1
|
Duchniewicz M, Lee JYW, Menon DK, Needham EJ. Candidate Genetic and Molecular Drivers of Dysregulated Adaptive Immune Responses After Traumatic Brain Injury. J Neurotrauma 2024; 41:3-12. [PMID: 37376743 DOI: 10.1089/neu.2023.0187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023] Open
Abstract
Abstract Neuroinflammation is a significant and modifiable cause of secondary injury after traumatic brain injury (TBI), driven by both central and peripheral immune responses. A substantial proportion of outcome after TBI is genetically mediated, with an estimated heritability effect of around 26%, but because of the comparatively small datasets currently available, the individual drivers of this genetic effect have not been well delineated. A hypothesis-driven approach to analyzing genome-wide association study (GWAS) datasets reduces the burden of multiplicity testing and allows variants with a high prior biological probability of effect to be identified where sample size is insufficient to withstand data-driven approaches. Adaptive immune responses show substantial genetically mediated heterogeneity and are well established as a genetic source of risk for numerous disease states; importantly, HLA class II has been specifically identified as a locus of interest in the largest TBI GWAS study to date, highlighting the importance of genetic variance in adaptive immune responses after TBI. In this review article we identify and discuss adaptive immune system genes that are known to confer strong risk effects for human disease, with the dual intentions of drawing attention to this area of immunobiology, which, despite its importance to the field, remains under-investigated in TBI and presenting high-yield testable hypotheses for application to TBI GWAS datasets.
Collapse
Affiliation(s)
- Michał Duchniewicz
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - John Y W Lee
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - David K Menon
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Edward J Needham
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
2
|
Sosna B, Aebisher D, Myśliwiec A, Dynarowicz K, Bartusik-Aebisher D, Oleś P, Cieślar G, Kawczyk-Krupka A. Selected Cytokines and Metalloproteinases in Inflammatory Bowel Disease. Int J Mol Sci 2023; 25:202. [PMID: 38203373 PMCID: PMC10779120 DOI: 10.3390/ijms25010202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a collective term for two diseases: ulcerative colitis (UC) and Crohn's disease (CD). There are many factors, e.g., genetic, environmental and immunological, that increase the likelihood of these diseases. Indicators of IBDs include extracellular matrix metalloproteinases (MMPs). The aim of this review is to present data on the role of selected cytokines and metalloproteinases in IBD. In recent years, more and more transcriptomic studies are emerging. These studies are improving the characterization of the cytokine microenvironment inside inflamed tissue. It is observed that the levels of several cytokines are consistently increased in inflamed tissue in IBD, both in UC and CD. This review shows that MMPs play a major role in the pathology of inflammatory processes, cancer, and IBD. IBD-associated inflammation is associated with increased expression of MMPs and reduced ability of tissue inhibitors of metalloproteinases (TIMPs) to inhibit their action. In IBD patients in tissues that are inflamed, MMPs are produced in excess and TIMP activity is not sufficient to block MMPs. This review is based on our personal selection of the literature that was retrieved by a selective search in PubMed using the terms "Inflammatory bowel disease" and "pathogenesis of Inflammatory bowel diseases" that includes systematic reviews, meta-analyses, and clinical trials. The involvement of the immune system in the pathophysiology of IBD is reviewed in terms of the role of the cytokines and metalloproteinases involved.
Collapse
Affiliation(s)
- Barbara Sosna
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland; (B.S.); (P.O.); (G.C.)
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College, University of Rzeszów, 35-959 Rzeszów, Poland;
| | - Angelika Myśliwiec
- Center for Innovative Research in Medical and Natural Sciences, Medical College, University of Rzeszów, 35-310 Rzeszów, Poland; (A.M.); (K.D.)
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College, University of Rzeszów, 35-310 Rzeszów, Poland; (A.M.); (K.D.)
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College, University of Rzeszów, 35-959 Rzeszów, Poland;
| | - Piotr Oleś
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland; (B.S.); (P.O.); (G.C.)
| | - Grzegorz Cieślar
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland; (B.S.); (P.O.); (G.C.)
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland; (B.S.); (P.O.); (G.C.)
| |
Collapse
|
3
|
Carvalho J, Morales HE, Faria R, Butlin RK, Sousa VC. Integrating Pool-seq uncertainties into demographic inference. Mol Ecol Resour 2023; 23:1737-1755. [PMID: 37475177 DOI: 10.1111/1755-0998.13834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/16/2023] [Accepted: 06/30/2023] [Indexed: 07/22/2023]
Abstract
Next-generation sequencing of pooled samples (Pool-seq) is a popular method to assess genome-wide diversity patterns in natural and experimental populations. However, Pool-seq is associated with specific sources of noise, such as unequal individual contributions. Consequently, using Pool-seq for the reconstruction of evolutionary history has remained underexplored. Here we describe a novel Approximate Bayesian Computation (ABC) method to infer demographic history, explicitly modelling Pool-seq sources of error. By jointly modelling Pool-seq data, demographic history and the effects of selection due to barrier loci, we obtain estimates of demographic history parameters accounting for technical errors associated with Pool-seq. Our ABC approach is computationally efficient as it relies on simulating subsets of loci (rather than the whole-genome) and on using relative summary statistics and relative model parameters. Our simulation study results indicate Pool-seq data allows distinction between general scenarios of ecotype formation (single versus parallel origin) and to infer relevant demographic parameters (e.g. effective sizes and split times). We exemplify the application of our method to Pool-seq data from the rocky-shore gastropod Littorina saxatilis, sampled on a narrow geographical scale at two Swedish locations where two ecotypes (Wave and Crab) are found. Our model choice and parameter estimates show that ecotypes formed before colonization of the two locations (i.e. single origin) and are maintained despite gene flow. These results indicate that demographic modelling and inference can be successful based on pool-sequencing using ABC, contributing to the development of suitable null models that allow for a better understanding of the genetic basis of divergent adaptation.
Collapse
Affiliation(s)
- João Carvalho
- cE3c - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Portugal
| | - Hernán E Morales
- Section for Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Rui Faria
- CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Roger K Butlin
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Vítor C Sousa
- cE3c - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Portugal
| |
Collapse
|
4
|
Parihar N, Bhatt LK. The emerging paradigm of Unconventional T cells as a novel therapeutic target for celiac disease. Int Immunopharmacol 2023; 122:110666. [PMID: 37473709 DOI: 10.1016/j.intimp.2023.110666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/07/2023] [Accepted: 07/16/2023] [Indexed: 07/22/2023]
Abstract
Celiac disease (CD) is an organ-specific autoimmune disorder that occurs in genetically predisposed individuals when exposed to exogenous dietary gluten. This exposure to wheat gluten and related proteins from rye and barley triggers an immune response which leads to the development of enteropathy associated with symptoms of bloating, diarrhea, or malabsorption. The sole current treatment is to follow a gluten-free diet for the rest of one's life. Intestinal barriers are enriched with Unconventional T cells such as iNKT, MAIT, and γδ T cells, which lack or express only a limited range of rearranged antigen receptors. Unconventional T cells play a crucial role in regulating mucosal barrier function and microbial colonization. Unconventional T cell populations are widely represented in diseased conditions, where changes in disease activity related to iNKT and MAIT cell reduction, as well as γδ T cell expansion, are demonstrated. In this review, we discuss the role and potential employment of Unconventional T cells as a therapeutic target in the pathophysiology of celiac disease.
Collapse
Affiliation(s)
- Niraj Parihar
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India.
| |
Collapse
|
5
|
Jan RM, Al-Numan HH, Al-Twaty NH, Alrayes N, Alsufyani HA, Alaifan MA, Alhussaini BH, Shaik NA, Awan Z, Qari Y, Saadah OI, Banaganapalli B, Mosli MH, Elango R. Rare variant burden analysis from exomes of three consanguineous families reveals LILRB1 and PRSS3 as potential key proteins in inflammatory bowel disease pathogenesis. Front Med (Lausanne) 2023; 10:1164305. [PMID: 37215724 PMCID: PMC10196255 DOI: 10.3389/fmed.2023.1164305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 03/14/2023] [Indexed: 05/24/2023] Open
Abstract
Background Inflammatory bowel disease (IBD) is a chronic autoimmune disorder characterized by severe inflammation and mucosal destruction of the intestine. The specific, complex molecular processes underlying IBD pathogenesis are not well understood. Therefore, this study is aimed at identifying and uncovering the role of key genetic factors in IBD. Method The whole exome sequences (WESs) of three consanguineous Saudi families having many siblings with IBD were analyzed to discover the causal genetic defect. Then, we used a combination of artificial intelligence approaches, such as functional enrichment analysis using immune pathways and a set of computational functional validation tools for gene expression, immune cell expression analyses, phenotype aggregation, and the system biology of innate immunity, to highlight potential IBD genes that play an important role in its pathobiology. Results Our findings have shown a causal group of extremely rare variants in the LILRB1 (Q53L, Y99N, W351G, D365A, and Q376H) and PRSS3 (F4L and V25I) genes in IBD-affected siblings. Findings from amino acids in conserved domains, tertiary-level structural deviations, and stability analysis have confirmed that these variants have a negative impact on structural features in the corresponding proteins. Intensive computational structural analysis shows that both genes have very high expression in the gastrointestinal tract and immune organs and are involved in a variety of innate immune system pathways. Since the innate immune system detects microbial infections, any defect in this system could lead to immune functional impairment contributing to IBD. Conclusion The present study proposes a novel strategy for unraveling the complex genetic architecture of IBD by integrating WES data of familial cases, with computational analysis.
Collapse
Affiliation(s)
- Rana Mohammed Jan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Huda Husain Al-Numan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nada Hassan Al-Twaty
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nuha Alrayes
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hadeel A. Alsufyani
- Department of Medical Physiology, Faculty of Medicine, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Meshari A. Alaifan
- Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Bakr H. Alhussaini
- Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Noor Ahmad Shaik
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Zuhier Awan
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Yousef Qari
- Department of Internal Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Omar I. Saadah
- Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Inflammatory Bowel Disease Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Babajan Banaganapalli
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahmoud Hisham Mosli
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Inflammatory Bowel Disease Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ramu Elango
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
6
|
Peng Q, Pan T, He R, Yi M, Feng L, Cui Z, Gao R, Wang H, Feng X, Li H, Wang Y, Zhang C, Cheng D, Du Y, Wang C. BTNL2 promotes colitis-associated tumorigenesis in mice by regulating IL-22 production. EMBO Rep 2023; 24:e56034. [PMID: 36629012 PMCID: PMC9986825 DOI: 10.15252/embr.202256034] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023] Open
Abstract
Interleukin 22 (IL-22) has an important role in colorectal tumorigenesis and many colorectal diseases such as inflammatory bowel disease and certain infections. However, the regulation of IL-22 production in the intestinal system is still unclear. Here, we present evidence that butyrophilin-like protein 2 (BTNL2) is required for colorectal IL-22 production, and BTNL2 knockout mice show decreased colonic tumorigenesis and more severe colitis phenotypes than control mice due to defective production of IL-22. Mechanistically, BTNL2 acts on group 3 innate lymphoid cells (ILC3s), CD4+ T cells, and γδ T cells to promote the production of IL-22. Importantly, we find that a monoclonal antibody against BTNL2 attenuates colorectal tumorigenesis in mice and that the mBTNL2-Fc recombinant protein has a therapeutic effect in a dextran sulfate sodium (DSS)-induced colitis model. This study not only identifies a regulatory mechanism of IL-22 production in the colorectal system but also provides a potential therapeutic target for the treatment of human colorectal cancer and inflammatory bowel diseases.
Collapse
Affiliation(s)
- Qianwen Peng
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Ting Pan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, Medical SchoolUniversity of Electronic Science and Technology of ChinaChengduChina
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026)Sichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalChengduChina
| | - Ruirui He
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, Medical SchoolUniversity of Electronic Science and Technology of ChinaChengduChina
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026)Sichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalChengduChina
| | - Ming Yi
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, Medical SchoolUniversity of Electronic Science and Technology of ChinaChengduChina
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026)Sichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalChengduChina
| | - Lingyun Feng
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, Medical SchoolUniversity of Electronic Science and Technology of ChinaChengduChina
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026)Sichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalChengduChina
| | - Zhihui Cui
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Ru Gao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Heping Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Xiong Feng
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Hui Li
- Shandong PolytechnicJinanChina
| | - Yuan Wang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, Medical SchoolUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Cun‐jin Zhang
- Department of Neurology of Nanjing Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical BiotechnologyNanjing UniversityNanjingChina
| | - Du Cheng
- Department of GastroenterologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Yanyun Du
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, Medical SchoolUniversity of Electronic Science and Technology of ChinaChengduChina
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026)Sichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalChengduChina
| | - Chenhui Wang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, Medical SchoolUniversity of Electronic Science and Technology of ChinaChengduChina
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026)Sichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalChengduChina
| |
Collapse
|
7
|
Jans D, Cleynen I. The genetics of non-monogenic IBD. Hum Genet 2023; 142:669-682. [PMID: 36720734 DOI: 10.1007/s00439-023-02521-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/10/2023] [Indexed: 02/02/2023]
Abstract
Inflammatory bowel disease (IBD), with Crohn's disease and ulcerative colitis as main subtypes, is a prototypical multifactorial disease with both genetic and environmental factors involved. Genetically, IBD covers a wide spectrum from monogenic to polygenic forms. In polygenic disease, many genetic variants each contribute a small amount to disease risk. With the advent of genome-wide association studies (GWAS), it became possible to find these variants and corresponding genes, leading so far to the discovery of ca 240 loci associated with IBD. Together, these however explain only 20-25% of the heritability of IBD, leaving a large portion unaccounted for. This missing heritability might be hidden in common variants with even lower effect than the ones currently found through GWAS, but also in rare variants which can be found through large-scale sequencing studies or potentially in multiplex families. In this review, we will give an overview of the current knowledge about the genetics of non-monogenic IBD and how it differs from the monogenic form(s), and future perspectives. The history of IBD genetic studies from twin studies over linkage studies to GWAS, and finally large-scale sequencing studies and the revisiting of multiplex families will be discussed.
Collapse
Affiliation(s)
- Deborah Jans
- Laboratory for Complex Genetics, Department of Human Genetics, KU Leuven, Herestraat 49, box610, 3000, Louvain, Belgium
| | - Isabelle Cleynen
- Laboratory for Complex Genetics, Department of Human Genetics, KU Leuven, Herestraat 49, box610, 3000, Louvain, Belgium.
| |
Collapse
|
8
|
Lei X, Ketelut-Carneiro N, Shmuel-Galia L, Xu W, Wilson R, Vierbuchen T, Chen Y, Reboldi A, Kang J, Edelblum KL, Ward D, Fitzgerald KA. Epithelial HNF4A shapes the intraepithelial lymphocyte compartment via direct regulation of immune signaling molecules. J Exp Med 2022; 219:e20212563. [PMID: 35792863 PMCID: PMC9263552 DOI: 10.1084/jem.20212563] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/11/2022] [Accepted: 06/09/2022] [Indexed: 08/29/2023] Open
Abstract
Hepatocyte nuclear factor 4 α (HNF4A) is a highly conserved nuclear receptor that has been associated with ulcerative colitis. In mice, HNF4A is indispensable for the maintenance of intestinal homeostasis, yet the underlying mechanisms are poorly characterized. Here, we demonstrate that the expression of HNF4A in intestinal epithelial cells (IECs) is required for the proper development and composition of the intraepithelial lymphocyte (IEL) compartment. HNF4A directly regulates expression of immune signaling molecules including butyrophilin-like (Btnl) 1, Btnl6, H2-T3, and Clec2e that control IEC-IEL crosstalk. HNF4A selectively enhances the expansion of natural IELs that are TCRγδ+ or TCRαβ+CD8αα+ to shape the composition of IEL compartment. In the small intestine, HNF4A cooperates with its paralog HNF4G, to drive expression of immune signaling molecules. Moreover, the HNF4A-BTNL regulatory axis is conserved in human IECs. Collectively, these findings underscore the importance of HNF4A as a conserved transcription factor controlling IEC-IEL crosstalk and suggest that HNF4A maintains intestinal homeostasis through regulation of the IEL compartment.
