1
|
Lv W, Li Z, Wang S, He J, Zhang L. A role for tunneling nanotubes in virus spread. Front Microbiol 2024; 15:1356415. [PMID: 38435698 PMCID: PMC10904554 DOI: 10.3389/fmicb.2024.1356415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/30/2024] [Indexed: 03/05/2024] Open
Abstract
Tunneling nanotubes (TNTs) are actin-rich intercellular conduits that mediate distant cell-to-cell communication and enable the transfer of various cargos, including proteins, organelles, and virions. They play vital roles in both physiological and pathological processes. In this review, we focus on TNTs in different types of viruses, including retroviruses such as HIV, HTLV, influenza A, herpesvirus, paramyxovirus, alphavirus and SARS-CoV-2. We summarize the viral proteins responsible for inducing TNT formation and explore how these virus-induced TNTs facilitate intercellular communication, thereby promoting viral spread. Furthermore, we highlight other virus infections that can induce TNT-like structures, facilitating the dissemination of viruses. Moreover, TNTs promote intercellular spread of certain viruses even in the presence of neutralizing antibodies and antiviral drugs, posing significant challenges in combating viral infections. Understanding the mechanisms underlying viral spread via TNTs provides valuable insights into potential drug targets and contributes to the development of effective therapies for viral infections.
Collapse
Affiliation(s)
- Weimiao Lv
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zichen Li
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Shule Wang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Jingyi He
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Leiliang Zhang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
2
|
Kapoor D, Sharma P, Saini A, Azhar E, Elste J, Kohlmeir EK, Shukla D, Tiwari V. Tunneling Nanotubes: The Cables for Viral Spread and Beyond. Results Probl Cell Differ 2024; 73:375-417. [PMID: 39242387 DOI: 10.1007/978-3-031-62036-2_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Multicellular organisms require cell-to-cell communication to maintain homeostasis and thrive. For cells to communicate, a network of filamentous, actin-rich tunneling nanotubes (TNTs) plays a pivotal role in facilitating efficient cell-to-cell communication by connecting the cytoplasm of adjacent or distant cells. Substantial documentation indicates that diverse cell types employ TNTs in a sophisticated and intricately organized fashion for both long and short-distance communication. Paradoxically, several pathogens, including viruses, exploit the structural integrity of TNTs to facilitate viral entry and rapid cell-to-cell spread. These pathogens utilize a "surfing" mechanism or intracellular transport along TNTs to bypass high-traffic cellular regions and evade immune surveillance and neutralization. Although TNTs are present across various cell types in healthy tissue, their magnitude is increased in the presence of viruses. This heightened induction significantly amplifies the role of TNTs in exacerbating disease manifestations, severity, and subsequent complications. Despite significant advancements in TNT research within the realm of infectious diseases, further studies are imperative to gain a precise understanding of TNTs' roles in diverse pathological conditions. Such investigations are essential for the development of novel therapeutic strategies aimed at leveraging TNT-associated mechanisms for clinical applications. In this chapter, we emphasize the significance of TNTs in the life cycle of viruses, showcasing the potential for a targeted approach to impede virus-host cell interactions during the initial stages of viral infections. This approach holds promise for intervention and prevention strategies.
Collapse
Affiliation(s)
- Divya Kapoor
- Department of Microbiology and Immunology, Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL, USA
| | - Pankaj Sharma
- Department of Microbiology and Immunology, Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL, USA
| | - Akash Saini
- Hinsdale Central High School, Hinsdale, IL, USA
| | - Eisa Azhar
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, USA
| | - James Elste
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, USA
| | | | - Deepak Shukla
- Department of Microbiology and Immunology, Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL, USA
| | - Vaibhav Tiwari
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, USA.
| |
Collapse
|
3
|
Eugenin E, Camporesi E, Peracchia C. Direct Cell-Cell Communication via Membrane Pores, Gap Junction Channels, and Tunneling Nanotubes: Medical Relevance of Mitochondrial Exchange. Int J Mol Sci 2022; 23:6133. [PMID: 35682809 PMCID: PMC9181466 DOI: 10.3390/ijms23116133] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/28/2022] [Accepted: 05/28/2022] [Indexed: 02/07/2023] Open
Abstract
The history of direct cell-cell communication has evolved in several small steps. First discovered in the 1930s in invertebrate nervous systems, it was thought at first to be an exception to the "cell theory", restricted to invertebrates. Surprisingly, however, in the 1950s, electrical cell-cell communication was also reported in vertebrates. Once more, it was thought to be an exception restricted to excitable cells. In contrast, in the mid-1960s, two startling publications proved that virtually all cells freely exchange small neutral and charged molecules. Soon after, cell-cell communication by gap junction channels was reported. While gap junctions are the major means of cell-cell communication, in the early 1980s, evidence surfaced that some cells might also communicate via membrane pores. Questions were raised about the possible artifactual nature of the pores. However, early in this century, we learned that communication via membrane pores exists and plays a major role in medicine, as the structures involved, "tunneling nanotubes", can rescue diseased cells by directly transferring healthy mitochondria into compromised cells and tissues. On the other hand, pathogens/cancer could also use these communication systems to amplify pathogenesis. Here, we describe the evolution of the discovery of these new communication systems and the potential therapeutic impact on several uncurable diseases.
Collapse
Affiliation(s)
- Eliseo Eugenin
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), 105 11th Street, Galveston, TX 77555, USA
| | - Enrico Camporesi
- Department of Surgery and TEAM Health Anesthesia, University of South Florida, 2 Tampa General Circle, Tampa, FL 33606, USA;
| | - Camillo Peracchia
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA;
| |
Collapse
|
4
|
Morgan SM, Tanizawa H, Caruso LB, Hulse M, Kossenkov A, Madzo J, Keith K, Tan Y, Boyle S, Lieberman PM, Tempera I. The three-dimensional structure of Epstein-Barr virus genome varies by latency type and is regulated by PARP1 enzymatic activity. Nat Commun 2022; 13:187. [PMID: 35039491 PMCID: PMC8764100 DOI: 10.1038/s41467-021-27894-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/21/2021] [Indexed: 12/13/2022] Open
Abstract
Epstein-Barr virus (EBV) persists in human B-cells by maintaining its chromatinized episomes within the nucleus. We have previously shown that cellular factor Poly [ADP-ribose] polymerase 1 (PARP1) binds the EBV genome, stabilizes CTCF binding at specific loci, and that PARP1 enzymatic activity correlates with maintaining a transcriptionally active latency program. To better understand PARP1's role in regulating EBV latency, here we functionally characterize the effect of PARP enzymatic inhibition on episomal structure through in situ HiC mapping, generating a complete 3D structure of the EBV genome. We also map intragenomic contact changes after PARP inhibition to global binding of chromatin looping factors CTCF and cohesin across the EBV genome. We find that PARP inhibition leads to fewer total unique intragenomic interactions within the EBV episome, yet new chromatin loops distinct from the untreated episome are also formed. This study also illustrates that PARP inhibition alters gene expression at the regions where chromatin looping is most effected. We observe that PARP1 inhibition does not alter cohesin binding sites but does increase its frequency of binding at those sites. Taken together, these findings demonstrate that PARP has an essential role in regulating global EBV chromatin structure and latent gene expression.
Collapse
Affiliation(s)
- Sarah M Morgan
- The Wistar Institute, Philadelphia, PA, USA
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | | | | | - Michael Hulse
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | | | - Jozef Madzo
- The Coriell Institute for Medical Research, Camden, NJ, USA
| | - Kelsey Keith
- The Coriell Institute for Medical Research, Camden, NJ, USA
| | - Yinfei Tan
- Fox Chase Cancer Center, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
5
|
Tiwari V, Koganti R, Russell G, Sharma A, Shukla D. Role of Tunneling Nanotubes in Viral Infection, Neurodegenerative Disease, and Cancer. Front Immunol 2021; 12:680891. [PMID: 34194434 PMCID: PMC8236699 DOI: 10.3389/fimmu.2021.680891] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/26/2021] [Indexed: 12/14/2022] Open
Abstract
The network of tunneling nanotubes (TNTs) represents the filamentous (F)-actin rich tubular structure which is connected to the cytoplasm of the adjacent and or distant cells to mediate efficient cell-to-cell communication. They are long cytoplasmic bridges with an extraordinary ability to perform diverse array of function ranging from maintaining cellular physiology and cell survival to promoting immune surveillance. Ironically, TNTs are now widely documented to promote the spread of various pathogens including viruses either during early or late phase of their lifecycle. In addition, TNTs have also been associated with multiple pathologies in a complex multicellular environment. While the recent work from multiple laboratories has elucidated the role of TNTs in cellular communication and maintenance of homeostasis, this review focuses on their exploitation by the diverse group of viruses such as retroviruses, herpesviruses, influenza A, human metapneumovirus and SARS CoV-2 to promote viral entry, virus trafficking and cell-to-cell spread. The later process may aggravate disease severity and the associated complications due to widespread dissemination of the viruses to multiple organ system as observed in current coronavirus disease 2019 (COVID-19) patients. In addition, the TNT-mediated intracellular spread can be protective to the viruses from the circulating immune surveillance and possible neutralization activity present in the extracellular matrix. This review further highlights the relevance of TNTs in ocular and cardiac tissues including neurodegenerative diseases, chemotherapeutic resistance, and cancer pathogenesis. Taken together, we suggest that effective therapies should consider precise targeting of TNTs in several diseases including virus infections.
