1
|
McCluskey E, Sajjan U. In Vitro Model to Test Therapeutic Agents Against Rhinovirus Infection. Methods Mol Biol 2025; 2903:185-191. [PMID: 40016467 DOI: 10.1007/978-1-0716-4410-2_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
To develop an antiviral drug, it is extremely important to have a relevant cell culture model system. The airway epithelial cells lining the conductive airways are the primary target for all three classes of rhinoviruses. However, rhinovirus replication is not very robust in airway epithelial cells; therefore, it does not cause cytopathic effects. However, rhinovirus induces replication-dependent cytokines such as type I and type III interferons and CXCL-10, which can be used as surrogates for viral load. Here, we describe a method using the immortalized normal human bronchial epithelial cell line, BEAS-2B cells. These cells readily grow in serum-free medium and can be infected with rhinovirus A and B. The binding, endocytosis, and replication of the virus induce CXCL-8 in these cells. These cells also respond to replicating virus by showing robust CXCL-10 production. Both CXCL-8 and CXCL-10 secreted into the medium can be readily measured by ELISA. Therefore, this method can be used to examine the drugs that can inhibit binding, endocytosis, and replication of the virus.
Collapse
Affiliation(s)
- Elizabeth McCluskey
- Centre for Inflammation and Lung Research, Lewis Katz Medical School, Temple University, Philadelphia, PA, USA
| | - Umadevi Sajjan
- Centre for Inflammation and Lung Research, Lewis Katz Medical School, Temple University, Philadelphia, PA, USA.
- Department of Microbiology, Immunology and Inflammation, Lewis Katz Medical School, Temple University, Philadelphia, PA, USA.
- Department of Thoracic Medicine and Surgery, Lewis Katz Medical School, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Andino R, Kirkegaard K, Macadam A, Racaniello VR, Rosenfeld AB. The Picornaviridae Family: Knowledge Gaps, Animal Models, Countermeasures, and Prototype Pathogens. J Infect Dis 2023; 228:S427-S445. [PMID: 37849401 DOI: 10.1093/infdis/jiac426] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023] Open
Abstract
Picornaviruses are nonenveloped particles with a single-stranded RNA genome of positive polarity. This virus family includes poliovirus, hepatitis A virus, rhinoviruses, and Coxsackieviruses. Picornaviruses are common human pathogens, and infection can result in a spectrum of serious illnesses, including acute flaccid myelitis, severe respiratory complications, and hand-foot-mouth disease. Despite research on poliovirus establishing many fundamental principles of RNA virus biology and the first transgenic animal model of disease for infection by a human virus, picornaviruses are understudied. Existing knowledge gaps include, identification of molecules required for virus entry, understanding cellular and humoral immune responses elicited during virus infection, and establishment of immune-competent animal models of virus pathogenesis. Such knowledge is necessary for development of pan-picornavirus countermeasures. Defining enterovirus A71 and D68, human rhinovirus C, and echoviruses 29 as prototype pathogens of this virus family may provide insight into picornavirus biology needed to establish public health strategies necessary for pandemic preparedness.
Collapse
Affiliation(s)
- Raul Andino
- Department of Microbiology and Immunology, University of California, San Francisco, California, USA
| | - Karla Kirkegaard
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, California, USA
- Department of Genetics, Stanford University School of Medicine, Stanford University, Stanford, California, USA
| | - Andrew Macadam
- National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom
| | - Vincent R Racaniello
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Amy B Rosenfeld
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
3
|
Sayama A, Okamoto M, Tamaki R, Saito-Obata M, Saito M, Kamigaki T, Sayama Y, Lirio I, Manalo JIG, Tallo VL, Lupisan SP, Oshitani H. Comparison of Rhinovirus A-, B-, and C-Associated Respiratory Tract Illness Severity Based on the 5'-Untranslated Region Among Children Younger Than 5 Years. Open Forum Infect Dis 2022; 9:ofac387. [PMID: 36267245 PMCID: PMC9579461 DOI: 10.1093/ofid/ofac387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/30/2022] [Indexed: 11/05/2022] Open
Abstract
Background Rhinoviruses (RVs) are among the most frequently detected viruses from hospitalized children with severe acute respiratory infections, being classified into RV-A, RV-B, and RV-C (4 clades: C, GAC1, GAC2, and A2). This study aimed to compare the clinical characteristics and respiratory tract illness severity between the RV species and RV-C clades in children in primary care and hospital settings in rural communities in the Philippines. Methods Clinical samples and information of children <5 years old in the Philippines were collected from 2014 to 2016. The samples were tested by reverse-transcription polymerase chain reaction (RT-PCR) targeting the 5′-untranslated region. PCR-positive samples were sequenced, and RV species were identified by phylogenetic analysis. Results Overall, 3680 respiratory tract illness episodes in 1688 cohort children were documented; 713 of those were RV positive and identified as RV-A (n = 271), RV-B (n = 47), and RV-C (n = 395: C [n = 76], GAG1 [n = 172], GAG2 [n = 8], A2 [n = 138], and unidentified [n = 1]). Severe illnesses, low oxygen saturation, cough, and wheezing were more common in patients with RV-C, especially with GAC1, than in those with RV-A or RV-B. Furthermore, severe illness was significantly more common in RV-C (GAC1)–positive cases than in RV-A–positive cases (odds ratio, 2.61 [95% CI, 1.17–4.13]). Conclusions Children infected with RV-C had more severe illnesses than children infected with RV-A and RV-B. Moreover, emerging clades of RV-C were associated with increased severity.
Collapse
Affiliation(s)
- Akiko Sayama
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Michiko Okamoto
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Raita Tamaki
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai, Japan,Japan International Cooperation Agency, Tokyo, Japan,Kenya Ministry of Health Disease Surveillance and Response Unit, Nairobi, Kenya
| | - Mariko Saito-Obata
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mayuko Saito
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Taro Kamigaki
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yusuke Sayama
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Irene Lirio
- Research Institute for Tropical Medicine, Metro Manila, Philippines
| | | | - Veronica L Tallo
- Research Institute for Tropical Medicine, Metro Manila, Philippines
| | | | - Hitoshi Oshitani
- Correspondence: Hitoshi Oshitani, MD, PhD, Department of Virology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan ()
| |
Collapse
|
4
|
Coleman LA, Khoo SK, Franks K, Prastanti F, Le Souëf P, Karpievitch YV, Laing IA, Bosco A. Personal Network Inference Unveils Heterogeneous Immune Response Patterns to Viral Infection in Children with Acute Wheezing. J Pers Med 2021; 11:1293. [PMID: 34945765 PMCID: PMC8706513 DOI: 10.3390/jpm11121293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 12/01/2022] Open
Abstract
Human rhinovirus (RV)-induced exacerbations of asthma and wheeze are a major cause of emergency room presentations and hospital admissions among children. Previous studies have shown that immune response patterns during these exacerbations are heterogeneous and are characterized by the presence or absence of robust interferon responses. Molecular phenotypes of asthma are usually identified by cluster analysis of gene expression levels. This approach however is limited, since genes do not exist in isolation, but rather work together in networks. Here, we employed personal network inference to characterize exacerbation response patterns and unveil molecular phenotypes based on variations in network structure. We found that personal gene network patterns were dominated by two major network structures, consisting of interferon-response versus FCER1G-associated networks. Cluster analysis of these structures divided children into subgroups, differing in the prevalence of atopy but not RV species. These network structures were also observed in an independent cohort of children with virus-induced asthma exacerbations sampled over a time course, where we showed that the FCER1G-associated networks were mainly observed at late time points (days four-six) during the acute illness. The ratio of interferon- and FCER1G-associated gene network responses was able to predict recurrence, with low interferon being associated with increased risk of readmission. These findings demonstrate the applicability of personal network inference for biomarker discovery and therapeutic target identification in the context of acute asthma which focuses on variations in network structure.
Collapse
Affiliation(s)
- Laura A. Coleman
- Medical School (Paediatrics), University of Western Australia, Perth, WA 6009, Australia; (L.A.C.); (P.L.S.); (I.A.L.)
- Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia; (S.-K.K.); (K.F.); (F.P.); (Y.V.K.)
| | - Siew-Kim Khoo
- Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia; (S.-K.K.); (K.F.); (F.P.); (Y.V.K.)
- School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Kimberley Franks
- Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia; (S.-K.K.); (K.F.); (F.P.); (Y.V.K.)
- School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Franciska Prastanti
- Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia; (S.-K.K.); (K.F.); (F.P.); (Y.V.K.)
- School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Peter Le Souëf
- Medical School (Paediatrics), University of Western Australia, Perth, WA 6009, Australia; (L.A.C.); (P.L.S.); (I.A.L.)
- Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia; (S.-K.K.); (K.F.); (F.P.); (Y.V.K.)
| | - Yuliya V. Karpievitch
- Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia; (S.-K.K.); (K.F.); (F.P.); (Y.V.K.)
- School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Ingrid A. Laing
- Medical School (Paediatrics), University of Western Australia, Perth, WA 6009, Australia; (L.A.C.); (P.L.S.); (I.A.L.)
- Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia; (S.-K.K.); (K.F.); (F.P.); (Y.V.K.)
- School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Anthony Bosco
- Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia; (S.-K.K.); (K.F.); (F.P.); (Y.V.K.)
| |
Collapse
|
5
|
Fernandes RS, Freire MCLC, Bueno RV, Godoy AS, Gil LHVG, Oliva G. Reporter Replicons for Antiviral Drug Discovery against Positive Single-Stranded RNA Viruses. Viruses 2020; 12:v12060598. [PMID: 32486283 PMCID: PMC7354593 DOI: 10.3390/v12060598] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/25/2022] Open
Abstract
Single-stranded positive RNA ((+) ssRNA) viruses include several important human pathogens. Some members are responsible for large outbreaks, such as Zika virus, West Nile virus, SARS-CoV, and SARS-CoV-2, while others are endemic, causing an enormous global health burden. Since vaccines or specific treatments are not available for most viral infections, the discovery of direct-acting antivirals (DAA) is an urgent need. Still, the low-throughput nature of and biosafety concerns related to traditional antiviral assays hinders the discovery of new inhibitors. With the advances of reverse genetics, reporter replicon systems have become an alternative tool for the screening of DAAs. Herein, we review decades of the use of (+) ssRNA viruses replicon systems for the discovery of antiviral agents. We summarize different strategies used to develop those systems, as well as highlight some of the most promising inhibitors identified by the method. Despite the genetic alterations introduced, reporter replicons have been shown to be reliable systems for screening and identification of viral replication inhibitors and, therefore, an important tool for the discovery of new DAAs.
Collapse
Affiliation(s)
- Rafaela S. Fernandes
- Physics Institute of São Carlos, University of São Paulo, São Carlos 13566-590, SP, Brazil; (R.S.F.); (M.C.L.C.F.); (R.V.B.); (A.S.G.)
| | - Marjorie C. L. C. Freire
- Physics Institute of São Carlos, University of São Paulo, São Carlos 13566-590, SP, Brazil; (R.S.F.); (M.C.L.C.F.); (R.V.B.); (A.S.G.)
| | - Renata V. Bueno
- Physics Institute of São Carlos, University of São Paulo, São Carlos 13566-590, SP, Brazil; (R.S.F.); (M.C.L.C.F.); (R.V.B.); (A.S.G.)
| | - Andre S. Godoy
- Physics Institute of São Carlos, University of São Paulo, São Carlos 13566-590, SP, Brazil; (R.S.F.); (M.C.L.C.F.); (R.V.B.); (A.S.G.)
| | | | - Glaucius Oliva
- Physics Institute of São Carlos, University of São Paulo, São Carlos 13566-590, SP, Brazil; (R.S.F.); (M.C.L.C.F.); (R.V.B.); (A.S.G.)
