1
|
Machado LS, Sobrinho AFM, De Jesus AG, Quaresma JAS, Gomes H. Analysis of Morbidity and Mortality Due to Yellow Fever in Brazil. Viruses 2025; 17:443. [PMID: 40143370 PMCID: PMC11945936 DOI: 10.3390/v17030443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/01/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
INTRODUCTION Yellow fever (YF) is a viral hemorrhagic fever transmitted by mosquitoes, characterized by a high mortality due to kidney and liver failure, massive coagulation disorders, and hemorrhages. With no specific treatment, prevention through vaccination and vector control is essential. This study investigates the epidemiology of YF in Brazil from 2011 to 2020, focusing on its trends and distribution across the territory. METHODS This ecological time-series study analyzed confirmed YF cases in Brazil's 27 federative units between 2011 and 2020. Data were sourced from DATASUS, IBGE, and IPEA. Incidence rates per 100,000 inhabitants were calculated, and various sociodemographic and health indicators were analyzed. Prais-Winsten autoregressive models assessed the trends, while a spatial analysis identified the risk areas using global and local Moran's I statistics. The data were processed using Stata and GeoDa® software, version 1.12. RESULTS YF cases were concentrated in the Amazon and Atlantic Forest biomes. The majority of the cases occurred in males (83.3%), non-white individuals (94.3%), and rural workers. Pará showed an increasing trend in incidence. A higher vaccination coverage correlated with a lower YF incidence, though endemic areas with good vaccination coverage still exhibited high rates. Health and socioeconomic indicators were inversely related to incidence, highlighting disparities in regional development. CONCLUSION Effective YF control requires multidisciplinary strategies, including expanded vaccination coverage, intensified vector control, and active surveillance. Research should focus on developing better vaccines, monitoring immunity, and improving the global response coordination.
Collapse
Affiliation(s)
- Luisa Sousa Machado
- Federal University of Northern Tocantins (UFNT), Araguaína 77826-612, TO, Brazil
| | | | - Andrielly Gomes De Jesus
- UFT Tropical Diseases Hospital (HDT/UFT), Federal University of Northern Tocantins (UFNT), Araguaína 77803-120, TO, Brazil
| | - Juarez Antônio Simões Quaresma
- Evandro Chagas Institute, Ananindeua 67000-000, PA, Brazil;
- State University of Pará, Belém 66050-000, PA, Brazil
- Federal University of Pará, Belém 66075-110, PA, Brazil
- Federal University of São Paulo, São Paulo 01246-904, SP, Brazil
| | - Helierson Gomes
- Federal University of Northern Tocantins (UFNT), Araguaína 77826-612, TO, Brazil
| |
Collapse
|
2
|
Garcia HLP. Epidemic Outbreaks Related to Yellow Fever Viruses. Methods Mol Biol 2025; 2913:251-266. [PMID: 40249443 DOI: 10.1007/978-1-0716-4458-4_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Epidemic outbreaks related to yellow fever viruses, added to the climate of fear resulting from the COVID-19 pandemic, raise a spectrum of concern and need for preparation in different research, epidemiology, and health groups. This question refers to conditions of: molecular analysis of the virus, its dissemination potential, vectors, mutational speed rate, evolutionary potential, and potential damage to individuals and populations.With regard to the yellow fever virus, such questions are even more pressing due to its successful history of colonization in America, originating from regions of Africa, and becoming endemic in both continents.Through the study of viral history and epidemiology, we seek to establish bases that allow us to analyze or avoid future problems and questions.This analysis of the past generates a future fear associated with a very real possibility:What are the chances of yellow fever spreading in densely populated regions of Asia?What are the chances of the emergence of a new pandemic caused by a virus that is already so well established on the planet?And in an associated way, the questions arise: How to avoid the possibility of a new epidemic? Is the vaccine associated with defense against this virus effective? Is the production of such a vaccine reliable and widespread in case of future deleterious events? All of these issues are relevant and worthy of analysis and response in future events, with a view to maximizing the health of the general population and mitigating human and economic damage.
Collapse
|
3
|
Perrin AJ, Dorrell RG. Protists and protistology in the Anthropocene: challenges for a climate and ecological crisis. BMC Biol 2024; 22:279. [PMID: 39617895 PMCID: PMC11610311 DOI: 10.1186/s12915-024-02077-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 11/22/2024] [Indexed: 12/13/2024] Open
Abstract
Eukaryotic microorganisms, or "protists," while often inconspicuous, play fundamental roles in the Earth ecosystem, ranging from primary production and nutrient cycling to interactions with human health and society. In the backdrop of accelerating climate dysregulation, alongside anthropogenic disruption of natural ecosystems, understanding changes to protist functional and ecological diversity is of critical importance. In this review, we outline why protists matter to our understanding of the global ecosystem and challenges of predicting protist species resilience and fragility to climate change. Finally, we reflect on how protistology may adapt and evolve in a present and future characterized by rapid ecological change.
Collapse
Affiliation(s)
| | - Richard G Dorrell
- Laboratory of Computational and Quantitative Biology (LCQB), Institut de Biologie Paris-Seine (IBPS), CNRS, INSERM, Université, Paris, Sorbonne, 75005, France.
| |
Collapse
|
4
|
Judson SD, Kenu E, Fuller T, Asiedu-Bekoe F, Biritwum-Nyarko A, Schroeder LF, Dowdy DW. Yellow fever in Ghana: Predicting emergence and ecology from historical outbreaks. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0003337. [PMID: 39432459 PMCID: PMC11493279 DOI: 10.1371/journal.pgph.0003337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 08/13/2024] [Indexed: 10/23/2024]
Abstract
Understanding the epidemiology and ecology of yellow fever in endemic regions is critical for preventing future outbreaks. Ghana is a high-risk country for yellow fever. In this study we estimate the disease burden, ecological cycles, and areas at risk for yellow fever in Ghana based on historical outbreaks. We identify 2387 cases and 888 deaths (case fatality rate 37.7%) from yellow fever reported in Ghana from 1910 to 2022. During the approximately 30-year periods before and after implementation of routine childhood vaccination in 1992, the reported mean annual number of cases decreased by 80%. The geographic distribution of yellow fever cases has also changed over the past century. While there have been multiple large historical outbreaks of yellow fever in regions throughout Ghana, recent outbreaks have originated in northern regions. Comparing the locations where yellow fever outbreaks have emerged, we find patterns with seasons and different ecological transmission cycles. Using an ecological niche modeling framework, we predict areas in Ghana that are similar to where prior yellow fever outbreaks have originated based on temperature, precipitation, vegetation, and human population density. We find that these predictions differ depending on the ecological cycles of outbreaks. Ultimately, these findings and methods could be used to inform further subnational risk assessments for yellow fever in Ghana and other high-risk countries.
Collapse
Affiliation(s)
- Seth D. Judson
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Ernest Kenu
- Department of Epidemiology, University of Ghana School of Public Health, Accra, Ghana
| | - Trevon Fuller
- Institute of the Environment and Sustainability, University of California, Los Angeles, California, United States of America
| | | | | | - Lee F. Schroeder
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - David W. Dowdy
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| |
Collapse
|
5
|
Servadio JL, Convertino M, Fiecas M, Muñoz‐Zanzi C. Weekly Forecasting of Yellow Fever Occurrence and Incidence via Eco-Meteorological Dynamics. GEOHEALTH 2023; 7:e2023GH000870. [PMID: 37885914 PMCID: PMC10599710 DOI: 10.1029/2023gh000870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/31/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023]
Abstract
Yellow Fever (YF), a mosquito-borne disease, requires ongoing surveillance and prevention due to its persistence and ability to cause major epidemics, including one that began in Brazil in 2016. Forecasting based on factors influencing YF risk can improve efficiency in prevention. This study aimed to produce weekly forecasts of YF occurrence and incidence in Brazil using weekly meteorological and ecohydrological conditions. Occurrence was forecast as the probability of observing any cases, and incidence was forecast to represent morbidity if YF occurs. We fit gamma hurdle models, selecting predictors from several meteorological and ecohydrological factors, based on forecast accuracy defined by receiver operator characteristic curves and mean absolute error. We fit separate models for data before and after the start of the 2016 outbreak, forecasting occurrence and incidence for all municipalities of Brazil weekly. Different predictor sets were found to produce most accurate forecasts in each time period, and forecast accuracy was high for both time periods. Temperature, precipitation, and previous YF burden were most influential predictors among models. Minimum, maximum, mean, and range of weekly temperature, precipitation, and humidity contributed to forecasts, with optimal lag times of 2, 6, and 7 weeks depending on time period. Results from this study show the use of environmental predictors in providing regular forecasts of YF burden and producing nationwide forecasts. Weekly forecasts, which can be produced using the forecast model developed in this study, are beneficial for informing immediate preparedness measures.
Collapse
Affiliation(s)
- Joseph L. Servadio
- Department of BiologyCenter for Infectious Disease DynamicsPennsylvania State UniversityUniversity ParkPAUSA
- Division of Environmental Health SciencesSchool of Public HealthUniversity of MinnesotaMinneapolisMNUSA
| | | | - Mark Fiecas
- Division of BiostatisticsSchool of Public HealthUniversity of MinnesotaMinneapolisMNUSA
| | - Claudia Muñoz‐Zanzi
- Division of Environmental Health SciencesSchool of Public HealthUniversity of MinnesotaMinneapolisMNUSA
| |
Collapse
|
6
|
Kassy WC, Ochie CN, Ndu AC, Agwu-Umuahi OR, Ibiok CN, Ogugua IJ, Chime OH, Orji C, Arinze-Onyia SU, Aguwa EN, Okeke TA. A Systematic Review of Yellow Fever Outbreaks and Public Health Responses in Nigeria. Niger Med J 2023; 64:427-447. [PMID: 38952887 PMCID: PMC11214706 DOI: 10.60787/nmj-64-4-294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2023] [Indexed: 07/03/2024] Open
Abstract
Background Yellow fever (YF) outbreaks continue to occur in Nigeria with a high mortality rate despite a well-established mode of transmission and the availability of a potent vaccine. This review is aimed at describing the epidemiology, determinants, and public health responses of yellow fever outbreaks in Nigeria from 1864 to 2020. Methodology The guidelines for the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) were used to conduct the review from November 2020 to April 2021. PubMed database, WHO library databases, and Google Scholar were used to search for relevant published materials including original and reviewed articles, conference papers and case reports from 1864 to 2020. Results Forty - eight articles and reports were included in the final reviews. Twenty - three outbreaks were described involving 33,830 suspected, presumptive, or confirmed cases of yellow fever and 8,355 deaths. The outbreaks occurred in every state of Nigeria including the Federal Capital Territory mostly during the rainy season. Low immunity in the population or low vaccination coverage, poor vector control, rainforest or savanna vegetation, rural-urban migration, and imported virus by travelers were common determinants noted. Public health responses have been through, centrally coordinated laboratory support, case management, emergency immunization, vector control, and surveillance. Conclusion Yellow fever outbreaks have increased in frequency and geographical spread with associated mortality rates. To stem the tide, mass immunization with 17D vaccines is encouraged, planned urbanization with adequate vector control measures enforced, effective case definition, vector surveillance, and effective awareness campaigns should be emphasized.
Collapse
Affiliation(s)
| | | | - Anne Chigedu Ndu
- Department of Community Medicine, UNTH Ituku-ozalla , Enugu, Nigeria
- Department of community Medicine, University of Nigeria Ituku-Ozalla, Enugu, Nigeria
| | - Olanike R Agwu-Umuahi
- Department of Community Medicine, UNTH Ituku-ozalla , Enugu, Nigeria
- Department of community Medicine, University of Nigeria Ituku-Ozalla, Enugu, Nigeria
| | - Charles Ntat Ibiok
- Department of Community Medicine, UNTH Ituku-ozalla , Enugu, Nigeria
- Department of community Medicine, University of Nigeria Ituku-Ozalla, Enugu, Nigeria
| | - Ifeoma Juliet Ogugua
- Department of Community Medicine, UNTH Ituku-ozalla , Enugu, Nigeria
- Department of community Medicine, University of Nigeria Ituku-Ozalla, Enugu, Nigeria
| | - Onyinye Hope Chime
- Department of Community of Medicine, Enugu State University of Science and Technology, College of Medicine, Park Lane GRA Enugu, Nigeria
- Department of Community of Medicine, Enugu State University of Science and Technology Teaching Hospital, Park Lane GRA Enugu, Nigeria
| | - Chinonye Orji
- Department of Community of Medicine, Enugu State University of Science and Technology, College of Medicine, Park Lane GRA Enugu, Nigeria
- Department of Community of Medicine, Enugu State University of Science and Technology Teaching Hospital, Park Lane GRA Enugu, Nigeria
| | - Sussan Uzoamaka Arinze-Onyia
- Department of Community of Medicine, Enugu State University of Science and Technology, College of Medicine, Park Lane GRA Enugu, Nigeria
- Department of Community of Medicine, Enugu State University of Science and Technology Teaching Hospital, Park Lane GRA Enugu, Nigeria
| | - Emmanuel Nwabueze Aguwa
- Department of Community Medicine, UNTH Ituku-ozalla , Enugu, Nigeria
- Department of community Medicine, University of Nigeria Ituku-Ozalla, Enugu, Nigeria
| | - Theodora Adaeze Okeke
- Department of Community Medicine, UNTH Ituku-ozalla , Enugu, Nigeria
- Department of community Medicine, University of Nigeria Ituku-Ozalla, Enugu, Nigeria
| |
Collapse
|
7
|
Uelmen JA, Mapes CD, Prasauskas A, Boohene C, Burns L, Stuck J, Carney RM. A Habitat Model for Disease Vector Aedes aegypti in the Tampa Bay Area, FloridA. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2023; 39:96-107. [PMID: 37364184 DOI: 10.2987/22-7109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Within the contiguous USA, Florida is unique in having tropical and subtropical climates, a great abundance and diversity of mosquito vectors, and high rates of human travel. These factors contribute to the state being the national ground zero for exotic mosquito-borne diseases, as evidenced by local transmission of viruses spread by Aedes aegypti, including outbreaks of dengue in 2022 and Zika in 2016. Because of limited treatment options, integrated vector management is a key part of mitigating these arboviruses. Practical knowledge of when and where mosquito populations of interest exist is critical for surveillance and control efforts, and habitat predictions at various geographic scales typically rely on ecological niche modeling. However, most of these models, usually created in partnership with academic institutions, demand resources that otherwise may be too time-demanding or difficult for mosquito control programs to replicate and use effectively. Such resources may include intensive computational requirements, high spatiotemporal resolutions of data not regularly available, and/or expert knowledge of statistical analysis. Therefore, our study aims to partner with mosquito control agencies in generating operationally useful mosquito abundance models. Given the increasing threat of mosquito-borne disease transmission in Florida, our analytic approach targets recent Ae. aegypti abundance in the Tampa Bay area. We investigate explanatory variables that: 1) are publicly available, 2) require little to no preprocessing for use, and 3) are known factors associated with Ae. aegypti ecology. Out of our 4 final models, none required more than 5 out of the 36 predictors assessed (13.9%). Similar to previous literature, the strongest predictors were consistently 3- and 4-wk temperature and precipitation lags, followed closely by 1 of 2 environmental predictors: land use/land cover or normalized difference vegetation index. Surprisingly, 3 of our 4 final models included one or more socioeconomic or demographic predictors. In general, larger sample sizes of trap collections and/or citizen science observations should result in greater confidence in model predictions and validation. However, given disparities in trap collections across jurisdictions, individual county models rather than a multicounty conglomerate model would likely yield stronger model fits. Ultimately, we hope that the results of our assessment will enable more accurate and precise mosquito surveillance and control of Ae. aegypti in Florida and beyond.