Collapse
Affiliation(s)
- Vaibhav Tiwari
- Department of Microbiology & Immunology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, United States
| | - Raghuram Koganti
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Greer Russell
- Department of Biomedical Sciences, College of Graduate Studies, Midwestern University, Downers Grove, IL, United States
| | - Ananya Sharma
- Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States.,Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
6
|
Olotu FA, Soliman MES. Immunoinformatics prediction of potential B-cell and T-cell epitopes as effective vaccine candidates for eliciting immunogenic responses against Epstein-Barr virus. Biomed J 2021; 44:317-337. [PMID: 34154948 PMCID: PMC8358216 DOI: 10.1016/j.bj.2020.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/15/2019] [Accepted: 01/21/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The ongoing search for viable treatment options to curtail Epstein Barr Virus (EBV) pathogenicity has necessitated a paradigmatic shift towards the design of peptide-based vaccines. Potential B-cell and T-cell epitopes were predicted for nine antigenic EBV proteins that mediate epithelial cell-attachment and spread, capsid self-assembly, DNA replication and processivity. METHODS Predictive algorithms incorporated in the Immune Epitope Database (IEDB) resources were used to determine potential B-cell epitopes based on their physicochemical attributes. These were combined with a string-kernel method and an antigenicity predictive AlgPred tool to enhance accuracy in the end-point selection of highly potential antigenic EBV B-cell epitopes. NetCTL 1.2 algorithms enabled the prediction of probable T-cell epitopes which were structurally modeled and subjected to blind peptide-protein docking with HLA-A*02:01. All-atom molecular dynamics (MD) simulation and Molecular Mechanics Generalized-Born Surface Area methods were used to investigate interaction dynamics and affinities of predicted T-cell peptide-protein complexes. RESULTS Computational predictions and sequence overlapping analysis yielded 18 linear (continuous) and discontinuous (conformational) subunit epitopes from the antigenic proteins with characteristic surface accessibility, flexibility and antigenicity, and predictive scores above the threshold value (1) set. A novel site was identified on HLA-A*02:01 with preferential affinity binding for modeled BMRF2, BXLF1 and BGLF4 T-cell epitopes. Interaction dynamics and energies were also computed in addition to crucial residues that mediated complex formation and stability. CONCLUSION This study implemented an integrative meta-analytical approach to model highly probable B-cell and T-cell epitopes as potential peptide-vaccine candidates for the treatment of EBV-related diseases.
Collapse
Affiliation(s)
- Fisayo A Olotu
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, South Africa
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, South Africa.
| |
Collapse
|
7
|
Abstract
Tunneling nanotubes (TNTs) are actin-based intercellular conduits that connect distant cells and allow intercellular transfer of molecular information, including genetic information, proteins, lipids, and even organelles. Besides providing a means of intercellular communication, TNTs may also be hijacked by pathogens, particularly viruses, to facilitate their spread. Viruses of many different families, including retroviruses, herpesviruses, orthomyxoviruses, and several others have been reported to trigger the formation of TNTs or TNT-like structures in infected cells and use these structures to efficiently spread to uninfected cells. In the current review, we give an overview of the information that is currently available on viruses and TNT-like structures, and we discuss some of the standing questions in this field.
Collapse
|
8
|
Yamashita YM, Inaba M, Buszczak M. Specialized Intercellular Communications via Cytonemes and Nanotubes. Annu Rev Cell Dev Biol 2018; 34:59-84. [PMID: 30074816 DOI: 10.1146/annurev-cellbio-100617-062932] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In recent years, thin membrane protrusions such as cytonemes and tunneling nanotubes have emerged as a novel mechanism of intercellular communication. Protrusion-based cellular interactions allow for specific communication between participating cells and have a distinct spectrum of advantages compared to secretion- and diffusion-based intercellular communication. Identification of protrusion-based signaling in diverse systems suggests that this mechanism is a ubiquitous and prevailing means of communication employed by many cell types. Moreover, accumulating evidence indicates that protrusion-based intercellular communication is often involved in pathogenesis, including cancers and infections. Here we review our current understanding of protrusion-based intercellular communication.
Collapse
Affiliation(s)
- Yukiko M Yamashita
- Life Sciences Institute, Department of Cell and Developmental Biology, and Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Mayu Inaba
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut 06030, USA;
| | - Michael Buszczak
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA;
| |
Collapse
|
9
|
Ariazi J, Benowitz A, De Biasi V, Den Boer ML, Cherqui S, Cui H, Douillet N, Eugenin EA, Favre D, Goodman S, Gousset K, Hanein D, Israel DI, Kimura S, Kirkpatrick RB, Kuhn N, Jeong C, Lou E, Mailliard R, Maio S, Okafo G, Osswald M, Pasquier J, Polak R, Pradel G, de Rooij B, Schaeffer P, Skeberdis VA, Smith IF, Tanveer A, Volkmann N, Wu Z, Zurzolo C. Tunneling Nanotubes and Gap Junctions-Their Role in Long-Range Intercellular Communication during Development, Health, and Disease Conditions. Front Mol Neurosci 2017; 10:333. [PMID: 29089870 PMCID: PMC5651011 DOI: 10.3389/fnmol.2017.00333] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 10/02/2017] [Indexed: 12/15/2022] Open
Abstract
Cell-to-cell communication is essential for the organization, coordination, and development of cellular networks and multi-cellular systems. Intercellular communication is mediated by soluble factors (including growth factors, neurotransmitters, and cytokines/chemokines), gap junctions, exosomes and recently described tunneling nanotubes (TNTs). It is unknown whether a combination of these communication mechanisms such as TNTs and gap junctions may be important, but further research is required. TNTs are long cytoplasmic bridges that enable long-range, directed communication between connected cells. The proposed functions of TNTs are diverse and not well understood but have been shown to include the cell-to-cell transfer of vesicles, organelles, electrical stimuli and small molecules. However, the exact role of TNTs and gap junctions for intercellular communication and their impact on disease is still uncertain and thus, the subject of much debate. The combined data from numerous laboratories indicate that some TNT mediate a long-range gap junctional communication to coordinate metabolism and signaling, in relation to infectious, genetic, metabolic, cancer, and age-related diseases. This review aims to describe the current knowledge, challenges and future perspectives to characterize and explore this new intercellular communication system and to design TNT-based therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | - Monique L Den Boer
- Department of Pediatric Oncology, Erasmus MC - Sophia Children's Hospital, Rotterdam, Netherlands
| | - Stephanie Cherqui
- Division of Genetics, Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
| | - Haifeng Cui
- GlaxoSmithKline, Collegeville, PA, United States
| | | | - Eliseo A Eugenin
- Public Health Research Institute (PHRI), Newark, NJ, United States.,Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers the State University of New Jersey, Newark, NJ, United States
| | - David Favre
- GlaxoSmithKline, Research Triangle Park, NC, United States
| | - Spencer Goodman
- Division of Genetics, Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
| | - Karine Gousset
- Department of Biology, College of Science and Math, California State University, Fresno, CA, United States
| | - Dorit Hanein
- Bioinformatics and System Biology Program, Sanford Burnham Prebys Medical Discovery, La Jolla, CA, United States
| | | | - Shunsuke Kimura
- Laboratory of Histology and Cytology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | | | - Nastaran Kuhn
- Division of Cancer Biology, Physical Sciences-Oncology Network, Cancer Tissue Engineering Collaborative Research Program, Program Director, Structural Biology and Molecular Applications Branch, National Cancer Institute, Bethesda, MD, United States
| | - Claire Jeong
- GlaxoSmithKline, King of Prussia, PA, United States
| | - Emil Lou
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Robbie Mailliard
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Stephen Maio
- GlaxoSmithKline, King of Prussia, PA, United States
| | | | - Matthias Osswald
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jennifer Pasquier
- Department of Genetic Medicine, Weill Cornell Medical College in Qatar, Qatar Foundation, Ar-Rayyan, Qatar
| | - Roel Polak
- Department of Pediatric Oncology, Erasmus MC - Sophia Children's Hospital, Rotterdam, Netherlands
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, RWTH Aachen University, Aachen, Germany
| | - Bob de Rooij
- Department of Pediatric Oncology, Erasmus MC - Sophia Children's Hospital, Rotterdam, Netherlands
| | | | - Vytenis A Skeberdis
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Ian F Smith
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Ahmad Tanveer
- Section of Intracellular Trafficking and Neurovirology, National Institute of Health, Bethesda, MD, United States
| | - Niels Volkmann
- Bioinformatics and System Biology Program, Sanford Burnham Prebys Medical Discovery, La Jolla, CA, United States
| | - Zhenhua Wu
- GlaxoSmithKline, Collegeville, PA, United States
| | - Chiara Zurzolo
- Unit of Membrane Trafficking and Pathogenesis, Department of Cell Biology and Infection, Pasteur Institute, Paris, France
