1
|
Jang YH, Seong BL. Immune Responses Elicited by Live Attenuated Influenza Vaccines as Correlates of Universal Protection against Influenza Viruses. Vaccines (Basel) 2021; 9:vaccines9040353. [PMID: 33916924 PMCID: PMC8067561 DOI: 10.3390/vaccines9040353] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 02/06/2023] Open
Abstract
Influenza virus infection remains a major public health challenge, causing significant morbidity and mortality by annual epidemics and intermittent pandemics. Although current seasonal influenza vaccines provide efficient protection, antigenic changes of the viruses often significantly compromise the protection efficacy of vaccines, rendering most populations vulnerable to the viral infection. Considerable efforts have been made to develop a universal influenza vaccine (UIV) able to confer long-lasting and broad protection. Recent studies have characterized multiple immune correlates required for providing broad protection against influenza viruses, including neutralizing antibodies, non-neutralizing antibodies, antibody effector functions, T cell responses, and mucosal immunity. To induce broadly protective immune responses by vaccination, various strategies using live attenuated influenza vaccines (LAIVs) and novel vaccine platforms are under investigation. Despite superior cross-protection ability, very little attention has been paid to LAIVs for the development of UIV. This review focuses on immune responses induced by LAIVs, with special emphasis placed on the breadth and the potency of individual immune correlates. The promising prospect of LAIVs to serve as an attractive and reliable vaccine platforms for a UIV is also discussed. Several important issues that should be addressed with respect to the use of LAIVs as UIV are also reviewed.
Collapse
Affiliation(s)
- Yo Han Jang
- Department of Biological Sciences and Biotechnology Major in Bio-Vaccine Engineering, Andong National University, Andong 1375, Korea;
- Vaccine Industry Research Institute, Andong National University, Andong 1375, Korea
| | - Baik L. Seong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
- Vaccine Innovation Technology Alliance (VITAL)-Korea, Yonsei University, Seoul 03722, Korea
- Correspondence: ; Tel.: +82-2-2123-7416
| |
Collapse
|
2
|
Rudraraju R, Mordant F, Subbarao K. How Live Attenuated Vaccines Can Inform the Development of Broadly Cross-Protective Influenza Vaccines. J Infect Dis 2020; 219:S81-S87. [PMID: 30715386 PMCID: PMC7313962 DOI: 10.1093/infdis/jiy703] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Rajeev Rudraraju
- Department of Microbiology and Immunology, University of Melbourne
| | | | - Kanta Subbarao
- Department of Microbiology and Immunology, University of Melbourne.,World Health Organization Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| |
Collapse
|
3
|
Skarlupka AL, Ross TM. Immune Imprinting in the Influenza Ferret Model. Vaccines (Basel) 2020; 8:vaccines8020173. [PMID: 32276530 PMCID: PMC7348859 DOI: 10.3390/vaccines8020173] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/28/2022] Open
Abstract
The initial exposure to influenza virus usually occurs during childhood. This imprinting has long-lasting effects on the immune responses to subsequent infections and vaccinations. Animal models that are used to investigate influenza pathogenesis and vaccination do recapitulate the pre-immune history in the human population. The establishment of influenza pre-immune ferret models is necessary for understanding infection and transmission and for designing efficacious vaccines.
Collapse
Affiliation(s)
- Amanda L. Skarlupka
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA;
| | - Ted M. Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA;
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
- Correspondence: ; Tel.: +1-706-542-9708
| |
Collapse
|
4
|
Abstract
Cellular immune responses, through both T and B cells, are critical to understanding the role and regulation of lymphocytes following viral infection, as well as defining responses to vaccination. T cells play a critical role in adaptive immunity, including pathogen elimination through the engagement of CD4 and CD8 receptors, which trigger signaling mechanisms. B cells contribute to generating antibodies following exposure to foreign pathogens through interactions with CD4+ lymphocytes. While these different cell types have distinctly different modes of action in terms of contributions to protection (cytotoxic versus antibody mediated), they account for the majority of adaptive immunity induced following infection or vaccination. While the ability to measure cell-mediated immunity (CMI) has steadily improved, there is much to learn with regard to their contribution to the protection of birds against diseases induced by avian influenza virus. The rapidly increasing knowledge of genomic avian sequences, along with the increasing availability of monoclonal antibodies detecting avian cell-associated antigen markers, has made techniques to measure CMI more specific and informative for researchers.
