1
|
Maraf MB, Mountessou BYG, Hans Merlin TF, Ariane P, Fekoua JNN, Jean Yves TB, Raoul TTD, Abouem A Zintchem A, Bebga G, Mbouombouo NI, Ramasami P. Virtual screening, MMGBSA, and molecular dynamics approaches for identification of natural products from South African biodiversity as potential Onchocerca volvulus pi-class glutathione S-transferase inhibitors. Heliyon 2024; 10:e29560. [PMID: 38694068 PMCID: PMC11058291 DOI: 10.1016/j.heliyon.2024.e29560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 05/03/2024] Open
Abstract
We investigated 1012 molecules from natural products previously isolated from the South African biodiversity (SANCDB, https://sancdb.rubi.ru.ac.za/), for putative inhibition of Onchocerca volvulus pi-class glutathione S-transferase (Ov-GST2) by virtual screening, MMGBSA, and molecular dynamics approaches. ADMET, docking, and MMGBSA shortlisted 12 selected homoisoflavanones-type hit molecules, among which two namely SANC00569, and SANC00689 displayed high binding affinities of -46.09 and -46.26 kcal mol-1, respectively towards π-class Ov-GST2, respectively. The molecular dynamics results of SANC00569 showed the presence of intermolecular H-bonding, hydrophobic interactions between the ligand and key amino acids of Ov-GST2, throughout the simulation period. This hit molecule had a stable binding pose and occupied the binding pockets throughout the 200 ns simulation. To the best of our knowledge, there is no report of any alleged anti-onchocerciasis activity referring to homoisoflavanones or flavonoids. Nevertheless, homoisoflavanones, which are a subclass of flavonoids, exhibit a plethora of biological activities. All these results led to the conclusion that SANC00569 is the most hypothetical Ov-GST2, which could lead the development of new drugs against Onchocerca volvulus pi-class glutathione S-transferase. Further validation of these findings through in vitro and in vivo studies is required.
Collapse
Affiliation(s)
- Mbah Bake Maraf
- Physical and Theoretical Chemistry Unit, Laboratory of Applied Physical and Analytical Chemistry, Faculty of Science, University of Yaoundé I, P.O. BOX 812, Yaoundé, Cameroon
- Computational Chemistry Laboratory, Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, P. O. Box 47, Yaoundé, Cameroon
| | - Bel Youssouf G. Mountessou
- Computational Chemistry Laboratory, Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, P. O. Box 47, Yaoundé, Cameroon
| | - Tsahnang Fofack Hans Merlin
- Laboratoire Optique et Applications, Centre de Physique Atomique Moléculaire et Optique Quantique, Faculté des Sciences, Université de Douala, B.P. 8580, Douala, Cameroon
- Analytical, Structural and Materials Chemistry Laboratory, Department of Chemistry, Faculty of Science, University of Douala, B.P. 24157, Douala, Cameroon
| | - Pouyewo Ariane
- Physical and Theoretical Chemistry Unit, Laboratory of Applied Physical and Analytical Chemistry, Faculty of Science, University of Yaoundé I, P.O. BOX 812, Yaoundé, Cameroon
- Computational Chemistry Laboratory, Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, P. O. Box 47, Yaoundé, Cameroon
| | - Joëlle Nadia Nouping Fekoua
- Physical and Theoretical Chemistry Unit, Laboratory of Applied Physical and Analytical Chemistry, Faculty of Science, University of Yaoundé I, P.O. BOX 812, Yaoundé, Cameroon
- Computational Chemistry Laboratory, Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, P. O. Box 47, Yaoundé, Cameroon
| | - Takoua Bella Jean Yves
- Computational Chemistry Laboratory, Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, P. O. Box 47, Yaoundé, Cameroon
| | - Tchuifon Tchuifon Donald Raoul
- Department of Process Engineering, Laboratory of Energy, Materials, Modeling and Method, National Higher Polytechnic School of Douala, University of Douala, P.O. Box 2701 Douala, Cameroon, Douala
| | - Auguste Abouem A Zintchem
- Computational Chemistry Laboratory, Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, P. O. Box 47, Yaoundé, Cameroon
| | - Gouet Bebga
- Computational Chemistry Laboratory, Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, P. O. Box 47, Yaoundé, Cameroon
| | - Ndassa Ibrahim Mbouombouo
- Computational Chemistry Laboratory, Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, P. O. Box 47, Yaoundé, Cameroon
- Department of Applied Chemistry, Faculty of Science, University of Ebolowa, P.O. Box 118, Ebolowa, Cameroon
| | - Ponnadurai Ramasami
- Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius, Réduit, 80837, Mauritius
- Centre for Natural Product Research, Department of Chemical Sciences, University of Johannesburg, Doornfontein, 2028, South Africa
| |
Collapse
|
2
|
Borlase A, Prada JM, Crellen T. Modelling morbidity for neglected tropical diseases: the long and winding road from cumulative exposure to long-term pathology. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220279. [PMID: 37598702 PMCID: PMC10440174 DOI: 10.1098/rstb.2022.0279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 07/13/2023] [Indexed: 08/22/2023] Open
Abstract
Reducing the morbidities caused by neglected tropical diseases (NTDs) is a central aim of ongoing disease control programmes. The broad spectrum of pathogens under the umbrella of NTDs lead to a range of negative health outcomes, from malnutrition and anaemia to organ failure, blindness and carcinogenesis. For some NTDs, the most severe clinical manifestations develop over many years of chronic or repeated infection. For these diseases, the association between infection and risk of long-term pathology is generally complex, and the impact of multiple interacting factors, such as age, co-morbidities and host immune response, is often poorly quantified. Mathematical modelling has been used for many years to gain insights into the complex processes underlying the transmission dynamics of infectious diseases; however, long-term morbidities associated with chronic or cumulative exposure are generally not incorporated into dynamic models for NTDs. Here we consider the complexities and challenges for determining the relationship between cumulative pathogen exposure and morbidity at the individual and population levels, drawing on case studies for trachoma, schistosomiasis and foodborne trematodiasis. We explore potential frameworks for explicitly incorporating long-term morbidity into NTD transmission models, and consider the insights such frameworks may bring in terms of policy-relevant projections for the elimination era. This article is part of the theme issue 'Challenges and opportunities in the fight against neglected tropical diseases: a decade from the London Declaration on NTDs'.
Collapse
Affiliation(s)
- Anna Borlase
- Department of Biology, University of Oxford, Oxford OX1 3SZ, UK
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, UK
| | - Joaquin M. Prada
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Thomas Crellen
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, UK
- School of Biodiversity, One Health & Veterinary Medicine, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK
- Wellcome Centre for Integrative Parasitology, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK
| |
Collapse
|
3
|
Otabil KB, Ankrah B, Bart-Plange EJ, Donkoh ES, Avarikame FA, Ofori-Appiah FO, Babae TN, Kudzordzi PC, Darko VA, Ameyaw J, Bamfo JG, Sakibu RA, Antwi-Berko D, Fodjo JNS, Basáñez MG, Schallig HDFH, Colebunders R. Prevalence of epilepsy in the onchocerciasis endemic middle belt of Ghana after 27 years of mass drug administration with ivermectin. Infect Dis Poverty 2023; 12:75. [PMID: 37587500 PMCID: PMC10433588 DOI: 10.1186/s40249-023-01117-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/29/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND In onchocerciasis-endemic areas with high ongoing Onchocerca volvulus transmission, a high prevalence of epilepsy has been reported. This study aimed to determine the prevalence and clinical characteristics of epilepsy in the Bono Region of Ghana following 27 years of implementation of ivermectin mass drug administration (MDA). METHODS Between October 2020 and August 2021, cross-sectional surveys were conducted in nine communities in the Tain District and Wenchi Municipality of the Bono Region of Ghana. In the first stage, a random door-to-door approach was used to screen the population for epilepsy using a pre-tested questionnaire. Persons suspected of having epilepsy were invited for a second-stage neurological examination for case verification. Community O. volvulus microfilarial infection status and Ov16 seropositivity were also determined. Ninety-five confidence intervals (95% CI) for prevalence values were calculated using the Wilson Score Interval. RESULTS Of the 971 participants, 500 (51.5%) were females, and the median age (interquartile range) was 26 (15‒43) years. Fourteen participants (1.4%, 95% CI: 1.0‒2.0) were diagnosed as having epilepsy with generalized seizures being the most frequent seizure type (85.7%, 12/14). The overall microfilarial prevalence of O. volvulus was 10.3% (November 2020) and 9.9% (August 2021); the Ov16 seroprevalence was 22.2% (June 2021). Only 63.2% took ivermectin in the last round of MDA distribution in March 2021. CONCLUSIONS The 1.4% prevalence of epilepsy in the Bono region is similar to the median epilepsy prevalence in sub-Saharan Africa. However, the persistent microfilarial prevalence and low ivermectin study coverage call for the Ghana Onchocerciasis Elimination Programme to step up its efforts to ensure that the gains achieved are consolidated and improved to achieve the elimination of onchocerciasis by 2030.
Collapse
Affiliation(s)
- Kenneth Bentum Otabil
- NeTroDis Research Group, Centre for Research in Applied Biology, School of Sciences, University of Energy and Natural Resources, Bono Region, Sunyani, Ghana.
- Department of Biological Science, School of Sciences, University of Energy and Natural Resources, Bono Region, Sunyani, Ghana.
- Global Health Institute, University of Antwerp, Antwerp, Belgium.
| | - Blessing Ankrah
- NeTroDis Research Group, Centre for Research in Applied Biology, School of Sciences, University of Energy and Natural Resources, Bono Region, Sunyani, Ghana
| | - Emmanuel John Bart-Plange
- NeTroDis Research Group, Centre for Research in Applied Biology, School of Sciences, University of Energy and Natural Resources, Bono Region, Sunyani, Ghana
- Department of Medical Laboratory Science, School of Sciences, University of Energy and Natural Resources, Bono Region, Sunyani, Ghana
| | - Emmanuel Sam Donkoh
- Department of Medical Laboratory Science, School of Sciences, University of Energy and Natural Resources, Bono Region, Sunyani, Ghana
| | - Fiona Amoabil Avarikame
- Department of Medical Laboratory Science, School of Sciences, University of Energy and Natural Resources, Bono Region, Sunyani, Ghana
| | - Fredrick Obeng Ofori-Appiah
- Department of Medical Laboratory Science, School of Sciences, University of Energy and Natural Resources, Bono Region, Sunyani, Ghana
| | - Theophilus Nti Babae
- NeTroDis Research Group, Centre for Research in Applied Biology, School of Sciences, University of Energy and Natural Resources, Bono Region, Sunyani, Ghana
| | - Prince-Charles Kudzordzi
- NeTroDis Research Group, Centre for Research in Applied Biology, School of Sciences, University of Energy and Natural Resources, Bono Region, Sunyani, Ghana
| | - Vera Achiaa Darko
- NeTroDis Research Group, Centre for Research in Applied Biology, School of Sciences, University of Energy and Natural Resources, Bono Region, Sunyani, Ghana
- STU Clinic, Sunyani Technical University, Bono Region, Sunyani, Ghana
| | - Joseph Ameyaw
- Happy Family Hospital, Bono East Region, Nkoranza, Ghana
| | | | - Raji Abdul Sakibu
- Department of Biological Science, School of Sciences, University of Energy and Natural Resources, Bono Region, Sunyani, Ghana
| | - Daniel Antwi-Berko
- Department of Medical Laboratory Science, School of Sciences, University of Energy and Natural Resources, Bono Region, Sunyani, Ghana
| | | | - María-Gloria Basáñez
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis (MRC GIDA), and London Centre for Neglected Tropical Disease Research, School of Public Health, Imperial College London, London, UK
| | - Henk D F H Schallig
- Department of Medical Microbiology, Experimental Parasitology Unit, Amsterdam University Medical Centres, Academic Medical Centre at the University of Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
4
|
Kamtsap P, Archile P, Flore N, Njiokou F, Renz A. Testing the susceptibility of larval stages of Simulium to temephos and Bacillus thuringiensis var israelensis in Germany and Northern Cameroon. MEDICAL AND VETERINARY ENTOMOLOGY 2023; 37:286-299. [PMID: 36571295 DOI: 10.1111/mve.12630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/21/2022] [Indexed: 05/18/2023]
Abstract
Assays to evaluate the susceptibility of Simulium larvae to temephos and Bacillus thuringiensis var israelensis (Bti) were carried out by setting-up an in vitro laboratory test ('bio assay') and a semi-natural test ('système de goutières') to assess the LC50/LC90 values. Larvae of Simulium species in Cameroon (S. damnosum s.l., S. hargreavesi, S. vorax and S. cervicornutum) and (S. (Odagmia) ornatum and S. latipes) in Germany were identified and tested. In the bio-assay, 50 larvae were exposed for 10 min to concentrations from 0.01 to 10 ppm. For the Simulium from Germany, the LC50 (LC90) values after 3 and 6 h were 3.1 (27.9) and 0.14 (1.26) ppm for temephos and for Bti 7.8 (70.2) and 1.7 (15.3) ppm, respectively. For Cameroonian species, the values of LC50 (LC90) were lower, that is, 0.42 (8.04), 0.14 (2.70) and 0.073 (1.38) ppm, respectively, after 3, 6 and 12 h for temephos. In a semi natural condition, the LC50 of 10 min of application of temephos was 0.84 ppm after 3 h and a working solution (2.6 L) of Bti killed 50% after 6 h. To detect an upcoming of any resistance as it happened in Ivory Coast, a study of the occurrence resistance genes should be implemented.
Collapse
Affiliation(s)
- Pierre Kamtsap
- Department of Comparative Zoology, Institute of Evolution and Ecology, University of Tübingen, Tübingen, Germany
- Faculty of Science, Department of Cellular and Molecular Parasitology, University of Buea, Buea, Cameroon
- Programme Onchocercoses field station, University of Tübingen, Ngaoundéré, Cameroon
| | - Paguem Archile
- Programme Onchocercoses field station, University of Tübingen, Ngaoundéré, Cameroon
- Faculty of Agriculture and Veterinary Medicine, Department Veterinary Medicine, University of Buea, Buea, Cameroon
| | - Nguemaïm Flore
- Faculty of Health Sciences, University of Bamenda, Bambili, Cameroon
| | - Flobert Njiokou
- Laboratoire de Biologie Générale, Université de Yaoundé I, Yaoundé, Cameroon
| | - Alfons Renz
- Department of Comparative Zoology, Institute of Evolution and Ecology, University of Tübingen, Tübingen, Germany
- Programme Onchocercoses field station, University of Tübingen, Ngaoundéré, Cameroon
| |
Collapse
|
5
|
Anisuzzaman, Hossain MS, Hatta T, Labony SS, Kwofie KD, Kawada H, Tsuji N, Alim MA. Food- and vector-borne parasitic zoonoses: Global burden and impacts. ADVANCES IN PARASITOLOGY 2023; 120:87-136. [PMID: 36948728 DOI: 10.1016/bs.apar.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Around 25% of the global population suffer from one or more parasitic infections, of which food- and vector-borne parasitic zoonotic diseases are a major concern. Additionally, zoonoses and communicable diseases, common to man and animals, are drawing increased attention worldwide. Significant changes in climatic conditions, cropping pattern, demography, food habits, increasing international travel, marketing and trade, deforestation, and urbanization play vital roles in the emergence and re-emergence of parasitic zoonoses. Although it is likely to be underestimated, the collective burden of food- and vector-borne parasitic diseases accounts for ∼60 million disability-adjusted life years (DALYs). Out of 20 neglected tropical diseases (NTDs) listed by the World Health Organization (WHO) and the Centres for Disease Control and Prevention (CDC), 13 diseases are of parasitic origin. There are about 200 zoonotic diseases of which the WHO listed eight as neglected zoonotic diseases (NZDs) in the year 2013. Out of these eight NZDs, four diseases, namely cysticercosis, hydatidosis, leishmaniasis, and trypanosomiasis, are caused by parasites. In this review, we discuss the global burden and impacts of food- and vector-borne zoonotic parasitic diseases.