- Correspondence:
| |
Collapse
|
6
|
Rodrigues AF, Santos AM, Ferreira AM, Marino R, Barreira ME, Cabeda JM. Year-Long Rhinovirus Infection is Influenced by Atmospheric Conditions, Outdoor Air Virus Presence, and Immune System-Related Genetic Polymorphisms. FOOD AND ENVIRONMENTAL VIROLOGY 2019; 11:340-349. [PMID: 31350695 DOI: 10.1007/s12560-019-09397-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/12/2019] [Indexed: 05/28/2023]
|
7
|
Ramilo O, Rodriguez-Fernandez R, Mejias A. Respiratory Syncytial Virus, Rhinoviruses, and Recurrent Wheezing: Unraveling the Riddle Opens New Opportunities for Targeted Interventions. JAMA Pediatr 2019; 173:520-521. [PMID: 30933241 DOI: 10.1001/jamapediatrics.2019.0370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Octavio Ramilo
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio.,The Ohio State University, Columbus
| | - Rosa Rodriguez-Fernandez
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio.,Hospital Materno Infantil Gregorio Marañón, Madrid, Spain
| | - Asuncion Mejias
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio.,The Ohio State University, Columbus
| |
Collapse
|
8
|
Nikonov OS, Chernykh ES, Garber MB, Nikonova EY. Enteroviruses: Classification, Diseases They Cause, and Approaches to Development of Antiviral Drugs. BIOCHEMISTRY (MOSCOW) 2018. [PMID: 29523062 PMCID: PMC7087576 DOI: 10.1134/s0006297917130041] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The genus Enterovirus combines a portion of small (+)ssRNA-containing viruses and is divided into 10 species of true enteroviruses and three species of rhinoviruses. These viruses are causative agents of the widest spectrum of severe and deadly epidemic diseases of higher vertebrates, including humans. Their ubiquitous distribution and high pathogenici- ty motivate active search to counteract enterovirus infections. There are no sufficiently effective drugs targeted against enteroviral diseases, thus treatment is reduced to supportive and symptomatic measures. This makes it extremely urgent to develop drugs that directly affect enteroviruses and hinder their development and spread in infected organisms. In this review, we cover the classification of enteroviruses, mention the most common enterovirus infections and their clinical man- ifestations, and consider the current state of development of anti-enteroviral drugs. One of the most promising targets for such antiviral drugs is the viral Internal Ribosome Entry Site (IRES). The classification of these elements of the viral mRNA translation system is also examined.
Collapse
Affiliation(s)
- O S Nikonov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | | | | | |
Collapse
|
9
|
Stenberg-Hammar K, Hedlin G, Söderhäll C. Rhinovirus and preschool wheeze. Pediatr Allergy Immunol 2017; 28:513-520. [PMID: 28599066 DOI: 10.1111/pai.12740] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/25/2017] [Indexed: 12/16/2022]
Abstract
Rhinovirus (RV) known as the common cold virus generally only causes a mild upper respiratory infection, but severe lower respiratory symptoms have been associated with RV infections especially in asthmatic individuals. Wheezing is a symptom of airway obstruction, and preschool children wheezing with RV have been associated with increased risk of asthma at school age. There are, however, conflicting opinions as to whether there are differences in response to RV infection or whether wheezing with RV reveals a preexisting impairment that promotes asthma mainly in predisposed children. The advent of molecular diagnostics to detect respiratory viruses has led to new insights into the role of RV infections. This review will discuss recent information concerning the role of RV as an important respiratory pathogen related to early onset wheeze and exacerbation of established asthma in preschool children.
Collapse
Affiliation(s)
- Katarina Stenberg-Hammar
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden.,Centre of Allergy Research, Karolinska Institutet, Stockholm, Sweden
| | - Gunilla Hedlin
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden.,Centre of Allergy Research, Karolinska Institutet, Stockholm, Sweden
| | - Cilla Söderhäll
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Centre of Allergy Research, Karolinska Institutet, Stockholm, Sweden.,Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
10
|
Ganjian H, Zietz C, Mechtcheriakova D, Blaas D, Fuchs R. ICAM-1 Binding Rhinoviruses Enter HeLa Cells via Multiple Pathways and Travel to Distinct Intracellular Compartments for Uncoating. Viruses 2017; 9:E68. [PMID: 28368306 PMCID: PMC5408674 DOI: 10.3390/v9040068] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 03/22/2017] [Accepted: 03/28/2017] [Indexed: 11/16/2022] Open
Abstract
Of the more than 150 human rhinovirus (RV) serotypes, 89 utilize intercellular adhesion molecule-1 (ICAM-1) for cell entry. These belong either to species A or B. We recently demonstrated that RV-B14 and RV-A89, despite binding this same receptor, are routed into distinct endosomal compartments for release of their RNA into the cytosol. To gain insight into the underlying mechanism we now comparatively investigate the port of entry, temperature-dependence of uncoating, and intracellular routing of RV-B3, RV-B14, RV-A16, and RV-A89 in HeLa cells. The effect of various drugs blocking distinct stages on the individual pathways was determined via comparing the number of infected cells in a TissueFaxs instrument. We found that RV-B14 and RV-A89 enter via clathrin-, dynamin-, and cholesterol-dependent pathways, as well as by macropinocytosis. Drugs interfering with actin function similarly blocked entry of all four viruses, indicating their dependence on a dynamic actin network. However, uniquely, RV-A89 was able to produce progeny when internalized at 20 °C followed by neutralizing the endosomal pH and further incubation at 37 °C. Blocking dynein-dependent endosomal transport prevented uncoating of RV-A16 and RV-A89, but not of RV-B3 and RV-B14, indicative for routing of RV-A16 and RV-A89 into the endocytic recycling compartment for uncoating. Our results call for caution when developing drugs aimed at targeting entry or intracellular trafficking of all rhinovirus serotypes.
Collapse
Affiliation(s)
- Haleh Ganjian
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Wien, Austria.
| | - Christin Zietz
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Wien, Austria.
| | - Diana Mechtcheriakova
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Wien, Austria.
| | - Dieter Blaas
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Dr. Bohr Gasse 9/3, A-1030 Vienna, Austria.
| | - Renate Fuchs
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Wien, Austria.
| |
Collapse
|
11
|
Lau SKP, Woo PCY, Li KSM, Zhang HJ, Fan RYY, Zhang AJX, Chan BCC, Lam CSF, Yip CCY, Yuen MC, Chan KH, Chen ZW, Yuen KY. Identification of Novel Rosavirus Species That Infects Diverse Rodent Species and Causes Multisystemic Dissemination in Mouse Model. PLoS Pathog 2016; 12:e1005911. [PMID: 27737017 PMCID: PMC5063349 DOI: 10.1371/journal.ppat.1005911] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/02/2016] [Indexed: 01/14/2023] Open
Abstract
While novel picornaviruses are being discovered in rodents, their host range and pathogenicity are largely unknown. We identified two novel picornaviruses, rosavirus B from the street rat, Norway rat, and rosavirus C from five different wild rat species (chestnut spiny rat, greater bandicoot rat, Indochinese forest rat, roof rat and Coxing's white-bellied rat) in China. Analysis of 13 complete genome sequences showed that “Rosavirus B” and “Rosavirus C” represent two potentially novel picornavirus species infecting different rodents. Though being most closely related to rosavirus A, rosavirus B and C possessed distinct protease cleavage sites and variations in Yn-Xm-AUG sequence in 5’UTR and myristylation site in VP4. Anti-rosavirus B VP1 antibodies were detected in Norway rats, whereas anti-rosavirus C VP1 and neutralizing antibodies were detected in Indochinese forest rats and Coxing's white-bellied rats. While the highest prevalence was observed in Coxing's white-bellied rats by RT-PCR, the detection of rosavirus C from different rat species suggests potential interspecies transmission. Rosavirus C isolated from 3T3 cells causes multisystemic diseases in a mouse model, with high viral loads and positive viral antigen expression in organs of infected mice after oral or intracerebral inoculation. Histological examination revealed alveolar fluid exudation, interstitial infiltration, alveolar fluid exudate and wall thickening in lungs, and hepatocyte degeneration and lymphocytic/monocytic inflammatory infiltrates with giant cell formation in liver sections of sacrificed mice. Since rosavirus A2 has been detected in fecal samples of children, further studies should elucidate the pathogenicity and emergence potential of different rosaviruses. We identified two novel picornaviruses, rosavirus B and C, infecting street and wild rats respectively in China. While rosavirus B was detected from Norway rats, rosavirus C was detected from five different wild rat species (chestnut spiny rat, greater bandicoot rat, Indochinese forest rat, roof rat and Coxing's white-bellied rat) by RT-PCR. Anti-rosavirus B antibodies were detected in Norway rats, whereas anti-rosavirus C antibodies were detected in Indochinese forest rats and Coxing's white-bellied rats, supporting potential interspecies transmission of rosavirus C. Genome analysis supported the classification of rosavirus B and C as two novel picornavirus species, with genome features distinct from rosavirus A. Rosavirus C isolated from 3T3 cells causes multisystemic diseases in a mouse model, with viruses and pathologies detected in various organs of infected mice after oral or intracerebral inoculation. Our results extend our knowledge on the host range and pathogenicity of rodent picornaviruses.
Collapse
Affiliation(s)
- Susanna K. P. Lau
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Patrick C. Y. Woo
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Kenneth S. M. Li
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Hao-Ji Zhang
- Department of Veterinary Medicine, Foshan University, Foshan, China
| | - Rachel Y. Y. Fan
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Anna J. X. Zhang
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Brandon C. C. Chan
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Carol S. F. Lam
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Cyril C. Y. Yip
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Ming-Chi Yuen
- Food and Environmental Hygiene Department, Hong Kong, China
| | - Kwok-Hung Chan
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Zhi-Wei Chen
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
- * E-mail:
| |
Collapse
|
12
|
Ratnamohan VM, Zeng F, Donovan L, MacIntyre CR, Kok J, Dwyer DE. Phylogenetic analysis of human rhinoviruses collected over four successive years in Sydney, Australia. Influenza Other Respir Viruses 2016; 10:493-503. [PMID: 27383422 PMCID: PMC5059946 DOI: 10.1111/irv.12404] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2016] [Indexed: 01/09/2023] Open
Abstract
Background Human rhinoviruses (HRV) cause a wide spectrum of disease, ranging from a mild influenza‐like illness (ILI) to severe respiratory infection. Molecular epidemiological data are limited for HRV circulating in the Southern Hemisphere. Objectives To identify the species and genotypes of HRV from clinical samples collected in Sydney, Australia, from 2006 to 2009. Methods Combined nose and throat swabs or nasopharyngeal aspirates collected from individuals with ILI were tested for HRV using real‐time reverse‐transcriptase polymerase chain reaction (RT‐PCR). Sequencing data of 5′UTR and VP4/VP2 coding regions on RT‐PCR‐positive specimens were analysed. Results Human rhinoviruses were detected by real‐time PCR in 20.9% (116/555) of samples tested. Phylogenetic analysis of 5′UTR and VP4/VP2 on HRV‐positive samples was concordant in the grouping of HRV A and B species but not HRV C species. Eighty per cent (16/20) of sequences that grouped as HRV C in the VP4/VP2 tree clustered as HRV A, alongside some previously described C strains as subspecies C/A. Discordant branching was seen within HRV A group: two sequences clustering as A in the VP4/VP2 tree branched within the C/A subspecies in the 5′UTR tree, and one sequence showed identity to different HRV A strains in the two genes. The prevalence of HRV C and C/A species was greater in paediatric compared to adult patients (47.9% vs 25.5%, P = .032). Conclusion Human rhinoviruses are a common cause of respiratory infections, and HRV C is present in the Southern Hemisphere. Sequencing of multiple HRV regions may be necessary to determine exact phylogenetic relationships.