Collapse
Affiliation(s)
- Xuqiu Lei
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA
| | - Natalia Ketelut-Carneiro
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA
| | - Liraz Shmuel-Galia
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA
| | - Weili Xu
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ
| | - Ruth Wilson
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA
| | - Tim Vierbuchen
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA
| | - Yongzhi Chen
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA
| | - Andrea Reboldi
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA
| | - Joonsoo Kang
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA
| | - Karen L. Edelblum
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ
| | - Doyle Ward
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA
- Center for Microbiome Research, University of Massachusetts Chan Medical School, Worcester, MA
| | - Katherine A. Fitzgerald
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA
| |
Collapse
|
9
|
Zeiser R, Warnatz K, Rosshart S, Sagar, Tanriver Y. GVHD, IBD and primary immunodeficiencies: The gut as a target of immunopathology resulting from impaired immunity. Eur J Immunol 2022; 52:1406-1418. [PMID: 35339113 DOI: 10.1002/eji.202149530] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/10/2021] [Accepted: 01/21/2022] [Indexed: 11/11/2022]
Abstract
The intestinal tract is the largest immunological organ in the body and has a central function of regulating local immune responses, as the intestinal epithelial barrier is a location where the immune system interacts with the gut microbiome including bacteria, fungi and viruses. Impaired immunity in the intestinal tract can lead to immunopathology, which manifests in different diseases such as inflammatory bowel disease (IBD) or intestinal graft-versus-host disease (GVHD). A disturbed communication between epithelial cells, immune cells and microbiome will shape pathogenic immune responses to antigens, which need to be counterbalanced by tolerogenic mechanisms and repair mechanisms. Here, we review how impaired intestinal immune function leads to immunopathology with a specific focus on innate immune cells, the role of the microbiome and the resulting clinical manifestations including intestinal GVHD, IBD and enteropathy in primary immunodeficiency. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Robert Zeiser
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Comprehensive Cancer Center Freiburg (CCCF), Medical Center- University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK) Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Signalling Research Centres BIOSS and CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology - Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stephan Rosshart
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sagar
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Yakup Tanriver
- Department of Medicine IV (Nephrology and Primary Care), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Microbiology and Hygiene, Institute for Microbiology and Hygiene, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
10
|
Cancer cell-expressed BTNL2 facilitates tumour immune escape via engagement with IL-17A-producing γδ T cells. Nat Commun 2022; 13:231. [PMID: 35017553 PMCID: PMC8752682 DOI: 10.1038/s41467-021-27936-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 12/21/2021] [Indexed: 12/21/2022] Open
Abstract
Therapeutic blockade of the immune checkpoint proteins programmed cell death protein 1 (PD-1) and cytotoxic T lymphocyte antigen 4 (CTLA4) has transformed cancer treatment. However, the overall response rate to these treatments is low, suggesting that immune checkpoint activation is not the only mechanism leading to dysfunctional anti-tumour immunity. Here we show that butyrophilin-like protein 2 (BTNL2) is a potent suppressor of the anti-tumour immune response. Antibody-mediated blockade of BTNL2 attenuates tumour progression in multiple in vivo murine tumour models, resulting in prolonged survival of tumour-bearing mice. Mechanistically, BTNL2 interacts with local γδ T cell populations to promote IL-17A production in the tumour microenvironment. Inhibition of BTNL2 reduces the number of tumour-infiltrating IL-17A-producing γδ T cells and myeloid-derived suppressor cells, while facilitating cytotoxic CD8+ T cell accumulation. Furthermore, we find high BTNL2 expression in several human tumour samples from highly prevalent cancer types, which negatively correlates with overall patient survival. Thus, our results suggest that BTNL2 is a negative regulator of anti-tumour immunity and a potential target for cancer immunotherapy. Cancer cells producing ligands for the immune checkpoint molecules PD-1 and CTLA-4 is an important mechanism of tumour immune resistance. Here authors show that BTNL2 expression on cancer cells generates a dysfunctional tumour immune microenvironment via promoting IL-17A-producing γδ T cells.
Collapse
|
11
|
Zou M, Zeng QS, Nie J, Yang JH, Luo ZY, Gan HT. The Role of E3 Ubiquitin Ligases and Deubiquitinases in Inflammatory Bowel Disease: Friend or Foe? Front Immunol 2021; 12:769167. [PMID: 34956195 PMCID: PMC8692584 DOI: 10.3389/fimmu.2021.769167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/17/2021] [Indexed: 02/05/2023] Open
Abstract
Inflammatory bowel disease (IBD), which include Crohn’s disease (CD) and ulcerative colitis (UC), exhibits a complex multifactorial pathogenesis involving genetic susceptibility, imbalance of gut microbiota, mucosal immune disorder and environmental factors. Recent studies reported associations between ubiquitination and deubiquitination and the occurrence and development of inflammatory bowel disease. Ubiquitination modification, one of the most important types of post-translational modifications, is a multi-step enzymatic process involved in the regulation of various physiological processes of cells, including cell cycle progression, cell differentiation, apoptosis, and innate and adaptive immune responses. Alterations in ubiquitination and deubiquitination can lead to various diseases, including IBD. Here, we review the role of E3 ubiquitin ligases and deubiquitinases (DUBs) and their mediated ubiquitination and deubiquitination modifications in the pathogenesis of IBD. We highlight the importance of this type of posttranslational modification in the development of inflammation, and provide guidance for the future development of targeted therapeutics in IBD.
Collapse
Affiliation(s)
- Min Zou
- Department of Gastroenterology and the Center of Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China.,Lab of Inflammatory Bowel Disease, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Qi-Shan Zeng
- Department of Gastroenterology and the Center of Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China.,Lab of Inflammatory Bowel Disease, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jiao Nie
- Lab of Inflammatory Bowel Disease, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.,Department of Geriatrics and National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Jia-Hui Yang
- Lab of Inflammatory Bowel Disease, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.,Department of Geriatrics and National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Zhen-Yi Luo
- Lab of Inflammatory Bowel Disease, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.,Department of Geriatrics and National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Hua-Tian Gan
- Department of Gastroenterology and the Center of Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China.,Lab of Inflammatory Bowel Disease, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.,Department of Geriatrics and National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Suszynska M, Ratajska M, Galka-Marciniak P, Ryszkowska A, Wydra D, Debniak J, Jasiak A, Wasag B, Cybulski C, Kozlowski P. Variant identification in BARD1, PRDM9, RCC1, and RECQL in patients with ovarian cancer by targeted next-generation sequencing of DNA pools. Cancer Prev Res (Phila) 2021; 15:151-160. [PMID: 34906988 DOI: 10.1158/1940-6207.capr-21-0295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/27/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022]
Abstract
Several ovarian cancer susceptibility genes have been discovered, but more are likely to exist. In this study, we aimed to analyze knowledge-based selected genes, i.e., BARD1, PRDM9, RCC1, and RECQL, in which pathogenic germline variants have been reported in patients with breast and/or ovarian cancer. As deep sequencing of DNA samples remains costly, targeted next-generation sequencing of DNA pools was utilized to screen the exons of BARD1, PRDM9, RCC1, and RECQL in ~400 Polish ovarian cancer cases. 25 pools of 16 samples (including several duplicated samples with known variants) were sequenced on the NovaSeq6000 and analyzed with SureCall (Agilent) application. The set of variants was filtrated to exclude spurious variants, and, subsequently, the identified rare genetic variants were validated using Sanger sequencing. No pathogenic mutation was found within the analyzed cohort of ovarian cancer patients. Validation genotyping of filtered rare silent and missense variants revealed that the majority of them were true alterations, especially those with a higher mutation quality value. The high concordance (R2=0.95) of population allele frequency for 44 common SNPs in the European control population (gnomAD) and our experiment confirmed the reliability of pooled sequencing. Mutations in BARD1, PRDM9, RCC1, and RECQL do not contribute substantially to the risk of ovarian cancer. Pooled DNA sequencing is a cost-effective and reliable method for the initial screening of candidate genes; however, it still requires validation of identified rare variants.
Collapse
Affiliation(s)
- Malwina Suszynska
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Magdalena Ratajska
- Department of Pathology, Dunedin School of Medicine, University of Otago
| | - Paulina Galka-Marciniak
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Aleksandra Ryszkowska
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Dariusz Wydra
- Department of Gynaecology, Oncologic Gynaecology and Gynaecological Endocrinology, Medical University of Gdansk
| | - Jaroslaw Debniak
- Department of Gynaecology, Oncologic Gynaecology and Gynaecological Endocrinology, Medical University of Gdansk
| | - Anna Jasiak
- Department of Biology and Medical Genetics, Medical University of Gdansk
| | - Bartosz Wasag
- Department of Biology and Medical Genetics, Medical University of Gdansk
| | | | - Piotr Kozlowski
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
13
|
Abstract
Current practice in IBD is to classify patients based on clinical signs and symptoms and provide treatments accordingly. However, the response of IBD patients to available treatments is highly variable, highlighting clinically significant heterogeneity among patients. Thus, more accurate patient stratification is urgently needed to more effectively target therapeutic interventions to specific patients. Here we review the degree of heterogeneity in IBD, discussing how the microbiota, genetics, and immune system may contribute to the variation among patients. We highlight how molecular heterogeneity may relate to clinical phenotype, but in other situations may be independent of clinical phenotype, encouraging future studies to fill the gaps. Finally, we discuss novel stratification methodologies as a foundation for precision medicine, in particular a novel stratification strategy based on conserved genes across species. All of these dimensions of heterogeneity have potential to provide strategies for patient stratification and move IBD practice towards personalised medicine.
Collapse
Affiliation(s)
- Katja A Selin
- Division of Immunology and Allergy, Department of Medicine, Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Gastroenterology Unit, Patient Area Gastroenterology, Dermatovenereology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine, Solna, Division of Clinical Medicine, Karolinska Institutet, Solna, Sweden
| | - Charlotte R H Hedin
- Gastroenterology Unit, Patient Area Gastroenterology, Dermatovenereology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine, Solna, Division of Clinical Medicine, Karolinska Institutet, Solna, Sweden
| | - Eduardo J Villablanca
- Division of Immunology and Allergy, Department of Medicine, Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Medicine, Solna, Division of Clinical Medicine, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
14
|
Panea C, Zhang R, VanValkenburgh J, Ni M, Adler C, Wei Y, Ochoa F, Schmahl J, Tang Y, Siao CJ, Poueymirou W, Espert J, Lim WK, Atwal GS, Murphy AJ, Sleeman MA, Hovhannisyan Z, Haxhinasto S. Butyrophilin-like 2 regulates site-specific adaptations of intestinal γδ intraepithelial lymphocytes. Commun Biol 2021; 4:913. [PMID: 34312491 PMCID: PMC8313535 DOI: 10.1038/s42003-021-02438-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/08/2021] [Indexed: 11/09/2022] Open
Abstract
Tissue-resident γδ intraepithelial lymphocytes (IELs) orchestrate innate and adaptive immune responses to maintain intestinal epithelial barrier integrity. Epithelia-specific butyrophilin-like (Btnl) molecules induce perinatal development of distinct Vγ TCR+ IELs, however, the mechanisms that control γδ IEL maintenance within discrete intestinal segments are unclear. Here, we show that Btnl2 suppressed homeostatic proliferation of γδ IELs preferentially in the ileum. High throughput transcriptomic characterization of site-specific Btnl2-KO γδ IELs reveals that Btnl2 regulated the antimicrobial response module of ileal γδ IELs. Btnl2 deficiency shapes the TCR specificities and TCRγ/δ repertoire diversity of ileal γδ IELs. During DSS-induced colitis, Btnl2-KO mice exhibit increased inflammation and delayed mucosal repair in the colon. Collectively, these data suggest that Btnl2 fine-tunes γδ IEL frequencies and TCR specificities in response to site-specific homeostatic and inflammatory cues. Hence, Btnl-mediated targeting of γδ IEL development and maintenance may help dissect their immunological functions in intestinal diseases with segment-specific manifestations. Panea et al showed that epithelia-specific butyrophilinlike 2 (Btnl2) suppressed homeostatic proliferation of γδ intraepithelial lymphocytes (IELs) preferentially in the ileum and used high throughput transcriptomic characterization of Btnl2-deficient γδ IELs to demonstrate that Btnl2 impacts γδ TCR specificities and repertoire diversity of ileal γδ IELs. In addition, they showed that Btnl2-deficient mice exhibited increased inflammation and delayed mucosal repair in the colon, suggesting that it plays a key immunological function in intestinal diseases.
Collapse
Affiliation(s)
| | - Ruoyu Zhang
- Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | | | - Min Ni
- Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | | | - Yi Wei
- Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | | | | | - Yajun Tang
- Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | | | | | | | - Wei Keat Lim
- Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | | | | | | | | | | |
Collapse
|
15
|
Hu S, Vich Vila A, Gacesa R, Collij V, Stevens C, Fu JM, Wong I, Talkowski ME, Rivas MA, Imhann F, Bolte L, van Dullemen H, Dijkstra G, Visschedijk MC, Festen EA, Xavier RJ, Fu J, Daly MJ, Wijmenga C, Zhernakova A, Kurilshikov A, Weersma RK. Whole exome sequencing analyses reveal gene-microbiota interactions in the context of IBD. Gut 2021; 70:285-296. [PMID: 32651235 PMCID: PMC7815889 DOI: 10.1136/gutjnl-2019-319706] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 04/08/2020] [Accepted: 04/20/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Both the gut microbiome and host genetics are known to play significant roles in the pathogenesis of IBD. However, the interaction between these two factors and its implications in the aetiology of IBD remain underexplored. Here, we report on the influence of host genetics on the gut microbiome in IBD. DESIGN To evaluate the impact of host genetics on the gut microbiota of patients with IBD, we combined whole exome sequencing of the host genome and whole genome shotgun sequencing of 1464 faecal samples from 525 patients with IBD and 939 population-based controls. We followed a four-step analysis: (1) exome-wide microbial quantitative trait loci (mbQTL) analyses, (2) a targeted approach focusing on IBD-associated genomic regions and protein truncating variants (PTVs, minor allele frequency (MAF) >5%), (3) gene-based burden tests on PTVs with MAF <5% and exome copy number variations (CNVs) with site frequency <1%, (4) joint analysis of both cohorts to identify the interactions between disease and host genetics. RESULTS We identified 12 mbQTLs, including variants in the IBD-associated genes IL17REL, MYRF, SEC16A and WDR78. For example, the decrease of the pathway acetyl-coenzyme A biosynthesis, which is involved in short chain fatty acids production, was associated with variants in the gene MYRF (false discovery rate <0.05). Changes in functional pathways involved in the metabolic potential were also observed in participants carrying rare PTVs or CNVs in CYP2D6, GPR151 and CD160 genes. These genes are known for their function in the immune system. Moreover, interaction analyses confirmed previously known IBD disease-specific mbQTLs in TNFSF15. CONCLUSION This study highlights that both common and rare genetic variants affecting the immune system are key factors in shaping the gut microbiota in the context of IBD and pinpoints towards potential mechanisms for disease treatment.
Collapse
Affiliation(s)
- Shixian Hu
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Arnau Vich Vila
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Ranko Gacesa
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Valerie Collij
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Christine Stevens
- Program in Medical and Population Genetics, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jack M Fu
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Isaac Wong
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Michael E Talkowski
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Division of Medical Sciences, Harvard Medical School, Boston, Massachusetts, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Manuel A Rivas
- Department of Biomedical Data Science, Stanford University, Stanford, California, USA
| | - Floris Imhann
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Laura Bolte
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Hendrik van Dullemen
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Gerard Dijkstra
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Marijn C Visschedijk
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Eleonora A Festen
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Ramnik J Xavier
- Center for Microbiome Informatics and Therapeutic, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA
| | - Jingyuan Fu
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
- Department of Pediatrics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Mark J Daly
- Program in Medical and Population Genetics, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Cisca Wijmenga
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Alexander Kurilshikov
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Rinse K Weersma
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
16
|
Younis N, Zarif R, Mahfouz R. Inflammatory bowel disease: between genetics and microbiota. Mol Biol Rep 2020; 47:3053-3063. [PMID: 32086718 DOI: 10.1007/s11033-020-05318-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/11/2020] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing inflammatory disease that can involve any part of the gastrointestinal tract. It includes two main disorders: Crohn's disease (CD) and Ulcerative colitis (UC). CD and UC often share a similar clinical presentation; however, they affect distinct parts of the GI Tract with a different gut wall inflammatory extent. Ultimately, IBD seems to emanate from an uncontrollably continuous inflammatory process arising against the intestinal microbiome in a genetically susceptible individual. It is a multifactorial disease stemming from the impact of both environmental and genetic components on the intestinal microbiome. Furthermore, IBD genetics has gained a lot of attention. Around 200 loci were identified as imparting an increased risk for IBD. Few of them were heavily investigated and determined as highly linked to IBD. These genes, as discussed below, include NOD2, ATG16L1, IRGM, LRRK2, PTPN2, IL23R, Il10, Il10RA, Il10RB, CDH1 and HNF4α among others. Consequently, the incorporation of a genetic panel covering these key genes would markedly enhance the diagnosis and evaluation of IBD.
