Opitz syndrome truncating ASXL1 mutations identify canonical and noncanonical Wnt signaling dysregulation. JCI Insight 2023; 8:e167744. [PMID: 37053013 PMCID: PMC10322691 DOI: 10.1172/jci.insight.167744] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/07/2023] [Indexed: 04/14/2023] Open
Abstract
ASXL1 (additional sex combs-like 1) plays key roles in epigenetic regulation of early developmental gene expression. De novo protein-truncating mutations in ASXL1 cause Bohring-Opitz syndrome (BOS; OMIM #605039), a rare neurodevelopmental condition characterized by severe intellectual disabilities, distinctive facial features, hypertrichosis, increased risk of Wilms tumor, and variable congenital anomalies, including heart defects and severe skeletal defects giving rise to a typical BOS posture. These BOS-causing ASXL1 variants are also high-prevalence somatic driver mutations in acute myeloid leukemia. We used primary cells from individuals with BOS (n = 18) and controls (n = 49) to dissect gene regulatory changes caused by ASXL1 mutations using comprehensive multiomics assays for chromatin accessibility (ATAC-seq), DNA methylation, histone methylation binding, and transcriptome in peripheral blood and skin fibroblasts. Our data show that regardless of cell type, ASXL1 mutations drive strong cross-tissue effects that disrupt multiple layers of the epigenome. The data showed a broad activation of canonical Wnt signaling at the transcriptional and protein levels and upregulation of VANGL2, which encodes a planar cell polarity pathway protein that acts through noncanonical Wnt signaling to direct tissue patterning and cell migration. This multiomics approach identifies the core impact of ASXL1 mutations and therapeutic targets for BOS and myeloid leukemias.
Collapse
Affiliation(s)
- Isabella Lin
- Department of Human Genetics
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
- Department of Computational Medicine, UCLA, Los Angeles, California, USA
| | - Angela Wei
- Department of Human Genetics
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
- Department of Computational Medicine, UCLA, Los Angeles, California, USA
- Interdepartmental BioInformatics Program, UCLA, Los Angeles, California, USA
| | - Zain Awamleh
- Department of Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Meghna Singh
- Department of Human Genetics
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
- Department of Computational Medicine, UCLA, Los Angeles, California, USA
| | - Aileen Ning
- Department of Human Genetics
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
- Department of Computational Medicine, UCLA, Los Angeles, California, USA
| | - Analeyla Herrera
- Department of Human Genetics
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
- Department of Computational Medicine, UCLA, Los Angeles, California, USA
| | | | - Bianca E. Russell
- Division of Genetics, Department of Pediatrics, UCLA, Los Angeles, California, USA
| | - Rosanna Weksberg
- Department of Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Clinical & Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Sciences and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Valerie A. Arboleda
- Department of Human Genetics
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
- Department of Computational Medicine, UCLA, Los Angeles, California, USA
- Interdepartmental BioInformatics Program, UCLA, Los Angeles, California, USA
- Molecular Biology Institute, UCLA, Los Angeles, California, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California, USA
| |
Collapse
|
17
|
Shi DL. Planar cell polarity regulators in asymmetric organogenesis during development and disease. J Genet Genomics 2023; 50:63-76. [PMID: 35809777 DOI: 10.1016/j.jgg.2022.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/22/2022]
Abstract
The phenomenon of planar cell polarity is critically required for a myriad of morphogenetic processes in metazoan and is accurately controlled by several conserved modules. Six "core" proteins, including Frizzled, Flamingo (Celsr), Van Gogh (Vangl), Dishevelled, Prickle, and Diego (Ankrd6), are major components of the Wnt/planar cell polarity pathway. The Fat/Dchs protocadherins and the Scrib polarity complex also function to instruct cellular polarization. In vertebrates, all these pathways are essential for tissue and organ morphogenesis, such as neural tube closure, left-right symmetry breaking, heart and gut morphogenesis, lung and kidney branching, stereociliary bundle orientation, and proximal-distal limb elongation. Mutations in planar polarity genes are closely linked to various congenital diseases. Striking advances have been made in deciphering their contribution to the establishment of spatially oriented pattern in developing organs and the maintenance of tissue homeostasis. The challenge remains to clarify the complex interplay of different polarity pathways in organogenesis and the link of cell polarity to cell fate specification. Interdisciplinary approaches are also important to understand the roles of mechanical forces in coupling cellular polarization and differentiation. This review outlines current advances on planar polarity regulators in asymmetric organ formation, with the aim to identify questions that deserve further investigation.
Collapse
Affiliation(s)
- De-Li Shi
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China; Laboratory of Developmental Biology, CNRS-UMR7622, Institut de Biologie Paris-Seine (IBPS), Sorbonne University, 75005 Paris, France.
| |
Collapse
|
18
|
Zhao K, Yang Z. The second heart field: the first 20 years. Mamm Genome 2022:10.1007/s00335-022-09975-8. [PMID: 36550326 DOI: 10.1007/s00335-022-09975-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
In 2001, three independent groups reported the identification of a novel cluster of progenitor cells that contribute to heart development in mouse and chicken embryos. This population of progenitor cells was designated as the second heart field (SHF), and a new research direction in heart development was launched. Twenty years have since passed and a comprehensive understanding of the SHF has been achieved. This review provides retrospective insights in to the contribution, the signaling regulatory networks and the epithelial properties of the SHF. It also includes the spatiotemporal characteristics of SHF development and interactions between the SHF and other types of cells during heart development. Although considerable efforts will be required to investigate the cellular heterogeneity of the SHF, together with its intricate regulatory networks and undefined mechanisms, it is expected that the burgeoning new technology of single-cell sequencing and precise lineage tracing will advance the comprehension of SHF function and its molecular signals. The advances in SHF research will translate to clinical applications and to the treatment of congenital heart diseases, especially conotruncal defects, as well as to regenerative medicine.
Collapse
Affiliation(s)
- Ke Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, and Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing, 210093, China
| | - Zhongzhou Yang
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, and Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing, 210093, China.
| |
Collapse
|
19
|
Boëx M, Cottin S, Halliez M, Bauché S, Buon C, Sans N, Montcouquiol M, Molgó J, Amar M, Ferry A, Lemaitre M, Rouche A, Langui D, Baskaran A, Fontaine B, Messéant J, Strochlic L. The cell polarity protein Vangl2 in the muscle shapes the neuromuscular synapse by binding to and regulating the tyrosine kinase MuSK. Sci Signal 2022; 15:eabg4982. [PMID: 35580169 DOI: 10.1126/scisignal.abg4982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The development of the neuromuscular junction (NMJ) requires dynamic trans-synaptic coordination orchestrated by secreted factors, including Wnt family morphogens. To investigate how these synaptic cues in NMJ development are transduced, particularly in the regulation of acetylcholine receptor (AChR) accumulation in the postsynaptic membrane, we explored the function of Van Gogh-like protein 2 (Vangl2), a core component of Wnt planar cell polarity signaling. We found that conditional, muscle-specific ablation of Vangl2 in mice reproduced the NMJ differentiation defects seen in mice with global Vangl2 deletion. These alterations persisted into adulthood and led to NMJ disassembly, impaired neurotransmission, and deficits in motor function. Vangl2 and the muscle-specific receptor tyrosine kinase MuSK were functionally associated in Wnt signaling in the muscle. Vangl2 bound to and promoted the signaling activity of MuSK in response to Wnt11. The loss of Vangl2 impaired RhoA activation in cultured mouse myotubes and caused dispersed, rather than clustered, organization of AChRs at the postsynaptic or muscle cell side of NMJs in vivo. Our results identify Vangl2 as a key player of the core complex of molecules shaping neuromuscular synapses and thus shed light on the molecular mechanisms underlying NMJ assembly.
Collapse
Affiliation(s)
- Myriam Boëx
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Institut de Myologie, Centre de Recherche en Myologie, Paris 75013, France
| | - Steve Cottin
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Institut de Myologie, Centre de Recherche en Myologie, Paris 75013, France
| | - Marius Halliez
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Institut de Myologie, Centre de Recherche en Myologie, Paris 75013, France
| | - Stéphanie Bauché
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Institut de Myologie, Centre de Recherche en Myologie, Paris 75013, France
| | - Céline Buon
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Institut de Myologie, Centre de Recherche en Myologie, Paris 75013, France
| | - Nathalie Sans
- Institut National de la Santé et de la Recherche Médicale, Neurocentre Magendie, UMR-S 1215, Bordeaux 33077, France.,Université Bordeaux, Neurocentre Magendie, Bordeaux, 33000, France
| | - Mireille Montcouquiol
- Institut National de la Santé et de la Recherche Médicale, Neurocentre Magendie, UMR-S 1215, Bordeaux 33077, France.,Université Bordeaux, Neurocentre Magendie, Bordeaux, 33000, France
| | - Jordi Molgó
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux énergies Alternatives, Institut des Sciences du Vivant Frédéric Joliot, Département Médicaments et Technologies pour la Santé, Equipe Mixte de Recherche CNRS 9004, Service d'Ingénierie Moléculaire pour la Santé, Gif-sur-Yvette 91191, France
| | - Muriel Amar
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux énergies Alternatives, Institut des Sciences du Vivant Frédéric Joliot, Département Médicaments et Technologies pour la Santé, Equipe Mixte de Recherche CNRS 9004, Service d'Ingénierie Moléculaire pour la Santé, Gif-sur-Yvette 91191, France
| | - Arnaud Ferry
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Institut de Myologie, Centre de Recherche en Myologie, Paris 75013, France
| | - Mégane Lemaitre
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Phénotypage du Petit Animal, Paris 75013, France
| | - Andrée Rouche
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Institut de Myologie, Centre de Recherche en Myologie, Paris 75013, France
| | - Dominique Langui
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Institut du Cerveau et de la Moelle, Plate-forme d'Imagerie Cellulaire Pitié-Salpêtrière, Paris 75013, France
| | - Asha Baskaran
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Institut du Cerveau et de la Moelle, Plate-forme d'Imagerie Cellulaire Pitié-Salpêtrière, Paris 75013, France
| | - Bertrand Fontaine
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Institut de Myologie, Centre de Recherche en Myologie, Paris 75013, France.,Assistance Publique-Hôpitaux de Paris (AP-HP) Service de Neuro-Myologie, Hôpital Universitaire Pitié-Salpêtrière, Paris 75013, France
| | - Julien Messéant
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Institut de Myologie, Centre de Recherche en Myologie, Paris 75013, France
| | - Laure Strochlic
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Institut de Myologie, Centre de Recherche en Myologie, Paris 75013, France
| |
Collapse
|
20
|
Hikspoors JPJM, Kruepunga N, Mommen GMC, Köhler SE, Anderson RH, Lamers WH. A pictorial account of the human embryonic heart between 3.5 and 8 weeks of development. Commun Biol 2022; 5:226. [PMID: 35277594 PMCID: PMC8917235 DOI: 10.1038/s42003-022-03153-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/09/2022] [Indexed: 12/28/2022] Open
Abstract
Heart development is topographically complex and requires visualization to understand its progression. No comprehensive 3-dimensional primer of human cardiac development is currently available. We prepared detailed reconstructions of 12 hearts between 3.5 and 8 weeks post fertilization, using Amira® 3D-reconstruction and Cinema4D®-remodeling software. The models were visualized as calibrated interactive 3D-PDFs. We describe the developmental appearance and subsequent remodeling of 70 different structures incrementally, using sequential segmental analysis. Pictorial timelines of structures highlight age-dependent events, while graphs visualize growth and spiraling of the wall of the heart tube. The basic cardiac layout is established between 3.5 and 4.5 weeks. Septation at the venous pole is completed at 6 weeks. Between 5.5 and 6.5 weeks, as the outflow tract becomes incorporated in the ventricles, the spiraling course of its subaortic and subpulmonary channels is transferred to the intrapericardial arterial trunks. The remodeling of the interventricular foramen is complete at 7 weeks.
