1
|
Pradela LK, Casella T, Manieri FZ, de Andrade LK, Barroso MDV, Nhu NTK, Schembri MA, Moreira CG, Nogueira MCL. Description of bla KPC-carrying Escherichia coli in patients from a Brazilian hospital over a 4-year period. Diagn Microbiol Infect Dis 2025; 112:116833. [PMID: 40209325 DOI: 10.1016/j.diagmicrobio.2025.116833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/28/2025] [Accepted: 04/03/2025] [Indexed: 04/12/2025]
Abstract
Klebsiella pneumoniae carbapenemase (KPC)-producing Escherichia coli are recognized by the World Health Organization as a critical group of bacterial priority pathogens of public health importance. Thus, increased understanding of the genetic characteristics of KPC-producing E. coli is required. Here, we performed a retrospective study in a Brazilian teaching-hospital to describe the genomic features linked to antimicrobial resistance, virulence, and phylogeny of 40 meropenem-resistant E. coli. All isolates carried the blaKPC-2 gene, but amikacin, tigecycline, colistin, polymyxin B, and fosfomycin showed good activity. Molecular typing by MLST revealed 20 sequence types (STs), with a predominance of ST131. Whole-genome sequencing identified Tn4401 as a mechanism responsible for blaKPC-2 mobilization, a variety of antimicrobial resistance and virulence genes, the predominance of pathogenic phylogroup lineages, and the grouping of genomes belonging to the same ST. KPC-producing E. coli is not a common pathogen, but few treatment alternatives are available against potentially virulent strains.
Collapse
Affiliation(s)
- Letícia Kalir Pradela
- Centro de Investigação de Microrganismos, FAMERP. 5416, Brigadeiro Faria Lima Avenue. Vila São Pedro. CEP: 15090-000. São José do Rio Preto, SP, Brazil
| | - Tiago Casella
- Centro de Investigação de Microrganismos, FAMERP. 5416, Brigadeiro Faria Lima Avenue. Vila São Pedro. CEP: 15090-000. São José do Rio Preto, SP, Brazil; Hospital de Base de São José do Rio Preto. 5544, Brigadeiro Faria Lima Avenue. Vila São Pedro. CEP: 15090-000. São José do Rio Preto, SP, Brazil
| | - Fernanda Zani Manieri
- Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista "Júlio de Mesquita Filho". Rodovia Araraquara-Jau, Km 01. CEP: 14801902. Araraquara, SP, Brazil
| | - Letícia Kellen de Andrade
- Centro de Investigação de Microrganismos, FAMERP. 5416, Brigadeiro Faria Lima Avenue. Vila São Pedro. CEP: 15090-000. São José do Rio Preto, SP, Brazil
| | - Marlon do Valle Barroso
- Centro de Investigação de Microrganismos, FAMERP. 5416, Brigadeiro Faria Lima Avenue. Vila São Pedro. CEP: 15090-000. São José do Rio Preto, SP, Brazil
| | - Nguyen Thi Khanh Nhu
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Mark Andrew Schembri
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia; School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Cristiano Gallina Moreira
- Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista "Júlio de Mesquita Filho". Rodovia Araraquara-Jau, Km 01. CEP: 14801902. Araraquara, SP, Brazil; Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Mara Corrêa Lelles Nogueira
- Centro de Investigação de Microrganismos, FAMERP. 5416, Brigadeiro Faria Lima Avenue. Vila São Pedro. CEP: 15090-000. São José do Rio Preto, SP, Brazil; Hospital de Base de São José do Rio Preto. 5544, Brigadeiro Faria Lima Avenue. Vila São Pedro. CEP: 15090-000. São José do Rio Preto, SP, Brazil.
| |
Collapse
|
2
|
Wang K, Zhang C, Munang’andu HM, Xu C, Cai W, Yan X, Tao Z. Comparative Genomic Analysis of Two Vibrio harveyi Strains from Larimichthys crocea with Divergent Virulence Profiles. Microorganisms 2025; 13:1129. [PMID: 40431301 PMCID: PMC12114485 DOI: 10.3390/microorganisms13051129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 05/06/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
Vibrio harveyi is a significant pathogen in marine aquaculture, causing vibriosis in various marine species. This study presents a comparative genomic analysis of two V. harveyi strains, N8T11 and 45T2, which exhibit differing virulence profiles. Virulence assays revealed that N8T11 caused 92% mortality in infected fish, while 45T2 resulted in 0% mortality. Whole-genome sequencing revealed that strain N8T11 harbors five plasmids (pN8T11a, pN8T11b, pN8T11c, pN8T11d and pN8T11e) absent in 45T2, encoding genes potentially linked to virulence, such as siderophore-mediated iron acquisition and stress response mechanisms. Pan-genome analysis highlighted substantial genomic plasticity within V. harveyi, with mobile genetic elements, including plasmids and prophages, contributing to horizontal gene transfer. Conjugation experiments demonstrated that all five N8T11 plasmids can transfer to 45T2 with efficiencies up to 87%, with pN8T11b remaining stable across multiple subcultures, enabling the dissemination of virulence-associated genes. These findings suggest that plasmid-mediated gene transfer plays a role in the virulence variability observed between V. harveyi strains. This study contributes to understanding the genomic factors underlying pathogenicity in V. harveyi and provides insights for future research aimed at controlling vibriosis in aquaculture.
Collapse
Affiliation(s)
- Kequan Wang
- School of Fisheries, Zhejiang Ocean University, Zhoushan 316022, China; (K.W.); (C.Z.); (X.Y.)
| | - Chaozheng Zhang
- School of Fisheries, Zhejiang Ocean University, Zhoushan 316022, China; (K.W.); (C.Z.); (X.Y.)
| | | | - Cheng Xu
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1433 Ås, Norway;
| | - Wenlong Cai
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China;
| | - Xiaojun Yan
- School of Fisheries, Zhejiang Ocean University, Zhoushan 316022, China; (K.W.); (C.Z.); (X.Y.)
| | - Zhen Tao
- School of Fisheries, Zhejiang Ocean University, Zhoushan 316022, China; (K.W.); (C.Z.); (X.Y.)
| |
Collapse
|
3
|
Liu CC, Hsiao WWL. Machine learning reveals the dynamic importance of accessory sequences for Salmonella outbreak clustering. mBio 2025; 16:e0265024. [PMID: 39873499 PMCID: PMC11898705 DOI: 10.1128/mbio.02650-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 11/25/2024] [Indexed: 01/30/2025] Open
Abstract
Bacterial typing at whole-genome scales is now feasible owing to decreasing costs in high-throughput sequencing and the recent advances in computation. The unprecedented resolution of whole-genome typing is achieved by genotyping the variable segments of bacterial genomes that can fluctuate significantly in gene content. However, due to the transient and hypervariable nature of many accessory elements, the value of the added resolution in outbreak investigations remains disputed. To assess the analytical value of bacterial accessory genomes in clustering epidemiologically related cases, we trained classifiers on a set of genomes collected from 24 Salmonella enterica outbreaks of food, animal, or environmental origin. The models demonstrated high precision and recall on unseen test data with near-perfect accuracy in classifying clonal and short-term outbreaks. Annotating the genomic features important for cluster classification revealed functional enrichment of molecular fingerprints in genes involved in membrane transportation, trafficking, and carbohydrate metabolism. Importantly, we discovered polymorphisms in mobile genetic elements (MGEs) and gain/loss of MGEs to be informative in defining outbreak clusters. To quantify the ability of MGE variations to cluster outbreak clones, we devised a reference-free tree-building algorithm inspired by colored de Bruijn graphs, which enabled topological comparisons between MGE and standard typing methods. Systematic evaluation of clustering MGEs on an unseen dataset of 34 Salmonella outbreaks yielded mixed results that exemplified the power of accessory sequence variations when core genomes of unrelated cases are insufficiently discriminatory, as well as the distortion of outbreak signals by microevolution events or the incomplete assembly of MGEs. IMPORTANCE Gene-by-gene typing is widely used to detect clusters of foodborne illnesses that share a common origin. It remains actively debated whether the inclusion of accessory sequences in bacterial typing schema is informative or deleterious for cluster definitions in outbreak investigations due to the potential confounding effects of horizontal gene transfer. By training machine learning models on a curated set of historical Salmonella outbreaks, we revealed an enriched presence of outbreak distinguishing features in a wide range of mobile genetic elements. Systematic comparison of the efficacy of clustering different accessory elements against standard sequence typing methods led to our cataloging of scenarios where accessory sequence variations were beneficial and uninformative to resolving outbreak clusters. The presented work underscores the complexity of the molecular trends in enteric outbreaks and seeks to inspire novel computational ways to exploit whole-genome sequencing data in enteric disease surveillance and management.
Collapse
Affiliation(s)
- Chao Chun Liu
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - William W. L. Hsiao
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
4
|
Abdel-Glil MY, Brandt C, Pletz MW, Neubauer H, Sprague LD. High intra-laboratory reproducibility of nanopore sequencing in bacterial species underscores advances in its accuracy. Microb Genom 2025; 11:001372. [PMID: 40117330 PMCID: PMC11927881 DOI: 10.1099/mgen.0.001372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/30/2025] [Indexed: 03/23/2025] Open
Abstract
Nanopore sequencing is a third-generation technology known for its portability, real-time analysis and ability to generate long reads. It has great potential for use in clinical diagnostics, but thorough validation is required to address accuracy concerns and ensure reliable and reproducible results. In this study, we automated an open-source workflow (freely available at https://gitlab.com/FLI_Bioinfo/nanobacta) for the assembly of Oxford Nanopore sequencing data and used it to investigate the reproducibility of assembly results under consistent conditions. We used a benchmark dataset of five bacterial reference strains and generated eight technical sequencing replicates of the same DNA using the Ligation and Rapid Barcoding kits together with the Flongle and MinION flow cells. We assessed reproducibility by measuring discrepancies such as substitution and insertion/deletion errors, analysing plasmid recovery results and examining genetic markers and clustering information. We compared the results of genome assemblies with and without short-read polishing. Our results show an average reproducibility accuracy of 99.999955% for nanopore-only assemblies and 99.999996% when the short reads were used for polishing. The genomic analysis results were highly reproducible for the nanopore-only assemblies without short read in the following areas: identification of genetic markers for antimicrobial resistance and virulence, classical MLST, taxonomic classification, genome completeness and contamination analysis. Interestingly, the clustering information results from the core genome SNP and core genome MLST analyses were also highly reproducible for the nanopore-only assemblies, with pairwise differences of up to two allele differences in core genome MLST and two SNPs in core genome SNP across replicates. After polishing the assemblies with short reads, the pairwise differences for cgMLST were 0 and for cgSNP were 0-1 SNP across replicates. These results highlight the advances in sequencing accuracy of nanopore data without the use of short reads.
Collapse
Affiliation(s)
- Mostafa Y. Abdel-Glil
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Naumburger Str. 96A, 07743 Jena, Germany
- Institute for Infectious Diseases and Infection Control, Jena University Hospital – Friedrich Schiller University, Jena, Germany
| | - Christian Brandt
- Institute for Infectious Diseases and Infection Control, Jena University Hospital – Friedrich Schiller University, Jena, Germany
- InfectoGnostics Research Campus Jena, Center for Applied Research, 07743 Jena, Germany
| | - Mathias W. Pletz
- Institute for Infectious Diseases and Infection Control, Jena University Hospital – Friedrich Schiller University, Jena, Germany
| | - Heinrich Neubauer
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Naumburger Str. 96A, 07743 Jena, Germany
| | - Lisa D. Sprague
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Naumburger Str. 96A, 07743 Jena, Germany
| |
Collapse
|
5
|
Garcias B, Monteith W, Vidal A, Aguirre L, Pascoe B, Kobras CM, Hitchings MD, Sheppard SK, Martin M, Darwich L. Characterization of antibiotic determinants and heavy metal resistance genes in Escherichia coli from pigs in Catalonia. Microb Genom 2025; 11:001371. [PMID: 40131333 PMCID: PMC11937225 DOI: 10.1099/mgen.0.001371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 01/13/2025] [Indexed: 03/26/2025] Open
Abstract
More antibiotics are administered to livestock animals than to treat human infections. Industrialization, large animal densities and early weaning mean pigs are exposed to more antibiotics than any other livestock animal. Consequently, antimicrobial resistance (AMR) is common among commensal and pathogenic bacteria. Heavy metals (HMs) are also often used as feed additives for growth promotion and infection prevention alongside antimicrobials, and increased exposure to copper, zinc and cadmium can further encourage AMR through co-selection. In this study, we sequenced an archived collection of 112 Escherichia coli isolates from pigs in Catalonia using short- and long-read sequencing methods to detect AMR and HM tolerance genes. The most common AMR genes were mdfA (84.8%), aph(3″)-Ib (52.7%), bla TEM-1B (45.6%) and aph(6)-Id (45.6%). Genes relevant to public health, such as the extended-spectrum β-lactamases (15.4%), bla CTX-M type or bla SHV, or mobile colistin resistance (mcr) genes (13.4%), such as mcr-1, were also found. HM tolerance genes were present in almost every genome but were rarely located in plasmids, and, in most cases, AMR and HM tolerance genes were not located on the same plasmids. Of the genes predicted to increase tolerance to HMs, only those with activity to mercury were co-located on plasmids alongside other AMR determinants. However, mercury is rarely used in pig farming and does not support a scenario where AMR and HM genes are co-selected. Finally, we identified the exclusive association between mcr-4 and ColE10 plasmid, which may help target interventions to curtail its spread among pig Escherichia coli.
Collapse
Affiliation(s)
- Biel Garcias
- Department Sanitat i Anatomia Animals, Veterinary Faculty, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, CP 08193, Spain
| | - William Monteith
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Anna Vidal
- Department Sanitat i Anatomia Animals, Veterinary Faculty, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, CP 08193, Spain
| | - Laia Aguirre
- Department Sanitat i Anatomia Animals, Veterinary Faculty, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, CP 08193, Spain
| | - Ben Pascoe
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Carolin M. Kobras
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | | | - Samuel K. Sheppard
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Marga Martin
- Department Sanitat i Anatomia Animals, Veterinary Faculty, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, CP 08193, Spain
| | - Laila Darwich
- Department Sanitat i Anatomia Animals, Veterinary Faculty, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, CP 08193, Spain
| |
Collapse
|
6
|
Michealsamy A, Jayapalan S. Comparative Pan- and Phylo-Genomic Analysis of Ideonella and Thermobifida Strains: Dissemination of Biodegradation Potential and Genomic Divergence. Biochem Genet 2025:10.1007/s10528-025-11031-4. [PMID: 40000572 DOI: 10.1007/s10528-025-11031-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 01/08/2025] [Indexed: 02/27/2025]
Abstract
Ideonella and Thermobifida were the most promising bacterial candidates for degrading plastic polymers. A comparative pan- and phylogenomic analysis of 33 Ideonella and Thermobifida strains was done to determine their plastic degradation potential, niche adaptation and speciation. Our study disclosed that more accessory genes in the strains showed phenotypic plasticity, according to the BPGA data. Pan and core genes were employed for the phylogenetic reconstruction. Pathway enrichment analyses scrutinized the functional roles of the core and adaptive-associated genes. KEGG annotation revealed that most genes were associated with the metabolism of amino acids and carbohydrates. The detailed COG analysis disclosed that approximately 40% of the pan genes performed metabolic functions. The unique gene pool consisted of genes chiefly involved in "general function prediction" and "amino acid transport and metabolism". Our in silico study revealed that these strains could assist in agronomic applications in the future since they devour nitrogen compounds and their central metabolic pathways are involved in amino acid metabolism. The rational selection of strains of Ideonella is far more effective at depolymerising plastics than Thermobifida. A greater number of unique genes, 1701 and 692, were identified for Ideonella sakaiensis 201-F6 and Thermobifida alba DSM-43795, respectively. Furthermore, we examined the singletons involved in xenobiotic catabolism. The unique singleton data were used to construct a supertree. To characterize the conserved patterns, we used SMART and MEME to identify domain and transmembrane regions in the unique protein sequences. Therefore, our study unraveled the genomic insights into the ecology-driven speciation of Ideonella and Thermobifida.