Collapse
Affiliation(s)
- Anisuzzaman
- Department of Parasitology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh.
| | - Md Shahadat Hossain
- Department of Parasitology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Takeshi Hatta
- Department of Parasitology and Tropical Medicine, Kitasato University School of Medicine, Minami, Sagamihara, Kanagawa, Japan
| | - Sharmin Shahid Labony
- Department of Parasitology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Kofi Dadzie Kwofie
- Department of Parasitology and Tropical Medicine, Kitasato University School of Medicine, Minami, Sagamihara, Kanagawa, Japan; Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Hayato Kawada
- Department of Parasitology and Tropical Medicine, Kitasato University School of Medicine, Minami, Sagamihara, Kanagawa, Japan
| | - Naotoshi Tsuji
- Department of Parasitology and Tropical Medicine, Kitasato University School of Medicine, Minami, Sagamihara, Kanagawa, Japan.
| | - Md Abdul Alim
- Department of Parasitology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| |
Collapse
|
6
|
Keel S, Lingham G, Misra N, Block S, Bourne R, Calonge M, Cheng CY, Friedman DS, Furtado JM, Khanna R, Mariotti S, Mathenge W, Matoto E, Müeller A, Rabiu M, Rasengane T, Resnikoff S, Wormald R, Yasmin S, Zhao J, Evans JR, Cieza A, Chan VF, Chen Y, Chinnery H, Dodson S, Downie L, Gordon I, Ghadiri N, Govender Poonsamy P, Han X, Hui F, Jackson ML, Lawrenson J, Ning Lee C, McGuinness M, Murray C, Newsham D, van Nispen R, Prictor M, Puri L, Ramke J, Reekie I, Safi S, Scheetz J, Shen S, Silveira S, Thakur S, Virgili G, Yong AC, Zhang J, Ziaei M, Ali MA, AlObaida IA, AlShamlan FT, Alsulaiman SM, Amissah-Arthur KN, Ang M, Azad R, Bell K, Bharadwaj SR, Booysen DJ, Branchevski S, Bosch V, Brossard-Barbosa N, Chen Y, Craig JP, Dada T, Dichoso CA, Duerksen R, Ebri A, Erdmann I, Freddo T, Flanagan J, Gammoh Y, Gupta N, Hendicott P, Husni MA, Jonathan Jackson A, Jadoon MZ, Januleviciene I, Jeeva I, Jimenez MSS, Kocur I, Kreis A, Kyei S, Lan W, Loy MJV, Marmamula S, Minto LH, Muhit M, Nsubuga NH, Ogundipe A, Okonkwo ON, Olawoye OO, Ouertani AM, Ovenseri-Ogbomo G, Özkan SB, Patel B, Paula JS, et alKeel S, Lingham G, Misra N, Block S, Bourne R, Calonge M, Cheng CY, Friedman DS, Furtado JM, Khanna R, Mariotti S, Mathenge W, Matoto E, Müeller A, Rabiu M, Rasengane T, Resnikoff S, Wormald R, Yasmin S, Zhao J, Evans JR, Cieza A, Chan VF, Chen Y, Chinnery H, Dodson S, Downie L, Gordon I, Ghadiri N, Govender Poonsamy P, Han X, Hui F, Jackson ML, Lawrenson J, Ning Lee C, McGuinness M, Murray C, Newsham D, van Nispen R, Prictor M, Puri L, Ramke J, Reekie I, Safi S, Scheetz J, Shen S, Silveira S, Thakur S, Virgili G, Yong AC, Zhang J, Ziaei M, Ali MA, AlObaida IA, AlShamlan FT, Alsulaiman SM, Amissah-Arthur KN, Ang M, Azad R, Bell K, Bharadwaj SR, Booysen DJ, Branchevski S, Bosch V, Brossard-Barbosa N, Chen Y, Craig JP, Dada T, Dichoso CA, Duerksen R, Ebri A, Erdmann I, Freddo T, Flanagan J, Gammoh Y, Gupta N, Hendicott P, Husni MA, Jonathan Jackson A, Jadoon MZ, Januleviciene I, Jeeva I, Jimenez MSS, Kocur I, Kreis A, Kyei S, Lan W, Loy MJV, Marmamula S, Minto LH, Muhit M, Nsubuga NH, Ogundipe A, Okonkwo ON, Olawoye OO, Ouertani AM, Ovenseri-Ogbomo G, Özkan SB, Patel B, Paula JS, Rahi JS, Ravilla RD, Senanayake NS, Sil AK, Solebo AL, Sousa RARC, Tennant MTS, van Staden DB, Wazir JF, Webber AL, Yorston D, Zin A, Faal HB, Keeffe J, McGrath CE. Toward Universal Eye Health Coverage-Key Outcomes of the World Health Organization Package of Eye Care Interventions: A Systematic Review. JAMA Ophthalmol 2022; 140:1229-1238. [PMID: 36394836 DOI: 10.1001/jamaophthalmol.2022.4716] [Show More Authors] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Importance Despite persistent inequalities in access to eye care services globally, guidance on a set of recommended, evidence-based eye care interventions to support country health care planning has not been available. To overcome this barrier, the World Health Organization (WHO) Package of Eye Care Interventions (PECI) has been developed. Objective To describe the key outcomes of the PECI development. Evidence Review A standardized stepwise approach that included the following stages: (1) selection of priority eye conditions by an expert panel after reviewing epidemiological evidence and health facility data; (2) identification of interventions and related evidence for the selected eye conditions from a systematic review of clinical practice guidelines (CPGs); stage 2 included a systematic literature search, screening of title and abstracts (excluding articles that were not relevant CPGs), full-text review to assess disclosure of conflicts of interest and affiliations, quality appraisal, and data extraction; (3) expert review of the evidence extracted in stage 2, identification of missed interventions, and agreement on the inclusion of essential interventions suitable for implementation in low- and middle-income resource settings; and (4) peer review. Findings Fifteen priority eye conditions were chosen. The literature search identified 3601 articles. Of these, 469 passed title and abstract screening, 151 passed full-text screening, 98 passed quality appraisal, and 87 were selected for data extraction. Little evidence (≤1 CPG identified) was available for pterygium, keratoconus, congenital eyelid disorders, vision rehabilitation, myopic macular degeneration, ptosis, entropion, and ectropion. In stage 3, domain-specific expert groups voted to include 135 interventions (57%) of a potential 235 interventions collated from stage 2. After synthesis across all interventions and eye conditions, 64 interventions (13 health promotion and education, 6 screening and prevention, 38 treatment, and 7 rehabilitation) were included in the PECI. Conclusions and Relevance This systematic review of CPGs for priority eye conditions, followed by an expert consensus procedure, identified 64 essential, evidence-based, eye care interventions that are required to achieve universal eye health coverage. The review identified some important gaps, including a paucity of high-quality, English-language CPGs, for several eye diseases and a dearth of evidence-based recommendations on eye health promotion and prevention within existing CPGs.
Collapse
Affiliation(s)
- Stuart Keel
- Department of Noncommunicable Diseases, World Health Organization, Geneva, Switzerland
| | - Gareth Lingham
- Centre for Eye Research Ireland, Technological University Dublin, Dublin, Ireland.,Centre for Ophthalmology and Visual Science (incorporating Lions Eye Institute), University of Western Australia, Perth, Australia
| | - Neha Misra
- Department of Noncommunicable Diseases, World Health Organization, Geneva, Switzerland
| | | | - Rupert Bourne
- Cambridge University Hospitals, Cambridge, United Kingdom.,Vision & Eye Research Institute, School of Medicine, Anglia Ruskin University, Cambridge, United Kingdom
| | - Margarita Calonge
- Institute of Applied OphthalmoBiology, Universidad de Valladolid, Valladolid, Spain.,CIBER-BBN (Biomedical Research Networking Center Bioengineering, Biomaterials and Nanomedicine), Carlos III National Institute of Health, Valladolid, Spain
| | - Ching-Yu Cheng
- Ophthalmology & Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore.,Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | | | - João M Furtado
- Division of Ophthalmology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Rohit Khanna
- Allen Foster Community Eye Health Research Centre, Gullapalli Pratibha Rao International Centre for Advancement of Rural Eye Care, L V Prasad Eye Institute, Hyderabad, India
| | - Silvio Mariotti
- Department of Noncommunicable Diseases, World Health Organization, Geneva, Switzerland
| | | | | | - Andreas Müeller
- Department of Noncommunicable Diseases, World Health Organization, Geneva, Switzerland
| | - Mansur Rabiu
- Noor Dubai Foundation, Dubai Health Authority, Dubai, United Arab Emirates
| | - Tuwani Rasengane
- Department of Optometry, University of the Free State, Bloemfontein, South Africa.,Universitas Hospital, Bloemfontein, South Africa
| | - Serge Resnikoff
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia.,Brien Holden Vision Institute, Sydney, Australia.,Organisation pour la Prévention de la Cécité, Paris, France
| | - Richard Wormald
- International Centre for Eye Health, London School of Hygiene and Tropical Medicine, London, United Kingdom.,NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom.,UCL Institute of Ophthalmology, London, United Kingdom.,Cochrane Eyes and Vision, Centre for Public Health, Queen's University Belfast, Belfast, Northern Ireland
| | | | - Jialiang Zhao
- Department of Ophthalmology, Peking Union Medical College Hospital, Eye Research Center Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jennifer R Evans
- International Centre for Eye Health, London School of Hygiene and Tropical Medicine, London, United Kingdom.,Cochrane Eyes and Vision, Centre for Public Health, Queen's University Belfast, Belfast, Northern Ireland
| | - Alarcos Cieza
- Department of Noncommunicable Diseases, World Health Organization, Geneva, Switzerland
| | | | - Ving Fai Chan
- for the Package of Eye Care Interventions Development Group
| | - Yanxian Chen
- for the Package of Eye Care Interventions Development Group
| | - Holly Chinnery
- for the Package of Eye Care Interventions Development Group
| | - Sarity Dodson
- for the Package of Eye Care Interventions Development Group
| | - Laura Downie
- for the Package of Eye Care Interventions Development Group
| | - Iris Gordon
- for the Package of Eye Care Interventions Development Group
| | - Nima Ghadiri
- for the Package of Eye Care Interventions Development Group
| | | | - Xiaotong Han
- for the Package of Eye Care Interventions Development Group
| | - Flora Hui
- for the Package of Eye Care Interventions Development Group
| | | | - John Lawrenson
- for the Package of Eye Care Interventions Development Group
| | - Chan Ning Lee
- for the Package of Eye Care Interventions Development Group
| | | | - Craig Murray
- for the Package of Eye Care Interventions Development Group
| | - David Newsham
- for the Package of Eye Care Interventions Development Group
| | | | - Megan Prictor
- for the Package of Eye Care Interventions Development Group
| | - Lila Puri
- for the Package of Eye Care Interventions Development Group
| | | | - Ian Reekie
- for the Package of Eye Care Interventions Development Group
| | - Sare Safi
- for the Package of Eye Care Interventions Development Group
| | - Jane Scheetz
- for the Package of Eye Care Interventions Development Group
| | - Sunny Shen
- for the Package of Eye Care Interventions Development Group
| | - Sue Silveira
- for the Package of Eye Care Interventions Development Group
| | - Sahil Thakur
- for the Package of Eye Care Interventions Development Group
| | - Gianni Virgili
- for the Package of Eye Care Interventions Development Group
| | - Ai Chee Yong
- for the Package of Eye Care Interventions Development Group
| | - Justine Zhang
- for the Package of Eye Care Interventions Development Group
| | - Mohammed Ziaei
- for the Package of Eye Care Interventions Development Group
| | | | | | | | | | | | - Marcus Ang
- for the Package of Eye Care Interventions Development Group
| | | | - Kristin Bell
- for the Package of Eye Care Interventions Development Group
| | | | - Dirk J Booysen
- for the Package of Eye Care Interventions Development Group
| | | | - Vanessa Bosch
- for the Package of Eye Care Interventions Development Group
| | | | - Yi Chen
- for the Package of Eye Care Interventions Development Group
| | | | - Tanuj Dada
- for the Package of Eye Care Interventions Development Group
| | | | | | - Anne Ebri
- for the Package of Eye Care Interventions Development Group
| | - Irmela Erdmann
- for the Package of Eye Care Interventions Development Group
| | - Thomas Freddo
- for the Package of Eye Care Interventions Development Group
| | - John Flanagan
- for the Package of Eye Care Interventions Development Group
| | - Yazan Gammoh
- for the Package of Eye Care Interventions Development Group
| | - Neeru Gupta
- for the Package of Eye Care Interventions Development Group
| | | | | | | | | | | | - Irfan Jeeva
- for the Package of Eye Care Interventions Development Group
| | | | - Ivo Kocur
- for the Package of Eye Care Interventions Development Group
| | - Andreas Kreis
- for the Package of Eye Care Interventions Development Group
| | - Samuel Kyei
- for the Package of Eye Care Interventions Development Group
| | - Weizhong Lan
- for the Package of Eye Care Interventions Development Group
| | | | | | | | - Mohammad Muhit
- for the Package of Eye Care Interventions Development Group
| | | | | | | | | | | | | | - Seyhan B Özkan
- for the Package of Eye Care Interventions Development Group
| | - Bina Patel
- for the Package of Eye Care Interventions Development Group
| | - Jayter S Paula
- for the Package of Eye Care Interventions Development Group
| | - Jugnoo S Rahi
- for the Package of Eye Care Interventions Development Group
| | | | | | - Asim Kumar Sil
- for the Package of Eye Care Interventions Development Group
| | | | - Raúl ARC Sousa
- for the Package of Eye Care Interventions Development Group
| | | | | | | | - Ann L Webber
- for the Package of Eye Care Interventions Development Group
| | - David Yorston
- for the Package of Eye Care Interventions Development Group
| | - Andrea Zin
- for the Package of Eye Care Interventions Development Group
| | - Hannah B Faal
- for the Package of Eye Care Interventions Development Group
| | - Jill Keeffe
- for the Package of Eye Care Interventions Development Group
| | | | | |
Collapse
|
7
|
Tagboto S, Orish V. Drug development for onchocerciasis-the past, the present and the future. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.953061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Onchocerciasis affects predominantly rural communities in Africa, and with small foci in South America and the Yemen. The disease is a major cause of blindness and other significant morbidity and mortality. Control programs have achieved a major impact on the incidence and prevalence of onchocerciasis by interrupting transmission with vector control programs, and treatment with mass drug administration using the microfilaricide ivermectin. Over the last few decades, several microfilaricides have been developed. This initially included diethylcarbamazine, which had significant side effects and is no longer used as such. Ivermectin which is a safe and highly effective microfilaricide and moxidectin which is a longer acting microfilaricide are presently recognized therapies. Suramin was the first effective macrofilaricide but was prohibitively toxic. Certain antibiotics including doxycycline can help eliminate adult worms by targeting its endosymbiont bacteria, Wolbachia pipientis. However, the dosing regimens may make this difficult to use as part of a mass disease control program in endemic areas. It is now widely recognized that treatments that are able to kill or permanently sterilize adult filarial worms should help achieve the elimination of this disease. We summarize in detail the historic drug development in onchocerciasis, including prospective future candidate drugs.
Collapse
|
8
|
Bakajika D, Kanza EM, Opoku NO, Howard HM, Mambandu GL, Nyathirombo A, Nigo MM, Kennedy KK, Masembe SL, Mumbere M, Kataliko K, Bolay KM, Attah SK, Olipoh G, Asare S, Vaillant M, Halleux CM, Kuesel AC. Effect of a single dose of 8 mg moxidectin or 150 μg/kg ivermectin on O. volvulus skin microfilariae in a randomized trial: Differences between areas in the Democratic Republic of the Congo, Liberia and Ghana and impact of intensity of infection. PLoS Negl Trop Dis 2022; 16:e0010079. [PMID: 35476631 PMCID: PMC9084535 DOI: 10.1371/journal.pntd.0010079] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 05/09/2022] [Accepted: 03/13/2022] [Indexed: 11/21/2022] Open
Abstract
Background Our study in CDTI-naïve areas in Nord Kivu and Ituri (Democratic Republic of the Congo, DRC), Lofa County (Liberia) and Nkwanta district (Ghana) showed that a single 8 mg moxidectin dose reduced skin microfilariae density (microfilariae/mg skin, SmfD) better and for longer than a single 150μg/kg ivermectin dose. We now analysed efficacy by study area and pre-treatment SmfD (intensity of infection, IoI). Methodology/Principal findings Four and three IoI categories were defined for across-study and by-study area analyses, respectively. We used a general linear model to analyse SmfD 1, 6, 12 and 18 months post-treatment, a logistic model to determine the odds of undetectable SmfD from month 1 to month 6 (UD1-6), month 12 (UD1-12) and month 18 (UD1-18), and descriptive statistics to quantitate inter-interindividual response differences. Twelve months post-treatment, treatment differences (difference in adjusted geometric mean SmfD after moxidectin and ivermectin in percentage of the adjusted geometric mean SmfD after ivermectin treatment) were 92.9%, 90.1%, 86.8% and 84.5% in Nord Kivu, Ituri, Lofa and Nkwanta, and 74.1%, 84.2%, 90.0% and 95.4% for participants with SmfD 10–20, ≥20-<50, ≥50-<80, ≥80, respectively. Ivermectin’s efficacy was lower in Ituri and Nkwanta than Nord Kivu and Lofa (p≤0.002) and moxidectin’s efficacy lower in Nkwanta than Nord Kivu, Ituri and Lofa (p<0.006). Odds ratios for UD1-6, UD1-12 or UD1-18 after moxidectin versus ivermectin treatment exceeded 7.0. Suboptimal response (SmfD 12 months post-treatment >40% of pre-treatment SmfD) occurred in 0%, 0.3%, 1.6% and 3.9% of moxidectin and 12.1%, 23.7%, 10.8% and 28.0% of ivermectin treated participants in Nord Kivu, Ituri, Lofa and Nkwanta, respectively. Conclusions/Significance The benefit of moxidectin vs ivermectin treatment increased with pre-treatment IoI. The possibility that parasite populations in different areas have different drug susceptibility without prior ivermectin selection pressure needs to be considered and further investigated. Clinical Trial Registration Registered on 14 November 2008 in Clinicaltrials.gov (ID: NCT00790998). Onchocerciasis or river blindness is a parasitic disease primarily in sub-Saharan Africa and Yemen. It can cause debilitating morbidity including severe itching, skin changes, visual impairment and even blindness. Many years of control efforts, today primarily based on mass administration of ivermectin (MDA) in endemic communities, have reduced morbidity and the percentage of infected individuals so that elimination of parasite transmission is now planned. WHO estimated that in 2020 more than 239 million people required MDA. Ivermectin may not be sufficiently efficacious to achieve elimination everywhere. Our study in areas in Liberia, Ghana and the Democratic Republic of the Congo where MDA had not been implemented yet showed that one treatment with 8 mg moxidectin reduced parasite levels in the skin better and for longer than one treatment with 150 μg/kg ivermectin, the dose used during MDA. Here we show that people with higher numbers of parasites in the skin benefited more from moxidectin treatment than those with lower numbers and that the efficacy of ivermectin and moxidectin differed between study areas. Provided WHO and countries include moxidectin in guidelines and policies, this information could help decisions on when and where to use moxidectin.