Collapse
Affiliation(s)
- Jill P J M Hikspoors
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands.
| | - Nutmethee Kruepunga
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Greet M C Mommen
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
| | - S Eleonore Köhler
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
| | - Robert H Anderson
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Wouter H Lamers
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
21
|
Palmquist-Gomes P, Meilhac SM. Shaping the mouse heart tube from the second heart field epithelium. Curr Opin Genet Dev 2022; 73:101896. [PMID: 35026527 DOI: 10.1016/j.gde.2021.101896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 11/03/2022]
Abstract
As other tubular organs, the embryonic heart develops from an epithelial sheet of cells, referred to as the heart field. The second heart field, which lies in the dorsal pericardial wall, constitutes a transient cell reservoir, integrating patterning and polarity cues. Conditional mutants have shown that impairment of the epithelial architecture of the second heart field is associated with congenital heart defects. Here, taking the mouse as a model, we review the epithelial properties of the second heart field and how they are modulated upon cardiomyocyte differentiation. Compared to other cases of tubulogenesis, the cellular dynamics in the second heart field are only beginning to be revealed. A challenge for the future will be to unravel key physical forces driving heart tube morphogenesis.
Collapse
Affiliation(s)
- Paul Palmquist-Gomes
- Université de Paris, Imagine- Institut Pasteur, Unit of Heart Morphogenesis, INSERM UMR1163, Paris, F-75015, France
| | - Sigolène M Meilhac
- Université de Paris, Imagine- Institut Pasteur, Unit of Heart Morphogenesis, INSERM UMR1163, Paris, F-75015, France.
| |
Collapse
|
22
|
Cortes C, De Bono C, Thellier C, Francou A, Kelly RG. Protocols for Investigating the Epithelial Properties of Cardiac Progenitor Cells in the Mouse Embryo. Methods Mol Biol 2022; 2438:231-250. [PMID: 35147946 DOI: 10.1007/978-1-0716-2035-9_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Epithelial cardiac progenitor cells of the second heart field (SHF) contribute to growth of the vertebrate heart tube by progressive addition of cells from the dorsal pericardial wall to the cardiac poles. Perturbation of SHF development, including defects in apicobasal or planar polarity, results in shortening of the heart tube and a spectrum of congenital heart defects. Here, we provide detailed protocols for fixed section and wholemount immunofluorescence and live imaging approaches to studying the epithelial properties of cardiac progenitors in the dorsal pericardial wall during mouse heart development. Whole-embryo culture and electroporation methods are also presented, allowing for pharmacological and genetic perturbation of SHF development, as well as image analysis approaches to quantify cell features across the progenitor cell epithelium. These protocols are broadly applicable to the study of epithelia in the early embryo.
Collapse
Affiliation(s)
- Claudio Cortes
- Aix-Marseille Université, CNRS UMR 7288, IBDM, Marseille, France
| | - Christopher De Bono
- Aix-Marseille Université, CNRS UMR 7288, IBDM, Marseille, France
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Alexandre Francou
- Aix-Marseille Université, CNRS UMR 7288, IBDM, Marseille, France
- Memorial Sloan Kettering Cancer Center, SKI, Developmental Biology Department, NY, USA
| | - Robert G Kelly
- Aix-Marseille Université, CNRS UMR 7288, IBDM, Marseille, France.
| |
Collapse
|
23
|
Wang IY, Chung CF, Babayeva S, Sogomonian T, Torban E. Loss of Planar Cell Polarity Effector Fuzzy Causes Renal Hypoplasia by Disrupting Several Signaling Pathways. J Dev Biol 2021; 10:jdb10010001. [PMID: 35076510 PMCID: PMC8788523 DOI: 10.3390/jdb10010001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/09/2021] [Accepted: 12/19/2021] [Indexed: 12/20/2022] Open
Abstract
In vertebrates, the planar cell polarity (PCP) pathway regulates tissue morphogenesis during organogenesis, including the kidney. Mutations in human PCP effector proteins have been associated with severe syndromic ciliopathies. Importantly, renal hypoplasia has been reported in some patients. However, the developmental disturbance that causes renal hypoplasia is unknown. Here, we describe the early onset of profound renal hypoplasia in mice homozygous for null mutation of the PCP effector gene, Fuzzy. We found that this phenotype is caused by defective branching morphogenesis of the ureteric bud (UB) in the absence of defects in nephron progenitor specification or in early steps of nephrogenesis. By using various experimental approaches, we show that the loss of Fuzzy affects multiple signaling pathways. Specifically, we found mild involvement of GDNF/c-Ret pathway that drives UB branching. We noted the deficient expression of molecules belonging to the Bmp, Fgf and Shh pathways. Analysis of the primary cilia in the UB structures revealed a significant decrease in ciliary length. We conclude that renal hypoplasia in the mouse Fuzzy mutants is caused by defective UB branching associated with dysregulation of ciliary and non-ciliary signaling pathways. Our work suggests a PCP effector-dependent pathogenetic mechanism that contributes to renal hypoplasia in mice and humans.
Collapse
Affiliation(s)
- Irene-Yanran Wang
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada; (I.-Y.W.); (C.-F.C.); (S.B.); (T.S.)
- McGill University Health Center Research Institute, Montreal, QC H4A 3J1, Canada
| | - Chen-Fang Chung
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada; (I.-Y.W.); (C.-F.C.); (S.B.); (T.S.)
- McGill University Health Center Research Institute, Montreal, QC H4A 3J1, Canada
| | - Sima Babayeva
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada; (I.-Y.W.); (C.-F.C.); (S.B.); (T.S.)
- McGill University Health Center Research Institute, Montreal, QC H4A 3J1, Canada
| | - Tamara Sogomonian
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada; (I.-Y.W.); (C.-F.C.); (S.B.); (T.S.)
- McGill University Health Center Research Institute, Montreal, QC H4A 3J1, Canada
| | - Elena Torban
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada; (I.-Y.W.); (C.-F.C.); (S.B.); (T.S.)
- McGill University Health Center Research Institute, Montreal, QC H4A 3J1, Canada
- Correspondence:
| |
Collapse
|
24
|
Nychyk O, Galea GL, Molè M, Savery D, Greene NDE, Stanier P, Copp AJ. Vangl2-environment interaction causes severe neural tube defects, without abnormal neuroepithelial convergent extension. Dis Model Mech 2021; 15:273565. [PMID: 34842271 PMCID: PMC8807581 DOI: 10.1242/dmm.049194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/19/2021] [Indexed: 11/20/2022] Open
Abstract
Planar cell polarity (PCP) signalling is vital for initiation of mouse neurulation, with diminished convergent extension (CE) cell movements leading to craniorachischisis, a severe neural tube defect (NTD). Some humans with NTDs also have PCP gene mutations but these are heterozygous, not homozygous as in mice. Other genetic or environmental factors may interact with partial loss of PCP function in human NTDs. We found that reduced sulfation of glycosaminoglycans interacts with heterozygosity for the Lp allele of Vangl2 (a core PCP gene), to cause craniorachischisis in cultured mouse embryos, with rescue by exogenous sulphate. We hypothesised this glycosaminoglycan-PCP interaction may regulate CE but, surprisingly, DiO labeling of the embryonic node demonstrates no abnormality of midline axial extension in sulfation-depleted Lp/+ embryos. Positive-control Lp/Lp embryos show severe CE defects. Abnormalities were detected in the size and shape of somites that flank the closing neural tube in sulfation-depleted Lp/+ embryos. We conclude that failure of closure initiation can arise by a mechanism other than faulty neuroepithelial CE, with possible involvement of matrix-mediated somite expansion, adjacent to the closing neural tube.
Collapse
Affiliation(s)
- Oleksandr Nychyk
- Developmental Biology & Cancer Research Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Gabriel L Galea
- Developmental Biology & Cancer Research Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Matteo Molè
- Developmental Biology & Cancer Research Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Dawn Savery
- Developmental Biology & Cancer Research Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Nicholas D E Greene
- Developmental Biology & Cancer Research Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Philip Stanier
- Genetics & Genomic Medicine Research Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Andrew J Copp
- Developmental Biology & Cancer Research Department, UCL Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
25
|
Shewale B, Dubois N. Of form and function: Early cardiac morphogenesis across classical and emerging model systems. Semin Cell Dev Biol 2021; 118:107-118. [PMID: 33994301 PMCID: PMC8434962 DOI: 10.1016/j.semcdb.2021.04.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/31/2022]
Abstract
The heart is the earliest organ to develop during embryogenesis and is remarkable in its ability to function efficiently as it is being sculpted. Cardiac heart defects account for a high burden of childhood developmental disorders with many remaining poorly understood mechanistically. Decades of work across a multitude of model organisms has informed our understanding of early cardiac differentiation and morphogenesis and has simultaneously opened new and unanswered questions. Here we have synthesized current knowledge in the field and reviewed recent developments in the realm of imaging, bioengineering and genetic technology and ex vivo cardiac modeling that may be deployed to generate more holistic models of early cardiac morphogenesis, and by extension, new platforms to study congenital heart defects.