Collapse
Affiliation(s)
| | - Saranya Jayapalan
- Department of Bioinformatics, Pondicherry University, Puducherry, India
| |
Collapse
|
7
|
González Ojeda I, Palace SG, Martinez PP, Azarian T, Grant LR, Hammitt LL, Hanage WP, Lipsitch M. Linkage-based ortholog refinement in bacterial pangenomes with CLARC. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.18.629228. [PMID: 39763808 PMCID: PMC11702680 DOI: 10.1101/2024.12.18.629228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Bacterial genomes exhibit significant variation in gene content and sequence identity. Pangenome analyses explore this diversity by classifying genes into core and accessory clusters of orthologous groups (COGs). However, strict sequence identity cutoffs can misclassify divergent alleles as different genes, inflating accessory gene counts. CLARC (Connected Linkage and Alignment Redefinition of COGs) [https://github.com/IndraGonz/CLARC] improves pangenome analyses by condensing accessory COGs using functional annotation and linkage information. Through this approach, orthologous groups are consolidated into more practical units of selection. Analyzing 8,000+ Streptococcus pneumoniae genomes, CLARC reduced accessory gene estimates by more than 30% and improved evolutionary predictions based on accessory gene frequencies. By refining COG definitions, CLARC offers critical insights into bacterial evolution, aiding genetic studies across diverse populations.
Collapse
Affiliation(s)
- Indra González Ojeda
- Center for Communicable Disease Dynamics, Department of Epidemiology, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
- Harvard Biophysics Graduate Program, Graduate School of Arts and Sciences, Harvard University, Boston, Massachusetts, USA
| | - Samantha G Palace
- Center for Communicable Disease Dynamics, Department of Epidemiology, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
- Department of Immunology and Infectious Diseases, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Pamela P Martinez
- Department of Microbiology, University of Illinois Urbana-Champaign, Champaign, Illinois, USA
| | - Taj Azarian
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA
| | - Lindsay R Grant
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Laura L Hammitt
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - William P Hanage
- Center for Communicable Disease Dynamics, Department of Epidemiology, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Marc Lipsitch
- Center for Communicable Disease Dynamics, Department of Epidemiology, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
- Department of Immunology and Infectious Diseases, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Koch BJ, Park DE, Hungate BA, Liu CM, Johnson JR, Price LB. Predicting sepsis mortality into an era of pandrug-resistant E. coli through modeling. COMMUNICATIONS MEDICINE 2024; 4:278. [PMID: 39725703 DOI: 10.1038/s43856-024-00693-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/04/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Infections caused by antibiotic-resistant bacteria are increasingly frequent, burdening healthcare systems worldwide. As pathogens acquire resistance to all known antibiotics - i.e., become pan-resistant - treatment of the associated infections will become exceedingly difficult. We hypothesized that the emergence of pan-resistant bacterial pathogens will result in a sharp increase in human mortality. METHODS We tested this hypothesis by modeling the impact of a single hypothetical pan-resistant Escherichia coli strain on sepsis deaths in the United States. We used long-term data on sepsis incidence, mortality rates, strain dynamics, and treatment outcomes to parameterize a set of models encompassing a range of plausible future scenarios. All models accounted for historical and projected temporal changes in population size and age distribution. RESULTS The models suggest that sepsis deaths could increase 18- to 46-fold within 5 years of the emergence of a single pan-resistant E. coli strain. This large and rapid change contrasts sharply with the current expectation of gradual change under continuing multidrug-resistance. CONCLUSIONS Failure to prevent the emergence of pan-resistance would have dire consequences for public health.
Collapse
Affiliation(s)
- Benjamin J Koch
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA.
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA.
| | - Daniel E Park
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington, DC, USA
| | - Bruce A Hungate
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Cindy M Liu
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington, DC, USA
| | - James R Johnson
- Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, USA
- University of Minnesota, Minneapolis, MN, USA
| | - Lance B Price
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington, DC, USA
| |
Collapse
|
9
|
Nkene I, Alapati S, Ribeiro A, Okoliegbe I, Unnikrishnan S, Ironside C, Wilson B, Hijazi K. Genomic and growth fitness study of extended-spectrum β-lactamase-producing Escherichia coli from bloodstream infections after introduction of a national 4C antimicrobial stewardship policy in Scotland. Int J Antimicrob Agents 2024; 64:107380. [PMID: 39522832 DOI: 10.1016/j.ijantimicag.2024.107380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/10/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Extended-spectrum β-lactamase-producing Escherichia coli remains a major cause of hospital-acquired bloodstream infections in countries with high antimicrobial stewardship compliance. METHODS Isolates from bloodstream infections that occurred between 2010 and 2020 in a tertiary-level hospital in North-East Scotland soon after introduction of the '4C' antimicrobial stewardship policy were analysed for phylogenetic structure, antimicrobial resistance, plasmid, and virulence gene carriage. Growth fitness was measured in kinetic assays. Non-metric-multidimensional-scaling was used to evaluate clonal relationships, antimicrobial resistance, and virulence profiles in early and later years after the 4C policy introduction. Clonal and fitness trends over the study period were determined by generalised additive modelling. The relationship between clonal type, antimicrobial resistance, and fitness was evaluated by linear regression. RESULTS Three hierarchical phylogenetic clusters were identified, with the most dominant cluster (O25:H4/fimH30) including all, and nearly exclusively, Clade C ST131 isolates as well as minor non-ST131 sequence types. The prevalence of ST131 was largely stable over the study period. Resistance to aminoglycosides and aztreonam in ST131 was lower (P = 0.019 and P = 0.004, respectively) during later years (2016-2020) by 28% on average compared to early years soon after 4C policy implementation (2010-2014). Carriage of virulence factors involved in bacterial adaptation was higher in ST131 compared to non-ST131 but mostly stable in early vs. later years. Growth fitness of ST131 was lower than non-ST131 and declined steadily in later years (P < 0.0001). CONCLUSIONS Despite stable virulence factor carriage, population structure, and resistance to cephalosporins, we show increased susceptibility of ST131 to aminoglycosides and aztreonam and concurrent fitness decline years after the introduction of the 4C policy.
Collapse
Affiliation(s)
- Istifanus Nkene
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, UK
| | - Susanth Alapati
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, UK
| | - Antonio Ribeiro
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, UK; Centre for Genome-Enabled Biology and Medicine, University of Aberdeen, Aberdeen, UK
| | - Ijeoma Okoliegbe
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, UK; Medical Microbiology, Aberdeen Royal Infirmary, Aberdeen, UK
| | - Sreedevi Unnikrishnan
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, UK
| | | | - Becky Wilson
- Medical Microbiology, Aberdeen Royal Infirmary, Aberdeen, UK
| | - Karolin Hijazi
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
10
|
Peñil-Celis A, Tagg KA, Webb HE, Redondo-Salvo S, Francois Watkins L, Vielva L, Griffin C, Kim JY, Folster JP, Garcillan-Barcia MP, de la Cruz F. Mobile genetic elements define the non-random structure of the Salmonella enterica serovar Typhi pangenome. mSystems 2024; 9:e0036524. [PMID: 39058093 PMCID: PMC11334464 DOI: 10.1128/msystems.00365-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/30/2024] [Indexed: 07/28/2024] Open
Abstract
Bacterial relatedness measured using select chromosomal loci forms the basis of public health genomic surveillance. While approximating vertical evolution through this approach has proven exceptionally valuable for understanding pathogen dynamics, it excludes a fundamental dimension of bacterial evolution-horizontal gene transfer. Incorporating the accessory genome is the logical remediation and has recently shown promise in expanding epidemiological resolution for enteric pathogens. Employing k-mer-based Jaccard index analysis, and a novel genome length distance metric, we computed pangenome (i.e., core and accessory) relatedness for the globally important pathogen Salmonella enterica serotype Typhi (Typhi), and graphically express both vertical (homology-by-descent) and horizontal (homology-by-admixture) evolutionary relationships in a reticulate network of over 2,200 U.S. Typhi genomes. This analysis revealed non-random structure in the Typhi pangenome that is driven predominantly by the gain and loss of mobile genetic elements, confirming and expanding upon known epidemiological patterns, revealing novel plasmid dynamics, and identifying avenues for further genomic epidemiological exploration. With an eye to public health application, this work adds important biological context to the rapidly improving ways of analyzing bacterial genetic data and demonstrates the value of the accessory genome to infer pathogen epidemiology and evolution.IMPORTANCEGiven bacterial evolution occurs in both vertical and horizontal dimensions, inclusion of both core and accessory genetic material (i.e., the pangenome) is a logical step toward a more thorough understanding of pathogen dynamics. With an eye to public, and indeed, global health relevance, we couple contemporary tools for genomic analysis with decades of research on mobile genetic elements to demonstrate the value of the pangenome, known and unknown, annotated, and hypothetical, for stratification of Salmonella enterica serovar Typhi (Typhi) populations. We confirm and expand upon what is known about Typhi epidemiology, plasmids, and antimicrobial resistance dynamics, and offer new avenues of exploration to further deduce Typhi ecology and evolution, and ultimately to reduce the incidence of human disease.
Collapse
Affiliation(s)
- Arancha Peñil-Celis
- Instituto de Biomedicina y Biotecnología de Cantabria, (CSIC, Universidad de Cantabria), Santander, Spain
| | - Kaitlin A. Tagg
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Hattie E. Webb
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Santiago Redondo-Salvo
- Instituto de Biomedicina y Biotecnología de Cantabria, (CSIC, Universidad de Cantabria), Santander, Spain
- Biomar Microbial Technologies, León, Spain
| | - Louise Francois Watkins
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Luis Vielva
- Departamento de Ingeniería de las Comunicaciones, Universidad de Cantabria, Santander, Spain
| | - Chelsey Griffin
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, Tennessee, USA
| | - Justin Y. Kim
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- ASRT, Inc., Suwanee, Georgia, USA
| | - Jason P. Folster
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - M. Pilar Garcillan-Barcia
- Instituto de Biomedicina y Biotecnología de Cantabria, (CSIC, Universidad de Cantabria), Santander, Spain
| | - Fernando de la Cruz
- Instituto de Biomedicina y Biotecnología de Cantabria, (CSIC, Universidad de Cantabria), Santander, Spain
| |
Collapse
|
11
|
Clabots C, Thuras P, Johnson JR. Longitudinal molecular analysis of clinical and fecal Escherichia coli isolates at a Veterans Affairs Medical Center in Minnesota, USA, 2012-2019. Front Microbiol 2024; 15:1409272. [PMID: 38887718 PMCID: PMC11180817 DOI: 10.3389/fmicb.2024.1409272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 04/26/2024] [Indexed: 06/20/2024] Open
Abstract
Introduction Extraintestinal Escherichia coli infections represent a growing public health threat, However, current studies often overlook important factors such as temporal patterns of infection, phylogenetic and clonal background, or the host gut E. coli population, despite their likely significance. Methods In this study, we analyzed >7000 clinical E. coli isolates from patients at the Minneapolis Veterans Affairs Health Care System (2012-2019), and concurrent fecal E. coli from uninfected veterans. We assessed phylogenetic group distribution, membership in selected sequence types (STs), and subsets thereof-including the pandemic, resistance-associated ST131-H30R, and ST1193 lineages-and strain type, as defined by pulsed-field gel electrophoresis. We then analyzed these features alongside the temporal patterns of infection in individual hosts. Results The H30R lineage emerged as the leading lineage, both overall and among fluoroquinolone-resistant isolates, with ST1193 following among fluoroquinolone-resistant isolates. Recurrences were common, occurring in 31% of subjects and 41% of episodes, and often multiple and delayed/prolonged (up to 23 episodes per subject; up to 2655d post-index). Remarkably, these recurrences typically involved the subject's index strain (63% of recurrences), even when affecting extra-urinary sites. ST131, H30R, ST1193, and fluoroquinolone-resistant strains generally caused significantly more recurrences than did other strains, despite similar recurrence intervals. ST131 strain types shifted significantly over the study period. Infection-causing strains were commonly detectable in host feces at times other than during an infection episode; the likelihood of detection varied with surveillance intensity and proximity to the infection. H30R and ST1193 were prominent causes of fecal-clinical clonal overlap. Discussion These findings provide novel insights into the temporal and clonal characteristics of E. coli infections in veterans and support efforts to develop anti-colonization interventions.
Collapse
Affiliation(s)
- Connie Clabots
- Minneapolis VA Health Care System, Minneapolis, MN, United States
| | - Paul Thuras
- Minneapolis VA Health Care System, Minneapolis, MN, United States
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, United States
| | - James R. Johnson
- Minneapolis VA Health Care System, Minneapolis, MN, United States
- Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
12
|
Piper KR, Ikhimiukor OO, Souza SSR, Garcia-Aroca T, Andam CP. Evolutionary dynamics of the accessory genomes of Staphylococcus aureus. mSphere 2024; 9:e0075123. [PMID: 38501935 PMCID: PMC11036810 DOI: 10.1128/msphere.00751-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/24/2024] [Indexed: 03/20/2024] Open
Abstract
Staphylococcus aureus is a ubiquitous commensal and opportunistic bacterial pathogen that can cause a wide gamut of infections, which are exacerbated by the presence of multidrug-resistant and methicillin-resistant S. aureus. S. aureus is genetically heterogeneous and consists of numerous distinct lineages. Using 558 complete genomes of S. aureus, we aim to determine how the accessory genome content among phylogenetic lineages of S. aureus is structured and has evolved. Bayesian hierarchical clustering identified 10 sequence clusters, of which seven contained major sequence types (ST 1, 5, 8, 30, 59, 239, and 398). The seven sequence clusters differed in their accessory gene content, including genes associated with antimicrobial resistance and virulence. Focusing on the two largest clusters, BAPS8 and BAPS10, and each consisting mostly of ST5 and ST8, respectively, we found that the structure and connected components in the co-occurrence networks of accessory genomes varied between them. These differences are explained, in part, by the variation in the rates at which the two sequence clusters gained and lost accessory genes, with the highest rate of gene accumulation occurring recently in their evolutionary histories. We also identified a divergent group within BAPS10 that has experienced high gene gain and loss early in its history. Together, our results show highly variable and dynamic accessory genomes in S. aureus that are structured by the history of the specific lineages that carry them.IMPORTANCEStaphylococcus aureus is an opportunistic, multi-host pathogen that can cause a variety of benign and life-threatening infections. Our results revealed considerable differences in the structure and evolution of the accessory genomes of major lineages within S. aureus. Such genomic variation within a species can have important implications on disease epidemiology, pathogenesis of infection, and interactions with the vertebrate host. Our findings provide important insights into the underlying genetic basis for the success of S. aureus as a highly adaptable and resistant pathogen, which will inform current efforts to control and treat staphylococcal diseases.