Collapse
Affiliation(s)
- Nour Younis
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Cairo Street, Beirut, Lebanon
| | - Rana Zarif
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Cairo Street, Beirut, Lebanon
| | - Rami Mahfouz
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Cairo Street, Beirut, Lebanon.
| |
Collapse
|
17
|
Wang G, Bai Y, Fu W, Feng Y, Chen W, Li G, Wu X, Meng H, Liu Y, Wei W, Wang S, Wei S, Zhang X, He M, Yang H, Guo H. Daily cooking duration and its joint effects with genetic polymorphisms on lung cancer incidence: Results from a Chinese prospective cohort study. ENVIRONMENTAL RESEARCH 2019; 179:108747. [PMID: 31557604 DOI: 10.1016/j.envres.2019.108747] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/30/2019] [Accepted: 09/15/2019] [Indexed: 06/10/2023]
Abstract
OBJECTIVES In this study, we conducted a prospective cohort study to investigate the joint effects of daily cooking duration with single nucleotide polymorphisms (SNPs) on lung cancer incidence. MATERIALS AND METHODS A total of 33,868 individuals recruited in 2013 from Dongfeng-Tongji cohort study were included in our research, in which 5178 participants were genotyped. Daily cooking duration was accessed by questionnaire, and the incident lung cancer cases were confirmed. Fifteen lung cancer related SNPs were selected according to the previous reports. We used the multiple Cox regression models to evaluate the separate and joint effects of daily cooking duration and SNPs on lung cancer incidence. RESULTS Each 1-h increase in daily cooking duration was associated with a 17% elevated risk of lung cancer incidence [hazard ratio (HR) (95%CI) = 1.17(1.03, 1.33)]. Specifically, subjects with daily cooking duration >2 h/day had a 2.05-fold increased incident risk of lung cancer than those without cooking [HR(95%CI) = 2.05(1.20, 3.53)] (Ptrend = 0.011). The rs2395185 and rs3817963, both located at 6p21.32, were significantly associated with lung cancer incidence. Compared with no cooking subjects with rs2395185GG or rs3817963TT genotype, subjects with daily cooking >2 h/day and carrying rs2395185GT + TT genotypes had a 2.48-fold increased risk of lung cancer [HR(95%CI) = 2.48(1.03, 5.97)], and there were significant joint effects of rs3817963TC + CC with daily cooking 1-2 and >2 h/day [HR(95%CI) = 2.23(1.07, 4.64) and 2.22(1.05, 4.68), respectively]. CONCLUSIONS Longer daily cooking duration, especially daily cooking >2 h/day, was associated with increased risk of lung cancer. There were significant joint effects of rs2395185 and rs3817963 with daily cooking duration on lung cancer incidence. This study offered a new indicator of cooking related pollution exposure and added new evidence for the joint effects of environment and genetic factors on lung cancer incidence.
Collapse
Affiliation(s)
- Gege Wang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yansen Bai
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenshan Fu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Feng
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weilin Chen
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guyanan Li
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiulong Wu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Meng
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhang Liu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wei
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Suhan Wang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Wei
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meian He
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Handong Yang
- Dongfeng Central Hospital, Dongfeng Motor Corporation and Hubei University of Medicine, Shiyan, Hubei, China
| | - Huan Guo
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
18
|
Arih2 gene influences immune response and tissue development in chicken. Biosci Rep 2019; 39:BSR20190933. [PMID: 31551339 PMCID: PMC6822486 DOI: 10.1042/bsr20190933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 09/09/2019] [Accepted: 09/20/2019] [Indexed: 12/31/2022] Open
Abstract
Ariadne homolog 2 (ARIH2), as an E3 ubiquitin ligase, is one of the important factors involved in regulating biological functions, such as inflammation and skeletal muscle degeneration. In the present study, the full-length coding sequence of Arih2 gene was cloned from Hy-Line Brown chicken. The tissue transcriptional profiles of Arih2 gene at different developmental stages were detected using quantitative real-time PCR (qRT-PCR), and the Arih2 functional characteristics in immune response were analyzed. The results showed that the full-length coding sequence of Arih2 gene was 1473 bp, encoding 490 amino acids, and conservative between different species. The Arih2 gene was transcribed in various tissues at different developmental stages, and its transcriptional activities varied significantly between multiple tissues. With the development of chicken, Arih2 gene was basically up-regulated in heart, liver, kidney, skeletal muscle and glandular stomach, but fluctuated significantly in large intestine. In immune response, the transcriptional activities of Arih2 gene exhibited significant changes in the bursa, thymus and blood (P<0.05). The results showed that Arih2 might be a multifunctional gene involved in tissue development and immune response in chicken, and have a potential possible application as diagnostic marker for identifying immune response.
Collapse
|
19
|
Wang FY, Chi CC. Association of rosacea with inflammatory bowel disease: A MOOSE-compliant meta-analysis. Medicine (Baltimore) 2019; 98:e16448. [PMID: 31593075 PMCID: PMC6799824 DOI: 10.1097/md.0000000000016448] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 05/21/2019] [Accepted: 06/13/2019] [Indexed: 01/04/2023] Open
Abstract
Rosacea has been reported with several systemic comorbidities, but its relationship with inflammatory bowel disease (IBD) is unclear. Thus, our objective is to conduct a meta-analysis on the association of rosacea with IBD.We conduct a meta-analysis and searched MEDLINE, CENTRAL, and Embase databases for case-controlled and cohort studies that assessed the association of rosacea with IBD from inception to July 2nd, 2018. Two authors independently selected studies, extracted data, and assessed the risk of bias of included studies. Disagreement was resolved by discussion. We performed random-effects model meta-analysis to obtain the pooled risk estimates for Crohn disease (CD) and ulcerative colitis (UC) in patients with rosacea.We included three case-control and three cohort studies. The risk of bias of included studies was generally low. The meta-analysis on case-control studies showed marginally increased odds of CD (pooled odds ratio (OR) 1.30, 95% confidence interval (CI) 0.99-1.69) and a significantly increased odds of UC (pooled OR 1.64, 95% CI 1.43-1.89) in patients with rosacea. The meta-analysis on cohort studies demonstrated significant increased risk of CD (pooled hazard ratio (HR) 1.58, 95% CI 1.14-2.20) and UC (pooled HR 1.18, 95% CI 1.01-1.37) in patients with rosacea.The evidence indicates an association of rosacea with IBD. If patients with rosacea suffer from prolonged abdominal pain, diarrhea, and bloody stool, referral to gastroenterologists may be considered.
Collapse
Affiliation(s)
- Fang-Ying Wang
- Department of Dermatology, Chang Gung Memorial Hospital, Linkou
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ching-Chi Chi
- Department of Dermatology, Chang Gung Memorial Hospital, Linkou
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
20
|
Terwiel M, Grutters JC, van Moorsel CHM. Clustering of immune-mediated diseases in sarcoidosis. Curr Opin Pulm Med 2019; 25:539-553. [PMID: 31365389 DOI: 10.1097/mcp.0000000000000598] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW Sarcoidosis is an immune-mediated disease of unknown cause. Immune-mediated diseases appear to cluster in patients and in families. We review what is known on this topic for sarcoidosis, and what factors may underlie disease clustering. RECENT FINDINGS In populations of patients with sarcoidosis, relative risk estimates of Sjögren's syndrome, systemic lupus erythematosus, autoimmune hepatitis, ankylosing spondylitis, multiple sclerosis (MS), celiac disease, autoimmune thyroid disease, and ulcerative colitis, varied between 2.1 and 11.6. In relatives of patients with sarcoidosis, relative risk estimates varied between 1.3 and 5.8 for sarcoidosis, MS, celiac disease, type 1 diabetes, Graves' disease, rheumatoid arthritis, Crohn's disease, and ulcerative colitis. Shared risk loci in key immunological pathways provide evidence for a contribution to development of multiple diseases. Identical changes in the immune status, epigenetic alterations, and environmental triggers have been detected in several diseases, and drug-induced disease is likely responsible for a small portion of co-occurring disease. SUMMARY Clustering of sarcoidosis and other immune-mediated diseases in patients and in their relatives occurs for sarcoidosis, MS, celiac disease, Graves' disease, and ulcerative colitis. Further research is needed to substantiate causal links and risk estimates in patients and their relatives.
Collapse
Affiliation(s)
- Michelle Terwiel
- Department of Pulmonology, St Antonius ILD Center of Excellence, St Antonius Hospital, Nieuwegein
| | - Jan C Grutters
- Department of Pulmonology, St Antonius ILD Center of Excellence, St Antonius Hospital, Nieuwegein
- Division of Heart and Lung, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Coline H M van Moorsel
- Department of Pulmonology, St Antonius ILD Center of Excellence, St Antonius Hospital, Nieuwegein
- Division of Heart and Lung, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
21
|
Goel RM, Prosdocimi EM, Amar A, Omar Y, Escudier MP, Sanderson JD, Wade WG, Prescott NJ. Streptococcus Salivarius: A Potential Salivary Biomarker for Orofacial Granulomatosis and Crohn's Disease? Inflamm Bowel Dis 2019; 25:1367-1374. [PMID: 30796823 PMCID: PMC6635823 DOI: 10.1093/ibd/izz022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Indexed: 01/04/2023]
Abstract
BACKGROUND Orofacial granulomatosis (OFG) is a rare disease characterised by chronic, noncaseating, granulomatous inflammation primarily affecting the oral cavity. Histologically, it is similar to Crohn's disease (CD), and a proportion of patients have both OFG and CD. The cause of OFG remains elusive, but it has been suggested that microbial interactions may be involved. The aim of this study was to compare the salivary microbial composition of subjects with OFG and/or CD and healthy controls. METHODS Two hundred sixty-one subjects were recruited, of whom 78 had OFG only, 40 had both OFG and CD, 97 had CD only with no oral symptoms, and 46 were healthy controls. Bacterial community profiles were obtained by sequencing the V1-V3 region of the 16S rRNA gene. RESULTS There were no differences in richness or diversity of the salivary bacterial communities between patient groups and controls. The relative abundance of the Streptococcus salivarius group was raised in patients with OFG or CD only compared with controls, whereas that of the Streptococcus mitis group was lower in CD compared with both OFG and controls. One S. salivarius oligotype made the major contribution to the increased proportions seen in patients with OFG and CD. CONCLUSIONS The salivary microbiome of individuals with OFG and CD was similar to that found in health, although the proportions of S. salivarius, a common oral Streptococcus, were raised. One specific strain-level oligotype was found to be primarily responsible for the increased levels seen.
Collapse
Affiliation(s)
- Rishi M Goel
- Department of Gastroenterology, Kingston Hospital, London, United Kingdom
| | - Erica M Prosdocimi
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Ariella Amar
- Department of Medical and Molecular Genetics, Faculty of Life Science and Medicine, King’s College London, London, United Kingdom
| | - Yasmin Omar
- Department of Medical and Molecular Genetics, Faculty of Life Science and Medicine, King’s College London, London, United Kingdom
| | - Michael P Escudier
- Oral Medicine Unit, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Jeremy D Sanderson
- Department of Gastroenterology, Guy’s & St. Thomas’ Hospitals NHS Foundation Trust, London, United Kingdom
| | - William G Wade
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Natalie J Prescott
- Department of Medical and Molecular Genetics, Faculty of Life Science and Medicine, King’s College London, London, United Kingdom
| |
Collapse
|
22
|
Petukhova L, Patel AV, Rigo RK, Bian L, Verbitsky M, Sanna-Cherchi S, Erjavec SO, Abdelaziz AR, Cerise JE, Jabbari A, Christiano AM. Integrative analysis of rare copy number variants and gene expression data in alopecia areata implicates an aetiological role for autophagy. Exp Dermatol 2019; 29:243-253. [PMID: 31169925 DOI: 10.1111/exd.13986] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 04/23/2019] [Accepted: 05/09/2019] [Indexed: 12/26/2022]
Abstract
Alopecia areata (AA) is a highly prevalent autoimmune disease that attacks the hair follicle and leads to hair loss that can range from small patches to complete loss of scalp and body hair. Our previous linkage and genome-wide association studies (GWAS) generated strong evidence for aetiological contributions from inherited genetic variants at different population frequencies, including both rare mutations and common polymorphisms. Additionally, we conducted gene expression (GE) studies on scalp biopsies of 96 patients and controls to establish signatures of active disease. In this study, we performed an integrative analysis on these two datasets to test the hypothesis that rare CNVs in patients with AA could be leveraged to identify drivers of disease in our AA GE signatures. We analysed copy number variants (CNVs) in a case-control cohort of 673 patients with AA and 16 311 controls independent of the case-control cohort of 96 research participants used in our GE study. Using an integrative computational analysis, we identified 14 genes whose expression levels were altered by CNVs in a consistent direction of effect, corresponding to gene expression changes in lesional skin of patients. Four of these genes were affected by CNVs in three or more unrelated patients with AA, including ATG4B and SMARCA2, which are involved in autophagy and chromatin remodelling, respectively. Our findings identified new classes of genes with potential contributions to AA pathogenesis.
Collapse
Affiliation(s)
- Lynn Petukhova
- Department of Dermatology, College of Physicians and Surgeons, Columbia University, New York, New York.,Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York
| | - Aakash V Patel
- Department of Dermatology, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Rachel K Rigo
- Department of Dermatology, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Li Bian
- Department of Dermatology, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Miguel Verbitsky
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Simone Sanna-Cherchi
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Stephanie O Erjavec
- Department of Dermatology, College of Physicians and Surgeons, Columbia University, New York, New York.,Department of Genetics and Development, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Alexa R Abdelaziz
- Department of Dermatology, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Jane E Cerise
- Department of Dermatology, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Ali Jabbari
- Department of Dermatology, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Angela M Christiano
- Department of Dermatology, College of Physicians and Surgeons, Columbia University, New York, New York.,Department of Genetics and Development, College of Physicians and Surgeons, Columbia University, New York, New York
| |
Collapse
|
23
|
Janicki PK, Eyileten C, Ruiz-Velasco V, Pordzik J, Czlonkowska A, Kurkowska-Jastrzebska I, Sugino S, Imamura Kawasawa Y, Mirowska-Guzel D, Postula M. Increased burden of rare deleterious variants of the KCNQ1 gene in patients with large‑vessel ischemic stroke. Mol Med Rep 2019; 19:3263-3272. [PMID: 30816480 DOI: 10.3892/mmr.2019.9987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/30/2019] [Indexed: 11/06/2022] Open
Abstract
The impact of rare and damaging variants in genes associated with platelet function in large‑vessel ischemic stroke (LVIS) remains unknown. The aim of this study was to investigate the contribution of some of these variants to the genetic susceptibility to LVIS in Polish patients using a deep re‑sequencing of 54 selected genes, coding for proteins associated with altered platelet function. Targeted pooled re‑sequencing (Illumina HiSeq 2500) was performed on genomic DNA of 500 cases (patients with history of clinically proven diagnosis of LVIS) and 500 age‑, smoking status‑, and sex‑matched controls (no history of any type of stroke), and from the same population as patients with LVIS. After quality control and prioritization based on allele frequency and damaging probability, individual genotyping of all deleterious rare variants was performed in patients from the original cohort, and stratified to concomitant cardiac conditions differing between the study and stroke groups. We demonstrated a statistically significant increase in the number of rare and potentially damaging variants in some of the investigated genes in the LVIS pool (an increase in the genomic variants burden). Furthermore, we identified an association between LVIS and 6 rare functional and damaging variants in the Kv7.1 potassium channel gene (KCNQ1). The predicted functional properties (partial loss‑of function) for the three most damaging variants in KCNQ1 coding locus were further confirmed in vitro by analyzing the membrane potential changes in cell lines co‑transfected heterogeneously with human muscarinic type 1 receptor and wild‑type or mutated KCNQ1 cDNA constructs using fluorescence imaging plate reader. The study demonstrated an increased rare variants burden for 54 genes associated with platelet function, and identified a putative role for rare damaging variants in the KCNQ1 gene on LVIS susceptibility in the Polish population.