Collapse
Affiliation(s)
- Vigneswary M Ratnamohan
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, Pathology West, Westmead Hospital, Westmead, NSW, Australia
| | - Frank Zeng
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, Pathology West, Westmead Hospital, Westmead, NSW, Australia
| | - Linda Donovan
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, Pathology West, Westmead Hospital, Westmead, NSW, Australia
| | - Chandini R MacIntyre
- School of Public Health and Community Medicine, University of New South Wales, Kensington, NSW, Australia
| | - Jen Kok
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, Pathology West, Westmead Hospital, Westmead, NSW, Australia. .,Marie Bashir Institute for Infectious Diseases and Biosecurity, Westmead Hospital, University of Sydney, Westmead, NSW, Australia. .,Centre for Research Excellence in Critical Infections, Westmead Hospital, University of Sydney, Westmead, NSW, Australia.
| | - Dominic E Dwyer
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, Pathology West, Westmead Hospital, Westmead, NSW, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, Westmead Hospital, University of Sydney, Westmead, NSW, Australia.,Centre for Research Excellence in Critical Infections, Westmead Hospital, University of Sydney, Westmead, NSW, Australia
| |
Collapse
|
13
|
Abstract
Human rhinovirus (HRV) and coronavirus (HCoV) infections are associated with both upper respiratory tract illness (“the common cold”) and lower respiratory tract illness (pneumonia). New species of HRVs and HCoVs have been diagnosed in the past decade. More sensitive diagnostic tests such as reverse transcription-polymerase chain reaction have expanded our understanding of the role these viruses play in both immunocompetent and immunosuppressed hosts. Recent identification of severe acute respiratory syndrome and Middle East respiratory syndrome viruses causing serious respiratory illnesses has led to renewed efforts for vaccine development. The role these viruses play in patients with chronic lung disease such as asthma makes the search for antiviral agents of increased importance.
Collapse
Affiliation(s)
- Stephen B Greenberg
- Department of Medicine, Ben Taub Hospital, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
14
|
Atomic structure of a rhinovirus C, a virus species linked to severe childhood asthma. Proc Natl Acad Sci U S A 2016; 113:8997-9002. [PMID: 27511920 DOI: 10.1073/pnas.1606595113] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Isolates of rhinovirus C (RV-C), a recently identified Enterovirus (EV) species, are the causative agents of severe respiratory infections among children and are linked to childhood asthma exacerbations. The RV-C have been refractory to structure determination because they are difficult to propagate in vitro. Here, we report the cryo-EM atomic structures of the full virion and native empty particle (NEP) of RV-C15a. The virus has 60 "fingers" on the virus outer surface that probably function as dominant immunogens. Because the NEPs also display these fingers, they may have utility as vaccine candidates. A sequence-conserved surface depression adjacent to each finger forms a likely binding site for the sialic acid on its receptor. The RV-C, unlike other EVs, are resistant to capsid-binding antiviral compounds because the hydrophobic pocket in VP1 is filled with multiple bulky residues. These results define potential molecular determinants for designing antiviral therapeutics and vaccines.
Collapse
|
15
|
Woo PCY, Lau SKP, Choi GKY, Huang Y, Sivakumar S, Tsoi HW, Yip CCY, Jose SV, Bai R, Wong EYM, Joseph M, Li T, Wernery U, Yuen KY. Molecular epidemiology of canine picornavirus in Hong Kong and Dubai and proposal of a novel genus in Picornaviridae. INFECTION GENETICS AND EVOLUTION 2016; 41:191-200. [PMID: 27051044 DOI: 10.1016/j.meegid.2016.03.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 03/25/2016] [Accepted: 03/29/2016] [Indexed: 01/06/2023]
Abstract
Previously, we reported the discovery of a novel canine picornavirus (CanPV) in the fecal sample of a dog. In this molecular epidemiology study, CanPV was detected in 15 (1.11%) of 1347 canine fecal samples from Hong Kong and one (0.76%) of 131 canine fecal samples from Dubai, with viral loads 1.06×10(3) to 6.64×10(6) copies/ml. Complete genome sequencing and phylogenetic analysis showed that CanPV was clustered with feline picornavirus (FePV), bat picornavirus (BatPV) 1 to 3, Ia io picornavirus 1 (IaioPV1) and bovine picornavirus (BoPV), and this cluster was most closely related to the genera Enterovirus and Sapelovirus. The Ka/Ks ratios of all the coding regions were <0.1. According to the definition of the Picornavirus Study Group of ICTV, CanPV, FePV, BatPV 1 to 3, IaioPV1 and BoPV should constitute a novel genus in Picornaviridae. BEAST analysis showed that this genus diverged from its most closely related genus, Sapelovirus, about 49 years ago.
Collapse
Affiliation(s)
- Patrick C Y Woo
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China; Department of Microbiology, The University of Hong Kong, Hong Kong, China; Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China; Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310006, China.
| | - Susanna K P Lau
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China; Department of Microbiology, The University of Hong Kong, Hong Kong, China; Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China; Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310006, China
| | - Garnet K Y Choi
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Yi Huang
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | | | - Hoi-Wah Tsoi
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Cyril C Y Yip
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Shanty V Jose
- Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| | - Ru Bai
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Emily Y M Wong
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Marina Joseph
- Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| | - Tong Li
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Ulrich Wernery
- Central Veterinary Research Laboratory, Dubai, United Arab Emirates.
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China; Department of Microbiology, The University of Hong Kong, Hong Kong, China; Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China; Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310006, China
| |
Collapse
|
16
|
Miller EK, Linder J, Kraft D, Johnson M, Lu P, Saville BR, Williams JV, Griffin MR, Talbot HK. Hospitalizations and outpatient visits for rhinovirus-associated acute respiratory illness in adults. J Allergy Clin Immunol 2015; 137:734-43.e1. [PMID: 26255695 DOI: 10.1016/j.jaci.2015.06.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 05/15/2015] [Accepted: 06/05/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Rhinovirus is linked to asthma exacerbations and chronic obstructive pulmonary disease exacerbations in adults. The severity and rates of rhinovirus acute respiratory illnesses (ARIs) in adults are uncertain. OBJECTIVES We sought to determine rhinovirus-associated ARI rates in adults presenting for care in multiple settings and identify factors associated with rhinovirus detection. METHODS This prospective, population-based cohort enrolled Tennessee residents 18 years or older in the emergency department (ED), outpatient clinics, or hospitalized for ARI from December 2008 to May 2010. Nasal/throat swabs were collected and tested for rhinovirus and other viruses by using RT-PCR. Rates of ED visits and hospitalizations were calculated and rhinovirus-positive and rhinovirus-negative patients were compared. RESULTS Among 2351 enrollees, rhinovirus was detected in 247 (11%). There were 7 rhinovirus-associated ED visits and 3 hospitalizations per 1000 adults annually. Patients with rhinovirus, compared with virus-negative ARI, were more likely to present with wheezing (odds ratio [OR], 1.7; 95% CI, 1.23-2.35; P < .001), to be a current smoker (OR, 2.31; 95% CI, 1.68-3.19) or live with a smoker (OR, 1.72; 95% CI, 1.10-2.67), have a history of chronic respiratory disease (OR, 1.61; 95% CI, 1.17-2.22), and were less likely to be hospitalized versus seen in the outpatient setting (OR, 0.58; 95% CI, 0.41-0.83). CONCLUSIONS Rhinovirus is associated with a substantial number of ED visits and hospitalizations for ARIs in adults. There may be modifiable factors that can reduce the likelihood of presenting with rhinovirus-associated ARIs.
Collapse
Affiliation(s)
- E Kathryn Miller
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tenn.
| | - Jodell Linder
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tenn
| | - David Kraft
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tenn
| | - Monika Johnson
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tenn
| | - Pengcheng Lu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tenn
| | - Benjamin R Saville
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tenn
| | - John V Williams
- Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pa
| | - Marie R Griffin
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tenn; Department of Healthy Policy, Vanderbilt University Medical Center, Nashville, Tenn; Mid-South Geriatric Research Education and Clinical Center and Clinical Research Center of Excellence, VA TN Valley Health Care System, Nashville, Tenn
| | - H Keipp Talbot
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tenn
| |
Collapse
|
17
|
Molecular genotyping of human rhinovirus by using PCR and Sanger sequencing. Methods Mol Biol 2015; 1221:39-47. [PMID: 25261305 DOI: 10.1007/978-1-4939-1571-2_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Human rhinovirus (HRV) is the virus most often associated with acute upper respiratory tract infections. Advances in molecular detection have shown that HRV is also the major viral cause of asthma exacerbations. Genotypic assignment and identification of HRV types are of significant value in the investigation of type-associated differences in disease outcomes, transmission, and epidemiology. Here, we describe a genotyping process involving two separate RT-PCR assays, targeted to VP4/VP2 and 5' UTR regions of HRV genome, respectively. Together with the reference sequences of each HRV species, the generated sequences are used to construct phylogenetic tree for genotyping.
Collapse
|
18
|
Cadherin-related family member 3, a childhood asthma susceptibility gene product, mediates rhinovirus C binding and replication. Proc Natl Acad Sci U S A 2015; 112:5485-90. [PMID: 25848009 DOI: 10.1073/pnas.1421178112] [Citation(s) in RCA: 315] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Members of rhinovirus C (RV-C) species are more likely to cause wheezing illnesses and asthma exacerbations compared with other rhinoviruses. The cellular receptor for these viruses was heretofore unknown. We report here that expression of human cadherin-related family member 3 (CDHR3) enables the cells normally unsusceptible to RV-C infection to support both virus binding and replication. A coding single nucleotide polymorphism (rs6967330, C529Y) was previously linked to greater cell-surface expression of CDHR3 protein, and an increased risk of wheezing illnesses and hospitalizations for childhood asthma. Compared with wild-type CDHR3, cells transfected with the CDHR3-Y529 variant had about 10-fold increases in RV-C binding and progeny yields. We developed a transduced HeLa cell line (HeLa-E8) stably expressing CDHR3-Y529 that supports RV-C propagation in vitro. Modeling of CDHR3 structure identified potential binding sites that could impact the virus surface in regions that are highly conserved among all RV-C types. Our findings identify that the asthma susceptibility gene product CDHR3 mediates RV-C entry into host cells, and suggest that rs6967330 mutation could be a risk factor for RV-C wheezing illnesses.
Collapse
|
19
|
Woo PCY, Lau SKP, Li T, Jose S, Yip CCY, Huang Y, Wong EYM, Fan RYY, Cai JP, Wernery U, Yuen KY. A novel dromedary camel enterovirus in the family Picornaviridae from dromedaries in the Middle East. J Gen Virol 2015; 96:1723-31. [PMID: 25805410 DOI: 10.1099/vir.0.000131] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The recent emergence of Middle East respiratory syndrome coronavirus from the Middle East and the discovery of the virus from dromedary camels have boosted interest in the search for novel viruses in dromedaries. Whilst picornaviruses are known to infect various animals, their existence in dromedaries was unknown. We describe the discovery of a novel picornavirus, dromedary camel enterovirus (DcEV), from dromedaries in Dubai. Among 215 dromedaries, DcEV was detected in faecal samples of four (1.9 %) dromedaries [one (0.5 %) adult dromedary and three (25 %) dromedary calves] by reverse transcription PCR. Analysis of two DcEV genomes showed that DcEV was clustered with other species of the genus Enterovirus and was most closely related to and possessed highest amino acid identities to the species Enterovirus E and Enterovirus F found in cattle. The G+C content of DcEV was 45 mol%, which differed from that of Enterovirus E and Enterovirus F (49-50 mol%) by 4-5 %. Similar to other members of the genus Enterovirus, the 5' UTR of DcEV possessed a putative type I internal ribosome entry site. The low ratios of the number of nonsynonymous substitutions per non-synonymous site to the number of synonymous substitutions per synonymous site (Ka/Ks) of various coding regions suggested that dromedaries are the natural reservoir in which DcEV has been stably evolving. These results suggest that DcEV is a novel species of the genus Enterovirus in the family Picornaviridae. Western blot analysis using recombinant DcEV VP1 polypeptide showed a high seroprevalence of 52 % among serum samples from 172 dromedaries for IgG, concurring with its much higher infection rates in dromedary calves than in adults. Further studies are important to understand the pathogenicity, epidemiology and genetic evolution of DcEV in this unique group of animals.