Collapse
Affiliation(s)
- Kathryn R. Piper
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| | - Odion O. Ikhimiukor
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| | - Stephanie S. R. Souza
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| | - Teddy Garcia-Aroca
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Cheryl P. Andam
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| |
Collapse
|
13
|
Farzi N, Pourramezan Z, Akhavan Attar F, Mostaan S, Oloomi M. Sequence-subtype association of multi-drug-resistant diarrheagenic Escherichia coli. IRANIAN JOURNAL OF MICROBIOLOGY 2024; 16:176-186. [PMID: 38854980 PMCID: PMC11162169 DOI: 10.18502/ijm.v16i2.15350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Background and Objectives Multi-drug-resistant pathogens pose a significant threat as they can rapidly spread, leading to severe healthcare-associated invasive infections. In developing countries, diarrheagenic Escherichia coli (DEC) is a major bacterial pathogen responsible for causing diarrhea. However, the outbreak of resistant strains has made the treatment of DEC infections much more challenging. This study aimed to investigate the relationship between antibiotic resistance genes and other virulence categories in E. coli strains that cause diarrhea, particularly DEC. Materials and Methods The phylogenetic grouping was defined using PCR and multi-locus sequence type (MLST) methods. Results Among the isolates analyzed, 14 were identified as resistant and were classified into eight distinct sequence types: ST3, ST53, ST77, ST483, ST512, ST636, ST833, and ST774, indicating genetic diversity among the resistant strains. Certain sequence types, notably ST512 and ST636, were found to be associated with multiple antibiotic resistance in DEC. Regarding antibiotic susceptibility, strains showed the highest resistance to amoxicillin, suggesting that this antibiotic may not be effective in treating DEC infections. On the other hand, the isolates demonstrated susceptibility to amikacin and chloramphenicol, implying that these antibiotics could be more suitable treatment options for DEC infections. Conclusion The findings underscore the importance of promptly identifying antibiotic resistance patterns and their correlation with specific pathogenic virulence categories, as this knowledge can aid in selecting the most appropriate antibiotics for treating DEC infections. Considering the antibiotic resistance profiles and associated resistance genes is crucial in managing and containing diarrheal outbreaks and in selecting effective antibiotic therapies for DEC infections.
Collapse
Affiliation(s)
- Nastaran Farzi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Zahra Pourramezan
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | | | - Saeid Mostaan
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Mana Oloomi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
14
|
Poret AJ, Schaefers M, Merakou C, Mansour KE, Lagoudas GK, Cross AR, Goldberg JB, Kishony R, Uluer AZ, McAdam AJ, Blainey PC, Vargas SO, Lieberman TD, Priebe GP. De novo mutations mediate phenotypic switching in an opportunistic human lung pathogen. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579193. [PMID: 38370793 PMCID: PMC10871308 DOI: 10.1101/2024.02.06.579193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Bacteria evolving within human hosts encounter selective tradeoffs that render mutations adaptive in one context and deleterious in another. Here, we report that the cystic fibrosis-associated pathogen Burkholderia dolosa overcomes in-human selective tradeoffs by acquiring successive point mutations that alternate phenotypes. We sequenced the whole genomes of 931 respiratory isolates from two recently infected patients and an epidemiologically-linked, chronically-infected patient. These isolates are contextualized using 112 historical genomes from the same outbreak strain. Within both newly infected patients, diverse parallel mutations that disrupt O-antigen expression quickly arose, comprising 29% and 63% of their B. dolosa communities by 3 years. The selection for loss of O-antigen starkly contrasts with our previous observation of parallel O-antigen-restoring mutations after many years of chronic infection in the historical outbreak. Experimental characterization revealed that O-antigen loss increases uptake in immune cells while decreasing competitiveness in the mouse lung. We propose that the balance of these pressures, and thus whether O-antigen expression is advantageous, depends on tissue localization and infection duration. These results suggest that mutation-driven alternation during infection may be more frequent than appreciated and is underestimated without dense temporal sampling.
Collapse
Affiliation(s)
- Alexandra J. Poret
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology
- Department of Biological Engineering, Massachusetts Institute of Technology
| | - Matthew Schaefers
- Department of Anesthesiology, Critical Care and Pain Medicine, Division of Critical Care Medicine, Boston Children's Hospital
- Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts
| | - Christina Merakou
- Department of Anesthesiology, Critical Care and Pain Medicine, Division of Critical Care Medicine, Boston Children's Hospital
- Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts
| | - Kathryn E. Mansour
- Department of Anesthesiology, Critical Care and Pain Medicine, Division of Critical Care Medicine, Boston Children's Hospital
| | - Georgia K. Lagoudas
- Department of Biological Engineering, Massachusetts Institute of Technology
- Broad Institute of MIT and Harvard
| | - Ashley R. Cross
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine
| | - Joanna B. Goldberg
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine
| | - Roy Kishony
- Faculty of Biology and Faculty of Computer Science, Technion Israel
| | - Ahmet Z. Uluer
- Department of Pediatrics, Division of Respiratory Diseases, Boston Children’s Hospital
- Adult CF Program, Brigham and Women’s Hospital
- Department of Pediatrics, Harvard Medical School
| | - Alexander J. McAdam
- Department of Laboratory Medicine, Boston Children’s Hospital
- Department of Pathology, Harvard Medical School
| | - Paul C. Blainey
- Department of Biological Engineering, Massachusetts Institute of Technology
- Broad Institute of MIT and Harvard
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology
| | - Sara O. Vargas
- Department of Pathology, Harvard Medical School
- Department of Pathology, Boston Children’s Hospital
| | - Tami D. Lieberman
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology
- Department of Anesthesiology, Critical Care and Pain Medicine, Division of Critical Care Medicine, Boston Children's Hospital
| | - Gregory P. Priebe
- Department of Anesthesiology, Critical Care and Pain Medicine, Division of Critical Care Medicine, Boston Children's Hospital
- Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard
- Department of Pediatrics, Division of Infectious Diseases, Boston Children’s Hospital
| |
Collapse
|
15
|
Guitart-Matas J, Espunyes J, Illera L, Gonzalez-Escalona N, Ribas MP, Marco I, Migura-Garcia L. High-risk lineages of extended spectrum cephalosporinase producing Escherichia coli from Eurasian griffon vultures (Gyps fulvus) foraging in landfills in north-eastern Spain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168625. [PMID: 37977396 DOI: 10.1016/j.scitotenv.2023.168625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Extended-spectrum cephalosporinase producing (ESC) E. coli are regarded as key indicator microorganisms of antimicrobial resistance (AMR), calling for a One Health integrated global surveillance strategy. Wildlife is exposed to antibiotic contaminants and/or resistant bacteria that have been released into the environment, potentially acting as reservoirs and spreaders of resistance genes as well as sentinels of anthropogenic pressure. Monitoring AMR in wildlife has become crucial in determining anthropogenic environmental impacts as well as transmission routes. In this study, we determined the occurrence and potential sources of ESC E. coli in 218 Eurasian griffon vultures (Gyps fulvus) foraging regularly on human waste disposed at a dumpsite in north-eastern Spain. Minimal inhibitory concentration for 14 different antimicrobials was performed to evaluate the phenotype of the isolates, and whole genome sequencing was carried out to investigate lineages and plasmids harbouring ESC genes. Our sequences were compared to previously published Spanish sequences of human, animal, and wildlife origin. We report a high prevalence of CTX-M-15, as well as the presence of other resistance genes such as OXA-10, CTX-M-27, and CTX-M-65 which are rarely described in European livestock, suggesting a human origin. The isolates also carried a diverse range of additional AMR genes for a broad spectrum of drug families, with the majority being multi-drug resistant. The phylogenomic analyses suggests the transmission of high-risk lineages from humans to vultures, with 49 % of our isolates matching the most common extraintestinal pathogenic E. coli (ExPEC) lineages described in humans worldwide, including ST131, ST10 and ST58. We conclude that anthropogenically altered habitats, such as landfills, are hotspots for the acquisition and spread of high-risk ESC E. coli lineages associated with hospital infections. Measures must be implemented to limit their spread into natural environments.
Collapse
Affiliation(s)
- Judith Guitart-Matas
- Joint Research Unit IRTA-UAB in Animal Health, Animal Health Research Centre (CReSA), Autonomous University of Barcelona (UAB), Catalonia, Spain; Institute of Agrifood Research and Technology (IRTA), Animal Health Program (CReSA), WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe, Autonomous University of Barcelona (UAB), Catalonia, Spain
| | - Johan Espunyes
- Wildlife Conservation Medicine Research Group (WildCoM), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona (UAB), Catalonia, Spain
| | - Lucia Illera
- Wildlife Conservation Medicine Research Group (WildCoM), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona (UAB), Catalonia, Spain
| | | | - Maria Puig Ribas
- Wildlife Conservation Medicine Research Group (WildCoM), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona (UAB), Catalonia, Spain
| | - Ignasi Marco
- Wildlife Conservation Medicine Research Group (WildCoM), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona (UAB), Catalonia, Spain
| | - Lourdes Migura-Garcia
- Joint Research Unit IRTA-UAB in Animal Health, Animal Health Research Centre (CReSA), Autonomous University of Barcelona (UAB), Catalonia, Spain; Institute of Agrifood Research and Technology (IRTA), Animal Health Program (CReSA), WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe, Autonomous University of Barcelona (UAB), Catalonia, Spain.
| |
Collapse
|
16
|
Maeda T, Furusawa C. Laboratory Evolution of Antimicrobial Resistance in Bacteria to Develop Rational Treatment Strategies. Antibiotics (Basel) 2024; 13:94. [PMID: 38247653 PMCID: PMC10812413 DOI: 10.3390/antibiotics13010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
Laboratory evolution studies, particularly with Escherichia coli, have yielded invaluable insights into the mechanisms of antimicrobial resistance (AMR). Recent investigations have illuminated that, with repetitive antibiotic exposures, bacterial populations will adapt and eventually become tolerant and resistant to the drugs. Through intensive analyses, these inquiries have unveiled instances of convergent evolution across diverse antibiotics, the pleiotropic effects of resistance mutations, and the role played by loss-of-function mutations in the evolutionary landscape. Moreover, a quantitative analysis of multidrug combinations has shed light on collateral sensitivity, revealing specific drug combinations capable of suppressing the acquisition of resistance. This review article introduces the methodologies employed in the laboratory evolution of AMR in bacteria and presents recent discoveries concerning AMR mechanisms derived from laboratory evolution. Additionally, the review outlines the application of laboratory evolution in endeavors to formulate rational treatment strategies.
Collapse
Affiliation(s)
- Tomoya Maeda
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo 060-8589, Japan
- Center for Biosystems Dynamics Research, RIKEN, 6-2-3 Furuedai, Suita 565-0874, Japan;
| | - Chikara Furusawa
- Center for Biosystems Dynamics Research, RIKEN, 6-2-3 Furuedai, Suita 565-0874, Japan;
- Universal Biology Institute, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan
| |
Collapse
|
17
|
Eiamsam-ang T, Tadee P, Buddhasiri S, Chuammitri P, Kittiwan N, Pascoe B, Patchanee P. Commercial farmed swine harbour a variety of pathogenic bacteria and antimicrobial resistance genes. J Med Microbiol 2024; 73:001787. [PMID: 38230911 PMCID: PMC11418424 DOI: 10.1099/jmm.0.001787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/10/2023] [Indexed: 01/18/2024] Open
Abstract
Introduction. The northern region of Thailand serves as a crucial area for swine production, contributing to the Thai community food supply. Previous studies have highlighted the presence of foodborne bacterial pathogens originating from swine farms in this region, posing a threat to both human and animal health.Gap statement. Multiple swine bacterial pathogens have been studied at a species level, but the distribution and co-occurrence of bacterial pathogens in agricultural swine has not been well established.Aim. Our study employed the intestinal scraping technique to directly examine the bacterial micro-organisms interacting with the swine host.Methodology. We used shotgun metagenomic sequencing to analyse the bacterial pathogens inhabiting the caecal microbiome of swine from five commercial farms in northern Thailand.Results. A variety of pathogenic and opportunistic bacteria were identified, including Escherichia coli, Clostridium botulinum, Staphylococcus aureus and the Corynebacterium genus. From a One Health perspective, these species are important foodborne and opportunistic pathogens in both humans and agricultural animals, making swine a critical pathogen reservoir that can cause illness in humans, especially farm workers. Additionally, the swine caecal microbiome contains commensal bacteria such as Bifidobacterium, Lactobacillus and Faecalibacterium, which are associated with normal physiology and feed utilization in healthy swine. Antimicrobial resistance genes were also detected in all samples, specifically conferring resistance to tetracycline and aminoglycosides, which have historically been used extensively in swine farming.Conclusion. The findings further support the need for improved sanitation standards in swine farms, and additional monitoring of agricultural animals and farm workers to reduce contamination and improved produce safety for human consumption.
Collapse
Affiliation(s)
- Thanaporn Eiamsam-ang
- Graduate Program in Veterinary Science, Faculty of Veterinary Medicine, Chiang Mai University, Muang, Chiang Mai, Thailand
| | - Pakpoom Tadee
- Veterinary Academic Office, Faculty of Veterinary Medicine, Chiang Mai University, Muang, Chiang Mai, Thailand
| | - Songphon Buddhasiri
- Veterinary Academic Office, Faculty of Veterinary Medicine, Chiang Mai University, Muang, Chiang Mai, Thailand
| | - Phongsakorn Chuammitri
- Veterinary Academic Office, Faculty of Veterinary Medicine, Chiang Mai University, Muang, Chiang Mai, Thailand
| | - Nattinee Kittiwan
- Veterinary Research and Development Center (Upper Northern Region), Hang Chat, Lampang, Thailand
| | - Ben Pascoe
- Veterinary Academic Office, Faculty of Veterinary Medicine, Chiang Mai University, Muang, Chiang Mai, Thailand
- Centre for Genomic Pathogen Surveillance, Pandemic Sciences Institute, University of Oxford, Oxford, UK
- Ineos Oxford Istitute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, UK
| | - Prapas Patchanee
- Veterinary Academic Office, Faculty of Veterinary Medicine, Chiang Mai University, Muang, Chiang Mai, Thailand
| |
Collapse
|
18
|
Lin JD, Stogios PJ, Abe KT, Wang A, MacPherson J, Skarina T, Gingras AC, Savchenko A, Ensminger AW. Functional diversification despite structural congruence in the HipBST toxin-antitoxin system of Legionella pneumophila. mBio 2023; 14:e0151023. [PMID: 37819088 PMCID: PMC10653801 DOI: 10.1128/mbio.01510-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/29/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE Toxin-antitoxin (TA) systems are parasitic genetic elements found in almost all bacterial genomes. They are exchanged horizontally between cells and are typically poorly conserved across closely related strains and species. Here, we report the characterization of a tripartite TA system in the bacterial pathogen Legionella pneumophila that is highly conserved across Legionella species genomes. This system (denoted HipBSTLp) is a distant homolog of the recently discovered split-HipA system in Escherichia coli (HipBSTEc). We present bioinformatic, molecular, and structural analyses of the divergence between these two systems and the functionality of this newly described TA system family. Furthermore, we provide evidence to refute previous claims that the toxin in this system (HipTLp) possesses bifunctionality as an L. pneumophila virulence protein. Overall, this work expands our understanding of the split-HipA system architecture and illustrates the potential for undiscovered biology in these abundant genetic elements.