Collapse
Affiliation(s)
- Piotr K Janicki
- Perioperative Genomics Laboratory, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw 02‑097, Poland
| | - Victor Ruiz-Velasco
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Justyna Pordzik
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw 02‑097, Poland
| | - Anna Czlonkowska
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw 02‑097, Poland
| | | | - Shigekazu Sugino
- Perioperative Genomics Laboratory, Penn State College of Medicine, Hershey, PA 17033, USA
| | | | - Dagmara Mirowska-Guzel
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw 02‑097, Poland
| | - Marek Postula
- Perioperative Genomics Laboratory, Penn State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
24
|
Nishida N, Sugiyama M, Sawai H, Nishina S, Sakai A, Ohashi J, Khor S, Kakisaka K, Tsuchiura T, Hino K, Sumazaki R, Takikawa Y, Murata K, Kanda T, Yokosuka O, Tokunaga K, Mizokami M. Key HLA-DRB1-DQB1 haplotypes and role of the BTNL2 gene for response to a hepatitis B vaccine. Hepatology 2018; 68:848-858. [PMID: 29534301 PMCID: PMC6175380 DOI: 10.1002/hep.29876] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 02/21/2018] [Accepted: 03/07/2018] [Indexed: 01/01/2023]
Abstract
Approximately 5-10% of individuals who are vaccinated with a hepatitis B (HB) vaccine designed based on the hepatitis B virus (HBV) genotype C fail to acquire protective levels of antibodies. Here, host genetic factors behind low immune response to this HB vaccine were investigated by a genome-wide association study (GWAS) and Human Leukocyte Antigen (HLA) association tests. The GWAS and HLA association tests were carried out using a total of 1,193 Japanese individuals including 107 low responders, 351 intermediate responders, and 735 high responders. Classical HLA class II alleles were statistically imputed using the genome-wide SNP typing data. The GWAS identified independent associations of HLA-DRB1-DQB1, HLA-DPB1 and BTNL2 genes with immune response to a HB vaccine designed based on the HBV genotype C. Five HLA-DRB1-DQB1 haplotypes and two DPB1 alleles showed significant associations with response to the HB vaccine in a comparison of three groups of 1,193 HB vaccinated individuals. When frequencies of DRB1-DQB1 haplotypes and DPB1 alleles were compared between low immune responders and HBV patients, significant associations were identified for three DRB1-DQB1 haplotypes, and no association was identified for any of the DPB1 alleles. In contrast, no association was identified for DRB1-DQB1 haplotypes and DPB1 alleles in a comparison between high immune responders and healthy individuals. Conclusion: The findings in this study clearly show the importance of HLA-DR-DQ (i.e., recognition of a vaccine related HB surface antigen (HBsAg) by specific DR-DQ haplotypes) and BTNL2 molecules (i.e., high immune response to HB vaccine) for response to a HB vaccine designed based on the HBV genotype C. (Hepatology 2018).
Collapse
Affiliation(s)
- Nao Nishida
- Genome Medical Science ProjectNational Center for Global Health and MedicineIchikawaJapan
- Department of Human Genetics, Graduate School of MedicineThe University of TokyoBunkyo‐kuJapan
| | - Masaya Sugiyama
- Genome Medical Science ProjectNational Center for Global Health and MedicineIchikawaJapan
| | - Hiromi Sawai
- Department of Human Genetics, Graduate School of MedicineThe University of TokyoBunkyo‐kuJapan
| | - Sohji Nishina
- Department of Hepatology and PancreatologyKawasaki Medical SchoolOkayamaJapan
| | - Aiko Sakai
- Department of Child Health, Faculty of MedicineUniversity of TsukubaTsukubaJapan
| | - Jun Ohashi
- Department of Biological Sciences, Graduate School of ScienceThe University of TokyoBunkyo‐kuJapan
| | - Seik‐Soon Khor
- Department of Human Genetics, Graduate School of MedicineThe University of TokyoBunkyo‐kuJapan
| | - Keisuke Kakisaka
- Division of Hepatology, Department of Internal MedicineIwate Medical UniversityMoriokaJapan
| | - Takayo Tsuchiura
- Genome Medical Science ProjectNational Center for Global Health and MedicineIchikawaJapan
| | - Keisuke Hino
- Department of Hepatology and PancreatologyKawasaki Medical SchoolOkayamaJapan
| | - Ryo Sumazaki
- Department of Child Health, Faculty of MedicineUniversity of TsukubaTsukubaJapan
| | - Yasuhiro Takikawa
- Division of Hepatology, Department of Internal MedicineIwate Medical UniversityMoriokaJapan
| | - Kazumoto Murata
- Genome Medical Science ProjectNational Center for Global Health and MedicineIchikawaJapan
- Department of GastroenterologyInternational University of Health and Welfare, Graduate School of Medical SciencesChibaJapan
| | - Tatsuo Kanda
- Department of Gastroenterology and Nephrology, Graduate School of MedicineChiba UniversityChibaJapan
| | - Osamu Yokosuka
- Department of Gastroenterology and Nephrology, Graduate School of MedicineChiba UniversityChibaJapan
| | - Katsushi Tokunaga
- Department of Human Genetics, Graduate School of MedicineThe University of TokyoBunkyo‐kuJapan
| | - Masashi Mizokami
- Genome Medical Science ProjectNational Center for Global Health and MedicineIchikawaJapan
| |
Collapse
|
25
|
Moon CM, Kim SW, Ahn JB, Ma HW, Che X, Kim TI, Kim WH, Cheon JH. Deep Resequencing of Ulcerative Colitis-Associated Genes Identifies Novel Variants in Candidate Genes in the Korean Population. Inflamm Bowel Dis 2018; 24:1706-1717. [PMID: 29733354 DOI: 10.1093/ibd/izy122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Indexed: 01/08/2023]
Abstract
BACKGROUND Genome-wide association studies and meta-analyses have revealed the genetic background of ulcerative colitis (UC) by identifying common variants. However, these variants do not fully explain the disease variance in UC. To identify novel variants, we performed deep resequencing of UC-associated genes in Korean UC patients and subsequently investigated the functional roles of identified susceptibility genes. METHODS We performed targeted deep resequencing of 108 genes in 24 Korean UC patients and then performed association analysis with data from 126 healthy controls. We validated these variants using 2-stage replication studies including 793 UC patients and 783 controls. We performed in silico and pathway analyses and functional analyses. RESULTS The combined analysis including 2 replication studies identified 6 novel susceptibility loci and reconfirmed 10 previously reported loci. Among the novel single nucleotide variants (SNVs), rs10035653 in C5orf55 (P = 2.08 × 10-3; OR = 1.50), rs41417449 in BTNL2 (P = 1.27 × 10-2; OR = 1.32), rs3117099 in HCG23 (P = 9.98 × 10-6; OR = 1.40), rs7192 in HLA-DRA (P = 6.95 × 10-9; OR = 1.57), and rs3744246 in ORMDL3 (P = 2.21 × 10-2; OR = 1.21) were identified as causal variants, whereas rs713669 in IL17REL (P = 2.69 × 10-2; OR = 0.84) as a protective variant for UC. When correcting multiple testing, 3 novel SNVs (rs41417449 in BTNL2, rs3744246 in ORMDL3, and rs713669 in IL17REL) and 4 previously reported SNVs did not reach a statistical significance. Functional study suggested that SNVs of BTNL2 and C5orf55 exacerbated the inflammatory response both in vitro and in vivo. CONCLUSIONS This study identified 3 novel susceptibility loci and validated 6 previously reported SNVs for UC through deep resequencing in Koreans and revealed the functional roles of BTNL2 and C5orf55.
Collapse
Affiliation(s)
- Chang Mo Moon
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung Won Kim
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae Bum Ahn
- Department of Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyun Woo Ma
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Xiumei Che
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Tae Il Kim
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Won Ho Kim
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae Hee Cheon
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
26
|
Debiec H, Dossier C, Letouzé E, Gillies CE, Vivarelli M, Putler RK, Ars E, Jacqz-Aigrain E, Elie V, Colucci M, Debette S, Amouyel P, Elalaoui SC, Sefiani A, Dubois V, Simon T, Kretzler M, Ballarin J, Emma F, Sampson MG, Deschênes G, Ronco P. Transethnic, Genome-Wide Analysis Reveals Immune-Related Risk Alleles and Phenotypic Correlates in Pediatric Steroid-Sensitive Nephrotic Syndrome. J Am Soc Nephrol 2018; 29:2000-2013. [PMID: 29903748 PMCID: PMC6050942 DOI: 10.1681/asn.2017111185] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 04/09/2018] [Indexed: 12/20/2022] Open
Abstract
Background Steroid-sensitive nephrotic syndrome (SSNS) is a childhood disease with unclear pathophysiology and genetic architecture. We investigated the genomic basis of SSNS in children recruited in Europe and the biopsy-based North American NEPTUNE cohort.Methods We performed three ancestry-matched, genome-wide association studies (GWAS) in 273 children with NS (Children Cohort Nephrosis and Virus [NEPHROVIR] cohort: 132 European, 56 African, and 85 Maghrebian) followed by independent replication in 112 European children, transethnic meta-analysis, and conditional analysis. GWAS alleles were used to perform glomerular cis-expression quantitative trait loci studies in 39 children in the NEPTUNE cohort and epidemiologic studies in GWAS and NEPTUNE (97 children) cohorts.Results Transethnic meta-analysis identified one SSNS-associated single-nucleotide polymorphism (SNP) rs1063348 in the 3' untranslated region of HLA-DQB1 (P=9.3×10-23). Conditional analysis identified two additional independent risk alleles upstream of HLA-DRB1 (rs28366266, P=3.7×10-11) and in the 3' untranslated region of BTNL2 (rs9348883, P=9.4×10-7) within introns of HCG23 and LOC101929163 These three risk alleles were independent of the risk haplotype DRB1*07:01-DQA1*02:01-DQB1*02:02 identified in European patients. Increased burden of risk alleles across independent loci was associated with higher odds of SSNS. Increased burden of risk alleles across independent loci was associated with higher odds of SSNS, with younger age of onset across all cohorts, and with increased odds of complete remission across histologies in NEPTUNE children. rs1063348 associated with decreased glomerular expression of HLA-DRB1, HLA-DRB5, and HLA-DQB1.Conclusions Transethnic GWAS empowered discovery of three independent risk SNPs for pediatric SSNS. Characterization of these SNPs provide an entry for understanding immune dysregulation in NS and introducing a genomically defined classification.
Collapse
Affiliation(s)
- Hanna Debiec
- Sorbonne Université, UPMC Paris 06, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche S 1155, Paris, France
| | | | - Eric Letouzé
- Pediatric Pharmacology and Pharmacogenetics, CIC1426, Hôpital Robert Debré, Paris, France
- Université Paris Diderot, Institut Universitaire d'Hématologie, Paris, France
| | - Christopher E Gillies
- Pediatric Nephrology, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Marina Vivarelli
- Nephrology and Dialysis Department, Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Rosemary K Putler
- Pediatric Nephrology, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Elisabet Ars
- Molecular Biology Laboratory, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Evelyne Jacqz-Aigrain
- Pediatric Pharmacology and Pharmacogenetics, CIC1426, Hôpital Robert Debré, Paris, France
| | - Valery Elie
- Pediatric Pharmacology and Pharmacogenetics, CIC1426, Hôpital Robert Debré, Paris, France
| | - Manuela Colucci
- Nephrology and Dialysis Department, Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Stéphanie Debette
- University of Bordeaux, Institut National de la Santé et de la Recherche Médicale, Bordeaux Population Health Research Center, Unité Mixte de Recherche 1219, CHU Bordeaux, Bordeaux, France
| | - Philippe Amouyel
- University of Lille, Institut National de la Santé et de la Recherche Médicale, CHU Lille, Institut Pasteur de Lille, U1167 RID-AGE, Lille, France
| | - Siham C Elalaoui
- Department of Medical Genetics, Institut National d'Hygiène, Rabat, Morocco
| | - Abdelaziz Sefiani
- Human Genomic Center, Faculté de Médecine et de Pharmacie Rabat, Université Mohamed V. Rabat, Rabat, Morocco
| | - Valérie Dubois
- Etablissement Français du Sang Rhone-Alpes, Lyon, Rhone-Alpes, France
| | - Tabassome Simon
- Assistance Publique-Hôpitaux de Paris, Hôpital Saint Antoine, Department of Clinical Pharmacology, Unité de Recherche Clinique, Paris, France
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche S1148, Paris, France
| | - Matthias Kretzler
- Department of Internal Medicine and Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan;
| | - Jose Ballarin
- Department of Nephrology, Fundación Puigvert, Barcelona, Spain
| | - Francesco Emma
- Pediatric Nephrology, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Matthew G Sampson
- Pediatric Nephrology, University of Michigan School of Medicine, Ann Arbor, Michigan;
| | - Georges Deschênes
- Department of Paediatric Nephrology and
- Institut National de la Santé et de la Recherche Médicale U1149, Unité de Formation et de Recherche de Médecine Xavier Bichat, Université Sorbonne Paris Cité, Paris, France; and
| | - Pierre Ronco
- Sorbonne Université, UPMC Paris 06, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche S 1155, Paris, France;
- Assistance Publique-Hôpitaux de Paris, Nephrology and Dialysis Department, Tenon Hospital, Paris, France
| |
Collapse
|
27
|
McCarthy NE, Eberl M. Human γδ T-Cell Control of Mucosal Immunity and Inflammation. Front Immunol 2018; 9:985. [PMID: 29867962 PMCID: PMC5949325 DOI: 10.3389/fimmu.2018.00985] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/20/2018] [Indexed: 01/26/2023] Open
Abstract
Human γδ T-cells include some of the most common "antigen-specific" cell types in peripheral blood and are enriched yet further at mucosal barrier sites where microbial infection and tumors often originate. While the γδ T-cell compartment includes multiple subsets with highly flexible effector functions, human mucosal tissues are dominated by host stress-responsive Vδ1+ T-cells and microbe-responsive Vδ2+ T-cells. Widely recognized for their potent cytotoxicity, emerging data suggest that γδ T-cells also exert strong influences on downstream adaptive immunity to pathogens and tumors, in particular via activation of antigen-presenting cells and/or direct stimulation of other mucosal leukocytes. These unique functional attributes and lack of MHC restriction have prompted considerable interest in therapeutic targeting of γδ T-cells. Indeed, several drugs already in clinical use, including vedolizumab, infliximab, and azathioprine, likely owe their efficacy in part to modulation of γδ T-cell function. Recent clinical trials of Vδ2+ T-cell-selective treatments indicate a good safety profile in human patients, and efficacy is set to increase as more potent/targeted drugs continue to be developed. Key advances will include identifying methods of directing γδ T-cell recruitment to specific tissues to enhance host protection against invading pathogens, or alternatively, retaining these cells in the circulation to limit peripheral inflammation and/or improve responses to blood malignancies. Human γδ T-cell control of mucosal immunity is likely exerted via multiple mechanisms that induce diverse responses in other types of tissue-resident leukocytes. Understanding the microenvironmental signals that regulate these functions will be critical to the development of new γδ T-cell-based therapies.
Collapse
Affiliation(s)
- Neil E. McCarthy
- Centre for Immunobiology, Bart’s and The London School of Medicine and Dentistry, The Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Matthias Eberl
- Division of Infection and Immunity, School of Medicine, Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
28
|
Onoufriadis A, Stone K, Katsiamides A, Amar A, Omar Y, de Lange KM, Taylor K, Barrett JC, Pollok R, Hayee B, Mansfield JC, Sanderson JD, Simpson MA, Mathew CG, Prescott NJ. Exome Sequencing and Genotyping Identify a Rare Variant in NLRP7 Gene Associated With Ulcerative Colitis. J Crohns Colitis 2018; 12:321-326. [PMID: 29211899 PMCID: PMC6290881 DOI: 10.1093/ecco-jcc/jjx157] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/31/2017] [Accepted: 11/30/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIMS Although genome-wide association studies [GWAS] in inflammatory bowel disease [IBD] have identified a large number of common disease susceptibility alleles for both Crohn's disease [CD] and ulcerative colitis [UC], a substantial fraction of IBD heritability remains unexplained, suggesting that rare coding genetic variants may also have a role in pathogenesis. We used high-throughput sequencing in families with multiple cases of IBD, followed by genotyping of cases and controls, to investigate whether rare protein-altering genetic variants are associated with susceptibility to IBD. METHODS Whole-exome sequencing was carried out in 10 families in whom three or more individuals were affected with IBD. A stepwise filtering approach was applied to exome variants, to identify potential causal variants. Follow-up genotyping was performed in 6025 IBD cases [2948 CD; 3077 UC] and 7238 controls. RESULTS Our exome variant analysis revealed coding variants in the NLRP7 gene that were present in affected individuals in two distinct families. Genotyping of the two variants, p.S361L and p.R801H, in IBD cases and controls showed that the p.S361L variant was significantly associated with an increased risk of ulcerative colitis [odds ratio 4.79, p = 0.0039] and IBD [odds ratio 3.17, p = 0.037]. A combined analysis of both variants showed suggestive association with an increased risk of IBD [odds ratio 2.77, p = 0.018]. CONCLUSIONS The results suggest that NLRP7 signalling and inflammasome formation may be a significant component in the pathogenesis of IBD.