Collapse
|
5
|
Koutsakos M, Kedzierska K, Subbarao K. Immune Responses to Avian Influenza Viruses. THE JOURNAL OF IMMUNOLOGY 2019; 202:382-391. [DOI: 10.4049/jimmunol.1801070] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/24/2018] [Indexed: 12/26/2022]
|
6
|
Recombinant H7 hemagglutinin forms subviral particles that protect mice and ferrets from challenge with H7N9 influenza virus. Vaccine 2015. [PMID: 26207590 DOI: 10.1016/j.vaccine.2015.07.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A novel avian-origin influenza A H7N9 virus emerged in China in 2013 and continues to cause sporadic human infections with mortality rates approaching 35%. Currently there are no approved human vaccines for H7N9 virus. Recombinant approaches including hemagglutinin (HA) and virus-like particles (VLPs) have resulted in experimental vaccines with advantageous safety and manufacturing characteristics. While high immunogenicity of VLP vaccines has been attributed to the native conformation of HA arranged in the regular repeated patterns within virus-like structures, there is limited data regarding molecular organization of HA within recombinant HA vaccine preparations. In this study, the full-length recombinant H7 protein (rH7) of A/Anhui/1/2013 (H7N9) virus was expressed in Sf9 cells. We showed that purified full-length rH7 retained functional ability to agglutinate red blood cells and formed oligomeric pleomorphic subviral particles (SVPs) of ∼20nm in diameter composed of approximately 10 HA0 molecules. No significant quantities of free monomeric HA0 were observed in rH7 preparation by size exclusion chromatography. Immunogenicity and protective efficacy of rH7 SVPs was confirmed in the mouse and ferret challenge models suggesting that SVPs can be used for vaccination against H7N9 virus.
Collapse
|
7
|
Liu YV, Massare MJ, Pearce MB, Sun X, Belser JA, Maines TR, Creager HM, Glenn GM, Pushko P, Smith GE, Tumpey TM. Recombinant virus-like particles elicit protective immunity against avian influenza A(H7N9) virus infection in ferrets. Vaccine 2015; 33:2152-8. [PMID: 25772674 DOI: 10.1016/j.vaccine.2015.03.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 01/29/2015] [Accepted: 03/03/2015] [Indexed: 12/09/2022]
Abstract
In March 2013, diagnosis of the first reported case of human infection with a novel avian-origin influenza A(H7N9) virus occurred in eastern China. Most human cases have resulted in severe respiratory illness and, in some instances, death. Currently there are no licensed vaccines against H7N9 virus, which continues to cause sporadic human infections. Recombinant virus-like particles (VLPs) have been previously shown to be safe and effective vaccines for influenza. In this study, we evaluated the immunogenicity and protective efficacy of a H7N9 VLP vaccine in the ferret challenge model. Purified recombinant H7N9 VLPs morphologically resembled influenza virions and elicited high-titer serum hemagglutination inhibition (HI) and neutralizing antibodies specific for A/Anhui/1/2013 (H7N9) virus. H7N9 VLP-immunized ferrets subsequently challenged with homologous virus displayed reductions in fever, weight loss, and virus shedding compared to these parameters in unimmunized control ferrets. H7N9 VLP was also effective in protecting against lung and tracheal infection. The addition of either ISCOMATRIX or Matrix-M1 adjuvant improved immunogenicity and protection of the VLP vaccine against H7N9 virus. These results provide support for the development of a safe and effective human VLP vaccine with potent adjuvants against avian influenza H7N9 virus with pandemic potential.