Collapse
Affiliation(s)
- Jordan D. Lin
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Peter J. Stogios
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Kento T. Abe
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
| | - Avril Wang
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - John MacPherson
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Tatiana Skarina
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
| | - Alexei Savchenko
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- Center for Structural Genomics of Infectious Diseases (CSGID), University of Calgary, Calgary, Alberta, Canada
| | - Alexander W. Ensminger
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
19
|
Connor CH, Zucoloto AZ, Munnoch JT, Yu IL, Corander J, Hoskisson PA, McDonald B, McNally A. Multidrug-resistant E. coli encoding high genetic diversity in carbohydrate metabolism genes displace commensal E. coli from the intestinal tract. PLoS Biol 2023; 21:e3002329. [PMID: 37847672 PMCID: PMC10581457 DOI: 10.1371/journal.pbio.3002329] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 09/11/2023] [Indexed: 10/19/2023] Open
Abstract
Extra-intestinal pathogenic Escherichia coli (ExPEC) can cause a variety of infections outside of the intestine and are a major causative agent of urinary tract infections. Treatment of these infections is increasingly frustrated by antimicrobial resistance (AMR) diminishing the number of effective therapies available to clinicians. Incidence of multidrug resistance (MDR) is not uniform across the phylogenetic spectrum of E. coli. Instead, AMR is concentrated in select lineages, such as ST131, which are MDR pandemic clones that have spread AMR globally. Using a gnotobiotic mouse model, we demonstrate that an MDR E. coli ST131 is capable of out-competing and displacing non-MDR E. coli from the gut in vivo. This is achieved in the absence of antibiotic treatment mediating a selective advantage. In mice colonised with non-MDR E. coli strains, challenge with MDR E. coli either by oral gavage or co-housing with MDR E. coli colonised mice results in displacement and dominant intestinal colonisation by MDR E. coli ST131. To investigate the genetic basis of this superior gut colonisation ability by MDR E. coli, we assayed the metabolic capabilities of our strains using a Biolog phenotypic microarray revealing altered carbon metabolism. Functional pangenomic analysis of 19,571 E. coli genomes revealed that carriage of AMR genes is associated with increased diversity in carbohydrate metabolism genes. The data presented here demonstrate that independent of antibiotic selective pressures, MDR E. coli display a competitive advantage to colonise the mammalian gut and points to a vital role of metabolism in the evolution and success of MDR lineages of E. coli via carriage and spread.
Collapse
Affiliation(s)
- Christopher H. Connor
- Institute of Microbiology and Infection, College of Medical and Dental Science, University of Birmingham, Birmingham, United Kingdom
- International Microbiome Centre, University of Calgary, Calgary, Canada
| | - Amanda Z. Zucoloto
- International Microbiome Centre, University of Calgary, Calgary, Canada
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - John T. Munnoch
- Strathclyde Institute of Pharmaceutical and Biomedical Science, University of Strathclyde, Glasgow, United Kingdom
| | - Ian-Ling Yu
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Jukka Corander
- Department of Biostatistics, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, United Kingdom
- Helsinki Institute of Information Technology, Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| | - Paul A. Hoskisson
- Strathclyde Institute of Pharmaceutical and Biomedical Science, University of Strathclyde, Glasgow, United Kingdom
| | - Braedon McDonald
- International Microbiome Centre, University of Calgary, Calgary, Canada
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Science, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
20
|
Bottery M, Brockhurst MA. Rapid evolution helps bacteria to pick up a plasmid. Proc Natl Acad Sci U S A 2023; 120:e2304474120. [PMID: 37126690 PMCID: PMC10175833 DOI: 10.1073/pnas.2304474120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] Open
Affiliation(s)
- Michael Bottery
- Division of Evolution, Infection and Genomics, University of Manchester, ManchesterM13 9PT, UK
| | - Michael A. Brockhurst
- Division of Evolution, Infection and Genomics, University of Manchester, ManchesterM13 9PT, UK
| |
Collapse
|
21
|
Xie Z, Huang J, Zhang S, Xu B, Zhang Q, Li B. Genomic and functional characterization of carbapenem-resistant Klebsiella pneumoniae from hospital wastewater. BMC Microbiol 2023; 23:115. [PMID: 37095431 PMCID: PMC10124015 DOI: 10.1186/s12866-023-02862-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/15/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND The emergence of carbapenem-resistant Klebsiella pneumoniae (CRKP) attracted extensive attention. Information on CRKP from hospital wastewater (HWW) is limited. The aims of this study were to investigate the genomic characteristics and to evaluate the survivability characteristics of 11 CRKP from HWW in a Chinese teaching hospital in Fujian province. RESULTS A total of 11 CRKP from HWW were recovered in this study. All CRKP from HWW were resistant to most antibiotics. Comparative genetic analysis demonstrated that all CRKP isolates were clustered into the three distinct phylogenetic clades and clade 2 and clade 3 were mixtures of samples collected from both HWW and clinical settings. Varieties of resistance genes, virulence genes and plasmid replicon types were detected in CRKP from HWW. In vitro transfer of blaKPC-2 was successful for 3 blaKPC-2-positive CRKP from HWW with high conjugation frequency. Our study demonstrated that the genetic environments of blaKPC-2 shared core structure with ISKpn27-blaKPC-2-ISKpn6. Group analysis showed that CRKP from HWW had a lower survivability in serum compared to clinical CRKP (p < 005); and CRKP from HWW had no significant difference in survivability in HWW compared to clinical CRKP (p > 005). CONCLUSIONS We analyzed the genomic and survivability characteristics of CRKP from HWW in a Chinese teaching hospital. These genomes represent a significant addition of genomic data from the genus and could serve as a valuable resource for future genomic studies about CRKP from HWW.
Collapse
Affiliation(s)
- Zhiqiang Xie
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, 29 Xinquan Rd, Fuzhou, 350001, Fujian, China
| | - Jiangqing Huang
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, 29 Xinquan Rd, Fuzhou, 350001, Fujian, China
| | - Shengcen Zhang
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, 29 Xinquan Rd, Fuzhou, 350001, Fujian, China
| | - BinBin Xu
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, 29 Xinquan Rd, Fuzhou, 350001, Fujian, China
| | - Qianwen Zhang
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, 29 Xinquan Rd, Fuzhou, 350001, Fujian, China
| | - Bin Li
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, 29 Xinquan Rd, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
22
|
Wagner TM, Howden BP, Sundsfjord A, Hegstad K. Transiently silent acquired antimicrobial resistance: an emerging challenge in susceptibility testing. J Antimicrob Chemother 2023; 78:586-598. [PMID: 36719135 PMCID: PMC9978586 DOI: 10.1093/jac/dkad024] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Acquisition and expression of antimicrobial resistance (AMR) mechanisms in bacteria are often associated with a fitness cost. Thus, evolutionary adaptation and fitness cost compensation may support the advance of subpopulations with a silent resistance phenotype when the antibiotic selection pressure is absent. However, reports are emerging on the transient nature of silent acquired AMR, describing genetic alterations that can change the expression of these determinants to a clinically relevant level of resistance, and the association with breakthrough infections causing treatment failures. This phenomenon of transiently silent acquired AMR (tsaAMR) is likely to increase, considering the overall expansion of acquired AMR in bacterial pathogens. Moreover, the augmented use of genotypic methods in combination with conventional phenotypic antimicrobial susceptibility testing (AST) will increasingly enable the detection of genotype and phenotype discrepancy. This review defines tsaAMR as acquired antimicrobial resistance genes with a corresponding phenotype within the wild-type distribution or below the clinical breakpoint for susceptibility for which genetic alterations can mediate expression to a clinically relevant level of resistance. References to in vivo resistance development and therapeutic failures caused by selected resistant subpopulations of tsaAMR in Gram-positive and Gram-negative pathogens are given. We also describe the underlying molecular mechanisms, including alterations in the expression, reading frame or copy number of AMR determinants, and discuss the clinical relevance concerning challenges for conventional AST.
Collapse
Affiliation(s)
- Theresa Maria Wagner
- Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
| | - Benjamin Peter Howden
- Microbiological Diagnostic Unit Public Health Laboratory, The Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | | | | |
Collapse
|
23
|
Neffe L, Forde TL, Oravcova K, Köhler U, Bautsch W, Tomasch J, Häussler S. Genomic epidemiology of clinical ESBL-producing Enterobacteriaceae in a German hospital suggests infections are primarily community- and regionally-acquired. Microb Genom 2022; 8:mgen000901. [PMID: 36748515 PMCID: PMC9837565 DOI: 10.1099/mgen.0.000901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Clinical Enterobacteriaceae isolates that produce extended-spectrum β-lactamases (ESBLs) have been increasingly reported at a global scale. However, comprehensive data on the molecular epidemiology of ESBL-producing strains are limited and few studies have been conducted in non-outbreak situations.We used whole-genome sequencing to describe the population structure of 294 ESBL-producing Escherichia coli and Klebsiella pneumoniae isolates that were recovered from a German community hospital throughout a 1 year sampling period in a non-outbreak situation.We found a high proportion of E. coli isolates (61.5 %) belonged to the globally disseminated extraintestinal pathogenic ST131, whereas a wider diversity of STs was observed among K. pneumoniae isolates. The E. coli ST131 population in this study was shaped by multiple introductions of strains as demonstrated by contextual genomic analysis including ST131 strains from other geographical sources. While no recent common ancestor of the isolates of the current study and other international isolates was found, our clinical isolates clustered with those previously recovered in the region. Furthermore, we found that the isolation of ESBL-producing clinical strains in hospitalized patients could only rarely be associated with likely patient-to-patient transmission, indicating primarily a community and regional acquisition of strains.Further genomic analyses of clinical, carriage and environmental isolates is needed to uncover hidden transmissions and thus discover the most common sources of ESBL-producing pathogen infections in our hospitals.
Collapse
Affiliation(s)
- Lisa Neffe
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research, Braunschweig, Germany,Institute for Molecular Bacteriology, TWINCORE GmbH, Center of Clinical and Experimental Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Center for Infection Research, Hannover, Germany
| | - Taya L. Forde
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Katarina Oravcova
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Ute Köhler
- Städtisches Klinikum Braunschweig gGmbH, Germany
| | | | - Jürgen Tomasch
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Susanne Häussler
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research, Braunschweig, Germany,Institute for Molecular Bacteriology, TWINCORE GmbH, Center of Clinical and Experimental Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Center for Infection Research, Hannover, Germany,Department of Clinical Microbiology, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany,*Correspondence: Susanne Häussler,
| |
Collapse
|
24
|
Xia F, Cheng J, Jiang M, Wang Z, Wen Z, Wang M, Ren J, Zhuge X. Genomics Analysis to Identify Multiple Genetic Determinants That Drive the Global Transmission of the Pandemic ST95 Lineage of Extraintestinal Pathogenic Escherichia coli (ExPEC). Pathogens 2022; 11:pathogens11121489. [PMID: 36558824 PMCID: PMC9781279 DOI: 10.3390/pathogens11121489] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) is a pathogen that causes host extraintestinal diseases. The ST95 E. coli lineage is one of the dominant ExPEC lineages in humans and poultry. In this study, we took advantage of extensive E. coli genomes available through public open-access databases to construct a detailed understanding of the phylogeny and evolution of ST95. We used a high variability of accessory genomes to highlight the diversity and dynamic traits of ST95. Isolates from diverse hosts and geographic sources were randomly located on the phylogenetic tree, which suggested that there is no host specificity for ST95. The time-scaled phylogeny showed that ST95 is an ancient and long-lasting lineage. The virulence genes, resistance genes, and pathogenicity islands (PAIs) were characterized in ST95 pan-genomes to provide novel insights into the pathogenicity and multidrug resistance (MDR) genotypes. We found that a pool of large plasmids drives virulence and MDR. Based on the unique genes in the ST95 pan-genome, we designed a novel multiplex PCR reaction to rapidly detect ST95. Overall, our study addressed a gap in the current understanding of ST95 ExPEC genomes, with significant implications for recognizing the success and spread of ST95.
Collapse
Affiliation(s)
- Fufang Xia
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong 226019, China
| | - Jinlong Cheng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong 226019, China
| | - Min Jiang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong 226019, China
| | - Zhongxing Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong 226019, China
| | - Zhe Wen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Min Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong 226019, China
| | - Jianluan Ren
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (J.R.); (X.Z.)
| | - Xiangkai Zhuge
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong 226019, China
- Correspondence: (J.R.); (X.Z.)
| |
Collapse
|
25
|
Geurtsen J, de Been M, Weerdenburg E, Zomer A, McNally A, Poolman J. Genomics and pathotypes of the many faces of Escherichia coli. FEMS Microbiol Rev 2022; 46:fuac031. [PMID: 35749579 PMCID: PMC9629502 DOI: 10.1093/femsre/fuac031] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 06/22/2022] [Indexed: 01/09/2023] Open
Abstract
Escherichia coli is the most researched microbial organism in the world. Its varied impact on human health, consisting of commensalism, gastrointestinal disease, or extraintestinal pathologies, has generated a separation of the species into at least eleven pathotypes (also known as pathovars). These are broadly split into two groups, intestinal pathogenic E. coli (InPEC) and extraintestinal pathogenic E. coli (ExPEC). However, components of E. coli's infinite open accessory genome are horizontally transferred with substantial frequency, creating pathogenic hybrid strains that defy a clear pathotype designation. Here, we take a birds-eye view of the E. coli species, characterizing it from historical, clinical, and genetic perspectives. We examine the wide spectrum of human disease caused by E. coli, the genome content of the bacterium, and its propensity to acquire, exchange, and maintain antibiotic resistance genes and virulence traits. Our portrayal of the species also discusses elements that have shaped its overall population structure and summarizes the current state of vaccine development targeted at the most frequent E. coli pathovars. In our conclusions, we advocate streamlining efforts for clinical reporting of ExPEC, and emphasize the pathogenic potential that exists throughout the entire species.
Collapse
Affiliation(s)
- Jeroen Geurtsen
- Janssen Vaccines and Prevention B.V., 2333 Leiden, the Netherlands
| | - Mark de Been
- Janssen Vaccines and Prevention B.V., 2333 Leiden, the Netherlands
| | | | - Aldert Zomer
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 Utrecht, the Netherlands
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, B15 2TT Birmingham, United Kingdom
| | - Jan Poolman
- Janssen Vaccines and Prevention B.V., 2333 Leiden, the Netherlands
| |
Collapse
|
26
|
Downing T, Lee MJ, Archbold C, McDonnell A, Rahm A. Informing plasmid compatibility with bacterial hosts using protein-protein interaction data. Genomics 2022; 114:110509. [PMID: 36273742 DOI: 10.1016/j.ygeno.2022.110509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/23/2022] [Accepted: 10/19/2022] [Indexed: 01/15/2023]
Abstract
The compatibility of plasmids with new host cells is significant given their role in spreading antimicrobial resistance (AMR) and virulence factor genes. Evaluating this using in vitro screening is laborious and can be informed by computational analyses of plasmid-host compatibility through rates of protein-protein interactions (PPIs) between plasmid and host cell proteins. We identified large excesses of such PPIs in eight important plasmids, including pOXA-48, using most known bacteria (n = 4363). 23 species had high rates of interactions with four blaOXA-48-positive plasmids. We also identified 48 species with high interaction rates with plasmids common in Escherichia coli. We found a strong association between one plasmid and the fimbrial adhesin operon pil, which could enhance host cell adhesion in aqueous environments. An excess rate of PPIs could be a sign of host-plasmid compatibility, which is important for AMR control given that plasmids like pOXA-48 move between species with ease.