Collapse
Affiliation(s)
- Didier Bakajika
- Centre de Recherche en Maladies Tropicale de l’Ituri, Hôpital Générale de Référence de Rethy, Ituri, Democratic Republic of the Congo Democratic Republic of the Congo (DRC)
| | - Eric M. Kanza
- Centre de Recherche Clinique de Butembo, Université Catholique du Graben, Site Horizon, Butembo, Nord Kivu, Democratic Republic of the Congo (DRC)
| | | | - Hayford M. Howard
- Clinical Research Center, Liberia Institute for Biomedical Research, Bolahun, Liberia
| | - Germain L. Mambandu
- Centre de Recherche en Maladies Tropicale de l’Ituri, Hôpital Générale de Référence de Rethy, Ituri, Democratic Republic of the Congo Democratic Republic of the Congo (DRC)
| | - Amos Nyathirombo
- Centre de Recherche en Maladies Tropicale de l’Ituri, Hôpital Générale de Référence de Rethy, Ituri, Democratic Republic of the Congo Democratic Republic of the Congo (DRC)
| | - Maurice M. Nigo
- Centre de Recherche en Maladies Tropicale de l’Ituri, Hôpital Générale de Référence de Rethy, Ituri, Democratic Republic of the Congo Democratic Republic of the Congo (DRC)
| | - Kambale Kasonia Kennedy
- Centre de Recherche Clinique de Butembo, Université Catholique du Graben, Site Horizon, Butembo, Nord Kivu, Democratic Republic of the Congo (DRC)
| | - Safari L. Masembe
- Centre de Recherche Clinique de Butembo, Université Catholique du Graben, Site Horizon, Butembo, Nord Kivu, Democratic Republic of the Congo (DRC)
| | - Mupenzi Mumbere
- Centre de Recherche Clinique de Butembo, Université Catholique du Graben, Site Horizon, Butembo, Nord Kivu, Democratic Republic of the Congo (DRC)
| | - Kambale Kataliko
- Centre de Recherche Clinique de Butembo, Université Catholique du Graben, Site Horizon, Butembo, Nord Kivu, Democratic Republic of the Congo (DRC)
| | - Kpehe M. Bolay
- Clinical Research Center, Liberia Institute for Biomedical Research, Bolahun, Liberia
| | - Simon K. Attah
- Onchocerciasis Chemotherapy Research Center, Hohoe, Ghana
| | - George Olipoh
- Onchocerciasis Chemotherapy Research Center, Hohoe, Ghana
| | - Sampson Asare
- Onchocerciasis Chemotherapy Research Center, Hohoe, Ghana
| | - Michel Vaillant
- Competence Center for Methodology and Statistics, Luxembourg Institute of Health, Strassen, Grand Duchy of Luxembourg
| | - Christine M. Halleux
- UNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (WHO/TDR), World Health Organization, Geneva, Switzerland
| | - Annette C. Kuesel
- UNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (WHO/TDR), World Health Organization, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
9
|
Zhan B, Bottazzi ME, Hotez PJ, Lustigman S. Advancing a Human Onchocerciasis Vaccine From Antigen Discovery to Efficacy Studies Against Natural Infection of Cattle With Onchocerca ochengi. Front Cell Infect Microbiol 2022; 12:869039. [PMID: 35444961 PMCID: PMC9015098 DOI: 10.3389/fcimb.2022.869039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/07/2022] [Indexed: 11/19/2022] Open
Abstract
Human onchocerciasis is a devastating neglected tropical disease caused by infection of the filarial nematode Onchocerca volvulus. The infection can cause irreversible visual impairment or blindness and stigmatizing dermatitis. More than 32 million people were estimated to be infected with O. volvulus in Africa, and 385,000 suffered from blindness. Even though the implementation of mass drug administration (MDA) with ivermectin has reduced the global prevalence of onchocerciasis, O. volvulus infection remains challenging to control because MDA with ivermectin cannot be implemented in endemic areas co-endemic with loiasis due to the risk of severe adverse events. There is also emerging drug resistance to ivermectin that further complicates the elimination of onchocerciasis. Thus, the development of a vaccine that would induce protective immunity and reduce infection burden is essential. Efforts to develop prophylactic and/or therapeutic vaccines for onchocerciasis have been explored since the late 1980s by many researchers and entities, and here we summarize the recent advances made in the development of vaccines against the infection of O. volvulus and onchocerciasis.
Collapse
Affiliation(s)
- Bin Zhan
- Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, United States
| | - Maria Elena Bottazzi
- Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, United States
| | - Peter J Hotez
- Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, United States
| | - Sara Lustigman
- Laboratory of Molecular Parasitology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, United States
| |
Collapse
|
10
|
Kwofie SK, Broni E, Yunus FU, Nsoh J, Adoboe D, Miller WA, Wilson MD. Molecular Docking Simulation Studies Identifies Potential Natural Product Derived-Antiwolbachial Compounds as Filaricides against Onchocerciasis. Biomedicines 2021; 9:biomedicines9111682. [PMID: 34829911 PMCID: PMC8615632 DOI: 10.3390/biomedicines9111682] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/20/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
Onchocerciasis is the leading cause of blindness and severe skin lesions which remain a major public health problem, especially in tropical areas. The widespread use of antibiotics and the long duration required for effective treatment continues to add to the increasing global menace of multi-resistant pathogens. Onchocerca volvulus harbors the endosymbiont bacteria Wolbachia, essential for the normal development of embryos, larvae and long-term survival of the adult worm, O. volvulus. We report here results of using structure-based drug design (SBDD) approach aimed at identifying potential novel Wolbachia inhibitors from natural products against the Wolbachia surface protein (WSP). The protein sequence of the WSP with UniProtKB identifier Q0RAI4 was used to model the three-dimensional (3D) structure via homology modelling techniques using three different structure-building algorithms implemented in Modeller, I-TASSER and Robetta. Out of the 15 generated models of WSP, one was selected as the most reasonable quality model which had 82, 15.5, 1.9 and 0.5% of the amino acid residues in the most favored regions, additionally allowed regions, generously allowed regions and disallowed regions, respectively, based on the Ramachandran plot. High throughput virtual screening was performed via Autodock Vina with a library comprising 42,883 natural products from African and Chinese databases, including 23 identified anti-Onchocerca inhibitors. The top six compounds comprising ZINC000095913861, ZINC000095486235, ZINC000035941652, NANPDB4566, acetylaleuritolic acid and rhemannic acid had binding energies of −12.7, −11.1, −11.0, −11, −10.3 and −9.5 kcal/mol, respectively. Molecular dynamics simulations including molecular mechanics Poisson-Boltzmann (MMPBSA) calculations reinforced the stability of the ligand-WSP complexes and plausible binding mechanisms. The residues Arg45, Tyr135, Tyr148 and Phe195 were predicted as potential novel critical residues required for ligand binding in pocket 1. Acetylaleuritolic acid and rhemannic acid (lantedene A) have previously been shown to possess anti-onchocercal activity. This warrants the need to evaluate the anti-WSP activity of the identified molecules. The study suggests the exploitation of compounds which target both pockets 1 and 2, by investigating their potential for effective depletion of Wolbachia. These compounds were predicted to possess reasonably good pharmacological profiles with insignificant toxicity and as drug-like. The compounds were computed to possess biological activity including antibacterial, antiparasitic, anthelmintic and anti-rickettsials. The six natural products are potential novel antiwolbachial agents with insignificant toxicities which can be explored further as filaricides for onchocerciasis.
Collapse
Affiliation(s)
- Samuel K. Kwofie
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, PMB LG 77, Legon, Accra LG 77, Ghana; (E.B.); (F.U.Y.); (J.N.); (D.A.)
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra LG 54, Ghana
- Correspondence: ; Tel.: +233-203-797922
| | - Emmanuel Broni
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, PMB LG 77, Legon, Accra LG 77, Ghana; (E.B.); (F.U.Y.); (J.N.); (D.A.)
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra LG 54, Ghana
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, P.O. Box LG 581, Legon, Accra LG 581, Ghana;
| | - Faruk U. Yunus
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, PMB LG 77, Legon, Accra LG 77, Ghana; (E.B.); (F.U.Y.); (J.N.); (D.A.)
| | - John Nsoh
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, PMB LG 77, Legon, Accra LG 77, Ghana; (E.B.); (F.U.Y.); (J.N.); (D.A.)
| | - Dela Adoboe
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, PMB LG 77, Legon, Accra LG 77, Ghana; (E.B.); (F.U.Y.); (J.N.); (D.A.)
| | - Whelton A. Miller
- Department of Medicine, Loyola University Medical Center, Maywood, IL 60153, USA;
- Department of Molecular Pharmacology and Neuroscience, Loyola University Medical Center, Maywood, IL 60153, USA
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, IL 19104, USA
| | - Michael D. Wilson
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, P.O. Box LG 581, Legon, Accra LG 581, Ghana;
- Department of Medicine, Loyola University Medical Center, Maywood, IL 60153, USA;
| |
Collapse
|
11
|
Turner HC, Stolk WA, Solomon AW, King JD, Montresor A, Molyneux DH, Toor J. Are current preventive chemotherapy strategies for controlling and eliminating neglected tropical diseases cost-effective? BMJ Glob Health 2021; 6:bmjgh-2021-005456. [PMID: 34385158 PMCID: PMC8362715 DOI: 10.1136/bmjgh-2021-005456] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
Neglected tropical diseases (NTDs) remain a significant cause of morbidity and mortality in many low-income and middle-income countries. Several NTDs, namely lymphatic filariasis, onchocerciasis, schistosomiasis, soil-transmitted helminthiases (STH) and trachoma, are predominantly controlled by preventive chemotherapy (or mass drug administration), following recommendations set by the WHO. Over one billion people are now treated for NTDs with this strategy per year. However, further investment and increased domestic healthcare spending are urgently needed to continue these programmes. Consequently, it is vital that the cost-effectiveness of preventive chemotherapy is understood. We analyse the current estimates on the cost per disability-adjusted life year (DALY) of the preventive chemotherapy strategies predominantly used for these diseases and identify key evidence gaps that require further research. Overall, the reported estimates show that preventive chemotherapy is generally cost-effective, supporting WHO recommendations. More specifically, the cost per DALY averted estimates relating to community-wide preventive chemotherapy for lymphatic filariasis and onchocerciasis were particularly favourable when compared with other public health interventions. Cost per DALY averted estimates of school-based preventive chemotherapy for schistosomiasis and STH were also generally favourable but more variable. Notably, the broader socioeconomic benefits are likely not being fully captured by the DALYs averted metric. No estimates of cost per DALY averted relating to community-wide mass antibiotic treatment for trachoma were found, highlighting the need for further research. These findings are important for informing global health policy and support the need for continuing NTD control and elimination efforts.
Collapse
Affiliation(s)
- Hugo C Turner
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK .,Oxford University Clinical Research Unit, Wellcome Africa Asia Programme, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Wilma A Stolk
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Anthony W Solomon
- Department of Control of Neglected Tropical Diseases, World Health Organization, Geneva, Switzerland
| | - Jonathan D King
- Department of Control of Neglected Tropical Diseases, World Health Organization, Geneva, Switzerland
| | - Antonio Montresor
- Department of Control of Neglected Tropical Diseases, World Health Organization, Geneva, Switzerland
| | - David H Molyneux
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Jaspreet Toor
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK,Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| |
Collapse
|
12
|
The burden of skin disease and eye disease due to onchocerciasis in countries formerly under the African Programme for Onchocerciasis Control mandate for 1990, 2020, and 2030. PLoS Negl Trop Dis 2021; 15:e0009604. [PMID: 34310602 PMCID: PMC8312930 DOI: 10.1371/journal.pntd.0009604] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 06/29/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Onchocerciasis ("river blindness") can cause severe morbidity, including vision loss and various skin manifestations, and is targeted for elimination using ivermectin mass drug administration (MDA). We calculated the number of people with Onchocerca volvulus infection and onchocercal skin and eye disease as well as disability-adjusted life years (DALYs) lost from 1990 through to 2030 in areas formerly covered by the African Programme for Onchocerciasis Control. METHODS Per MDA implementation unit, we collated data on the pre-control distribution of microfilariae (mf) prevalence and the history of control. Next, we predicted trends in infection and morbidity over time using the ONCHOSIM simulation model. DALY estimates were calculated using disability weights from the Global Burden of Disease Study. RESULTS In 1990, prior to MDA implementation, the total population at risk was 79.8 million with 26.0 million (32.5%) mf-positive individuals, of whom 17.5 million (21.9%) had some form of onchocercal skin or eye disease (2.5 million DALYs lost). By 2030, the total population was predicted to increase to 236.1 million, while the number of mf-positive cases (about 6.8 million, 2.9%), people with skin or eye morbidity (4.2 million, 1.8%), and DALYs lost (0.7 million) were predicted to decline. CONCLUSIONS MDA has had a remarkable impact on the onchocerciasis burden in countries previously under the APOC mandate. In the few countries where we predict continued transmission between now and 2030, intensified MDA could be combined with local vector control efforts, or the introduction of new drugs for mopping up residual cases of infection and morbidity.
Collapse
|
13
|
Niamsi-Emalio Y, Nana-Djeunga HC, Chesnais CB, Pion SDS, Tchatchueng-Mbougua JB, Boussinesq M, Basáñez MG, Kamgno J. Unusual Localization of Blood-Borne Loa loa Microfilariae in the Skin Depends on Microfilarial Density in the Blood: Implications for Onchocerciasis Diagnosis in Coendemic Areas. Clin Infect Dis 2021; 72:S158-S164. [PMID: 33909066 PMCID: PMC8201578 DOI: 10.1093/cid/ciab255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background The diagnostic gold standard for onchocerciasis relies on identification and enumeration of (skin-dwelling) Onchocerca volvulus microfilariae (mf) using the skin snip technique (SST). In a recent study, blood-borne Loa loa mf were found by SST in individuals heavily infected with L. loa, and microscopically misidentified as O. volvulus due to their superficially similar morphology. This study investigates the relationship between L. loa microfilarial density (Loa MFD) and the probability of testing SST positive. Methods A total of 1053 participants from the (onchocerciasis and loiasis coendemic) East Region in Cameroon were tested for (1) Loa MFD in blood samples, (2) O. volvulus presence by SST, and (3) Immunoglobulin (Ig) G4 antibody positivity to Ov16 by rapid diagnostic test (RDT). A Classification and Regression Tree (CART) model was used to perform a supervised classification of SST status and identify a Loa MFD threshold above which it is highly likely to find L. loa mf in skin snips. Results Of 1011 Ov16-negative individuals, 28 (2.8%) tested SST positive and 150 (14.8%) were L. loa positive. The range of Loa MFD was 0–85 200 mf/mL. The CART model subdivided the sample into 2 Loa MFD classes with a discrimination threshold of 4080 (95% CI, 2180–12 240) mf/mL. The probability of being SST positive exceeded 27% when Loa MFD was >4080 mf/mL. Conclusions The probability of finding L. loa mf by SST increases significantly with Loa MFD. Skin-snip polymerase chain reaction would be useful when monitoring onchocerciasis prevalence by SST in onchocerciasis–loiasis coendemic areas.
Collapse
Affiliation(s)
- Yannick Niamsi-Emalio
- Centre for Research on Filariasis and other Tropical Diseases (CRFilMT), Yaoundé, Cameroon
| | - Hugues C Nana-Djeunga
- Centre for Research on Filariasis and other Tropical Diseases (CRFilMT), Yaoundé, Cameroon
| | - Cédric B Chesnais
- Institut de Recherche pour le Développement (IRD), UMI233/INSERM U1175, Université de Montpellier , Montpellier, France
| | - Sébastien D S Pion
- Institut de Recherche pour le Développement (IRD), UMI233/INSERM U1175, Université de Montpellier , Montpellier, France
| | - Jules B Tchatchueng-Mbougua
- Service d'Epidémiologie, Centre Pasteur du Cameroun, Membre du Réseau International des Instituts Pasteur, Yaoundé, Cameroun
| | - Michel Boussinesq
- Institut de Recherche pour le Développement (IRD), UMI233/INSERM U1175, Université de Montpellier , Montpellier, France
| | - María-Gloria Basáñez
- MRC Centre for Global Infectious Disease Analysis and London Centre for Neglected Tropical Disease Research, Dep artment of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
| | - Joseph Kamgno
- Centre for Research on Filariasis and other Tropical Diseases (CRFilMT), Yaoundé, Cameroon.,Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
| |
Collapse
|
14
|
Stolk WA, Blok DJ, Hamley JID, Cantey PT, de Vlas SJ, Walker M, Basáñez MG. Scaling-Down Mass Ivermectin Treatment for Onchocerciasis Elimination: Modeling the Impact of the Geographical Unit for Decision Making. Clin Infect Dis 2021; 72:S165-S171. [PMID: 33909070 PMCID: PMC8201558 DOI: 10.1093/cid/ciab238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Background Due to spatial heterogeneity in onchocerciasis transmission, the duration of ivermectin mass drug administration (MDA) required for eliminating onchocerciasis will vary within endemic areas and the occurrence of transmission “hotspots” is inevitable. The geographical scale at which stop-MDA decisions are made will be a key driver in how rapidly national programs can scale down active intervention upon achieving the epidemiological targets for elimination. Methods We used 2 onchocerciasis models (EPIONCHO-IBM and ONCHOSIM) to predict the likelihood of achieving elimination by 2030 in Africa, accounting for variation in preintervention endemicity levels and histories of ivermectin treatment. We explore how decision making at contrasting geographical scales (community vs larger scale “project”) changes projections on populations still requiring MDA or transitioning to post-treatment surveillance. Results The total population considered grows from 118 million people in 2020 to 136 million in 2030. If stop-MDA decisions are made at project level, the number of people requiring treatment declines from 69–118 million in 2020 to 59–118 million in 2030. If stop-MDA decisions are made at community level, the numbers decline from 23–81 million in 2020 to 15–63 million in 2030. The lower estimates in these prediction intervals are based on ONCHOSIM, the upper limits on EPIONCHO-IBM. Conclusions The geographical scale at which stop-MDA decisions are made strongly determines how rapidly national onchocerciasis programs can scale down MDA programs. Stopping in portions of project areas or transmission zones would free up human and economic resources.