Collapse
Affiliation(s)
| | - Kristina Stone
- Department of Medical and Molecular Genetics, King’s College London, London, UK
| | - Antreas Katsiamides
- Department of Medical and Molecular Genetics, King’s College London, London, UK
| | - Ariella Amar
- Department of Medical and Molecular Genetics, King’s College London, London, UK
| | - Yasmin Omar
- Department of Medical and Molecular Genetics, King’s College London, London, UK
| | | | - Kirstin Taylor
- Department of Medical and Molecular Genetics, King’s College London, London, UK
| | | | - Richard Pollok
- Department Gastroenterology and Hepatology, St George’s University Hospitals NHS Foundation Trust, London, UK
| | - Bu’Hussain Hayee
- IBD Service, King’s College Hospital NHS Foundation Trust, London, UK
| | - John C Mansfield
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Jeremy D Sanderson
- Department of Gastroenterology, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| | - Michael A Simpson
- Department of Medical and Molecular Genetics, King’s College London, London, UK
| | - Christopher G Mathew
- Department of Medical and Molecular Genetics, King’s College London, London, UK
- Sydney Brenner Institute for Molecular Bioscience, University of Witwatersrand, Johannesburg, South Africa
| | - Natalie J Prescott
- Department of Medical and Molecular Genetics, King’s College London, London, UK
| |
Collapse
|
29
|
Th17-lineage cells in pulmonary sarcoidosis and Löfgren's syndrome: Friend or foe? J Autoimmun 2018; 87:82-96. [DOI: 10.1016/j.jaut.2017.12.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 12/12/2017] [Indexed: 01/17/2023]
|
30
|
Bloch Y, Bouchareychas L, Merceron R, Składanowska K, Van den Bossche L, Detry S, Govindarajan S, Elewaut D, Haerynck F, Dullaers M, Adamopoulos IE, Savvides SN. Structural Activation of Pro-inflammatory Human Cytokine IL-23 by Cognate IL-23 Receptor Enables Recruitment of the Shared Receptor IL-12Rβ1. Immunity 2018; 48:45-58.e6. [PMID: 29287995 PMCID: PMC5773378 DOI: 10.1016/j.immuni.2017.12.008] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/15/2017] [Accepted: 12/05/2017] [Indexed: 01/13/2023]
Abstract
Interleukin-23 (IL-23), an IL-12 family cytokine, plays pivotal roles in pro-inflammatory T helper 17 cell responses linked to autoimmune and inflammatory diseases. Despite intense therapeutic targeting, structural and mechanistic insights into receptor complexes mediated by IL-23, and by IL-12 family members in general, have remained elusive. We determined a crystal structure of human IL-23 in complex with its cognate receptor, IL-23R, and revealed that IL-23R bound to IL-23 exclusively via its N-terminal immunoglobulin domain. The structural and functional hotspot of this interaction partially restructured the helical IL-23p19 subunit of IL-23 and restrained its IL-12p40 subunit to cooperatively bind the shared receptor IL-12Rβ1 with high affinity. Together with structural insights from the interaction of IL-23 with the inhibitory antibody briakinumab and by leveraging additional IL-23:antibody complexes, we propose a mechanistic paradigm for IL-23 and IL-12 whereby cognate receptor binding to the helical cytokine subunits primes recruitment of the shared receptors via the IL-12p40 subunit.
Collapse
Affiliation(s)
- Yehudi Bloch
- Laboratory for Protein Biochemistry and Biomolecular Engineering, Department of Biochemistry and Microbiology, Ghent University, 9052 Ghent, Belgium; VIB-UGent Center for Inflammation Research, 9052 Ghent, Belgium
| | - Laura Bouchareychas
- Department of Internal Medicine, Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA 95616, USA; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children Northern California, Sacramento, CA 95817, USA
| | - Romain Merceron
- Laboratory for Protein Biochemistry and Biomolecular Engineering, Department of Biochemistry and Microbiology, Ghent University, 9052 Ghent, Belgium; VIB-UGent Center for Inflammation Research, 9052 Ghent, Belgium
| | - Katarzyna Składanowska
- Laboratory for Protein Biochemistry and Biomolecular Engineering, Department of Biochemistry and Microbiology, Ghent University, 9052 Ghent, Belgium; VIB-UGent Center for Inflammation Research, 9052 Ghent, Belgium
| | - Lien Van den Bossche
- Clinical Immunology Research Lab, Department of Pulmonary Medicine, Ghent University Hospital, 9000 Ghent, Belgium; Center for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, 9000 Ghent, Belgium
| | - Sammy Detry
- Laboratory for Protein Biochemistry and Biomolecular Engineering, Department of Biochemistry and Microbiology, Ghent University, 9052 Ghent, Belgium; VIB-UGent Center for Inflammation Research, 9052 Ghent, Belgium
| | - Srinath Govindarajan
- VIB-UGent Center for Inflammation Research, 9052 Ghent, Belgium; Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Dirk Elewaut
- VIB-UGent Center for Inflammation Research, 9052 Ghent, Belgium; Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Filomeen Haerynck
- Clinical Immunology Research Lab, Department of Pulmonary Medicine, Ghent University Hospital, 9000 Ghent, Belgium; Center for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, 9000 Ghent, Belgium; Department of Pediatrics, Division of Pediatric Immunology and Pulmonology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Melissa Dullaers
- Clinical Immunology Research Lab, Department of Pulmonary Medicine, Ghent University Hospital, 9000 Ghent, Belgium; Center for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, 9000 Ghent, Belgium; Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Iannis E Adamopoulos
- Department of Internal Medicine, Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA 95616, USA; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children Northern California, Sacramento, CA 95817, USA
| | - Savvas N Savvides
- Laboratory for Protein Biochemistry and Biomolecular Engineering, Department of Biochemistry and Microbiology, Ghent University, 9052 Ghent, Belgium; VIB-UGent Center for Inflammation Research, 9052 Ghent, Belgium.
| |
Collapse
|
31
|
Population-Specific Associations of Deleterious Rare Variants in Coding Region of P2RY1-P2RY12 Purinergic Receptor Genes in Large-Vessel Ischemic Stroke Patients. Int J Mol Sci 2017; 18:ijms18122678. [PMID: 29232918 PMCID: PMC5751280 DOI: 10.3390/ijms18122678] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/05/2017] [Accepted: 12/07/2017] [Indexed: 01/13/2023] Open
Abstract
The contribution of low-frequency and damaging genetic variants associated with platelet function to ischemic stroke (IS) susceptibility remains unknown. We employed a deep re-sequencing approach in Polish patients in order to investigate the contribution of rare variants (minor allele frequency, MAF < 1%) to the IS genetic susceptibility in this population. The genes selected for re-sequencing consisted of 26 genes coding for proteins associated with the surface membrane of platelets. Targeted pooled re-sequencing (Illumina HiSeq 2500) was performed on genomic DNA of 500 cases (patients with history of clinically proven diagnosis of large-vessel IS) and 500 controls. After quality control and prioritization based on allele frequency and damaging probability, follow-up individual genotyping of deleterious rare variants was performed in patients from the original cohort. Gene-based analyses identified an association between IS and 6 rare functional and damaging variants in the purinergic genes (P2RY1 and P2RY12 locus). The predicted properties of the most damaging rare variants in P2RY1 and P2RY12 were confirmed by using mouse fibroblast cell cultures transfected with plasmid constructs containing cDNA of mutated variants (FLIPR on FlexStation3). This study identified a putative role for rare variants in P2RY1 and P2RY12 genes involved in platelet reactivity on large-vessel IS susceptibility in a Polish population.
Collapse
|
32
|
Bansal V, Gassenhuber J, Phillips T, Oliveira G, Harbaugh R, Villarasa N, Topol EJ, Seufferlein T, Boehm BO. Spectrum of mutations in monogenic diabetes genes identified from high-throughput DNA sequencing of 6888 individuals. BMC Med 2017; 15:213. [PMID: 29207974 PMCID: PMC5717832 DOI: 10.1186/s12916-017-0977-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 11/11/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Diagnosis of monogenic as well as atypical forms of diabetes mellitus has important clinical implications for their specific diagnosis, prognosis, and targeted treatment. Single gene mutations that affect beta-cell function represent 1-2% of all cases of diabetes. However, phenotypic heterogeneity and lack of family history of diabetes can limit the diagnosis of monogenic forms of diabetes. Next-generation sequencing technologies provide an excellent opportunity to screen large numbers of individuals with a diagnosis of diabetes for mutations in disease-associated genes. METHODS We utilized a targeted sequencing approach using the Illumina HiSeq to perform a case-control sequencing study of 22 monogenic diabetes genes in 4016 individuals with type 2 diabetes (including 1346 individuals diagnosed before the age of 40 years) and 2872 controls. We analyzed protein-coding variants identified from the sequence data and compared the frequencies of pathogenic variants (protein-truncating variants and missense variants) between the cases and controls. RESULTS A total of 40 individuals with diabetes (1.8% of early onset sub-group and 0.6% of adult onset sub-group) were carriers of known pathogenic missense variants in the GCK, HNF1A, HNF4A, ABCC8, and INS genes. In addition, heterozygous protein truncating mutations were detected in the GCK, HNF1A, and HNF1B genes in seven individuals with diabetes. Rare missense mutations in the GCK gene were significantly over-represented in individuals with diabetes (0.5% carrier frequency) compared to controls (0.035%). One individual with early onset diabetes was homozygous for a rare pathogenic missense variant in the WFS1 gene but did not have the additional phenotypes associated with Wolfram syndrome. CONCLUSION Targeted sequencing of genes linked with monogenic diabetes can identify disease-relevant mutations in individuals diagnosed with type 2 diabetes not suspected of having monogenic forms of the disease. Our data suggests that GCK-MODY frequently masquerades as classical type 2 diabetes. The results confirm that MODY is under-diagnosed, particularly in individuals presenting with early onset diabetes and clinically labeled as type 2 diabetes; thus, sequencing of all monogenic diabetes genes should be routinely considered in such individuals. Genetic information can provide a specific diagnosis, inform disease prognosis and may help to better stratify treatment plans.
Collapse
Affiliation(s)
- Vikas Bansal
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.
| | | | - Tierney Phillips
- Scripps Translational Science Institute and Scripps Health, La Jolla, CA, USA
| | - Glenn Oliveira
- Scripps Translational Science Institute and Scripps Health, La Jolla, CA, USA
| | - Rebecca Harbaugh
- Scripps Translational Science Institute and Scripps Health, La Jolla, CA, USA
| | - Nikki Villarasa
- Scripps Translational Science Institute and Scripps Health, La Jolla, CA, USA
| | - Eric J Topol
- Scripps Translational Science Institute and Scripps Health, La Jolla, CA, USA
| | - Thomas Seufferlein
- Department of Internal Medicine I, Ulm University Medical Centre, Ulm, Germany
| | - Bernhard O Boehm
- Department of Internal Medicine I, Ulm University Medical Centre, Ulm, Germany. .,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore. .,Imperial College London, London, UK.
| |
Collapse
|
33
|
T-cell immunology in sarcoidosis: Disruption of a delicate balance between helper and regulatory T-cells. Curr Opin Pulm Med 2017; 22:476-83. [PMID: 27379969 DOI: 10.1097/mcp.0000000000000303] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Although the aetiology of sarcoidosis is not yet completely understood, immunological changes within the T-cell compartment are characteristic for an exaggerated antigen-driven immune response. In this review, we describe the most recent findings on T-cell subset responses and regulation in sarcoidosis. We discuss how future immunological research can advance the field to unravel pathobiological mechanisms of this intriguingly complex disease. RECENT FINDINGS Research into the field of T-cell plasticity has recently challenged the long-held T helper type 1 (Th1) paradigm in sarcoidosis and striking parallels with autoimmune disorders and common variable immunodeficiency were recognized. For instance, it was demonstrated that Th17.1-cells rather than Th1-cells are responsible for the exaggerated IFN-γ production in pulmonary sarcoidosis. Furthermore, impaired regulatory T-cell function and alterations within the expression of co-inhibitory receptors that control T-cell responses, such as PD-1, CTLA-4 and BTNL2, raise new questions regarding T-cell regulation in pulmonary sarcoidosis. SUMMARY It becomes increasingly clear that Th17(.1)-cells and regulatory T-cells are key players in sarcoidosis T-cell immunology. New findings on plasticity and co-inhibitory receptor expression by these subsets help build a more comprehensive model for T-cell regulation in sarcoidosis and will finally shed light on the potential of new treatment modalities.
Collapse
|
34
|
Yang C, Xu Y, Yu M, Lee D, Alharti S, Hellen N, Ahmad Shaik N, Banaganapalli B, Sheikh Ali Mohamoud H, Elango R, Przyborski S, Tenin G, Williams S, O’Sullivan J, Al-Radi OO, Atta J, Harding SE, Keavney B, Lako M, Armstrong L. Induced pluripotent stem cell modelling of HLHS underlines the contribution of dysfunctional NOTCH signalling to impaired cardiogenesis. Hum Mol Genet 2017; 26:3031-3045. [PMID: 28521042 PMCID: PMC5886295 DOI: 10.1093/hmg/ddx140] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/04/2017] [Accepted: 04/06/2017] [Indexed: 12/30/2022] Open
Abstract
Hypoplastic left heart syndrome (HLHS) is among the most severe forms of congenital heart disease. Although the consensus view is that reduced flow through the left heart during development is a key factor in the development of the condition, the molecular mechanisms leading to hypoplasia of left heart structures are unknown. We have generated induced pluripotent stem cells (iPSC) from five HLHS patients and two unaffected controls, differentiated these to cardiomyocytes and identified reproducible in vitro cellular and functional correlates of the HLHS phenotype. Our data indicate that HLHS-iPSC have a reduced ability to give rise to mesodermal, cardiac progenitors and mature cardiomyocytes and an enhanced ability to differentiate to smooth muscle cells. HLHS-iPSC-derived cardiomyocytes are characterised by a lower beating rate, disorganised sarcomeres and sarcoplasmic reticulum and a blunted response to isoprenaline. Whole exome sequencing of HLHS fibroblasts identified deleterious variants in NOTCH receptors and other genes involved in the NOTCH signalling pathway. Our data indicate that the expression of NOTCH receptors was significantly downregulated in HLHS-iPSC-derived cardiomyocytes alongside NOTCH target genes confirming downregulation of NOTCH signalling activity. Activation of NOTCH signalling via addition of Jagged peptide ligand during the differentiation of HLHS-iPSC restored their cardiomyocyte differentiation capacity and beating rate and suppressed the smooth muscle cell formation. Together, our data provide firm evidence for involvement of NOTCH signalling in HLHS pathogenesis, reveal novel genetic insights important for HLHS pathology and shed new insights into the role of this pathway during human cardiac development.
Collapse
Affiliation(s)
- Chunbo Yang
- Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| | - Yaobo Xu
- Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| | - Min Yu
- Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| | - David Lee
- Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| | - Sameer Alharti
- Princess Al Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Saudi Arabia
| | - Nicola Hellen
- NHLI, Faculty of Medicine, Imperial College London, London, UK
| | - Noor Ahmad Shaik
- Princess Al Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Saudi Arabia
| | - Babajan Banaganapalli
- Princess Al Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Saudi Arabia
| | - Hussein Sheikh Ali Mohamoud
- Princess Al Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Saudi Arabia
| | - Ramu Elango
- Princess Al Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Saudi Arabia
| | | | - Gennadiy Tenin
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Simon Williams
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | | | - Osman O Al-Radi
- Department of Surgery, King Abdulaziz University, Saudi Arabia
| | - Jameel Atta
- Department of Surgery, King Abdulaziz University, Saudi Arabia
| | - Sian E. Harding
- NHLI, Faculty of Medicine, Imperial College London, London, UK
| | - Bernard Keavney
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Majlinda Lako
- Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| | - Lyle Armstrong
- Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| |
Collapse
|
35
|
Uhlig HH, Muise AM. Clinical Genomics in Inflammatory Bowel Disease. Trends Genet 2017; 33:629-641. [PMID: 28755896 DOI: 10.1016/j.tig.2017.06.008] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/25/2017] [Accepted: 06/27/2017] [Indexed: 12/19/2022]
Abstract
Genomic technologies inform the complex genetic basis of polygenic inflammatory bowel disease (IBD) as well as Mendelian disease-associated IBD. Aiming to diagnose patients that present with extreme phenotypes due to monogenic forms of IBD, genomics has progressed from 'orphan disease' research towards an integrated standard of clinical care. Advances in diagnostic clinical genomics are increasingly complemented by pathway-specific therapies that aim to correct the consequences of genetic defects. This highlights the exceptional potential for personalized precision medicine. IBD is nevertheless a challenging example for genomic medicine because the overall fraction of patients with Mendelian defects is low, the number of potential candidate genes is high, and interventional evidence is still emerging. We discuss requirements and prospects of explanatory and predictive clinical genomics in IBD.