Collapse
Affiliation(s)
- Bhavana Shewale
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nicole Dubois
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
26
|
Bellchambers HM, Ware SM. Loss of Zic3 impairs planar cell polarity leading to abnormal left-right signaling, heart defects and neural tube defects. Hum Mol Genet 2021; 30:2402-2415. [PMID: 34274973 DOI: 10.1093/hmg/ddab195] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 01/18/2023] Open
Abstract
Loss of function of ZIC3 causes heterotaxy (OMIM #306955), a disorder characterized by organ laterality defects including complex heart defects. Studies using Zic3 mutant mice have demonstrated that loss of Zic3 causes heterotaxy due to defects in establishment of left-right (LR) signaling, but the mechanistic basis for these defects remains unknown. Here, we demonstrate Zic3 null mice undergo cilia positioning defects at the embryonic node consistent with impaired planar cell polarity (PCP). Cell-based assays demonstrate that ZIC3 must enter the nucleus to regulate PCP and identify multiple critical ZIC3 domains required for regulation of PCP signaling. Furthermore, we show that Zic3 displays a genetic interaction with the PCP membrane protein Vangl2 and the PCP effector genes Rac1 and Daam1 resulting in increased frequency and severity of neural tube and heart defects. Gene and protein expression analyses indicate that Zic3 null embryos display disrupted expression of PCP components and reduced phosphorylation of the core PCP protein DVL2 at the time of LR axis determination. These results demonstrate that ZIC3 interacts with PCP signaling during early development, identifying a novel role for this transcription factor, and adding additional evidence about the importance of PCP function for normal LR patterning and subsequent heart development.
Collapse
Affiliation(s)
| | - Stephanie M Ware
- Herman B Wells Center for Pediatric Research, Departments of Pediatrics.,Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| |
Collapse
|
27
|
Kalisch-Smith JI, Ved N, Szumska D, Munro J, Troup M, Harris SE, Rodriguez-Caro H, Jacquemot A, Miller JJ, Stuart EM, Wolna M, Hardman E, Prin F, Lana-Elola E, Aoidi R, Fisher EMC, Tybulewicz VLJ, Mohun TJ, Lakhal-Littleton S, De Val S, Giannoulatou E, Sparrow DB. Maternal iron deficiency perturbs embryonic cardiovascular development in mice. Nat Commun 2021; 12:3447. [PMID: 34103494 PMCID: PMC8187484 DOI: 10.1038/s41467-021-23660-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 05/07/2021] [Indexed: 02/05/2023] Open
Abstract
Congenital heart disease (CHD) is the most common class of human birth defects, with a prevalence of 0.9% of births. However, two-thirds of cases have an unknown cause, and many of these are thought to be caused by in utero exposure to environmental teratogens. Here we identify a potential teratogen causing CHD in mice: maternal iron deficiency (ID). We show that maternal ID in mice causes severe cardiovascular defects in the offspring. These defects likely arise from increased retinoic acid signalling in ID embryos. The defects can be prevented by iron administration in early pregnancy. It has also been proposed that teratogen exposure may potentiate the effects of genetic predisposition to CHD through gene-environment interaction. Here we show that maternal ID increases the severity of heart and craniofacial defects in a mouse model of Down syndrome. It will be important to understand if the effects of maternal ID seen here in mice may have clinical implications for women.
Collapse
Affiliation(s)
- Jacinta I Kalisch-Smith
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Nikita Ved
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Dorota Szumska
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Jacob Munro
- Victor Chang Cardiac Research Institute, Molecular, Structural and Computational Biology Division, Sydney, NSW, Australia
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Michael Troup
- Victor Chang Cardiac Research Institute, Molecular, Structural and Computational Biology Division, Sydney, NSW, Australia
| | - Shelley E Harris
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
- Institute of Developmental Sciences, University of Southampton, Southampton, UK
| | - Helena Rodriguez-Caro
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Aimée Jacquemot
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
- Ealing Hospital, London, UK
| | - Jack J Miller
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
- Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, UK
- Oxford Centre for Clinical Magnetic Resonance Research, John Radcliffe Hospital, Oxford, UK
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Eleanor M Stuart
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Magda Wolna
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Emily Hardman
- Heart Development Laboratory, The Francis Crick Institute, London, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Fabrice Prin
- Heart Development Laboratory, The Francis Crick Institute, London, UK
- Advanced Light Microscopy Facility, The Francis Crick Institute, London, UK
| | - Eva Lana-Elola
- Immune Cell Biology and Down Syndrome Laboratory, The Francis Crick Institute, London, UK
| | - Rifdat Aoidi
- Immune Cell Biology and Down Syndrome Laboratory, The Francis Crick Institute, London, UK
| | | | - Victor L J Tybulewicz
- Immune Cell Biology and Down Syndrome Laboratory, The Francis Crick Institute, London, UK
- Imperial College London, London, UK
| | - Timothy J Mohun
- Heart Development Laboratory, The Francis Crick Institute, London, UK
| | - Samira Lakhal-Littleton
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Sarah De Val
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
- Ludwig Institute for Cancer Research Limited, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Eleni Giannoulatou
- Victor Chang Cardiac Research Institute, Molecular, Structural and Computational Biology Division, Sydney, NSW, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Duncan B Sparrow
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK.
| |
Collapse
|
28
|
Robert BJA, Moreau MM, Dos Santos Carvalho S, Barthet G, Racca C, Bhouri M, Quiedeville A, Garret M, Atchama B, Al Abed AS, Guette C, Henderson DJ, Desmedt A, Mulle C, Marighetto A, Montcouquiol M, Sans N. Vangl2 in the Dentate Network Modulates Pattern Separation and Pattern Completion. Cell Rep 2021; 31:107743. [PMID: 32521268 PMCID: PMC7296350 DOI: 10.1016/j.celrep.2020.107743] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 03/13/2020] [Accepted: 05/15/2020] [Indexed: 12/13/2022] Open
Abstract
The organization of spatial information, including pattern completion and pattern separation processes, relies on the hippocampal circuits, yet the molecular and cellular mechanisms underlying these two processes are elusive. Here, we find that loss of Vangl2, a core PCP gene, results in opposite effects on pattern completion and pattern separation processes. Mechanistically, we show that Vangl2 loss maintains young postmitotic granule cells in an immature state, providing increased cellular input for pattern separation. The genetic ablation of Vangl2 disrupts granule cell morpho-functional maturation and further prevents CaMKII and GluA1 phosphorylation, disrupting the stabilization of AMPA receptors. As a functional consequence, LTP at lateral perforant path-GC synapses is impaired, leading to defects in pattern completion behavior. In conclusion, we show that Vangl2 exerts a bimodal regulation on young and mature GCs, and its disruption leads to an imbalance in hippocampus-dependent pattern completion and separation processes. Vangl2-dependent PCP signaling controls granule cell maturation and network integration Vangl2 stabilizes GluA1-containing receptors at the surface of dendritic spines Granule cells require Vangl2-dependent signaling to elicit LTP Vangl2 loss has opposite functional effects on pattern completion/separation processes
Collapse
Affiliation(s)
- Benjamin J A Robert
- INSERM, Neurocentre Magendie, U1215, 33000 Bordeaux, France; Université Bordeaux, Neurocentre Magendie, 33000 Bordeaux, France
| | - Maïté M Moreau
- INSERM, Neurocentre Magendie, U1215, 33000 Bordeaux, France; Université Bordeaux, Neurocentre Magendie, 33000 Bordeaux, France
| | - Steve Dos Santos Carvalho
- INSERM, Neurocentre Magendie, U1215, 33000 Bordeaux, France; Université Bordeaux, Neurocentre Magendie, 33000 Bordeaux, France
| | - Gael Barthet
- CNRS, IINS, UMR 5297, 33000 Bordeaux, France; Université Bordeaux, IINS, 33000 Bordeaux, France
| | - Claudia Racca
- Biosciences Institute, Newcastle University, Medical School, Newcastle upon Tyne, NE2 4HH, UK
| | - Mehdi Bhouri
- INSERM, Neurocentre Magendie, U1215, 33000 Bordeaux, France; Université Bordeaux, Neurocentre Magendie, 33000 Bordeaux, France
| | - Anne Quiedeville
- INSERM, Neurocentre Magendie, U1215, 33000 Bordeaux, France; Université Bordeaux, Neurocentre Magendie, 33000 Bordeaux, France
| | - Maurice Garret
- CNRS, INCIA, 33000 Bordeaux, France; Université Bordeaux, INCIA, 30000 Bordeaux, France
| | - Bénédicte Atchama
- INSERM, Neurocentre Magendie, U1215, 33000 Bordeaux, France; Université Bordeaux, Neurocentre Magendie, 33000 Bordeaux, France
| | - Alice Shaam Al Abed
- INSERM, Neurocentre Magendie, U1215, 33000 Bordeaux, France; Université Bordeaux, Neurocentre Magendie, 33000 Bordeaux, France
| | - Christelle Guette
- INSERM, Neurocentre Magendie, U1215, 33000 Bordeaux, France; Université Bordeaux, Neurocentre Magendie, 33000 Bordeaux, France
| | - Deborah J Henderson
- Biosciences Institute, Newcastle University, Centre for Life, Newcastle upon Tyne, NE1 4EP, UK
| | - Aline Desmedt
- INSERM, Neurocentre Magendie, U1215, 33000 Bordeaux, France; Université Bordeaux, Neurocentre Magendie, 33000 Bordeaux, France
| | - Christophe Mulle
- CNRS, IINS, UMR 5297, 33000 Bordeaux, France; Université Bordeaux, IINS, 33000 Bordeaux, France
| | - Aline Marighetto
- INSERM, Neurocentre Magendie, U1215, 33000 Bordeaux, France; Université Bordeaux, Neurocentre Magendie, 33000 Bordeaux, France
| | - Mireille Montcouquiol
- INSERM, Neurocentre Magendie, U1215, 33000 Bordeaux, France; Université Bordeaux, Neurocentre Magendie, 33000 Bordeaux, France.