Collapse
Affiliation(s)
- Wilma A Stolk
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - David J Blok
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jonathan I D Hamley
- London Centre for Neglected Tropical Disease Research, Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine (St Mary's Campus), Imperial College London, London, United Kingdom.,MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine (St Mary's Campus), Imperial College London, London, United Kingdom
| | - Paul T Cantey
- Division of Parasitic Diseases and Malaria, US Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sake J de Vlas
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Martin Walker
- London Centre for Neglected Tropical Disease Research, Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine (St Mary's Campus), Imperial College London, London, United Kingdom.,London Centre for Neglected Tropical Disease Research, Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hatfield, United Kingdom
| | - María-Gloria Basáñez
- London Centre for Neglected Tropical Disease Research, Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine (St Mary's Campus), Imperial College London, London, United Kingdom.,MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine (St Mary's Campus), Imperial College London, London, United Kingdom
| |
Collapse
|
15
|
Vinkeles Melchers NVS, Stolk WA, Murdoch ME, Pedrique B, Kloek M, Bakker R, de Vlas SJ, Coffeng LE. How does onchocerciasis-related skin and eye disease in Africa depend on cumulative exposure to infection and mass treatment? PLoS Negl Trop Dis 2021; 15:e0009489. [PMID: 34115752 PMCID: PMC8221783 DOI: 10.1371/journal.pntd.0009489] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 06/23/2021] [Accepted: 05/19/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Onchocerciasis (river-blindness) in Africa is targeted for elimination through mass drug administration (MDA) with ivermectin. Onchocerciasis may cause various types of skin and eye disease. Predicting the impact of MDA on onchocercal morbidity is useful for future policy development. Here, we introduce a new disease module within the established ONCHOSIM model to predict trends over time in prevalence of onchocercal morbidity. METHODS We developed novel generic model concepts for development of symptoms due to cumulative exposure to dead microfilariae, accommodating both reversible (acute) and irreversible (chronic) symptoms. The model was calibrated to reproduce pre-control age patterns and associations between prevalences of infection, eye disease, and various types of skin disease as observed in a large set of population-based studies. We then used the new disease module to predict the impact of MDA on morbidity prevalence over a 30-year time frame for various scenarios. RESULTS ONCHOSIM reproduced observed age-patterns in disease and community-level associations between infection and disease reasonably well. For highly endemic settings with 30 years of annual MDA at 60% coverage, the model predicted a 70% to 89% reduction in prevalence of chronic morbidity. This relative decline was similar with higher MDA coverage and only somewhat higher for settings with lower pre-control endemicity. The decline in prevalence was lowest for mild depigmentation and visual impairment. The prevalence of acute clinical manifestations (severe itch, reactive skin disease) declined by 95% to 100% after 30 years of annual MDA, regardless of pre-control endemicity. CONCLUSION We present generic model concepts for predicting trends in acute and chronic symptoms due to history of exposure to parasitic worm infections, and apply this to onchocerciasis. Our predictions suggest that onchocercal morbidity, in particular chronic manifestations, will remain a public health concern in many epidemiological settings in Africa, even after 30 years of MDA.
Collapse
Affiliation(s)
| | - Wilma A. Stolk
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Michele E. Murdoch
- Department of Dermatology, West Herts Hospitals NHS Trust, Watford General Hospital, Watford, Hertfordshire, United Kingdom
| | - Belén Pedrique
- Drugs for Neglected Diseases initiative (DNDi), Geneva, Switzerland
| | - Marielle Kloek
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Roel Bakker
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Sake J. de Vlas
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Luc E. Coffeng
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
16
|
Hamley JID, Blok DJ, Walker M, Milton P, Hopkins AD, Hamill LC, Downs P, de Vlas SJ, Stolk WA, Basáñez MG. What does the COVID-19 pandemic mean for the next decade of onchocerciasis control and elimination? Trans R Soc Trop Med Hyg 2021; 115:269-280. [PMID: 33515042 PMCID: PMC7928565 DOI: 10.1093/trstmh/traa193] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/16/2020] [Accepted: 12/29/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Mass drug administration (MDA) of ivermectin for onchocerciasis has been disrupted by the coronavirus disease 2019 (COVID-19) pandemic. Mathematical modelling can help predict how missed/delayed MDA will affect short-term epidemiological trends and elimination prospects by 2030. METHODS Two onchocerciasis transmission models (EPIONCHO-IBM and ONCHOSIM) are used to simulate microfilarial prevalence trends, elimination probabilities and age profiles of Onchocerca volvulus microfilarial prevalence and intensity for different treatment histories and transmission settings, assuming no interruption, a 1-y (2020) interruption or a 2-y (2020-2021) interruption. Biannual MDA or increased coverage upon MDA resumption are investigated as remedial strategies. RESULTS Programmes with shorter MDA histories and settings with high pre-intervention endemicity will be the most affected. Biannual MDA is more effective than increasing coverage for mitigating COVID-19's impact on MDA. Programmes that had already switched to biannual MDA should be minimally affected. In high-transmission settings with short treatment history, a 2-y interruption could lead to increased microfilarial load in children (EPIONCHO-IBM) and adults (ONCHOSIM). CONCLUSIONS Programmes with shorter (annual MDA) treatment histories should be prioritised for remedial biannual MDA. Increases in microfilarial load could have short- and long-term morbidity and mortality repercussions. These results can guide decision-making to mitigate the impact of COVID-19 on onchocerciasis elimination.
Collapse
Affiliation(s)
- Jonathan I D Hamley
- London Centre for Neglected Tropical Disease Research, Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine (St Mary's campus), Imperial College London, Norfolk Place, London W2 1PG, UK.,MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine (St Mary's campus), Imperial College London, Norfolk Place, London W2 1PG, UK
| | - David J Blok
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Martin Walker
- London Centre for Neglected Tropical Disease Research, Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine (St Mary's campus), Imperial College London, Norfolk Place, London W2 1PG, UK.,London Centre for Neglected Tropical Disease Research (LCNTDR), Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hatfield AL9 7TA, UK
| | - Philip Milton
- London Centre for Neglected Tropical Disease Research, Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine (St Mary's campus), Imperial College London, Norfolk Place, London W2 1PG, UK.,MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine (St Mary's campus), Imperial College London, Norfolk Place, London W2 1PG, UK
| | - Adrian D Hopkins
- Neglected and Disabling Diseases of Poverty Consultant, Kent, UK
| | - Louise C Hamill
- Sightsavers, 35 Perrymount Road, Haywards Heath, RH16 3BW, UK
| | - Philip Downs
- Sightsavers, 35 Perrymount Road, Haywards Heath, RH16 3BW, UK
| | - Sake J de Vlas
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Wilma A Stolk
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Maria-Gloria Basáñez
- London Centre for Neglected Tropical Disease Research, Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine (St Mary's campus), Imperial College London, Norfolk Place, London W2 1PG, UK.,MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine (St Mary's campus), Imperial College London, Norfolk Place, London W2 1PG, UK
| |
Collapse
|
17
|
Cheke RA, Little KE, Young S, Walker M, Basáñez MG. Taking the strain out of onchocerciasis? A reanalysis of blindness and transmission data does not support the existence of a savannah blinding strain of onchocerciasis in West Africa. ADVANCES IN PARASITOLOGY 2021; 112:1-50. [PMID: 34024357 DOI: 10.1016/bs.apar.2021.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Onchocerciasis (also known as 'river blindness'), is a neglected tropical disease (NTD) caused by the (Simulium-transmitted) filarial nematode Onchocerca volvulus. The occurrence of 'blinding' (savannah) and non-blinding (forest) parasite strains and the existence of corresponding, locally adapted Onchocerca-Simulium complexes were postulated to explain greater blindness prevalence in savannah than in forest foci. As a result, the World Health Organization (WHO) Onchocerciasis Control Programme in West Africa (OCP) focused anti-vectorial and anti-parasitic interventions in savannah endemic areas. In this paper, village-level data on blindness prevalence, microfilarial prevalence, and transmission intensity (measured by the annual transmission potential, the number of infective, L3, larvae per person per year) were extracted from 16 West-Central Africa-based publications, and analysed according to habitat (forest, forest-savannah mosaic, savannah) to test the dichotomous strain hypothesis in relation to blindness. When adjusting for sample size, there were no statistically significant differences in blindness prevalence between the habitats (one-way ANOVA, P=0.68, mean prevalence for forest=1.76±0.37 (SE); mosaic=1.49±0.38; savannah=1.89±0.26). The well-known relationship between blindness prevalence and annual transmission potential for savannah habitats was confirmed and shown to hold for (but not to be statistically different from) forest foci (excluding data from southern Côte d'Ivoire, in which blindness prevalence was significantly lower than in other West African forest communities, but which had been the focus of studies leading to the strain-blindness hypothesis that was accepted by OCP planners). We conclude that the evidence for a savannah blinding onchocerciasis strain in simple contrast with a non-blinding forest strain is equivocal. A re-appraisal of the strain hypothesis to explain patterns of ocular disease is needed to improve understanding of onchocerciasis epidemiology and disease burden estimates in the light of the WHO 2030 goals for onchocerciasis.
Collapse
Affiliation(s)
- Robert A Cheke
- Natural Resources Institute, Department of Agriculture, Health & Environment, University of Greenwich at Medway, Kent, United Kingdom; London Centre for Neglected Tropical Disease Research (LCNTDR), Department of Infectious Disease Epidemiology, Faculty of Medicine, School of Public Health, Imperial College London, London, United Kingdom
| | | | - Stephen Young
- Natural Resources Institute, Department of Agriculture, Health & Environment, University of Greenwich at Medway, Kent, United Kingdom
| | - Martin Walker
- London Centre for Neglected Tropical Disease Research, Department of Pathobiology and Populations Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Maria-Gloria Basáñez
- London Centre for Neglected Tropical Disease Research (LCNTDR), Department of Infectious Disease Epidemiology, Faculty of Medicine, School of Public Health, Imperial College London, London, United Kingdom; MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Faculty of Medicine, School of Public Health, Imperial College London, London, United Kingdom.
| |
Collapse
|
18
|
Amazigo UV, Leak SGA, Zoure HGM, Okoronkwo C, Diop Ly M, Isiyaku S, Crump A, Okeibunor JC, Boatin B. Community-directed distributors-The "foot soldiers" in the fight to control and eliminate neglected tropical diseases. PLoS Negl Trop Dis 2021; 15:e0009088. [PMID: 33661903 PMCID: PMC7932156 DOI: 10.1371/journal.pntd.0009088] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The neglected tropical diseases (NTDs) affect hundreds of millions of people, predominantly in rural, often difficult-to-access areas, poorly served by national health services. Here, we review the contributions of 4.8 million community-directed distributors (CDDs) of medicines over 2 decades in 146,000 communities in 27 sub-Saharan African countries to control or eliminate onchocerciasis and lymphatic filariasis (LF). We examine their role in the control of other NTDs, malaria, HIV/AIDS interventions, immunisation campaigns, and support to overstretched health service personnel. We are of the opinion that CDDs as community selected, trained, and experienced "foot soldiers," some of whom were involved in the Ebola outbreak responses at the community level in Liberia, if retrained, can assist community leaders and support health workers (HWs) in the ongoing Coronavirus Disease 2019 (COVID-19) crisis. The review highlights the improved treatment coverage where there are women CDDs, the benefits and lessons from the work of CDDs, their long-term engagement, and the challenges they face in healthcare delivery. It underscores the value of utilising the CDD model for strong community engagement and recommends the model, with some review, to hasten the achievement of the NTD 2030 goal and assist the health system cope with evolving epidemics and other challenges. We propose that, based on the unprecedented progress made in the control of NTDs directly linked to community engagement and contributions of CDDs "foot soldiers," they deserve regional and global recognition. We also suggest that the World Health Organization (WHO) and other international stakeholders promote policy and guidance for countries to adapt this model for the elimination of NTDs and to strengthen national health services. This will enhance the accomplishment of some Sustainable Development Goals (SDGs) by 2030 in sub-Saharan Africa.
Collapse
Affiliation(s)
- Uche V. Amazigo
- African Programme for Onchocerciasis Control, World Health Organization, Enugu, Nigeria
| | - Stephen G. A. Leak
- African Programme for Onchocerciasis Control, World Health Organization, Macclesfield, Cheshire, United Kingdom
| | | | | | | | | | | | | | - Boakye Boatin
- Onchocerciasis Control Programme in West Africa, World Health Organization, Accra, Ghana
| |
Collapse
|
19
|
Progress towards onchocerciasis elimination in Côte d'Ivoire: A geospatial modelling study. PLoS Negl Trop Dis 2021; 15:e0009091. [PMID: 33566805 PMCID: PMC7875389 DOI: 10.1371/journal.pntd.0009091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 01/01/2021] [Indexed: 11/19/2022] Open
Abstract
Background Côte d’Ivoire has had 45 years of intervention for onchocerciasis by vector control (from 1975 to 1991), ivermectin mass drug administration (MDA) (from 1992 to 1994) and community directed treatment with ivermectin (CDTi) from 1995 to the present. We modeled onchocerciasis endemicity during two time periods that correspond to the scale up of vector control and ivermectin distribution, respectively. This analysis illustrates progress towards elimination during these periods, and it has identified potential hotspots areas that are at risk for ongoing transmission. Methods and findings The analysis used Ministry of Health skin snip microfilaria (MF) prevalence and intensity data collected between 1975 and 2016. Socio-demographic and environmental factors were incorporated into a predictive, machine learning algorithm to create continuous maps of onchocerciasis endemicity. Overall predicted mean MF prevalence decreased from 51.8% circa 1991 to 3.9% circa 2016. The model predicted infection foci with higher prevalence in the southern region of the country. Predicted mean community MF load (CMFL) decreased from 10.1MF/snip circa 1991 to 0.1MF/snip circa 2016. Again, the model predicts foci with higher Mf densities in the southern region. For assessing model performance, the root mean squared error and R2 values were 1.14 and 0.62 respectively for a model trained with data collected prior to 1991, and 1.28 and 0.57 for the model trained with infection survey data collected later, after the introduction of ivermectin. Finally, our models show that proximity to permanent inland bodies of water and altitude were the most informative variables that correlated with onchocerciasis endemicity. Conclusion/Significance This study further documents the significant reduction of onchocerciasis infection following widespread use of ivermectin for onchocerciasis control in Côte d’Ivoire. Maps produced predict areas at risk for ongoing infection and transmission. Onchocerciasis might be eliminated in Côte d’Ivoire in the future with a combination of sustained CDTi with high coverage, active surveillance, and close monitoring for persistent infection in previously hyper-endemic areas. Côte d’Ivoire is endemic for onchocerciasis (also known as “river blindness”). This neglected tropical disease is transmitted by biting black flies that breed in fast flowing rivers. From 1975 to 1991, onchocerciasis control was based on weekly aerial spraying of the insecticide temephos, on black fly breeding sites. Vector control, however, was mostly focused on the northern and central parts of the country. From 1992 to present, mass treatment with ivermectin was implemented in all endemic areas, including forested regions in the south. Here we present the first geospatial estimates of onchocerciasis endemicity over time. Using the machine learning algorithm quantile regression forest, we implemented models to: identify important socio-demographic and environmental factors that correlate with onchocerciasis infection; predict the prevalence and density of infection in areas without ground-truth data; delineate remaining infection hotspots. Our results show that Côte d’Ivoire has made very significant progress in reducing infection parameters over time, and they may help to inform future interventions to achieve the goal of onchocerciasis elimination in Côte d’Ivoire.
Collapse
|
20
|
Hassan A, Shaban N. Onchocerciasis dynamics: modelling the effects of treatment, education and vector control. JOURNAL OF BIOLOGICAL DYNAMICS 2020; 14:245-268. [PMID: 32266871 DOI: 10.1080/17513758.2020.1745306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 03/02/2020] [Indexed: 06/11/2023]
Abstract
A deterministic model of onchocerciasis disease dynamics is considered in a community partitioned into compartments based on the disease status. Public health education is offered in the community during the implementation of mass treatment using ivermectin drugs. Also, larviciding and trapping strategies are implemented in the vector population with the aim of controlling population growth of black flies. We fit the model to the data to check the suitability of the model. Expressions are derived for the influence on the reproduction numbers of these strategies. Numerical results show that the dynamics of onchocerciasis and the growth of black flies are best controlled when the four strategies are implemented simultaneously. Also, the results suggest that for the elimination of the disease in the society there is a need for finding another drug which will be implemented to ineligible human as well as killing the adult worms instead of ivermectin.