Collapse
Affiliation(s)
- Holm H Uhlig
- Translational Gastroenterology Unit, University of Oxford, UK; Department of Paediatrics, University of Oxford, UK.
| | - Aleixo M Muise
- Program in Cell Biology, Research Institute, Hospital for Sick Children, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada; SickKids Inflammatory Bowel Disease Centre and Division of Gastroenterology, Hepatology, and Nutrition, Department of Paediatrics, University of Toronto, Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
36
|
Brant SR, Okou DT, Simpson CL, Cutler DJ, Haritunians T, Bradfield JP, Chopra P, Prince J, Begum F, Kumar A, Huang C, Venkateswaran S, Datta LW, Wei Z, Thomas K, Herrinton LJ, Klapproth JMA, Quiros AJ, Seminerio J, Liu Z, Alexander JS, Baldassano RN, Dudley-Brown S, Cross RK, Dassopoulos T, Denson LA, Dhere TA, Dryden GW, Hanson JS, Hou JK, Hussain SZ, Hyams JS, Isaacs KL, Kader H, Kappelman MD, Katz J, Kellermayer R, Kirschner BS, Kuemmerle JF, Kwon JH, Lazarev M, Li E, Mack D, Mannon P, Moulton DE, Newberry RD, Osuntokun BO, Patel AS, Saeed SA, Targan SR, Valentine JF, Wang MH, Zonca M, Rioux JD, Duerr RH, Silverberg MS, Cho JH, Hakonarson H, Zwick ME, McGovern DPB, Kugathasan S. Re: Genome-Wide Association Study Identifies African-Specific Susceptibility Loci in African Americans With Inflammatory Bowel Disease. Gastroenterology 2017; 152:2082-2083. [PMID: 28478146 PMCID: PMC6033331 DOI: 10.1053/j.gastro.2017.02.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 02/17/2017] [Indexed: 01/16/2023]
Abstract
BACKGROUND & AIMS The inflammatory bowel diseases (IBD) ulcerative colitis (UC) and Crohn’s disease (CD) cause significant morbidity and are increasing in prevalence among all populations, including African Americans. More than 200 susceptibility loci have been identified in populations of predominantly European ancestry, but few loci have been associated with IBD in other ethnicities. METHODS We performed 2 high-density, genome-wide scans comprising 2345 cases of African Americans with IBD (1646 with CD, 583 with UC, and 116 inflammatory bowel disease unclassified) and 5002 individuals without IBD (controls, identified from the Health Retirement Study and Kaiser Permanente database). Single-nucleotide polymorphisms (SNPs) associated at P < 5.0 × 10−8 in meta-analysis with a nominal evidence (P < .05) in each scan were considered to have genome-wide significance. RESULTS We detected SNPs at HLA-DRB1, and African-specific SNPs at ZNF649 and LSAMP, with associations of genome-wide significance for UC. We detected SNPs at USP25 with associations of genome-wide significance for IBD. No associations of genome-wide significance were detected for CD. In addition, 9 genes previously associated with IBD contained SNPs with significant evidence for replication (P < 1.6 × 10−6): ADCY3, CXCR6, HLA-DRB1 to HLA-DQA1 (genome-wide signifi-cance on conditioning), IL12B, PTGER4, and TNC for IBD; IL23R, PTGER4, and SNX20 (in strong linkage disequilibrium with NOD2) for CD; and KCNQ2 (near TNFRSF6B) for UC. Several of these genes, such as TNC (near TNFSF15), CXCR6, and genes associated with IBD at the HLA locus, contained SNPs with unique association patterns with African-specific alleles. CONCLUSIONS We performed a genome-wide association study of African Americans with IBD and identified loci associated with UC in only this population; we also replicated IBD, CD, and UC loci identified in European populations. The detection of variants associated with IBD risk in only people of African descent demonstrates the importance of studying the genetics of IBD and other complex diseases in populations beyond those of European ancestry.
Collapse
Affiliation(s)
- Steven R. Brant
- Department of Medicine, Meyerhoff Inflammatory Bowel Disease Center, Johns Hopkins University School of Medicine, Baltimore, Maryland,Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - David T. Okou
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - Claire L. Simpson
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee,Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Baltimore, Maryland
| | - David J. Cutler
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Talin Haritunians
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Jonathan P. Bradfield
- Center for Applied Genomics, Abramson Research Center, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Pankaj Chopra
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Jarod Prince
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - Ferdouse Begum
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Archana Kumar
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - Chengrui Huang
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | | | - Lisa W. Datta
- Department of Medicine, Meyerhoff Inflammatory Bowel Disease Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Zhi Wei
- Center for Applied Genomics, Abramson Research Center, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Kelly Thomas
- Center for Applied Genomics, Abramson Research Center, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | | | | | - Antonio J. Quiros
- Department of Pediatrics, Medical University of South Carolina, Pediatric Center for Inflammatory Bowel Disorders, Summerville, South Carolina
| | - Jenifer Seminerio
- Department of Gastroenterology, Medical University of South Carolina Digestive Disease Center, Charleston, South Carolina
| | - Zhenqiu Liu
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Jonathan S. Alexander
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Robert N. Baldassano
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Sharon Dudley-Brown
- Department of Medicine, Johns Hopkins University Schools of Medicine & Nursing, Baltimore, Maryland
| | - Raymond K. Cross
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | | | - Lee A. Denson
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Tanvi A. Dhere
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Gerald W. Dryden
- Department of Medicine, University of Louisville, Louisville, Kentucky
| | - John S. Hanson
- Charlotte Gastroenterology and Hepatology, Charlotte, North Carolina
| | - Jason K. Hou
- Department of Medicine, Baylor College of Medicine; Veterans Affairs Health Services Research and Development Service, Center for Innovations in Quality Effectiveness and Safety; Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas
| | - Sunny Z. Hussain
- Department of Pediatrics, Willis-Knighton Physician Network, Shreveport, Louisiana
| | | | - Kim L. Isaacs
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Howard Kader
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland
| | - Michael D. Kappelman
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jeffry Katz
- Case Western Reserve University, Cleveland, Ohio
| | - Richard Kellermayer
- Section of Pediatric Gastroenterology, Baylor College of Medicine, Texas Children’s Hospital, Houston, Texas
| | - Barbara S. Kirschner
- Department of Pediatrics, University of Chicago Comer Children’s Hospital, Chicago, Illinois
| | - John F. Kuemmerle
- Medicine and Physiology and Biophysics, Medical College of Virginia Campus of Virginia Commonwealth University, Richmond, Virginia
| | - John H. Kwon
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Mark Lazarev
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ellen Li
- Department of Medicine, Stony Brook University School of Medicine, Stony Brook, New York
| | - David Mack
- Department of Pediatrics, University of Ottawa and Children’s Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Peter Mannon
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | | | - Rodney D. Newberry
- Department of Internal Medicine, Washington University School of Medicine, St Louis, Missouri
| | | | - Ashish S. Patel
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Shehzad A. Saeed
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Stephan R. Targan
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | | | - Ming-Hsi Wang
- Division of Gastroenterology and Hepatology, Mayo Clinic Florida, Jacksonville, Florida
| | - Martin Zonca
- Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan
| | - John D. Rioux
- Department of Medicine, Université de Montréal and the Montreal Heart Institute Research Center, Montreal, Quebec, Canada
| | - Richard H. Duerr
- Department of Medicine and Clinical and Translational Science Institute, School of Medicine and Department of Human Genetics, Graduate School of Public Health; University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mark S. Silverberg
- Department of Medicine, Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, University of Toronto, Toronto, Toronto, Ontario, Canada
| | - Judy H. Cho
- Medicine and Genetics, Icahn School of Medicine at Mount Sinai, Charles Bronfman Institute for Personalized Medicine, New York, New York
| | - Hakon Hakonarson
- Center for Applied Genomics, Abramson Research Center, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Michael E. Zwick
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Dermot P. B. McGovern
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Subra Kugathasan
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia,Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
37
|
Analysis of the human monocyte-derived macrophage transcriptome and response to lipopolysaccharide provides new insights into genetic aetiology of inflammatory bowel disease. PLoS Genet 2017; 13:e1006641. [PMID: 28263993 PMCID: PMC5358891 DOI: 10.1371/journal.pgen.1006641] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 03/20/2017] [Accepted: 02/17/2017] [Indexed: 12/15/2022] Open
Abstract
The FANTOM5 consortium utilised cap analysis of gene expression (CAGE) to provide an unprecedented insight into transcriptional regulation in human cells and tissues. In the current study, we have used CAGE-based transcriptional profiling on an extended dense time course of the response of human monocyte-derived macrophages grown in macrophage colony-stimulating factor (CSF1) to bacterial lipopolysaccharide (LPS). We propose that this system provides a model for the differentiation and adaptation of monocytes entering the intestinal lamina propria. The response to LPS is shown to be a cascade of successive waves of transient gene expression extending over at least 48 hours, with hundreds of positive and negative regulatory loops. Promoter analysis using motif activity response analysis (MARA) identified some of the transcription factors likely to be responsible for the temporal profile of transcriptional activation. Each LPS-inducible locus was associated with multiple inducible enhancers, and in each case, transient eRNA transcription at multiple sites detected by CAGE preceded the appearance of promoter-associated transcripts. LPS-inducible long non-coding RNAs were commonly associated with clusters of inducible enhancers. We used these data to re-examine the hundreds of loci associated with susceptibility to inflammatory bowel disease (IBD) in genome-wide association studies. Loci associated with IBD were strongly and specifically (relative to rheumatoid arthritis and unrelated traits) enriched for promoters that were regulated in monocyte differentiation or activation. Amongst previously-identified IBD susceptibility loci, the vast majority contained at least one promoter that was regulated in CSF1-dependent monocyte-macrophage transitions and/or in response to LPS. On this basis, we concluded that IBD loci are strongly-enriched for monocyte-specific genes, and identified at least 134 additional candidate genes associated with IBD susceptibility from reanalysis of published GWA studies. We propose that dysregulation of monocyte adaptation to the environment of the gastrointestinal mucosa is the key process leading to inflammatory bowel disease. Macrophages are immune cells that form the first line of defense against pathogens, but also mediate tissue damage in inflammatory disease. Macrophages initiate inflammation by recognising and responding to components of bacterial cells. Macrophages of the wall of the gut are constantly replenished from the blood. Upon entering the intestine, newly-arrived cells modulate their response to stimuli derived from the bacteria in the wall of the gut. This process fails in chronic inflammatory bowel diseases (IBD). Both the major forms of IBD, Crohn’s disease and ulcerative colitis, run in families. The inheritance is complex, involving more than 200 different regions of the genome. We hypothesised that the genetic risk of IBD is associated specifically with altered regulation of genes that control the development of macrophages. In this study, we used the comprehensive transcriptome dataset produced by the FANTOM5 consortium to identify the sets of promoters and enhancers that are involved in adaptation of macrophages to the gut wall, their response to bacterial stimuli, and how their functions are integrated. A reanalysis of published genome-wide association data based upon regulated genes in monocytes as candidates strongly supports the view that susceptibility to IBD arises from a primary defect in macrophage differentiation.
Collapse
|
38
|
Li J, Zou L, Zhou Y, Li L, Zhu Y, Yang Y, Gong Y, Lou J, Ke J, Zhang Y, Tian J, Zou D, Peng X, Chang J, Gong J, Zhong R, Zhou X, Miao X. A low-frequency variant in SMAD7 modulates TGF-β signaling and confers risk for colorectal cancer in Chinese population. Mol Carcinog 2017; 56:1798-1807. [PMID: 28218435 DOI: 10.1002/mc.22637] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/08/2017] [Accepted: 02/16/2017] [Indexed: 12/22/2022]
Abstract
The TGF-β pathway plays an essential role in regulating cell proliferation and differentiation. GWASs and candidate approaches have identified a battery of genetic variants in the TGF-β pathway contributing to colorectal cancer (CRC). However, most of the significant variants are common variants and their functions remain ambiguous. To identify causal variants with low-frequency in the TGF-β pathway contributing to CRC susceptibility in Chinese population, we performed targeted sequencing of 12 key genes in TGF-β signaling in CRC patients followed by a two-stage case-control study with a total of 5109 cases and 5169 controls. Bioinformatic annotations and biochemical experiments were applied to reveal the potential functions of significant variants. Seven low-frequency genetic variants were captured through targeted sequencing. The two stage association studies showed that missense variant rs3764482 (c. 83C>T; p. S28F) in the gene SMAD7 was consistently and significantly associated with CRC risk. Compared with the wild type, the ORs for variant allele were 1.37 (95%CI: 1.10-1.70, P = 0.005), 1.55 (95%CI: 1.30-1.86, P = 1.15 × 106 ), and 1.48 (1.29-1.70, P = 2.44 × 10;8 ) in stage 1, stage 2, and the combined analyses, respectively. Functional annotations revealed that the minor allele T of rs3764482 was more effective than the major allele C in blocking the TGF-β signaling and inhibiting the phosphorylation of receptor-regulated SMADs (R-SMADs). In conclusion, low-frequency coding variant rs3764482 in SMAD7 is associated with CRC risk in Chinese population. The rs3764482 variant may block the TGF-β signaling via impeding the activation of downstream genes, leading to cancer cell proliferation, thus contributing to CRC pathogenesis.
Collapse
Affiliation(s)
- Jiaoyuan Li
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Environment and Health, Tongji Medical College, Huazhong University of Science and Technology, Ministry of Education & Ministry of Environmental Protection, Wuhan, China
| | - Li Zou
- Department of Health Care, Bao'an Maternal and Child Health Hospital, Shenzhen, China
| | - Ying Zhou
- Institute of Orthopaedics, the First Affiliated Hospital of Chinese PLA General Hospial, Beijing, China
| | - Lu Li
- Key Laboratory of Environment and Health, Tongji Medical College, Huazhong University of Science and Technology, Ministry of Education & Ministry of Environmental Protection, Wuhan, China
| | - Ying Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Environment and Health, Tongji Medical College, Huazhong University of Science and Technology, Ministry of Education & Ministry of Environmental Protection, Wuhan, China
| | - Yang Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Environment and Health, Tongji Medical College, Huazhong University of Science and Technology, Ministry of Education & Ministry of Environmental Protection, Wuhan, China
| | - Yajie Gong
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Environment and Health, Tongji Medical College, Huazhong University of Science and Technology, Ministry of Education & Ministry of Environmental Protection, Wuhan, China
| | - Jiao Lou
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Environment and Health, Tongji Medical College, Huazhong University of Science and Technology, Ministry of Education & Ministry of Environmental Protection, Wuhan, China
| | - Juntao Ke
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Environment and Health, Tongji Medical College, Huazhong University of Science and Technology, Ministry of Education & Ministry of Environmental Protection, Wuhan, China
| | - Yi Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Environment and Health, Tongji Medical College, Huazhong University of Science and Technology, Ministry of Education & Ministry of Environmental Protection, Wuhan, China
| | - Jianbo Tian
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Environment and Health, Tongji Medical College, Huazhong University of Science and Technology, Ministry of Education & Ministry of Environmental Protection, Wuhan, China
| | - Danyi Zou
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Environment and Health, Tongji Medical College, Huazhong University of Science and Technology, Ministry of Education & Ministry of Environmental Protection, Wuhan, China
| | - Xiating Peng
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Environment and Health, Tongji Medical College, Huazhong University of Science and Technology, Ministry of Education & Ministry of Environmental Protection, Wuhan, China
| | - Jiang Chang
- Key Laboratory of Environment and Health, Tongji Medical College, Huazhong University of Science and Technology, Ministry of Education & Ministry of Environmental Protection, Wuhan, China
| | - Jing Gong
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Environment and Health, Tongji Medical College, Huazhong University of Science and Technology, Ministry of Education & Ministry of Environmental Protection, Wuhan, China
| | - Rong Zhong
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Environment and Health, Tongji Medical College, Huazhong University of Science and Technology, Ministry of Education & Ministry of Environmental Protection, Wuhan, China
| | - Xiaobo Zhou
- Brigham and Women's Hospital, Channing Division of Network Medicine, Boston, Massachusetts
| | - Xiaoping Miao
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Environment and Health, Tongji Medical College, Huazhong University of Science and Technology, Ministry of Education & Ministry of Environmental Protection, Wuhan, China
| |
Collapse
|
39
|
Petersen BS, Fredrich B, Hoeppner MP, Ellinghaus D, Franke A. Opportunities and challenges of whole-genome and -exome sequencing. BMC Genet 2017; 18:14. [PMID: 28193154 PMCID: PMC5307692 DOI: 10.1186/s12863-017-0479-5] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 01/26/2017] [Indexed: 01/08/2023] Open
Abstract
Recent advances in the development of sequencing technologies provide researchers with unprecedented possibilities for genetic analyses. In this review, we will discuss the history of genetic studies and the progress driven by next-generation sequencing (NGS), using complex inflammatory bowel diseases as an example. We focus on the opportunities, but also challenges that researchers are facing when working with NGS data to unravel the genetic causes underlying diseases.