Collapse
Affiliation(s)
- Patrick C Y Woo
- 2Department of Microbiology, The University of Hong Kong, Hong Kong, PR China 3Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, PR China 1State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, PR China 4Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, PR China
| | - Susanna K P Lau
- 3Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, PR China 2Department of Microbiology, The University of Hong Kong, Hong Kong, PR China 1State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, PR China 4Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, PR China
| | - Tong Li
- 2Department of Microbiology, The University of Hong Kong, Hong Kong, PR China
| | - Shanty Jose
- 5Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| | - Cyril C Y Yip
- 2Department of Microbiology, The University of Hong Kong, Hong Kong, PR China
| | - Yi Huang
- 2Department of Microbiology, The University of Hong Kong, Hong Kong, PR China
| | - Emily Y M Wong
- 2Department of Microbiology, The University of Hong Kong, Hong Kong, PR China
| | - Rachel Y Y Fan
- 2Department of Microbiology, The University of Hong Kong, Hong Kong, PR China
| | - Jian-Piao Cai
- 2Department of Microbiology, The University of Hong Kong, Hong Kong, PR China
| | - Ulrich Wernery
- 5Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| | - Kwok-Yung Yuen
- 4Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, PR China 1State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, PR China 2Department of Microbiology, The University of Hong Kong, Hong Kong, PR China 3Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, PR China
| |
Collapse
|
20
|
Epidemiologic, clinical, and virologic characteristics of human rhinovirus infection among otherwise healthy children and adults: rhinovirus among adults and children. J Clin Virol 2015; 64:74-82. [PMID: 25728083 PMCID: PMC4347877 DOI: 10.1016/j.jcv.2015.01.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/06/2015] [Accepted: 01/10/2015] [Indexed: 11/23/2022]
Abstract
BACKGROUND human rhinovirus (HRV) is a major cause of influenza-like illness (ILI) in adults and children. Differences in disease severity by HRV species have been described among hospitalized patients with underlying illness. Less is known about the clinical and virologic characteristics of HRV infection among otherwise healthy populations, particularly adults. OBJECTIVES to characterize molecular epidemiology of HRV and association between HRV species and clinical presentation and viral shedding. STUDY DESIGN observational, prospective, facility-based study of ILI was conducted from February 2010 to April 2012. Collection of nasopharyngeal specimens, patient symptoms, and clinical information occurred on days 0, 3, 7, and 28. Patients recorded symptom severity daily for the first 7 days of illness in a symptom diary. HRV was identified by RT-PCR and genotyped for species determination. Cases who were co-infected with other viral respiratory pathogens were excluded from the analysis. We evaluated the associations between HRV species, clinical severity, and patterns of viral shedding. RESULTS eighty-four HRV cases were identified and their isolates genotyped. Of these, 62 (74%) were >18 years. Fifty-four were HRV-A, 11HRV-B, and 19HRV-C. HRV-C infection was more common among children than adults (59% vs. 10%, P<0.001). Among adults, HRV-A was associated with higher severity of upper respiratory symptoms compared to HRV-B (P=0.02), but no such association was found in children. In addition, adults shed HRV-A significantly longer than HRV-C (P trend=0.01). CONCLUSIONS among otherwise healthy adults with HRV infection, we observed species-specific differences in respiratory symptom severity and duration of viral shedding.
Collapse
|
21
|
Abstract
Human rhinoviruses (HRVs) are widespread respiratory pathogens and a major cause of acute respiratory tract infections. The aim of this study was to investigate the molecular epidemiology of rhinovirus infections in children in Cyprus over three consecutive winter seasons. From a total of 116 rhinovirus-positive samples, 68 were sequenced in the 5'-UTR and VP4/VP2 regions. Thirty-six (52.9%) samples were identified as HRV-A and 27 (39.7%) as HRV-C, with only five (7.4%) samples belonging to the HRV-B species. Of these, a total of 46 different genotypes were identified. In the VP2/VP4 phylogenetic tree all strains clustered in three different well-defined clades, whereas the 5'-UTR tree exhibited clades with a mixed clustering of HRV-A and HRV-C strains reflecting the evolutionary history of recombination between HRV-A and HRV-C that has been observed previously. In summary, a high intra- and inter-season diversity of HRV types was observed. Despite its geographical isolation the frequency of HRV species in Cyprus is comparable to that reported in other regions of the world supporting the concept of an unrestricted global circulation. This study assesses, for the first time, the epidemiology of rhinovirus infections in Cypriot children and will be helpful to clinicians and researchers interested in the treatment and control of viral respiratory tract infections.
Collapse
|
22
|
Rossi GA, Colin AA. Infantile respiratory syncytial virus and human rhinovirus infections: respective role in inception and persistence of wheezing. Eur Respir J 2014; 45:774-89. [PMID: 25359340 DOI: 10.1183/09031936.00062714] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
There is evidence that respiratory viruses play a key role in the development and exacerbation of obstructive respiratory diseases in children. This review attempts to juxtapose the separate profiles and prototypes of pathogenetic mechanisms represented by the two most common amongst such viruses: respiratory syncytial virus (RSV) and human rhinovirus (HRV). RSV represents the most common agent of severe airway disease in infants and young children, and is predominant in winter months. Large epidemiological studies have revealed an unequivocal relationship between RSV infection and subsequent wheezing into childhood, thought to be related to long-term changes in neuroimmune control of the airways rather than allergic sensitisation. HRV is a highly diverse group of viruses that affect subjects of all ages, is ubiquitous and occurs year-round. In contrast to RSV, infections with HRV cause minimal cytotoxicity but induce a rapid production of cytokines and chemokines with amplification of the inflammatory response. The susceptibility to HRV-induced bronchiolitis and subsequent wheezing appears to be linked to individual predisposition since it is often associated with a family or personal history of asthma/atopy. Thus, RSV probably serves as an "inducer" rather than a "trigger". Conversely, HRVs seem to serve as a "trigger" rather than an "inducer" in predisposed individuals.
Collapse
Affiliation(s)
- Giovanni A Rossi
- Pulmonary and Allergy Disease Paediatric Unit, Istituto Giannina Gaslini, Genoa, Italy
| | - Andrew A Colin
- Division of Pediatric Pulmonology, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
23
|
First report of severe parainfluenza virus 4B and rhinovirus C coinfection in a liver transplant recipient treated with immunoglobulin. J Clin Virol 2014; 61:611-4. [PMID: 25453574 DOI: 10.1016/j.jcv.2014.09.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 09/19/2014] [Accepted: 09/25/2014] [Indexed: 11/22/2022]
Abstract
We describe the first reported case of severe pneumonia due to coinfection by parainfluenza virus type 4B and rhinovirus C in a liver transplant recipient. The patient responded promptly to intravenous immunoglobulin and timely infection control measures prevented spreading of the infections. This report highlights respiratory viral coinfections as a possible cause of severe morbidity in transplant recipients and the importance of efficient molecular diagnostic technologies with major impact on clinical practice in a transplant center. It also describes a potential therapeutic strategy for such patients.
Collapse
|
24
|
McCulloch DJ, Sears MH, Jacob JT, Lyon GM, Burd EM, Caliendo AM, Hill CE, Nix WA, Oberste MS, Kraft CS. Severity of rhinovirus infection in hospitalized adults is unrelated to genotype. Am J Clin Pathol 2014; 142:165-72. [PMID: 25015856 PMCID: PMC4332627 DOI: 10.1309/ajcphikrjc67aazj] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objectives To determine whether rhinovirus (RV) species is associated with more severe clinical illness in adults. Methods Seventy-two RV-positive viral respiratory samples from adult patients were sequenced and analyzed phylogenetically after reverse transcriptase polymerase chain reaction of the region spanning the VP4 gene and 5′ terminus of the VP2 gene. The clinical features and severity of illness associated with the different RV species were compared. Results Phylogenetic analysis identified three distinct clusters as RV-A (54%), B (11%), or C (35%) species. In an unadjusted model, patients with RV-B infection were significantly more likely to have the composite outcome variable of death or intensive care unit admission (P = .03), but this effect diminished when controlling for patient sex. A logistic model of the relationship between RV species and adverse outcomes produced nonsignificant odds ratios when controlling for patient sex. Conclusions Infection with RV-A or RV-B was associated with greater severity of illness in our adult population; however, the association disappeared after controlling for confounders.
Collapse
Affiliation(s)
- Denise J. McCulloch
- Emory University School of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Marti H. Sears
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Jesse T. Jacob
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - G. Marshall Lyon
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Eileen M. Burd
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
| | - Angela M. Caliendo
- Division of Infectious Diseases, Department of Medicine, Brown University School of Medicine, Providence, RI
| | - Charles E. Hill
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
| | - W. Allan Nix
- Centers for Disease Control and Prevention, Atlanta, GA
| | | | - Colleen S. Kraft
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
25
|
Lau SKP, Woo PCY, Yip CCY, Li KSM, Fan RYY, Bai R, Huang Y, Chan KH, Yuen KY. Chickens host diverse picornaviruses originated from potential interspecies transmission with recombination. J Gen Virol 2014; 95:1929-1944. [PMID: 24906980 DOI: 10.1099/vir.0.066597-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
While chickens are an important reservoir for emerging pathogens such as avian influenza viruses, little is known about the diversity of picornaviruses in poultry. We discovered a previously unknown diversity of picornaviruses in chickens in Hong Kong. Picornaviruses were detected in 87 cloacal and 7 tracheal samples from 93 of 900 chickens by reverse transcription-PCR, with their partial 3D(pol) gene sequences forming five distinct clades (I to V) among known picornaviruses. Analysis of eight genomes from different clades revealed seven different picornaviruses, including six novel picornavirus species (ChPV1 from clade I, ChPV2 and ChPV3 from clade II, ChPV4 and ChPV5 from clade III, ChGV1 from clade IV) and one existing species (Avian encephalomyelitis virus from clade V). The six novel chicken picornavirus genomes exhibited distinct phylogenetic positions and genome features different from related picornaviruses, supporting their classification as separate species. Moreover, ChPV1 may potentially belong to a novel genus, with low sequence homologies to related picornaviruses, especially in the P1 and P2 regions, including the predicted L and 2A proteins. Nevertheless, these novel picornaviruses were most closely related to picornaviruses of other avian species (ChPV1 related to Passerivirus A, ChPV2 and ChPV3 to Avisivirus A and Duck hepatitis A virus, ChPV4 and ChPV5 to Melegrivirus A, ChGV1 to Gallivirus A). Furthermore, ChPV5 represented a potential recombinant picornavirus, with its P2 and P3 regions possibly originating from Melegrivirus A. Chickens are an important reservoir for diverse picornaviruses that may cross avian species barriers through mutation or recombination.