Collapse
Affiliation(s)
- Tim Downing
- School of Biotechnology, Dublin City University, Dublin, Ireland; The Pirbright Institute, UK.
| | - Min Jie Lee
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Conor Archbold
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Adam McDonnell
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Alexander Rahm
- GAATI Lab, University of French Polynesia, Tahiti, French Polynesia
| |
Collapse
|
27
|
Xia F, Jiang M, Wen Z, Wang Z, Wang M, Xu Y, Zhuge X, Dai J. Complete genomic analysis of ST117 lineage extraintestinal pathogenic Escherichia coli (ExPEC) to reveal multiple genetic determinants to drive its global transmission: ST117 E. coli as an emerging multidrug-resistant foodborne ExPEC with zoonotic potential. Transbound Emerg Dis 2022; 69:3256-3273. [PMID: 35945191 DOI: 10.1111/tbed.14678] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 02/04/2023]
Abstract
Avian pathogenic Escherichia coli (APEC) is recognized as a primary source of foodborne extraintestinal pathogenic E. coli (ExPEC), which poses a significant risk of extraintestinal infections in humans. The potential of human infection with ST117 lineage APEC/ExPEC from poultry is particularly concerning. However, relatively few whole-genome studies have focused on ST117 as an emerging ExPEC lineage. In this study, the complete genomes of 11 avian ST117 isolates and the draft genomes of 20 ST117 isolates in China were sequenced to reveal the genomic islands and large plasmid composition of ST117 APEC. With reference to the extensive E. coli genomes available in public databases, large-scale comprehensive genomic analysis of the ST117 lineage APEC/ExPEC was performed to reveal the features of the ST117 pan-genome and population. The high variability of the accessory genome emphasized the diversity and dynamic traits of the ST117 pan-genome. ST117 isolates recovered from different hosts and geographic sources were randomly located on a phylogeny tree, suggesting that ST117 E. coli lacked host specificity. A time-scaled phylogeny tree showed that ST117 was a recent E. coli lineage with a relatively short evolutionary period. Further characterization of a wide diversity of ExPEC-related virulence genes, pathogenicity islands (PAIs), and resistance genes of the ST117 pan-genome provided insights into the virulence and resistance of ST117 APEC/ExPEC. The results suggested zoonotic potential of ST117 APEC/ExPEC between birds and humans. Moreover, genomic analysis showed that a pool of diverse plasmids drove the virulence and multidrug resistance of ST117 APEC/ExPEC. Several types of large plasmids were scattered across the ST117 isolates, but there was no strong plasmid-clade adaptation. Combined with the pan-genome analysis, a double polymerase chain reaction (PCR) method was designed for rapid and cost-effective detection of ST117 isolates from various avian and human APEC/ExPEC isolates. Overall, this study addressed a gap in current knowledge about the ST117 APEC/ExPEC genome, with significant implications to understand the success and spread of ST117 APEC/ExPEC.
Collapse
Affiliation(s)
- Fufang Xia
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, P.R. China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Min Jiang
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, P.R. China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhe Wen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhongxing Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, P.R. China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Min Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, P.R. China
| | - Yudian Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiangkai Zhuge
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, P.R. China
| | - Jianjun Dai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,College of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
28
|
Cummins EA, Hall RJ, Connor C, McInerney JO, McNally A. Distinct evolutionary trajectories in the Escherichia coli pangenome occur within sequence types. Microb Genom 2022; 8:mgen000903. [PMID: 36748558 PMCID: PMC9836092 DOI: 10.1099/mgen.0.000903] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/02/2022] [Indexed: 11/24/2022] Open
Abstract
The Escherichia coli species contains a diverse set of sequence types and there remain important questions regarding differences in genetic content within this population that need to be addressed. Pangenomes are useful vehicles for studying gene content within sequence types. Here, we analyse 21 E. coli sequence type pangenomes using comparative pangenomics to identify variance in both pangenome structure and content. We present functional breakdowns of sequence type core genomes and identify sequence types that are enriched in metabolism, transcription and cell membrane biogenesis genes. We also uncover metabolism genes that have variable core classification, depending on which allele is present. Our comparative pangenomics approach allows for detailed exploration of sequence type pangenomes within the context of the species. We show that ongoing gene gain and loss in the E. coli pangenome is sequence type-specific, which may be a consequence of distinct sequence type-specific evolutionary drivers.
Collapse
Affiliation(s)
- Elizabeth A. Cummins
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Rebecca J. Hall
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Chris Connor
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
- Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne 3000, Australia
| | - James O. McInerney
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
29
|
Murr L, Huber I, Pavlovic M, Guertler P, Messelhaeusser U, Weiss M, Ehrmann M, Tuschak C, Bauer H, Wenning M, Busch U, Bretschneider N. Whole-Genome Sequence Comparisons of Listeria monocytogenes Isolated from Meat and Fish Reveal High Inter- and Intra-Sample Diversity. Microorganisms 2022; 10:2120. [PMID: 36363712 PMCID: PMC9698462 DOI: 10.3390/microorganisms10112120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/15/2022] [Accepted: 10/21/2022] [Indexed: 09/10/2024] Open
Abstract
Interpretation of whole-genome sequencing (WGS) data for foodborne outbreak investigations is complex, as the genetic diversity within processing plants and transmission events need to be considered. In this study, we analyzed 92 food-associated Listeria monocytogenes isolates by WGS-based methods. We aimed to examine the genetic diversity within meat and fish production chains and to assess the applicability of suggested thresholds for clustering of potentially related isolates. Therefore, meat-associated isolates originating from the same samples or processing plants as well as fish-associated isolates were analyzed as distinct sets. In silico serogrouping, multilocus sequence typing (MLST), core genome MLST (cgMLST), and pangenome analysis were combined with screenings for prophages and genetic traits. Isolates of the same subtypes (cgMLST types (CTs) or MLST sequence types (STs)) were additionally compared by SNP calling. This revealed the occurrence of more than one CT within all three investigated plants and within two samples. Analysis of the fish set resulted in predominant assignment of isolates from pangasius catfish and salmon to ST2 and ST121, respectively, potentially indicating persistence within the respective production chains. The approach not only allowed the detection of distinct subtypes but also the determination of differences between closely related isolates, which need to be considered when interpreting WGS data for surveillance.
Collapse
Affiliation(s)
- Larissa Murr
- Bavarian Health and Food Safety Authority (LGL), 85764 Oberschleissheim, Germany
- TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Ingrid Huber
- Bavarian Health and Food Safety Authority (LGL), 85764 Oberschleissheim, Germany
| | - Melanie Pavlovic
- Bavarian Health and Food Safety Authority (LGL), 85764 Oberschleissheim, Germany
| | - Patrick Guertler
- Bavarian Health and Food Safety Authority (LGL), 85764 Oberschleissheim, Germany
| | - Ute Messelhaeusser
- Bavarian Health and Food Safety Authority (LGL), 85764 Oberschleissheim, Germany
| | - Manuela Weiss
- Bavarian Health and Food Safety Authority (LGL), 85764 Oberschleissheim, Germany
| | - Matthias Ehrmann
- TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Christian Tuschak
- Bavarian Health and Food Safety Authority (LGL), 85764 Oberschleissheim, Germany
| | - Hans Bauer
- Bavarian Health and Food Safety Authority (LGL), 91058 Erlangen, Germany
| | - Mareike Wenning
- Bavarian Health and Food Safety Authority (LGL), 85764 Oberschleissheim, Germany
| | - Ulrich Busch
- Bavarian Health and Food Safety Authority (LGL), 85764 Oberschleissheim, Germany
| | - Nancy Bretschneider
- Bavarian Health and Food Safety Authority (LGL), 85764 Oberschleissheim, Germany
| |
Collapse
|
30
|
Assessing the Load, Virulence and Antibiotic-Resistant Traits of ESBL/Ampc E. coli from Broilers Raised on Conventional, Antibiotic-Free, and Organic Farms. Antibiotics (Basel) 2022; 11:antibiotics11111484. [PMID: 36358139 PMCID: PMC9686507 DOI: 10.3390/antibiotics11111484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
Poultry is the most likely source of livestock-associated Extended Spectrum Beta-Lactamase (ESBL) and plasmid-mediated AmpC (pAmpC)-producing E. coli (EC) for humans. We tested the hypothesis that farming methods have an impact on the load of ESBL/pAmpC-EC in the gut of broilers at slaughter. Isolates (n = 156) of antibiotic-free (AF), organic (O), and conventional (C) animals were characterized for antibiotic susceptibility and antibiotic resistance genes. Thirteen isolates were whole-genome sequenced. The average loads of ESBL/pAmpC-EC in cecal contents were 4.17 Log CFU/g for AF; 2.85 Log CFU/g for O; and 3.88 Log CFU/g for C type (p < 0.001). ESBL/pAmpC-EC isolates showed resistance to antibiotic classes historically used in poultry, including penicillins, tetracyclines, quinolones, and sulfonamides. Isolates from O and AF farms harbored a lower proportion of resistance to antibiotics than isolates from C farms. Among the determinants for ESBL/pAmpC, CTX-M-1 prevailed (42.7%), followed by TEM-type (29%) and SHV (19.8%). Avian pathogenic E. coli (APEC), belonging to ST117 and ST349, were identified in the collection. These data confirm the possible role of a broiler as an ESBL/AmpC EC and APEC reservoir for humans. Overall, our study suggests that antibiotic-free and organic production may contribute to a reduced exposure to ESBL/AmpC EC for the consumer.
Collapse
|
31
|
Jangir PK, Yang Q, Shaw LP, Caballero JD, Ogunlana L, Wheatley R, Walsh T, MacLean RC. Pre-existing chromosomal polymorphisms in pathogenic E. coli potentiate the evolution of resistance to a last-resort antibiotic. eLife 2022; 11:e78834. [PMID: 35943060 PMCID: PMC9363117 DOI: 10.7554/elife.78834] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/22/2022] [Indexed: 12/17/2022] Open
Abstract
Bacterial pathogens show high levels of chromosomal genetic diversity, but the influence of this diversity on the evolution of antibiotic resistance by plasmid acquisition remains unclear. Here, we address this problem in the context of colistin, a 'last line of defence' antibiotic. Using experimental evolution, we show that a plasmid carrying the MCR-1 colistin resistance gene dramatically increases the ability of Escherichia coli to evolve high-level colistin resistance by acquiring mutations in lpxC, an essential chromosomal gene involved in lipopolysaccharide biosynthesis. Crucially, lpxC mutations increase colistin resistance in the presence of the MCR-1 gene, but decrease the resistance of wild-type cells, revealing positive sign epistasis for antibiotic resistance between the chromosomal mutations and a mobile resistance gene. Analysis of public genomic datasets shows that lpxC polymorphisms are common in pathogenic E. coli, including those carrying MCR-1, highlighting the clinical relevance of this interaction. Importantly, lpxC diversity is high in pathogenic E. coli from regions with no history of MCR-1 acquisition, suggesting that pre-existing lpxC polymorphisms potentiated the evolution of high-level colistin resistance by MCR-1 acquisition. More broadly, these findings highlight the importance of standing genetic variation and plasmid/chromosomal interactions in the evolutionary dynamics of antibiotic resistance.
Collapse
Affiliation(s)
- Pramod K Jangir
- Department of Zoology, University of OxfordOxfordUnited Kingdom
| | - Qiue Yang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Liam P Shaw
- Department of Zoology, University of OxfordOxfordUnited Kingdom
| | | | - Lois Ogunlana
- Department of Zoology, University of OxfordOxfordUnited Kingdom
| | - Rachel Wheatley
- Department of Zoology, University of OxfordOxfordUnited Kingdom
| | - Timothy Walsh
- Department of Zoology, University of OxfordOxfordUnited Kingdom
| | - R Craig MacLean
- Department of Zoology, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
32
|
Goyal M, Pelegrin AC, Jaillard M, Saharman YR, Klaassen CHW, Verbrugh HA, Severin JA, van Belkum A. Whole Genome Multi-Locus Sequence Typing and Genomic Single Nucleotide Polymorphism Analysis for Epidemiological Typing of Pseudomonas aeruginosa From Indonesian Intensive Care Units. Front Microbiol 2022; 13:861222. [PMID: 35910643 PMCID: PMC9329958 DOI: 10.3389/fmicb.2022.861222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
We have previously studied carbapenem non-susceptible Pseudomonas aeruginosa (CNPA) strains from intensive care units (ICUs) in a referral hospital in Jakarta, Indonesia (Pelegrin et al., 2019). We documented that CNPA transmissions and acquisitions among patients were variable over time and that these were not significantly reduced by a set of infection control measures. Three high risk international CNPA clones (sequence type (ST)235, ST823, ST357) dominated, and carbapenem resistance was due to carbapenemase-encoding genes and mutations in the porin OprD. Pelegrin et al. (2019) reported core genome analysis of these strains. We present a more refined and detailed whole genome-based analysis of major clones represented in the same dataset. As per our knowledge, this is the first study reporting Single Nucleotide Polymorphisms (wgSNP) analysis of Pseudomonas strains. With whole genome-based Multi Locus Sequence Typing (wgMLST) of the 3 CNPA clones (ST235, ST357 and ST823), three to eleven subgroups with up to 200 allelic variants were observed for each of the CNPA clones. Furthermore, we analyzed these CNPA clone clusters for the presence of wgSNP to redefine CNPA transmission events during hospitalization. A maximum number 35350 SNPs (including non-informative wgSNPs) and 398 SNPs (ST-specific_informative-wgSNPs) were found in ST235, 34,570 SNPs (including non-informative wgSNPs) and 111 SNPs (ST-specific_informative-wgSNPs) in ST357 and 26,443 SNPs (including non-informative SNPs) and 61 SNPs (ST-specific_informative-wgSNPs) in ST823. ST-specific_Informative-wgSNPs were commonly noticed in sensor-response regulator genes. However, the majority of non-informative wgSNPs was found in conserved hypothetical proteins or in uncharacterized proteins. Of note, antibiotic resistance and virulence genes segregated according to the wgSNP analyses. A total of 8 transmission chains for ST235 strains followed by 9 and 4 possible transmission chains for ST357 and ST823 were traceable on the basis of pairwise distances of informative-wgSNPs (0 to 4 SNPs) among the strains. The present study demonstrates the value of detailed whole genome sequence analysis for highly refined epidemiological analysis of P. aeruginosa.