Collapse
Affiliation(s)
| | - Broder Fredrich
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Marc P Hoeppner
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - David Ellinghaus
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany.
| |
Collapse
|
40
|
Genetics of inflammatory bowel disease: beyond NOD2. Lancet Gastroenterol Hepatol 2017; 2:224-234. [PMID: 28404137 DOI: 10.1016/s2468-1253(16)30111-x] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/02/2016] [Accepted: 09/02/2016] [Indexed: 01/11/2023]
Abstract
The study of the genetic underpinnings of inflammatory bowel disease has made great progress since the identification of NOD2 as a major susceptibility gene. Novel genotyping and sequencing technologies have led to the discovery of 242 common susceptibility loci, 45 of which have been fine-mapped to statistically conclusive causal variants; 50 genes associated with very-early-onset inflammatory disease have been identified. The evolving genetic architecture of inflammatory bowel disease has deepened our understanding of its pathogenesis through identification of major disease associated pathways-knowledge that has the potential to indicate novel drug targets or markers for personalised medicine. However, many causal variants have yet to be identified, and a large proportion of missing heritability still needs to be accounted for. In addition, the medical and scientific communities are probably not yet fully harnessing the power of these genetic discoveries.
Collapse
|
41
|
Luo Y, de Lange KM, Jostins L, Moutsianas L, Randall J, Kennedy NA, Lamb CA, McCarthy S, Ahmad T, Edwards C, Serra EG, Hart A, Hawkey C, Mansfield JC, Mowat C, Newman WG, Nichols S, Pollard M, Satsangi J, Simmons A, Tremelling M, Uhlig H, Wilson DC, Lee JC, Prescott NJ, Lees CW, Mathew CG, Parkes M, Barrett JC, Anderson CA. Exploring the genetic architecture of inflammatory bowel disease by whole-genome sequencing identifies association at ADCY7. Nat Genet 2017; 49:186-192. [PMID: 28067910 PMCID: PMC5289625 DOI: 10.1038/ng.3761] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 12/07/2016] [Indexed: 02/06/2023]
Abstract
To further resolve the genetic architecture of the inflammatory bowel diseases ulcerative colitis and Crohn's disease, we sequenced the whole genomes of 4,280 patients at low coverage and compared them to 3,652 previously sequenced population controls across 73.5 million variants. We then imputed from these sequences into new and existing genome-wide association study cohorts and tested for association at ∼12 million variants in a total of 16,432 cases and 18,843 controls. We discovered a 0.6% frequency missense variant in ADCY7 that doubles the risk of ulcerative colitis. Despite good statistical power, we did not identify any other new low-frequency risk variants and found that such variants explained little heritability. We detected a burden of very rare, damaging missense variants in known Crohn's disease risk genes, suggesting that more comprehensive sequencing studies will continue to improve understanding of the biology of complex diseases.
Collapse
Affiliation(s)
- Yang Luo
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
- Division of Genetics and Rheumatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | | | - Luke Jostins
- Wellcome Trust Centre for Human Genetics, University of Oxford, Headington, UK
- Christ Church, University of Oxford, St Aldates, UK
| | - Loukas Moutsianas
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Joshua Randall
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Nicholas A. Kennedy
- Precision Medicine Exeter, University of Exeter, Exeter, UK
- IBD Pharmacogenetics, Royal Devon and Exeter Foundation Trust, Exeter, UK
| | | | - Shane McCarthy
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Tariq Ahmad
- Precision Medicine Exeter, University of Exeter, Exeter, UK
- IBD Pharmacogenetics, Royal Devon and Exeter Foundation Trust, Exeter, UK
| | - Cathryn Edwards
- Department of Gastroenterology, Torbay Hospital, Torbay, Devon, UK
| | | | - Ailsa Hart
- Department of Medicine, St Mark's Hospital, Harrow, Middlesex, UK
| | - Chris Hawkey
- Nottingham Digestive Diseases Centre, Queens Medical Centre, Nottingham, UK
| | - John C. Mansfield
- Institute of Human Genetics, Newcastle University, Newcastle upon Tyne, UK
| | - Craig Mowat
- Department of Medicine, Ninewells Hospital and Medical School, Dundee, UK
| | - William G. Newman
- Genetic Medicine, Manchester Academic Health Science Centre, Manchester, UK
- The Manchester Centre for Genomic Medicine, University of Manchester, Manchester, UK
| | - Sam Nichols
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Martin Pollard
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Jack Satsangi
- Gastrointestinal Unit, Wester General Hospital University of Edinburgh, Edinburgh, UK
| | - Alison Simmons
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
- Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Mark Tremelling
- Gastroenterology & General Medicine, Norfolk and Norwich University Hospital, Norwich, UK
| | - Holm Uhlig
- Translational Gastroenterology Unit and the Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - David C. Wilson
- Paediatric Gastroenterology and Nutrition, Royal Hospital for Sick Children, Edinburgh, UK
- Child Life and Health, University of Edinburgh, Edinburgh, Scotland, UK
| | - James C. Lee
- Inflammatory Bowel Disease Research Group, Addenbrooke's Hospital, Cambridge, UK
| | - Natalie J. Prescott
- Department of Medical and Molecular Genetics, Faculty of Life Science and Medicine, King's College London, Guy's Hospital, London, UK
| | - Charlie W. Lees
- Gastrointestinal Unit, Wester General Hospital University of Edinburgh, Edinburgh, UK
| | - Christopher G. Mathew
- Department of Medical and Molecular Genetics, Faculty of Life Science and Medicine, King's College London, Guy's Hospital, London, UK
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of Witwatersrand, South Africa
| | - Miles Parkes
- Inflammatory Bowel Disease Research Group, Addenbrooke's Hospital, Cambridge, UK
| | - Jeffrey C. Barrett
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Carl A. Anderson
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| |
Collapse
|
42
|
Brant SR, Okou DT, Simpson CL, Cutler DJ, Haritunians T, Bradfield JP, Chopra P, Prince J, Begum F, Kumar A, Huang C, Venkateswaran S, Datta LW, Wei Z, Thomas K, Herrinton LJ, Klapproth JMA, Quiros AJ, Seminerio J, Liu Z, Alexander JS, Baldassano RN, Dudley-Brown S, Cross RK, Dassopoulos T, Denson LA, Dhere TA, Dryden GW, Hanson JS, Hou JK, Hussain SZ, Hyams JS, Isaacs KL, Kader H, Kappelman MD, Katz J, Kellermayer R, Kirschner BS, Kuemmerle JF, Kwon JH, Lazarev M, Li E, Mack D, Mannon P, Moulton DE, Newberry RD, Osuntokun BO, Patel AS, Saeed SA, Targan SR, Valentine JF, Wang MH, Zonca M, Rioux JD, Duerr RH, Silverberg MS, Cho JH, Hakonarson H, Zwick ME, McGovern DPB, Kugathasan S. Genome-Wide Association Study Identifies African-Specific Susceptibility Loci in African Americans With Inflammatory Bowel Disease. Gastroenterology 2017; 152:206-217.e2. [PMID: 27693347 PMCID: PMC5164948 DOI: 10.1053/j.gastro.2016.09.032] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/14/2016] [Accepted: 09/17/2016] [Indexed: 01/03/2023]
Abstract
BACKGROUND & AIMS The inflammatory bowel diseases (IBD) ulcerative colitis (UC) and Crohn's disease (CD) cause significant morbidity and are increasing in prevalence among all populations, including African Americans. More than 200 susceptibility loci have been identified in populations of predominantly European ancestry, but few loci have been associated with IBD in other ethnicities. METHODS We performed 2 high-density, genome-wide scans comprising 2345 cases of African Americans with IBD (1646 with CD, 583 with UC, and 116 inflammatory bowel disease unclassified) and 5002 individuals without IBD (controls, identified from the Health Retirement Study and Kaiser Permanente database). Single-nucleotide polymorphisms (SNPs) associated at P < 5.0 × 10-8 in meta-analysis with a nominal evidence (P < .05) in each scan were considered to have genome-wide significance. RESULTS We detected SNPs at HLA-DRB1, and African-specific SNPs at ZNF649 and LSAMP, with associations of genome-wide significance for UC. We detected SNPs at USP25 with associations of genome-wide significance for IBD. No associations of genome-wide significance were detected for CD. In addition, 9 genes previously associated with IBD contained SNPs with significant evidence for replication (P < 1.6 × 10-6): ADCY3, CXCR6, HLA-DRB1 to HLA-DQA1 (genome-wide significance on conditioning), IL12B,PTGER4, and TNC for IBD; IL23R, PTGER4, and SNX20 (in strong linkage disequilibrium with NOD2) for CD; and KCNQ2 (near TNFRSF6B) for UC. Several of these genes, such as TNC (near TNFSF15), CXCR6, and genes associated with IBD at the HLA locus, contained SNPs with unique association patterns with African-specific alleles. CONCLUSIONS We performed a genome-wide association study of African Americans with IBD and identified loci associated with UC in only this population; we also replicated IBD, CD, and UC loci identified in European populations. The detection of variants associated with IBD risk in only people of African descent demonstrates the importance of studying the genetics of IBD and other complex diseases in populations beyond those of European ancestry.
Collapse
Affiliation(s)
- Steven R Brant
- Department of Medicine, Meyerhoff Inflammatory Bowel Disease Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - David T Okou
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - Claire L Simpson
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee; Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Baltimore, Maryland
| | - David J Cutler
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Talin Haritunians
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Jonathan P Bradfield
- Center for Applied Genomics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Pankaj Chopra
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Jarod Prince
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - Ferdouse Begum
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Archana Kumar
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - Chengrui Huang
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | | | - Lisa W Datta
- Department of Medicine, Meyerhoff Inflammatory Bowel Disease Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Zhi Wei
- Center for Applied Genomics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Kelly Thomas
- Center for Applied Genomics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | | | | | - Antonio J Quiros
- Department of Pediatrics, Medical University of South Carolina, Pediatric Center for Inflammatory Bowel Disorders, Summerville, South Carolina
| | - Jenifer Seminerio
- Department of Gastroenterology, Medical University of South Carolina Digestive Disease Center, Charleston, South Carolina
| | - Zhenqiu Liu
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Jonathan S Alexander
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Robert N Baldassano
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Sharon Dudley-Brown
- Department of Medicine, Johns Hopkins University Schools of Medicine & Nursing, Baltimore, Maryland
| | - Raymond K Cross
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | | | - Lee A Denson
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Tanvi A Dhere
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Gerald W Dryden
- Department of Medicine, University of Louisville, Louisville, Kentucky
| | - John S Hanson
- Charlotte Gastroenterology and Hepatology, Charlotte, North Carolina
| | - Jason K Hou
- Department of Medicine, Baylor College of Medicine; Veterans Affairs Health Services Research and Development Service, Center for Innovations in Quality Effectiveness and Safety; Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas
| | - Sunny Z Hussain
- Department of Pediatrics, Willis-Knighton Physician Network, Shreveport, Louisiana
| | - Jeffrey S Hyams
- Connecticut Children's Medical Center, Hartford, Connecticut
| | - Kim L Isaacs
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Howard Kader
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland
| | - Michael D Kappelman
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jeffry Katz
- Case Western Reserve University, Cleveland, Ohio
| | - Richard Kellermayer
- Section of Pediatric Gastroenterology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| | - Barbara S Kirschner
- Department of Pediatrics, University of Chicago Comer Children's Hospital, Chicago, Illinois
| | - John F Kuemmerle
- Medicine and Physiology and Biophysics, Medical College of Virginia Campus of Virginia Commonwealth University, Richmond, Virginia
| | - John H Kwon
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Mark Lazarev
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ellen Li
- Department of Medicine, Stony Brook University School of Medicine, Stony Brook, New York
| | - David Mack
- Department of Pediatrics, University of Ottawa and Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Peter Mannon
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | | | - Rodney D Newberry
- Department of Internal Medicine, Washington University School of Medicine, St Louis, Missouri
| | | | - Ashish S Patel
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Shehzad A Saeed
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Stephan R Targan
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | | | - Ming-Hsi Wang
- Division of Gastroenterology and Hepatology, Mayo Clinic Florida, Jacksonville, Florida
| | - Martin Zonca
- Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan
| | - John D Rioux
- Department of Medicine, Université de Montréal and the Montreal Heart Institute Research Center, Montreal, Quebec, Canada
| | - Richard H Duerr
- Department of Medicine and Clinical and Translational Science Institute, School of Medicine and Department of Human Genetics, Graduate School of Public Health; University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mark S Silverberg
- Department of Medicine, Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, University of Toronto, Toronto, Toronto, Ontario, Canada
| | - Judy H Cho
- Medicine and Genetics, Icahn School of Medicine at Mount Sinai, Charles Bronfman Institute for Personalized Medicine, New York, New York
| | - Hakon Hakonarson
- Center for Applied Genomics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Michael E Zwick
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Dermot P B McGovern
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Subra Kugathasan
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia; Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia.
| |
Collapse
|
43
|
Abstract
The cause of Crohn’s disease (CD) has posed a conundrum for at least a century. A large body of work coupled with recent technological advances in genome research have at last started to provide some of the answers. Initially this review seeks to explain and to differentiate between bowel inflammation in the primary immunodeficiencies that generally lead to very early onset diffuse bowel inflammation in humans and in animal models, and the real syndrome of CD. In the latter, a trigger, almost certainly enteric infection by one of a multitude of organisms, allows the faeces access to the tissues, at which stage the response of individuals predisposed to CD is abnormal. Direct investigation of patients’ inflammatory response together with genome-wide association studies (GWAS) and DNA sequencing indicate that in CD the failure of acute inflammation and the clearance of bacteria from the tissues, and from within cells, is defective. The retained faecal products result in the characteristic chronic granulomatous inflammation and adaptive immune response. In this review I will examine the contemporary evidence that has led to this understanding, and look for explanations for the recent dramatic increase in the incidence of this disease.
Collapse
|
44
|
Abstract
The cause of Crohn's disease (CD) has posed a conundrum for at least a century. A large body of work coupled with recent technological advances in genome research have at last started to provide some of the answers. Initially this review seeks to explain and to differentiate between bowel inflammation in the primary immunodeficiencies that generally lead to very early onset diffuse bowel inflammation in humans and in animal models, and the real syndrome of CD. In the latter, a trigger, almost certainly enteric infection by one of a multitude of organisms, allows the faeces access to the tissues, at which stage the response of individuals predisposed to CD is abnormal. Direct investigation of patients' inflammatory response together with genome-wide association studies (GWAS) and DNA sequencing indicate that in CD the failure of acute inflammation and the clearance of bacteria from the tissues, and from within cells, is defective. The retained faecal products result in the characteristic chronic granulomatous inflammation and adaptive immune response. In this review I will examine the contemporary evidence that has led to this understanding, and look for explanations for the recent dramatic increase in the incidence of this disease.