Collapse
Affiliation(s)
- Asha Hassan
- Department of Mathematics, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Nyimvua Shaban
- Department of Mathematics, University of Dar es Salaam, Dar es Salaam, Tanzania
| |
Collapse
|
21
|
Lakwo T, Oguttu D, Ukety T, Post R, Bakajika D. Onchocerciasis Elimination: Progress and Challenges. Res Rep Trop Med 2020; 11:81-95. [PMID: 33117052 PMCID: PMC7548320 DOI: 10.2147/rrtm.s224364] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/16/2020] [Indexed: 01/08/2023] Open
Abstract
Onchocerciasis is a parasitic infection caused by the filarial nematode Onchocerca volvulus and transmitted through the bites of black flies of the genus Similium that breed in rivers and streams. The impact of mass treatment with ivermectin and supplemented by vector control in some countries has changed the global scene of onchocerciasis. There has been reported progress made in elimination of onchocerciasis in central and southern American countries and in some localities in Africa. The target for elimination in the Americas has been set at 2022 while for 12 countries in Africa this is expected in 2030. This review was conducted to examine the current status of onchocerciasis elimination at the global level and report on progress made. Literature searches were made through PubMed, articles in English or English abstracts, reports and any other relevant articles related to the subject. The global burden of onchocerciasis is progressively reducing and is no longer a public health problem in some regions. However, programs are challenged with a range of issues: cross-border transmission, diagnostic tools, Loa loa co-endemicity, limited workforce in entomology and maintaining enthusiasm among community drug distributors. More concerted effort using appropriate tools is required to overcome the challenges.
Collapse
Affiliation(s)
- Thomson Lakwo
- Neglected Tropical Disease Control Program, Vector Control Division, Ministry of Health, Kampala, Uganda
| | - David Oguttu
- Neglected Tropical Disease Control Program, Vector Control Division, Ministry of Health, Kampala, Uganda
| | - Tony Ukety
- Centre de Recherche pour les Maladies Tropicales, Rethy, Ituri Province, The Democratic Republic of the Congo
| | - Rory Post
- Disease Control Department, London School of Hygiene & Tropical Medicine, London, UK.,School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | - Didier Bakajika
- Expanded Special Project for Elimination of Neglected Tropical Diseases, WHO Regional Office for Africa, Brazzaville, Congo
| |
Collapse
|
22
|
Designing antifilarial drug trials using clinical trial simulators. Nat Commun 2020; 11:2685. [PMID: 32483209 PMCID: PMC7264235 DOI: 10.1038/s41467-020-16442-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 05/03/2020] [Indexed: 12/01/2022] Open
Abstract
Lymphatic filariasis and onchocerciasis are neglected tropical diseases (NTDs) targeted for elimination by mass (antifilarial) drug administration. These drugs are predominantly active against the microfilarial progeny of adult worms. New drugs or combinations are needed to improve patient therapy and to enhance the effectiveness of interventions in persistent hotspots of transmission. Several therapies and regimens are currently in (pre-)clinical testing. Clinical trial simulators (CTSs) project patient outcomes to inform the design of clinical trials but have not been widely applied to NTDs, where their resource-saving payoffs could be highly beneficial. We demonstrate the utility of CTSs using our individual-based onchocerciasis transmission model (EPIONCHO-IBM) that projects trial outcomes of a hypothetical macrofilaricidal drug. We identify key design decisions that influence the power of clinical trials, including participant eligibility criteria and post-treatment follow-up times for measuring infection indicators. We discuss how CTSs help to inform target product profiles. Drugs for filariases are under development and clinical trial simulators could help to inform the design of clinical trials. Here, Walker et al. use an individual-based onchocerciasis transmission model to project trial outcomes of a hypothetical macrofilaricidal drug, resolving key design choices.
Collapse
|
23
|
Turner HC, Toor J, Bettis AA, Hopkins AD, Kyaw SS, Onwujekwe O, Thwaites GE, Lubell Y, Fitzpatrick C. Valuing the Unpaid Contribution of Community Health Volunteers to Mass Drug Administration Programs. Clin Infect Dis 2020; 68:1588-1595. [PMID: 30169566 PMCID: PMC6481994 DOI: 10.1093/cid/ciy741] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/25/2018] [Indexed: 12/04/2022] Open
Abstract
Community health volunteers (CHVs) are being used within a growing number of healthcare interventions, and they have become a cornerstone for the delivery of mass drug administration within many neglected tropical disease control programs. However, a greater understanding of the methods used to value the unpaid time CHVs contribute to healthcare programs is needed. We outline the two main approaches used to value CHVs’ unpaid time (the opportunity cost and the replacement cost approaches). We found that for mass drug administration programs the estimates of the economic costs relating to the CHVs’ unpaid time can be significant, with the averages of the different studies varying between US$0.05 and $0.16 per treatment. We estimated that the time donated by CHVs’ to the African Programme for Onchocerciasis Control alone would be valued between US$60 and $90 million. There is a need for greater transparency and consistency in the methods used to value CHVs’ unpaid time.
Collapse
Affiliation(s)
- Hugo C Turner
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford
| | - Jaspreet Toor
- London Centre for Neglected Tropical Disease Research, School of Public Health, Faculty of Medicine, St Marys Campus, Imperial College London.,Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, St Marys Campus, Imperial College London
| | - Alison A Bettis
- London Centre for Neglected Tropical Disease Research, School of Public Health, Faculty of Medicine, St Marys Campus, Imperial College London.,Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, St Marys Campus, Imperial College London
| | | | - Shwe Sin Kyaw
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Obinna Onwujekwe
- Department of Health Administration and Management, University of Nigeria Enugu Campus.,Health Policy Research Group, Department of Pharmacology and Therapeutics, College of Medicine, University of Nigeria Enugu Campus, Enugu, Nigeria
| | - Guy E Thwaites
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford
| | - Yoel Lubell
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford.,Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Christopher Fitzpatrick
- Department of Control of Neglected Tropical Diseases, World Health Organization, Geneva, Switzerland
| |
Collapse
|
24
|
Kelly JD, Rebollo Polo M, Marie Zoure HG, Oldenburg CE, Keenan JD, Porco TC, Lietman TM. Assessing Onchocerciasis Subcriticality from Pre-Intervention Cross-Sectional Surveys. Am J Trop Med Hyg 2020; 103:287-294. [PMID: 32458796 PMCID: PMC7356432 DOI: 10.4269/ajtmh.19-0758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Elimination of an infectious disease requires subcritical transmission, or a reproductive number less than one, and can be assessed with cross-sectional surveys conducted by neglected tropical disease programs. Here, we assess the distribution of onchocerciasis prevalence taken from surveys across sub-Saharan Africa before the initiation of ivermectin in mass drug administrations. Pre-intervention nodular palpation cross-sectional surveys were available from 15 countries in the Expanded Special Project for Elimination of Neglected Tropical Diseases (ESPEN) database. We determined whether the distribution of the prevalence over communities in an area was consistent with a geometric distribution, which previous studies have suggested indicates a subcritical disease. If not, we fitted a negative binominal distribution (hypothetically supercritical) or a mixture of two distributions: geometric (hypothetically subcritical) and Poisson (hypothetically supercritical). The overall distribution of community-level onchocerciasis prevalence estimates from the ESPEN dataset from 2005 to 2014 was not consistent with a geometric distribution. By contrast, data from several countries and parts of countries were consistent with the geometric distribution, for example, some areas within Nigeria and Angola. Even if the geometric distribution suggested pre-intervention subcriticality in more localized geographical areas, our model using pooled survey data of all geographic areas suggests that the entire pre-intervention prevalence does not fit a geometric distribution. Further work will be required to confirm the significance of a geometric distribution for onchocerciasis.
Collapse
Affiliation(s)
- John Daniel Kelly
- Institute for Global Health Sciences, UCSF, San Francisco, California.,Department of Epidemiology and Biostatistics, UCSF, San Francisco, California.,Francis I. Proctor Foundation, UCSF, San Francisco, California
| | - Maria Rebollo Polo
- Expanded Special Project for Elimination of Neglected Tropical Diseases, World Health Organization, Brazzaville, Republic of Congo
| | - Honorat Gustave Marie Zoure
- Expanded Special Project for Elimination of Neglected Tropical Diseases, World Health Organization, Brazzaville, Republic of Congo
| | - Catherine E Oldenburg
- Department of Ophthalmology, UCSF, San Francisco, California.,Department of Epidemiology and Biostatistics, UCSF, San Francisco, California.,Francis I. Proctor Foundation, UCSF, San Francisco, California
| | - Jeremy D Keenan
- Department of Ophthalmology, UCSF, San Francisco, California.,Francis I. Proctor Foundation, UCSF, San Francisco, California
| | - Travis C Porco
- Department of Ophthalmology, UCSF, San Francisco, California.,Department of Epidemiology and Biostatistics, UCSF, San Francisco, California.,Francis I. Proctor Foundation, UCSF, San Francisco, California
| | - Thomas M Lietman
- Department of Ophthalmology, UCSF, San Francisco, California.,Francis I. Proctor Foundation, UCSF, San Francisco, California.,Institute for Global Health Sciences, UCSF, San Francisco, California.,Department of Epidemiology and Biostatistics, UCSF, San Francisco, California
| |
Collapse
|
25
|
Richards FO, Eigege A, Umaru J, Kahansim B, Adelamo S, Kadimbo J, Danboyi J, Mafuyai H, Saka Y, Noland GS, Anyaike C, Igbe M, Rakers L, Griswold E, Unnasch TR, Nwoke BEB, Miri E. The Interruption of Transmission of Human Onchocerciasis by an Annual Mass Drug Administration Program in Plateau and Nasarawa States, Nigeria. Am J Trop Med Hyg 2020; 102:582-592. [PMID: 32043442 PMCID: PMC7056427 DOI: 10.4269/ajtmh.19-0577] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Plateau and Nasarawa states in central Nigeria were endemic for onchocerciasis. The rural populations of these two states received annual ivermectin mass drug administration (MDA) for a period of 8–26 years (1992–2017). Ivermectin combined with albendazole was given for 8–13 of these years for lymphatic filariasis (LF); the LF MDA program successfully concluded in 2012, but ivermectin MDA continued in areas known to have a baseline meso-/hyperendemic onchocerciasis. In 2017, serological and entomological assessments were undertaken to determine if MDA for onchocerciasis could be stopped in accordance with the current WHO guidelines. Surveys were conducted in 39 sites that included testing 5- to < 10-year-old resident children by using ELISA for OV16 IgG4 antibodies, and Onchocerca volvulus O150 pooled polymerase chain reaction (PCR) testing of Simulium damnosum s.l. vector heads. Only two of 6,262 children were OV16 positive, and none of 19,056 vector heads were positive for parasite DNA. Therefore, both states were able to meet WHO stop-MDA thresholds of an infection rate in children of < 0.1% and a rate of infective blackflies of <1/2,000, with 95% statistical confidence. Transmission of onchocerciasis was declared interrupted in Plateau and Nasarawa states by the Federal Ministry of Health, and 2.2 million ivermectin treatments/year were stopped in 2018. Post-treatment Surveillance was launched focusing on entomological monitoring on borders with neighboring onchocerciasis-endemic states. An apparent positive impact of the LF MDA program on eliminating hypo-endemic onchocerciasis was observed. This is the first stop-MDA decision for onchocerciasis in Nigeria and the largest single stop-MDA decision for onchocerciasis yet reported. This achievement, along with the process used in adapting and implementing the 2016 WHO stop-MDA guidelines, will be important as a potential model for decision makers and national onchocerciasis elimination committees in other African countries that are charged with advancing their programs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yisa Saka
- Department of Public Health, Federal Ministry of Health, Abuja, Nigeria
| | | | - Chukwuma Anyaike
- Department of Public Health, Federal Ministry of Health, Abuja, Nigeria
| | - Michael Igbe
- Department of Public Health, Federal Ministry of Health, Abuja, Nigeria
| | | | | | | | | | | |
Collapse
|
26
|
Akinsanya B, Adewale B, Adenusi A, Lawal AD, Rahman O. Infectivity of Simulium damnosum s.l. and therapeutic coverage of ivermectin distribution 10 years post treatment around Owena Dam, Ondo state, Nigeria. Braz J Infect Dis 2019; 23:410-418. [PMID: 31697923 PMCID: PMC9428242 DOI: 10.1016/j.bjid.2019.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/18/2019] [Accepted: 10/06/2019] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Studies related to infectivity status of insect vectors are seen as necessities in understanding the epidemiology of vector-borne diseases and planning effective control measures. This study assessed the infectivity ofSimulium damnosum s.l. around Owena River as well as evaluated therapeutic coverage of Ivermectin distribution in the area. METHOD Human landing sampling method was used to collect adult flies on human attractants from 07:00 to 18:00 for two consecutive days a month for three months (July 2016 - September 2016). Parity assessment was conducted to determine the age of fly populations. Parous flies were further dissected to detect the presence or absence ofOnchocerca larvae. Biting rates and transmission potentials were calculated using standard methods. A quantitative survey was carried out to determine the therapeutic coverage and compliance to ivermectin treatment for the control of Onchocerciasis in the study area using standard household coverage questionnaires. RESULTS A total of 914 adult female flies were collected during the study period. The daily biting rate (DBR) varied from 146 fly per man day (FMD) in July to 162.5 FMD in August. The monthly biting rate (MBR) was lowest in September (2170 bites per man per month) but highest in August (3358.3 bites per man per month). MBD ranged from 13.23 fly per man hour (FMH) in July to 14.77 FMH in August. The results indicated that the majority of the flies collected at the sampling points were nulliparous [685 (74.95%)] while others were parous [229 (25.05%)]. The biting activity of the flies showed a marked decrease in population in August compared to July which later increased in September. Infection rates varied from 2 (0.7%) in July to 7 (2.2%) in August while the infectivity rate during the study ranged from zero (July and September) to 3 (1.0%) in August. CONCLUSION Despite the years of treatment of onchocerciasis in Owena community, there were still some infective flies capable of transmitting O. volvolus. This could be due to the low rate of therapeutic coverage as a result of non-compliance in the community for various reasons earlier stated.
Collapse
Affiliation(s)
- Bamidele Akinsanya
- University of Lagos, Faculty of Science, Department of Zoology, Parasitology Unit, Nigeria
| | - Babatunde Adewale
- Nigerian Institute of Medical Research, Public Health and Epidemiology Department, Lagos, Nigeria
| | - Adedotun Adenusi
- University of Lagos, Lagos, Department of Medical microbiology and Parasitology, Nigeria
| | - ADimeji Lawal
- University of Lagos, Faculty of Science, Department of Zoology, Parasitology Unit, Nigeria
| | - Olalekan Rahman
- Nigerian Institute of Medical Research, Public Health and Epidemiology Department, Lagos, Nigeria
| |
Collapse
|
27
|
Coffeng LE, Stolk WA, Golden A, de los Santos T, Domingo GJ, de Vlas SJ. Predictive Value of Ov16 Antibody Prevalence in Different Subpopulations for Elimination of African Onchocerciasis. Am J Epidemiol 2019; 188:1723-1732. [PMID: 31062838 PMCID: PMC6735885 DOI: 10.1093/aje/kwz109] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 12/02/2022] Open
Abstract
The World Health Organization currently recommends assessing elimination of onchocerciasis by testing whether Ov16 antibody prevalence in children aged 0–9 years is below 0.1%. However, the certainty of evidence for this recommendation is considered to be low. We used the established ONCHOSIM model to investigate the predictive value of different Ov16-antibody prevalence thresholds in various age groups for elimination of onchocerciasis in a variety of endemic settings and for various mass drug administration scenarios. According to our simulations, the predictive value of Ov16 antibody prevalence for elimination depends highly on the precontrol epidemiologic situation, history of mass drug administration, the age group that is sampled, and the chosen Ov16-antibody prevalence threshold. The Ov16 antibody prevalence in children aged 5–14 years performs best in predicting elimination. Appropriate threshold values for this age group start at 2.0% for very highly endemic areas; for lower-endemic areas, even higher threshold values are safe to use. Guidelines can be improved by sampling school-aged children, which also is operationally more feasible than targeting children under age 10 years. The use of higher threshold values allows sampling of substantially fewer children. Further improvement can be achieved by taking a differentiated sampling approach based on precontrol endemicity.
Collapse
Affiliation(s)
- Luc E Coffeng
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Wilma A Stolk
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | | | | | | | - Sake J de Vlas
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
28
|
Gebrezgabiher G, Mekonnen Z, Yewhalaw D, Hailu A. Reaching the last mile: main challenges relating to and recommendations to accelerate onchocerciasis elimination in Africa. Infect Dis Poverty 2019; 8:60. [PMID: 31269966 PMCID: PMC6609392 DOI: 10.1186/s40249-019-0567-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 06/10/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Onchocerciasis (river blindness), caused by the filarial worm species Onchocerca volvulus, is a serious vector-borne neglected tropical disease (NTD) of public health and socioeconomic concern. It is transmitted through the bite of black flies of the genus Simulium, and manifested in dermal and ocular lesions. Ninety-nine percent of the total global risk and burden of onchocerciasis is in Africa. This scoping review examines the key challenges related to the elimination of onchocerciasis by 2020-2025 in Africa, and proposes recommendations to overcome the challenges and accelerate disease elimination. To find relevant articles published in peer-reviewed journals, a search of PubMed and Google Scholar databases was carried out. MAIN TEXT Rigorous regional interventions carried out to control and eliminate onchocerciasis in the past four decades in Africa have been effective in bringing the disease burden under control; it is currently not a public health problem in most endemic areas. Notably, transmission of the parasite is interrupted in some hyperendemic localities. Recently, there has been a policy shift from control to complete disease elimination by 2020 in selected countries and by 2025 in the majority of endemic African countries. The WHO has published guidelines for stopping mass drug administration (MDA) and verifying the interruption of transmission and elimination of human onchocerciasis. Therefore, countries have revised their plans, established a goal of disease elimination in line with an evidence based decision to stop MDA and verify elimination, and incorporated it into their NTDs national master plans. Nevertheless, challenges remain pertaining to the elimination of onchocerciasis in Africa. The challenge we review in this paper are: incomplete elimination mapping of all transmission zones, co-endemicity of onchocerciasis and loiasis, possible emergence of ivermectin resistance, uncoordinated cross-border elimination efforts, conflict and civil unrest, suboptimal program implementation, and technical and financial challenges. This paper also proposes recommendations to overcome the challenges and accelerate disease elimination. These are: a need for complete disease elimination mapping, a need for collaborative elimination activities between national programs, a need for a different drug distribution approach in conflict-affected areas, a need for routine monitoring and evaluation of MDA programs, a need for implementing alternative treatment strategies (ATSs) in areas with elimination anticipated beyond 2025, and a need for strong partnerships and continued funding. CONCLUSIONS National programs need to regularly monitor and evaluate the performance and progress of their interventions, while envisaging the complete elimination of onchocerciasis from their territory. Factors hindering the targeted goal of interruption of parasite transmission need to be identified and remedial actions should be taken. If possible and appropriate, ATSs need to be implemented to accelerate disease elimination by 2025.