Collapse
Affiliation(s)
- Susanna K P Lau
- Carol Yu Centre for Infection, University of Hong Kong, Hong Kong, PR China.,State Key Laboratory of Emerging Infectious Diseases, University of Hong Kong, Hong Kong, PR China.,Department of Microbiology, University of Hong Kong, Hong Kong, PR China.,Research Centre of Infection and Immunology, University of Hong Kong, Hong Kong, PR China
| | - Patrick C Y Woo
- Research Centre of Infection and Immunology, University of Hong Kong, Hong Kong, PR China.,Carol Yu Centre for Infection, University of Hong Kong, Hong Kong, PR China.,State Key Laboratory of Emerging Infectious Diseases, University of Hong Kong, Hong Kong, PR China.,Department of Microbiology, University of Hong Kong, Hong Kong, PR China
| | - Cyril C Y Yip
- Department of Microbiology, University of Hong Kong, Hong Kong, PR China
| | - Kenneth S M Li
- Department of Microbiology, University of Hong Kong, Hong Kong, PR China
| | - Rachel Y Y Fan
- Department of Microbiology, University of Hong Kong, Hong Kong, PR China
| | - Ru Bai
- Department of Microbiology, University of Hong Kong, Hong Kong, PR China
| | - Yi Huang
- Department of Microbiology, University of Hong Kong, Hong Kong, PR China
| | - Kwok-Hung Chan
- Department of Microbiology, University of Hong Kong, Hong Kong, PR China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, University of Hong Kong, Hong Kong, PR China.,Research Centre of Infection and Immunology, University of Hong Kong, Hong Kong, PR China.,Carol Yu Centre for Infection, University of Hong Kong, Hong Kong, PR China.,Department of Microbiology, University of Hong Kong, Hong Kong, PR China
| |
Collapse
|
26
|
Abstract
Non-influenza respiratory virus infections are common worldwide and contribute to morbidity and mortality in all age groups. The recently identified Middle East respiratory syndrome coronavirus has been associated with rapidly progressive pneumonia and high mortality rate. Adenovirus 14 has been increasingly recognized in severe acute respiratory illness in both military and civilian individuals. Rhinovirus C and human bocavirus type 1 have been commonly detected in infants and young children with respiratory tract infection and studies have shown a positive correlation between respiratory illness and high viral loads, mono-infection, viremia, and/or serologically-confirmed primary infection.
Collapse
Affiliation(s)
- James J Dunn
- Department of Pathology and Laboratory Medicine, Cook Children's Medical Center, 801 Seventh Avenue, Fort Worth, TX 76104, USA.
| | - Melissa B Miller
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Campus Box 7525, Chapel Hill, NC 27599-7525, USA
| |
Collapse
|
27
|
Synthesis and anti-rhinovirus activity of novel 3-[2-(pyridinyl)vinyl]substituted -2H-chromenes and -4H-chromen-4-ones. Bioorg Med Chem 2014; 22:1201-7. [DOI: 10.1016/j.bmc.2013.11.054] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 11/28/2013] [Indexed: 11/23/2022]
|
28
|
Rhinoviruses. VIRAL INFECTIONS OF HUMANS 2014. [PMCID: PMC7120790 DOI: 10.1007/978-1-4899-7448-8_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
29
|
Kaslow RA, Stanberry LR, Le Duc JW. Diagnosis, Discovery and Dissection of Viral Diseases. VIRAL INFECTIONS OF HUMANS 2014. [PMCID: PMC7122662 DOI: 10.1007/978-1-4899-7448-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Richard A. Kaslow
- Department of Epidemiology, University of Alabama, Birmingham School of Public Health, Birmingham, Alabama USA
| | - Lawrence R. Stanberry
- Departmant of Pediatrics, Columbia University College of Physicians and Surgeons, New York, New York USA
| | - James W. Le Duc
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas USA
| |
Collapse
|
30
|
Multiple classes of antiviral agents exhibit in vitro activity against human rhinovirus type C. Antimicrob Agents Chemother 2013; 58:1546-55. [PMID: 24366736 DOI: 10.1128/aac.01746-13] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human rhinovirus type C (HRV-C) is a newly discovered enterovirus species frequently associated with exacerbation of asthma and other acute respiratory conditions. Until recently, HRV-C could not be propagated in vitro, hampering in-depth characterization of the virus replication cycle and preventing efficient testing of antiviral agents. Herein we describe several subgenomic RNA replicon systems and a cell culture infectious model for HRV-C that can be used for antiviral screening. The replicon constructs consist of genome sequences from HRVc15, HRVc11, HRVc24, and HRVc25 strains, with the P1 capsid region replaced by a Renilla luciferase coding sequence. Following transfection of the replicon RNA into HeLa cells, the constructs produced time-dependent increases in luciferase signal that can be inhibited in a dose-dependent manner by known inhibitors of HRV replication, including the 3C protease inhibitor rupintrivir, the nucleoside analog inhibitor MK-0608, and the phosphatidylinositol 4-kinase IIIβ (PI4K-IIIβ) kinase inhibitor PIK93. Furthermore, with the exception of pleconaril and pirodavir, the other tested classes of HRV inhibitors blocked the replication of full-length HRVc15 and HRVc11 in human airway epithelial cells (HAEs) that were differentiated in the air-liquid interface, exhibiting antiviral activities similar to those observed with HRV-16. In summary, this study is the first comprehensive profiling of multiple classes of antivirals against HRV-C, and the set of newly developed quantitative HRV-C antiviral assays represent indispensable tools for the identification and evaluation of novel panserotype HRV inhibitors.
Collapse
|
31
|
Chase AJ, Semler BL. Differential cleavage of IRES trans-acting factors (ITAFs) in cells infected by human rhinovirus. Virology 2013; 449:35-44. [PMID: 24418535 DOI: 10.1016/j.virol.2013.10.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 10/14/2013] [Accepted: 10/22/2013] [Indexed: 02/05/2023]
Abstract
Human rhinovirus (HRV) is a major causative agent of the common cold, and thus has several important health implications. As a member of the picornavirus family, HRV has a small genomic RNA that utilizes several host cell proteins for RNA replication. Host proteins poly(rC) binding protein 2 (PCBP2) and polypyrimidine tract binding protein (PTB) are cleaved by a viral proteinase during the course of infection by the related picornavirus, poliovirus. The cleavage of PCBP2 and PTB inhibits poliovirus translation and has been proposed to mediate a switch in poliovirus template usage from translation to RNA replication. HRV RNA replication also requires a switch in template usage from translation to RNA replication; however, the mechanism is not yet known. We demonstrate that PCBP2 and PTB are differentially cleaved during HRV infection in different cell lines, suggesting that HRV utilizes a mechanism distinct from PCBP2 or PTB cleavage to mediate a switch in template usage.
Collapse
Affiliation(s)
- Amanda J Chase
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92697, USA
| | - Bert L Semler
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
32
|
Kiyota N, Kobayashi M, Tsukagoshi H, Ryo A, Harada S, Kusaka T, Obuchi M, Shimojo N, Noda M, Kimura H. Genetic analysis of human rhinovirus species A to C detected in patients with acute respiratory infection in Kumamoto prefecture, Japan 2011-2012. INFECTION GENETICS AND EVOLUTION 2013; 21:90-102. [PMID: 24200591 DOI: 10.1016/j.meegid.2013.10.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 09/25/2013] [Accepted: 10/26/2013] [Indexed: 10/26/2022]
Abstract
We performed detailed genetic analysis of the VP4/VP2 coding region in human rhinovirus species A to C (HRV-ABC) strains detected in patients with a variety of acute respiratory infections in Kumamoto, Japan in the period 2011-12. The phylogenetic tree and evolutionary timescale were obtained by the Bayesian Markov chain Monte Carlo method. Phylogenetic analyses showed that the present HRV-A, -B, and -C strains belonged to 25, 4, and 18 genotypes, respectively. Some new genotypes were confirmed as prevalent strains of HRV-C. An ancestor of the present HRV-ABCs could be dated back to about 20,000 years ago. The present HRV-A and -C strains have wide genetic divergence (pairwise distance >0.2) with rapid evolutionary rates (around 7 × 10(-4) to 4 × 10(-3)substitutions/site/year). Over 100 sites were found to be under negative selection, while no positively selected sites were found in the analyzed region. No evidence of recombination events was found in this region of the present strains. Our results indicate that the present HRV strains have rapidly evolved and subsequently diverged over a long period into multiple genotypes.
Collapse
Affiliation(s)
- Naoko Kiyota
- Kumamoto Prefectural Institute of Public Health and Environmental Sciences, 1240-1 Uto-shi, Kumamoto 869-0425, Japan
| | - Miho Kobayashi
- Gunma Prefectural Institute of Public Health and Environmental Sciences, 378 Kamioki-machi, Maebashi-shi, Gunma 371-0052, Japan
| | - Hiroyuki Tsukagoshi
- Gunma Prefectural Institute of Public Health and Environmental Sciences, 378 Kamioki-machi, Maebashi-shi, Gunma 371-0052, Japan
| | - Akihide Ryo
- Department of Molecular Biodefence Research, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama-shi, Kanagawa 236-0004, Japan
| | - Seiya Harada
- Kumamoto Prefectural Institute of Public Health and Environmental Sciences, 1240-1 Uto-shi, Kumamoto 869-0425, Japan
| | - Takashi Kusaka
- Maternal Perinatal Center, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Masatsugu Obuchi
- Toyama Institute of Health, 17-1 Nakataikoyama, Imizu-shi, Toyama 939-0363, Japan
| | - Naoki Shimojo
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba-shi, Chiba 260-8670, Japan
| | - Masahiro Noda
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Hirokazu Kimura
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan.
| |
Collapse
|
33
|
Tapparel C, Sobo K, Constant S, Huang S, Van Belle S, Kaiser L. Growth and characterization of different human rhinovirus C types in three-dimensional human airway epithelia reconstituted in vitro. Virology 2013; 446:1-8. [DOI: 10.1016/j.virol.2013.06.031] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 05/10/2013] [Accepted: 06/28/2013] [Indexed: 10/26/2022]
|
34
|
Iwasaki J, Smith WA, Stone SR, Thomas WR, Hales BJ. Species-specific and cross-reactive IgG1 antibody binding to viral capsid protein 1 (VP1) antigens of human rhinovirus species A, B and C. PLoS One 2013; 8:e70552. [PMID: 23950960 PMCID: PMC3737412 DOI: 10.1371/journal.pone.0070552] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 06/23/2013] [Indexed: 11/18/2022] Open
Abstract
Background Human rhinoviruses (HRV) are associated with upper and lower respiratory illnesses, including severe infections causing hospitalization in both children and adults. Although the clinical significance of HRV infections is now well established, no detailed investigation of the immune response against HRV has been performed. The purpose of this study was to assess the IgG1 antibody response to the three known HRV species, HRV-A, -B and -C in healthy subjects. Methods Recombinant polypeptides of viral capsid protein 1 (VP1) from two genotypes of HRV-A, -B and -C were expressed as glutathione S-transferase (GST) fusion proteins and purified by affinity and then size exclusion chromatography. The presence of secondary structures similar to the natural antigens was verified by circular dichroism analysis. Total and species-specific IgG1 measurements were quantitated by immunoassays and immunoabsorption using sera from 63 healthy adults. Results Most adult sera reacted with the HRV VP1 antigens, at high titres. As expected, strong cross-reactivity between HRV genotypes of the same species was found. A high degree of cross-reactivity between different HRV species was also evident, particularly between HRV-A and HRV-C. Immunoabsorption studies revealed HRV-C specific titres were markedly and significantly lower than the HRV-A and HRV-B specific titres (P<0.0001). A truncated construct of HRV-C VP1 showed greater specificity in detecting anti-HRV-C antibodies. Conclusions High titres of IgG1 antibody were bound by the VP1 capsid proteins of HRV-A, -B and -C, but for the majority of people, a large proportion of the antibody to HRV-C was cross-reactive, especially to HRV-A. The improved specificity found for the truncated HRV-C VP1 indicates species-specific and cross-reactive regions could be defined.