Collapse
|
8
|
Nakase T, Giovanetti M, Obolski U, Lourenço J. Global transmission suitability maps for dengue virus transmitted by Aedes aegypti from 1981 to 2019. Sci Data 2023; 10:275. [PMID: 37173303 PMCID: PMC10182074 DOI: 10.1038/s41597-023-02170-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Mosquito-borne viruses increasingly threaten human populations due to accelerating changes in climate, human and mosquito migration, and land use practices. Over the last three decades, the global distribution of dengue has rapidly expanded, causing detrimental health and economic problems in many areas of the world. To develop effective disease control measures and plan for future epidemics, there is an urgent need to map the current and future transmission potential of dengue across both endemic and emerging areas. Expanding and applying Index P, a previously developed mosquito-borne viral suitability measure, we map the global climate-driven transmission potential of dengue virus transmitted by Aedes aegypti mosquitoes from 1981 to 2019. This database of dengue transmission suitability maps and an R package for Index P estimations are offered to the public health community as resources towards the identification of past, current and future transmission hotspots. These resources and the studies they facilitate can contribute to the planning of disease control and prevention strategies, especially in areas where surveillance is unreliable or non-existent.
Collapse
Affiliation(s)
- Taishi Nakase
- Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK.
| | - Marta Giovanetti
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, 21040-360, Brazil
- Department of Science and Technology for Humans and the Environment, University of Campus Bio-Medico di Roma, Rome, 00128, Italy
| | - Uri Obolski
- School of Public Health, Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
- Porter School of the Environment and Earth Sciences, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - José Lourenço
- Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, 1749-016, Portugal.
| |
Collapse
|
9
|
Ribeiro YP, Falcão LFM, Smith VC, de Sousa JR, Pagliari C, Franco ECS, Cruz ACR, Chiang JO, Martins LC, Nunes JAL, Vilacoert FSDS, Santos LCD, Furlaneto MP, Fuzii HT, Bertonsin Filho MV, da Costa LD, Duarte MIS, Furlaneto IP, Martins Filho AJ, Aarão TLDS, Vasconcelos PFDC, Quaresma JAS. Comparative Analysis of Human Hepatic Lesions in Dengue, Yellow Fever, and Chikungunya: Revisiting Histopathological Changes in the Light of Modern Knowledge of Cell Pathology. Pathogens 2023; 12:pathogens12050680. [PMID: 37242350 DOI: 10.3390/pathogens12050680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Arboviruses, such as yellow fever virus (YFV), dengue virus (DENV), and chikungunya virus (CHIKV), present wide global dissemination and a pathogenic profile developed in infected individuals, from non-specific clinical conditions to severe forms, characterised by the promotion of significant lesions in different organs of the harbourer, culminating in multiple organ dysfunction. An analytical cross-sectional study was carried out via the histopathological analysis of 70 samples of liver patients, collected between 2000 and 2017, with confirmed laboratory diagnoses, who died due to infection and complications due to yellow fever (YF), dengue fever (DF), and chikungunya fever (CF), to characterise, quantify, and compare the patterns of histopathological alterations in the liver between the samples. Of the histopathological findings in the human liver samples, there was a significant difference between the control and infection groups, with a predominance of alterations in the midzonal area of the three cases analysed. Hepatic involvement in cases of YF showed a greater intensity of histopathological changes. Among the alterations evaluated, cell swelling, microvesicular steatosis, and apoptosis were classified according to the degree of tissue damage from severe to very severe. Pathological abnormalities associated with YFV, DENV, and CHIKV infections showed a predominance of changes in the midzonal area. We also noted that, among the arboviruses studied, liver involvement in cases of YFV infection was more intense.
Collapse
Affiliation(s)
- Yasmin Pacheco Ribeiro
- Center for Biological and Health Sciences, State University of Pará, Belém 66087-662, PA, Brazil
| | - Luiz Fabio Magno Falcão
- Center for Biological and Health Sciences, State University of Pará, Belém 66087-662, PA, Brazil
| | - Vanessa Cavaleiro Smith
- Section of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua 67030-000, PA, Brazil
| | - Jorge Rodrigues de Sousa
- Center for Biological and Health Sciences, State University of Pará, Belém 66087-662, PA, Brazil
| | - Carla Pagliari
- School of Medicine, São Paulo University, São Paulo 01246-903, SP, Brazil
| | | | - Ana Cecília Ribeiro Cruz
- Section of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua 67030-000, PA, Brazil
| | - Janniffer Oliveira Chiang
- Section of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua 67030-000, PA, Brazil
| | - Livia Carício Martins
- Section of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua 67030-000, PA, Brazil
| | - Juliana Abreu Lima Nunes
- Section of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua 67030-000, PA, Brazil
| | | | - Lais Carneiro Dos Santos
- Section of Pathology, Evandro Chagas Institute, Ministry of Health, Ananindeua 67030-000, PA, Brazil
| | | | - Hellen Thais Fuzii
- Tropical Medicine Center, Federal University of Pará, Belém 66055-240, PA, Brazil
| | | | - Luccas Delgado da Costa
- Section of Pathology, Evandro Chagas Institute, Ministry of Health, Ananindeua 67030-000, PA, Brazil
| | | | - Ismari Perini Furlaneto
- Center for Biological and Health Sciences, State University of Pará, Belém 66087-662, PA, Brazil
| | | | | | | | - Juarez Antônio Simões Quaresma
- Center for Biological and Health Sciences, State University of Pará, Belém 66087-662, PA, Brazil
- School of Medicine, São Paulo University, São Paulo 01246-903, SP, Brazil
- Tropical Medicine Center, Federal University of Pará, Belém 66055-240, PA, Brazil
| |
Collapse
|
10
|
Pless E, Powell JR, Seger KR, Ellis B, Gloria‐Soria A. Evidence for serial founder events during the colonization of North America by the yellow fever mosquito, Aedes aegypti. Ecol Evol 2022; 12:e8896. [PMID: 35592063 PMCID: PMC9102526 DOI: 10.1002/ece3.8896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 11/09/2022] Open
Abstract
The Aedes aegypti mosquito first invaded the Americas about 500 years ago and today is a widely distributed invasive species and the primary vector for viruses causing dengue, chikungunya, Zika, and yellow fever. Here, we test the hypothesis that the North American colonization by Ae. aegypti occurred via a series of founder events. We present findings on genetic diversity, structure, and demographic history using data from 70 Ae. aegypti populations in North America that were genotyped at 12 microsatellite loci and/or ~20,000 single nucleotide polymorphisms, the largest genetic study of the region to date. We find evidence consistent with colonization driven by serial founder effect (SFE), with Florida as the putative source for a series of westward invasions. This scenario was supported by (1) a decrease in the genetic diversity of Ae. aegypti populations moving west, (2) a correlation between pairwise genetic and geographic distances, and (3) demographic analysis based on allele frequencies. A few Ae. aegypti populations on the west coast do not follow the general trend, likely due to a recent and distinct invasion history. We argue that SFE provides a helpful albeit simplified model for the movement of Ae. aegypti across North America, with outlier populations warranting further investigation.
Collapse
Affiliation(s)
- Evlyn Pless
- Department of Ecology and Evolutionary BiologyYale UniversityNew HavenConnecticutUSA
- Department of AnthropologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Jeffrey R. Powell
- Department of Ecology and Evolutionary BiologyYale UniversityNew HavenConnecticutUSA
| | | | - Brett Ellis
- U.S. Virgin Islands Department of HealthChristianstedVIUSA
| | - Andrea Gloria‐Soria
- Department of Ecology and Evolutionary BiologyYale UniversityNew HavenConnecticutUSA
- Department of Environmental SciencesThe Connecticut Agricultural Experiment StationNew HavenConnecticutUSA
| |
Collapse
|
11
|
Nemg FBS, Abanda NN, Yonga MG, Ouapi D, Samme IE, Djoumetio MD, Endegue-Zanga MC, Demanou M, Njouom R. Sustained circulation of yellow fever virus in Cameroon: an analysis of laboratory surveillance data, 2010-2020. BMC Infect Dis 2022; 22:418. [PMID: 35488234 PMCID: PMC9055699 DOI: 10.1186/s12879-022-07407-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 04/20/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The re-emergence of yellow fever poses a serious public health risk to unimmunized communities in the tropical regions of Africa and South America and unvaccinated travelers visiting these regions. This risk is further accentuated by the likely spread of the virus to areas with potential for yellow fever transmission such as in Asia, Europe, and North America. To mitigate this risk, surveillance of yellow fever is pivotal. We performed an analysis of laboratory-based surveillance of yellow fever suspected cases in Cameroon during 2010-2020 to characterize the epidemiology of yellow fever cases and define health districts at high risk. METHOD We reviewed IgM capture ELISA and plaque reduction neutralization test (PRNT) test results of all suspected yellow fever patients analyzed at Centre Pasteur of Cameroon, the national yellow fever testing laboratory, during 2010-2020. RESULTS Of the 20,261 yellow fever suspected patient's samples that were tested, yellow fever IgM antibodies were detected in 360 patients representing an annual average of 33 cases/year. A major increase in YF IgM positive cases was observed in 2015 and in 2016 followed by a decrease in cases to below pre-2015 levels. The majority of the 2015 cases occurred during the latter part of the year while those in 2016, occurred between February and May. This trend may be due to an increase in transmission that began in late 2015 and continued to early 2016 or due to two separate transmission events. In 2016, where the highest number of cases were detected, 60 health districts in the 10 regions of Cameroon were affected with the Littoral, Northwest and, Far North regions being the most affected. After 2016, the number of detected yellow fever IgM positive cases dropped. CONCLUSION Our study shows that yellow fever transmission continues to persist and seems to be occurring all over Cameroon with all 10 regions under surveillance reporting a case. Preventive measures such as mass vaccination campaigns and routine childhood immunizations are urgently needed to increase population immunity. The diagnostic limitations in our analysis highlight the need to strengthen laboratory capacity and improve case investigations.
Collapse
Affiliation(s)
| | - Ngu Njei Abanda
- Virology Unit, Virology Service, Centre Pasteur of Cameroon, 451 Rue 2005, BP 1274, Yaounde, Cameroon.
| | - Martial Gide Yonga
- Virology Unit, Virology Service, Centre Pasteur of Cameroon, 451 Rue 2005, BP 1274, Yaounde, Cameroon
| | - Diane Ouapi
- Virology Unit, Virology Service, Centre Pasteur of Cameroon, 451 Rue 2005, BP 1274, Yaounde, Cameroon
| | - Ivis Ewang Samme
- Expanded Programme on Immunization, Ministry of Public Health, Yaoundé, Cameroon
| | | | | | - Maurice Demanou
- World Health Organization, Inter-Country Support Team West Africa, 03 BP 7019, Ouagadougou, Burkina Faso
| | - Richard Njouom
- Virology Unit, Virology Service, Centre Pasteur of Cameroon, 451 Rue 2005, BP 1274, Yaounde, Cameroon
| |
Collapse
|
12
|
Shah HA, Carrasco LR, Hamlet A, Murray KA. Exploring agricultural land-use and childhood malaria associations in sub-Saharan Africa. Sci Rep 2022; 12:4124. [PMID: 35260722 PMCID: PMC8904834 DOI: 10.1038/s41598-022-07837-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/24/2022] [Indexed: 11/09/2022] Open
Abstract
Agriculture in Africa is rapidly expanding but with this comes potential disbenefits for the environment and human health. Here, we retrospectively assess whether childhood malaria in sub-Saharan Africa varies across differing agricultural land uses after controlling for socio-economic and environmental confounders. Using a multi-model inference hierarchical modelling framework, we found that rainfed cropland was associated with increased malaria in rural (OR 1.10, CI 1.03-1.18) but not urban areas, while irrigated or post flooding cropland was associated with malaria in urban (OR 1.09, CI 1.00-1.18) but not rural areas. In contrast, although malaria was associated with complete forest cover (OR 1.35, CI 1.24-1.47), the presence of natural vegetation in agricultural lands potentially reduces the odds of malaria depending on rural-urban context. In contrast, no associations with malaria were observed for natural vegetation interspersed with cropland (veg-dominant mosaic). Agricultural expansion through rainfed or irrigated cropland may increase childhood malaria in rural or urban contexts in sub-Saharan Africa but retaining some natural vegetation within croplands could help mitigate this risk and provide environmental co-benefits.
Collapse
Affiliation(s)
- Hiral Anil Shah
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK.
- Grantham Institute - Climate Change and the Environment - Imperial College London, London, UK.
| | - Luis Roman Carrasco
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Arran Hamlet
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK
| | - Kris A Murray
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK
- MRC Unit The Gambia at London, School of Hygiene and Tropical Medicine, Atlantic Boulevard, Fajara, The Gambia
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
13
|
Genetic Diversity Does Not Contribute to Attenuation of HeLa Passaged Wild-Type Yellow Fever Virus Strain French Viscerotropic Virus. Viruses 2022; 14:v14030527. [PMID: 35336933 PMCID: PMC8949127 DOI: 10.3390/v14030527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/20/2022] [Accepted: 02/23/2022] [Indexed: 02/05/2023] Open
Abstract
The disease yellow fever was prevented by two live attenuated vaccines, strains 17D and French neurotropic vaccine (FNV), derived by serial passage of wild-type (WT) strains Asibi and French Viscerotropic virus (FVV), respectively. Both 17D and FNV displayed decreased genetic diversity and resistance to the antiviral Ribavirin compared to their WT parental strains, which are thought to contribute to their attenuated phenotypes. Subsequent studies found that only a few passages of WT strain FVV in HeLa cells resulted in an attenuated virus. In the current study, the genome sequence of FVV following five passages in HeLa cells (FVV HeLa p5) was determined through Next Generation Sequencing (NGS) with the aim to investigate the molecular basis of viral attenuation. It was found that WT FVV and FVV HeLa p5 virus differed by five amino acid substitutions: E-D155A, E-K331R, E-I412V, NS2A-T105A, and NS4B-V98I. Surprisingly, the genetic diversity and Ribavirin resistance of the FVV HeLa p5 virus were not statistically different to WT parent FVV. These findings suggest that while FVV HeLa p5 is attenuated, this is not dependent on a high-fidelity replication complex, characterized by reduced genetic diversity or increased Ribavirin stability, as seen with FNV and 17D vaccines.