| |
Collapse
|
10
|
Pseudorabies Virus US3-Induced Tunneling Nanotubes Contain Stabilized Microtubules, Interact with Neighboring Cells via Cadherins, and Allow Intercellular Molecular Communication. J Virol 2017; 91:JVI.00749-17. [PMID: 28747498 DOI: 10.1128/jvi.00749-17] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/16/2017] [Indexed: 01/01/2023] Open
Abstract
Tunneling nanotubes (TNTs) are long bridge-like structures that connect eukaryotic cells and mediate intercellular communication. We found earlier that the conserved alphaherpesvirus US3 protein kinase induces long cell projections that contact distant cells and promote intercellular virus spread. In this report, we show that the US3-induced cell projections constitute TNTs. In addition, we report that US3-induced TNTs mediate intercellular transport of information (e.g., green fluorescent protein [GFP]) in the absence of other viral proteins. US3-induced TNTs are remarkably stable compared to most TNTs described in the literature. In line with this, US3-induced TNTs were found to contain stabilized (acetylated and detyrosinated) microtubules. Transmission electron microscopy showed that virus particles are individually transported in membrane-bound vesicles in US3-induced TNTs and are released along the TNT and at the contact area between a TNT and the adjacent cell. Contact between US3-induced TNTs and acceptor cells is very stable, which correlated with a marked enrichment in adherens junction components beta-catenin and E-cadherin at the contact area. These data provide new structural insights into US3-induced TNTs and how they may contribute to intercellular communication and alphaherpesvirus spread.IMPORTANCE Tunneling nanotubes (TNT) represent an important and yet still poorly understood mode of long-distance intercellular communication. We and others reported earlier that the conserved alphaherpesvirus US3 protein kinase induces long cellular protrusions in infected and transfected cells. Here, we show that US3-induced cell projections constitute TNTs, based on structural properties and transport of biomolecules. In addition, we report on different particular characteristics of US3-induced TNTs that help to explain their remarkable stability compared to physiological TNTs. In addition, transmission electron microscopy assays indicate that, in infected cells, virions travel in the US3-induced TNTs in membranous transport vesicles and leave the TNT via exocytosis. These data generate new fundamental insights into the biology of (US3-induced) TNTs and into how they may contribute to intercellular virus spread and communication.
Collapse
|
11
|
Multiple Roles of the Cytoplasmic Domain of Herpes Simplex Virus 1 Envelope Glycoprotein D in Infected Cells. J Virol 2016; 90:10170-10181. [PMID: 27581980 DOI: 10.1128/jvi.01396-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/23/2016] [Indexed: 01/27/2023] Open
Abstract
Herpes simplex virus 1 (HSV-1) envelope glycoprotein D (gD) plays an essential role in viral entry. The functional regions of gD responsible for viral entry have been mapped to its extracellular domain, whereas the gD cytoplasmic domain plays no obvious role in viral entry. Thus far, the role(s) of the gD cytoplasmic domain in HSV-1 replication has remained to be elucidated. In this study, we show that ectopic expression of gD induces microvillus-like tubular structures at the plasma membrane which resemble the reported projection structures of the plasma membrane induced in HSV-1-infected cells. Mutations in the arginine cluster (residues 365 to 367) in the gD cytoplasmic domain greatly reduced gD-induced plasma membrane remodeling. In agreement with this, the mutations in the arginine cluster in the gD cytoplasmic domain reduced the number of microvillus-like tubular structures at the plasma membrane in HSV-1-infected cells. In addition, the mutations produced an accumulation of unenveloped nucleocapsids in the cytoplasm and reduced viral replication and cell-cell spread. These results suggest that the arginine cluster in the gD cytoplasmic domain is required for the efficient induction of plasma membrane projections and viral final envelopment, and these functions of the gD domain may lead to efficient viral replication and cell-cell spread. IMPORTANCE The cytoplasmic domain of HSV-1 gD, an envelope glycoprotein essential for viral entry, was reported to promote viral replication and cell-cell spread, but the role(s) of the domain during HSV-1 infection has remained unknown. In this study, we clarify two functions of the arginine cluster in the HSV-1 gD cytoplasmic domain, both of which require host cell membrane remodeling, i.e., the formation of microvillus-like projections at the plasma membrane and viral final envelopment in HSV-1-infected cells. We also show that the gD arginine cluster is required for efficient HSV-1 replication and cell-cell spread. This is the first report clarifying not only the functions of the gD cytoplasmic domain but also identifying the gD arginine cluster to be the HSV-1 factor responsible for the induction of plasma membrane projections in HSV-1-infected cells. Our results elucidate some of the functions of this multifunctional envelope glycoprotein during HSV-1 infection.
Collapse
|
12
|
El Najjar F, Cifuentes-Muñoz N, Chen J, Zhu H, Buchholz UJ, Moncman CL, Dutch RE. Human metapneumovirus Induces Reorganization of the Actin Cytoskeleton for Direct Cell-to-Cell Spread. PLoS Pathog 2016; 12:e1005922. [PMID: 27683250 PMCID: PMC5040343 DOI: 10.1371/journal.ppat.1005922] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 09/08/2016] [Indexed: 11/22/2022] Open
Abstract
Paramyxovirus spread generally involves assembly of individual viral particles which then infect target cells. We show that infection of human bronchial airway cells with human metapneumovirus (HMPV), a recently identified paramyxovirus which causes significant respiratory disease, results in formation of intercellular extensions and extensive networks of branched cell-associated filaments. Formation of these structures is dependent on actin, but not microtubule, polymerization. Interestingly, using a co-culture assay we show that conditions which block regular infection by HMPV particles, including addition of neutralizing antibodies or removal of cell surface heparan sulfate, did not prevent viral spread from infected to new target cells. In contrast, inhibition of actin polymerization or alterations to Rho GTPase signaling pathways significantly decreased cell-to-cell spread. Furthermore, viral proteins and viral RNA were detected in intercellular extensions, suggesting direct transfer of viral genetic material to new target cells. While roles for paramyxovirus matrix and fusion proteins in membrane deformation have been previously demonstrated, we show that the HMPV phosphoprotein extensively co-localized with actin and induced formation of cellular extensions when transiently expressed, supporting a new model in which a paramyxovirus phosphoprotein is a key player in assembly and spread. Our results reveal a novel mechanism for HMPV direct cell-to-cell spread and provide insights into dissemination of respiratory viruses. Human metapneumovirus (HMPV) is an important human respiratory pathogen that affects all age groups worldwide. There are currently no vaccines or treatments available for HMPV, and key aspects of its life cycle remain unknown. We examined the late events of the HMPV infection cycle in human bronchial epithelial cells. Our data demonstrate that HMPV infection leads to formation of unique structures, including intercellular extensions connecting cells, and large networks of branched cell-associated filaments. Viral modulation of the cellular cytoskeleton and cellular signaling pathways are important for formation of these structures. Our results are consistent with the intercellular extensions playing a role in direct spread of virus from cell-to-cell, potentially by transfer of virus genetic material without particle formation. We also show that the HMPV phosphoprotein localizes with actin and can promote membrane deformations, suggesting a novel role in viral assembly or spread for paramyxovirus phosphoproteins.
Collapse
Affiliation(s)
- Farah El Najjar
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Nicolás Cifuentes-Muñoz
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Jing Chen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Haining Zhu
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Ursula J. Buchholz
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Carole L. Moncman
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Rebecca Ellis Dutch
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
13
|
Chesnokova LS, Valencia SM, Hutt-Fletcher LM. The BDLF3 gene product of Epstein-Barr virus, gp150, mediates non-productive binding to heparan sulfate on epithelial cells and only the binding domain of CD21 is required for infection. Virology 2016; 494:23-8. [PMID: 27061054 DOI: 10.1016/j.virol.2016.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/08/2016] [Accepted: 04/01/2016] [Indexed: 02/07/2023]
Abstract
The cell surface molecules used by Epstein-Barr virus (EBV) to attach to epithelial cells are not well-defined, although when CD21, the B cell receptor for EBV is expressed epithelial cell infection increases disproportionately to the increase in virus bound. Many herpesviruses use low affinity charge interactions with molecules such as heparan sulfate to attach to cells. We report here that the EBV glycoprotein gp150 binds to heparan sulfate proteoglycans, but that attachment via this glycoprotein is not productive of infection. We also report that only the aminoterminal two short consensus repeats of CD21 are required for efficient infection, This supports the hypothesis that, when expressed on an epithelial cell CD21 serves primarily to cluster the major attachment protein gp350 in the virus membrane and enhance access of other important glycoproteins to the epithelial cell surface.