Collapse
Affiliation(s)
- Gebremedhin Gebrezgabiher
- School of Medical Laboratory Sciences, Institute of Health Sciences, Jimma University, P.O. Box 378, Jimma, Ethiopia
- College of Veterinary Medicine, Samara University, Samara, Ethiopia
| | - Zeleke Mekonnen
- School of Medical Laboratory Sciences, Institute of Health Sciences, Jimma University, P.O. Box 378, Jimma, Ethiopia
| | - Delenasaw Yewhalaw
- School of Medical Laboratory Sciences, Institute of Health Sciences, Jimma University, P.O. Box 378, Jimma, Ethiopia
- Tropical and Infectious Diseases Research Center, Jimma University, Jimma, Ethiopia
| | - Asrat Hailu
- Department of Microbiology, Immunology, and Parasitology, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
29
|
Turner HC, Walker M, Pion SDS, McFarland DA, Bundy DAP, Basáñez M. Economic evaluations of onchocerciasis interventions: a systematic review and research needs. Trop Med Int Health 2019; 24:788-816. [PMID: 31013395 PMCID: PMC6617745 DOI: 10.1111/tmi.13241] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To provide a systematic review of economic evaluations that has been conducted for onchocerciasis interventions, to summarise current key knowledge and to identify research gaps. METHOD A systematic review of the literature was conducted on the 8th of August 2018 using the PubMed (MEDLINE) and ISI Web of Science electronic databases. No date or language stipulations were applied to the searches. RESULTS We identified 14 primary studies reporting the results of economic evaluations of onchocerciasis interventions, seven of which were cost-effectiveness analyses. The studies identified used a variety of different approaches to estimate the costs of the investigated interventions/programmes. Originally, the studies only quantified the benefits associated with preventing blindness. Gradually, methods improved and also captured onchocerciasis-associated skin disease. Studies found that eliminating onchocerciasis would generate billions in economic benefits. The majority of the cost-effectiveness analyses evaluated annual mass drug administration (MDA). The estimated cost per disability-adjusted life year (DALY) averted of annual MDA varies between US$3 and US$30 (cost year variable). CONCLUSIONS The cost benefit and cost effectiveness of onchocerciasis interventions have consistently been found to be very favourable. This finding provides strong evidential support for the ongoing efforts to eliminate onchocerciasis from endemic areas. Although these results are very promising, there are several important research gaps that need to be addressed as we move towards the 2020 milestones and beyond.
Collapse
Affiliation(s)
- Hugo C. Turner
- Oxford University Clinical Research UnitWellcome Africa Asia ProgrammeHo Chi Minh CityVietnam
- Centre for Tropical Medicine and Global HealthNuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Martin Walker
- London Centre for Neglected Tropical Disease ResearchDepartment of Pathobiology and Population SciencesRoyal Veterinary CollegeHatfieldUK
- London Centre for Neglected Tropical Disease ResearchDepartment of Infectious Disease EpidemiologySchool of Public HealthImperial College LondonLondonUK
| | - Sébastien D. S. Pion
- Institut de Recherche pour le DéveloppementUMI 233‐INSERMU1175‐Montpellier UniversityMontpellierFrance
| | | | | | - María‐Gloria Basáñez
- London Centre for Neglected Tropical Disease ResearchDepartment of Infectious Disease EpidemiologySchool of Public HealthImperial College LondonLondonUK
- MRC Centre for Global Infectious Disease AnalysisDepartment of Infectious Disease EpidemiologySchool of Public HealthImperial College LondonLondonUK
| |
Collapse
|
30
|
Kaiser C, Asaba G, Rubaale T, Tukesiga E, Kipp W. Onchocerciasis-Associated Epilepsy with Head Nodding Seizures-Nodding Syndrome: A Case Series of 15 Patients from Western Uganda, 1994. Am J Trop Med Hyg 2018; 99:1211-1218. [PMID: 30226148 PMCID: PMC6221207 DOI: 10.4269/ajtmh.18-0511] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 08/05/2018] [Indexed: 11/07/2022] Open
Abstract
Nodding syndrome (NS) is an encephalopathy characterized by the core symptom of epileptic head nodding seizures, affecting children at the age between 3 and 18 years in distinct areas of tropical Africa. A consistent correlation with onchocerciasis was found, but so far, the causation of NS has not been fully clarified. With a systematic analysis of features of a cohort of epilepsy patients examined in the Itwara onchocerciasis focus of western Uganda in 1994, we provide evidence that NS actually occurred in this area at this time, and we demonstrate a correlation between prevalence of NS and that of onchocerciasis in different villages. Following the elimination of onchocerciasis by community-directed treatment with ivermectin and ground larviciding, our data provide a baseline to examine the question whether NS will disappear once its putative cause has been removed.
Collapse
Affiliation(s)
- Christoph Kaiser
- Basic Health Services Kabarole and Bundibugyo Districts, Fort Portal, Uganda; Vector Control Unit, Ministry of Health, Fort Portal, Uganda; Department of Public Health Sciences, University of Alberta, Edmonton, Canada
| | - George Asaba
- Basic Health Services Kabarole and Bundibugyo Districts, Fort Portal, Uganda; Vector Control Unit, Ministry of Health, Fort Portal, Uganda; Department of Public Health Sciences, University of Alberta, Edmonton, Canada
| | - Tom Rubaale
- Basic Health Services Kabarole and Bundibugyo Districts, Fort Portal, Uganda; Vector Control Unit, Ministry of Health, Fort Portal, Uganda; Department of Public Health Sciences, University of Alberta, Edmonton, Canada
| | - Ephraim Tukesiga
- Basic Health Services Kabarole and Bundibugyo Districts, Fort Portal, Uganda; Vector Control Unit, Ministry of Health, Fort Portal, Uganda; Department of Public Health Sciences, University of Alberta, Edmonton, Canada
| | - Walter Kipp
- Basic Health Services Kabarole and Bundibugyo Districts, Fort Portal, Uganda; Vector Control Unit, Ministry of Health, Fort Portal, Uganda; Department of Public Health Sciences, University of Alberta, Edmonton, Canada
| |
Collapse
|
31
|
Vinkeles Melchers NVS, Mollenkopf S, Colebunders R, Edlinger M, Coffeng LE, Irani J, Zola T, Siewe JN, de Vlas SJ, Winkler AS, Stolk WA. Burden of onchocerciasis-associated epilepsy: first estimates and research priorities. Infect Dis Poverty 2018; 7:101. [PMID: 30253788 PMCID: PMC6156959 DOI: 10.1186/s40249-018-0481-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 08/30/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Since the 1990s, evidence has accumulated of an increased prevalence of epilepsy in onchocerciasis-endemic areas in Africa as compared to onchocerciasis-free areas. Although the causal relationship between onchocerciasis and epilepsy has yet to be proven, there is likely an association. Here we discuss the need for disease burden estimates of onchocerciasis-associated epilepsy (OAE), provide them, detail how such estimates should be refined, and discuss the socioeconomic impact of OAE, including a cost-estimate for anti-epileptic drugs. MAIN BODY Providing OAE burden estimates may aid prevention of epilepsy in onchocerciasis- endemic areas by inciting and informing collaboration between onchocerciasis control programmes and mental health services. Epilepsy not only massively impacts the health of those affected, but it also carries a high socioeconomic burden for the households and communities involved. We used previously published geospatial estimates of onchocerciasis in Africa and a separately published logistic regression model quantifying the association between onchocerciasis and epilepsy to estimate the number of OAE cases. We then applied disability weights for epilepsy to quantify the burden in terms of years of life lived with disability (YLD) and estimate the cost of treatment. We estimate that in 2015 roughly 117 000 people were affected by OAE across onchocerciasis-endemic areas previously under the African Programme for Onchocerciases control (APOC) mandate where OAE has ever been reported or suspected, and another 264 000 persons in onchocerciasis-endemic areas where OAE has never been investigated before. The total number of YLDs due to OAE was 39 300 and 88 700 in these areas respectively, based on a weighted mean disability weight of 0.336. The burden of OAE is approximately 13% of the total YLDs attributable to onchocerciasis and 10% of total YLDs attributable to epilepsy. We estimated that by 2015 the total costs of treatment with anti-epileptic drug for OAE cases would have been a minimum of 12.4 million US$. CONCLUSIONS These estimates suggest a considerable health, social and economic burden of OAE in Africa. The treatment and care for people with epilepsy, especially in hyperendemic onchocerciasis areas with high epilepsy prevalence thus requires more financial and human resources.
Collapse
Affiliation(s)
- Natalie V S Vinkeles Melchers
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, P.O. box 2040, 3000, CA, Rotterdam, The Netherlands.
| | - Sarah Mollenkopf
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Avenue, Suite 600, Seattle, WA, 98121, USA
| | | | - Michael Edlinger
- Department of Medical Statistics, Informatics, and Health Economics, Medical University Innsbruck, Vienna, Austria
| | - Luc E Coffeng
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, P.O. box 2040, 3000, CA, Rotterdam, The Netherlands
| | - Julia Irani
- Department of Public Health, Institute of Tropical Medicine Antwerp, Nationalestraat 155, 2000, Antwerp, Belgium
| | - Trésor Zola
- Department of Tropical Medicine, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Joseph N Siewe
- Global Health Institute, University of Antwerp, Antwerp, Belgium
| | - Sake J de Vlas
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, P.O. box 2040, 3000, CA, Rotterdam, The Netherlands
| | - Andrea S Winkler
- Centre for Global Health, Institute for Health and Society, Oslo, Norway.,Center for Global Health, Department of Neurology, Technical University of Munich, Munich, Germany
| | - Wilma A Stolk
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, P.O. box 2040, 3000, CA, Rotterdam, The Netherlands
| |
Collapse
|
32
|
Ndjonka D, Djafsia B, Liebau E. Review on medicinal plants and natural compounds as anti-Onchocerca agents. Parasitol Res 2018; 117:2697-2713. [PMID: 30008135 DOI: 10.1007/s00436-018-6003-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/04/2018] [Indexed: 12/28/2022]
Abstract
Onchocerciasis is a filarial vector borne disease which affects several million people mostly in Africa. The therapeutic approach of its control was based on a succession of drugs which always showed limits. The last one: ivermectin is not the least. It was shown to be only microfilaricidal and induced resistance to the human parasite Onchocerca volvulus. The approach using medicinal plants used in traditional medicine is a possible alternative method to cure onchocerciasis. Onchocerca ochengi and Onchocerca gutturosa are the parasite models used to assess anthelmintic activity of potentially anthelmintic plants. Numerous studies assessed the in vitro and/or in vivo anthelmintic activity of medicinal plants. Online electronic databases were consulted to gather publications on in vitro and in vivo studies of anti-Onchocerca activity of plants from 1990 to 2017. Globally, 13 plant families were investigated for anti-Onchocerca activity in 13 studies. The most active species were Anacardium occidentale, Euphorbia hirta and Acacia nilotica each with an LC50 value of 2.76, 6.25 and 1.2 μg/mL, respectively. Polycarpol, voacamine, voacangine, ellagic acid, gallic acid, gentisic acid, 3-O-acetyl aleuritolic acid and (-)-epigallocatechin 3-O-gallate were the isolated plant compounds with anti-Onchocerca activity. Most of the assessed extract/compounds showed a good safety after in vivo acute toxicity assays and/or in vitro cytotoxicity test. The exception was the ethanol extract of Trichilia emetica, which killed completely and drastically mice at a dose of 3000 mg/kg. Several plant groups of compounds were shown active against Onchocerca sp. such as tannins, alkaloids, triterpenoids and essential oils. Nevertheless, none of the active compounds was subjected to clinical trial, to assessment of its diffusibility through nodular wall or its capability to induce genetic resistance of Onchocerca sp.
Collapse
Affiliation(s)
- Dieudonné Ndjonka
- Department of Biological Sciences, Faculty of Science, University of Ngaoundere, P.O. Box 454, Ngaoundere, Cameroon.
| | - Boursou Djafsia
- Department of Biological Sciences, Faculty of Science, University of Ngaoundere, P.O. Box 454, Ngaoundere, Cameroon.,Saint Jerome School of Health Sciences, Saint Jerome Catholic University of Douala, Douala, Cameroon
| | - Eva Liebau
- University of Münster, Institute for Zoophysiology, Schlossplatz 8, 48143, Münster, Germany
| |
Collapse
|
33
|
Verver S, Walker M, Kim YE, Fobi G, Tekle AH, Zouré HGM, Wanji S, Boakye DA, Kuesel AC, de Vlas SJ, Boussinesq M, Basáñez MG, Stolk WA. How Can Onchocerciasis Elimination in Africa Be Accelerated? Modeling the Impact of Increased Ivermectin Treatment Frequency and Complementary Vector Control. Clin Infect Dis 2018; 66:S267-S274. [PMID: 29860291 PMCID: PMC5982715 DOI: 10.1093/cid/cix1137] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background Great strides have been made toward onchocerciasis elimination by mass drug administration (MDA) of ivermectin. Focusing on MDA-eligible areas, we investigated where the elimination goal can be achieved by 2025 by continuation of current practice (annual MDA with ivermectin) and where intensification or additional vector control is required. We did not consider areas hypoendemic for onchocerciasis with loiasis coendemicity where MDA is contraindicated. Methods We used 2 previously published mathematical models, ONCHOSIM and EPIONCHO, to simulate future trends in microfilarial prevalence for 80 different settings (defined by precontrol endemicity and past MDA frequency and coverage) under different future treatment scenarios (annual, biannual, or quarterly MDA with different treatment coverage through 2025, with or without vector control strategies), assessing for each strategy whether it eventually leads to elimination. Results Areas with 40%-50% precontrol microfilarial prevalence and ≥10 years of annual MDA may achieve elimination with a further 7 years of annual MDA, if not achieved already, according to both models. For most areas with 70%-80% precontrol prevalence, ONCHOSIM predicts that either annual or biannual MDA is sufficient to achieve elimination by 2025, whereas EPIONCHO predicts that elimination will not be achieved even with complementary vector control. Conclusions Whether elimination will be reached by 2025 depends on precontrol endemicity, control history, and strategies chosen from now until 2025. Biannual or quarterly MDA will accelerate progress toward elimination but cannot guarantee it by 2025 in high-endemicity areas. Long-term concomitant MDA and vector control for high-endemicity areas might be useful.
Collapse
Affiliation(s)
- Suzanne Verver
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Martin Walker
- Department of Pathobiology and Population Sciences and London Centre for Neglected Tropical Disease Research, Royal Veterinary College, Hatfield
- Department of Infectious Disease Epidemiology and London Centre for Neglected Tropical Disease Research, Imperial College London, United Kingdom
| | - Young Eun Kim
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, The Netherlands
- Swiss Tropical and Public Health, Basel, Switzerland
| | - Grace Fobi
- Independent Consultant, Yaoundé, Cameroon
| | | | | | - Samuel Wanji
- Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Cameroon
| | - Daniel A Boakye
- Noguchi Memorial Institute of Medical Research, University of Ghana, Legon
| | - Annette C Kuesel
- United Nations Children’s Fund/United Nations Development Programme/World Bank/World Health Organization Special Programme for Research and Training in Tropical Diseases, Geneva, Switzerland
| | - Sake J de Vlas
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | | | - Maria-Gloria Basáñez
- Department of Infectious Disease Epidemiology and London Centre for Neglected Tropical Disease Research, Imperial College London, United Kingdom
| | - Wilma A Stolk
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| |
Collapse
|
34
|
Routledge I, Walker M, Cheke RA, Bhatt S, Nkot PB, Matthews GA, Baleguel D, Dobson HM, Wiles TL, Basañez MG. Modelling the impact of larviciding on the population dynamics and biting rates of Simulium damnosum (s.l.): implications for vector control as a complementary strategy for onchocerciasis elimination in Africa. Parasit Vectors 2018; 11:316. [PMID: 29843770 PMCID: PMC5972405 DOI: 10.1186/s13071-018-2864-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/23/2018] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND In 2012, the World Health Organization set goals for the elimination of onchocerciasis transmission by 2020 in selected African countries. Epidemiological data and mathematical modelling have indicated that elimination may not be achieved with annual ivermectin distribution in all endemic foci. Complementary and alternative treatment strategies (ATS), including vector control, will be necessary. Implementation of vector control will require that the ecology and population dynamics of Simulium damnosum (sensu lato) be carefully considered. METHODS We adapted our previous SIMuliid POPulation dynamics (SIMPOP) model to explore the impact of larvicidal insecticides on S. damnosum (s.l.) biting rates in different ecological contexts and to identify how frequently and for how long vector control should be continued to sustain substantive reductions in vector biting. SIMPOP was fitted to data from large-scale aerial larviciding trials in savannah sites (Ghana) and small-scale ground larviciding trials in forest areas (Cameroon). The model was validated against independent data from Burkina Faso/Côte d'Ivoire (savannah) and Bioko (forest). Scenario analysis explored the effects of ecological and programmatic factors such as pre-control daily biting rate (DBR) and larviciding scheme design on reductions and resurgences in biting rates. RESULTS The estimated efficacy of large-scale aerial larviciding in the savannah was greater than that of ground-based larviciding in the forest. Small changes in larvicidal efficacy can have large impacts on intervention success. At 93% larvicidal efficacy (a realistic value based on field trials), 10 consecutive weekly larvicidal treatments would reduce DBRs by 96% (e.g. from 400 to 16 bites/person/day). At 70% efficacy, and for 10 weekly applications, the DBR would decrease by 67% (e.g. from 400 to 132 bites/person/day). Larviciding is more likely to succeed in areas with lower water temperatures and where blackfly species have longer gonotrophic cycles. CONCLUSIONS Focal vector control can reduce vector biting rates in settings where a high larvicidal efficacy can be achieved and an appropriate duration and frequency of larviciding can be ensured. Future work linking SIMPOP with onchocerciasis transmission models will permit evaluation of the impact of combined anti-vectorial and anti-parasitic interventions on accelerating elimination of the disease.