Collapse
|
14
|
Servadio JL, Muñoz-Zanzi C, Convertino M. Environmental determinants predicting population vulnerability to high yellow fever incidence. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220086. [PMID: 35316947 PMCID: PMC8889195 DOI: 10.1098/rsos.220086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Yellow fever (YF) is an endemic mosquito-borne disease in Brazil, though many locations have not observed cases in recent decades. Some locations with low disease burden may resemble locations with higher disease burden through environmental and ecohydrological characteristics, which are known to impact YF burden, motivating increased or continued prevention measures such as vaccination, mosquito control or surveillance. This study aimed to use environmental characteristics to estimate vulnerability to observing high YF burden among all Brazilian municipalities. Vulnerability was defined in three categories based on yearly incidence between 2000 and 2017: minimal, low and high vulnerability. A cumulative logit model was fit to these categories using environmental and ecohydrological predictors, selecting those that provided the most accurate model fit. Per cent of days with precipitation, mean temperature, biome, population density, elevation, vegetation and nearby disease occurrence were included in best-fitting models. Model results were applied to estimate vulnerability nationwide. Municipalities with highest probability of observing high vulnerability was found in the North and Central-West (2000-2016) as well as the Southeast (2017) regions. Results of this study serve to identify specific locations to prioritize new or ongoing surveillance and prevention of YF based on underlying ecohydrological conditions.
Collapse
Affiliation(s)
- Joseph L. Servadio
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN, USA
- Center for Infectious Disease Dynamics and Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Claudia Muñoz-Zanzi
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Matteo Convertino
- Future Ecosystems Lab, Tsinghua SIGS, Tsinghua University, Shenzhen, People's Republic of China
| |
Collapse
|
15
|
Abstract
It is unclear whether West Nile virus (WNV) circulates endemically in Portugal. Despite the country’s adequate climate for transmission, Portugal has only reported four human WNV infections so far. We performed a review of WNV-related data (1966–2020), explored mosquito (2016–2019) and land type distributions (1992–2019), and used climate data (1981–2019) to estimate WNV transmission suitability in Portugal. Serological and molecular evidence of WNV circulation from animals and vectors was largely restricted to the south. Land type and climate-driven transmission suitability distributions, but not the distribution of WNV-capable vectors, were compatible with the North-South divide present in serological and molecular evidence of WNV circulation. Our study offers a comprehensive, data-informed perspective and review on the past epidemiology, surveillance and climate-driven transmission suitability of WNV in Portugal, highlighting the south as a subregion of importance. Given the recent WNV outbreaks across Europe, our results support a timely change towards local, active surveillance. Lourenço et al. review historical data and quantify the transmission potential of West Nile virus in Portugal. They report a North-South divide in infection patterns, a higher ecological capacity in the south, and an increasing positive effect of climate change over the last 40 years.
Collapse
|
16
|
Tajudeen YA, Oladunjoye IO, Mustapha MO, Mustapha ST, Ajide-Bamigboye NT. Tackling the global health threat of arboviruses: An appraisal of the three holistic approaches to health. Health Promot Perspect 2021; 11:371-381. [PMID: 35079581 PMCID: PMC8767080 DOI: 10.34172/hpp.2021.48] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/03/2021] [Indexed: 12/20/2022] Open
Abstract
Background: The rapid circulation of arboviruses in the human population has been linked with changes in climatic, environmental, and socio-economic conditions. These changes are known to alter the transmission cycles of arboviruses involving the anthropophilic vectors and thus facilitate an extensive geographical distribution of medically important arboviral diseases, thereby posing a significant health threat. Using our current understanding and assessment of relevant literature, this review aimed to understand the underlying factors promoting the spread of arboviruses and how the three most renowned interdisciplinary and holistic approaches to health such as One Health, Eco-Health, and Planetary Health can be a panacea for control of arboviruses. Methods: A comprehensive structured search of relevant databases such as Medline, PubMed, WHO, Scopus, Science Direct, DOAJ, AJOL, and Google Scholar was conducted to identify recent articles on arboviruses and holistic approaches to health using the keywords including "arboviral diseases", "arbovirus vectors", "arboviral infections", "epidemiology of arboviruses", "holistic approaches", "One Health", "Eco-Health", and "Planetary Health". Results: Changes in climatic factors like temperature, humidity, and precipitation support the growth, breeding, and fecundity of arthropod vectors transmitting the arboviral diseases. Increased human migration and urbanization due to socio-economic factors play an important role in population increase leading to the rapid geographical distribution of arthropod vectors and transmission of arboviral diseases. Medical factors like misdiagnosis and misclassification also contribute to the spread of arboviruses. Conclusion: This review highlights two important findings: First, climatic, environmental, socio-economic, and medical factors influence the constant distributions of arthropod vectors. Second, either of the three holistic approaches or a combination of any two can be adopted on arboviral disease control. Our findings underline the need for holistic approaches as the best strategy to mitigating and controlling the emerging and reemerging arboviruses.
Collapse
|
17
|
Radio-frequency exposure of the yellow fever mosquito (A. aegypti) from 2 to 240 GHz. PLoS Comput Biol 2021; 17:e1009460. [PMID: 34710086 PMCID: PMC8577778 DOI: 10.1371/journal.pcbi.1009460] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 11/09/2021] [Accepted: 09/17/2021] [Indexed: 12/23/2022] Open
Abstract
Fifth generation networks (5G) will be associated with a partial shift to higher carrier frequencies, including wavelengths comparable in size to insects. This may lead to higher absorption of radio frequency (RF) electromagnetic fields (EMF) by insects and could cause dielectric heating. The yellow fever mosquito (Aedes aegypti), a vector for diseases such as yellow and dengue fever, favors warm climates. Being exposed to higher frequency RF EMFs causing possible dielectric heating, could have an influence on behavior, physiology and morphology, and could be a possible factor for introduction of the species in regions where the yellow fever mosquito normally does not appear. In this study, the influence of far field RF exposure on A. aegypti was examined between 2 and 240 GHz. Using Finite Difference Time Domain (FDTD) simulations, the distribution of the electric field in and around the insect and the absorbed RF power were found for six different mosquito models (three male, three female). The 3D models were created from micro-CT scans of real mosquitoes. The dielectric properties used in the simulation were measured from a mixture of homogenized A. aegypti. For a given incident RF power, the absorption increases with increasing frequency between 2 and 90 GHz with a maximum between 90 and 240 GHz. The absorption was maximal in the region where the wavelength matches the size of the mosquito. For a same incident field strength, the power absorption by the mosquito is 16 times higher at 60 GHz than at 6 GHz. The higher absorption of RF power by future technologies can result in dielectric heating and potentially influence the biology of this mosquito.
Collapse
|
18
|
Mu Y, Shao M, Zhong B, Zhao Y, Leung KMY, Giesy JP, Ma J, Wu F, Zeng F. Transmission of SARS-CoV-2 virus and ambient temperature: a critical review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:37051-37059. [PMID: 34053039 PMCID: PMC8164483 DOI: 10.1007/s11356-021-14625-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has brought unprecedented public health, and social and economic challenges. It remains unclear whether seasonal changes in ambient temperature will alter spreading trajectory of the COVID-19 epidemic. The probable mechanism on this is still lacking. This review summarizes the most recent research data on the effect of ambient temperature on the COVID-19 epidemic characteristic. The available data suggest that (i) mesophilic traits of viruses are different due to their molecular composition; (ii) increasing ambient temperature decreases the persistence of some viruses in aquatic media; (iii) a 1°C increase in the average monthly minimum ambient temperatures (AMMAT) was related to a 0.72% fewer mammalian individuals that would be infected by coronavirus; (iv) proportion of zoonotic viruses of mammals including humans is probably related to their body temperature difference; (v) seasonal divergence between the northern and southern hemispheres may be a significant driver in determining a waved trajectory in the next 2 years. Further research is needed to understand its effects and mechanisms of global temperature change so that effective strategies can be adopted to curb its natural effects. This paper mainly explores possible scientific hypothesis and evidences that local communities and authorities should consider to find optimal solutions that can limit the transmission of SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Yunsong Mu
- School of Environment & Natural Resources, Renmin University of China, No.59, Zhongguancun Street, Haidian District, Beijing, 100872, China.
| | - Meichen Shao
- School of Environment & Natural Resources, Renmin University of China, No.59, Zhongguancun Street, Haidian District, Beijing, 100872, China
| | - Buqing Zhong
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Yiqun Zhao
- School of Environment & Natural Resources, Renmin University of China, No.59, Zhongguancun Street, Haidian District, Beijing, 100872, China
| | - Kenneth M Y Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Environmental Science, Baylor University, Waco, TX, USA
| | - Jin Ma
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Fangang Zeng
- School of Environment & Natural Resources, Renmin University of China, No.59, Zhongguancun Street, Haidian District, Beijing, 100872, China.
| |
Collapse
|
19
|
Hamlet A, Ramos DG, Gaythorpe KAM, Romano APM, Garske T, Ferguson NM. Seasonality of agricultural exposure as an important predictor of seasonal yellow fever spillover in Brazil. Nat Commun 2021; 12:3647. [PMID: 34131128 PMCID: PMC8206143 DOI: 10.1038/s41467-021-23926-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/24/2021] [Indexed: 01/04/2023] Open
Abstract
Yellow fever virus (YFV) is a zoonotic arbovirus affecting both humans and non-human primates (NHP's) in Africa and South America. Previous descriptions of YF's seasonality have relied purely on climatic explanations, despite the high proportion of cases occurring in people involved in agriculture. We use a series of random forest classification models to predict the monthly occurrence of YF in humans and NHP's across Brazil, by fitting four classes of covariates related to the seasonality of climate and agriculture (planting and harvesting), crop output and host demography. We find that models captured seasonal YF reporting in humans and NHPs when they considered seasonality of agriculture rather than climate, particularly for monthly aggregated reports. These findings illustrate the seasonality of exposure, through agriculture, as a component of zoonotic spillover. Additionally, by highlighting crop types and anthropogenic seasonality, these results could directly identify areas at highest risk of zoonotic spillover.
Collapse
Affiliation(s)
- Arran Hamlet
- MRC Centre for Global Infectious Disease Analysis; and the Abdul Latif Jameel Institute for Disease and Emergency Analytics, School of Public Health, Imperial College London, London, UK.
| | | | - Katy A M Gaythorpe
- MRC Centre for Global Infectious Disease Analysis; and the Abdul Latif Jameel Institute for Disease and Emergency Analytics, School of Public Health, Imperial College London, London, UK
| | | | - Tini Garske
- MRC Centre for Global Infectious Disease Analysis; and the Abdul Latif Jameel Institute for Disease and Emergency Analytics, School of Public Health, Imperial College London, London, UK
| | - Neil M Ferguson
- MRC Centre for Global Infectious Disease Analysis; and the Abdul Latif Jameel Institute for Disease and Emergency Analytics, School of Public Health, Imperial College London, London, UK
| |
Collapse
|
20
|
Machalaba C, Uhart M, Ryser-Degiorgis MP, Karesh WB. Gaps in health security related to wildlife and environment affecting pandemic prevention and preparedness, 2007-2020. Bull World Health Organ 2021; 99:342-350B. [PMID: 33958822 PMCID: PMC8061663 DOI: 10.2471/blt.20.272690] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 12/19/2020] [Accepted: 01/21/2021] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE To describe and quantify the extent of wildlife and environment sector inclusion in country evaluation and prioritization tools for health security, and to provide practical recommendations for global and national action to improve pandemic prevention and preparedness. METHODS To assess coverage of wildlife and other environmental aspects, we reviewed major health security reports (including World Organisation for Animal Health Performance of Veterinary Services reports, and World Health Organization Joint External Evaluations and follow-on National Action Plans for Health Security) published by 107 countries and territories. We extracted information on stated coverage gaps, wildlife surveillance systems and priority diseases. We also searched National Biodiversity Strategies and Action Plans published by 125 countries to assess whether disease surveillance or prevention activities were included. FINDINGS We noted that the occurrence frequency of keywords indicative of wildlife, environment, biodiversity and climate factors varied with type of report and between countries. We found that more than half (57.9%, 62/107) of the reporting countries did not provide any evidence of a functional wildlife health surveillance programme. Most countries (83.2%, 89/107) indicated specific gaps in operations, coordination, scope or capacity. Only eight of the 125 countries (6.4%) publishing a National Biodiversity Strategy and Action Plan reported tangible activities related to wildlife health or zoonotic disease. CONCLUSION Overall, despite their importance for pandemic prevention, wildlife and environmental considerations are neglected in health security priorities and plans. Strengthening wildlife health capacity and operations should be emphasized in One Health efforts to monitor and mitigate known and novel disease risks.
Collapse
Affiliation(s)
- Catherine Machalaba
- EcoHealth Alliance, 520 Eighth Avenue, Suite 1200, New York, NY 10018, United States of America (USA)
| | - Marcela Uhart
- One Health Institute, School of Veterinary Medicine, University of California, Davis, USA
| | - Marie-Pierre Ryser-Degiorgis
- Centre for Fish and Wildlife Health, Department of Infectious Diseases and Pathobiology, University of Bern, Bern, Switzerland
| | - William B Karesh
- EcoHealth Alliance, 520 Eighth Avenue, Suite 1200, New York, NY 10018, United States of America (USA)
| |
Collapse
|
21
|
Huxley PJ, Murray KA, Pawar S, Cator LJ. The effect of resource limitation on the temperature dependence of mosquito population fitness. Proc Biol Sci 2021; 288:20203217. [PMID: 33906411 PMCID: PMC8079993 DOI: 10.1098/rspb.2020.3217] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/31/2021] [Indexed: 12/27/2022] Open
Abstract
Laboratory-derived temperature dependencies of life-history traits are increasingly being used to make mechanistic predictions for how climatic warming will affect vector-borne disease dynamics, partially by affecting abundance dynamics of the vector population. These temperature-trait relationships are typically estimated from juvenile populations reared on optimal resource supply, even though natural populations of vectors are expected to experience variation in resource supply, including intermittent resource limitation. Using laboratory experiments on the mosquito Aedes aegypti, a principal arbovirus vector, combined with stage-structured population modelling, we show that low-resource supply in the juvenile life stages significantly depresses the vector's maximal population growth rate across the entire temperature range (22-32°C) and causes it to peak at a lower temperature than at high-resource supply. This effect is primarily driven by an increase in juvenile mortality and development time, combined with a decrease in adult size with temperature at low-resource supply. Our study suggests that most projections of temperature-dependent vector abundance and disease transmission are likely to be biased because they are based on traits measured under optimal resource supply. Our results provide compelling evidence for future studies to consider resource supply when predicting the effects of climate and habitat change on vector-borne disease transmission, disease vectors and other arthropods.