Collapse
Affiliation(s)
- Ye V Liu
- Novavax, Inc., 22 Firstfield, Gaithersburg, MD 20878, USA
| | | | - Melissa B Pearce
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Xiangjie Sun
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jessica A Belser
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Taronna R Maines
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Hannah M Creager
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA; Microbiology and Molecular Genetics Graduate Program, Emory University, Atlanta, GA, USA
| | | | - Peter Pushko
- Medigen, Inc., 8420 Gas House Pike, Frederick, MD, USA
| | - Gale E Smith
- Novavax, Inc., 22 Firstfield, Gaithersburg, MD 20878, USA
| | - Terrence M Tumpey
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| |
Collapse
|
8
|
Isakova-Sivak I, Chen LM, Bourgeois M, Matsuoka Y, Voeten JTM, Heldens JGM, van den Bosch H, Klimov A, Rudenko L, Cox NJ, Donis RO. Characterization of reverse genetics-derived cold-adapted master donor virus A/Leningrad/134/17/57 (H2N2) and reassortants with H5N1 surface genes in a mouse model. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:722-31. [PMID: 24648485 PMCID: PMC4018889 DOI: 10.1128/cvi.00819-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 03/11/2014] [Indexed: 01/28/2023]
Abstract
Live attenuated influenza vaccines (LAIV) offer significant advantages over subunit or split inactivated vaccines to mitigate an eventual influenza pandemic, including simpler manufacturing processes and more cross-protective immune responses. Using an established reverse genetics (rg) system for wild-type (wt) A/Leningrad/134/1957 and cold-adapted (ca) A/Leningrad/134/17/1957 (Len17) master donor virus (MDV), we produced and characterized three rg H5N1 reassortant viruses carrying modified HA and intact NA genes from either A/Vietnam/1203/2004 (H5N1, VN1203, clade 1) or A/Egypt/321/2007 (H5N1, EG321, clade 2) virus. A mouse model of infection was used to determine the infectivity and tissue tropism of the parental wt viruses compared to the ca master donor viruses as well as the H5N1 reassortants. All ca viruses showed reduced replication in lungs and enhanced replication in nasal epithelium. In addition, the H5N1 HA and NA enhanced replication in lungs unless it was restricted by the internal genes of the ca MDV. Mice inoculated twice 4 weeks apart with the H5N1 reassortant LAIV candidate viruses developed serum hemagglutination inhibition HI and IgA antibody titers to the homologous and heterologous viruses consistent with protective immunity. These animals remained healthy after challenge inoculation with a lethal dose with homologous or heterologous wt H5N1 highly pathogenic avian influenza (HPAI) viruses. The profiles of viral replication in respiratory tissues and the immunogenicity and protective efficacy characteristics of the two ca H5N1 candidate LAIV viruses warrant further development into a vaccine for human use.
Collapse
MESH Headings
- Animal Structures/virology
- Animals
- Antibodies, Viral/blood
- Disease Models, Animal
- Female
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Immunoglobulin A/blood
- Influenza A Virus, H2N2 Subtype/genetics
- Influenza A Virus, H2N2 Subtype/immunology
- Influenza A Virus, H5N1 Subtype/genetics
- Influenza A Virus, H5N1 Subtype/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Mice, Inbred BALB C
- Neuraminidase/genetics
- Neuraminidase/immunology
- Orthomyxoviridae Infections/prevention & control
- Reassortant Viruses/genetics
- Reassortant Viruses/immunology
- Reverse Genetics
- Survival Analysis
- Vaccination/methods
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Viral Proteins/genetics
- Viral Proteins/immunology
- Virulence
Collapse
Affiliation(s)
- Irina Isakova-Sivak
- Influenza Division, Centers for Disease Control and Prevention, Department of Health and Human Services, Atlanta, Georgia, USA
- Institute of Experimental Medicine, Russian Academy of Medical Sciences, St. Petersburg, Russia
| | - Li-Mei Chen
- Influenza Division, Centers for Disease Control and Prevention, Department of Health and Human Services, Atlanta, Georgia, USA
| | - Melissa Bourgeois
- Influenza Division, Centers for Disease Control and Prevention, Department of Health and Human Services, Atlanta, Georgia, USA
| | - Yumiko Matsuoka
- Influenza Division, Centers for Disease Control and Prevention, Department of Health and Human Services, Atlanta, Georgia, USA
| | | | | | | | - Alexander Klimov
- Influenza Division, Centers for Disease Control and Prevention, Department of Health and Human Services, Atlanta, Georgia, USA
| | - Larisa Rudenko
- Institute of Experimental Medicine, Russian Academy of Medical Sciences, St. Petersburg, Russia
| | - Nancy J. Cox
- Influenza Division, Centers for Disease Control and Prevention, Department of Health and Human Services, Atlanta, Georgia, USA
| | - Ruben O. Donis
- Influenza Division, Centers for Disease Control and Prevention, Department of Health and Human Services, Atlanta, Georgia, USA
| |
Collapse
|
9
|
Abstract
The measurement of cell-mediated immunity (CMI) is critical to understanding the role and regulation of avian lymphocytes following avian influenza virus (AIV) infection. While these different cell types have distinctly different modes of action in terms of contributions to protection, they account for the majority of adaptive immunity induced following infection or vaccination. Although the ability to measure CMI has steadily improved over the last few years, few studies have examined its role in protection of birds against AIV. The increasing availability of monoclonal antibodies recognizing various avian cell-associated antigens has made this technique more specific and informative.