Collapse
Affiliation(s)
- Liudmila S Chesnokova
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA.
| | - Sarah M Valencia
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA.
| | - Lindsey M Hutt-Fletcher
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA.
| |
Collapse
|
14
|
Type I Interferon Counteracts Antiviral Effects of Statins in the Context of Gammaherpesvirus Infection. J Virol 2016; 90:3342-54. [PMID: 26739055 DOI: 10.1128/jvi.02277-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 12/30/2015] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED The cholesterol synthesis pathway is a ubiquitous cellular biosynthetic pathway that is attenuated therapeutically by statins. Importantly, type I interferon (IFN), a major antiviral mediator, also depresses the cholesterol synthesis pathway. Here we demonstrate that attenuation of cholesterol synthesis decreases gammaherpesvirus replication in primary macrophages in vitro and reactivation from peritoneal exudate cells in vivo. Specifically, the reduced availability of the intermediates required for protein prenylation was responsible for decreased gammaherpesvirus replication in statin-treated primary macrophages. We also demonstrate that statin treatment of a chronically infected host attenuates gammaherpesvirus latency in a route-of-infection-specific manner. Unexpectedly, we found that the antiviral effects of statins are counteracted by type I IFN. Our studies suggest that type I IFN signaling counteracts the antiviral nature of the subdued cholesterol synthesis pathway and offer a novel insight into the utility of statins as antiviral agents. IMPORTANCE Statins are cholesterol synthesis inhibitors that are therapeutically administered to 12.5% of the U.S. POPULATION Statins attenuate the replication of diverse viruses in culture; however, this attenuation is not always obvious in an intact animal model. Further, it is not clear whether statins alter parameters of highly prevalent chronic herpesvirus infections. We show that statin treatment attenuated gammaherpesvirus replication in primary immune cells and during chronic infection of an intact host. Further, we demonstrate that type I interferon signaling counteracts the antiviral effects of statins. Considering the fact that type I interferon decreases the activity of the cholesterol synthesis pathway, it is intriguing to speculate that gammaherpesviruses have evolved to usurp the type I interferon pathway to compensate for the decreased cholesterol synthesis activity.
Collapse
|
15
|
Abstract
Glycoproteins are critical to virus entry, to spread within and between hosts and can modify the behavior of cells. Many viruses carry only a few, most found in the virion envelope. EBV makes more than 12, providing flexibility in how it colonizes its human host. Some are dedicated to getting the virus through the cell membrane and on toward the nucleus of the cell, some help guide the virus back out and on to the next cell in the same or a new host. Yet others undermine host defenses helping the virus persist for a lifetime, maintaining a presence that is mostly tolerated and serves to perpetuate EBV as one of the most common infections of man.
Collapse
Affiliation(s)
- Lindsey M Hutt-Fletcher
- Department of Microbiology & Immunology, Feist-Weiller Cancer Center and Center for Molecular & Tumor Virology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA; Tel.: +1 318 675 4948
| |
Collapse
|
16
|
Non-redundant and redundant roles of cytomegalovirus gH/gL complexes in host organ entry and intra-tissue spread. PLoS Pathog 2015; 11:e1004640. [PMID: 25659098 PMCID: PMC4450070 DOI: 10.1371/journal.ppat.1004640] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 12/22/2014] [Indexed: 01/05/2023] Open
Abstract
Herpesviruses form different gH/gL virion envelope glycoprotein complexes that serve as entry complexes for mediating viral cell-type tropism in vitro; their roles in vivo, however, remained speculative and can be addressed experimentally only in animal models. For murine cytomegalovirus two alternative gH/gL complexes, gH/gL/gO and gH/gL/MCK-2, have been identified. A limitation of studies on viral tropism in vivo has been the difficulty in distinguishing between infection initiation by viral entry into first-hit target cells and subsequent cell-to-cell spread within tissues. As a new strategy to dissect these two events, we used a gO-transcomplemented ΔgO mutant for providing the gH/gL/gO complex selectively for the initial entry step, while progeny virions lack gO in subsequent rounds of infection. Whereas gH/gL/gO proved to be critical for establishing infection by efficient entry into diverse cell types, including liver macrophages, endothelial cells, and hepatocytes, it was dispensable for intra-tissue spread. Notably, the salivary glands, the source of virus for host-to-host transmission, represent an exception in that entry into virus-producing cells did not strictly depend on either the gH/gL/gO or the gH/gL/MCK-2 complex. Only if both complexes were absent in gO and MCK-2 double-knockout virus, in vivo infection was abolished at all sites.
Collapse
|
17
|
Frederico B, Chao B, May JS, Belz GT, Stevenson PG. A murid gamma-herpesviruses exploits normal splenic immune communication routes for systemic spread. Cell Host Microbe 2015; 15:457-70. [PMID: 24721574 DOI: 10.1016/j.chom.2014.03.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 12/05/2013] [Accepted: 02/03/2014] [Indexed: 12/12/2022]
Abstract
Gamma-herpesviruses (γHVs) are widespread oncogenic pathogens that chronically infect circulating lymphocytes. How they subvert the immune check-point function of the spleen to promote persistent infection is not clear. We show that Murid Herpesvirus-4 (MuHV-4) enters the spleen by infecting marginal zone (MZ) macrophages, which provided a conduit to MZ B cells. Relocation of MZ B cells to the white pulp allowed virus transfer to follicular dendritic cells. From here the virus reached germinal center B cells to establish persistent infection. Mice lacking MZ B cells, or treated with a sphingosine-1-phosphate receptor agonist to dislocate them, were protected against MuHV-4 colonization. MuHV-4 lacking ORF27, which encodes a glycoprotein necessary for efficient intercellular spread, could infect MZ macrophages but was impaired in long-term infection. Thus, MuHV-4, a γHV, exploits normal immune communication routes to spread by serial lymphoid/myeloid exchange.
Collapse
Affiliation(s)
- Bruno Frederico
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 2QQ, UK
| | - Brittany Chao
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 2QQ, UK
| | - Janet S May
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 2QQ, UK
| | - Gabrielle T Belz
- Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia
| | - Philip G Stevenson
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 2QQ, UK; Sir Albert Sakzewski Virus Research Centre and Queensland Children's Medical Research Institute, University of Queensland, Brisbane, Queensland 4029, Australia.
| |
Collapse
|
18
|
Abstract
Epstein-Barr virus primarily, though not exclusively, infects B cells and epithelial cells. Many of the virus and cell proteins that are involved in entry into these two cell types in vitro have been identified, and their roles in attachment and fusion are being explored. This chapter discusses what is known about entry at the cellular level in vitro and describes what little is known about the process in vivo. It highlights some of the questions that still need to be addressed and considers some models that need further testing.
Collapse
Affiliation(s)
- Liudmila S Chesnokova
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71130, USA
| | - Ru Jiang
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71130, USA.,Department of Clinical Teaching and Training, Tianjin University of Traditional Chinese Medicine, 312 West Anshan Road, 300193, Nankai District, Tianjin, China
| | - Lindsey M Hutt-Fletcher
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71130, USA.
| |
Collapse
|
19
|
Van den Broeke C, Jacob T, Favoreel HW. Rho'ing in and out of cells: viral interactions with Rho GTPase signaling. Small GTPases 2014; 5:e28318. [PMID: 24691164 DOI: 10.4161/sgtp.28318] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Rho GTPases are key regulators of actin and microtubule dynamics and organization. Increasing evidence shows that many viruses have evolved diverse interactions with Rho GTPase signaling and manipulate them for their own benefit. In this review, we discuss how Rho GTPase signaling interferes with many steps in the viral replication cycle, especially entry, replication, and spread. Seen the diversity between viruses, it is not surprising that there is considerable variability in viral interactions with Rho GTPase signaling. However, several largely common effects on Rho GTPases and actin architecture and microtubule dynamics have been reported. For some of these processes, the molecular signaling and biological consequences are well documented while for others we just begin to understand them. A better knowledge and identification of common threads in the different viral interactions with Rho GTPase signaling and their ultimate consequences for virus and host may pave the way toward the development of new antiviral drugs that may target different viruses.