Collapse
Affiliation(s)
- Paul J. Huxley
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK
| | - Kris A. Murray
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK
- MRC Unit The Gambia at London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Samraat Pawar
- Department of Life Sciences, Imperial College London, Ascot, UK
| | - Lauren J. Cator
- Department of Life Sciences, Imperial College London, Ascot, UK
| |
Collapse
|
22
|
Sadeghieh T, Sargeant JM, Greer AL, Berke O, Dueymes G, Gachon P, Ogden NH, Ng V. Yellow fever virus outbreak in Brazil under current and future climate. Infect Dis Model 2021; 6:664-677. [PMID: 33997536 PMCID: PMC8090996 DOI: 10.1016/j.idm.2021.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/20/2021] [Accepted: 04/05/2021] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION Yellow fever (YF) is primarily transmitted by Haemagogus species of mosquitoes. Under climate change, mosquitoes and the pathogens that they carry are expected to develop faster, potentially impacting the case count and duration of YF outbreaks. The aim of this study was to determine how YF virus outbreaks in Brazil may change under future climate, using ensemble simulations from regional climate models under RCP4.5 and RCP8.5 scenarios for three time periods: 2011-2040 (short-term), 2041-2070 (mid-term), and 2071-2100 (long-term). METHODS A compartmental model was developed to fit the 2017/18 YF outbreak data in Brazil using least squares optimization. To explore the impact of climate change, temperature-sensitive mosquito parameters were set to change over projected time periods using polynomial equations fitted to their relationship with temperature according to the average temperature for years 2011-2040, 2041-2070, and 2071-2100 for climate change scenarios using RCP4.5 and RCP8.5, where RCP4.5/RCP8.5 corresponds to intermediate/high radiative forcing values and to moderate/higher warming trends. A sensitivity analysis was conducted to determine how the temperature-sensitive parameters impacted model results, and to determine how vaccination could play a role in reducing YF in Brazil. RESULTS Yellow fever case projections for Brazil from the models varied when climate change scenarios were applied, including the peak clinical case incidence, cumulative clinical case incidence, time to peak incidence, and the outbreak duration. Overall, a decrease in YF cases and outbreak duration was observed. Comparing the observed incidence in 2017/18 to the projected incidence in 2070-2100, for RCP4.5, the cumulative case incidence decreased from 184 to 161, and the outbreak duration decreased from 21 to 20 weeks. For RCP8.5, the peak case incidence decreased from 184 to 147, and the outbreak duration decreased from 21 to 17 weeks. The observed decrease was primarily due to temperature increasing beyond that suitable for Haemagogus mosquito survival. CONCLUSIONS Climate change is anticipated to have an impact on mosquito-borne diseases. We found outbreaks of YF may reduce in intensity as temperatures increase in Brazil; however, temperature is not the only factor involved with disease transmission. Other factors must be explored to determine the attributable impact of climate change on mosquito-borne diseases.
Collapse
Affiliation(s)
- Tara Sadeghieh
- Population Medicine, University of Guelph, Guelph, Ontario, Canada
- Centre for Public Health and Zoonoses, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, Ontario, St. Hyacinthe, Québec, Canada
| | - Jan M. Sargeant
- Population Medicine, University of Guelph, Guelph, Ontario, Canada
- Centre for Public Health and Zoonoses, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Amy L. Greer
- Population Medicine, University of Guelph, Guelph, Ontario, Canada
- Centre for Public Health and Zoonoses, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Olaf Berke
- Population Medicine, University of Guelph, Guelph, Ontario, Canada
- Centre for Public Health and Zoonoses, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Guillaume Dueymes
- ESCER (Étude et Simulation du Climat à l’Échelle Régionale) Centre, Université du Québec à Montréal, Québec, Canada
| | - Philippe Gachon
- ESCER (Étude et Simulation du Climat à l’Échelle Régionale) Centre, Université du Québec à Montréal, Québec, Canada
| | - Nicholas H. Ogden
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, Ontario, St. Hyacinthe, Québec, Canada
| | - Victoria Ng
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, Ontario, St. Hyacinthe, Québec, Canada
| |
Collapse
|
23
|
Cracknell Daniels B, Gaythorpe K, Imai N, Dorigatti I. Yellow fever in Asia-a risk analysis. J Travel Med 2021; 28:taab015. [PMID: 33506250 PMCID: PMC8045179 DOI: 10.1093/jtm/taab015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND There is concern about the risk of yellow fever (YF) establishment in Asia, owing to rising numbers of urban outbreaks in endemic countries and globalisation. Following an outbreak in Angola in 2016, YF cases were introduced into China. Prior to this, YF had never been recorded in Asia, despite climatic suitability and the presence of mosquitoes. An outbreak in Asia could result in widespread fatalities and huge economic impact. Therefore, quantifying the potential risk of YF outbreaks in Asia is a public health priority. METHODS Using international flight data and YF incidence estimates from 2016, we quantified the risk of YF introduction via air travel into Asia. In locations with evidence of a competent mosquito population, the potential for autochthonous YF transmission was estimated using a temperature-dependent model of the reproduction number and a branching process model assuming a negative binomial distribution. RESULTS In total, 25 cities across Asia were estimated to be at risk of receiving at least one YF viraemic traveller during 2016. At their average temperatures, we estimated the probability of autochthonous transmission to be <50% in all cities, which was primarily due to the limited number of estimated introductions that year. CONCLUSION Despite the rise in air travel, we found low support for travel patterns between YF endemic countries and Asia resulting in autochthonous transmission during 2016. This supports the historic absence of YF in Asia and suggests it could be due to a limited number of introductions in previous years. Future increases in travel volumes or YF incidence can increase the number of introductions and the risk of autochthonous transmission. Given the high proportion of asymptomatic or mild infections and the challenges of YF surveillance, our model can be used to estimate the introduction and outbreak risk and can provide useful information to surveillance systems.
Collapse
Affiliation(s)
- Bethan Cracknell Daniels
- MRC Centre for Global Infectious Disease Analysis; and the Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London
| | - Katy Gaythorpe
- MRC Centre for Global Infectious Disease Analysis; and the Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London
| | - Natsuko Imai
- MRC Centre for Global Infectious Disease Analysis; and the Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London
| | - Ilaria Dorigatti
- MRC Centre for Global Infectious Disease Analysis; and the Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London
| |
Collapse
|
24
|
Uchenna Emeribe A, Nasir Abdullahi I, O R Ajagbe O, Egede Ugwu C, Oloche Onoja S, Dahiru Abubakar S, Modesta Umeozuru C, Sunday Animasaun O, Omoruyi Omosigho P, Mukhtar Danmusa U, Alhaji Baba Mallam M, Saidu Aminu M, Yahaya H, Oyewusi S. Incidence, drivers and global health implications of the 2019/2020 yellow fever sporadic outbreaks in Sub-Saharan Africa. Pathog Dis 2021; 79:6178868. [PMID: 33739369 DOI: 10.1093/femspd/ftab017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 03/17/2021] [Indexed: 11/13/2022] Open
Abstract
The 2019 and 2020 sporadic outbreaks of yellow fever (YF) in Sub-Saharan African countries had raised a lot of global health concerns. This article aims to narratively review the vector biology, YF vaccination program, environmental factors and climatic changes, and to understand how they could facilitate the reemergence of YF. This study comprehensively reviewed articles that focused on the interplay and complexity of YF virus (YFV) vector diversity/competence, YF vaccine immunodynamics and climatic change impacts on YFV transmission as they influence the 2019/2020 sporadic outbreaks in Sub-Saharan Africa (SSA). Based on available reports, vectorial migration, climatic changes and YF immunization level could be reasons for the re-mergence of YF at the community and national levels. Essentially, the drivers of YFV infection due to spillover are moderately constant. However, changes in land use and landscape have been shown to influence sylvan-to-urban spillover. Furthermore, increased precipitation and warmer temperatures due to climate change are likely to broaden the range of mosquitoes' habitat. The 2019/2020 YF outbreaks in SSA is basically a result of inadequate vaccination campaigns, YF surveillance and vector control. Consequently, and most importantly, adequate immunization coverage must be implemented and properly achieved under the responsibility of the public health stakeholders.
Collapse
Affiliation(s)
- Anthony Uchenna Emeribe
- Department of Medical Laboratory Science, Faculty of Allied Medical Sciences, University of Calabar, PMB 1115, Calabar, Nigeria
| | - Idris Nasir Abdullahi
- Department of Medical Laboratory Science, Faculty of Allied Sciences, Ahmadu Bello University, PMB 05 along Samaru road, Zaria, Nigeria
| | - Odunayo O R Ajagbe
- Department of Medical Laboratory Science, Ebonyi State University, P.M.B. 053, Abakaliki, Nigeria
| | - Charles Egede Ugwu
- Solina Center for International Research and development, 8 Libreville Crescent, Ahmadu Bello Way Wuse II, Abuja 23409, Nigeria
| | - Solomon Oloche Onoja
- Nigeria Field Epidemiology and Laboratory Training Programme, African Field Epidemiology Programme, Plot 801, Ebitu Ukiwe Street, Jabi, Abuja, Nigeria
| | - Sharafudeen Dahiru Abubakar
- Department of Medical Laboratory Science, Faculty of Allied Sciences, Ahmadu Bello University, PMB 05 along Samaru road, Zaria, Nigeria
| | | | | | - Pius Omoruyi Omosigho
- Faculty of Pharmacy, Kaduna State University, Tafawa Balewa Way, PMB 2339, Kaduna, Nigeria
| | - Umar Mukhtar Danmusa
- Department of Medical Laboratory Science, University of Nigeria, PMB, 420001 Nsukka, Nigeria
| | - Mala Alhaji Baba Mallam
- Department of Nursing Science, Maryam Abacha American University of Niger, ADS Avenue, Roi Muhammed VI Du Maroc Maradi, Republique Du Niger
| | - Maijiddah Saidu Aminu
- Department of Nursing Science, Maryam Abacha American University of Niger, ADS Avenue, Roi Muhammed VI Du Maroc Maradi, Republique Du Niger
| | - Hadiza Yahaya
- Department of Nursing Science, Maryam Abacha American University of Niger, ADS Avenue, Roi Muhammed VI Du Maroc Maradi, Republique Du Niger
| | - Silifat Oyewusi
- Department of Nursing Science, Maryam Abacha American University of Niger, ADS Avenue, Roi Muhammed VI Du Maroc Maradi, Republique Du Niger
| |
Collapse
|
25
|
Jean K, Raad H, Gaythorpe KAM, Hamlet A, Mueller JE, Hogan D, Mengistu T, Whitaker HJ, Garske T, Hocine MN. Assessing the impact of preventive mass vaccination campaigns on yellow fever outbreaks in Africa: A population-level self-controlled case series study. PLoS Med 2021; 18:e1003523. [PMID: 33600451 PMCID: PMC7932543 DOI: 10.1371/journal.pmed.1003523] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 03/04/2021] [Accepted: 12/15/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The Eliminate Yellow fever Epidemics (EYE) strategy was launched in 2017 in response to the resurgence of yellow fever in Africa and the Americas. The strategy relies on several vaccination activities, including preventive mass vaccination campaigns (PMVCs). However, to what extent PMVCs are associated with a decreased risk of outbreak has not yet been quantified. METHODS AND FINDINGS We used the self-controlled case series (SCCS) method to assess the association between the occurrence of yellow fever outbreaks and the implementation of PMVCs at the province level in the African endemic region. As all time-invariant confounders are implicitly controlled for in the SCCS method, this method is an alternative to classical cohort or case-control study designs when the risk of residual confounding is high, in particular confounding by indication. The locations and dates of outbreaks were identified from international epidemiological records, and information on PMVCs was provided by coordinators of vaccination activities and international funders. The study sample consisted of provinces that were both affected by an outbreak and targeted for a PMVC between 2005 and 2018. We compared the incidence of outbreaks before and after the implementation of a PMVC. The sensitivity of our estimates to a range of assumptions was explored, and the results of the SCCS method were compared to those obtained through a retrospective cohort study design. We further derived the number of yellow fever outbreaks that have been prevented by PMVCs. The study sample consisted of 33 provinces from 11 African countries. Among these, the first outbreak occurred during the pre-PMVC period in 26 (79%) provinces, and during the post-PMVC period in 7 (21%) provinces. At the province level, the post-PMVC period was associated with an 86% reduction (95% CI 66% to 94%, p < 0.001) in the risk of outbreak as compared to the pre-PMVC period. This negative association between exposure to PMVCs and outbreak was robustly observed across a range of sensitivity analyses, especially when using quantitative estimates of vaccination coverage as an alternative exposure measure, or when varying the observation period. In contrast, the results of the cohort-style analyses were highly sensitive to the choice of covariates included in the model. Based on the SCCS results, we estimated that PMVCs were associated with a 34% (95% CI 22% to 45%) reduction in the number of outbreaks in Africa from 2005 to 2018. A limitation of our study is the fact that it does not account for potential time-varying confounders, such as changing environmental drivers of yellow fever and possibly improved disease surveillance. CONCLUSIONS In this study, we provide new empirical evidence of the high preventive impact of PMVCs on yellow fever outbreaks. This study illustrates that the SCCS method can be advantageously applied at the population level in order to evaluate a public health intervention.
Collapse
Affiliation(s)
- Kévin Jean
- Laboratoire MESuRS, Conservatoire national des Arts et Métiers, Paris, France
- Unité PACRI, Institut Pasteur, Conservatoire national des Arts et Métiers, Paris, France
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Hanaya Raad
- Laboratoire MESuRS, Conservatoire national des Arts et Métiers, Paris, France
- Unité PACRI, Institut Pasteur, Conservatoire national des Arts et Métiers, Paris, France
- EHESP French School of Public Health, Paris, France
| | - Katy A. M. Gaythorpe
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Arran Hamlet
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Judith E. Mueller
- Unité PACRI, Institut Pasteur, Conservatoire national des Arts et Métiers, Paris, France
- EHESP French School of Public Health, Paris, France
| | - Dan Hogan
- Gavi, the Vaccine Alliance, Geneva, Switzerland
| | | | - Heather J. Whitaker
- Statistics, Modelling and Economics Department, National Infection Service, Public Health England, Colindale, London, United Kingdom
- Department of Mathematics & Statistics, The Open University, Milton Keynes, United Kingdom
| | - Tini Garske
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Mounia N. Hocine
- Laboratoire MESuRS, Conservatoire national des Arts et Métiers, Paris, France
| |
Collapse
|
26
|
Petrone ME, Earnest R, Lourenço J, Kraemer MUG, Paulino-Ramirez R, Grubaugh ND, Tapia L. Asynchronicity of endemic and emerging mosquito-borne disease outbreaks in the Dominican Republic. Nat Commun 2021; 12:151. [PMID: 33420058 PMCID: PMC7794562 DOI: 10.1038/s41467-020-20391-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/27/2020] [Indexed: 12/21/2022] Open
Abstract
Mosquito-borne viruses threaten the Caribbean due to the region's tropical climate and seasonal reception of international tourists. Outbreaks of chikungunya and Zika have demonstrated the rapidity with which these viruses can spread. Concurrently, dengue fever cases have climbed over the past decade. Sustainable disease control measures are urgently needed to quell virus transmission and prevent future outbreaks. Here, to improve upon current control methods, we analyze temporal and spatial patterns of chikungunya, Zika, and dengue outbreaks reported in the Dominican Republic between 2012 and 2018. The viruses that cause these outbreaks are transmitted by Aedes mosquitoes, which are sensitive to seasonal climatological variability. We evaluate whether climate and the spatio-temporal dynamics of dengue outbreaks could explain patterns of emerging disease outbreaks. We find that emerging disease outbreaks were robust to the climatological and spatio-temporal constraints defining seasonal dengue outbreak dynamics, indicating that constant surveillance is required to prevent future health crises.