Collapse
|
45
|
Di Marco Barros R, Roberts NA, Dart RJ, Vantourout P, Jandke A, Nussbaumer O, Deban L, Cipolat S, Hart R, Iannitto ML, Laing A, Spencer-Dene B, East P, Gibbons D, Irving PM, Pereira P, Steinhoff U, Hayday A. Epithelia Use Butyrophilin-like Molecules to Shape Organ-Specific γδ T Cell Compartments. Cell 2016; 167:203-218.e17. [PMID: 27641500 PMCID: PMC5037318 DOI: 10.1016/j.cell.2016.08.030] [Citation(s) in RCA: 270] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 07/06/2016] [Accepted: 08/16/2016] [Indexed: 12/12/2022]
Abstract
Many body surfaces harbor organ-specific γδ T cell compartments that contribute to tissue integrity. Thus, murine dendritic epidermal T cells (DETCs) uniquely expressing T cell receptor (TCR)-Vγ5 chains protect from cutaneous carcinogens. The DETC repertoire is shaped by Skint1, a butyrophilin-like (Btnl) gene expressed specifically by thymic epithelial cells and suprabasal keratinocytes. However, the generality of this mechanism has remained opaque, since neither Skint1 nor DETCs are evolutionarily conserved. Here, Btnl1 expressed by murine enterocytes is shown to shape the local TCR-Vγ7(+) γδ compartment. Uninfluenced by microbial or food antigens, this activity evokes the developmental selection of TCRαβ(+) repertoires. Indeed, Btnl1 and Btnl6 jointly induce TCR-dependent responses specifically in intestinal Vγ7(+) cells. Likewise, human gut epithelial cells express BTNL3 and BTNL8 that jointly induce selective TCR-dependent responses of human colonic Vγ4(+) cells. Hence, a conserved mechanism emerges whereby epithelia use organ-specific BTNL/Btnl genes to shape local T cell compartments.
Collapse
Affiliation(s)
- Rafael Di Marco Barros
- Francis Crick Institute, London WC2A3LY, UK; Peter Gorer Department of Immunobiology, King's College London, London SE19RT, UK; MBPhD Programme, University College London, London WC1E 6BT, UK
| | | | - Robin J Dart
- Francis Crick Institute, London WC2A3LY, UK; Peter Gorer Department of Immunobiology, King's College London, London SE19RT, UK; Department of Gastroenterology, Guy's and St Thomas' Foundation Trust, London SE17EH, UK
| | - Pierre Vantourout
- Peter Gorer Department of Immunobiology, King's College London, London SE19RT, UK
| | | | - Oliver Nussbaumer
- Peter Gorer Department of Immunobiology, King's College London, London SE19RT, UK
| | | | | | - Rosie Hart
- Francis Crick Institute, London WC2A3LY, UK
| | - Maria Luisa Iannitto
- Peter Gorer Department of Immunobiology, King's College London, London SE19RT, UK
| | - Adam Laing
- Peter Gorer Department of Immunobiology, King's College London, London SE19RT, UK
| | | | | | - Deena Gibbons
- Peter Gorer Department of Immunobiology, King's College London, London SE19RT, UK
| | - Peter M Irving
- Department of Gastroenterology, Guy's and St Thomas' Foundation Trust, London SE17EH, UK
| | - Pablo Pereira
- Department of Immunology, Pasteur Institute, 75015 Paris, France
| | - Ulrich Steinhoff
- Institute for Medical Microbiology and Hospital Epidemiology, University of Marburg, 35037 Marburg, Germany
| | - Adrian Hayday
- Francis Crick Institute, London WC2A3LY, UK; Peter Gorer Department of Immunobiology, King's College London, London SE19RT, UK.
| |
Collapse
|
46
|
Visschedijk MC, Alberts R, Mucha S, Deelen P, de Jong DJ, Pierik M, Spekhorst LM, Imhann F, van der Meulen-de Jong AE, van der Woude CJ, van Bodegraven AA, Oldenburg B, Löwenberg M, Dijkstra G, Ellinghaus D, Schreiber S, Wijmenga C, Rivas MA, Franke A, van Diemen CC, Weersma RK. Pooled Resequencing of 122 Ulcerative Colitis Genes in a Large Dutch Cohort Suggests Population-Specific Associations of Rare Variants in MUC2. PLoS One 2016; 11:e0159609. [PMID: 27490946 PMCID: PMC4973970 DOI: 10.1371/journal.pone.0159609] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 07/05/2016] [Indexed: 12/17/2022] Open
Abstract
Genome-wide association studies have revealed several common genetic risk variants for ulcerative colitis (UC). However, little is known about the contribution of rare, large effect genetic variants to UC susceptibility. In this study, we performed a deep targeted re-sequencing of 122 genes in Dutch UC patients in order to investigate the contribution of rare variants to the genetic susceptibility to UC. The selection of genes consists of 111 established human UC susceptibility genes and 11 genes that lead to spontaneous colitis when knocked-out in mice. In addition, we sequenced the promoter regions of 45 genes where known variants exert cis-eQTL-effects. Targeted pooled re-sequencing was performed on DNA of 790 Dutch UC cases. The Genome of the Netherlands project provided sequence data of 500 healthy controls. After quality control and prioritization based on allele frequency and pathogenicity probability, follow-up genotyping of 171 rare variants was performed on 1021 Dutch UC cases and 1166 Dutch controls. Single-variant association and gene-based analyses identified an association of rare variants in the MUC2 gene with UC. The associated variants in the Dutch population could not be replicated in a German replication cohort (1026 UC cases, 3532 controls). In conclusion, this study has identified a putative role for MUC2 on UC susceptibility in the Dutch population and suggests a population-specific contribution of rare variants to UC.
Collapse
Affiliation(s)
- Marijn C. Visschedijk
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Centre Groningen, 9700 RB, Groningen, The Netherlands
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, 9700 RB, Groningen, The Netherlands
| | - Rudi Alberts
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Centre Groningen, 9700 RB, Groningen, The Netherlands
| | - Soren Mucha
- Institute of Clinical Molecular Biology, Kiel University, D-24105, Kiel, Germany
| | - Patrick Deelen
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, 9700 RB, Groningen, The Netherlands
| | - Dirk J. de Jong
- Department of Gastroenterology and Hepatology, Radboud University Nijmegen Medical Centre, 6525 GA, Nijmegen, The Netherlands
| | - Marieke Pierik
- Division of Gastroenterology and Hepatology, Maastricht University Medical Centre, 6229 HX, Maastricht, The Netherlands
| | - Lieke M. Spekhorst
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Centre Groningen, 9700 RB, Groningen, The Netherlands
| | - Floris Imhann
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Centre Groningen, 9700 RB, Groningen, The Netherlands
| | | | - C. Janneke van der Woude
- Department of Gastroenterology and Hepatology, Erasmus University Medical Centre, 3015 CE, Rotterdam, The Netherlands
| | - Adriaan A. van Bodegraven
- Department of Gastroenterology and Hepatology, VU University Medical Centre, 1081 HZ, Amsterdam, The Netherlands
| | - Bas Oldenburg
- Department of Gastroenterology and Hepatology, University Medical Centre Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Mark Löwenberg
- Department of Gastroenterology and Hepatology, Academic Medical Centre, 1105 AZ, Amsterdam, The Netherlands
| | - Gerard Dijkstra
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Centre Groningen, 9700 RB, Groningen, The Netherlands
| | - David Ellinghaus
- Institute of Clinical Molecular Biology, Kiel University, D-24105, Kiel, Germany
| | - Stefan Schreiber
- Department of Internal Medicine I, University Medical Centre Schleswig-Holstein, Kiel, Germany
| | - Cisca Wijmenga
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, 9700 RB, Groningen, The Netherlands
| | | | | | - Manuel A. Rivas
- Centre for the Study of IBD (SCIBD) Genetics, The Broad Institute, Cambridge, Massachusetts, United States of America
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, D-24105, Kiel, Germany
| | - Cleo C. van Diemen
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, 9700 RB, Groningen, The Netherlands
| | - Rinse K. Weersma
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Centre Groningen, 9700 RB, Groningen, The Netherlands
| |
Collapse
|
47
|
Genetic Association Analysis Reveals Differences in the Contribution of NOD2 Variants to the Clinical Phenotypes of Orofacial Granulomatosis. Inflamm Bowel Dis 2016; 22:1552-8. [PMID: 27306066 PMCID: PMC4912233 DOI: 10.1097/mib.0000000000000844] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Orofacial granulomatosis (OFG) is a rare, inflammatory disorder of the mouth, in which some patients also have intestinal Crohn's disease (CD). The etiology remains largely unknown, although there is a high prevalence of atopy, and oral granulomas are also seen in other immune disorders particularly CD and sarcoidosis. We investigated whether genetic variants associated with an increased risk of CD, sarcoidosis, or atopy were also associated with susceptibility to OFG. METHODS Patients were stratified clinically as isolated oral manifestations (OFG only) or concurrent intestinal CD (OFG+CD). We genotyped 201 patients and 1023 healthy controls for risk variants in NOD2, IRGM, IL23R, ATG16L1 (CD), BTNL2 (sarcoidosis), and FLG (atopy). The coding regions of the NOD2 gene were screened for rare, potentially pathogenic variants in OFG. RESULTS A combined analysis of 3 CD-risk variants in NOD2 showed no association with any OFG subgroup. NOD2 p.L1007insC was associated with OFG+CD (P = 0.023) and IL23R p.R381Q with all OFG (P = 0.031). The sarcoidosis risk variant rs2076530 in BTNL2 was associated with all OFG (P = 0.013). We identified 7 rare missense NOD2 alleles in 8 individuals with OFG, 4 OFG-only patients and 4 patients with OFG+CD. There was a significant enrichment of NOD2 variants in the OFG+CD group compared to the OFG-only group (P = 0.008, common variants; P = 0.04, all common and rare variants). CONCLUSIONS Our findings suggest that genetic variants in NOD2 are only associated with OFG in patients with concurrent intestinal disease. A genome-wide association scan is needed to fully define the genetic architecture of OFG.
Collapse
|
48
|
Ghrenassia E, Mekinian A, Chapelon-Albric C, Levy P, Cosnes J, Sève P, Lefèvre G, Dhôte R, Launay D, Prendki V, Morell-Dubois S, Sadoun D, Mehdaoui A, Soussan M, Bourrier A, Ricard L, Benamouzig R, Valeyre D, Fain O. Digestive-tract sarcoidosis: French nationwide case-control study of 25 cases. Medicine (Baltimore) 2016; 95:e4279. [PMID: 27442665 PMCID: PMC5265782 DOI: 10.1097/md.0000000000004279] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/19/2016] [Accepted: 06/22/2016] [Indexed: 12/21/2022] Open
Abstract
Digestive tract sarcoidosis (DTS) is rare and case-series are lacking. In this retrospective case-control study, we aimed to compare the characteristics, outcome, and treatment of patients with DTS, nondigestive tract sarcoidosis (NDTS), and Crohn disease.We included cases of confirmed sarcoidosis, symptomatic digestive tract involvement, and noncaseating granuloma in any digestive tract. Each case was compared with 2 controls with sarcoidoisis without digestive tract involvement and 4 with Crohn disease.We compared 25 cases of DTS to 50 controls with NDTS and 100 controls with Crohn disease. The major digestive clinical features were abdominal pain (56%), weight loss (52%), nausea/vomiting (48%), diarrhea (32%), and digestive bleeding (28%). On endoscopy of DTS, macroscopic lesions were observed in the esophagus (9%), stomach (78%), duodenum (9%), colon, (25%) and rectum (19%). As compared with NDTS, DTS was associated with weight loss (odds ratio [OR] 5.8; 95% confidence interval [CI] 1.44-23.3) and the absence of thoracic adenopathy (OR 5.0; 95% CI 1.03-25). As compared with Crohn disease, DTS was associated with Afro-Caribbean origin (OR 27; 95% CI 3.6-204) and the absence of ileum or colon macroscopic lesions (OR 62.5; 95% CI 10.3-500). On the last follow-up, patients with DTS showed no need for surgery (versus 31% for patients with Crohn disease; P = 0.0013), and clinical digestive remission was frequent (76% vs. 35% for patients with Crohn disease; P = 0.0002).The differential diagnosis with Crohn disease could be an issue with DTS. Nevertheless, the 2 diseases often have different clinical presentation and outcome.
Collapse
Affiliation(s)
- Etienne Ghrenassia
- AP-HP, Hôpital Saint-Antoine, Sorbonne Universités, UPMC Université Paris 06, service de médecine interne and Inflammation-Immunopathology-Biotherapy Department (DHU i2B)
| | - Arsene Mekinian
- AP-HP, Hôpital Saint-Antoine, Sorbonne Universités, UPMC Université Paris 06, service de médecine interne and Inflammation-Immunopathology-Biotherapy Department (DHU i2B)
| | - Catherine Chapelon-Albric
- APHP, Hôpital Pitié-Salpétrière, Sorbonne Universités, UPMC Université Paris 06, service de médecine interne
| | - Pierre Levy
- APHP, Hôpital Tenon, Sorbonne Universités, UPMC Université Paris 06, Public health department
| | - Jacques Cosnes
- APHP, Hôpital Saint-Antoine, Sorbonne Universités, UPMC Université Paris 06, service de gastro-entérologie, Paris
| | - Pascal Sève
- Hôpital de la Croix-Rousse, Hospices Civils de Lyon, department of internal medicine, F-Lyon. University Claude Bernard Lyon 1, F-69100, Villeurbanne
| | | | - Robin Dhôte
- APHP, Hôpital Avicenne, service de médecine interne, université Paris 13, Bobigny, France
| | - David Launay
- Hôpital Claude Huriez, service de médecine interne, Lille, France
| | - Virginie Prendki
- Department of internal medicine, Division of internal medicine and rehabilitation, rehabilitation and geriatrics, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | | | - Danielle Sadoun
- APHP, Hôpital Avicenne, Université Paris 13, service de pneumologie, Bobigny
| | | | - Michael Soussan
- APHP, Hôpital Avicenne, Université Paris 13, service de médecine nucléaire
| | - Anne Bourrier
- APHP, Hôpital Saint-Antoine, Sorbonne Universités, UPMC Université Paris 06, service de gastro-entérologie, Paris
| | - Laure Ricard
- AP-HP, Hôpital Saint-Antoine, Sorbonne Universités, UPMC Université Paris 06, service de médecine interne and Inflammation-Immunopathology-Biotherapy Department (DHU i2B)
| | - Robert Benamouzig
- APHP, Hôpital Avicenne, Université Paris 13, service de gastro-entérologie, Bobigny, France
| | - Dominique Valeyre
- APHP, Hôpital Avicenne, Université Paris 13, service de pneumologie, Bobigny
| | - Olivier Fain
- AP-HP, Hôpital Saint-Antoine, Sorbonne Universités, UPMC Université Paris 06, service de médecine interne and Inflammation-Immunopathology-Biotherapy Department (DHU i2B)
| |
Collapse
|
49
|
Affiliation(s)
- David A. Rhodes
- Department of Pathology, Immunology Division, University of Cambridge, Cambridge Institute for Medical Research, Cambridge CB2 0XY, United Kingdom; ,
| | - Walter Reith
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, CH-1211 Geneva 4, Switzerland;
| | - John Trowsdale
- Department of Pathology, Immunology Division, University of Cambridge, Cambridge Institute for Medical Research, Cambridge CB2 0XY, United Kingdom; ,
| |
Collapse
|
50
|
Abstract
Genome-wide association studies (GWAS) have associated many single variants with complex disease, yet the better part of heritable complex disease risk remains unexplained. Analytical tools designed to work under specific population genetic models are needed. Rare variants are increasingly shown to be important in human complex disease, but most existing GWAS data do not cover rare variants. Explicit population genetic models predict that genes contributing to complex traits and experiencing recurrent, unconditionally deleterious, mutation will harbor multiple rare, causative mutations of subtle effect. It is difficult to identify genes harboring rare variants of large effect that contribute to complex disease risk via the single marker association tests typically used in GWAS. Gene/region-based association tests may have the power detect associations by combining information from multiple markers, but have yielded limited success in practice. This is partially because many methods have not been widely applied. Here, we empirically demonstrate the utility of a procedure based on the rank truncated product (RTP) method, filtered to reduce the effects of linkage disequilibrium. We apply the procedure to the Wellcome Trust Case Control Consortium (WTCCC) data set, and uncover previously unidentified associations, some of which have been replicated in much larger studies. We show that, in the absence of significant rare variant coverage, RTP based methods still have the power to detect associated genes. We recommend that RTP-based methods be applied to all existing GWAS data to maximize the usefulness of those data. For this, we provide efficient software implementing our procedure.
Collapse
|