Collapse
Affiliation(s)
- Jua Iwasaki
- Telethon Institute for Child Health Research, Centre for Child Health Research, University of Western Australia, Perth, Australia
- School of Paediatrics and Child Health, University of Western Australia, Perth, Australia
| | - Wendy-Anne Smith
- Telethon Institute for Child Health Research, Centre for Child Health Research, University of Western Australia, Perth, Australia
| | - Shane R. Stone
- Telethon Institute for Child Health Research, Centre for Child Health Research, University of Western Australia, Perth, Australia
| | - Wayne R. Thomas
- Telethon Institute for Child Health Research, Centre for Child Health Research, University of Western Australia, Perth, Australia
| | - Belinda J. Hales
- Telethon Institute for Child Health Research, Centre for Child Health Research, University of Western Australia, Perth, Australia
- School of Paediatrics and Child Health, University of Western Australia, Perth, Australia
- * E-mail:
| |
Collapse
|
35
|
Wark PAB, Tooze M, Powell H, Parsons K. Viral and bacterial infection in acute asthma and chronic obstructive pulmonary disease increases the risk of readmission. Respirology 2013; 18:996-1002. [PMID: 23600594 PMCID: PMC7169161 DOI: 10.1111/resp.12099] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 11/22/2012] [Accepted: 01/22/2013] [Indexed: 01/02/2023]
Abstract
BACKGROUND AND OBJECTIVE Infection is as an important trigger for acute asthma and chronic obstructive pulmonary disease (COPD). The aim of this article was to determine the prevalence and impact of virus and bacterial infections in acute asthma and COPD. METHODS Subjects were recruited, within 24 h of hospital admission for acute exacerbations of asthma and COPD. Nose/throat swabs and sputum samples were collected and examined by multiplex polymerase chain reaction for respiratory viruses and cultured for bacteria. The primary outcomes were length of stay (LOS) and readmission to hospital within 60 days. RESULTS A total of 199 subjects were recruited (96 had asthma and 103 COPD) for 235 events (36 re-presented). A virus was detected in 79 subjects (40%), bacteria in 41 (21%), and of these, 18 had both. Rhinovirus A was the most frequently isolated virus. A multivariate analysis was performed to control for confounders. It found that detection of a virus, a virus and bacteria, forced expiratory volume in 1 s (FEV(1)) and a diagnosis of COPD were all independent predictors of prolonged LOS, while risk of readmission within 60 days was increased with virus infection alone, virus and bacterial infection, lower FEV(1) and current smoking. CONCLUSIONS Virus infection, especially in the presence of chronic bacterial infection, is an important determinant of more severe acute exacerbations in both asthma and COPD, and patients with co-infections are more likely to be readmitted to hospital following their exacerbation.
Collapse
Affiliation(s)
- Peter A B Wark
- Centre for Asthma and Respiratory Disease, University of Newcastle, Newcastle, New South Wales, Australia.
| | | | | | | |
Collapse
|
36
|
Lauinger IL, Bible JM, Halligan EP, Bangalore H, Tosas O, Aarons EJ, MacMahon E, Tong CYW. Patient characteristics and severity of human rhinovirus infections in children. J Clin Virol 2013; 58:216-20. [PMID: 23886500 PMCID: PMC7108361 DOI: 10.1016/j.jcv.2013.06.042] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/23/2013] [Accepted: 06/30/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND It is increasingly recognized that human rhinoviruses (HRV) can be associated with severe infections. However, conflicting results have been reported on the relative prevalence and severity of the three HRV species. OBJECTIVES The relative prevalence and clinical characteristics of HRV-A, B and C, in children attending a South London teaching hospital were investigated retrospectively. STUDY DESIGN Children aged<16 years with episodes of respiratory tract infections and detectable entero/rhinovirus RNA in respiratory samples between November 2009 and December 2010 were investigated. Retrospective case review was performed and patients' characteristics recorded. RESULTS Entero/rhinoviruses were the commonest viral pathogens (498/2316; 21.5%). Amongst 204 infection episodes associated with entero/rhinovirus, 167 were typed HRV, HRV-C was the most prevalent (99/167, 59.3%) followed by HRV-A (60/167; 35.9%) and HRV-B (8/167, 4.8%). The severity spectrum of HRV-A and HRV-C infections were similar and affected all parts of the respiratory tract. Co-pathogens were observed in 54 (26.5%) episodes. Severity was increased in patients with non-viral co-pathogens and those with an underlying respiratory condition. Univariate and multiple regression analyses of potential prognostic variables including age, co-pathogens and underlying respiratory illnesses showed that mono-infection with HRV-C, as compared with other HRV species, was associated with more severe disease in young children<3 years. CONCLUSIONS HRV-C was the most prevalent species and on its own was associated with severe disease in children<3 years. The association between infection with HRV species and clinical presentation is complex and affected by many confounding factors.
Collapse
Affiliation(s)
- Ina L Lauinger
- Department of Infectious Diseases, King's College London School of Medicine, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Miller EK, Mackay IM. From sneeze to wheeze: what we know about rhinovirus Cs. J Clin Virol 2013; 57:291-9. [PMID: 23714395 DOI: 10.1016/j.jcv.2013.04.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 04/16/2013] [Accepted: 04/20/2013] [Indexed: 12/21/2022]
Abstract
While the discovery of HRV-Cs is recent, there are no indications that they are new viruses, or that they are emerging in real-time. Genetically, HRV-Cs are most closely related to the members of HRV-A and HRV-B but even a small genetic difference can impart encompass significant changes to their clinical impact, complicated by a diverse human background of prior virus exposure and underlying host immune and disease variability. It is well known that HRVs are a major trigger of asthma exacerbations and HRV-Cs are now under investigation for their potential involvement in asthma inception. The newly described HRV-Cs account for a large proportion of HRV-related illness, including common colds and wheezing exacerbations. HRV-Cs are genetically diverse and appear to circulate with seasonal variation, exchanging dominance with HRV-A. Whether HRV-Cs are consistently more pathogenic or "asthmagenic" is unproven. Antigenic diversity complicates passive and active prophylactic interventions (i.e. antibodies or vaccines), so further identification and characterisation of individual types (and their neutralising antigens) is likely to inform future preventive strategies. In the meantime, new antivirals should benefit groups at risk of the most severe disease.
Collapse
Affiliation(s)
- E Kathryn Miller
- Department of Pediatrics, Division of Allergy, Immunology, and Pulmonary Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| | | |
Collapse
|
38
|
Phosphatidylinositol 4-kinase III beta is essential for replication of human rhinovirus and its inhibition causes a lethal phenotype in vivo. Antimicrob Agents Chemother 2013; 57:3358-68. [PMID: 23650168 DOI: 10.1128/aac.00303-13] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human rhinovirus (HRV) is the predominant cause of the common cold, but more importantly, infection may have serious repercussions in asthmatics and chronic obstructive pulmonary disorder (COPD) patients. A cell-based antiviral screen against HRV was performed with a subset of our proprietary compound collection, and an aminothiazole series with pan-HRV species and enteroviral activity was identified. The series was found to act at the level of replication in the HRV infectious cycle. In vitro selection and sequencing of aminothiazole series-resistant HRV variants revealed a single-nucleotide mutation leading to the amino acid change I42V in the essential HRV 3A protein. This same mutation has been previously implicated in resistance to enviroxime, a former clinical-stage antipicornavirus agent. Enviroxime-like compounds have recently been shown to target the lipid kinase phosphatidylinositol 4-kinase III beta (PI4KIIIβ). A good correlation between PI4KIIIβ activity and HRV antiviral potency was found when analyzing the data over 80 compounds of the aminothiazole series, covering a 750-fold potency range. The mechanism of action through PI4KIIIβ inhibition was further demonstrated by small interfering RNA (siRNA) knockdown of PI4KB, which reduced HRV replication and also increased the potency of the PI4KIIIβ inhibitors. Inhibitors from two different structural classes with promising pharmacokinetic profiles and with very good selectivity for PI4KIIIβ were used to dissociate compound-related toxicity from target-related toxicity. Mortality was seen in all dosing groups of mice treated with either compound, therefore suggesting that short-term inhibition of PI4KIIIβ is deleterious.
Collapse
|
39
|
Mackay IM, Lambert SB, Faux CE, Arden KE, Nissen MD, Sloots TP, Nolan TM. Community-wide, contemporaneous circulation of a broad spectrum of human rhinoviruses in healthy Australian preschool-aged children during a 12-month period. J Infect Dis 2013; 207:1433-41. [PMID: 22829638 PMCID: PMC7107377 DOI: 10.1093/infdis/jis476] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 04/25/2012] [Indexed: 11/17/2022] Open
Abstract
Human rhinovirus (HRV) replication triggers exacerbation of asthma and causes most acute respiratory illnesses (ARIs), which may manifest as influenza-like illness. The recent assignment of 60 previously unknown HRV types to a third HRV species, Human rhinovirus C, raised questions about the prevalence of these picornavirus types in the community, the extent of HRV diversity at a single site, and whether the HRVs have an equally diverse clinical impact on their hosts. We quantified HRV diversity, and there was no clinical impact attributable to HRV species and genotypes among a community population of preschool-aged children with ARI who provided respiratory samples during 2003. All HRV species were represented among 138 children with ARI, and 74 distinct HRV types were cocirculating. Fever accompanied 32.8% of HRV-positive ARI cases. HRVs were less likely than DNA viruses to be codetected with another virus, suggesting virus interference at the community level, demonstrated by the inverse correlation between influenza virus detection and HRV detection.
Collapse
Affiliation(s)
- Ian M Mackay
- Queensland Paediatric Infectious Diseases Laboratory, Queensland Children's Medical Research Institute, Sir Albert Sakzewski Virus Research Centre, Children's Health Queensland Hospital and Health Service, University of Queensland, Herston, Australia.
| | | | | | | | | | | | | |
Collapse
|
40
|
Pierangeli A, Ciccozzi M, Chiavelli S, Concato C, Giovanetti M, Cella E, Spano L, Scagnolari C, Moretti C, Papoff P, Muraca M, Midulla F, Antonelli G. Molecular epidemiology and genetic diversity of human rhinovirus affecting hospitalized children in Rome. Med Microbiol Immunol 2013; 202:303-11. [PMID: 23625169 DOI: 10.1007/s00430-013-0296-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 04/11/2013] [Indexed: 10/26/2022]
Abstract
Human rhinoviruses (HRV) have been re-classified into three species (A-C), but the recently discovered HRV-C strains are not fully characterized yet. This study aimed to undertake a molecular and epidemiological characterization of HRV strains infecting children hospitalized over one year in two large research hospitals in Rome. Nasal washings from single HRV infections were retrospectively subjected to phylogenetic analysis on two genomic regions: the central part of the 5'Untranslated Region (5'UTR) and the Viral Protein (VP) 4 gene with the 5' portion of the VP2 gene (VP4/2). Forty-five different strains were identified in 73 HRV-positive children: 55 % of the cases were HRV-A, 38 % HRV-C and only 7 % HRV-B. HRV-C cases were less frequent than HRV-A during summer months and more frequent in cases presenting wheezing with respect to HRV-A. Species distribution was similar with respect to patient age, and seasonality differed during summer months with fewer HRV-C than HRV-A cases. On admission, a significantly higher number of HRV-C cases presented with wheezing with respect to HRV-A. The inter- and intra-genotype variability in VP4/2 was higher than in 5'UTR; in particular, HRV-A patient VP4/2 sequences were highly divergent (8-14 %) at the nucleotide level from those of their reference strains, but VP4 amino acid sequence was highly conserved. In HRV-C isolates, the region preceding the initiator AUG, the amino acids involved in VP4 myristoylation, the VP4-VP2 cleavage site and the cis-acting replication element were highly conserved. Differently, VP4 amino acid conservation was significantly lower in HRV-C than in HRV-A strains, especially in the transiently exposed VP4 N-terminus. This study confirmed the high number of different HRV genotypes infecting hospitalized children over one year and reveals a greater than expected variability in HRV-C VP4 protein, potentially suggestive of differences in replication.