Collapse
Affiliation(s)
- Mary E Petrone
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA.
| | - Rebecca Earnest
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - José Lourenço
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | | | - Robert Paulino-Ramirez
- Instituto de Medicina Tropical & Salud Global, Universidad Iberoamericana, Santo Domingo, Dominican Republic
| | - Nathan D Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Leandro Tapia
- Instituto de Medicina Tropical & Salud Global, Universidad Iberoamericana, Santo Domingo, Dominican Republic.
| |
Collapse
|
27
|
Hamlet A, Gaythorpe KAM, Garske T, Ferguson NM. Seasonal and inter-annual drivers of yellow fever transmission in South America. PLoS Negl Trop Dis 2021; 15:e0008974. [PMID: 33428623 PMCID: PMC7822559 DOI: 10.1371/journal.pntd.0008974] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/22/2021] [Accepted: 11/11/2020] [Indexed: 11/18/2022] Open
Abstract
In the last 20 years yellow fever (YF) has seen dramatic changes to its incidence and geographic extent, with the largest outbreaks in South America since 1940 occurring in the previously unaffected South-East Atlantic coast of Brazil in 2016-2019. While habitat fragmentation and land-cover have previously been implicated in zoonotic disease, their role in YF has not yet been examined. We examined the extent to which vegetation, land-cover, climate and host population predicted the numbers of months a location reported YF per year and by each month over the time-period. Two sets of models were assessed, one looking at interannual differences over the study period (2003-2016), and a seasonal model looking at intra-annual differences by month, averaging over the years of the study period. Each was fit using hierarchical negative-binomial regression in an exhaustive model fitting process. Within each set, the best performing models, as measured by the Akaike Information Criterion (AIC), were combined to create ensemble models to describe interannual and seasonal variation in YF. The models reproduced the spatiotemporal heterogeneities in YF transmission with coefficient of determination (R2) values of 0.43 (95% CI 0.41-0.45) for the interannual model and 0.66 (95% CI 0.64-0.67) for the seasonal model. For the interannual model, EVI, land-cover and vegetation heterogeneity were the primary contributors to the variance explained by the model, and for the seasonal model, EVI, day temperature and rainfall amplitude. Our models explain much of the spatiotemporal variation in YF in South America, both seasonally and across the period 2003-2016. Vegetation type (EVI), heterogeneity in vegetation (perhaps a proxy for habitat fragmentation) and land cover explain much of the trends in YF transmission seen. These findings may help understand the recent expansions of the YF endemic zone, as well as to the highly seasonal nature of YF.
Collapse
Affiliation(s)
- Arran Hamlet
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Katy A. M. Gaythorpe
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Tini Garske
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Neil M. Ferguson
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| |
Collapse
|
28
|
Carro SD, Cherry S. Beyond the Surface: Endocytosis of Mosquito-Borne Flaviviruses. Viruses 2020; 13:E13. [PMID: 33374822 PMCID: PMC7824540 DOI: 10.3390/v13010013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/16/2020] [Accepted: 12/19/2020] [Indexed: 02/06/2023] Open
Abstract
Flaviviruses are a group of positive-sense RNA viruses that are primarily transmitted through arthropod vectors and are capable of causing a broad spectrum of diseases. Many of the flaviviruses that are pathogenic in humans are transmitted specifically through mosquito vectors. Over the past century, many mosquito-borne flavivirus infections have emerged and re-emerged, and are of global importance with hundreds of millions of infections occurring yearly. There is a need for novel, effective, and accessible vaccines and antivirals capable of inhibiting flavivirus infection and ameliorating disease. The development of therapeutics targeting viral entry has long been a goal of antiviral research, but most efforts are hindered by the lack of broad-spectrum potency or toxicities associated with on-target effects, since many host proteins necessary for viral entry are also essential for host cell biology. Mosquito-borne flaviviruses generally enter cells by clathrin-mediated endocytosis (CME), and recent studies suggest that a subset of these viruses can be internalized through a specialized form of CME that has additional dependencies distinct from canonical CME pathways, and antivirals targeting this pathway have been discovered. In this review, we discuss the role and contribution of endocytosis to mosquito-borne flavivirus entry as well as consider past and future efforts to target endocytosis for therapeutic interventions.
Collapse
Affiliation(s)
| | - Sara Cherry
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| |
Collapse
|
29
|
Bifani AM, Ong EZ, de Alwis R. Vaccination and Therapeutics: Responding to the Changing Epidemiology of Yellow Fever. CURRENT TREATMENT OPTIONS IN INFECTIOUS DISEASES 2020; 12:398-409. [PMID: 33173445 PMCID: PMC7644428 DOI: 10.1007/s40506-020-00237-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2020] [Indexed: 12/24/2022]
Abstract
At the turn of the nineteenth century, yellow fever (YF) was considered the most dangerous infectious disease with high case fatality. Subsequent, mass vaccination campaigns coupled with widespread elimination of the YF mosquito vector significantly decreased YF cases and reduced outbreaks to the tropical and subtropical forested regions of Africa and South America. However, recent (2016) large outbreaks in Angola, Democratic Republic of Congo (DRC), and South-Eastern Brazil, where previously had been demarcated as low-risk regions, have highlighted the possibility of a rapidly changing epidemiology and the potential re-emergence of yellow fever virus (YFV). Furthermore, the first-ever importation of YFV into Asia has highlighted the potential fear of YFV emerging as a global threat. In this review, we describe the changing epidemiology of YF outbreaks, and highlight the use of public health policies, therapeutics, and vaccination as tools to help eliminate future YFV outbreaks.
Collapse
Affiliation(s)
- Amanda Makha Bifani
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Eugenia Z. Ong
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- Viral Research and Experimental Medicine Centre @ SingHealth Duke-NUS (VIREMiCS), Singapore, Singapore
| | - Ruklanthi de Alwis
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- Viral Research and Experimental Medicine Centre @ SingHealth Duke-NUS (VIREMiCS), Singapore, Singapore
| |
Collapse
|
30
|
The Impact of Climate Change on Vaccine-Preventable Diseases: Insights From Current Research and New Directions. Curr Environ Health Rep 2020; 7:384-391. [PMID: 33099754 PMCID: PMC7585557 DOI: 10.1007/s40572-020-00293-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2020] [Indexed: 11/22/2022]
Abstract
Purpose of Review Vaccine-preventable diseases remain a major public health concern globally. Climate is a key driver of the dynamics of many infectious diseases, including those that are vaccine preventable. Understanding the impact of climate change on vaccine-preventable diseases is, thus, an important public health research priority. Here, we summarize the recent literature and highlight promising directions for future research. Recent Findings Vaccine-preventable enteric diseases, such as cholera, exhibit sensitivity to precipitation and flooding events. The predicted increase in extreme weather events as a result of climate change could exacerbate outbreaks of these pathogens. For airborne pathogens, temperature and specific humidity have been shown to be the most important environmental drivers, although the impact of climate change on disease burden and dynamics remains unclear. Finally, the transmission dynamics of vector-borne diseases are dependent on both temperature and precipitation, and climate change is expected to alter the burden and geographic range of these diseases. However, understanding the interacting effects of multiple factors, including socioeconomic and ecological factors, on the vector-borne disease ecosystem will be a crucial step towards forecasting disease burden under climate change. Summary Recent work has demonstrated associations between climate and transmission of vaccine-preventable diseases. Translating these findings into forecasts under various climate change scenarios will require mechanistic frameworks that account for both intrinsic and extrinsic drivers of transmission, and the non-linear effects on disease burden. Future research should also pay greater attention to uncertainty in both the climate modeling processes as well as disease outcomes in the context of vaccine-preventable diseases.
Collapse
|
31
|
Wilke ABB, Vasquez C, Carvajal A, Medina J, Chase C, Cardenas G, Mutebi JP, Petrie WD, Beier JC. Proliferation of Aedes aegypti in urban environments mediated by the availability of key aquatic habitats. Sci Rep 2020; 10:12925. [PMID: 32737356 PMCID: PMC7395141 DOI: 10.1038/s41598-020-69759-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/17/2020] [Indexed: 12/19/2022] Open
Abstract
Aedes aegypti is the main vector of dengue, Zika, chikungunya, and yellow fever viruses. Controlling populations of vector mosquito species in urban environments is a major challenge and being able to determine what aquatic habitats should be prioritized for controlling Ae. aegypti populations is key to the development of more effective mosquito control strategies. Therefore, our objective was to leverage on the Miami-Dade County, Florida immature mosquito surveillance system based on requested by citizen complaints through 311 calls to determine what are the most important aquatic habitats in the proliferation of Ae. aegypti in Miami. We used a tobit model for Ae. aegypti larvae and pupae count data, type and count of aquatic habitats, and daily rainfall. Our results revealed that storm drains had 45% lower percentage of Ae. aegypti larvae over the total of larvae and pupae adjusted for daily rainfall when compared to tires, followed by bromeliads with 33% and garbage cans with 17%. These results are indicating that storm drains, bromeliads and garbage cans had significantly more pupae in relation to larvae when compared to tires, traditionally know as productive aquatic habitats for Ae. aegypti. Ultimately, the methodology and results from this study can be used by mosquito control agencies to identify habitats that should be prioritized in mosquito management and control actions, as well as to guide and improve policies and increase community awareness and engagement. Moreover, by targeting the most productive aquatic habitats this approach will allow the development of critical emergency outbreak responses by directing the control response efforts to the most productive aquatic habitats.
Collapse
Affiliation(s)
- André Barretto Bruno Wilke
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, 1120 Northwest 14th Street, Miami, FL, 33136, USA.
| | | | | | - Johana Medina
- Miami-Dade County Mosquito Control Division, Miami, FL, USA
| | - Catherine Chase
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, 1120 Northwest 14th Street, Miami, FL, 33136, USA
| | - Gabriel Cardenas
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, 1120 Northwest 14th Street, Miami, FL, 33136, USA
| | - John-Paul Mutebi
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | | | - John C Beier
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, 1120 Northwest 14th Street, Miami, FL, 33136, USA
| |
Collapse
|
32
|
Gaythorpe KA, Hamlet A, Cibrelus L, Garske T, Ferguson NM. The effect of climate change on yellow fever disease burden in Africa. eLife 2020; 9:55619. [PMID: 32718436 PMCID: PMC7386919 DOI: 10.7554/elife.55619] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 07/01/2020] [Indexed: 12/27/2022] Open
Abstract
Yellow Fever (YF) is an arbovirus endemic in tropical regions of South America and Africa and it is estimated to cause 78,000 deaths a year in Africa alone. Climate change may have substantial effects on the transmission of YF and we present the first analysis of the potential impact on disease burden. We extend an existing model of YF transmission to account for rainfall and a temperature suitability index and project transmission intensity across the African endemic region in the context of four climate change scenarios. We use these transmission projections to assess the change in burden in 2050 and 2070. We find disease burden changes heterogeneously across the region. In the least severe scenario, we find a 93.0%[95%CI(92.7, 93.2%)] chance that annual deaths will increase in 2050. This change in epidemiology will complicate future control efforts. Thus, we may need to consider the effect of changing climatic variables on future intervention strategies.
Collapse
Affiliation(s)
| | | | | | - Tini Garske
- Imperial College London, London, United Kingdom
| | | |
Collapse
|
33
|
Couto-Lima D, Andreazzi CS, Leite PJ, Bersot MIL, Alencar J, Lourenço-de-Oliveira R. Seasonal population dynamics of the primary yellow fever vector Haemagogus leucocelaenus (Dyar & Shannon) (Diptera: Culicidae) is mainly influenced by temperature in the Atlantic Forest, southeast Brazil. Mem Inst Oswaldo Cruz 2020; 115:e200218. [PMID: 32696917 PMCID: PMC7370926 DOI: 10.1590/0074-02760200218] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/30/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Southeast Brazil has recently experienced a Yellow Fever virus (YFV) outbreak where the mosquito Haemagogus leucocelaenus was a primary vector. Climatic factors influence the abundance of mosquito vectors and arbovirus transmission. OBJECTIVES We aimed at describing the population dynamics of Hg. leucocelaenus in a county touched by the recent YFV outbreak. METHODS Fortnightly egg collections with ovitraps were performed from November 2012 to February 2017 in a forest in Nova Iguaçu, Rio de Janeiro, Brazil. The effects of mean temperature and rainfall on the Hg. leucocelaenus population dynamics were explored. FINDINGS Hg. leucocelaenus eggs were continuously collected throughout the study, with a peak in the warmer months (December-March). The climatic variables had a time-lagged effect and four weeks before sampling was the best predictor for the positivity of ovitraps and total number of eggs collected. The probability of finding > 50% positive ovitraps increased when the mean temperature was above 24ºC. The number of Hg. leucocelaenus eggs expressively increase when the mean temperature and accumulated precipitation surpassed 27ºC and 100 mm, respectively, although the effect of rainfall was less pronounced. MAIN CONCLUSIONS Monitoring population dynamics of Hg. leucocelaenus and climatic factors in YFV risk areas, especially mean temperature, may assist in developing climate-based surveillance procedures to timely strengthening prophylaxis and control.
Collapse
Affiliation(s)
- Dinair Couto-Lima
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Mosquitos Transmissores de Hematozoários, Rio de Janeiro, RJ, Brasil
| | - Cecilia S Andreazzi
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia e Parasitologia de Mamíferos Silvestres Reservatórios, Rio de Janeiro, RJ, Brasil
| | | | - Maria Ignez Lima Bersot
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Mosquitos Transmissores de Hematozoários, Rio de Janeiro, RJ, Brasil
| | - Jeronimo Alencar
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Diptera, Rio de Janeiro, RJ, Brasil
| | - Ricardo Lourenço-de-Oliveira
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Mosquitos Transmissores de Hematozoários, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
34
|
Bifani AM, Ong EZ, de Alwis R. Vaccination and Therapeutics: Responding to the Changing Epidemiology of Yellow Fever. CURRENT TREATMENT OPTIONS IN INFECTIOUS DISEASES 2020; 12:349-360. [PMID: 32837338 PMCID: PMC7351566 DOI: 10.1007/s40506-020-00232-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
PURPOSE OF REVIEW At the turn of the nineteenth century, yellow fever (YF) was considered the most dangerous infectious disease with high case fatality. Subsequent, mass vaccination campaigns coupled with widespread elimination of the YF mosquito vector significantly decreased YF cases and reduced outbreaks to the tropical and subtropical forested regions of Africa and South America. RECENT FINDINGS However, recent (2016) large outbreaks in Angola, Democratic Republic of Congo (DRC), and South-Eastern Brazil, where previously had been demarcated as low-risk regions, have highlighted the possibility of a rapidly changing epidemiology and the potential re-emergence of yellow fever virus (YFV). Furthermore, the first-ever importation of YFV into Asia has highlighted the potential fear of YFV emerging as a global threat. SUMMARY In this review, we describe the changing epidemiology of YF outbreaks and highlight the use of public health policies, therapeutics, and vaccination as tools to help eliminate future YFV outbreaks.