Collapse
Affiliation(s)
- Manisha Goyal
- bioMérieux Open Innovation and Partnerships, Macry-LÉtoile, France
| | | | | | - Yulia Rosa Saharman
- Department of Clinical Microbiology, Faculty of Medicine, Dr. Cipto Mangunkusumo General Hospital, Universitas Indonesia, Jakarta, Indonesia
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Corné H. W. Klaassen
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Henri A. Verbrugh
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Juliëtte A. Severin
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Alex van Belkum
- bioMérieux Open Innovation and Partnerships, Macry-LÉtoile, France
- *Correspondence: Alex van Belkum,
| |
Collapse
|
33
|
de Korne-Elenbaas J, Bruisten SM, van Dam AP, Maiden MCJ, Harrison OB. The Neisseria gonorrhoeae Accessory Genome and Its Association with the Core Genome and Antimicrobial Resistance. Microbiol Spectr 2022; 10:e0265421. [PMID: 35604129 PMCID: PMC9241924 DOI: 10.1128/spectrum.02654-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/14/2022] [Indexed: 01/22/2023] Open
Abstract
The bacterial accessory genome provides the genetic flexibility needed to facilitate environment and host adaptation. In Neisseria gonorrhoeae, known accessory elements include plasmids which can transfer and mediate antimicrobial resistance (AMR); however, chromosomal accessory genes could also play a role in AMR. Here, the gonococcal accessory genome was characterized using gene-by-gene approaches and its association with the core genome and AMR were assessed. The gonococcal accessory gene pool consisted of 247 genes, which were mainly genes located on large mobile genetic elements, phage associated genes, or genes encoding putative secretion systems. Accessory elements showed similar synteny across genomes, indicating either a predisposition for particular genomic locations or ancestral inheritance that are conserved during strain expansion. Significant associations were found between the prevalence of accessory elements and core genome multi-locus sequence types (cgMLST), consistent with a structured gonococcal population despite frequent horizontal gene transfer (HGT). Increased prevalence of putative DNA exchange regulators was significantly associated with AMR, which included a putative secretion system, methyltransferases and a toxin-antitoxin system. Although frequent HGT results in high genetic diversity in the gonococcus, we found that this is mediated by a small gene pool. In fact, a highly organized genome composition was identified with a strong association between the accessory and core genome. Increased prevalence of DNA exchange regulators in antimicrobial resistant isolates suggests that genetic material exchange plays a role in the development or maintenance of AMR. These findings enhance our understanding of gonococcal genome architecture and have important implications for gonococcal population biology. IMPORTANCE The emergence of antimicrobial resistance (AMR) against third generation cephalosporins in Neisseria gonorrhoeae is a major public health concern, as these are antibiotics of last resort for the effective treatment of gonorrhea. Although the resistance mechanisms against this class of antibiotics have not been entirely resolved, resistance against other classes of antibiotics, such as tetracyclines, is known to be mediated through plasmids, which are known gonococcal extra-chromosomal accessory elements. A complete assessment of the chromosomal accessory genome content and its role in AMR has not yet been undertaken. Here, we comprehensively characterize the gonococcal accessory genome to better understand genome architecture as well as the evolution and mechanisms of AMR in this species.
Collapse
Affiliation(s)
- Jolinda de Korne-Elenbaas
- Public Health Laboratory, Department of Infectious Diseases, Public Health Service of Amsterdam, Amsterdam, the Netherlands
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology, Amsterdam Institute for Infection and Immunity (AI&II), Academic Medical Center, Amsterdam, the Netherlands
| | - Sylvia M. Bruisten
- Public Health Laboratory, Department of Infectious Diseases, Public Health Service of Amsterdam, Amsterdam, the Netherlands
- Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity (AI&II), Amsterdam, the Netherlands
| | - Alje P. van Dam
- Public Health Laboratory, Department of Infectious Diseases, Public Health Service of Amsterdam, Amsterdam, the Netherlands
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology, Amsterdam Institute for Infection and Immunity (AI&II), Academic Medical Center, Amsterdam, the Netherlands
| | - Martin C. J. Maiden
- Department of Zoology, Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Odile B. Harrison
- Department of Zoology, Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
34
|
Johnston BD, Gordon DM, Burn S, Johnson TJ, Weber BP, Miller EA, Johnson JR. Novel Multiplex PCR Method and Genome Sequence-Based Analog for High-Resolution Subclonal Assignment and Characterization of Escherichia coli Sequence Type 131 Isolates. Microbiol Spectr 2022; 10:e0106422. [PMID: 35604132 PMCID: PMC9241916 DOI: 10.1128/spectrum.01064-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/30/2022] [Indexed: 12/01/2022] Open
Abstract
Escherichia coli sequence type 131 (ST131) is a pandemic, multidrug-resistant extraintestinal pathogen. The multiple distinctive ST131 subclones differ for rfb and fliC alleles (O and H antigens), fimH allele (type-1 fimbriae adhesin), resistance phenotype and genotype, clinical correlates, and host predilection. Current PCR assays for detecting ST131 and its main subclones offer limited sub-ST characterization. Here we combined 22 novel and 14 published primers for a multiplex PCR assay to detect and extensively characterize ST131 isolates. The primers target mdh36, gyrB47, trpA72, sbmA, plsB, nupC, rmuC, kefC, ybbW, the O16 and O25b rfb variants, five fimH alleles (fimH22, fimH27, fimH30, fimH35, and fimH41), two fliC alleles (H4 and H5), a (subclone-specific) fluoroquinolone resistance-associated parC allele, and a (subclone-specific) prophage marker. The resulting amplicons resolve 15 molecular subsets within ST131, including 3 within clade A (H41 subclone), 5 within clade B (H22 subclone), and 7 within clade C (H30 subclone), which includes subclones C0 (H30S: 2 subsets), C1 and C1-M27 (H30R1: 2 subsets), and C2 (H30Rx: 3 subsets). Validation in three laboratories showed that this assay provides a rapid, accurate, and portable method for rapidly detecting and characterizing E. coli ST131 and its key subsets. Additionally, for users with whole genome sequencing (WGS) capability, we developed a command-line executable called ST131Typer, an in silico version of the extended multiplex PCR assay. Its accuracy was 87.8%, with most issues due to incomplete or fragmented input genome assemblies. These two novel assays should facilitate detailed ST131 subtyping using either endpoint PCR or WGS. IMPORTANCE These novel assays provide greater subclonal resolution and characterization of E. coli ST131 isolates than do the available comparable PCR assays, plus offer a novel sequence-based alternative to PCR. They may prove useful for molecular epidemiological studies, surveillance, and, potentially, clinical management.
Collapse
Affiliation(s)
- Brian D. Johnston
- Minneapolis VA Health Care System, Minneapolis, Minnesota, USA
- University of Minnesota, Minneapolis, Minnesota, USA
| | - David M. Gordon
- Research School of Biology, The Australian National University Australia, Canberra, Australian Capital Territory, Australia
| | - Samantha Burn
- Research School of Biology, The Australian National University Australia, Canberra, Australian Capital Territory, Australia
| | - Timothy J. Johnson
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, USA
| | - Bonnie P. Weber
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, USA
| | - Elizabeth A. Miller
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, USA
| | - James R. Johnson
- Minneapolis VA Health Care System, Minneapolis, Minnesota, USA
- University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
35
|
Genomic Diversity of Hospital-Acquired Infections Revealed through Prospective Whole-Genome Sequencing-Based Surveillance. mSystems 2022; 7:e0138421. [PMID: 35695507 PMCID: PMC9238379 DOI: 10.1128/msystems.01384-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Healthcare-associated infections (HAIs) cause mortality, morbidity, and waste of health care resources. HAIs are also an important driver of antimicrobial resistance, which is increasing around the world. Beginning in November 2016, we instituted an initiative to detect outbreaks of HAIs using prospective whole-genome sequencing-based surveillance of bacterial pathogens collected from hospitalized patients. Here, we describe the diversity of bacteria sampled from hospitalized patients at a single center, as revealed through systematic analysis of bacterial isolate genomes. We sequenced the genomes of 3,004 bacterial isolates from hospitalized patients collected over a 25-month period. We identified bacteria belonging to 97 distinct species, which were distributed among 14 groups of related species. Within these groups, isolates could be distinguished from one another by both average nucleotide identity (ANI) and principal-component analysis of accessory genes (PCA-A). Core genome genetic distances and rates of evolution varied among species, which has practical implications for defining shared ancestry during outbreaks and for our broader understanding of the origins of bacterial strains and species. Finally, antimicrobial resistance genes and putative mobile genetic elements were frequently observed, and our systematic analysis revealed patterns of occurrence across the different species sampled from our hospital. Overall, this study shows how understanding the population structure of diverse pathogens circulating in a single health care setting can improve the discriminatory power of genomic epidemiology studies and can help define the processes leading to strain and species differentiation. IMPORTANCE Hospitalized patients are at increased risk of becoming infected with antibiotic-resistant organisms. We used whole-genome sequencing to survey and compare over 3,000 clinical bacterial isolates collected from hospitalized patients at a large medical center over a 2-year period. We identified nearly 100 different bacterial species, which we divided into 14 different groups of related species. When we examined how genetic relatedness differed between species, we found that different species were likely evolving at different rates within our hospital. This is significant because the identification of bacterial outbreaks in the hospital currently relies on genetic similarity cutoffs, which are often applied uniformly across organisms. Finally, we found that antibiotic resistance genes and mobile genetic elements were abundant and were shared among the bacterial isolates we sampled. Overall, this study provides an in-depth view of the genomic diversity and evolutionary processes of bacteria sampled from hospitalized patients, as well as genetic similarity estimates that can inform hospital outbreak detection and prevention efforts.
Collapse
|
36
|
Foster-Nyarko E, Pallen MJ. The microbial ecology of Escherichia coli in the vertebrate gut. FEMS Microbiol Rev 2022; 46:fuac008. [PMID: 35134909 PMCID: PMC9075585 DOI: 10.1093/femsre/fuac008] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 11/13/2022] Open
Abstract
Escherichia coli has a rich history as biology's 'rock star', driving advances across many fields. In the wild, E. coli resides innocuously in the gut of humans and animals but is also a versatile pathogen commonly associated with intestinal and extraintestinal infections and antimicrobial resistance-including large foodborne outbreaks such as the one that swept across Europe in 2011, killing 54 individuals and causing approximately 4000 infections and 900 cases of haemolytic uraemic syndrome. Given that most E. coli are harmless gut colonizers, an important ecological question plaguing microbiologists is what makes E. coli an occasionally devastating pathogen? To address this question requires an enhanced understanding of the ecology of the organism as a commensal. Here, we review how our knowledge of the ecology and within-host diversity of this organism in the vertebrate gut has progressed in the 137 years since E. coli was first described. We also review current approaches to the study of within-host bacterial diversity. In closing, we discuss some of the outstanding questions yet to be addressed and prospects for future research.
Collapse
Affiliation(s)
- Ebenezer Foster-Nyarko
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Mark J Pallen
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, United Kingdom
- School of Veterinary Medicine, University of Surrey, Guildford, Surrey, GU2 7AL, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TU, United Kingdom
| |
Collapse
|
37
|
Population genomics of Escherichia coli in livestock-keeping households across a rapidly developing urban landscape. Nat Microbiol 2022; 7:581-589. [PMID: 35288654 PMCID: PMC8975746 DOI: 10.1038/s41564-022-01079-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 02/03/2022] [Indexed: 12/12/2022]
Abstract
Quantitative evidence for the risk of zoonoses and the spread of antimicrobial resistance remains lacking. Here, as part of the UrbanZoo project, we sampled Escherichia coli from humans, livestock and peri-domestic wildlife in 99 households across Nairobi, Kenya, to investigate its distribution among host species in this rapidly developing urban landscape. We performed whole-genome sequencing of 1,338 E. coli isolates and found that the diversity and sharing patterns of E. coli were heavily structured by household and strongly shaped by host type. We also found evidence for inter-household and inter-host sharing and, importantly, between humans and animals, although this occurs much less frequently. Resistome similarity was differently distributed across host and household, consistent with being driven by shared exposure to antimicrobials. Our results indicate that a large, epidemiologically structured sampling framework combined with WGS is needed to uncover strain-sharing events among different host populations in complex environments and the major contributing pathways that could ultimately drive the emergence of zoonoses and the spread of antimicrobial resistance. Phylogeography and phylogenomic analyses of E. coli isolates collected from humans and domesticated and wild animals across 99 households in Nairobi reveal strong intra-household, and lower but detectable inter-household and inter-host, strain-sharing patterns.
Collapse
|
38
|
Beyond microbial core genomic epidemiology: towards pan genomic epidemiology. THE LANCET MICROBE 2022; 3:e244-e245. [DOI: 10.1016/s2666-5247(22)00058-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 02/05/2023] Open
|
39
|
Reid CJ, Cummins ML, Börjesson S, Brouwer MSM, Hasman H, Hammerum AM, Roer L, Hess S, Berendonk T, Nešporová K, Haenni M, Madec JY, Bethe A, Michael GB, Schink AK, Schwarz S, Dolejska M, Djordjevic SP. A role for ColV plasmids in the evolution of pathogenic Escherichia coli ST58. Nat Commun 2022; 13:683. [PMID: 35115531 PMCID: PMC8813906 DOI: 10.1038/s41467-022-28342-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 01/11/2022] [Indexed: 12/15/2022] Open
Abstract
Escherichia coli ST58 has recently emerged as a globally disseminated uropathogen that often progresses to sepsis. Unlike most pandemic extra-intestinal pathogenic E. coli (ExPEC), which belong to pathogenic phylogroup B2, ST58 belongs to the environmental/commensal phylogroup B1. Here, we present a pan-genomic analysis of a global collection of 752 ST58 isolates from diverse sources. We identify a large ST58 sub-lineage characterized by near ubiquitous carriage of ColV plasmids, which carry genes encoding virulence factors, and by a distinct accessory genome including genes typical of the Yersiniabactin High Pathogenicity Island. This sub-lineage includes three-quarters of all ExPEC sequences in our study and has a broad host range, although poultry and porcine sources predominate. By contrast, strains isolated from cattle often lack ColV plasmids. Our data indicate that ColV plasmid acquisition contributed to the divergence of the major ST58 sub-lineage, and different sub-lineages inhabit poultry, swine and cattle.