Collapse
Affiliation(s)
- Céline Van den Broeke
- Department of Virology, Parasitology, and Immunology; Faculty of Veterinary Medicine; Ghent University; Ghent, Belgium
| | - Thary Jacob
- Department of Virology, Parasitology, and Immunology; Faculty of Veterinary Medicine; Ghent University; Ghent, Belgium
| | - Herman W Favoreel
- Department of Virology, Parasitology, and Immunology; Faculty of Veterinary Medicine; Ghent University; Ghent, Belgium
| |
Collapse
|
20
|
Vidick S, Leroy B, Palmeira L, Machiels B, Mast J, François S, Wattiez R, Vanderplasschen A, Gillet L. Proteomic characterization of murid herpesvirus 4 extracellular virions. PLoS One 2013; 8:e83842. [PMID: 24386290 PMCID: PMC3875534 DOI: 10.1371/journal.pone.0083842] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 11/18/2013] [Indexed: 12/18/2022] Open
Abstract
Gammaherpesvirinae, such as the human Epstein-Barr virus (EBV) and the Kaposi’s sarcoma associated herpesvirus (KSHV) are highly prevalent pathogens that have been associated with several neoplastic diseases. As EBV and KSHV are host-range specific and replicate poorly in vitro, animal counterparts such as Murid herpesvirus-4 (MuHV-4) have been widely used as models. In this study, we used MuHV-4 in order to improve the knowledge about proteins that compose gammaherpesviruses virions. To this end, MuHV-4 extracellular virions were isolated and structural proteins were identified using liquid chromatography tandem mass spectrometry-based proteomic approaches. These analyses allowed the identification of 31 structural proteins encoded by the MuHV-4 genome which were classified as capsid (8), envelope (9), tegument (13) and unclassified (1) structural proteins. In addition, we estimated the relative abundance of the identified proteins in MuHV-4 virions by using exponentially modified protein abundance index analyses. In parallel, several host proteins were found in purified MuHV-4 virions including Annexin A2. Although Annexin A2 has previously been detected in different virions from various families, its role in the virion remains controversial. Interestingly, despite its relatively high abundance in virions, Annexin A2 was not essential for the growth of MuHV-4 in vitro. Altogether, these results extend previous work aimed at determining the composition of gammaherpesvirus virions and provide novel insights for understanding MuHV-4 biology.
Collapse
Affiliation(s)
- Sarah Vidick
- Department of Infectious Diseases, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Baptiste Leroy
- Department of Proteomics and Microbiology, Research Institute for Biosciences Interdisciplinary Mass Spectrometry Center (CISMa), University of Mons, Mons, Belgium
| | - Leonor Palmeira
- Department of Infectious Diseases, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Bénédicte Machiels
- Department of Infectious Diseases, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Jan Mast
- Electron Microscopy Unit, Veterinary and Agrochemical Research Centre, Brussels, Belgium
| | - Sylvie François
- Department of Infectious Diseases, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Ruddy Wattiez
- Department of Proteomics and Microbiology, Research Institute for Biosciences Interdisciplinary Mass Spectrometry Center (CISMa), University of Mons, Mons, Belgium
| | - Alain Vanderplasschen
- Department of Infectious Diseases, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Laurent Gillet
- Department of Infectious Diseases, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
- * E-mail:
| |
Collapse
|
21
|
Jochmann R, Pfannstiel J, Chudasama P, Kuhn E, Konrad A, Stürzl M. O-GlcNAc transferase inhibits KSHV propagation and modifies replication relevant viral proteins as detected by systematic O-GlcNAcylation analysis. Glycobiology 2013; 23:1114-30. [PMID: 23580777 DOI: 10.1093/glycob/cwt028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
O-GlcNAcylation is an inducible, highly dynamic and reversible post-translational modification, mediated by a unique enzyme named O-linked N-acetyl-d-glucosamine (O-GlcNAc) transferase (OGT). In response to nutrients, O-GlcNAc levels are differentially regulated on many cellular proteins involved in gene expression, translation, immune reactions, protein degradation, protein-protein interaction, apoptosis and signal transduction. In contrast to eukaryotic cells, little is known about the role of O-GlcNAcylation in the viral life cycle. Here, we show that the overexpression of the OGT reduces the replication efficiency of Kaposi's sarcoma-associated herpesvirus (KSHV) in a dose-dependent manner. In order to investigate the global impact of O-GlcNAcylation in the KSHV life cycle, we systematically analyzed the 85 annotated KSHV-encoded open reading frames for O-GlcNAc modification. For this purpose, an immunoprecipitation (IP) strategy with three different approaches was carried out and the O-GlcNAc signal of the identified proteins was properly controlled for specificity. Out of the 85 KSHV-encoded proteins, 18 proteins were found to be direct targets for O-GlcNAcylation. Selected proteins were further confirmed by mass spectrometry for O-GlcNAc modification. Correlation of the functional annotation and the O-GlcNAc status of KSHV proteins showed that the predominant targets were proteins involved in viral DNA synthesis and replication. These results indicate that O-GlcNAcylation plays a major role in the regulation of KSHV propagation.
Collapse
Affiliation(s)
- Ramona Jochmann
- Division of Molecular and Experimental Surgery, University Medical Center Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg, Schwabachanlage 10, 91054 Erlangen, Germany
| | | | | | | | | | | |
Collapse
|
22
|
Zhang W, Gao SJ. Exploitation of Cellular Cytoskeletons and Signaling Pathways for Cell Entry by Kaposi's Sarcoma-Associated Herpesvirus and the Closely Related Rhesus Rhadinovirus. Pathogens 2012; 1:102-27. [PMID: 23420076 PMCID: PMC3571711 DOI: 10.3390/pathogens1020102] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
As obligate intracellular pathogens, viruses depend on the host cell machinery to complete their life cycle. Kaposi’s sarcoma-associated herpes virus (KSHV) is an oncogenicvirus causally linked to the development of Kaposi’s sarcoma and several other lymphoproliferative malignancies. KSHV entry into cells is tightly regulated by diverse viral and cellular factors. In particular, KSHV actively engages cellular integrins and ubiquitination pathways for successful infection. Emerging evidence suggests that KSHV hijacks both actin and microtubule cytoskeletons at different phases during entry into cells. Here, we review recent findings on the early events during primary infection of KSHV and its closely related primate homolog rhesus rhadinovirus with highlights on the regulation of cellular cytoskeletons and signaling pathways that are important for this phase of virus life cycle.
Collapse
Affiliation(s)
| | - Shou-Jiang Gao
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-323-442-8028; Fax: +1-323-442-1721
| |
Collapse
|
23
|
Richerioux N, Blondeau C, Wiedemann A, Rémy S, Vautherot JF, Denesvre C. Rho-ROCK and Rac-PAK signaling pathways have opposing effects on the cell-to-cell spread of Marek's Disease Virus. PLoS One 2012; 7:e44072. [PMID: 22952878 PMCID: PMC3428312 DOI: 10.1371/journal.pone.0044072] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 07/31/2012] [Indexed: 01/11/2023] Open
Abstract
Marek's Disease Virus (MDV) is an avian alpha-herpesvirus that only spreads from cell-to-cell in cell culture. While its cell-to-cell spread has been shown to be dependent on actin filament dynamics, the mechanisms regulating this spread remain largely unknown. Using a recombinant BAC20 virus expressing an EGFPVP22 tegument protein, we found that the actin cytoskeleton arrangements and cell-cell contacts differ in the center and periphery of MDV infection plaques, with cells in the latter areas showing stress fibers and rare cellular projections. Using specific inhibitors and activators, we determined that Rho-ROCK pathway, known to regulate stress fiber formation, and Rac-PAK, known to promote lamellipodia formation and destabilize stress fibers, had strong contrasting effects on MDV cell-to-cell spread in primary chicken embryo skin cells (CESCs). Inhibition of Rho and its ROCKs effectors led to reduced plaque sizes whereas inhibition of Rac or its group I-PAKs effectors had the adverse effect. Importantly, we observed that the shape of MDV plaques is related to the semi-ordered arrangement of the elongated cells, at the monolayer level in the vicinity of the plaques. Inhibition of Rho-ROCK signaling also resulted in a perturbation of the cell arrangement and a rounding of plaques. These opposing effects of Rho and Rac pathways in MDV cell-to-cell spread were validated for two parental MDV recombinant viruses with different ex vivo spread efficiencies. Finally, we demonstrated that Rho/Rac pathways have opposing effects on the accumulation of N-cadherin at cell-cell contact regions between CESCs, and defined these contacts as adherens junctions. Considering the importance of adherens junctions in HSV-1 cell-to-cell spread in some cell types, this result makes of adherens junctions maintenance one potential and attractive hypothesis to explain the Rho/Rac effects on MDV cell-to-cell spread. Our study provides the first evidence that MDV cell-to-cell spread is regulated by Rho/Rac signaling.