| | - Nathalie Sans
- INSERM, Neurocentre Magendie, U1215, 33000 Bordeaux, France; Université Bordeaux, Neurocentre Magendie, 33000 Bordeaux, France.
| |
Collapse
|
29
|
Maniou E, Staddon MF, Marshall AR, Greene NDE, Copp AJ, Banerjee S, Galea GL. Hindbrain neuropore tissue geometry determines asymmetric cell-mediated closure dynamics in mouse embryos. Proc Natl Acad Sci U S A 2021; 118:e2023163118. [PMID: 33941697 PMCID: PMC8126771 DOI: 10.1073/pnas.2023163118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Gap closure is a common morphogenetic process. In mammals, failure to close the embryonic hindbrain neuropore (HNP) gap causes fatal anencephaly. We observed that surface ectoderm cells surrounding the mouse HNP assemble high-tension actomyosin purse strings at their leading edge and establish the initial contacts across the embryonic midline. Fibronectin and laminin are present, and tensin 1 accumulates in focal adhesion-like puncta at this leading edge. The HNP gap closes asymmetrically, faster from its rostral than caudal end, while maintaining an elongated aspect ratio. Cell-based physical modeling identifies two closure mechanisms sufficient to account for tissue-level HNP closure dynamics: purse-string contraction and directional cell motion implemented through active crawling. Combining both closure mechanisms hastens gap closure and produces a constant rate of gap shortening. Purse-string contraction reduces, whereas crawling increases gap aspect ratio, and their combination maintains it. Closure rate asymmetry can be explained by asymmetric embryo tissue geometry, namely a narrower rostral gap apex, whereas biomechanical tension inferred from laser ablation is equivalent at the gaps' rostral and caudal closure points. At the cellular level, the physical model predicts rearrangements of cells at the HNP rostral and caudal extremes as the gap shortens. These behaviors are reproducibly live imaged in mouse embryos. Thus, mammalian embryos coordinate cellular- and tissue-level mechanics to achieve this critical gap closure event.
Collapse
Affiliation(s)
- Eirini Maniou
- Department of Developmental Biology and Cancer Researching and Teaching, University College London Great Ormond Street Institute of Child Health, WC1N 1EH London, United Kingdom
| | - Michael F Staddon
- Department of Physics and Astronomy, University College London, WC1E 6BT London, United Kingdom
| | - Abigail R Marshall
- Department of Developmental Biology and Cancer Researching and Teaching, University College London Great Ormond Street Institute of Child Health, WC1N 1EH London, United Kingdom
| | - Nicholas D E Greene
- Department of Developmental Biology and Cancer Researching and Teaching, University College London Great Ormond Street Institute of Child Health, WC1N 1EH London, United Kingdom
| | - Andrew J Copp
- Department of Developmental Biology and Cancer Researching and Teaching, University College London Great Ormond Street Institute of Child Health, WC1N 1EH London, United Kingdom
| | | | - Gabriel L Galea
- Department of Developmental Biology and Cancer Researching and Teaching, University College London Great Ormond Street Institute of Child Health, WC1N 1EH London, United Kingdom;
- Department of Comparative Bioveterinary Sciences, Royal Veterinary College, NW1 0TU London, United Kingdom
| |
Collapse
|
30
|
Galea GL, Maniou E, Edwards TJ, Marshall AR, Ampartzidis I, Greene NDE, Copp AJ. Cell non-autonomy amplifies disruption of neurulation by mosaic Vangl2 deletion in mice. Nat Commun 2021; 12:1159. [PMID: 33608529 PMCID: PMC7895924 DOI: 10.1038/s41467-021-21372-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 01/22/2021] [Indexed: 01/31/2023] Open
Abstract
Post-zygotic mutations that generate tissue mosaicism are increasingly associated with severe congenital defects, including those arising from failed neural tube closure. Here we report that neural fold elevation during mouse spinal neurulation is vulnerable to deletion of the VANGL planar cell polarity protein 2 (Vangl2) gene in as few as 16% of neuroepithelial cells. Vangl2-deleted cells are typically dispersed throughout the neuroepithelium, and each non-autonomously prevents apical constriction by an average of five Vangl2-replete neighbours. This inhibition of apical constriction involves diminished myosin-II localisation on neighbour cell borders and shortening of basally-extending microtubule tails, which are known to facilitate apical constriction. Vangl2-deleted neuroepithelial cells themselves continue to apically constrict and preferentially recruit myosin-II to their apical cell cortex rather than to apical cap localisations. Such non-autonomous effects can explain how post-zygotic mutations affecting a minority of cells can cause catastrophic failure of morphogenesis leading to clinically important birth defects.
Collapse
Affiliation(s)
- Gabriel L Galea
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK.
- Comparative Bioveterinary Sciences, Royal Veterinary College, London, UK.
| | - Eirini Maniou
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK
| | - Timothy J Edwards
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK
| | - Abigail R Marshall
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK
| | - Ioakeim Ampartzidis
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK
| | - Nicholas D E Greene
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK
| | - Andrew J Copp
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK
| |
Collapse
|
31
|
Christ A, Marczenke M, Willnow TE. LRP2 controls sonic hedgehog-dependent differentiation of cardiac progenitor cells during outflow tract formation. Hum Mol Genet 2020; 29:3183-3196. [PMID: 32901292 PMCID: PMC7689296 DOI: 10.1093/hmg/ddaa200] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022] Open
Abstract
Conotruncal malformations are a major cause of congenital heart defects in newborn infants. Recently, genetic screens in humans and in mouse models have identified mutations in LRP2, a multi-ligand receptor, as a novel cause of a common arterial trunk, a severe form of outflow tract (OFT) defect. Yet, the underlying mechanism why the morphogen receptor LRP2 is essential for OFT development remained unexplained. Studying LRP2-deficient mouse models, we now show that LRP2 is expressed in the cardiac progenitor niche of the anterior second heart field (SHF) that contributes to the elongation of the OFT during separation into aorta and pulmonary trunk. Loss of LRP2 in mutant mice results in the depletion of a pool of sonic hedgehog-dependent progenitor cells in the anterior SHF due to premature differentiation into cardiomyocytes as they migrate into the OFT myocardium. Depletion of this cardiac progenitor cell pool results in aberrant shortening of the OFT, the likely cause of CAT formation in affected mice. Our findings identified the molecular mechanism whereby LRP2 controls the maintenance of progenitor cell fate in the anterior SHF essential for OFT separation, and why receptor dysfunction is a novel cause of conotruncal malformation.
Collapse
Affiliation(s)
- Annabel Christ
- Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Maike Marczenke
- Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Thomas E Willnow
- Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany
| |
Collapse
|
32
|
New Concepts in the Development and Malformation of the Arterial Valves. J Cardiovasc Dev Dis 2020; 7:jcdd7040038. [PMID: 32987700 PMCID: PMC7712390 DOI: 10.3390/jcdd7040038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 12/11/2022] Open
Abstract
Although in many ways the arterial and atrioventricular valves are similar, both being derived for the most part from endocardial cushions, we now know that the arterial valves and their surrounding structures are uniquely dependent on progenitors from both the second heart field (SHF) and neural crest cells (NCC). Here, we will review aspects of arterial valve development, highlighting how our appreciation of NCC and the discovery of the SHF have altered our developmental models. We will highlight areas of research that have been particularly instructive for understanding how the leaflets form and remodel, as well as those with limited or conflicting results. With this background, we will explore how this developmental knowledge can help us to understand human valve malformations, particularly those of the bicuspid aortic valve (BAV). Controversies and the current state of valve genomics will be indicated.
Collapse
|
33
|
Santos-Ledo A, Washer S, Dhanaseelan T, Eley L, Alqatani A, Chrystal PW, Papoutsi T, Henderson DJ, Chaudhry B. Alternative splicing of jnk1a in zebrafish determines first heart field ventricular cardiomyocyte numbers through modulation of hand2 expression. PLoS Genet 2020; 16:e1008782. [PMID: 32421721 PMCID: PMC7259801 DOI: 10.1371/journal.pgen.1008782] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 05/29/2020] [Accepted: 04/18/2020] [Indexed: 02/07/2023] Open
Abstract
The planar cell polarity pathway is required for heart development and whilst the functions of most pathway members are known, the roles of the jnk genes in cardiac morphogenesis remain unknown as mouse mutants exhibit functional redundancy, with early embryonic lethality of compound mutants. In this study zebrafish were used to overcome early embryonic lethality in mouse models and establish the requirement for Jnk in heart development. Whole mount in-situ hybridisation and RT-PCR demonstrated that evolutionarily conserved alternative spliced jnk1a and jnk1b transcripts were expressed in the early developing heart. Maternal zygotic null mutant zebrafish lines for jnk1a and jnk1b, generated using CRISPR-Cas9, revealed a requirement for jnk1a in formation of the proximal, first heart field (FHF)-derived portion of the cardiac ventricular chamber. Rescue of the jnk1a mutant cardiac phenotype was only possible by injection of the jnk1a EX7 Lg alternatively spliced transcript. Analysis of mutants indicated that there was a reduction in the size of the hand2 expression field in jnk1a mutants which led to a specific reduction in FHF ventricular cardiomyocytes within the anterior lateral plate mesoderm. Moreover, the jnk1a mutant ventricular defect could be rescued by injection of hand2 mRNA. This study reveals a novel and critical requirement for Jnk1 in heart development and highlights the importance of alternative splicing in vertebrate cardiac morphogenesis. Genetic pathways functioning through jnk1 may be important in human heart malformations with left ventricular hypoplasia.