Collapse
Affiliation(s)
- Cameron J Reid
- iThree Institute, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - Max L Cummins
- iThree Institute, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Stefan Börjesson
- Department of Animal Health and Antimicrobial Strategies, National Veterinary Institute (SVA), 75189, Uppsala, Sweden
- Department of Microbiology, Public Health Agency of Sweden, 17182, Solna, Sweden
| | | | - Henrik Hasman
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen S, Denmark
| | - Anette M Hammerum
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen S, Denmark
| | - Louise Roer
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen S, Denmark
| | - Stefanie Hess
- Institute of Microbiology, Technische Universität Dresden, Dresden, Germany
| | - Thomas Berendonk
- Institute of Hydrobiology, Technische Universität Dresden, Dresden, Germany
| | - Kristina Nešporová
- CEITEC VETUNI, University of Veterinary Sciences Brno, Brno, Czech Republic
- Department of Biology and Wildlife Disease, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Marisa Haenni
- Université de Lyon-ANSES, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Jean-Yves Madec
- Université de Lyon-ANSES, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Astrid Bethe
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, 14163, Berlin, Germany
| | - Geovana B Michael
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, 14163, Berlin, Germany
| | - Anne-Kathrin Schink
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, 14163, Berlin, Germany
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, 14163, Berlin, Germany
| | - Monika Dolejska
- CEITEC VETUNI, University of Veterinary Sciences Brno, Brno, Czech Republic
- Department of Biology and Wildlife Disease, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, Czech Republic
- Biomedical Center, Charles University, Charles, Czech Republic
| | - Steven P Djordjevic
- iThree Institute, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
40
|
Genomic epidemiology links Burkholderia pseudomallei from individual human cases to B. pseudomallei from targeted environmental sampling in Northern Australia. J Clin Microbiol 2022; 60:e0164821. [PMID: 35080450 DOI: 10.1128/jcm.01648-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Each case of melioidosis results from a single event when a human is infected by the environmental bacterium Burkholderia pseudomallei. Darwin in tropical northern Australia has the highest incidences of melioidosis globally and the Darwin Prospective Melioidosis Study (DPMS) commenced in 1989, documenting all culture confirmed melioidosis cases. From 2000-2019 we sampled DPMS patient's environments for B. pseudomallei when a specific location was considered to have been where infection occurred. With the aim to use genomic epidemiology to understand B. pseudomallei transmission and infecting scenarios. Environmental sampling was performed at 98 DPMS patient sites, where we collected 975 environmental samples (742 soil; 233 water). Genotyping matched the clinical and epidemiologically linked environmental B. pseudomallei for 19 patients (19%), with the environmental isolates cultured from soil (n=11) or water (n=8) sources. B. pseudomallei isolates from patients and their local environments that matched on genotyping were whole genome sequenced (WGS). Of the 19 patients with a clinical-environmental genotype match, 17 pairs clustered on a Darwin core genome single-nucleotide polymorphism (SNP) phylogeny, later confirmed by single ST phylogenies and pairwise comparative genomics. When related back to patient clinical scenarios, the matched clinical and environmental B. pseudomallei pairs informed likely modes of infection: percutaneous inoculation, inhalation, and ingestion. Targeted environmental sampling for B. pseudomallei can inform infecting scenarios for melioidosis and dangerous occupational and recreational activities and identify hot spots of B. pseudomallei presence. However, WGS and careful genomics are required to avoid overcalling the relatedness between clinical and environmental isolates of B. pseudomallei.
Collapse
|
41
|
Tsoumtsa Meda LL, Landraud L, Petracchini S, Descorps-Declere S, Perthame E, Nahori MA, Ramirez Finn L, Ingersoll MA, Patiño-Navarrete R, Glaser P, Bonnet R, Dussurget O, Denamur E, Mettouchi A, Lemichez E. The cnf1 gene is associated with an expanding Escherichia coli ST131 H30Rx/C2 subclade and confers a competitive advantage for gut colonization. Gut Microbes 2022; 14:2121577. [PMID: 36154446 PMCID: PMC9519008 DOI: 10.1080/19490976.2022.2121577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/30/2022] [Indexed: 02/04/2023] Open
Abstract
Epidemiological projections point to acquisition of ever-expanding multidrug resistance (MDR) by Escherichia coli, a commensal of the digestive tract and a source of urinary tract pathogens. Bioinformatics analyses of a large collection of E. coli genomes from EnteroBase, enriched in clinical isolates of worldwide origins, suggest the Cytotoxic Necrotizing Factor 1 (CNF1)-toxin encoding gene, cnf1, is preferentially distributed in four common sequence types (ST) encompassing the pandemic E. coli MDR lineage ST131. This lineage is responsible for a majority of extraintestinal infections that escape first-line antibiotic treatment, with known enhanced capacities to colonize the gastrointestinal tract. Statistical projections based on this dataset point to a global expansion of cnf1-positive multidrug-resistant ST131 strains from subclade H30Rx/C2, accounting for a rising prevalence of cnf1-positive strains in ST131. Despite the absence of phylogeographical signals, cnf1-positive isolates segregated into clusters in the ST131-H30Rx/C2 phylogeny, sharing a similar profile of virulence factors and the same cnf1 allele. The suggested dominant expansion of cnf1-positive strains in ST131-H30Rx/C2 led us to uncover the competitive advantage conferred by cnf1 for gut colonization to the clinical strain EC131GY ST131-H30Rx/C2 versus cnf1-deleted isogenic strain. Complementation experiments showed that colon tissue invasion was compromised in the absence of deamidase activity on Rho GTPases by CNF1. Hence, gut colonization factor function of cnf1 was confirmed for another clinical strain ST131-H30Rx/C2. In addition, functional analysis of the cnf1-positive clinical strain EC131GY ST131-H30Rx/C2 and a cnf1-deleted isogenic strain showed no detectable impact of the CNF1 gene on bacterial fitness and inflammation during the acute phase of bladder monoinfection. Together these data argue for an absence of role of CNF1 in virulence during UTI, while enhancing gut colonization capacities of ST131-H30Rx/C2 and suggested expansion of cnf1-positive MDR isolates in subclade ST131-H30Rx/C2.
Collapse
Affiliation(s)
- Landry L. Tsoumtsa Meda
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, INSERM U1306, Unité des Toxines Bactériennes, Département de Microbiologie, Paris, France
| | - Luce Landraud
- Université Paris Cité et Université Sorbonne Paris Nord, INSERM U1137, IAME, Paris, France
- Laboratoire Microbiologie-hygiène, AP-HP, Hôpital Louis Mourier, Colombes, France
| | - Serena Petracchini
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, INSERM U1306, Unité des Toxines Bactériennes, Département de Microbiologie, Paris, France
| | - Stéphane Descorps-Declere
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, INSERM U1306, Unité des Toxines Bactériennes, Département de Microbiologie, Paris, France
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | - Emeline Perthame
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | - Marie-Anne Nahori
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, INSERM U1306, Unité des Toxines Bactériennes, Département de Microbiologie, Paris, France
| | - Laura Ramirez Finn
- Institut Pasteur, Department of Immunology, Mucosal Inflammation and Immunity group, Paris, France
- Université Paris Cité, Institut Cochin, CNRS UMR8104, INSERM U1016, Paris, France
| | - Molly A. Ingersoll
- Institut Pasteur, Department of Immunology, Mucosal Inflammation and Immunity group, Paris, France
- Université Paris Cité, Institut Cochin, CNRS UMR8104, INSERM U1016, Paris, France
| | - Rafael Patiño-Navarrete
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Unité Ecologie et Evolution de la Résistance aux Antibiotiques, Département de Microbiologie, Paris, France
| | - Philippe Glaser
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Unité Ecologie et Evolution de la Résistance aux Antibiotiques, Département de Microbiologie, Paris, France
| | - Richard Bonnet
- UMR INSERM U1071, INRA USC-2018, Université Clermont Auvergne, Clermont-Ferrand, France
- Centre National de Référence de la Résistance aux Antibiotiques, Centre Hospitalier Universitaire, Clermont-Ferrand, France
| | - Olivier Dussurget
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Unité de Recherche Yersinia, Département de Microbiologie, Paris, France
| | - Erick Denamur
- Université Paris Cité et Université Sorbonne Paris Nord, INSERM U1137, IAME, Paris, France
- AP-HP, Laboratoire de Génétique Moléculaire, Hôpital Bichat, Paris, France
| | - Amel Mettouchi
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, INSERM U1306, Unité des Toxines Bactériennes, Département de Microbiologie, Paris, France
| | - Emmanuel Lemichez
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, INSERM U1306, Unité des Toxines Bactériennes, Département de Microbiologie, Paris, France
| |
Collapse
|
42
|
Li D, Wyrsch ER, Elankumaran P, Dolejska M, Marenda MS, Browning GF, Bushell RN, McKinnon J, Chowdhury PR, Hitchick N, Miller N, Donner E, Drigo B, Baker D, Charles IG, Kudinha T, Jarocki VM, Djordjevic SP. Genomic comparisons of Escherichia coli ST131 from Australia. Microb Genom 2021; 7:000721. [PMID: 34910614 PMCID: PMC8767332 DOI: 10.1099/mgen.0.000721] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Escherichia coli ST131 is a globally dispersed extraintestinal pathogenic E. coli lineage contributing significantly to hospital and community acquired urinary tract and bloodstream infections. Here we describe a detailed phylogenetic analysis of the whole genome sequences of 284 Australian ST131 E. coli isolates from diverse sources, including clinical, food and companion animals, wildlife and the environment. Our phylogeny and the results of single nucleotide polymorphism (SNP) analysis show the typical ST131 clade distribution with clades A, B and C clearly displayed, but no niche associations were observed. Indeed, interspecies relatedness was a feature of this study. Thirty-five isolates (29 of human and six of wild bird origin) from clade A (32 fimH41, 2 fimH89, 1 fimH141) were observed to differ by an average of 76 SNPs. Forty-five isolates from clade C1 from four sources formed a cluster with an average of 46 SNPs. Within this cluster, human sourced isolates differed by approximately 37 SNPs from isolates sourced from canines, approximately 50 SNPs from isolates from wild birds, and approximately 52 SNPs from isolates from wastewater. Many ST131 carried resistance genes to multiple antibiotic classes and while 41 (14 %) contained the complete class one integron-integrase intI1, 128 (45 %) isolates harboured a truncated intI1 (462-1014 bp), highlighting the ongoing evolution of this element. The module intI1-dfrA17-aadA5-qacEΔ1-sul1-ORF-chrA-padR-IS1600-mphR-mrx-mphA, conferring resistance to trimethoprim, aminoglycosides, quaternary ammonium compounds, sulphonamides, chromate and macrolides, was the most common structure. Most (73 %) Australian ST131 isolates carry at least one extended spectrum β-lactamase gene, typically blaCTX-M-15 and blaCTX-M-27. Notably, dual parC-1aAB and gyrA-1AB fluoroquinolone resistant mutations, a unique feature of clade C ST131 isolates, were identified in some clade A isolates. The results of this study indicate that the the ST131 population in Australia carries diverse antimicrobial resistance genes and plasmid replicons and indicate cross-species movement of ST131 strains across diverse reservoirs.
Collapse
Affiliation(s)
- Dmitriy Li
- iThree Institute, University of Technology Sydney, Ultimo, NSW, Australia
| | - Ethan R. Wyrsch
- iThree Institute, University of Technology Sydney, Ultimo, NSW, Australia
| | | | - Monika Dolejska
- CEITEC VETUNI, University of Veterinary Sciences Brno, Brno, Czech Republic,Department of Biology and Wildlife Disease, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Czech Republic,Biomedical Center, Charles University, Czech Republic,Department of Clinical Microbiology and Immunology, Institute of Laboratory Medicine, The University Hospital Brno, Brno, Czech Republic
| | - Marc S. Marenda
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Victoria, Australia
| | - Glenn F. Browning
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Victoria, Australia
| | - Rhys N. Bushell
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Victoria, Australia
| | - Jessica McKinnon
- iThree Institute, University of Technology Sydney, Ultimo, NSW, Australia
| | | | - Nola Hitchick
- San Pathology, Sydney Adventist Hospital, Wahroonga, NSW 2076, Australia
| | - Natalie Miller
- San Pathology, Sydney Adventist Hospital, Wahroonga, NSW 2076, Australia
| | - Erica Donner
- Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Barbara Drigo
- Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | | | | | - Timothy Kudinha
- Central West Pathology Laboratory, Charles Sturt University, Orange, NSW, 2800, Australia
| | - Veronica M. Jarocki
- iThree Institute, University of Technology Sydney, Ultimo, NSW, Australia,*Correspondence: Veronica M. Jarocki,
| | - Steven Philip Djordjevic
- iThree Institute, University of Technology Sydney, Ultimo, NSW, Australia,*Correspondence: Steven Philip Djordjevic,
| |
Collapse
|
43
|
Baquero F, Martínez JL, F. Lanza V, Rodríguez-Beltrán J, Galán JC, San Millán A, Cantón R, Coque TM. Evolutionary Pathways and Trajectories in Antibiotic Resistance. Clin Microbiol Rev 2021; 34:e0005019. [PMID: 34190572 PMCID: PMC8404696 DOI: 10.1128/cmr.00050-19] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Evolution is the hallmark of life. Descriptions of the evolution of microorganisms have provided a wealth of information, but knowledge regarding "what happened" has precluded a deeper understanding of "how" evolution has proceeded, as in the case of antimicrobial resistance. The difficulty in answering the "how" question lies in the multihierarchical dimensions of evolutionary processes, nested in complex networks, encompassing all units of selection, from genes to communities and ecosystems. At the simplest ontological level (as resistance genes), evolution proceeds by random (mutation and drift) and directional (natural selection) processes; however, sequential pathways of adaptive variation can occasionally be observed, and under fixed circumstances (particular fitness landscapes), evolution is predictable. At the highest level (such as that of plasmids, clones, species, microbiotas), the systems' degrees of freedom increase dramatically, related to the variable dispersal, fragmentation, relatedness, or coalescence of bacterial populations, depending on heterogeneous and changing niches and selective gradients in complex environments. Evolutionary trajectories of antibiotic resistance find their way in these changing landscapes subjected to random variations, becoming highly entropic and therefore unpredictable. However, experimental, phylogenetic, and ecogenetic analyses reveal preferential frequented paths (highways) where antibiotic resistance flows and propagates, allowing some understanding of evolutionary dynamics, modeling and designing interventions. Studies on antibiotic resistance have an applied aspect in improving individual health, One Health, and Global Health, as well as an academic value for understanding evolution. Most importantly, they have a heuristic significance as a model to reduce the negative influence of anthropogenic effects on the environment.
Collapse
Affiliation(s)
- F. Baquero
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Network Center for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - J. L. Martínez
- National Center for Biotechnology (CNB-CSIC), Madrid, Spain
| | - V. F. Lanza
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Network Center for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Central Bioinformatics Unit, Ramón y Cajal Institute for Health Research (IRYCIS), Madrid, Spain
| | - J. Rodríguez-Beltrán
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Network Center for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - J. C. Galán
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Network Center for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - A. San Millán
- National Center for Biotechnology (CNB-CSIC), Madrid, Spain
| | - R. Cantón
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Network Center for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - T. M. Coque
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Network Center for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| |
Collapse
|
44
|
Wang Z, Zheng X, Guo G, Dong Y, Xu Z, Wei X, Han X, Liu Y, Zhang W. Combining pangenome analysis to identify potential cross-protective antigens against avian pathogenic Escherichia coli. Avian Pathol 2021; 51:66-75. [PMID: 34845943 DOI: 10.1080/03079457.2021.2005240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractAvian pathogenic Escherichia coli (APEC) is the bacterial pathogen of poultry colibacillosis, which causes significant economic losses to the poultry industry. The lack of an effective vaccine against multiple serotypes and the emergence of multi-resistant isolates have made the control of avian colibacillosis troublesome. To identify conserved potential vaccine candidates, 58 genomes of APEC were obtained (54 sequenced by our laboratory and 4 downloaded from NCBI). A reverse vaccinology (RV) method based on the pangenome - called Pan-RV analysis - was performed in APEC-protective protein mining for the first time. Finally, four proteins were selected, and their immunoreactivity with anti-O1, O2, and O78 serum was verified by western blotting. Our in silico method of analysis will pave the way for rapid screening of vaccine candidates and will lay the foundation for the development of a highly effective subunit vaccine controlling APEC infection.