Collapse
Affiliation(s)
- Nicolas Richerioux
- INRA, UMR1282, Infectious Diseases and Public Health, ISP, BIOVA team, Nouzilly, France
| | | | | | | | | | | |
Collapse
|
24
|
Bosse JB, Bauerfeind R, Popilka L, Marcinowski L, Taeglich M, Jung C, Striebinger H, von Einem J, Gaul U, Walther P, Koszinowski UH, Ruzsics Z. A beta-herpesvirus with fluorescent capsids to study transport in living cells. PLoS One 2012; 7:e40585. [PMID: 22792376 PMCID: PMC3394720 DOI: 10.1371/journal.pone.0040585] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Accepted: 06/09/2012] [Indexed: 11/18/2022] Open
Abstract
Fluorescent tagging of viral particles by genetic means enables the study of virus dynamics in living cells. However, the study of beta-herpesvirus entry and morphogenesis by this method is currently limited. This is due to the lack of replication competent, capsid-tagged fluorescent viruses. Here, we report on viable recombinant MCMVs carrying ectopic insertions of the small capsid protein (SCP) fused to fluorescent proteins (FPs). The FPs were inserted into an internal position which allowed the production of viable, fluorescently labeled cytomegaloviruses, which replicated with wild type kinetics in cell culture. Fluorescent particles were readily detectable by several methods. Moreover, in a spread assay, labeled capsids accumulated around the nucleus of the newly infected cells without any detectable viral gene expression suggesting normal entry and particle trafficking. These recombinants were used to record particle dynamics by live-cell microscopy during MCMV egress with high spatial as well as temporal resolution. From the resulting tracks we obtained not only mean track velocities but also their mean square displacements and diffusion coefficients. With this key information, we were able to describe particle behavior at high detail and discriminate between particle tracks exhibiting directed movement and tracks in which particles exhibited free or anomalous diffusion.
Collapse
Affiliation(s)
- Jens B. Bosse
- Max von Pettenkofer-Institute, Ludwig Maximilians University, Munich, Germany
| | - Rudolf Bauerfeind
- Department of Cell Biology, Hannover Medical School, Hannover, Germany
| | - Leonhard Popilka
- Max von Pettenkofer-Institute, Ludwig Maximilians University, Munich, Germany
| | - Lisa Marcinowski
- Max von Pettenkofer-Institute, Ludwig Maximilians University, Munich, Germany
| | - Martina Taeglich
- Department of Biochemistry, Gene Center, Ludwig Maximilians University, Munich, Germany
| | - Christophe Jung
- Department of Biochemistry, Gene Center, Ludwig Maximilians University, Munich, Germany
| | - Hannah Striebinger
- Max von Pettenkofer-Institute, Ludwig Maximilians University, Munich, Germany
| | - Jens von Einem
- Institute of Virology, University Medical Center Ulm, Ulm, Germany
| | - Ulrike Gaul
- Department of Biochemistry, Gene Center, Ludwig Maximilians University, Munich, Germany
| | - Paul Walther
- Central Unit for Electron Microscopy, University of Ulm, Ulm, Germany
| | | | - Zsolt Ruzsics
- Max von Pettenkofer-Institute, Ludwig Maximilians University, Munich, Germany
- * E-mail:
| |
Collapse
|
25
|
Yang G, Xiao X, Yin D, Zhang X. The interaction between viral protein and host actin facilitates the virus infection to host. Gene 2012; 507:139-45. [PMID: 22750318 DOI: 10.1016/j.gene.2012.06.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 05/25/2012] [Accepted: 06/15/2012] [Indexed: 10/28/2022]
Abstract
Although the virus-host interaction has attracted extensive studies, the host proteins essential for virus infection remain largely unknown. To address this issue, the shrimp Penaeus stylirostris densovirus (PstDNV), belonging to the family Parvoviridae, was characterized. PstDNV, a single-stranded DNA virus with a 3.9-kb genome, encoded only three open reading frames (ORFs). Among the three viral proteins, the PstDNV ORF2-encoded protein was discovered to interact with the shrimp actin, suggesting that the host actin played a very important role in virus infection. The RNAi assays revealed that the ORF2-encoded protein was required for the PstDNV infection. The confocal evidence demonstrated that the interaction between the ORF2-encoded protein and actin was essential for the virus infection. Therefore our study indicated that the manipulation of the host actin cytoskeleton was a necessary strategy for viral pathogens to invade host cells.
Collapse
Affiliation(s)
- Geng Yang
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, Key Laboratory of Animal Virology of Ministry of Agriculture and College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | | | | | | |
Collapse
|
26
|
Gaspar M, May JS, Sukla S, Frederico B, Gill MB, Smith CM, Belz GT, Stevenson PG. Murid herpesvirus-4 exploits dendritic cells to infect B cells. PLoS Pathog 2011; 7:e1002346. [PMID: 22102809 PMCID: PMC3213091 DOI: 10.1371/journal.ppat.1002346] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 09/15/2011] [Indexed: 11/19/2022] Open
Abstract
Dendritic cells (DCs) play a central role in initiating immune responses. Some persistent viruses infect DCs and can disrupt their functions in vitro. However, these viruses remain strongly immunogenic in vivo. Thus what role DC infection plays in the pathogenesis of persistent infections is unclear. Here we show that a persistent, B cell-tropic gamma-herpesvirus, Murid Herpesvirus-4 (MuHV-4), infects DCs early after host entry, before it establishes a substantial infection of B cells. DC-specific virus marking by cre-lox recombination revealed that a significant fraction of the virus latent in B cells had passed through a DC, and a virus attenuated for replication in DCs was impaired in B cell colonization. In vitro MuHV-4 dramatically altered the DC cytoskeleton, suggesting that it manipulates DC migration and shape in order to spread. MuHV-4 therefore uses DCs to colonize B cells. We detect invading viruses with dendritic cells and eliminate them with lymphocytes. A key interaction is lymphocyte activation by dendritic cells presenting viral antigens. Not all viruses can be eliminated, and some that persist deliberately colonize lymphocytes and dendritic cells, such that parasitism and host defence co-exist within the same sites. Once established, these infections are very hard to eliminate. Therefore to vaccinate against them we must determine how infection first occurs. Here we show that a gamma-herpesvirus relation of the Kaposi's Sarcoma-associated Herpesvirus and Epstein-Barr virus - B cell-tropic human pathogens that cause cancers - uses dendritic cells to reach and infect B lymphocytes. Dendritic cells were infected before B cells; viruses marked genetically in dendritic cells were recovered from B cells; and a virus unable to replicate in dendritic cells infected B cells poorly. Thus dendritic cells not only present viral antigens to lymphocytes, but can be exploited by evasive viruses to infect lymphocytes. Therefore targeting dendritic cell infection could be an effective means of vaccine-primed host defence.
Collapse
Affiliation(s)
- Miguel Gaspar
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Janet S. May
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Soumi Sukla
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Bruno Frederico
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Michael B. Gill
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Christopher M. Smith
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Gabrielle T. Belz
- Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Philip G. Stevenson
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
27
|
Johnsson AK, Karlsson R. Synaptotagmin 1 causes phosphatidyl inositol lipid-dependent actin remodeling in cultured non-neuronal and neuronal cells. Exp Cell Res 2011; 318:114-26. [PMID: 22036579 DOI: 10.1016/j.yexcr.2011.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 10/04/2011] [Accepted: 10/06/2011] [Indexed: 11/24/2022]
Abstract
Here we demonstrate that a dramatic actin polymerizing activity caused by ectopic expression of the synaptic vesicle protein synaptotagmin 1 that results in extensive filopodia formation is due to the presence of a lysine rich sequence motif immediately at the cytoplasmic side of the transmembrane domain of the protein. This polybasic sequence interacts with anionic phospholipids in vitro, and, consequently, the actin remodeling caused by this sequence is interfered with by expression of a phosphatidyl inositol (4,5)-bisphosphate (PIP2)-targeted phosphatase, suggesting that it intervenes with the function of PIP2-binding actin control proteins. The activity drastically alters the behavior of a range of cultured cells including the neuroblastoma cell line SH-SY5Y and primary cortical mouse neurons, and, since the sequence is conserved also in synaptotagmin 2, it may reflect an important fine-tuning role for these two proteins during synaptic vesicle fusion and neurotransmitter release.