Collapse
Affiliation(s)
- Darrell R Kapczynski
- Exotic and Emerging Avian Viral Diseases Unit, Southeast Poultry Research Laboratory, US Department of Agriculture, Agricultural Research Service, 934 College Station Rd., Athens, GA, 30605, USA,
| |
Collapse
|
10
|
Xu Q, Chen Z, Cheng X, Xu L, Jin H. Evaluation of live attenuated H7N3 and H7N7 vaccine viruses for their receptor binding preferences, immunogenicity in ferrets and cross reactivity to the novel H7N9 virus. PLoS One 2013; 8:e76884. [PMID: 24130801 PMCID: PMC3793927 DOI: 10.1371/journal.pone.0076884] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 08/26/2013] [Indexed: 01/18/2023] Open
Abstract
Live attenuated influenza vaccine (LAIV) candidates of the H7 subtype, A/Netherlands/219/03 (H7N7, NL03 ca) and A/chicken/British Columbia/CN-6/2004 (H7N3, BC04 ca), were evaluated for their receptor binding specificity and immunogenicity in ferrets. The BC04 ca virus exhibited α2,3-SA and α2,6-SA dual receptor binding preference while the NL03 ca virus preferentially bound to α2,3-SA. Substitution of the Q226 and G228 (Q-G) by the L226 and S228 (L-S) residues in the HA improved binding to α2,6-SA for NL03 ca. The vaccine viruses with L-S retained the attenuation phenotype. NL03 L-S ca replicated more efficiently than the original NL03 ca virus in the upper respiratory tract of ferrets, and induced higher levels of humoral and cellular immune responses. Prior vaccination with seasonal LAIV reduced H7-specific antibody responses, but did not reduce the H7N7 vaccine mediated protection against a heterologous H7N3 BC04 wt virus infection in ferrets. In addition, the H7N3 and H7N7 vaccine immunized ferret sera cross reacted with the newly emerged H7N9 virus. These data, in combination with the safety data from previously conducted Phase 1 studies, suggest that these vaccines may have a role in responding to the threat posed by the H7N9 virus.
Collapse
Affiliation(s)
- Qi Xu
- MedImmune LLC, Mountain View, California, United States of America
| | - Zhongying Chen
- MedImmune LLC, Mountain View, California, United States of America
| | - Xing Cheng
- MedImmune LLC, Mountain View, California, United States of America
| | - Lucy Xu
- MedImmune LLC, Mountain View, California, United States of America
| | - Hong Jin
- MedImmune LLC, Mountain View, California, United States of America
- * E-mail:
| |
Collapse
|
11
|
Rimmelzwaan GF, Katz JM. Immune responses to infection with H5N1 influenza virus. Virus Res 2013; 178:44-52. [PMID: 23735534 DOI: 10.1016/j.virusres.2013.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 04/03/2013] [Accepted: 05/20/2013] [Indexed: 01/22/2023]
Abstract
Influenza A H5N1 viruses remain a substantial threat to global public health. In particular, the expanding genetic diversity of H5N1 viruses and the associated risk for human adaptation underscore the importance of better understanding host immune responses that may protect against disease or infection. Although much emphasis has been placed on investigating early virus-host interactions and the induction of innate immune responses, little is known of the consequent adaptive immune response to H5N1 virus infection. In this review, we describe the H5N1 virus-specific and cross-reactive antibody and T cell responses in humans and animal models. Data from limited studies suggest that although initially robust, there is substantial waning of the serum antibody responses in survivors of H5N1 virus infection. Characterization of monoclonal antibodies generated from memory B cells of survivors of H5N1 virus infection has provided an understanding of the fine specificity of the human antibody response to H5N1 virus infection and identified strategies for immunotherapy. Human T cell responses induced by infection with seasonal influenza viruses are directed to relatively conserved internal proteins and cross-react with the H5N1 subtype. A role for T cell-based heterosubtypic immunity against H5N1 viruses is suggested in animal studies. Further studies on adaptive immune responses to H5N1 virus infection in both humans and animals are needed to inform the design of optimal immunological treatment and prevention modalities.