Collapse
Affiliation(s)
- Amanda Makha Bifani
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Eugenia Z. Ong
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- Viral Research and Experimental Medicine Centre (VIREMiCS), SingHealth Duke-NUS, Singapore, Singapore
| | - Ruklanthi de Alwis
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- Viral Research and Experimental Medicine Centre (VIREMiCS), SingHealth Duke-NUS, Singapore, Singapore
| |
Collapse
|
35
|
Pierson TC, Diamond MS. The continued threat of emerging flaviviruses. Nat Microbiol 2020; 5:796-812. [PMID: 32367055 DOI: 10.1038/s41564-020-0714-0] [Citation(s) in RCA: 627] [Impact Index Per Article: 125.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 03/27/2020] [Indexed: 12/18/2022]
Abstract
Flaviviruses are vector-borne RNA viruses that can emerge unexpectedly in human populations and cause a spectrum of potentially severe diseases including hepatitis, vascular shock syndrome, encephalitis, acute flaccid paralysis, congenital abnormalities and fetal death. This epidemiological pattern has occurred numerous times during the last 70 years, including epidemics of dengue virus and West Nile virus, and the most recent explosive epidemic of Zika virus in the Americas. Flaviviruses are now globally distributed and infect up to 400 million people annually. Of significant concern, outbreaks of other less well-characterized flaviviruses have been reported in humans and animals in different regions of the world. The potential for these viruses to sustain epidemic transmission among humans is poorly understood. In this Review, we discuss the basic biology of flaviviruses, their infectious cycles, the diseases they cause and underlying host immune responses to infection. We describe flaviviruses that represent an established ongoing threat to global health and those that have recently emerged in new populations to cause significant disease. We also provide examples of lesser-known flaviviruses that circulate in restricted areas of the world but have the potential to emerge more broadly in human populations. Finally, we discuss how an understanding of the epidemiology, biology, structure and immunity of flaviviruses can inform the rapid development of countermeasures to treat or prevent human infections as they emerge.
Collapse
Affiliation(s)
- Theodore C Pierson
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, the National Institutes of Health, Bethesda, MD, USA.
| | - Michael S Diamond
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
36
|
Jean K, Hamlet A, Benzler J, Cibrelus L, Gaythorpe KAM, Sall A, Ferguson NM, Garske T. Eliminating yellow fever epidemics in Africa: Vaccine demand forecast and impact modelling. PLoS Negl Trop Dis 2020; 14:e0008304. [PMID: 32379756 PMCID: PMC7237041 DOI: 10.1371/journal.pntd.0008304] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/19/2020] [Accepted: 04/17/2020] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND To counter the increasing global risk of Yellow fever (YF), the World Health Organisation initiated the Eliminate Yellow fever Epidemics (EYE) strategy. Estimating YF burden, as well as vaccine impact, while accounting for the features of urban YF transmission such as indirect benefits of vaccination, is key to informing this strategy. METHODS AND FINDINGS We developed two model variants to estimate YF burden in sub-Saharan Africa, assuming all infections stem from either the sylvatic or the urban cycle of the disease. Both relied on an ecological niche model fitted to the local presence of any YF reported event in 34 African countries. We calibrated under-reporting using independent estimates of transmission intensity provided by 12 serological surveys performed in 11 countries. We calculated local numbers of YF infections, deaths and disability-adjusted life years (DALYs) lost based on estimated transmission intensity while accounting for time-varying vaccination coverage. We estimated vaccine demand and impact of future preventive mass vaccination campaigns (PMVCs) according to various vaccination scenarios. Vaccination activities conducted in Africa between 2005 and 2017 were estimated to prevent from 3.3 (95% CI 1.2-7.7) to 6.1 (95% CI 2.4-13.2) millions of deaths over the lifetime of vaccinees, representing extreme scenarios of none or maximal herd effects, respectively. By prioritizing provinces based on the risk of urban YF transmission in future PMVCs, an average of 37.7 million annual doses for PMVCs over eight years would avert an estimated 9,900,000 (95% CI 7,000,000-13,400,000) infections and 480,000 (180,000-1,140,000) deaths over the lifetime of vaccinees, corresponding to 1.7 (0.7-4.1) deaths averted per 1,000 vaccine doses. CONCLUSIONS By estimating YF burden and vaccine impact over a range of spatial and temporal scales, while accounting for the specificity of urban transmission, our model can be used to inform the current EYE strategy.
Collapse
Affiliation(s)
- Kévin Jean
- Laboratoire MESuRS, Conservatoire National des Arts et Métiers, Paris, France
- Unité PACRI, Institut Pasteur, Conservatoire National des Arts et Métiers, Paris, France
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College, St Mary’s Campus, Norfolk Place London, United Kingdom
| | - Arran Hamlet
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College, St Mary’s Campus, Norfolk Place London, United Kingdom
| | - Justus Benzler
- Infectious Hazard Management, World Health Organization, Geneva, Switzerland
- Robert Koch-Institut, Nordufer, Berlin, Germany
| | - Laurence Cibrelus
- Infectious Hazard Management, World Health Organization, Geneva, Switzerland
| | - Katy A. M. Gaythorpe
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College, St Mary’s Campus, Norfolk Place London, United Kingdom
| | - Amadou Sall
- Arbovirus and viral haemorrhagic fever unit, Institut Pasteur de Dakar, Dakar, Senegal
| | - Neil M. Ferguson
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College, St Mary’s Campus, Norfolk Place London, United Kingdom
| | - Tini Garske
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College, St Mary’s Campus, Norfolk Place London, United Kingdom
| |
Collapse
|
37
|
Accelerating invasion potential of disease vector Aedes aegypti under climate change. Nat Commun 2020; 11:2130. [PMID: 32358588 PMCID: PMC7195482 DOI: 10.1038/s41467-020-16010-4] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 03/20/2020] [Indexed: 12/03/2022] Open
Abstract
Vector-borne diseases remain a major contributor to the global burden of disease, while climate change is expected to exacerbate their risk. Characterising vector development rate and its spatio-temporal variation under climate change is central to assessing the changing basis of human disease risk. We develop a mechanistic phenology model and apply it to Aedes aegypti, an invasive mosquito vector for arboviruses (e.g. dengue, zika and yellow fever). The model predicts the number of life-cycle completions (LCC) for a given location per unit time based on empirically derived biophysical responses to environmental conditions. Results suggest that the world became ~1.5% more suitable per decade for the development of Ae. aegypti during 1950–2000, while this trend is predicted to accelerate to 3.2–4.4% per decade by 2050. Invasion fronts in North America and China are projected to accelerate from ~2 to 6 km/yr by 2050. An increase in peak LCC combined with extended periods suitable for mosquito development is simulated to accelerate the vector’s global invasion potential. Understanding how life cycles of vectors respond to climatic factors is important to predict potential shifts in vector-borne disease risk in the coming decades. Here the authors develop a mechanistic phenological model for the invasive mosquito Aedes aegypti and apply it to project shifts under climate change scenarios.
Collapse
|
38
|
The Influence of Meteorological Conditions on the Yellow Fever Epidemic in Cádiz (Southern Spain) in 1800: A Historical Scientific Controversy. ATMOSPHERE 2020. [DOI: 10.3390/atmos11040405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A yellow fever epidemic occurred in Cádiz and other areas of southern Spain during the last months of 1800. An anonymous author attributed this disease to the contrast between the cold and rainy winter and spring, and the subsequent very hot summer. However, the physician J.M. Aréjula published a report in 1806 where he refuted this conclusion after a detailed analysis of the meteorological conditions in the area. This controversy is a good example of the discussion about the relationships between meteorological conditions and public health. In this work, this “scientific” controversy is studied. Although the arguments of both authors were inspired by the neo-Hippocratic medical paradigm, the anonymous author put forth a simple cause–effect hypothesis, while Aréjula recognized the complexity of the problem, introducing the concept of “concause” to explain the confluence of environmental and contagious effects.
Collapse
|
39
|
Wilke ABB, Vasquez C, Carvajal A, Moreno M, Diaz Y, Belledent T, Gibson L, Petrie WD, Fuller DO, Beier JC. Cemeteries in Miami-Dade County, Florida are important areas to be targeted in mosquito management and control efforts. PLoS One 2020; 15:e0230748. [PMID: 32208462 PMCID: PMC7092980 DOI: 10.1371/journal.pone.0230748] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/06/2020] [Indexed: 11/19/2022] Open
Abstract
Definable habitats at the neighborhood level provide a wide range of favorable habitats with optimal conditions and environmental resources for mosquito survival. Problematic habitats for controlling mosquitoes in urban environments such as tire shops, bromeliad patches, and construction sites must be taken into consideration in the development of effective mosquito management and control in urban areas. Cemeteries are often located in highly urbanized areas serving as a haven for populations of vector mosquito species due to the availability of natural resources present in most cemeteries. Even though Miami-Dade County, Florida was the most affected area in the United States during the Zika virus outbreak in 2016 and is currently under a mosquito-borne illness alert after 14 confirmed locally transmitted dengue cases, the role of cemeteries in the proliferation of vector mosquitoes is unknown. Therefore, our objective was to use a cross-sectional experimental design to survey twelve cemeteries across Miami-Dade County to assess if vector mosquitoes in Miami can be found in these areas. Our results are indicating that vector mosquitoes are able to successfully exploit the resources available in the cemeteries. Culex quinquefasciatus was the most abundant species but it was neither as frequent nor present in its immature form as Aedes aegypti and Aedes albopictus. This study revealed that vector mosquitoes, such as Ae. aegypti, Ae. albopictus, and Cx. quinquefasciatus are successfully exploiting the resources available in these areas being able to thrive and reach high numbers. Mosquito control strategies should consider both long-term strategies, based on changing human behavior to reduce the availability of aquatic habitats for vector mosquitoes; as well as short-term strategies such as drilling holes or adding larvicide to the flower vases. Simple practices would greatly help improve the effectiveness of mosquito management and control in these problematic urban habitats.
Collapse
Affiliation(s)
- André B. B. Wilke
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, United States of America
| | - Chalmers Vasquez
- Miami-Dade County Mosquito Control Division, Miami, FL, United States of America
| | - Augusto Carvajal
- Miami-Dade County Mosquito Control Division, Miami, FL, United States of America
| | - Maday Moreno
- Miami-Dade County Mosquito Control Division, Miami, FL, United States of America
| | - Yadira Diaz
- Miami-Dade County Mosquito Control Division, Miami, FL, United States of America
| | - Teresa Belledent
- Miami-Dade County Mosquito Control Division, Miami, FL, United States of America
| | - Laurin Gibson
- Miami-Dade County Mosquito Control Division, Miami, FL, United States of America
| | - William D. Petrie
- Miami-Dade County Mosquito Control Division, Miami, FL, United States of America
| | - Douglas O. Fuller
- Department of Geography and Regional Studies, University of Miami, Coral Gables, FL, United States of America
| | - John C. Beier
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, United States of America
| |
Collapse
|
40
|
The driver of dengue fever incidence in two high-risk areas of China: A comparative study. Sci Rep 2019; 9:19510. [PMID: 31862993 PMCID: PMC6925307 DOI: 10.1038/s41598-019-56112-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 12/06/2019] [Indexed: 11/24/2022] Open
Abstract
In China, the knowledge of the underlying causes of heterogeneous distribution pattern of dengue fever in different high-risk areas is limited. A comparative study will help us understand the influencing factors of dengue in different high-risk areas. In the study, we compared the effects of climate, mosquito density and imported cases on dengue fever in two high-risk areas using Generalized Additive Model (GAM), random forests and Structural Equation Model (SEM). GAM analysis identified a similar positive correlation between imported cases, density of Aedes larvae, climate variables and dengue fever occurrence in the studied high-risk areas of both Guangdong and Yunnan provinces. Random forests showed that the most important factors affecting dengue fever occurrence were the number of imported cases, BI and the monthly average minimum temperature in Guangdong province; whereas the imported cases, the monthly average temperature and monthly relative humidity in Yunnan province. We found the rainfall had the indirect effect on dengue fever occurrence in both areas mediated by mosquito density; while the direct effect in high-risk areas of Guangdong was dominated by temperature and no obvious effect in Yunnan province by SEM. In total, climate factors and mosquito density are the key drivers on dengue fever incidence in different high-risk areas of China. These findings could provide scientific evidence for early warning and the scientific control of dengue fever in high-risk areas.
Collapse
|
41
|
Disease Resurgence, Production Capability Issues and Safety Concerns in the Context of an Aging Population: Is There a Need for a New Yellow Fever Vaccine? Vaccines (Basel) 2019; 7:vaccines7040179. [PMID: 31717289 PMCID: PMC6963298 DOI: 10.3390/vaccines7040179] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/28/2019] [Accepted: 11/05/2019] [Indexed: 12/19/2022] Open
Abstract
Yellow fever is a potentially fatal, mosquito-borne viral disease that appears to be experiencing a resurgence in endemic areas in Africa and South America and spreading to non-endemic areas despite an effective vaccine. This trend has increased the level of concern about the disease and the potential for importation to areas in Asia with ecological conditions that can sustain yellow fever virus transmission. In this article, we provide a broad overview of yellow fever burden of disease, natural history, treatment, vaccine, prevention and control initiatives, and vaccine and therapeutic agent development efforts.
Collapse
|
42
|
Climatic Conditions: Conventional and Nanotechnology-Based Methods for the Control of Mosquito Vectors Causing Human Health Issues. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16173165. [PMID: 31480254 PMCID: PMC6747303 DOI: 10.3390/ijerph16173165] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/25/2019] [Accepted: 08/27/2019] [Indexed: 12/12/2022]
Abstract
Climate variability is highly impacting on mosquito-borne diseases causing malaria and dengue fever across the globe. Seasonal variability change in temperature and rainfall patterns are impacting on human health. Mosquitoes cause diseases like dengue fever, yellow fever, malaria, Chikungunya, West Nile and Japanese encephalitis. According to estimations by health organizations, annually one million human deaths are caused by vector-borne diseases, and dengue fever has increased about 30-fold over the past 50 years. Similarly, over 200 million cases of malaria are being reported annually. Mosquito-borne diseases are sensitive to temperature, humidity and seasonal variability. Both conventional (environmental, chemical, mechanical, biological etc.) and nanotechnology-based (Liposomes, nano-suspensions and polymer-based nanoparticles) approaches are used for the eradication of Malaria and dengue fever. Now green approaches are used to eradicate mosquitoes to save human health without harming the environment. In this review, the impact of climatic conditions on mosquito-borne diseases along with conventional and nanotechnology-based approaches used for controlling malaria and dengue fever have been discussed. Important recommendations have been made for people to stay healthy.