Collapse
Affiliation(s)
- Adrian Santos-Ledo
- Biosciences Institute, Faculty of Medicine, International Centre for Life, Newcastle University, United Kingdom
| | - Sam Washer
- Biosciences Institute, Faculty of Medicine, International Centre for Life, Newcastle University, United Kingdom
| | - Tamil Dhanaseelan
- Biosciences Institute, Faculty of Medicine, International Centre for Life, Newcastle University, United Kingdom
| | - Lorraine Eley
- Biosciences Institute, Faculty of Medicine, International Centre for Life, Newcastle University, United Kingdom
| | - Ahlam Alqatani
- Biosciences Institute, Faculty of Medicine, International Centre for Life, Newcastle University, United Kingdom
| | - Paul W. Chrystal
- Biosciences Institute, Faculty of Medicine, International Centre for Life, Newcastle University, United Kingdom
| | - Tania Papoutsi
- Biosciences Institute, Faculty of Medicine, International Centre for Life, Newcastle University, United Kingdom
| | - Deborah J. Henderson
- Biosciences Institute, Faculty of Medicine, International Centre for Life, Newcastle University, United Kingdom
| | - Bill Chaudhry
- Biosciences Institute, Faculty of Medicine, International Centre for Life, Newcastle University, United Kingdom
| |
Collapse
|
34
|
Noncanonical Wnt planar cell polarity signaling in lung development and disease. Biochem Soc Trans 2020; 48:231-243. [PMID: 32096543 DOI: 10.1042/bst20190597] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 02/06/2023]
Abstract
The planar cell polarity (PCP) signaling pathway is a potent developmental regulator of directional cell behaviors such as migration, asymmetric division and morphological polarization that are critical for shaping the body axis and the complex three-dimensional architecture of tissues and organs. PCP is considered a noncanonical Wnt pathway due to the involvement of Wnt ligands and Frizzled family receptors in the absence of the beta-catenin driven gene expression observed in the canonical Wnt cascade. At the heart of the PCP mechanism are protein complexes capable of generating molecular asymmetries within cells along a tissue-wide axis that are translated into polarized actin and microtubule cytoskeletal dynamics. PCP has emerged as an important regulator of developmental, homeostatic and disease processes in the respiratory system. It acts along other signaling pathways to create the elaborately branched structure of the lung by controlling the directional protrusive movements of cells during branching morphogenesis. PCP operates in the airway epithelium to establish and maintain the orientation of respiratory cilia along the airway axis for anatomically directed mucociliary clearance. It also regulates the establishment of the pulmonary vasculature. In adult tissues, PCP dysfunction has been linked to a variety of chronic lung diseases such as cystic fibrosis, chronic obstructive pulmonary disease, and idiopathic pulmonary arterial hypertension, stemming chiefly from the breakdown of proper tissue structure and function and aberrant cell migration during regenerative wound healing. A better understanding of these (impaired) PCP mechanisms is needed to fully harness the therapeutic opportunities of targeting PCP in chronic lung diseases.
Collapse
|
35
|
Jarjour AA, Velichkova AN, Boyd A, Lord KM, Torsney C, Henderson DJ, Ffrench-Constant C. The formation of paranodal spirals at the ends of CNS myelin sheaths requires the planar polarity protein Vangl2. Glia 2020; 68:1840-1858. [PMID: 32125730 DOI: 10.1002/glia.23809] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 02/16/2020] [Accepted: 02/19/2020] [Indexed: 12/13/2022]
Abstract
During axonal ensheathment, noncompact myelin channels formed at lateral edges of the myelinating process become arranged into tight paranodal spirals that resemble loops when cut in cross section. These adhere to the axon, concentrating voltage-dependent sodium channels at nodes of Ranvier and patterning the surrounding axon into distinct molecular domains. The signals responsible for forming and maintaining the complex structure of paranodal myelin are poorly understood. Here, we test the hypothesis that the planar cell polarity determinant Vangl2 organizes paranodal myelin. We show that Vangl2 is concentrated at paranodes and that, following conditional knockout of Vangl2 in oligodendrocytes, the paranodal spiral loosens, accompanied by disruption to the microtubule cytoskeleton and mislocalization of autotypic adhesion molecules between loops within the spiral. Adhesion of the spiral to the axon is unaffected. This results in disruptions to axonal patterning at nodes of Ranvier, paranodal axon diameter and conduction velocity. When taken together with our previous work showing that loss of the apico-basal polarity protein Scribble has the opposite phenotype-loss of axonal adhesion but no effect on loop-loop autotypic adhesion-our results identify a novel mechanism by which polarity proteins control the shape of nodes of Ranvier and regulate conduction in the CNS.
Collapse
Affiliation(s)
- Andrew A Jarjour
- MRC Centre for Regenerative Medicine and MS Society/University of Edinburgh Centre for Translational Research, Scottish Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh, UK
| | - Atanaska N Velichkova
- Centre for Discovery Brain Sciences, The University of Edinburgh, Hugh Robson Building, Edinburgh, UK
| | - Amanda Boyd
- MRC Centre for Regenerative Medicine and MS Society/University of Edinburgh Centre for Translational Research, Scottish Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh, UK
| | - Kathryn M Lord
- MRC Centre for Regenerative Medicine and MS Society/University of Edinburgh Centre for Translational Research, Scottish Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh, UK
| | - Carole Torsney
- Centre for Discovery Brain Sciences, The University of Edinburgh, Hugh Robson Building, Edinburgh, UK
| | - Deborah J Henderson
- Institute of Genetic Medicine, Newcastle University, Centre for Life, Newcastle upon Tyne, UK
| | - Charles Ffrench-Constant
- MRC Centre for Regenerative Medicine and MS Society/University of Edinburgh Centre for Translational Research, Scottish Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
36
|
Wilson DH, Jarman EJ, Mellin RP, Wilson ML, Waddell SH, Tsokkou P, Younger NT, Raven A, Bhalla SR, Noll ATR, Olde Damink SW, Schaap FG, Chen P, Bates DO, Banales JM, Dean CH, Henderson DJ, Sansom OJ, Kendall TJ, Boulter L. Non-canonical Wnt signalling regulates scarring in biliary disease via the planar cell polarity receptors. Nat Commun 2020; 11:445. [PMID: 31974352 PMCID: PMC6978415 DOI: 10.1038/s41467-020-14283-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 12/20/2019] [Indexed: 12/20/2022] Open
Abstract
The number of patients diagnosed with chronic bile duct disease is increasing and in most cases these diseases result in chronic ductular scarring, necessitating liver transplantation. The formation of ductular scaring affects liver function; however, scar-generating portal fibroblasts also provide important instructive signals to promote the proliferation and differentiation of biliary epithelial cells. Therefore, understanding whether we can reduce scar formation while maintaining a pro-regenerative microenvironment will be essential in developing treatments for biliary disease. Here, we describe how regenerating biliary epithelial cells express Wnt-Planar Cell Polarity signalling components following bile duct injury and promote the formation of ductular scars by upregulating pro-fibrogenic cytokines and positively regulating collagen-deposition. Inhibiting the production of Wnt-ligands reduces the amount of scar formed around the bile duct, without reducing the development of the pro-regenerative microenvironment required for ductular regeneration, demonstrating that scarring and regeneration can be uncoupled in adult biliary disease and regeneration.
Collapse
Affiliation(s)
- D H Wilson
- MRC Human Genetics Unit, Institute for Genetic and Molecular Medicine, Edinburgh, UK
| | - E J Jarman
- MRC Human Genetics Unit, Institute for Genetic and Molecular Medicine, Edinburgh, UK
| | - R P Mellin
- MRC Human Genetics Unit, Institute for Genetic and Molecular Medicine, Edinburgh, UK
- Infectious Diseases and Immune Defence, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - M L Wilson
- MRC Human Genetics Unit, Institute for Genetic and Molecular Medicine, Edinburgh, UK
| | - S H Waddell
- MRC Human Genetics Unit, Institute for Genetic and Molecular Medicine, Edinburgh, UK
| | - P Tsokkou
- MRC Human Genetics Unit, Institute for Genetic and Molecular Medicine, Edinburgh, UK
| | - N T Younger
- MRC Human Genetics Unit, Institute for Genetic and Molecular Medicine, Edinburgh, UK
| | - A Raven
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - S R Bhalla
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Centre for Cancer Science, Queen's Medical Centre, Nottingham, UK
| | - A T R Noll
- Department of Surgery, Maastricht University, Maastricht, The Netherlands
| | - S W Olde Damink
- Department of Surgery, Maastricht University, Maastricht, The Netherlands
- Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, Aachen, Germany
| | - F G Schaap
- Department of Surgery, Maastricht University, Maastricht, The Netherlands
- Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, Aachen, Germany
| | - P Chen
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - D O Bates
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Centre for Cancer Science, Queen's Medical Centre, Nottingham, UK
- COMPARE University of Birmingham and University of Nottingham Midlands, Birmingham, UK
| | - J M Banales
- Biodonostia HRI, CIBERehd, Ikerbasque, San Sebastian, Spain
| | - C H Dean
- National Heart and Lung Institute, Imperial College London, London, UK
| | - D J Henderson
- Cardiovascular Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| | - O J Sansom
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - T J Kendall
- University of Edinburgh Centre for Inflammation Research, Edinburgh, UK
- Edinburgh Pathology, University of Edinburgh, Edinburgh, UK
| | - L Boulter
- MRC Human Genetics Unit, Institute for Genetic and Molecular Medicine, Edinburgh, UK.
| |
Collapse
|
37
|
Dos-Santos Carvalho S, Moreau MM, Hien YE, Garcia M, Aubailly N, Henderson DJ, Studer V, Sans N, Thoumine O, Montcouquiol M. Vangl2 acts at the interface between actin and N-cadherin to modulate mammalian neuronal outgrowth. eLife 2020; 9:51822. [PMID: 31909712 PMCID: PMC6946565 DOI: 10.7554/elife.51822] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022] Open
Abstract
Dynamic mechanical interactions between adhesion complexes and the cytoskeleton are essential for axon outgrowth and guidance. Whether planar cell polarity (PCP) proteins, which regulate cytoskeleton dynamics and appear necessary for some axon guidance, also mediate interactions with membrane adhesion is still unclear. Here we show that Vangl2 controls growth cone velocity by regulating the internal retrograde actin flow in an N-cadherin-dependent fashion. Single molecule tracking experiments show that the loss of Vangl2 decreased fast-diffusing N-cadherin membrane molecules and increased confined N-cadherin trajectories. Using optically manipulated N-cadherin-coated microspheres, we correlated this behavior to a stronger mechanical coupling of N-cadherin with the actin cytoskeleton. Lastly, we show that the spatial distribution of Vangl2 within the growth cone is selectively affected by an N-cadherin-coated substrate. Altogether, our data show that Vangl2 acts as a negative regulator of axonal outgrowth by regulating the strength of the molecular clutch between N-cadherin and the actin cytoskeleton.