Collapse
Affiliation(s)
- Isobel Routledge
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine (St Mary’s campus), Imperial College London, Norfolk Place, London, W2 1PG UK
| | - Martin Walker
- London Centre for Neglected Tropical Disease Research (LCNTDR), Department of Pathobiology and Population Sciences, Royal Veterinary College, Hawkshead Lane, Hatfield, Hertfordshire, AL9 7TA UK
- London Centre for Neglected Tropical Disease Research (LCNTDR), Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine (St Mary’s campus), Imperial College London, Norfolk Place, London, W2 1PG UK
| | - Robert A. Cheke
- London Centre for Neglected Tropical Disease Research (LCNTDR), Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine (St Mary’s campus), Imperial College London, Norfolk Place, London, W2 1PG UK
- Natural Resources Institute, Department of Agriculture, Health & Environment, University of Greenwich, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB UK
| | - Samir Bhatt
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine (St Mary’s campus), Imperial College London, Norfolk Place, London, W2 1PG UK
| | | | - Graham A. Matthews
- Yaoundé Initiative Foundation, Department of Life Sciences, Faculty of Natural Sciences (Silwood Park), Imperial College London, Ascot, Berkshire SL5 7PY UK
| | - Didier Baleguel
- Yaoundé Initiative Foundation, P.O. Box 3878, Messa, Yaoundé, Cameroon
| | - Hans M. Dobson
- Natural Resources Institute, Department of Agriculture, Health & Environment, University of Greenwich, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB UK
| | - Terry L. Wiles
- Yaoundé Initiative Foundation, P.O. Box 3878, Messa, Yaoundé, Cameroon
- Yaoundé Initiative Foundation, Department of Life Sciences, Faculty of Natural Sciences (Silwood Park), Imperial College London, Ascot, Berkshire SL5 7PY UK
| | - Maria-Gloria Basañez
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine (St Mary’s campus), Imperial College London, Norfolk Place, London, W2 1PG UK
- London Centre for Neglected Tropical Disease Research (LCNTDR), Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine (St Mary’s campus), Imperial College London, Norfolk Place, London, W2 1PG UK
| |
Collapse
|
35
|
Colebunders R, Basáñez MG, Siling K, Post RJ, Rotsaert A, Mmbando B, Suykerbuyk P, Hopkins A. From river blindness control to elimination: bridge over troubled water. Infect Dis Poverty 2018; 7:21. [PMID: 29587844 PMCID: PMC5872540 DOI: 10.1186/s40249-018-0406-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 03/12/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND An estimated 25 million people are currently infected with onchocerciasis (a parasitic infection caused by the filarial nematode Onchocerca volvulus and transmitted by Simulium vectors), and 99% of these are in sub-Saharan Africa. The African Programme for Onchocerciasis Control closed in December 2015 and the World Health Organization has established a new structure, the Expanded Special Project for the Elimination of Neglected Tropical Diseases for the coordination of technical support for activities focused on five neglected tropical diseases in Africa, including onchocerciasis elimination. AIMS In this paper we argue that despite the delineation of a reasonably well-defined elimination strategy, its implementation will present particular difficulties in practice. We aim to highlight these in an attempt to ensure that they are well understood and that effective plans can be laid to solve them by the countries concerned and their international partners. CONCLUSIONS A specific concern is the burden of disease caused by onchocerciasis-associated epilepsy in hyperendemic zones situated in countries experiencing difficulties in strengthening their onchocerciasis control programmes. These difficulties should be identified and programmes supported during the transition from morbidity control to interruption of transmission and elimination.
Collapse
Affiliation(s)
| | - Maria-Gloria Basáñez
- London Centre for Neglected Tropical Disease Research, Imperial College London, London, UK
| | - Katja Siling
- Institute of Tropical Medicine, Antwerp, Belgium
- London School of Hygiene & Tropical Medicine, London, UK
| | - Rory J. Post
- London School of Hygiene & Tropical Medicine, London, UK
- Liverpool John Moores University, Liverpool, UK
| | - Anke Rotsaert
- Global Health Institute, University of Antwerp, Antwerp, Belgium
| | - Bruno Mmbando
- National Institute for Medical Research, Tanga, Tanzania
| | | | - Adrian Hopkins
- Neglected and Disabling diseases of Poverty Consultant, Gravesend, Kent, UK
| |
Collapse
|
36
|
Application of optimal control to the onchocerciasis transmission model with treatment. Math Biosci 2018; 297:43-57. [DOI: 10.1016/j.mbs.2017.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 09/28/2017] [Accepted: 11/21/2017] [Indexed: 11/18/2022]
|
37
|
Gedge LM, Bettis AA, Bradley MH, Hollingsworth TD, Turner HC. Economic evaluations of lymphatic filariasis interventions: a systematic review and research needs. Parasit Vectors 2018; 11:75. [PMID: 29391042 PMCID: PMC5793442 DOI: 10.1186/s13071-018-2616-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 01/02/2018] [Indexed: 01/13/2023] Open
Abstract
In 2000, the World Health Organization established the Global Programme to Eliminate Lymphatic Filariasis (GPELF), with the goal of eliminating the disease as a public health problem by 2020. Since the start of the programme, a cumulative total of 6.2 billion treatments have been delivered to affected populations - with more than 556 million people treated in 2015 alone. In this paper, we perform a rigorous systematic review of the economic evaluations of lymphatic filariasis interventions have been conducted. We demonstrate that the standard interventions to control lymphatic filariasis are consistently found to be highly cost-effective. This finding has important implications for advocacy groups and potential funders. However, there are several important inconsistencies and research gaps that need to be addressed as we move forward towards the 2020 elimination goals. One of the most important identified research gaps was a lack of evaluation of new interventions specifically targeting areas co-endemic with onchocerciasis and Loa loa - which could become a major barrier to achieving elimination.
Collapse
Affiliation(s)
- Lukyn M. Gedge
- School of Public Health, Faculty of Medicine, St Marys Campus, Imperial College London, Norfolk Place, London, W2 1PG UK
| | - Alison A. Bettis
- London Centre for Neglected Tropical Disease Research, London, UK
- Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, St Marys Campus, Imperial College London, Norfolk Place, London, W2 1PG UK
| | | | - T. Déirdre Hollingsworth
- Mathematics Institute, University of Warwick, Coventry, CV4 7AL UK
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL UK
- Big Data Institute, University of Oxford, Oxford, OX3 7LF UK
| | - Hugo C. Turner
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
38
|
Turner HC, Bettis AA, Chu BK, McFarland DA, Hooper PJ, Mante SD, Fitzpatrick C, Bradley MH. Investment Success in Public Health: An Analysis of the Cost-Effectiveness and Cost-Benefit of the Global Programme to Eliminate Lymphatic Filariasis. Clin Infect Dis 2017; 64:728-735. [PMID: 27956460 PMCID: PMC5404931 DOI: 10.1093/cid/ciw835] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/30/2017] [Indexed: 11/25/2022] Open
Abstract
Background. It has been estimated that $154 million per year will be required during 2015–2020 to continue the Global Programme to Eliminate Lymphatic Filariasis (GPELF). In light of this, it is important to understand the program’s current value. Here, we evaluate the cost-effectiveness and cost-benefit of the preventive chemotherapy that was provided under the GPELF between 2000 and 2014. In addition, we also investigate the potential cost-effectiveness of hydrocele surgery. Methods. Our economic evaluation of preventive chemotherapy was based on previously published health and economic impact estimates (between 2000 and 2014). The delivery costs of treatment were estimated using a model developed by the World Health Organization. We also developed a model to investigate the number of disability-adjusted life years (DALYs) averted by a hydrocelectomy and identified the cost threshold under which it would be considered cost-effective. Results. The projected cost-effectiveness and cost-benefit of preventive chemotherapy were very promising, and this was robust over a wide range of costs and assumptions. When the economic value of the donated drugs was not included, the GPELF would be classed as highly cost-effective. We projected that a typical hydrocelectomy would be classed as highly cost-effective if the surgery cost less than $66 and cost-effective if less than $398 (based on the World Bank’s cost-effectiveness thresholds for low income countries). Conclusions. Both the preventive chemotherapy and hydrocele surgeries provided under the GPELF are incredibly cost-effective and offer a very good investment in public health.
Collapse
Affiliation(s)
- Hugo C Turner
- London Centre for Neglected Tropical Disease Research, London, UK.,Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, St Marys Campus, Imperial College London, UK.,Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Alison A Bettis
- London Centre for Neglected Tropical Disease Research, London, UK.,Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, St Marys Campus, Imperial College London, UK
| | - Brian K Chu
- Neglected Tropical Diseases Support Center, Task Force for Global Health, Decatur, Atlanta, GA, USA
| | | | - Pamela J Hooper
- Neglected Tropical Diseases Support Center, Task Force for Global Health, Decatur, Atlanta, GA, USA
| | - Sunny D Mante
- Urology Unit, 37 Military Hospital, Korle-Bu, Accra, Ghana
| | - Christopher Fitzpatrick
- Department of Control of Neglected Tropical Diseases, World Health Organization, Geneva, Switzerland
| | | |
Collapse
|
39
|
Krentel A, Gyapong M, Mallya S, Boadu NY, Amuyunzu-Nyamongo M, Stephens M, McFarland DA. Review of the factors influencing the motivation of community drug distributors towards the control and elimination of neglected tropical diseases (NTDs). PLoS Negl Trop Dis 2017; 11:e0006065. [PMID: 29211746 PMCID: PMC5718409 DOI: 10.1371/journal.pntd.0006065] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/23/2017] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Community drug distributors or neglected tropical disease (NTD) volunteers have played a crucial role in ensuring the success of mass drug administration (MDA) programs using preventive chemotherapy (PC) for lymphatic filariasis, onchocerciasis, schistosomiasis, trachoma and soil transmitted helminths. In recent years however, a noticeable decline in motivation of some of these volunteers has been perceived, potentially negatively impacting the success of these programs. Potential hypotheses for this change in motivation include the long duration of many MDA programs, the change in sociocultural environments as well as the changes to the programs over time. This literature review identifies factors that affect NTD volunteer performance and motivation, which may be used to influence and improve future programming. METHODOLOGY/PRINCIPAL FINDINGS A systematic search was conducted to identify studies published between January 1995 and September 2016 that investigate factors pertaining to volunteer motivation and performance in NTD drug distribution programs. Searches from several databases and grey literature yielded 400 records, of which 28 articles from 10 countries met the inclusion criteria. Quality assessment of studies was performed using the Critical Appraisal Skills Programme(CASP) checklist. Data pertaining to motivation, performance, retention and satisfaction was extracted and examined for themes. Recurring themes in the literature included monetary and material incentives, intrinsic motivation, gender, cost to participate, and health systems and community support. Of these, community support and the health system were found to be particularly impactful. Very few studies were found to explicitly look at novel incentives for volunteers and very few studies have considered the out of pocket and opportunity costs that NTD volunteers bear carrying out their tasks. CONCLUSIONS/SIGNIFICANCE There is currently great interest in incorporating more attractive incentive schemes for NTD volunteers. However, our results show that the important challenges that volunteers face (cultural, health systems, financial and community related) may have less to do with financial incentives and may actually have a larger impact on their motivation than has previously been understood. Further integration of NTD programs into existing health systems is expected to improve the NTD volunteer working environment. Relevant community engagement related to the MDA program should also provide the supportive environment needed in the community to support NTD volunteers. Programs need to consider these issues to improve working conditions for NTD volunteers.
Collapse
Affiliation(s)
| | - Margaret Gyapong
- Institute for Health Research, University of Health and Allied Sciences, Ho Ghana
| | | | - Nana Yaa Boadu
- Health and Nutrition Bureau, Global Affairs Canada, Ottawa Canada
| | | | - Mariana Stephens
- NTD Support Center, Task Force for Global Health, Decatur GA United States of America
| | - Deborah A. McFarland
- Rollins School of Public Health, Emory University Atlanta GA United States of America
| |
Collapse
|
40
|
Willem L, Verelst F, Bilcke J, Hens N, Beutels P. Lessons from a decade of individual-based models for infectious disease transmission: a systematic review (2006-2015). BMC Infect Dis 2017; 17:612. [PMID: 28893198 PMCID: PMC5594572 DOI: 10.1186/s12879-017-2699-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 08/22/2017] [Indexed: 02/18/2023] Open
Abstract
Background Individual-based models (IBMs) are useful to simulate events subject to stochasticity and/or heterogeneity, and have become well established to model the potential (re)emergence of pathogens (e.g., pandemic influenza, bioterrorism). Individual heterogeneity at the host and pathogen level is increasingly documented to influence transmission of endemic diseases and it is well understood that the final stages of elimination strategies for vaccine-preventable childhood diseases (e.g., polio, measles) are subject to stochasticity. Even so it appears IBMs for both these phenomena are not well established. We review a decade of IBM publications aiming to obtain insights in their advantages, pitfalls and rationale for use and to make recommendations facilitating knowledge transfer within and across disciplines. Methods We systematically identified publications in Web of Science and PubMed from 2006-2015 based on title/abstract/keywords screening (and full-text if necessary) to retrieve topics, modeling purposes and general specifications. We extracted detailed modeling features from papers on established vaccine-preventable childhood diseases based on full-text screening. Results We identified 698 papers, which applied an IBM for infectious disease transmission, and listed these in a reference database, describing their general characteristics. The diversity of disease-topics and overall publication frequency have increased over time (38 to 115 annual publications from 2006 to 2015). The inclusion of intervention strategies (8 to 52) and economic consequences (1 to 20) are increasing, to the detriment of purely theoretical explorations. Unfortunately, terminology used to describe IBMs is inconsistent and ambiguous. We retrieved 24 studies on a vaccine-preventable childhood disease (covering 7 different diseases), with publication frequency increasing from the first such study published in 2008. IBMs have been useful to explore heterogeneous between- and within-host interactions, but combined applications are still sparse. The amount of missing information on model characteristics and study design is remarkable. Conclusions IBMs are suited to combine heterogeneous within- and between-host interactions, which offers many opportunities, especially to analyze targeted interventions for endemic infections. We advocate the exchange of (open-source) platforms and stress the need for consistent “branding”. Using (existing) conventions and reporting protocols would stimulate cross-fertilization between research groups and fields, and ultimately policy making in decades to come. Electronic supplementary material The online version of this article (doi:10.1186/s12879-017-2699-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lander Willem
- Centre for Health Economics Research & Modeling Infectious Diseases, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium.
| | - Frederik Verelst
- Centre for Health Economics Research & Modeling Infectious Diseases, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Joke Bilcke
- Centre for Health Economics Research & Modeling Infectious Diseases, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Niel Hens
- Centre for Health Economics Research & Modeling Infectious Diseases, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium.,Interuniversity Institute for Biostatistics and statistical Bioinformatics, UHasselt, Hasselt, Belgium
| | - Philippe Beutels
- Centre for Health Economics Research & Modeling Infectious Diseases, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium.,School of Public Health and Community Medicine, The University of New South Wales, Sydney, Australia
| |
Collapse
|
41
|
|
42
|
OMONDI EVANSOTIENO, NYABADZA FARAI, BONYAH EBENEZER, BADU KINGSLEY. MODELING THE INFECTION DYNAMICS OF ONCHOCERCIASIS AND ITS TREATMENT. J BIOL SYST 2017. [DOI: 10.1142/s0218339017500139] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Onchocerciasis is one of the neglected tropical diseases caused by Onchocerca volvulus. Ivermectin is known to be effective in the treatment of onchocerciasis because it suppresses the production of microfilariae by the adult female worms for a few months following treatment thus reducing transmission. In this study, a deterministic model is developed to assess the effect of mass treatment of onchocerciasis with ivermectin. The basic reproduction number, [Formula: see text], of the model system is determined and it is observed that the model exhibits backward bifurcation for some parameters implying the existence of multiple endemic equilibria when [Formula: see text]. The existence of multiple equilibria emphasizes the fact that [Formula: see text] is not sufficient to eradicate the disease and the need is to lower [Formula: see text] much below one to make the disease-free equilibrium globally stable. Numerical simulations are done and conclusions drawn with respect to the known treatment protocols in endemic areas. The study results suggest that the mass treatment of the disease with ivermectin should cover a higher proportion of the population to control the disease and eventually eliminate it from the population.