Collapse
|
43
|
Obolski U, Perez PN, Villabona‐Arenas CJ, Thézé J, Faria NR, Lourenço J. MVSE: An R-package that estimates a climate-driven mosquito-borne viral suitability index. Methods Ecol Evol 2019; 10:1357-1370. [PMID: 32391139 PMCID: PMC7202302 DOI: 10.1111/2041-210x.13205] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 04/23/2019] [Indexed: 12/05/2022]
Abstract
Viruses, such as dengue, Zika, yellow fever and chikungunya, depend on mosquitoes for transmission. Their epidemics typically present periodic patterns, linked to the underlying mosquito population dynamics, which are known to be driven by natural climate fluctuations. Understanding how climate dictates the timing and potential of viral transmission is essential for preparedness of public health systems and design of control strategies. While various alternative approaches have been proposed to estimate local transmission potential of such viruses, few open-source, ready to use and freely available software tools exist.We developed the Mosquito-borne Viral Suitability Estimator (MVSE) software package for the R programming environment. MVSE estimates the index P, a novel suitability index based on a climate-driven mathematical expression for the basic reproductive number of mosquito-borne viruses. By accounting for local humidity and temperature, as well as viral, vector and human priors, the index P can be estimated for specific host and viral species in different regions of the globe.We describe the background theory, empirical support and biological interpretation of the index P. Using real-world examples spanning multiple epidemiological contexts, we further demonstrate MVSE's basic functionality, research and educational potentials.
Collapse
Affiliation(s)
- Uri Obolski
- School of Public HealthTel Aviv UniversityTel AvivIsrael
- Porter School of the Environment and Earth SciencesTel Aviv UniversityTel AvivIsrael
| | - Pablo N. Perez
- Department of Infectious Disease EpidemiologyImperial College LondonLondonUK
| | - Christian J. Villabona‐Arenas
- Centre for Mathematical Modelling of Infectious DiseasesDepartment of Infectious Disease EpidemiologyFaculty of Epidemiology and Population Health, LondonSchool of Hygiene and Tropical MedicineLondonUK
| | - Julien Thézé
- Department of ZoologyUniversity of OxfordOxfordUK
| | | | | |
Collapse
|
44
|
Thabet HS, Fawaz EY, Badziklou K, Tag ElDin RA, Kaldas RM, Fahmy NT, Tamekloe TA, Kere-Banla A, Diclaro JW. Preliminary Screening of Mosquito Spatial Distribution in Togo: With Special Focus on the Aedes (Diptera: Culicidae) Species. JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:1154-1158. [PMID: 30927005 DOI: 10.1093/jme/tjz029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Indexed: 06/09/2023]
Abstract
The Togolese Republic has a tropical and humid climate which constitutes an ideal environment for mosquitoes to breed and transmit diseases. The Aedes mosquito is known to transmit yellow fever (YF), dengue, chikungunya, and Zika viruses in West Africa. Togo has been suffering from YF virus transmission, despite vaccination efforts. Unfortunately, there is scarcity in the data that reflect mosquito spatial distribution in Togo, specifically possible YF vectors. In the current study, mosquito surveillance efforts targeted areas with confirmed YF cases between July and August 2012. Indoor mosquitoes were collected using knockdown insecticide spraying, whereas Biogents (BG) traps were used to collect outdoor mosquito adults. Mosquito larval surveillance was conducted as well. In total, 17 species were identified. This investigation revealed the presence of medically important vectors in Togo, especially the Aedes aegypti (Linnaeus) (Diptera: Culicidae) which was collected in the four regions. Screening of all pools of female Aedes mosquitoes for YF, by real-time PCR, showed negative results. This is the first record for Coquillettidia flavocincta (Edwards) (Diptera: Culicidae) species in West Africa. This preliminary work serves as a baseline for further mosquito distribution studies in Togo.
Collapse
Affiliation(s)
- Hala S Thabet
- U.S. Naval Medical Research Unit No. 3 (NAMRU-3), U.S. Agency for International Development, Maadi, Cairo, Egypt
- Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Emadeldin Y Fawaz
- U.S. Naval Medical Research Unit No. 3 (NAMRU-3), U.S. Agency for International Development, Maadi, Cairo, Egypt
| | | | - Reham A Tag ElDin
- U.S. Naval Medical Research Unit No. 3 (NAMRU-3), U.S. Agency for International Development, Maadi, Cairo, Egypt
| | - Rania M Kaldas
- U.S. Naval Medical Research Unit No. 3 (NAMRU-3), U.S. Agency for International Development, Maadi, Cairo, Egypt
| | - Nermeen T Fahmy
- U.S. Naval Medical Research Unit No. 3 (NAMRU-3), U.S. Agency for International Development, Maadi, Cairo, Egypt
| | | | | | - Joseph W Diclaro
- U.S. Naval Medical Research Unit No. 3 (NAMRU-3), U.S. Agency for International Development, Maadi, Cairo, Egypt
| |
Collapse
|
45
|
de Paiva CA, Oliveira APDS, Muniz SS, Calijuri ML, Dos Santos VJ, Alves SDC. Determination of the spatial susceptibility to Yellow Fever using a multicriteria analysis. Mem Inst Oswaldo Cruz 2019; 114:e180509. [PMID: 31066755 PMCID: PMC6506150 DOI: 10.1590/0074-02760180509] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 03/27/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The outbreak of sylvatic Yellow Fever (SYF) in humans during 2016-2017 in Brazil is one of the greatest in the history of the disease. The occurrence of the disease in areas with low vaccination coverage favoured the dissemination of the disease; therefore, it is necessary to identify the areas vulnerability to the YF virus (YFV) to assist in the adoption of preventive measures. OBJECTIVE To correlate the physical-environmental elements associated with the occurrence of SYF in humans via a multicriteria analysis. METHODS For the multicriteria analysis, preponderant elements related to SYF occurrences, including soil usage and coverage, temperature, precipitation, altitude, mosquito transmitters, and non-human primate occurrence areas, were considered. The results were validated by assessing the correlation between the incidence of SYF and the vulnerable areas identified in the multicriteria analysis. RESULTS Two regions with different vulnerability to the occurrence of the disease were identified in the multicriteria analysis, with emphasis on the southern areas of the state of São Paulo northeast areas of Minas Gerais, and the entire states of Rio de Janeiro and Espírito Santo. The map of SYF vulnerability obtained in the multicriteria analysis coincides with the areas in which cases of the disease have been recorded. The regions that presented the greatest suitability were in fact the municipalities with the highest incidence. MAIN CONCLUSIONS The multicriteria analysis revealed that the elements that were used are suited for and consistent in the prediction of the areas that are vulnerable to SYF. The results obtained indicate the proximity of the areas that are most vulnerable to the disease to densely populated areas where an Aedes aegypti infestation was observed, which confers a high risk of re-urbanisation of YF.
Collapse
Affiliation(s)
- Camilla Adriane de Paiva
- Universidade Federal de Ouro Preto, Programa de Pós-Graduação em Engenharia Ambiental, Ouro Preto, MG, Brasil
| | | | - Samuel Soares Muniz
- Universidade Federal de Viçosa, Programa de Pós-Graduação em Engenheira Civil, Viçosa, MG, Brasil
| | - Maria Lúcia Calijuri
- Universidade Federal de Viçosa, Departamento de Engenharia Civil, Viçosa, MG, Brasil
| | - Vitor Juste Dos Santos
- Universidade Federal de Viçosa, Programa de Pós-Graduação em Engenheira Civil, Viçosa, MG, Brasil
| | | |
Collapse
|
46
|
de Almeida MAB, Dos Santos E, Cardoso JDC, da Silva LG, Rabelo RM, Bicca-Marques JC. Predicting Yellow Fever Through Species Distribution Modeling of Virus, Vector, and Monkeys. ECOHEALTH 2019; 16:95-108. [PMID: 30560394 DOI: 10.1007/s10393-018-1388-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/20/2018] [Accepted: 10/22/2018] [Indexed: 06/09/2023]
Abstract
Mapping yellow fever (YF) risk is often based on place of infection of human cases, whereas the circulation between nonhuman primates (NHP) and vectors is neglected. In 2008/2009, YF devastated NHP at the southern limit of the disease in the Americas. In view of the recent expansion of YF in Brazil, we modeled the environmental suitability for YF with data from 2008/2009 epizootic, the distribution of NHP (Alouatta spp.), and the mosquito (Haemagogus leucocelaenus) using the maximum entropy algorithm (Maxent) to define risk areas for YF and their main environmental predictors. We evaluated points of occurrence of YF based on dates of confirmed deaths of NHP in three periods, from October 2008 to: December 2008, March 2009, and June 2009. Variables with greatest influence on suitability for YF were seasonality in water vapor pressure (36%), distribution of NHP (32%), maximum wind speed (11%), annual mean rainfall (7%), and maximum temperature in the warmest month (5%). Models of early periods of the epizootic identified suitability for YF in localities that recorded NHP deaths only months later, demonstrating usefulness of the approach for predicting the disease spread. Our data supported influence of rainfall, air humidity, and ambient temperature on the distribution of epizootics. Wind was highlighted as a predicting variable, probably due to its influence on the dispersal of vectors infected with YF in fragmented landscapes. Further studies on the role of wind are necessary to improve our understanding of the occurrence of YF and other arboviruses and their dispersal in the landscape.
Collapse
Affiliation(s)
- Marco A B de Almeida
- Divisão de Vigilância Ambiental em Saúde, Centro Estadual de Vigilância em Saúde, Secretaria da Saúde do Estado do Rio Grande do Sul, Avenida Ipiranga 5400/Sala 95, Bairro Jardim Botânico, Porto Alegre, Rio Grande do Sul, CEP 90610-030, Brazil.
- Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Edmilson Dos Santos
- Divisão de Vigilância Ambiental em Saúde, Centro Estadual de Vigilância em Saúde, Secretaria da Saúde do Estado do Rio Grande do Sul, Avenida Ipiranga 5400/Sala 95, Bairro Jardim Botânico, Porto Alegre, Rio Grande do Sul, CEP 90610-030, Brazil
| | - Jáder da C Cardoso
- Divisão de Vigilância Ambiental em Saúde, Centro Estadual de Vigilância em Saúde, Secretaria da Saúde do Estado do Rio Grande do Sul, Avenida Ipiranga 5400/Sala 95, Bairro Jardim Botânico, Porto Alegre, Rio Grande do Sul, CEP 90610-030, Brazil
| | - Lucas G da Silva
- Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brazil
| | - Rafael M Rabelo
- Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brazil
| | - Júlio César Bicca-Marques
- Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
47
|
Perez-Guzman PN, Carlos Junior Alcantara L, Obolski U, de Lima MM, Ashley EA, Smithuis F, Horby P, Maude RJ, Lin Z, Kyaw AMM, Lourenço J. Measuring Mosquito-borne Viral Suitability in Myanmar and Implications for Local Zika Virus Transmission. PLOS CURRENTS 2018; 10:ecurrents.outbreaks.7a6c64436a3085ebba37e5329ba169e6. [PMID: 31032144 PMCID: PMC6472868 DOI: 10.1371/currents.outbreaks.7a6c64436a3085ebba37e5329ba169e6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
INTRODUCTION In South East Asia, mosquito-borne viruses (MBVs) have long been a cause of high disease burden and significant economic costs. While in some SEA countries the epidemiology of MBVs is spatio-temporally well characterised and understood, in others such as Myanmar our understanding is largely incomplete. MATERIALS AND METHODS Here, we use a simple mathematical approach to estimate a climate-driven suitability index aiming to better characterise the intrinsic, spatio-temporal potential of MBVs in Myanmar. RESULTS Results show that the timing and amplitude of the natural oscillations of our suitability index are highly informative for the temporal patterns of DENV case counts at the country level, and a mosquito-abundance measure at a city level. When projected at fine spatial scales, the suitability index suggests that the time period of highest MBV transmission potential is between June and October independently of geographical location. Higher potential is nonetheless found along the middle axis of the country and in particular in the southern corridor of international borders with Thailand. DISCUSSION This research complements and expands our current understanding of MBV transmission potential in Myanmar, by identifying key spatial heterogeneities and temporal windows of importance for surveillance and control. We discuss our findings in the context of Zika virus given its recent worldwide emergence, public health impact, and current lack of information on its epidemiology and transmission potential in Myanmar. The proposed suitability index here demonstrated is applicable to other regions of the world for which surveillance data is missing, either due to lack of resources or absence of an MBV of interest.
Collapse
Affiliation(s)
- Pablo Noel Perez-Guzman
- Department of Global Health and Tropical Medicine, University of Oxford, UK; Department of Infectious Disease Epidemiology, Imperial College, London, UK
| | | | - Uri Obolski
- Department of Zoology, University of Oxford, UK
| | - Maricelia M de Lima
- Laboratory of Haematology, Genetics and Computational Biology, FIOCRUZ, Brazil
| | - Elizabeth A Ashley
- Myanmar-Oxford Clinical Research Unit, Yangon; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, UK
| | - Frank Smithuis
- Myanmar-Oxford Clinical Research Unit, Yangon; Nuffield Department of Medicine, University of Oxford, UK; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, UK
| | - Peter Horby
- Nuffield Department of Medicine, University of Oxford, UK
| | - Richard J Maude
- Nuffield Department of Medicine, University of Oxford, UK; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, UK; Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University,Thailand; Harvard TH Chan School of Public Health, Harvard University, Boston, USA
| | - Zaw Lin
- Myanmar Ministry of Health and Sports, Naypyidaw, Myanmar
| | | | - José Lourenço
- Department of Zoology, University of Oxford, Oxford, UK
| |
Collapse
|
48
|
Faria NR, Kraemer MUG, Hill SC, Goes de Jesus J, Aguiar RS, Iani FCM, Xavier J, Quick J, du Plessis L, Dellicour S, Thézé J, Carvalho RDO, Baele G, Wu CH, Silveira PP, Arruda MB, Pereira MA, Pereira GC, Lourenço J, Obolski U, Abade L, Vasylyeva TI, Giovanetti M, Yi D, Weiss DJ, Wint GRW, Shearer FM, Funk S, Nikolay B, Fonseca V, Adelino TER, Oliveira MAA, Silva MVF, Sacchetto L, Figueiredo PO, Rezende IM, Mello EM, Said RFC, Santos DA, Ferraz ML, Brito MG, Santana LF, Menezes MT, Brindeiro RM, Tanuri A, Dos Santos FCP, Cunha MS, Nogueira JS, Rocco IM, da Costa AC, Komninakis SCV, Azevedo V, Chieppe AO, Araujo ESM, Mendonça MCL, Dos Santos CC, Dos Santos CD, Mares-Guia AM, Nogueira RMR, Sequeira PC, Abreu RG, Garcia MHO, Abreu AL, Okumoto O, Kroon EG, de Albuquerque CFC, Lewandowski K, Pullan ST, Carroll M, de Oliveira T, Sabino EC, Souza RP, Suchard MA, Lemey P, Trindade GS, Drumond BP, Filippis AMB, Loman NJ, Cauchemez S, Alcantara LCJ, Pybus OG. Genomic and epidemiological monitoring of yellow fever virus transmission potential. Science 2018; 361:894-899. [PMID: 30139911 PMCID: PMC6874500 DOI: 10.1126/science.aat7115] [Citation(s) in RCA: 219] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 07/20/2018] [Indexed: 12/21/2022]
Abstract
The yellow fever virus (YFV) epidemic in Brazil is the largest in decades. The recent discovery of YFV in Brazilian Aedes species mosquitos highlights a need to monitor the risk of reestablishment of urban YFV transmission in the Americas. We use a suite of epidemiological, spatial, and genomic approaches to characterize YFV transmission. We show that the age and sex distribution of human cases is characteristic of sylvatic transmission. Analysis of YFV cases combined with genomes generated locally reveals an early phase of sylvatic YFV transmission and spatial expansion toward previously YFV-free areas, followed by a rise in viral spillover to humans in late 2016. Our results establish a framework for monitoring YFV transmission in real time that will contribute to a global strategy to eliminate future YFV epidemics.