Collapse
Affiliation(s)
- Steve Dos-Santos Carvalho
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France.,Univ. Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
| | - Maite M Moreau
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France.,Univ. Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
| | - Yeri Esther Hien
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France.,Univ. Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
| | - Mikael Garcia
- CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France.,Univ. Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France
| | - Nathalie Aubailly
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France.,Univ. Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
| | - Deborah J Henderson
- Biosciences Institute, Newcastle University, Centre for Life, Newcastle upon Tyne, United Kingdom
| | - Vincent Studer
- CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France.,Univ. Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France
| | - Nathalie Sans
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France.,Univ. Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
| | - Olivier Thoumine
- CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France.,Univ. Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France
| | - Mireille Montcouquiol
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France.,Univ. Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
| |
Collapse
|
38
|
Li D, Angermeier A, Wang J. Planar cell polarity signaling regulates polarized second heart field morphogenesis to promote both arterial and venous pole septation. Development 2019; 146:dev181719. [PMID: 31488563 PMCID: PMC6826042 DOI: 10.1242/dev.181719] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/23/2019] [Indexed: 12/19/2022]
Abstract
The second heart field (SHF) harbors progenitors that are important for heart formation, but little is known about its morphogenesis. We show that SHF population in the mouse splanchnic mesoderm (SpM-SHF) undergoes polarized morphogenesis to preferentially elongate anteroposteriorly. Loss of Wnt5, a putative ligand of the planar cell polarity (PCP) pathway, causes the SpM-SHF to expand isotropically. Temporal tracking reveals that the Wnt5a lineage is a unique subpopulation specified as early as E7.5, and undergoes bi-directional deployment to form specifically the pulmonary trunk and the dorsal mesenchymal protrusion (DMP). In Wnt5a-/- mutants, Wnt5a lineage fails to extend into the arterial and venous poles, leading to both outflow tract and atrial septation defects that can be rescued by an activated form of PCP effector Daam1. We identify oriented actomyosin cables in the medial SpM-SHF as a potential Wnt5a-mediated mechanism that promotes SpM-SHF lengthening and restricts its widening. Finally, the Wnt5a lineage also contributes to the pulmonary mesenchyme, suggesting that Wnt5a/PCP is a molecular circuit recruited by the recently identified cardiopulmonary progenitors to coordinate morphogenesis of the pulmonary airways and the cardiac septations necessary for pulmonary circulation.This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Ding Li
- Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35226, USA
| | - Allyson Angermeier
- Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35226, USA
| | - Jianbo Wang
- Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35226, USA
| |
Collapse
|
39
|
Abstract
The vertebrate heart tube forms from epithelial progenitor cells in the early embryo and subsequently elongates by progressive addition of second heart field (SHF) progenitor cells from adjacent splanchnic mesoderm. Failure to maximally elongate the heart results in a spectrum of morphological defects affecting the cardiac poles, including outflow tract alignment and atrioventricular septal defects, among the most common congenital birth anomalies. SHF cells constitute an atypical apicobasally polarized epithelium with dynamic basal filopodia, located in the dorsal wall of the pericardial cavity. Recent studies have highlighted the importance of epithelial architecture and cell adhesion in the SHF, particularly for signaling events that control the progenitor cell niche during heart tube elongation. The 22q11.2 deletion syndrome gene Tbx1 regulates progenitor cell status through modulating cell shape and filopodial activity and is required for SHF contributions to both cardiac poles. Noncanonical Wnt signaling and planar cell polarity pathway genes control epithelial polarity in the dorsal pericardial wall, as progenitor cells differentiate in a transition zone at the arterial pole. Defects in these pathways lead to outflow tract shortening. Moreover, new biomechanical models of heart tube elongation have been proposed based on analysis of tissue-wide forces driving epithelial morphogenesis in the SHF, including regional cell intercalation, cell cohesion, and epithelial tension. Regulation of the epithelial properties of SHF cells is thus emerging as a key step during heart tube elongation, adding a new facet to our understanding of the mechanisms underlying both heart morphogenesis and congenital heart defects.
Collapse
Affiliation(s)
- Claudio Cortes
- From Aix-Marseille University, CNRS UMR 7288, Developmental Biology Institute of Marseille, France
| | - Alexandre Francou
- From Aix-Marseille University, CNRS UMR 7288, Developmental Biology Institute of Marseille, France
| | - Christopher De Bono
- From Aix-Marseille University, CNRS UMR 7288, Developmental Biology Institute of Marseille, France
| | - Robert G Kelly
- From Aix-Marseille University, CNRS UMR 7288, Developmental Biology Institute of Marseille, France.
| |
Collapse
|
40
|
Bertke MM, Dubiak KM, Cronin L, Zeng E, Huber PW. A deficiency in SUMOylation activity disrupts multiple pathways leading to neural tube and heart defects in Xenopus embryos. BMC Genomics 2019; 20:386. [PMID: 31101013 PMCID: PMC6525467 DOI: 10.1186/s12864-019-5773-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 05/03/2019] [Indexed: 02/08/2023] Open
Abstract
Background Adenovirus protein, Gam1, triggers the proteolytic destruction of the E1 SUMO-activating enzyme. Microinjection of an empirically determined amount of Gam1 mRNA into one-cell Xenopus embryos can reduce SUMOylation activity to undetectable, but nonlethal, levels, enabling an examination of the role of this post-translational modification during early vertebrate development. Results We find that SUMOylation-deficient embryos consistently exhibit defects in neural tube and heart development. We have measured differences in gene expression between control and embryos injected with Gam1 mRNA at three developmental stages: early gastrula (immediately following the initiation of zygotic transcription), late gastrula (completion of the formation of the three primary germ layers), and early neurula (appearance of the neural plate). Although changes in gene expression are widespread and can be linked to many biological processes, three pathways, non-canonical Wnt/PCP, snail/twist, and Ets-1, are especially sensitive to the loss of SUMOylation activity and can largely account for the predominant phenotypes of Gam1 embryos. SUMOylation appears to generate different pools of a given transcription factor having different specificities with this post-translational modification involved in the regulation of more complex, as opposed to housekeeping, processes. Conclusions We have identified changes in gene expression that underlie the neural tube and heart phenotypes resulting from depressed SUMOylation activity. Notably, these developmental defects correspond to the two most frequently occurring congenital birth defects in humans, strongly suggesting that perturbation of SUMOylation, either globally or of a specific protein, may frequently be the origin of these pathologies. Electronic supplementary material The online version of this article (10.1186/s12864-019-5773-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michelle M Bertke
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, 46556, USA.,Present Address: College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Kyle M Dubiak
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, 46556, USA
| | - Laura Cronin
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, Indiana, 46556, USA
| | - Erliang Zeng
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, Indiana, 46556, USA.,Present Address: Division of Biostatistics and Computational Biology, Iowa Institute for Oral Health Research, University of Iowa, Iowa City, IA, 52242, USA.,Present Address: Department of Preventive & Community Dentistry, College of Dentistry, University of Iowa, Iowa City, IA, 52242, USA.,Present Address: Department of Biostatistics, University of Iowa, Iowa City, IA, 52242, USA.,Present Address: Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52242, USA
| | - Paul W Huber
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, 46556, USA. .,Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA. .,Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, Indiana, 46556, USA.
| |
Collapse
|
41
|
VANGL2 regulates luminal epithelial organization and cell turnover in the mammary gland. Sci Rep 2019; 9:7079. [PMID: 31068622 PMCID: PMC6506599 DOI: 10.1038/s41598-019-43444-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/06/2018] [Indexed: 01/04/2023] Open
Abstract
The VANGL family of planar cell polarity proteins is implicated in breast cancer however its function in mammary gland biology is unknown. Here, we utilized a panel of Vang1 and Vangl2 mouse alleles to examine the requirement of VANGL family members in the murine mammary gland. We show that Vang1CKOΔ/Δ glands display normal branching while Vangl2flox/flox and Vangl2Lp/Lp tissue exhibit several phenotypes. In MMTV-Cre;Vangl2flox/flox glands, cell turnover is reduced and lumens are narrowed. A Vangl2 missense mutation in the Vangl2Lp/Lp tissue leads to mammary anlage sprouting defects and deficient outgrowth with transplantation of anlage or secondary tissue fragments. In successful Vangl2Lp/Lp outgrowths, three morphological phenotypes are observed: distended ducts, supernumerary end buds, and ectopic acini. Layer specific defects are observed with loss of Vangl2 selectively in either basal or luminal layers of mammary cysts. Loss in the basal compartment inhibits cyst formation, but has the opposite effect in the luminal compartment. Candidate gene analysis on MMTV-Cre;Vangl2flox/flox and Vangl2Lp/Lp tissue reveals a significant reduction in Bmi1 expression, with overexpression of Bmi1 rescuing defects in Vangl2 knockdown cysts. Our results demonstrate that VANGL2 is necessary for normal mammary gland development and indicate differential functional requirements in basal versus luminal mammary compartments.
Collapse
|
42
|
Richards T, Modarage K, Dean C, McCarthy-Boxer A, Hilton H, Esapa C, Norman J, Wilson P, Goggolidou P. Atmin modulates Pkhd1 expression and may mediate Autosomal Recessive Polycystic Kidney Disease (ARPKD) through altered non-canonical Wnt/Planar Cell Polarity (PCP) signalling. Biochim Biophys Acta Mol Basis Dis 2019; 1865:378-390. [PMID: 30414501 PMCID: PMC6335440 DOI: 10.1016/j.bbadis.2018.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/10/2018] [Accepted: 11/05/2018] [Indexed: 12/25/2022]
Abstract
Autosomal Recessive Polycystic Kidney Disease (ARPKD) is a genetic disorder with an incidence of ~1:20,000 that manifests in a wide range of renal and liver disease severity in human patients and can lead to perinatal mortality. ARPKD is caused by mutations in PKHD1, which encodes the large membrane protein, Fibrocystin, required for normal branching morphogenesis of the ureteric bud during embryonic renal development. The variation in ARPKD phenotype suggests that in addition to PKHD1 mutations, other genes may play a role, acting as modifiers of disease severity. One such pathway involves non-canonical Wnt/Planar Cell Polarity (PCP) signalling that has been associated with other cystic kidney diseases, but has not been investigated in ARPKD. Analysis of the AtminGpg6 mouse showed kidney, liver and lung abnormalities, suggesting it as a novel mouse tool for the study of ARPKD. Further, modulation of Atmin affected Pkhd1 mRNA levels, altered non-canonical Wnt/PCP signalling and impacted cellular proliferation and adhesion, although Atmin does not bind directly to the C-terminus of Fibrocystin. Differences in ATMIN and VANGL2 expression were observed between normal human paediatric kidneys and age-matched ARPKD kidneys. Significant increases in ATMIN, WNT5A, VANGL2 and SCRIBBLE were seen in human ARPKD versus normal kidneys; no substantial differences were seen in DAAM2 or NPHP2. A striking increase in E-cadherin was also detected in ARPKD kidneys. This work indicates a novel role for non-canonical Wnt/PCP signalling in ARPKD and suggests ATMIN as a modulator of PKHD1.