Collapse
Affiliation(s)
- Alessandra Pierangeli
- Istituto Pasteur-Fondazione Cenci Bolognetti, Laboratory of Virology, Department of Molecular Medicine, Sapienza University, V.le Porta Tiburtina, 28, 00185 Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Sansone M, Andersson M, Brittain-Long R, Andersson LM, Olofsson S, Westin J, Lindh M. Rhinovirus infections in western Sweden: a four-year molecular epidemiology study comparing local and globally appearing types. Eur J Clin Microbiol Infect Dis 2013; 32:947-54. [PMID: 23435753 PMCID: PMC7087832 DOI: 10.1007/s10096-013-1832-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 01/24/2013] [Indexed: 11/07/2022]
Abstract
Human rhinovirus (HRV) is a highly prevalent pathogen and a major cause of acute respiratory tract infection (ARTI). HRV express less seasonality than other viral ARTIs, which typically appear as seasonal epidemics lasting for 1–2 months. The aim of this study was to investigate the seasonal patterns of HRV types over four consecutive years in one geographic region. HRV identified in respiratory samples from 114 patients over a four-year period were analysed by VP4/VP2 sequencing. HRV-A was found in 64, HRV-B in 11 and HRV-C in 37 cases. Overall, 33 different HRV-A types, nine B types and 21 C types were found. As many as 21 of the HRV types appeared during several seasons, with a maximum time-span of four years. Some types appeared during successive seasons and, in some cases, phylogenetic analysis indicated extended periods of circulation locally. Most of the strains were closely related to HRV identified in other parts of the world during the same time period. HRV strains that circulate locally represent many types and seem to reflect that HRV infections are highly globalised. The existence of simultaneous or successive epidemics with different HRV types in combination with the ability of each type to remain in the local population over extended periods of time may contribute to explaining the high rate of HRV infections.
Collapse
Affiliation(s)
- M Sansone
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Guldhedsgatan 10B, 413 36 Gothenburg, Sweden
| | | | | | | | | | | | | |
Collapse
|
42
|
Hershenson MB. Rhinovirus-Induced Exacerbations of Asthma and COPD. SCIENTIFICA 2013; 2013:405876. [PMID: 24278777 PMCID: PMC3820304 DOI: 10.1155/2013/405876] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 01/16/2013] [Indexed: 06/01/2023]
Abstract
Over the past two decades, increasing evidence has shown that, in patients with chronic airways disease, viral infection is the most common cause of exacerbation. This review will examine the evidence for viral-induced exacerbations of asthma and chronic obstructive lung disease and the potential mechanisms by which viruses cause exacerbations. Attention will be focused on rhinovirus, the most common cause of respiratory exacerbations. Exacerbations due to rhinovirus, which infects relatively few cells in the airway and does not cause the cytotoxicity of other viruses such as influenza or respiratory syncytial virus, are particularly poorly understood. While the innate immune response likely plays a role in rhinovirus-induced exacerbations, its precise role, either adaptive or maladaptive, is debated. Because current treatment strategies are only partially effective, further research examining the cellular and molecular mechanisms underlying viral-induced exacerbations of chronic airways diseases is warranted.
Collapse
Affiliation(s)
- Marc B. Hershenson
- Departments of Pediatrics and Communicable Diseases and Molecular and Integrative Physiology, University of Michigan Medical School, 1150 W. Medical Center Drive, Room 3570B, Medical Science Research Building 2, Ann Arbor, MI 48109-5688, USA
| |
Collapse
|
43
|
Chang AB, Grimwood K, Wilson AC, van Asperen PP, Byrnes CA, O’Grady KAF, Sloots TP, Robertson CF, Torzillo PJ, McCallum GB, Masters IB, Buntain HM, Mackay IM, Ungerer J, Tuppin J, Morris PS. Bronchiectasis exacerbation study on azithromycin and amoxycillin-clavulanate for respiratory exacerbations in children (BEST-2): study protocol for a randomized controlled trial. Trials 2013; 14:53. [PMID: 23421781 PMCID: PMC3586343 DOI: 10.1186/1745-6215-14-53] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 01/22/2013] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Bronchiectasis unrelated to cystic fibrosis (CF) is being increasingly recognized in children and adults globally, both in resource-poor and in affluent countries. However, high-quality evidence to inform management is scarce. Oral amoxycillin-clavulanate is often the first antibiotic chosen for non-severe respiratory exacerbations, because of the antibiotic-susceptibility patterns detected in the respiratory pathogens commonly associated with bronchiectasis. Azithromycin has a prolonged half-life, and with its unique anti-bacterial, immunomodulatory, and anti-inflammatory properties, presents an attractive alternative. Our proposed study will test the hypothesis that oral azithromycin is non-inferior (within a 20% margin) to amoxycillin-clavulanate at achieving resolution of non-severe respiratory exacerbations by day 21 of treatment in children with non-CF bronchiectasis. METHODS This will be a multicenter, randomized, double-blind, double-dummy, placebo-controlled, parallel group trial involving six Australian and New Zealand centers. In total, 170 eligible children will be stratified by site and bronchiectasis etiology, and randomized (allocation concealed) to receive: 1) azithromycin (5 mg/kg daily) with placebo amoxycillin-clavulanate or 2) amoxycillin-clavulanate (22.5 mg/kg twice daily) with placebo azithromycin for 21 days as treatment for non-severe respiratory exacerbations. Clinical data and a parent-proxy cough-specific quality of life (PC-QOL) score will be obtained at baseline, at the start and resolution of exacerbations, and on day 21. In most children, blood and deep-nasal swabs will also be collected at the same time points. The primary outcome is the proportion of children whose exacerbations have resolved at day 21. The main secondary outcome is the PC-QOL score. Other outcomes are: time to next exacerbation; requirement for hospitalization; duration of exacerbation, and spirometry data. Descriptive viral and bacteriological data from nasal samples and blood inflammatory markers will be reported where available. DISCUSSION Currently, there are no published randomized controlled trials (RCT) to underpin effective, evidence-based management of acute respiratory exacerbations in children with non-CF bronchiectasis. To help address this information gap, we are conducting two RCTs. The first (bronchiectasis exacerbation study; BEST-1) evaluates the efficacy of azithromycin and amoxycillin-clavulanate compared with placebo, and the second RCT (BEST-2), described here, is designed to determine if azithromycin is non-inferior to amoxycillin-clavulanate in achieving symptom resolution by day 21 of treatment in children with acute respiratory exacerbations. TRIAL REGISTRATION Australia and New Zealand Clinical Trials Register (ANZCTR) number http://ACTRN12612000010897. http://www.anzctr.org.au/trial_view.aspx?id=347879.
Collapse
Affiliation(s)
- Anne B Chang
- Child Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
- Queensland Children’s Respiratory Centre, Royal Children’s Hospital, Brisbane, QLD, Australia
- Queensland Children’s Medical Research Institute, Brisbane, QLD, Australia
| | - Keith Grimwood
- Queensland Children’s Medical Research Institute, Brisbane, QLD, Australia
- Queensland Paediatric Infectious Diseases Laboratory, Royal Children’s Hospital, Brisbane, QLD, Australia
| | - Andrew C Wilson
- Department of Respiratory Medicine, Princess Margaret Hospital, Perth, Australia
| | - Peter P van Asperen
- Department of Respiratory Medicine, The Children’s Hospital at Westmead and Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Catherine A Byrnes
- Department of Paediatrics, University of Auckland and Starship Children’s Hospital, Auckland, New Zealand
| | | | - Theo P Sloots
- Queensland Children’s Medical Research Institute, Brisbane, QLD, Australia
- Queensland Paediatric Infectious Diseases Laboratory, Royal Children’s Hospital, Brisbane, QLD, Australia
| | - Colin F Robertson
- Department of Respiratory Medicine, Royal Children’s Hospital, Murdoch Children’s Research Institute, University of Melbourne, Melbourne, VIC, Australia
| | | | - Gabrielle B McCallum
- Child Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - Ian B Masters
- Queensland Children’s Respiratory Centre, Royal Children’s Hospital, Brisbane, QLD, Australia
- Queensland Children’s Medical Research Institute, Brisbane, QLD, Australia
| | - Helen M Buntain
- Queensland Children’s Respiratory Centre, Royal Children’s Hospital, Brisbane, QLD, Australia
- Queensland Children’s Medical Research Institute, Brisbane, QLD, Australia
| | - Ian M Mackay
- Queensland Children’s Medical Research Institute, Brisbane, QLD, Australia
- Queensland Paediatric Infectious Diseases Laboratory, Royal Children’s Hospital, Brisbane, QLD, Australia
| | - Jacobus Ungerer
- Department Chemical Pathology, Queensland Pathology, Royal Brisbane Hospital, Brisbane, Australia
| | - Joanne Tuppin
- Queensland Children’s Respiratory Centre, Royal Children’s Hospital, Brisbane, QLD, Australia
- Queensland Children’s Medical Research Institute, Brisbane, QLD, Australia
| | - Peter S Morris
- Child Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
- Department of Paediatrics, Royal Darwin Hospital, Darwin, NT, Australia
| |
Collapse
|
44
|
Willenborg C, Stelzer-Braid S. Sneezing leads to wheezing: microorganisms important in asthma. MICROBIOLOGY AUSTRALIA 2013. [DOI: 10.1071/ma13042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
45
|
Abstract
Human rhinoviruses (HRVs), first discovered in the 1950s, are responsible for more than one-half of cold-like illnesses and cost billions of dollars annually in medical visits and missed days of work. Advances in molecular methods have enhanced our understanding of the genomic structure of HRV and have led to the characterization of three genetically distinct HRV groups, designated groups A, B, and C, within the genus Enterovirus and the family Picornaviridae. HRVs are traditionally associated with upper respiratory tract infection, otitis media, and sinusitis. In recent years, the increasing implementation of PCR assays for respiratory virus detection in clinical laboratories has facilitated the recognition of HRV as a lower respiratory tract pathogen, particularly in patients with asthma, infants, elderly patients, and immunocompromised hosts. Cultured isolates of HRV remain important for studies of viral characteristics and disease pathogenesis. Indeed, whether the clinical manifestations of HRV are related directly to viral pathogenicity or secondary to the host immune response is the subject of ongoing research. There are currently no approved antiviral therapies for HRVs, and treatment remains primarily supportive. This review provides a comprehensive, up-to-date assessment of the basic virology, pathogenesis, clinical epidemiology, and laboratory features of and treatment and prevention strategies for HRVs.