Collapse
Affiliation(s)
- EVANS OTIENO OMONDI
- DST/NRF South African Centre for Epidemiological Modeling and Analysis (SACEMA), University of Stellenbosch, Stellenbosch, South Africa
- Department of Mathematical Science, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
| | - FARAI NYABADZA
- Department of Mathematical Science, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
| | - EBENEZER BONYAH
- Department of Mathematics and Statistics, Kumasi Technical University, Kumasi, Ghana
| | - KINGSLEY BADU
- Department of Theoretical and Applied Biology, Kwame Nkurumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
43
|
Kim YE, Stolk WA, Tanner M, Tediosi F. Modelling the health and economic impacts of the elimination of river blindness (onchocerciasis) in Africa. BMJ Glob Health 2017; 2:e000158. [PMID: 28589011 PMCID: PMC5435253 DOI: 10.1136/bmjgh-2016-000158] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 01/09/2017] [Accepted: 01/13/2017] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Onchocerciasis (river blindness) is endemic mostly in remote and rural areas in sub-Saharan Africa. The treatment goal for onchocerciasis has shifted from control to elimination in Africa. For investment decisions, national and global policymakers need evidence on benefits, costs and risks of elimination initiatives. METHODS We estimated the health benefits using a dynamical transmission model, and the needs for health workforce and outpatient services for elimination strategies in comparison to a control mode. We then estimated the associated costs to both health systems and households and the potential economic impacts in terms of income gains. RESULTS The elimination of onchocerciasis in Africa would avert 4.3 million-5.6 million disability-adjusted life years over 2013-2045 when compared with staying in the control mode, and also reduce the required number of community volunteers by 45-53% and community health workers by 56-60%. The elimination of onchocerciasis in Africa when compared with the control mode is predicted to save outpatient service costs by $37.2 million-$39.9 million and out-of-pocket payments by $25.5 million-$26.9 million over 2013-2045, and generate economic benefits up to $5.9 billion-$6.4 billion in terms of income gains. DISCUSSION The elimination of onchocerciasis in Africa would lead to substantial health and economic benefits, reducing the needs for health workforce and outpatient services. To realise these benefits, the support and collaboration of community, national and global policymakers would be needed to sustain the elimination strategies.
Collapse
Affiliation(s)
- Young Eun Kim
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Wilma A Stolk
- Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Marcel Tanner
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Fabrizio Tediosi
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
44
|
Aljayyoussi G, Tyrer HE, Ford L, Sjoberg H, Pionnier N, Waterhouse D, Davies J, Gamble J, Metuge H, Cook DAN, Steven A, Sharma R, Guimaraes AF, Clare RH, Cassidy A, Johnston KL, Myhill L, Hayward L, Wanji S, Turner JD, Taylor MJ, Ward SA. Short-Course, High-Dose Rifampicin Achieves Wolbachia Depletion Predictive of Curative Outcomes in Preclinical Models of Lymphatic Filariasis and Onchocerciasis. Sci Rep 2017; 7:210. [PMID: 28303006 PMCID: PMC5428297 DOI: 10.1038/s41598-017-00322-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 02/21/2017] [Indexed: 12/29/2022] Open
Abstract
Lymphatic filariasis (LF) and onchocerciasis are priority neglected tropical diseases targeted for elimination. The only safe drug treatment with substantial curative activity against the filarial nematodes responsible for LF (Brugia malayi, Wuchereria bancrofti) or onchocerciasis (Onchocerca volvulus) is doxycycline. The target of doxycycline is the essential endosymbiont, Wolbachia. Four to six weeks doxycycline therapy achieves >90% depletion of Wolbachia in worm tissues leading to blockade of embryogenesis, adult sterility and premature death 18-24 months post-treatment. Long treatment length and contraindications in children and pregnancy are obstacles to implementing doxycycline as a public health strategy. Here we determine, via preclinical infection models of Brugia malayi or Onchocerca ochengi that elevated exposures of orally-administered rifampicin can lead to Wolbachia depletions from filariae more rapidly than those achieved by doxycycline. Dose escalation of rifampicin achieves >90% Wolbachia depletion in time periods of 7 days in B. malayi and 14 days in O. ochengi. Using pharmacokinetic-pharmacodynamic modelling and mouse-human bridging analysis, we conclude that clinically relevant dose elevations of rifampicin, which have recently been determined as safe in humans, could be administered as short courses to filariasis target populations with potential to reduce anti-Wolbachia curative therapy times to between one and two weeks.
Collapse
Affiliation(s)
- Ghaith Aljayyoussi
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Hayley E Tyrer
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Louise Ford
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Hanna Sjoberg
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Nicolas Pionnier
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - David Waterhouse
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Jill Davies
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Joanne Gamble
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Haelly Metuge
- Research Foundation in Tropical Medicine and the Environment, Buea, Cameroon
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - Darren A N Cook
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Andrew Steven
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Raman Sharma
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Ana F Guimaraes
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Rachel H Clare
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Andrew Cassidy
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Kelly L Johnston
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Laura Myhill
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Laura Hayward
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Samuel Wanji
- Research Foundation in Tropical Medicine and the Environment, Buea, Cameroon
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - Joseph D Turner
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Mark J Taylor
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| | - Stephen A Ward
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| |
Collapse
|
45
|
Poole CB, Li Z, Alhassan A, Guelig D, Diesburg S, Tanner NA, Zhang Y, Evans TC, LaBarre P, Wanji S, Burton RA, Carlow CKS. Colorimetric tests for diagnosis of filarial infection and vector surveillance using non-instrumented nucleic acid loop-mediated isothermal amplification (NINA-LAMP). PLoS One 2017; 12:e0169011. [PMID: 28199317 PMCID: PMC5310896 DOI: 10.1371/journal.pone.0169011] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 11/19/2016] [Indexed: 11/26/2022] Open
Abstract
Accurate detection of filarial parasites in humans is essential for the implementation and evaluation of mass drug administration programs to control onchocerciasis and lymphatic filariasis. Determining the infection levels in vector populations is also important for assessing transmission, deciding when drug treatments may be terminated and for monitoring recrudescence. Immunological methods to detect infection in humans are available, however, cross-reactivity issues have been reported. Nucleic acid-based molecular assays offer high levels of specificity and sensitivity, and can be used to detect infection in both humans and vectors. In this study we developed loop-mediated isothermal amplification (LAMP) tests to detect three different filarial DNAs in human and insect samples using pH sensitive dyes for enhanced visual detection of amplification. Furthermore, reactions were performed in a portable, non-instrumented nucleic acid amplification (NINA) device that provides a stable heat source for LAMP. The efficacy of several strand displacing DNA polymerases were evaluated in combination with neutral red or phenol red dyes. Colorimetric NINA-LAMP assays targeting Brugia Hha I repeat, Onchocerca volvulus GST1a and Wuchereria bancrofti LDR each exhibit species-specificity and are also highly sensitive, detecting DNA equivalent to 1/10-1/5000th of one microfilaria. Reaction times varied depending on whether a single copy gene (70 minutes, O. volvulus) or repetitive DNA (40 min, B. malayi and W. bancrofti) was employed as a biomarker. The NINA heater can be used to detect multiple infections simultaneously. The accuracy, simplicity and versatility of the technology suggests that colorimetric NINA-LAMP assays are ideally suited for monitoring the success of filariasis control programs.
Collapse
Affiliation(s)
| | - Zhiru Li
- New England Biolabs, Ipswich, MA United States of America
| | - Andy Alhassan
- New England Biolabs, Ipswich, MA United States of America
| | - Dylan Guelig
- PATH, Seattle, Washington, United States of America
| | | | | | - Yinhua Zhang
- New England Biolabs, Ipswich, MA United States of America
| | | | - Paul LaBarre
- PATH, Seattle, Washington, United States of America
| | - Samuel Wanji
- Research Foundation in Tropical Diseases and Environment, Buea, Cameroon
| | | | | |
Collapse
|
46
|
Modelling Anti-Ov16 IgG4 Antibody Prevalence as an Indicator for Evaluation and Decision Making in Onchocerciasis Elimination Programmes. PLoS Negl Trop Dis 2017; 11:e0005314. [PMID: 28114304 PMCID: PMC5289624 DOI: 10.1371/journal.pntd.0005314] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 02/02/2017] [Accepted: 01/10/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Onchocerciasis is targeted for elimination in Africa through annual or biannual ivermectin mass drug administration (MDA). An immunodiagnostic test, based on the detection of human IgG4 antibodies in the blood to the Onchocerca volvulus-specific antigen Ov16, is one of the recommended tools for determining whether transmission is interrupted and mass treatment can stop. For different transmission settings, the relationship between post-MDA Ov16 antibody prevalence in children (measured 1 year after the last round of MDA) and the duration and coverage of MDA, the mf prevalence in the population, and the probability that onchocerciasis is eventually eliminated is explored through mathematical modelling. METHODOLOGY The ONCHOSIM model was extended with new output on the Ov16 antibody serostatus of individuals. Seroconversion was assumed to be triggered by the first worm establishing in the host, with seroconversion occurring either before maturation, after maturation or only after the start of mf production. We are mainly interested in seroconversion rates in children, and for now ignore the possibility of seroreversion to simplify the model. PRINCIPAL FINDINGS Yearly repeated MDA leads to a strong reduction in the parasite acquisition rate in humans. This reduces the seroconversion rate in newborns and young children, while those who seroconverted before the start of control remain antibody positive. Both the microfiladermia prevalence in the population aged 5 years and above and the Ov16 antibody prevalence in children under 10 declined with increasing duration of MDA. The association between either of these indicators and the model-predicted probability of elimination was not influenced much by the assumed treatment coverage levels, but was found to depend on baseline endemicity levels, assumptions regarding the trigger of seroconversion, and diagnostic test characteristics (sensitivity and specificity). CONCLUSIONS Better understanding of the dynamics of Ov16 antibody responses is required for accurate interpretation of seroprevalence data and more precise estimation of endpoint for MDA. Our study demonstrates that this endpoint will be dependent on baseline endemicity levels, which should be taken into account in guidelines for defining when to stop MDA.
Collapse
|
47
|
Klarmann-Schulz U, Specht S, Debrah AY, Batsa L, Ayisi-Boateng NK, Osei-Mensah J, Mubarik Y, Konadu P, Ricchiuto A, Fimmers R, Arriens S, Dubben B, Ford L, Taylor M, Hoerauf A. Comparison of Doxycycline, Minocycline, Doxycycline plus Albendazole and Albendazole Alone in Their Efficacy against Onchocerciasis in a Randomized, Open-Label, Pilot Trial. PLoS Negl Trop Dis 2017; 11:e0005156. [PMID: 28056021 PMCID: PMC5215804 DOI: 10.1371/journal.pntd.0005156] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 11/02/2016] [Indexed: 11/18/2022] Open
Abstract
The search for new macrofilaricidal drugs against onchocerciasis that can be administered in shorter regimens than required for doxycycline (DOX, 200mg/d given for 4-6 weeks), identified minocycline (MIN) with superior efficacy to DOX. Further reduction in the treatment regimen may be achieved with co-administration with standard anti-filarial drugs. Therefore a randomized, open-label, pilot trial was carried out in an area in Ghana endemic for onchocerciasis, comprising 5 different regimens: the standard regimen DOX 200mg/d for 4 weeks (DOX 4w, N = 33), the experimental regimens MIN 200mg/d for 3 weeks (MIN 3w; N = 30), DOX 200mg/d for 3 weeks plus albendazole (ALB) 800mg/d for 3 days (DOX 3w + ALB 3d, N = 32), DOX 200mg/d for 3 weeks (DOX 3w, N = 31) and ALB 800mg for 3 days (ALB 3d, N = 30). Out of 158 randomized participants, 116 (74.4%) were present for the follow-up at 6 months of whom 99 participants (63.5%) followed the treatment per protocol and underwent surgery. Histological analysis of the adult worms in the extirpated nodules revealed absence of Wolbachia in 98.8% (DOX 4w), 81.4% (DOX 3w + ALB 3d), 72.7% (MIN 3w), 64.1% (DOX 3w) and 35.2% (ALB 3d) of the female worms. All 4 treatment regimens showed superiority to ALB 3d (p < 0.001, p < 0.001, p = 0.002, p = 0.008, respectively), which was confirmed by real-time PCR. Additionally, DOX 4w showed superiority to all other treatment arms. Furthermore DOX 4w and DOX 3w + ALB 3d showed a higher amount of female worms with degenerated embryogenesis compared to ALB 3d (p = 0.028, p = 0.042, respectively). These results confirm earlier studies that DOX 4w is sufficient for Wolbachia depletion and the desired parasitological effects. The data further suggest that there is an additive effect of ALB (3 days) on top of that of DOX alone, and that MIN shows a trend for stronger potency than DOX. These latter two results are preliminary and need confirmation in a fully randomized controlled phase 2 trial. TRIAL REGISTRATION ClinicalTrials.gov #06010453.
Collapse
Affiliation(s)
- Ute Klarmann-Schulz
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- Institute for Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), partner-site Bonn-Cologne, Bonn, Germany
| | - Sabine Specht
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- Institute of Laboratory Animal Science, University of Zurich, Zurich, Switzerland
| | - Alexander Yaw Debrah
- Faculty of Allied Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
| | - Linda Batsa
- Faculty of Allied Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | - Jubin Osei-Mensah
- Faculty of Allied Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Yusif Mubarik
- Faculty of Allied Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Peter Konadu
- School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Arcangelo Ricchiuto
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Rolf Fimmers
- Institute for Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Bonn, Germany
| | - Sandra Arriens
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Bettina Dubben
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Louise Ford
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Mark Taylor
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), partner-site Bonn-Cologne, Bonn, Germany
| |
Collapse
|
48
|
Ōmura S. Ein vortreffliches Geschenk der Erde: Ursprünge und Auswirkungen der Avermectine (Nobel-Aufsatz). Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201602164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Satoshi Ōmura
- Kitasato University; Kitasato Institute for Life Sciences; Minato-ku, 9-1, Shirokane 5-chome Tokyo 108-8642 Japan
| |
Collapse
|
49
|
Ōmura S. A Splendid Gift from the Earth: The Origins and Impact of the Avermectins (Nobel Lecture). Angew Chem Int Ed Engl 2016; 55:10190-209. [PMID: 27435664 DOI: 10.1002/anie.201602164] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Indexed: 11/08/2022]
Abstract
Japanese soil was the origin of one of the most important drugs of the world: ivermectin. No other drug has such importance for the health of millions of people, particularly in the poor regions of the world. The discovery of the parent compounds of the avermectines is described first hand by S. Ōmura.
Collapse
Affiliation(s)
- Satoshi Ōmura
- Kitasato University, Kitasato Institute for Life Sciences, Minato-ku, 9-1, Shirokane 5-chome, Tokyo, 108-8642, Japan.
| |
Collapse
|
50
|
Tekle AH, Zouré HGM, Noma M, Boussinesq M, Coffeng LE, Stolk WA, Remme JHF. Progress towards onchocerciasis elimination in the participating countries of the African Programme for Onchocerciasis Control: epidemiological evaluation results. Infect Dis Poverty 2016; 5:66. [PMID: 27349645 PMCID: PMC4924267 DOI: 10.1186/s40249-016-0160-7] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/21/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The African Programme for Onchocerciasis Control (APOC) was created in 1995 to establish community-directed treatment with ivermectin (CDTi) in order to control onchocerciasis as a public health problem in 20 African countries that had 80 % of the global disease burden. When research showed that CDTi may ultimately eliminate onchocerciasis infection, APOC was given in 2008 the additional objective to determine when and where treatment can be safely stopped. We report the results of epidemiological evaluations undertaken from 2008 to 2014 to assess progress towards elimination in CDTi areas with ≥6 years treatment. METHODS Skin snip surveys were undertaken in samples of first-line villages to determine the prevalence of O. volvulus microfilariae. There were two evaluation phases. The decline in prevalence was evaluated in phase 1A. Observed and model-predicted prevalences were compared after correcting for endemicity level and treatment coverage. Bayesian statistics and Monte Carlo simulation were used to classify the decline in prevalence as faster than predicted, on track or delayed. Where the prevalence approached elimination levels, phase 1B was launched to determine if treatment could be safely stopped. Village sampling was extended to the whole CDTi area. Survey data were analysed within a Bayesian framework to determine if stopping criteria (overall prevalence <1.4 % and maximum stratum prevalence <5 %) were met. RESULTS In phase 1A 127 665 people from 639 villages in 54 areas were examined. The prevalence had fallen dramatically. The decline in prevalence was faster than predicted in 23 areas, on track in another 23 and delayed in eight areas. In phase 1B 108 636 people in 392 villages were examined in 22 areas of which 13 met the epidemiological criteria for stopping treatment. Overall, 32 areas (25.4 million people) had reached or were close to elimination, 18 areas (17.4 million) were on track but required more years treatment, and in eight areas (10.4 million) progress was unsatisfactory. CONCLUSIONS Onchocerciasis has been largely controlled as a public health problem. Great progress has been made towards elimination which already appears to have been achieved for millions of people. For most APOC countries, nationwide onchocerciasis elimination is within reach.
Collapse
Affiliation(s)
- Afework H Tekle
- African Programme for Onchocerciasis Control, Ouagadougou, Burkina Faso
| | | | - Mounkaila Noma
- African Programme for Onchocerciasis Control, Ouagadougou, Burkina Faso
| | - Michel Boussinesq
- Institut de Recherche pour le Développement (IRD), Montpellier, France
| | - Luc E Coffeng
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Wilma A Stolk
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | |
Collapse
|