Collapse
Affiliation(s)
- Anna-Karin Johnsson
- Department of Cell Biology, Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | | |
Collapse
|
28
|
Eugenin EA, Gaskill PJ, Berman JW. Tunneling nanotubes (TNT): A potential mechanism for intercellular HIV trafficking. Commun Integr Biol 2011; 2:243-4. [PMID: 19641744 DOI: 10.4161/cib.2.3.8165] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Accepted: 02/12/2009] [Indexed: 01/21/2023] Open
Abstract
Cell-to-cell communication coordinates the development of multicellular systems, and is mediated by soluble factors, gap junctions and the recently described tunneling nanotubes (TNT). Both TNT and gap junctions facilitate the transfer of intracellular mediators between the cytoplasm of connected cells. We recently described that HIV induced the formation of TNT in human primary macrophages in correlation with viral replication. Based on these results we hypothesized that during HIV infection, TNTs are hijacked by HIV to spread infection. TNT like structures may be a novel mechanism of amplification of HIV infection. Our findings and those of others require further investigation to identify the specific mechanisms by which pathogens use TNT.
Collapse
Affiliation(s)
- Eliseo A Eugenin
- Department of Pathology; Albert Einstein College of Medicine; Bronx, NY USA
| | | | | |
Collapse
|
29
|
Van den Broeke C, Favoreel HW. Actin' up: herpesvirus interactions with Rho GTPase signaling. Viruses 2011; 3:278-92. [PMID: 21994732 PMCID: PMC3185701 DOI: 10.3390/v3040278] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 03/15/2011] [Accepted: 03/16/2011] [Indexed: 01/06/2023] Open
Abstract
Herpesviruses constitute a very large and diverse family of DNA viruses, which can generally be subdivided in alpha-, beta- and gammaherpesvirus subfamilies. Increasing evidence indicates that many herpesviruses interact with cytoskeleton-regulating Rho GTPase signaling pathways during different phases of their replication cycle. Because of the large differences between herpesvirus subfamilies, the molecular mechanisms and specific consequences of individual herpesvirus interactions with Rho GTPase signaling may differ. However, some evolutionary distinct but similar general effects on Rho GTPase signaling and the cytoskeleton have also been reported. Examples of these include Rho GTPase-mediated nuclear translocation of virus during entry in a host cell and Rho GTPase-mediated viral cell-to-cell spread during later stages of infection. The current review gives an overview of both general and individual interactions of herpesviruses with Rho GTPase signaling.
Collapse
Affiliation(s)
- Céline Van den Broeke
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium.
| | | |
Collapse
|
30
|
HCMV spread and cell tropism are determined by distinct virus populations. PLoS Pathog 2011; 7:e1001256. [PMID: 21249233 PMCID: PMC3020925 DOI: 10.1371/journal.ppat.1001256] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 12/13/2010] [Indexed: 11/19/2022] Open
Abstract
Human cytomegalovirus (HCMV) can infect many different cell types in vivo. Two gH/gL complexes are used for entry into cells. gH/gL/pUL(128,130,131A) shows no selectivity for its host cell, whereas formation of a gH/gL/gO complex only restricts the tropism mainly to fibroblasts. Here, we describe that depending on the cell type in which virus replication takes place, virus carrying the gH/gL/pUL(128,130,131A) complex is either released or retained cell-associated. We observed that virus spread in fibroblast cultures was predominantly supernatant-driven, whereas spread in endothelial cell (EC) cultures was predominantly focal. This was due to properties of virus released from fibroblasts and EC. Fibroblasts released virus which could infect both fibroblasts and EC. In contrast, EC released virus which readily infected fibroblasts, but was barely able to infect EC. The EC infection capacities of virus released from fibroblasts or EC correlated with respectively high or low amounts of gH/gL/pUL(128,130,131A) in virus particles. Moreover, we found that focal spread in EC cultures could be attributed to EC-tropic virus tightly associated with EC and not released into the supernatant. Preincubation of fibroblast-derived virus progeny with EC or beads coated with pUL131A-specific antibodies depleted the fraction that could infect EC, and left a fraction that could predominantly infect fibroblasts. These data strongly suggest that HCMV progeny is composed of distinct virus populations. EC specifically retain the EC-tropic population, whereas fibroblasts release EC-tropic and non EC-tropic virus. Our findings offer completely new views on how HCMV spread may be controlled by its host cells. gH/gL complexes of herpesviruses are supposed to promote fusion of the viral envelope with cellular membranes. The gH/gL core complex associates with additional proteins which define the tropism for certain cell types by promoting binding to specific receptors. Two alternative gH/gL complexes of human cytomegalovirus (HCMV) define the cell tropism, the entry pathway and the spread of virus. Formation of a gH/gL/gO complex during infection determines release of infectious virus into the supernatant. The gH/gL/pUL(128,130,131A) complex determines the tropism for endothelial cells (EC) and promotes focal spread. Here, we could show that HCMV-infected cells produce EC-tropic and non EC-tropic virus populations. While fibroblasts release both populations into the supernatant, EC predominantly release the non EC-tropic population. Different host cells of HCMV thus may direct the distribution of virus progeny.
Collapse
|
31
|
Abstract
Two major structural elements of a cell are the cytoskeleton and the lipid membranes. Actin and cholesterol are key components of the cytoskeleton and membranes, respectively, and are involved in a plethora of different cellular processes. This review summarizes and discusses the interaction of alphaherpesviruses with actin and cholesterol during different stages of the replication cycle: virus entry, replication and assembly in the nucleus, and virus egress. Elucidating these interactions not only yields novel insights into the biology of these important pathogens, but may also shed new light on cell biological aspects of actin and cholesterol, and lead to novel avenues in the design of antiviral strategies.
Collapse
|
32
|
Wright DE, Colaco S, Colaco C, Stevenson PG. Antibody limits in vivo murid herpesvirus-4 replication by IgG Fc receptor-dependent functions. J Gen Virol 2009; 90:2592-2603. [PMID: 19625459 PMCID: PMC2885036 DOI: 10.1099/vir.0.014266-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 07/17/2009] [Indexed: 12/11/2022] Open
Abstract
Antibody is an important antiviral defence. However, it is considered to do little against human gamma-herpesviruses, which establish predominantly latent infections regulated by T cells. One limitation on analysing these infections has been that latency is already well-established at clinical presentation; early infection may still be accessible to antibody. Here, using murid herpesvirus-4 (MuHV-4), we tested the impact of adoptively transferred antibody on early gamma-herpesvirus infection. Immune sera and neutralizing and non-neutralizing monoclonal antibodies (mAbs) all reduced acute lytic MuHV-4 replication. The reductions, even by neutralizing mAbs, were largely or completely dependent on host IgG Fc receptors. Therefore, passive antibody can blunt acute gamma-herpesvirus lytic infection, and does this principally by IgG Fc-dependent functions rather than by neutralization.
Collapse
Affiliation(s)
- Debbie E. Wright
- Division of Virology, Department of Pathology, University of Cambridge, UK
| | - Susanna Colaco
- Division of Virology, Department of Pathology, University of Cambridge, UK
| | - Camilo Colaco
- Immunobiology Ltd, Babraham Research Campus, Cambridge, UK
| | | |
Collapse
|
33
|
Xiao J, Palefsky JM, Herrera R, Sunshine C, Tugizov SM. EBV-positive human sera contain antibodies against the EBV BMRF-2 protein. Virology 2009; 393:151-159. [PMID: 19698968 PMCID: PMC2771626 DOI: 10.1016/j.virol.2009.07.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 06/19/2009] [Accepted: 07/22/2009] [Indexed: 12/21/2022]
Abstract
We previously showed that the EBV glycoprotein BMRF-2 contains a functional integrin-binding Arg-Gly-Asp (RGD) domain that plays an important role in viral infection and cell-to-cell spread of progeny virions in oral epithelial cells. In this study, we found that EBV-seropositive human sera contain antibodies against BMRF-2. The inhibitory effect of EBV-positive sera on EBV infection of oral epithelial cells was substantially reduced by pre-incubation of serum samples with the BMRF-2 RGD peptide, suggesting that anti-BMRF-2 human antibodies possess neutralizing activity. EBV-specific sera reacted strongly with the BMRF-2 extracellular domain (170-213 aa) containing the RGD motif, whereas they reacted only weakly or not at all with a mutated form of the BMRF-2 extracellular domain containing AAA instead of RGD. These data indicate that RGD motif of BMRF-2 is part of an immunodominant antigenic determinant within the extracellular domain of BMRF-2 that may contribute to EBV neutralization during EBV reactivation.