Collapse
MESH Headings
- Adolescent
- Apoptosis
- Cadherins/metabolism
- Cell Adhesion
- Cell Line
- Cell Polarity
- Cell Proliferation
- Child
- Child, Preschool
- Cytoskeleton/metabolism
- Embryo, Mammalian/metabolism
- Humans
- Infant
- Infant, Newborn
- Kidney Tubules, Collecting
- Phenotype
- Polycystic Kidney, Autosomal Recessive/genetics
- Polycystic Kidney, Autosomal Recessive/pathology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Transcription Factors/metabolism
- Wnt Signaling Pathway
- beta Catenin/metabolism
Collapse
Affiliation(s)
- Taylor Richards
- School of Biomedical Science and Physiology, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK
| | - Kavindiya Modarage
- School of Biomedical Science and Physiology, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK
| | - Charlotte Dean
- National Heart and Lung Institute, Imperial College, South Kensington Campus, London SW7 2AZ, UK; MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Aidan McCarthy-Boxer
- Centre for Nephrology, UCL Medical School, Royal Free Campus, Rowland Hill, London NW3 2PF, UK
| | - Helen Hilton
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Chris Esapa
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Jill Norman
- Centre for Nephrology, UCL Medical School, Royal Free Campus, Rowland Hill, London NW3 2PF, UK
| | - Patricia Wilson
- Centre for Nephrology, UCL Medical School, Royal Free Campus, Rowland Hill, London NW3 2PF, UK
| | - Paraskevi Goggolidou
- School of Biomedical Science and Physiology, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK; MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK; Centre for Nephrology, UCL Medical School, Royal Free Campus, Rowland Hill, London NW3 2PF, UK.
| |
Collapse
|
43
|
Xia M, Luo W, Jin H, Yang Z. HAND2-mediated epithelial maintenance and integrity in cardiac outflow tract morphogenesis. Development 2019; 146:dev.177477. [PMID: 31201155 DOI: 10.1242/dev.177477] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/03/2019] [Indexed: 01/06/2023]
Abstract
During embryogenesis, epithelial organization is the prerequisite for organogenesis, in particular, for establishing the tubular structure. Recent studies provided hints about epithelial formation in early heart development, which has not been systemically explored. Here, we revealed a gradient of HAND2 protein in the cardiac progenitors in the anterior dorsal pericardial wall (aDPW) and adjacent transition zone (TZ) in the outflow tract (OFT). Deletion of Hand2 caused cell arrest and accumulation in the TZ leading to defective morphogenesis. While apicobasal cell polarity was unaffected, the key epithelial elements of adherens junction and cell-matrix adhesion were disrupted in the TZ of Hand2 mutant mice, indicating poorly formed epithelium. RNA-seq analysis revealed altered regulation of the contractile fiber and actin cytoskeleton, which affected cardiomyocyte differentiation. Furthermore, we have identified Stars as being transcriptionally controlled by HAND2. STARS facilitates actin polymerization that is essential for anchoring the adhesive molecules to create cell adhesion. Thus, we have uncovered a new function of HAND2 in mediating epithelial maintenance and integrity in OFT morphogenesis. Meanwhile, this study provides insights to understanding cardiac progenitor contribution to OFT development.
Collapse
Affiliation(s)
- Meng Xia
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Wen Luo
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Hengwei Jin
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Zhongzhou Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China
| |
Collapse
|
44
|
Panzica DA, Findlay AS, van Ladesteijn R, Collinson JM. The core planar cell polarity gene, Vangl2, maintains apical-basal organisation of the corneal epithelium. J Anat 2019; 234:106-119. [PMID: 28833131 PMCID: PMC6284432 DOI: 10.1111/joa.12676] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2017] [Indexed: 12/23/2022] Open
Abstract
The role of the core planar cell polarity (PCP) pathway protein, Vangl2, was investigated in the corneal epithelium of the mammalian eye, a paradigm anatomical model of planar cell migration. The gene was conditionally knocked out in vivo and knocked down by siRNA, followed by immunohistochemical, behavioural and morphological analysis of corneal epithelial cells. The primary defects observed in vivo were of apical-basal organisation of the corneal epithelium, with abnormal stratification throughout life, mislocalisation of the cell membrane protein, Scribble, to the basal side of cells, and partial loss of the epithelial basement membrane. Planar defects in migration after wounding and in the presence of an applied electric field were noted. However, knockdown of Vangl2 also retarded cell migration in individual cells that had no contact with their neighbours, which precluded a classic PCP mechanism. It is concluded that some of the planar polarity phenotypes in PCP mutants may arise from disruption of apical-basal polarity.
Collapse
Affiliation(s)
- D. Alessio Panzica
- School of MedicineMedical Sciences and NutritionUniversity of AberdeenAberdeenUK
| | - Amy S. Findlay
- School of MedicineMedical Sciences and NutritionUniversity of AberdeenAberdeenUK
| | | | - J. Martin Collinson
- School of MedicineMedical Sciences and NutritionUniversity of AberdeenAberdeenUK
| |
Collapse
|
45
|
Abstract
A bicuspid aortic valve is not only a common congenital heart defect but also an enigmatic condition that can cause a large spectrum of diseases, such as aortic valve stenosis and severe heart failure in newborns whereas aortic dissection in adults. On the contrary, a bicuspid aortic valve can also occur with normal function throughout life and never need treatment. Numerous genetic mechanisms are involved in the abnormal cellular functions that may cause abnormal development of the aortic valve during early foetal life. As several chromosomal disorders are also associated with a bicuspid valve, there does not appear to be an apparent common trigger to the abnormal development of the aortic valve. The clinical care of the bicuspid aortic valve patient has been changed by a significant body of evidence that has improved the understanding of the natural history of the disease, including when to best intervene with valve replacement and when to provide prophylactic aortic root surgery. Moreover, as bicuspid valve disease is also part of various syndromes, we can identify high-risk patients in whom a bicuspid valve is much more unfavourable than in the normal population. This review provides an overview of all aspects of the bicuspid aortic valve condition and gives an updated perspective on issues from pathophysiology to clinical care of bicuspid aortic valve disease and associated aortic disease in asymptomatic, symptomatic, and pregnant patients, as well as our viewpoint on population screening.
Collapse
|
46
|
Duan HY, Zhou KY, Wang T, Zhang Y, Li YF, Hua YM, Wang C. Disruption of Planar Cell Polarity Pathway Attributable to Valproic Acid-Induced Congenital Heart Disease through Hdac3 Participation in Mice. Chin Med J (Engl) 2018; 131:2080-2088. [PMID: 30127218 PMCID: PMC6111683 DOI: 10.4103/0366-6999.239311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background: Valproic acid (VPA) exposure during pregnancy has been proven to contribute to congenital heart disease (CHD). Our previous findings implied that disruption of planar cell polarity (PCP) signaling pathway in cardiomyocytes might be a factor for the cardiac teratogenesis of VPA. In addition, the teratogenic ability of VPA is positively correlated to its histone deacetylase (HDAC) inhibition activity. This study aimed to investigate the effect of the VPA on cardiac morphogenesis, HDAC1/2/3, and PCP key genes (Vangl2/Scrib/Rac1), subsequently screening out the specific HDACs regulating PCP pathway. Methods: VPA was administered to pregnant C57BL mice at 700 mg/kg intraperitoneally on embryonic day 10.5. Dams were sacrificed on E15.5, and death/absorption rates of embryos were evaluated. Embryonic hearts were observed by hematoxylin-eosin staining to identify cardiac abnormalities. H9C2 cells (undifferentiated rat cardiomyoblasts) were transfected with Hdac1/2/3 specific small interfering RNA (siRNA). Based on the results of siRNA transfection, cells were transfected with Hdac3 expression plasmid and subsequently mock-treated or treated with 8.0 mmol/L VPA. Hdac1/2/3 as well as Vangl2/Scrib/Rac1 mRNA and protein levels were determined by real-time quantitative polymerase chain reaction and Western blotting, respectively. Total HDAC activity was detected by colorimetric assay. Results: VPA could induce CHD (P < 0.001) and inhibit mRNA or protein expression of Hdac1/2/3 as well as Vangl2/Scrib in fetal hearts, in association with total Hdac activity repression (all P < 0.05). In vitro, Hdac3 inhibition could significantly decrease Vangl2/Scrib expression (P < 0.01), while knockdown of Hdac1/2 had no influence (P > 0.05); VPA exposure dramatically decreased the expression of Vanlg2/Scrib together with Hdac activity (P < 0.01), while overexpression of Hdac3 could rescue the VPA-induced inhibition (P > 0.05). Conclusion: VPA could inhibit Hdac1/2/3, Vangl2/Scrib, or total Hdac activity both in vitro and in vivo and Hdac3 might participate in the process of VPA-induced cardiac developmental anomalies.
Collapse
Affiliation(s)
- Hong-Yu Duan
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University; Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Kai-Yu Zhou
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University; Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education; Key Laboratory of Development and Diseases of Women and Children of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tao Wang
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University; Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi Zhang
- Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education; Key Laboratory of Development and Diseases of Women and Children of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi-Fei Li
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University; Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi-Min Hua
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University; Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education; Key Laboratory of Development and Diseases of Women and Children of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chuan Wang
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University; Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
47
|
Henderson DJ, Long DA, Dean CH. Planar cell polarity in organ formation. Curr Opin Cell Biol 2018; 55:96-103. [PMID: 30015152 DOI: 10.1016/j.ceb.2018.06.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/07/2018] [Accepted: 06/18/2018] [Indexed: 01/11/2023]
Abstract
The planar cell polarity (PCP) pathway controls a variety of morphological events across many species. During embryonic development, the PCP pathway regulates coordinated behaviour of groups of cells to direct morphogenetic processes such as convergent extension and collective cell migration. In this review we discuss the increasingly prominent role of the PCP pathway in organogenesis, focusing on the lungs, kidneys and heart. We also highlight emerging evidence that PCP gene mutations are associated with adult diseases.