Collapse
Affiliation(s)
- Zhuohao Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China; OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, Jiangsu, China
| | - Xiangkuan Zheng
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China; OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, Jiangsu, China
| | - Genglin Guo
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China; OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, Jiangsu, China
| | - Yongyi Dong
- Lab of Animal Disease Prevention and Control Center of Jiangsu Province, Nanjing 210009, Jiangsu, China
| | - Zhengjun Xu
- Lab of Animal Disease Prevention and Control Center of Jiangsu Province, Nanjing 210009, Jiangsu, China
| | - Xiankai Wei
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, Guangxi, China
| | - Xiangan Han
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Yuqing Liu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250108, Shandong, China
| | - Wei Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China; OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, Jiangsu, China
| |
Collapse
|
45
|
Brockhurst MA, Harrison E. Ecological and evolutionary solutions to the plasmid paradox. Trends Microbiol 2021; 30:534-543. [PMID: 34848115 DOI: 10.1016/j.tim.2021.11.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/07/2021] [Accepted: 11/03/2021] [Indexed: 12/22/2022]
Abstract
The 'plasmid paradox' arises because, although plasmids are common features of bacterial genomes, theoretically they should not exist: rates of conjugation were believed insufficient to allow plasmids to persist by infectious transmission, whereas the costs of plasmid maintenance meant that plasmids should be purged by negative selection regardless of whether they encoded beneficial accessory traits because these traits should eventually be captured by the chromosome, enabling the loss of the redundant plasmid. In the decade since the plasmid paradox was described, new data and theory show that a range of ecological and evolutionary mechanisms operate in bacterial populations and communities to explain the widespread distribution and stable maintenance of plasmids. We conclude, therefore, that multiple solutions to the plasmid paradox are now well understood. The current challenge for the field, however, is to better understand how these solutions operate in natural bacterial communities to explain and predict the distribution of plasmids and the dynamics of the horizontal gene transfer that they mediate in bacterial (pan)genomes.
Collapse
Affiliation(s)
- Michael A Brockhurst
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, M13 9PT, UK.
| | - Ellie Harrison
- Department of Animal and Plant Sciences, The University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
46
|
Huang J, Zhao Z, Zhang Q, Zhang S, Zhang S, Chen M, Qiu H, Cao Y, Li B. Phylogenetic Analysis Reveals Distinct Evolutionary Trajectories of the Fluoroquinolones-Resistant Escherichia coli ST1193 From Fuzhou, China. Front Microbiol 2021; 12:746995. [PMID: 34803966 PMCID: PMC8602892 DOI: 10.3389/fmicb.2021.746995] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/13/2021] [Indexed: 01/27/2023] Open
Abstract
Escherichia coli (E. coli) ST1193 is an emerging fluoroquinolones-resistant and virulent lineage. Large gaps remain in our understanding of the evolutionary processes and differences of this lineage. Therefore, we used 76 E. coli ST1193 genomes to detect strain-level genetic diversity and phylogeny of this lineage globally. All E. coli ST1193 possessed fimH64, filCH5, and fumC14. There was 94.7% of isolates classified as O-type O75. There was 9.33% of E. coli ST1193 that possessed K5 capsular, while 90.67% of isolates possessed K1 capsular. The core genome analysis revealed that all isolates were divided into two phylogenetic clades (clade A and B). Clade A included 25 non-Chinese E. coli ST1193, and clade B contained all isolates collected from Fuzhou, China, respectively. The results of comparative genomics indicated Indels were identified in 150 clade-specific genes, which were enriched into the biological process and molecular function. Accessory genome phylogenetic tree showed a high degree of correlation between accessory genome clusters and core genome clades. There was significant difference in antibiotic resistance genes (ARGs) [bla CTX-M-55 , bla TEM-1 , sul2, tet(B), tet(R), APH(6)-Id, and AAC(3)-IId], virulence factors (cia, neuC, gad, and traT), and plasmid replicon types (IncQ1, Col156, and IncB/O/K/Z) between clade A (non-Chinese isolates) and clade B (Chinese isolates) (p < 0.05). Further analysis of the genetic environments of bla CTX-M-55 demonstrated that the flanking contexts of bla CTX-M-55 were diverse. In conclusion, our results reveal the distinct evolutionary trajectories of the spread of E. coli ST1193 in Fuzhou, China and non-China regions. This supports both global transmission and localized lineage expansion of this lineage following specific introductions into a geographic locality.
Collapse
Affiliation(s)
- Jiangqing Huang
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhichang Zhao
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, China
| | - Qianwen Zhang
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Shengcen Zhang
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Shuyu Zhang
- Department of Laboratory Medicine, Fujian Medical University, Fuzhou, China
| | - Min Chen
- Department of Laboratory Medicine, Fujian Medical University, Fuzhou, China
| | - Hongqiang Qiu
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yingping Cao
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Bin Li
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
47
|
Cummins EA, Snaith AE, McNally A, Hall RJ. The role of potentiating mutations in the evolution of pandemic Escherichia coli clones. Eur J Clin Microbiol Infect Dis 2021:10.1007/s10096-021-04359-3. [PMID: 34787747 DOI: 10.1007/s10096-021-04359-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/30/2021] [Indexed: 12/16/2022]
Abstract
The Escherichia coli species exhibits a vast array of variable lifestyles, including environmental, commensal, and pathogenic organisms. Many of these E. coli contribute significantly to the global threat of antimicrobial resistance (AMR). Multidrug-resistant (MDR) clones of E. coli have arisen multiple times over varying timescales. The repeated emergence of successful pandemic clones, including the notorious ST131 lineage, highlights a desperate need to further study the evolutionary processes underlying their emergence and success. Here, we review the evolutionary emergence of E. coli ST131 pandemic clones and draw parallels between their evolutionary trajectories and those of other lineages. From colonization and expansion to the acquisition of multidrug resistance plasmids, potentiating mutations are present at each stage, leading to a proposed sequence of events that may result in the formation of an antimicrobial-resistant pandemic clone.
Collapse
Affiliation(s)
- Elizabeth A Cummins
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Ann E Snaith
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Rebecca J Hall
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
48
|
Pidcock SE, Skvortsov T, Santos FG, Courtney SJ, Sui-Ting K, Creevey CJ, Huws SA. Phylogenetic systematics of Butyrivibrio and Pseudobutyrivibrio genomes illustrate vast taxonomic diversity, open genomes and an abundance of carbohydrate-active enzyme family isoforms. Microb Genom 2021; 7. [PMID: 34605764 PMCID: PMC8627218 DOI: 10.1099/mgen.0.000638] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Butyrivibrio and Pseudobutyrivibrio dominate in anaerobic gastrointestinal microbiomes, particularly the rumen, where they play a key role in harvesting dietary energy. Within these genera, five rumen species have been classified (Butyrivibrio fibrisolvens, Butyrivibrio hungatei, Butyrivibrio proteoclasticus, Pseudobutyrivibrio ruminis and Pseudobutyrivibrio xylanivorans) and more recently an additional Butyrivibrio sp. group was added. Given the recent increase in available genomes, we re-investigated the phylogenetic systematics and evolution of Butyrivibrio and Pseudobutyrivibrio. Across 71 genomes, we show using 16S rDNA and 40 gene marker phylogenetic trees that the current six species designations (P. ruminis, P. xylanivorans, B. fibrisolvens, Butyrivibrio sp., B. hungatei and B. proteclasticus) are found. However, pangenome analysis showed vast genomic variation and a high abundance of accessory genes (91.50–99.34 %), compared with core genes (0.66–8.50 %), within these six taxonomic groups, suggesting incorrectly assigned taxonomy. Subsequent pangenome accessory genomes under varying core gene cut-offs (%) and average nucleotide identity (ANI) analysis suggest the existence of 42 species within 32 genera. Pangenome analysis of those that still group within B. fibrisolvens, B. hungatei and P. ruminis, based on revised ANI phylogeny, also showed possession of very open genomes, illustrating the diversity that exists even within these groups. All strains of both Butyrivibrio and Pseudobutyrivibrio also shared a broad range of clusters of orthologous genes (COGs) (870), indicating recent evolution from a common ancestor. We also demonstrate that the carbohydrate-active enzymes (CAZymes) predominantly belong to glycosyl hydrolase (GH)2, 3, 5, 13 and 43, with numerous within family isoforms apparent, likely facilitating metabolic plasticity and resilience under dietary perturbations. This study provides a major advancement in our functional and evolutionary understanding of these important anaerobic bacteria.
Collapse
Affiliation(s)
- Sara E Pidcock
- School of Biological Sciences and Institute for Global Food Security, 19 Chlorine Gardens, Queen's University Belfast, Belfast BT9 5DL, UK
| | - Timofey Skvortsov
- School of Pharmacy, Medical Biology Centre, 97 Lisburn Road, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Fernanda G Santos
- School of Biological Sciences and Institute for Global Food Security, 19 Chlorine Gardens, Queen's University Belfast, Belfast BT9 5DL, UK
| | - Stephen J Courtney
- School of Biological Sciences and Institute for Global Food Security, 19 Chlorine Gardens, Queen's University Belfast, Belfast BT9 5DL, UK
| | - Karen Sui-Ting
- School of Biological Sciences and Institute for Global Food Security, 19 Chlorine Gardens, Queen's University Belfast, Belfast BT9 5DL, UK
| | - Christopher J Creevey
- School of Biological Sciences and Institute for Global Food Security, 19 Chlorine Gardens, Queen's University Belfast, Belfast BT9 5DL, UK
| | - Sharon A Huws
- School of Biological Sciences and Institute for Global Food Security, 19 Chlorine Gardens, Queen's University Belfast, Belfast BT9 5DL, UK
| |
Collapse
|
49
|
Johnston BD, Thuras P, Porter SB, Clabots C, Johnson JR. Comparative activity of plazomicin against extended-spectrum cephalosporin-resistant Escherichia coli clinical isolates (2012-2017) in relation to phylogenetic background, sequence type 131 subclones, bla CTX-M genotype, and resistance to comparator agents. Eur J Clin Microbiol Infect Dis 2021; 40:2069-2075. [PMID: 33893571 PMCID: PMC8449799 DOI: 10.1007/s10096-021-04256-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 04/15/2021] [Indexed: 10/21/2022]
Abstract
Extended-spectrum cephalosporin-resistant Escherichia coli (ESCREC) are a growing threat. Leading ESCREC lineages include sequence type ST131, especially its (blaCTX-M-15-associated) H30Rx subclone and (blaCTX-M-27-associated) C1-M27 subset within the H30R1 subclone. The comparative activity against such strains of alternative antimicrobial agents, including the recently developed aminoglycoside plazomicin, is undefined, so was investigated here. We assessed plazomicin and 11 comparators for activity against 216 well-characterized ESCREC isolates (Minnesota, 2012-2017) and then compared broth microdilution MICs with phylogenetic and clonal background, beta-lactamase genotype (blaCTX-M; group 1 and 9 variants), and co-resistance. Percent susceptible was > 99% for plazomicin, meropenem, imipenem, and tigecycline; 96-98% for amikacin and ertapenem; and ≤ 75% for the remaining comparators. For most comparators, MICs varied significantly in relation to multiple bacterial characteristics, in agent-specific patterns. By contrast, for plazomicin, the only bacterial characteristic significantly associated with MICs was ST131 subclone: plazomicin MICs were lowest among O16 ST131 isolates and highest among ST131-H30R1 C1-M27 subclone isolates. Additionally, plazomicin MICs varied significantly in relation to resistance vs. susceptibility to comparator agents only for amikacin and levofloxacin. For most study agents, antimicrobial activity against ESCREC varied extensively in relation to multiple bacterial characteristics, including clonal background, whereas for plazomicin, it varied only by ST131 subclone (C1-M27 isolates least susceptible, O16 isolates most susceptible). These findings support plazomicin as a reliable alternative for treating ESCREC infections and urge continued attention to the C1-M27 ST131 subclone.
Collapse
Affiliation(s)
- Brian D Johnston
- Infectious Diseases (111F), VA Medical Center, Minneapolis VA Health Care System, 1 Veterans Drive, Minneapolis, MN, 55417, USA
- University of Minnesota, Minneapolis, MN, USA
| | - Paul Thuras
- Infectious Diseases (111F), VA Medical Center, Minneapolis VA Health Care System, 1 Veterans Drive, Minneapolis, MN, 55417, USA
- University of Minnesota, Minneapolis, MN, USA
| | - Stephen B Porter
- Infectious Diseases (111F), VA Medical Center, Minneapolis VA Health Care System, 1 Veterans Drive, Minneapolis, MN, 55417, USA
| | - Connie Clabots
- Infectious Diseases (111F), VA Medical Center, Minneapolis VA Health Care System, 1 Veterans Drive, Minneapolis, MN, 55417, USA
| | - James R Johnson
- Infectious Diseases (111F), VA Medical Center, Minneapolis VA Health Care System, 1 Veterans Drive, Minneapolis, MN, 55417, USA.
- University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
50
|
Gomes-Neto JC, Pavlovikj N, Cano C, Abdalhamid B, Al-Ghalith GA, Loy JD, Knights D, Iwen PC, Chaves BD, Benson AK. Heuristic and Hierarchical-Based Population Mining of Salmonella enterica Lineage I Pan-Genomes as a Platform to Enhance Food Safety. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.725791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The recent incorporation of bacterial whole-genome sequencing (WGS) into Public Health laboratories has enhanced foodborne outbreak detection and source attribution. As a result, large volumes of publicly available datasets can be used to study the biology of foodborne pathogen populations at an unprecedented scale. To demonstrate the application of a heuristic and agnostic hierarchical population structure guided pan-genome enrichment analysis (PANGEA), we used populations of S. enterica lineage I to achieve two main objectives: (i) show how hierarchical population inquiry at different scales of resolution can enhance ecological and epidemiological inquiries; and (ii) identify population-specific inferable traits that could provide selective advantages in food production environments. Publicly available WGS data were obtained from NCBI database for three serovars of Salmonella enterica subsp. enterica lineage I (S. Typhimurium, S. Newport, and S. Infantis). Using the hierarchical genotypic classifications (Serovar, BAPS1, ST, cgMLST), datasets from each of the three serovars showed varying degrees of clonal structuring. When the accessory genome (PANGEA) was mapped onto these hierarchical structures, accessory loci could be linked with specific genotypes. A large heavy-metal resistance mobile element was found in the Monophasic ST34 lineage of S. Typhimurium, and laboratory testing showed that Monophasic isolates have on average a higher degree of copper resistance than the Biphasic ones. In S. Newport, an extra sugE gene copy was found among most isolates of the ST45 lineage, and laboratory testing of multiple isolates confirmed that isolates of S. Newport ST45 were on average less sensitive to the disinfectant cetylpyridimium chloride than non-ST45 isolates. Lastly, data-mining of the accessory genomic content of S. Infantis revealed two cryptic Ecotypes with distinct accessory genomic content and distinct ecological patterns. Poultry appears to be the major reservoir for Ecotype 1, and temporal analysis further suggested a recent ecological succession, with Ecotype 2 apparently being displaced by Ecotype 1. Altogether, the use of a heuristic hierarchical-based population structure analysis that includes bacterial pan-genomes (core and accessory genomes) can (1) improve genomic resolution for mapping populations and accessing epidemiological patterns; and (2) define lineage-specific informative loci that may be associated with survival in the food chain.
Collapse
|