Collapse
Affiliation(s)
- Jianqiao Xiao
- Department of Medicine, University of California, San Francisco, USA
| | - Joel M. Palefsky
- Department of Medicine, University of California, San Francisco, USA
- Department of Orofacial Sciences, University of California, San Francisco, USA
| | - Rossana Herrera
- Department of Medicine, University of California, San Francisco, USA
| | - Carl Sunshine
- Department of Medicine, University of California, San Francisco, USA
| | - Sharof M. Tugizov
- Department of Medicine, University of California, San Francisco, USA
- Department of Orofacial Sciences, University of California, San Francisco, USA
| |
Collapse
|
34
|
The nucleoprotein of lymphocytic choriomeningitis virus facilitates spread of persistent infection through stabilization of the keratin network. J Virol 2009; 83:7842-9. [PMID: 19494018 DOI: 10.1128/jvi.00309-09] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lymphocytic choriomeningitis virus (LCMV) is a prototypic arenavirus containing a bisegmented single-stranded RNA genome with an ambisense coding strategy. MX is a noncytolytic LCMV strain with an in vitro host range restricted to only few cell lines. MX LCMV spreads via cell-cell contacts and causes persistent infection with high production of viral nucleoprotein (NP). Using a proteomic approach, we identified keratin 1 (K1), an intermediate filament network component, as a binding partner of the viral NP. The functional significance of this interaction has been examined by chemical disruption of the keratin network, resulting in a reduced spread of MX LCMV in HeLa cells. However, K1 disassembly was considerably lower in MX LCMV-infected cells than in noninfected counterparts, indicating that NP can stabilize the keratin network and thereby support the integrity of cytoskeleton. The presence of NP also resulted in increased formation of desmosomes and stronger cell-cell adhesion. Similar effects were observed in HeLa cells persistently infected with LCMV strain Armstrong. Our findings suggest that the keratin network is important for the intercellular transmission of persistent LCMV infection in epithelial cells and show that the virus can actively facilitate its own intercellular spread through the interaction between the viral NP and K1 and stimulation of cell-cell contacts.
Collapse
|
35
|
Xiao J, Palefsky JM, Herrera R, Berline J, Tugizov SM. EBV BMRF-2 facilitates cell-to-cell spread of virus within polarized oral epithelial cells. Virology 2009; 388:335-43. [PMID: 19394065 DOI: 10.1016/j.virol.2009.03.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 03/20/2009] [Accepted: 03/21/2009] [Indexed: 12/12/2022]
Abstract
We previously reported that the Epstein-Barr virus (EBV) BMRF-2 protein plays an important role in EBV infection of polarized oral epithelial cells by interacting with beta1 and alphav family integrins. Here we show that infection of polarized oral epithelial cells with B27-BMRF-2(low) recombinant virus, expressing a low level of BMRF-2, resulted in significantly smaller plaques compared with infection by parental B95-8 virus. BMRF-2 localized in the trans-Golgi network (TGN) and basolateral sorting vesicles and was transported to the basolateral membranes of polarized epithelial cells. Mutation of the tyrosine- and dileucine-containing basolateral sorting signal, YLLV, in the cytoplasmic domain of BMRF-2 led to the failure of its accumulation in the TGN and its basolateral transport. These data show that BMRF-2 may play an important role in promoting the spread of EBV progeny virions through lateral membranes of oral epithelial cells.
Collapse
Affiliation(s)
- Jianqiao Xiao
- Department of Medicine, University of California, San Francisco, USA
| | | | | | | | | |
Collapse
|
36
|
Loesing JB, Di Fiore S, Ritter K, Fischer R, Kleines M. Epstein-Barr virus BDLF2-BMRF2 complex affects cellular morphology. J Gen Virol 2009; 90:1440-1449. [PMID: 19264620 DOI: 10.1099/vir.0.009571-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Herpesvirus glycoproteins often form specific heterodimers that can fulfil functions that cannot be carried out by either of the partners acting alone. This study showed that interactions between the Epstein-Barr virus (EBV) multi-spanning transmembrane envelope protein BMRF2 and type II membrane protein BDLF2 influence the way in which these proteins are trafficked in the cell, and hence the subcellular compartment in which they accumulate. When expressed transiently in mammalian cells, BDLF2 accumulated in the endoplasmic reticulum (ER), whereas BMRF2 accumulated in the ER and Golgi apparatus. However, when the two proteins were co-expressed, BDLF2 was transported with BMRF2 to the Golgi apparatus and from there to the plasma membrane, where the proteins co-localized extensively. The distribution of the two proteins at the plasma membrane was reproducibly associated with dramatic changes in cellular morphology, including the formation of enlarged membrane protrusions and cellular processes whose adhesion extremities were organized by the actin cytoskeleton. A dominant-active form of the small GTPase RhoA was epistatic to this morphological phenotype, suggesting that RhoA is a central component of the signalling pathway that reorganizes the cytoskeleton in response to BDLF2-BMRF2. It was concluded that EBV produces a glycoprotein heterodimer that induces changes in cellular morphology through reorganization of the actin cytoskeleton and may facilitate virion spread between cells.
Collapse
Affiliation(s)
- Jens-Bernhard Loesing
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Forckenbeckstr. 6, 52074 Aachen, Germany.,Division of Virology, Department of Medical Microbiology, UK Aachen, RWTH Aachen, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Stefano Di Fiore
- Institute for Molecular Biotechnology (IMB), RWTH Aachen, Worringerweg 1, 52074 Aachen, Germany
| | - Klaus Ritter
- Division of Virology, Department of Medical Microbiology, UK Aachen, RWTH Aachen, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Rainer Fischer
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Forckenbeckstr. 6, 52074 Aachen, Germany
| | - Michael Kleines
- Division of Virology, Department of Medical Microbiology, UK Aachen, RWTH Aachen, Pauwelsstr. 30, 52074 Aachen, Germany
| |
Collapse
|
37
|
Gore M, Hutt-Fletcher LM. The BDLF2 protein of Epstein-Barr virus is a type II glycosylated envelope protein whose processing is dependent on coexpression with the BMRF2 protein. Virology 2008; 383:162-7. [PMID: 18995876 DOI: 10.1016/j.virol.2008.10.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2008] [Revised: 09/30/2008] [Accepted: 10/03/2008] [Indexed: 01/12/2023]
Abstract
Epstein-Barr virus has been documented to encode for ten envelope glycoproteins, gB, gH, gL, gM, gN, gp350, gp42, gp78, gp150 and BMRF2. The BDLF2 open reading frame is also predicted to encode a type II membrane protein but, although found in the virion, it has been described as a component of the tegument. We show here that, as predicted, it is the eleventh envelope glycoprotein of the virus. The full length 65 kDa glycoprotein formed a complex with BMRF2 and, as its homologs in other gammaherpesviruses, was dependent on BMRF2, for authentic processing and transport. Two cleavage products of BDLF2 were also identified in cells and in purified virion particles, one corresponding approximately to the aminoterminal half of the protein, that remained associated with the full length form, and one corresponding to the carboxyterminal glycosylated portion of the protein which did not.
Collapse
Affiliation(s)
- Mindy Gore
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA
| | | |
Collapse
|
38
|
Sherer NM, Mothes W. Cytonemes and tunneling nanotubules in cell-cell communication and viral pathogenesis. Trends Cell Biol 2008; 18:414-20. [PMID: 18703335 DOI: 10.1016/j.tcb.2008.07.003] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Revised: 07/17/2008] [Accepted: 07/18/2008] [Indexed: 01/16/2023]
Abstract
Cells use a variety of intercellular structures, including gap junctions and synapses, for cell-cell communication. Here, we present recent advances in the understanding of thin membrane bridges that function in cell-cell signaling and intercellular transport. Cytonemes or filopodial bridges connect neighboring cells via mechanisms of adhesion, which enable ligand-receptor-mediated transfer of surface-associated cargoes from cell to cell. By contrast, tunneling nanotubes establish tubular conduits between cells that provide for the exchange of both cell-surface molecules and cytoplasmic content. We propose models for the biogenesis of both types of membrane bridges and describe how viruses use these structures for the purpose of cell-to-cell spread.
Collapse
Affiliation(s)
- Nathan M Sherer
- Department of Infectious Diseases, King's College London School of Medicine, London Bridge, London SE19RT, UK
| | | |
Collapse
|
39
|
Gillet L, Colaco S, Stevenson PG. The Murid Herpesvirus-4 gL regulates an entry-associated conformation change in gH. PLoS One 2008; 3:e2811. [PMID: 18665235 PMCID: PMC2481400 DOI: 10.1371/journal.pone.0002811] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Accepted: 07/02/2008] [Indexed: 11/18/2022] Open
Abstract
The glycoprotein H (gH)/gL heterodimer is crucial for herpesvirus membrane fusion. Yet how it functions is not well understood. The Murid Herpesvirus-4 gH, like that of other herpesviruses, adopts its normal virion conformation by associating with gL. However, gH switched back to a gL-independent conformation after virion endocytosis. This switch coincided with a conformation switch in gB and with capsid release. Virions lacking gL constitutively expressed the down-stream form of gH, prematurely switched gB to its down-stream form, and showed premature capsid release with poor infectivity. These data argue that gL plays a key role in regulating a gH and gB functional switch from cell binding to membrane fusion.
Collapse
Affiliation(s)
- Laurent Gillet
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Susanna Colaco
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Philip G. Stevenson
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|