Collapse
Affiliation(s)
- N R Faria
- Department of Zoology, University of Oxford, Oxford, UK.
| | - M U G Kraemer
- Department of Zoology, University of Oxford, Oxford, UK
- Computational Epidemiology Lab, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - S C Hill
- Department of Zoology, University of Oxford, Oxford, UK
| | - J Goes de Jesus
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - R S Aguiar
- Laboratório de Virologia Molecular, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - F C M Iani
- Laboratório Central de Saúde Pública, Instituto Octávio Magalhães, FUNED, Belo Horizonte, Minas Gerais, Brazil
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - J Xavier
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - J Quick
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - L du Plessis
- Department of Zoology, University of Oxford, Oxford, UK
| | - S Dellicour
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - J Thézé
- Department of Zoology, University of Oxford, Oxford, UK
| | - R D O Carvalho
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - G Baele
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - C-H Wu
- Department of Statistics, University of Oxford, Oxford, UK
| | - P P Silveira
- Laboratório de Virologia Molecular, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - M B Arruda
- Laboratório de Virologia Molecular, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - M A Pereira
- Laboratório Central de Saúde Pública, Instituto Octávio Magalhães, FUNED, Belo Horizonte, Minas Gerais, Brazil
| | - G C Pereira
- Laboratório Central de Saúde Pública, Instituto Octávio Magalhães, FUNED, Belo Horizonte, Minas Gerais, Brazil
| | - J Lourenço
- Department of Zoology, University of Oxford, Oxford, UK
| | - U Obolski
- Department of Zoology, University of Oxford, Oxford, UK
| | - L Abade
- Department of Zoology, University of Oxford, Oxford, UK
- The Global Health Network, University of Oxford, Oxford, UK
| | - T I Vasylyeva
- Department of Zoology, University of Oxford, Oxford, UK
| | - M Giovanetti
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - D Yi
- Department of Statistics, Harvard University, Cambridge, MA, USA
| | - D J Weiss
- Malaria Atlas Project, Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - G R W Wint
- Department of Zoology, University of Oxford, Oxford, UK
| | - F M Shearer
- Malaria Atlas Project, Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - S Funk
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - B Nikolay
- Mathematical Modelling of Infectious Diseases and Center of Bioinformatics, Institut Pasteur, Paris, France
- CNRS UMR2000: Génomique Évolutive, Modélisation et Santé, Institut Pasteur, Paris, France
| | - V Fonseca
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- KwaZulu-Natal Research, Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - T E R Adelino
- Laboratório Central de Saúde Pública, Instituto Octávio Magalhães, FUNED, Belo Horizonte, Minas Gerais, Brazil
| | - M A A Oliveira
- Laboratório Central de Saúde Pública, Instituto Octávio Magalhães, FUNED, Belo Horizonte, Minas Gerais, Brazil
| | - M V F Silva
- Laboratório Central de Saúde Pública, Instituto Octávio Magalhães, FUNED, Belo Horizonte, Minas Gerais, Brazil
| | - L Sacchetto
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - P O Figueiredo
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - I M Rezende
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - E M Mello
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - R F C Said
- Secretaria de Estado de Saúde de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - D A Santos
- Secretaria de Estado de Saúde de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - M L Ferraz
- Secretaria de Estado de Saúde de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - M G Brito
- Secretaria de Estado de Saúde de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - L F Santana
- Secretaria de Estado de Saúde de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - M T Menezes
- Laboratório de Virologia Molecular, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - R M Brindeiro
- Laboratório de Virologia Molecular, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - A Tanuri
- Laboratório de Virologia Molecular, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - F C P Dos Santos
- Núcleo de Doenças de Transmissão Vetorial, Instituto Adolfo Lutz, São Paulo, Brazil
| | - M S Cunha
- Núcleo de Doenças de Transmissão Vetorial, Instituto Adolfo Lutz, São Paulo, Brazil
| | - J S Nogueira
- Núcleo de Doenças de Transmissão Vetorial, Instituto Adolfo Lutz, São Paulo, Brazil
| | - I M Rocco
- Núcleo de Doenças de Transmissão Vetorial, Instituto Adolfo Lutz, São Paulo, Brazil
| | - A C da Costa
- Instituto de Medicina Tropical e Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - S C V Komninakis
- Retrovirology Laboratory, Federal University of São Paulo, São Paulo, Brazil
- School of Medicine of ABC (FMABC), Clinical Immunology Laboratory, Santo André, São Paulo, Brazil
| | - V Azevedo
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - A O Chieppe
- Coordenação de Vigilância Epidemiológica do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - E S M Araujo
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - M C L Mendonça
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - C C Dos Santos
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - C D Dos Santos
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - A M Mares-Guia
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - R M R Nogueira
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - P C Sequeira
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - R G Abreu
- Departamento de Vigilância das Doenças Transmissíveis da Secretaria de Vigilância em Saúde, Ministério da Saúde, Brasília-DF, Brazil
| | - M H O Garcia
- Departamento de Vigilância das Doenças Transmissíveis da Secretaria de Vigilância em Saúde, Ministério da Saúde, Brasília-DF, Brazil
| | - A L Abreu
- Secretaria de Vigilância em Saúde, Coordenação Geral de Laboratórios de Saúde Pública, Ministério da Saúde, Brasília-DF, Brazil
| | - O Okumoto
- Secretaria de Vigilância em Saúde, Coordenação Geral de Laboratórios de Saúde Pública, Ministério da Saúde, Brasília-DF, Brazil
| | - E G Kroon
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - C F C de Albuquerque
- Organização Pan - Americana da Saúde/Organização Mundial da Saúde - (OPAS/OMS), Brasília-DF, Brazil
| | - K Lewandowski
- Public Health England, National Infections Service, Porton Down, Salisbury, UK
| | - S T Pullan
- Public Health England, National Infections Service, Porton Down, Salisbury, UK
| | - M Carroll
- NIHR HPRU in Emerging and Zoonotic Infections, Public Health England, London, UK
| | - T de Oliveira
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- KwaZulu-Natal Research, Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
| | - E C Sabino
- Instituto de Medicina Tropical e Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - R P Souza
- Núcleo de Doenças de Transmissão Vetorial, Instituto Adolfo Lutz, São Paulo, Brazil
| | - M A Suchard
- Department of Biostatistics, UCLA Fielding School of Public Health, University of California, Los Angeles, CA, USA
- Department of Biomathematics and Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, USA
| | - P Lemey
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - G S Trindade
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - B P Drumond
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - A M B Filippis
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - N J Loman
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - S Cauchemez
- Mathematical Modelling of Infectious Diseases and Center of Bioinformatics, Institut Pasteur, Paris, France
- CNRS UMR2000: Génomique Évolutive, Modélisation et Santé, Institut Pasteur, Paris, France
| | - L C J Alcantara
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil.
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - O G Pybus
- Department of Zoology, University of Oxford, Oxford, UK.
| |
Collapse
|
49
|
Shocket MS, Ryan SJ, Mordecai EA. Temperature explains broad patterns of Ross River virus transmission. eLife 2018; 7:37762. [PMID: 30152328 PMCID: PMC6112853 DOI: 10.7554/elife.37762] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 07/12/2018] [Indexed: 01/31/2023] Open
Abstract
Thermal biology predicts that vector-borne disease transmission peaks at intermediate temperatures and declines at high and low temperatures. However, thermal optima and limits remain unknown for most vector-borne pathogens. We built a mechanistic model for the thermal response of Ross River virus, an important mosquito-borne pathogen in Australia, Pacific Islands, and potentially at risk of emerging worldwide. Transmission peaks at moderate temperatures (26.4°C) and declines to zero at thermal limits (17.0 and 31.5°C). The model accurately predicts that transmission is year-round endemic in the tropics but seasonal in temperate areas, resulting in the nationwide seasonal peak in human cases. Climate warming will likely increase transmission in temperate areas (where most Australians live) but decrease transmission in tropical areas where mean temperatures are already near the thermal optimum. These results illustrate the importance of nonlinear models for inferring the role of temperature in disease dynamics and predicting responses to climate change. Mosquitoes cannot control their body temperature, so their survival and performance depend on the temperature where they live. As a result, outside temperatures can also affect the spread of diseases transmitted by mosquitoes. This has left scientists wondering how climate change may affect the spread of mosquito-borne diseases. Predicting the effects of climate change on such diseases is tricky, because many interacting factors, including temperatures and rainfall, affect mosquito populations. Also, rising temperatures do not always have a positive effect on mosquitoes – they may help mosquitoes initially, but it can get too warm even for these animals. Climate change could affect the Ross River virus, the most common mosquito-borne disease in Australia. The virus infects 2,000 to 9,000 people each year and can cause long-term joint pain and disability. Currently, the virus spreads year-round in tropical, northern Australia and seasonally in temperate, southern Australia. Large outbreaks have occurred outside of Australia, and scientists are worried it could spread worldwide. Now, Shocket et al. have built a model that predicts how the spread of Ross River virus changes with temperature. Shocket et al. used data from laboratory experiments that measured mosquito and virus performance across a broad range of temperatures. The experiments showed that ~26°C (80°F) is the optimal temperature for mosquitoes to spread the Ross River virus. Temperatures below 17°C (63°F) and above 32°C (89°F) hamper the spread of the virus. These temperature ranges match the current disease patterns in Australia where human cases peak in March. This is two months after the country’s average temperature reaches the optimal level and about how long it takes mosquito populations to grow, infect people, and for symptoms to develop. Because northern Australia is already near the optimal temperature for mosquitos to spread the Ross River virus, any climate warming should decrease transmission there. But warming temperatures could increase the disease’s transmission in the southern part of the country, where most people live. The model Shocket et al. created may help the Australian government and mosquito control agencies better plan for the future.
Collapse
Affiliation(s)
| | - Sadie J Ryan
- Department of Geography, University of Florida, Gainesville, United States.,Emerging Pathogens Institute, University of Florida, Gainesville, United States.,School of Life Sciences, College of Agriculture, Engineering, and Science, University of KwaZulu Natal, KwaZulu Natal, South Africa
| | - Erin A Mordecai
- Department of Biology, Stanford University, Stanford, United States
| |
Collapse
|
50
|
Sakamoto Y, Yamaguchi T, Yamamoto N, Nishiura H. Modeling the elevated risk of yellow fever among travelers visiting Brazil, 2018. Theor Biol Med Model 2018; 15:9. [PMID: 29961429 PMCID: PMC6027565 DOI: 10.1186/s12976-018-0081-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 06/11/2018] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Unlike the epidemic of yellow fever from 2016 to 17 in Brazil mostly restricted to the States of Minas Gerais and Espirito Santo, the epidemic from 2017 to 18 mainly involved São Paulo and Rio de Janeiro and resulted in multiple international disseminations. To understand mechanisms behind this observation, the present study analyzed the distribution of imported cases from Brazil, 2018. METHODS A statistical model was employed to capture the risk of importing yellow fever by returning international travelers from Brazil. We estimated the relative risk of importation among travelers by the extent of wealth measured by GDP per capita and the relative risk obtained by random assignment of travelers' destination within Brazil by the relative population size. RESULTS Upper-half wealthier countries had 2.1 to 3.4 times greater risk of importation than remainders. Even among countries with lower half of GDP per capita, the risk of importation was 2.5 to 2.8 times greater than assuming that the risk of travelers' infection within Brazil is determined by the regional population size. CONCLUSIONS Travelers from wealthier countries were at elevated risk of yellow fever, allowing us to speculate that travelers' local destination and behavior at high risk of infection are likely to act as a key determinant of the heterogeneous risk of importation. It is advised to inform travelers over the ongoing geographic foci of transmission, and if it appears unavoidable to visit tourist destination that has the history of producing imported cases, travelers must be strongly advised to receive vaccination in advance.
Collapse
Affiliation(s)
- Yohei Sakamoto
- Graduate School of Medicine, Hokkaido University, Kita 15 Jo Nishi 7 Chome, Kita-ku, Sapporo-shi, Hokkaido 060-8638 Japan
- CREST, Japan Science and Technology Agency, Honcho 4-1-8, Kawaguchi, Saitama, 332-0012 Japan
| | - Takayuki Yamaguchi
- Graduate School of Medicine, Hokkaido University, Kita 15 Jo Nishi 7 Chome, Kita-ku, Sapporo-shi, Hokkaido 060-8638 Japan
- CREST, Japan Science and Technology Agency, Honcho 4-1-8, Kawaguchi, Saitama, 332-0012 Japan
| | - Nao Yamamoto
- Graduate School of Medicine, Hokkaido University, Kita 15 Jo Nishi 7 Chome, Kita-ku, Sapporo-shi, Hokkaido 060-8638 Japan
- CREST, Japan Science and Technology Agency, Honcho 4-1-8, Kawaguchi, Saitama, 332-0012 Japan
| | - Hiroshi Nishiura
- Graduate School of Medicine, Hokkaido University, Kita 15 Jo Nishi 7 Chome, Kita-ku, Sapporo-shi, Hokkaido 060-8638 Japan
- CREST, Japan Science and Technology Agency, Honcho 4-1-8, Kawaguchi, Saitama, 332-0012 Japan
| |
Collapse
|