Collapse
Affiliation(s)
- Samantha E. Jacobs
- Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Weill Cornell Medical College, New York, New York, USA
| | - Daryl M. Lamson
- Laboratory of Viral Diseases, Wadsworth Center, Albany, New York, USA
| | | | - Thomas J. Walsh
- Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
46
|
Megremis S, Demetriou P, Makrinioti H, Manoussaki AE, Papadopoulos NG. The genomic signature of human rhinoviruses A, B and C. PLoS One 2012; 7:e44557. [PMID: 23028561 PMCID: PMC3441561 DOI: 10.1371/journal.pone.0044557] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 08/07/2012] [Indexed: 11/19/2022] Open
Abstract
Human rhinoviruses are single stranded positive sense RNA viruses that are presented in more than 50% of acute upper respiratory tract infections. Despite extensive studies on the genetic diversity of the virus, little is known about the forces driving it. In order to explain this diversity, many research groups have focused on protein sequence requirements for viable, functional and transmissible virus but have missed out an important aspect of viral evolution such as the genomic ontology of the virus. This study presents for the first time the genomic signature of 111 fully sequenced HRV strains from all three groups HRV-A, HRV-B and HRV-C. We observed an HRV genome tendency to eliminate CpG and UpA dinucleotides, coupling with over-representation of UpG and CpA. We propose a specific mechanism which describes how rapid changes in the HRV genomic sequence can take place under the strict control of conservation of the polypeptide backbone. Moreover, the distribution of the observed under- and over-represented dinucleotides along the HRV genome is presented. Distance matrice tables based on CpG and UpA odds ratios were constructed and viewed as heatmaps and distance trees. None of the suppressions can be attributed to codon usage or in RNA secondary structure requirements. Since viral recognition is dependent on RNA motifs rich in CpG and UpA, it is possible that the overall described genome evolution mechanism acts in order to protect the virus from host recognition.
Collapse
Affiliation(s)
- Spyridon Megremis
- Allergy Department, 2nd Pediatric Clinic, University of Athens, Athens, Greece.
| | | | | | | | | |
Collapse
|
47
|
Chang AB, Grimwood K, Robertson CF, Wilson AC, van Asperen PP, O’Grady KAF, Sloots TP, Torzillo PJ, Bailey EJ, McCallum GB, Masters IB, Byrnes CA, Chatfield MD, Buntain HM, Mackay IM, Morris PS. Antibiotics for bronchiectasis exacerbations in children: rationale and study protocol for a randomised placebo-controlled trial. Trials 2012; 13:156. [PMID: 22937736 PMCID: PMC3488323 DOI: 10.1186/1745-6215-13-156] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Accepted: 08/16/2012] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Despite bronchiectasis being increasingly recognised as an important cause of chronic respiratory morbidity in both indigenous and non-indigenous settings globally, high quality evidence to inform management is scarce. It is assumed that antibiotics are efficacious for all bronchiectasis exacerbations, but not all practitioners agree. Inadequately treated exacerbations may risk lung function deterioration. Our study tests the hypothesis that both oral azithromycin and amoxicillin-clavulanic acid are superior to placebo at improving resolution rates of respiratory exacerbations by day 14 in children with bronchiectasis unrelated to cystic fibrosis. METHODS We are conducting a bronchiectasis exacerbation study (BEST), which is a multicentre, randomised, double-blind, double-dummy, placebo-controlled, parallel group trial, in five centres (Brisbane, Perth, Darwin, Melbourne, Auckland). In the component of BEST presented here, 189 children fulfilling inclusion criteria are randomised (allocation-concealed) to receive amoxicillin-clavulanic acid (22.5 mg/kg twice daily) with placebo-azithromycin; azithromycin (5 mg/kg daily) with placebo-amoxicillin-clavulanic acid; or placebo-azithromycin with placebo-amoxicillin-clavulanic acid for 14 days. Clinical data and a paediatric cough-specific quality of life score are obtained at baseline, at the start and resolution of exacerbations, and at day 14. In most children, blood and deep nasal swabs are also collected at the same time points. The primary outcome is the proportion of children whose exacerbations have resolved at day 14. The main secondary outcome is the paediatric cough-specific quality of life score. Other outcomes are time to next exacerbation; requirement for hospitalisation; duration of exacerbation; and spirometry data. Descriptive viral and bacteriological data from nasal samples and blood markers will also be reported. DISCUSSION Effective, evidence-based management of exacerbations in people with bronchiectasis is clinically important. Yet, there are few randomised controlled trials (RCTs) in the neglected area of non-cystic fibrosis bronchiectasis. Indeed, no published RCTs addressing the treatment of bronchiectasis exacerbations in children exist. Our multicentre, double-blind RCT is designed to determine if azithromycin and amoxicillin-clavulanic acid, compared with placebo, improve symptom resolution on day 14 in children with acute respiratory exacerbations. Our planned assessment of the predictors of antibiotic response, the role of antibiotic-resistant respiratory pathogens, and whether early treatment with antibiotics affects duration and time to the next exacerbation, are also all novel. TRIAL REGISTRATION Australia and New Zealand Clinical Trials Register (ANZCTR) number ACTRN12612000011886.
Collapse
Affiliation(s)
- Anne B Chang
- Child Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
- Queensland Children’s Respiratory Centre, Royal Children’s Hospital, Brisbane, QLD, Australia
- Queensland Children’s Medical Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Keith Grimwood
- Queensland Children’s Medical Research Institute, The University of Queensland, Brisbane, QLD, Australia
- Queensland Paediatric Infectious Diseases Laboratory, Royal Children’s Hospital, Brisbane, QLD, Australia
| | - Colin F Robertson
- Department of Respiratory Medicine, Royal Children’s Hospital, Murdoch Children’s Research Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Andrew C Wilson
- Department of Respiratory Medicine, Princess Margaret Hospital, Perth, Australia
| | - Peter P van Asperen
- Department of Respiratory Medicine, The Children’s Hospital at Westmead & Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Kerry-Ann F O’Grady
- Queensland Children’s Medical Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Theo P Sloots
- Queensland Children’s Medical Research Institute, The University of Queensland, Brisbane, QLD, Australia
- Queensland Paediatric Infectious Diseases Laboratory, Royal Children’s Hospital, Brisbane, QLD, Australia
| | | | - Emily J Bailey
- Child Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
- Queensland Children’s Respiratory Centre, Royal Children’s Hospital, Brisbane, QLD, Australia
- Queensland Children’s Medical Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Gabrielle B McCallum
- Child Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - Ian B Masters
- Queensland Children’s Respiratory Centre, Royal Children’s Hospital, Brisbane, QLD, Australia
- Queensland Children’s Medical Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Catherine A Byrnes
- Department of Paediatrics, University of Auckland and Starship Children’s Hospital, Auckland, New Zealand
| | - Mark D Chatfield
- Research and Education Support Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - Helen M Buntain
- Queensland Children’s Respiratory Centre, Royal Children’s Hospital, Brisbane, QLD, Australia
- Queensland Children’s Medical Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Ian M Mackay
- Queensland Children’s Medical Research Institute, The University of Queensland, Brisbane, QLD, Australia
- Queensland Paediatric Infectious Diseases Laboratory, Royal Children’s Hospital, Brisbane, QLD, Australia
| | - Peter S Morris
- Child Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
- Department of Paediatrics, Royal Darwin Hospital, Darwin, NT, Australia
| |
Collapse
|
48
|
Onyango CO, Welch SR, Munywoki PK, Agoti CN, Bett A, Ngama M, Myers R, Cane PA, Nokes DJ. Molecular epidemiology of human rhinovirus infections in Kilifi, coastal Kenya. J Med Virol 2012; 84:823-31. [PMID: 22431032 PMCID: PMC3500870 DOI: 10.1002/jmv.23251] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2012] [Indexed: 11/17/2022]
Abstract
This study reports pediatric surveillance over 3 years for human rhinovirus (HRV) at the District Hospital of Kilifi, coastal Kenya. Nasopharyngeal samples were collected from children presenting at outpatient clinic with no signs of acute respiratory infection, or with signs of upper respiratory tract infection, and from children admitted to the hospital with lower respiratory tract infection. Samples were screened by real-time reverse transcriptase polymerase chain reaction (real-time RT-PCR) and classified further to species by nucleotide sequencing of the VP4/VP2 junction. Of 441 HRV positives by real-time RT-PCR, 332 were classified to species, with 47% (155) being HRV-A, 5% (18) HRV-B, and 48% (159) HRV-C. There was no clear seasonal pattern of occurrence for any species. The species were present in similar proportions in the inpatient and outpatient sample sets, and no significant association between species distribution and the severity of lower respiratory tract infection in the inpatients could be determined. HRV sequence analysis revealed multiple but separate clusters in circulation particularly for HRV-A and HRV-C. Most HRV-C clusters were distinct from reference sequences downloaded from GenBank. In contrast, most HRV-A and HRV-B sequences clustered with either known serotypes or strains from elsewhere within Africa and other regions of the world. This first molecular epidemiological study of HRV in the region defines species distribution in accord with reports from elsewhere in the world, shows considerable strain diversity and does not identify an association between any species and disease severity.
Collapse
|
49
|
Co-circulation of four human coronaviruses (HCoVs) in Queensland children with acute respiratory tract illnesses in 2004. Viruses 2012; 4:637-53. [PMID: 22590689 PMCID: PMC3347326 DOI: 10.3390/v4040637] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 04/11/2012] [Accepted: 04/11/2012] [Indexed: 11/16/2022] Open
Abstract
Acute respiratory illnesses (ARIs) with unconfirmed infectious aetiologies peak at different times of the year. Molecular diagnostic assays reduce the number of unconfirmed ARIs compared to serology- or culture-based techniques. Screening of 888 inpatient and outpatient respiratory specimens spanning late autumn through to early spring, 2004, identified the presence of a human coronavirus (HCoV) on 74 occasions (8.3% of all specimens and 26.3% of all respiratory virus detections). Prevalence peaked in August (late winter in the southern hemisphere) when they were detected in 21.9% of specimens tested. HCoV-HKU1 and HCoV-OC43 comprised 82.4% of all HCoVs detected. Positive specimens were used to develop novel reverse transcriptase real-time PCRs (RT-rtPCRs) for HCoV detection. An objective clinical severity score was assigned to each positive HCoV patient. Severity scores were similar to those from a random selection of young children who were positive for respiratory syncytial virus at a different time but from the same specimen population. During the cooler months of 2004, sensitive and specific RT-rtPCRs identified the concurrent circulation of all four HCoVs, a quarter of which co-occurred with another virus and most of which were from children under the age of two years.
Collapse
|
50
|
Piralla A, Lilleri D, Sarasini A, Marchi A, Zecca M, Stronati M, Baldanti F, Gerna G. Human rhinovirus and human respiratory enterovirus (EV68 and EV104) infections in hospitalized patients in Italy, 2008-2009. Diagn Microbiol Infect Dis 2012; 73:162-7. [PMID: 22494556 DOI: 10.1016/j.diagmicrobio.2012.02.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 02/22/2012] [Accepted: 02/24/2012] [Indexed: 11/30/2022]
Abstract
The epidemiology of picornavirus infections along with associated risk factors for lower respiratory tract infections (LRTI) and duration of virus shedding were investigated in 985 hospitalized patients in the period October 2008-September 2009. One-third of patients were human rhinovirus (HRV)-positive. Of 336 HRV-associated episodes, 153 (45.5%) were sustained by HRV-A, 31 (9.2%) by HRV-B, and 93 (27.7%) by HRV-C, while 7 episodes showed multiple HRV types and 52 were sustained by undefined HRV species. Independent risk factors for LRTI included high viral load and age less than 5 years. Twenty (2.1%) patients were enterovirus (EV)-positive (12 had EV-68, 7 EV-104, and 1 E-13 infection). Half of the EV-positive patients had a LRTI and were younger with respect to patients with upper RTI (median 18 months versus 37 years; P < 0.001). HRVs are often the cause of LRTI in children less than 5 years, frequently in association with a high viral load.
Collapse
Affiliation(s)
- Antonio Piralla
- S.S. Virologia Molecolare, S.C. Virologia e Microbiologia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | | | | | | | | | | | | |
Collapse
|