Collapse
Affiliation(s)
- Deborah J Henderson
- Cardiovascular Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - David A Long
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Charlotte H Dean
- Inflammation, Repair and Development Section, National Heart and Lung Institute, Imperial College, London, UK.
| |
Collapse
|
48
|
Papakrivopoulou E, Vasilopoulou E, Lindenmeyer MT, Pacheco S, Brzóska HŁ, Price KL, Kolatsi‐Joannou M, White KE, Henderson DJ, Dean CH, Cohen CD, Salama AD, Woolf AS, Long DA. Vangl2, a planar cell polarity molecule, is implicated in irreversible and reversible kidney glomerular injury. J Pathol 2018; 246:485-496. [PMID: 30125361 PMCID: PMC6282744 DOI: 10.1002/path.5158] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 08/02/2018] [Accepted: 08/10/2018] [Indexed: 12/11/2022]
Abstract
Planar cell polarity (PCP) pathways control the orientation and alignment of epithelial cells within tissues. Van Gogh-like 2 (Vangl2) is a key PCP protein that is required for the normal differentiation of kidney glomeruli and tubules. Vangl2 has also been implicated in modifying the course of acquired glomerular disease, and here, we further explored how Vangl2 impacts on glomerular pathobiology in this context. Targeted genetic deletion of Vangl2 in mouse glomerular epithelial podocytes enhanced the severity of not only irreversible accelerated nephrotoxic nephritis but also lipopolysaccharide-induced reversible glomerular damage. In each proteinuric model, genetic deletion of Vangl2 in podocytes was associated with an increased ratio of active-MMP9 to inactive MMP9, an enzyme involved in tissue remodelling. In addition, by interrogating microarray data from two cohorts of renal patients, we report increased VANGL2 transcript levels in the glomeruli of individuals with focal segmental glomerulosclerosis, suggesting that the molecule may also be involved in certain human glomerular diseases. These observations support the conclusion that Vangl2 modulates glomerular injury, at least in part by acting as a brake on MMP9, a potentially harmful endogenous enzyme. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
MESH Headings
- Adult
- Animals
- Case-Control Studies
- Cell Polarity
- Cells, Cultured
- Disease Models, Animal
- Enzyme Activation
- Female
- Glomerulosclerosis, Focal Segmental/genetics
- Glomerulosclerosis, Focal Segmental/metabolism
- Glomerulosclerosis, Focal Segmental/pathology
- Glomerulosclerosis, Focal Segmental/physiopathology
- Humans
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Kidney Glomerulus/metabolism
- Kidney Glomerulus/pathology
- Kidney Glomerulus/physiopathology
- Male
- Matrix Metalloproteinase 9/metabolism
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Middle Aged
- Nephrosis, Lipoid/genetics
- Nephrosis, Lipoid/metabolism
- Nephrosis, Lipoid/pathology
- Nephrosis, Lipoid/physiopathology
- Nerve Tissue Proteins/deficiency
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Podocytes/metabolism
- Podocytes/pathology
- Signal Transduction
- Young Adult
Collapse
Affiliation(s)
- Eugenia Papakrivopoulou
- Developmental Biology and Cancer ProgrammeUCL Great Ormond Street Institute of Child HealthLondonUK
| | - Elisavet Vasilopoulou
- Developmental Biology and Cancer ProgrammeUCL Great Ormond Street Institute of Child HealthLondonUK
- Medway School of PharmacyUniversity of KentChatham MaritimeUK
| | - Maja T Lindenmeyer
- Nephrological Center, Medical Clinic and Policlinic IVUniversity of MunichMunichGermany
- Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Sabrina Pacheco
- Developmental Biology and Cancer ProgrammeUCL Great Ormond Street Institute of Child HealthLondonUK
| | - Hortensja Ł Brzóska
- Developmental Biology and Cancer ProgrammeUCL Great Ormond Street Institute of Child HealthLondonUK
| | - Karen L Price
- Developmental Biology and Cancer ProgrammeUCL Great Ormond Street Institute of Child HealthLondonUK
| | - Maria Kolatsi‐Joannou
- Developmental Biology and Cancer ProgrammeUCL Great Ormond Street Institute of Child HealthLondonUK
| | - Kathryn E White
- Electron Microscopy Research ServicesNewcastle UniversityNewcastle upon TyneUK
| | - Deborah J Henderson
- Cardiovascular Research CentreInstitute of Genetic Medicine, Newcastle UniversityNewcastle upon TyneUK
| | - Charlotte H Dean
- Inflammation Repair and Development SectionNational Heart and Lung Institute, Imperial College LondonLondonUK
| | - Clemens D Cohen
- Nephrological Center, Medical Clinic and Policlinic IVUniversity of MunichMunichGermany
| | - Alan D Salama
- University College London Centre for Nephrology, Royal Free HospitalLondonUK
| | - Adrian S Woolf
- Faculty of Biology Medicine and HealthSchool of Biological Sciences, University of ManchesterManchesterUK
- Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science CentreManchesterUK
| | - David A Long
- Developmental Biology and Cancer ProgrammeUCL Great Ormond Street Institute of Child HealthLondonUK
| |
Collapse
|
49
|
Desgrange A, Le Garrec JF, Meilhac SM. Left-right asymmetry in heart development and disease: forming the right loop. Development 2018; 145:145/22/dev162776. [PMID: 30467108 DOI: 10.1242/dev.162776] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Extensive studies have shown how bilateral symmetry of the vertebrate embryo is broken during early development, resulting in a molecular left-right bias in the mesoderm. However, how this early asymmetry drives the asymmetric morphogenesis of visceral organs remains poorly understood. The heart provides a striking model of left-right asymmetric morphogenesis, undergoing rightward looping to shape an initially linear heart tube and align cardiac chambers. Importantly, abnormal left-right patterning is associated with severe congenital heart defects, as exemplified in heterotaxy syndrome. Here, we compare the mechanisms underlying the rightward looping of the heart tube in fish, chick and mouse embryos. We propose that heart looping is not only a question of direction, but also one of fine-tuning shape. This is discussed in the context of evolutionary and clinical perspectives.
Collapse
Affiliation(s)
- Audrey Desgrange
- Imagine-Institut Pasteur, Laboratory of Heart Morphogenesis, 75015 Paris, France.,INSERM UMR1163, Université Paris Descartes, 75015 Paris, France
| | - Jean-François Le Garrec
- Imagine-Institut Pasteur, Laboratory of Heart Morphogenesis, 75015 Paris, France.,INSERM UMR1163, Université Paris Descartes, 75015 Paris, France
| | - Sigolène M Meilhac
- Imagine-Institut Pasteur, Laboratory of Heart Morphogenesis, 75015 Paris, France .,INSERM UMR1163, Université Paris Descartes, 75015 Paris, France
| |
Collapse
|
50
|
Duan HY, Zhou KY, Wang T, Zhang Y, Li YF, Hua YM, Wang C. Disruption of Planar Cell Polarity Pathway Attributable to Valproic Acid-Induced Congenital Heart Disease through Hdac3 Participation in Mice. Chin Med J (Engl) 2018. [PMID: 30127218 DOI: 10.4103/0366-6999.239311.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Background Valproic acid (VPA) exposure during pregnancy has been proven to contribute to congenital heart disease (CHD). Our previous findings implied that disruption of planar cell polarity (PCP) signaling pathway in cardiomyocytes might be a factor for the cardiac teratogenesis of VPA. In addition, the teratogenic ability of VPA is positively correlated to its histone deacetylase (HDAC) inhibition activity. This study aimed to investigate the effect of the VPA on cardiac morphogenesis, HDAC1/2/3, and PCP key genes (Vangl2/Scrib/Rac1), subsequently screening out the specific HDACs regulating PCP pathway. Methods VPA was administered to pregnant C57BL mice at 700 mg/kg intraperitoneally on embryonic day 10.5. Dams were sacrificed on E15.5, and death/absorption rates of embryos were evaluated. Embryonic hearts were observed by hematoxylin-eosin staining to identify cardiac abnormalities. H9C2 cells (undifferentiated rat cardiomyoblasts) were transfected with Hdac1/2/3 specific small interfering RNA (siRNA). Based on the results of siRNA transfection, cells were transfected with Hdac3 expression plasmid and subsequently mock-treated or treated with 8.0 mmol/L VPA. Hdac1/2/3 as well as Vangl2/Scrib/Rac1 mRNA and protein levels were determined by real-time quantitative polymerase chain reaction and Western blotting, respectively. Total HDAC activity was detected by colorimetric assay. Results VPA could induce CHD (P < 0.001) and inhibit mRNA or protein expression of Hdac1/2/3 as well as Vangl2/Scrib in fetal hearts, in association with total Hdac activity repression (all P < 0.05). In vitro, Hdac3 inhibition could significantly decrease Vangl2/Scrib expression (P < 0.01), while knockdown of Hdac1/2 had no influence (P > 0.05); VPA exposure dramatically decreased the expression of Vanlg2/Scrib together with Hdac activity (P < 0.01), while overexpression of Hdac3 could rescue the VPA-induced inhibition (P > 0.05). Conclusion VPA could inhibit Hdac1/2/3, Vangl2/Scrib, or total Hdac activity both in vitro and in vivo and Hdac3 might participate in the process of VPA-induced cardiac developmental anomalies.
Collapse
Affiliation(s)
- Hong-Yu Duan
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University; Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Kai-Yu Zhou
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University; Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education; Key Laboratory of Development and Diseases of Women and Children of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tao Wang
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University; Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi Zhang
- Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education; Key Laboratory of Development and Diseases of Women and Children of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi-Fei Li
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University; Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi-Min Hua
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University; Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education; Key Laboratory of Development and Diseases of Women and Children of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chuan Wang
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University; Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|