Collapse
Affiliation(s)
- Guus F Rimmelzwaan
- Viroscience Laboratory, Erasmus Medical Center, Rotterdam, The Netherlands
| | | |
Collapse
|
12
|
Cheng X, Zengel JR, Suguitan AL, Xu Q, Wang W, Lin J, Jin H. Evaluation of the humoral and cellular immune responses elicited by the live attenuated and inactivated influenza vaccines and their roles in heterologous protection in ferrets. J Infect Dis 2013; 208:594-602. [PMID: 23656978 DOI: 10.1093/infdis/jit207] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The humoral and cellular immune responses elicited by the trivalent live attenuated influenza vaccine (LAIV) and the trivalent inactivated influenza vaccine (TIV) were evaluated in the ferret model, using newly developed ferret immunological reagents and assays. In contrast to the TIV, which only induced immune responses in primed animals, LAIV induced strong influenza virus-specific serum antibody and T-cell responses in both naive and influenza-seropositive animals. The LAIV offered significant protection against a heterologous H1N1 virus challenge infection in the upper respiratory tract. Influenza virus-specific immunoglobulin A (IgA) and immunoglobulin G (IgG) antibody-secreting cells (ASCs) and influenza virus-specific CD4(+) and CD8(+) T cells were detected in the circulation and local paratracheal draining lymph nodes. The frequency of the influenza-specific ASCs in the local lymph nodes appeared to correlate with the degree of protection in the upper respiratory tract. The protection conferred by the LAIV could be attributed not only to the antibody response but also to the cell-mediated and local mucosal immune responses, particularly in naive ferrets. These findings may explain why the LAIV is immunologically superior and offers immediate protection after a single dose in children.
Collapse
Affiliation(s)
- Xing Cheng
- MedImmune, Mountain View, California 94043, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Tretyakova I, Pearce MB, Florese R, Tumpey TM, Pushko P. Intranasal vaccination with H5, H7 and H9 hemagglutinins co-localized in a virus-like particle protects ferrets from multiple avian influenza viruses. Virology 2013; 442:67-73. [PMID: 23618102 DOI: 10.1016/j.virol.2013.03.027] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 03/14/2013] [Accepted: 03/27/2013] [Indexed: 11/26/2022]
Abstract
Avian influenza H5, H7 and H9 viruses top the World Health Organization's (WHO) list of subtypes with the greatest pandemic potential. Here we describe a recombinant virus-like particle (VLP) that co-localizes hemagglutinin (HA) proteins derived from H5N1, H7N2, and H9N2 viruses as an experimental vaccine against these viruses. A baculovirus vector was configured to co-express the H5, H7, and H9 genes from A/Viet Nam/1203/2004 (H5N1), A/New York/107/2003 (H7N2) and A/Hong Kong/33982/2009 (H9N2) viruses, respectively, as well as neuraminidase (NA) and matrix (M1) genes from A/Puerto Rico/8/1934 (H1N1) virus. Co-expression of these genes in Sf9 cells resulted in production of triple-subtype VLPs containing HA molecules derived from the three influenza viruses. The triple-subtype VLPs exhibited hemagglutination and neuraminidase activities and morphologically resembled influenza virions. Intranasal vaccination of ferrets with the VLPs resulted in induction of serum antibody responses and efficient protection against experimental challenges with H5N1, H7N2, and H9N2 viruses.
Collapse
|
14
|
Athmaram TN, Singh AK, Saraswat S, Srivastava S, Misra P, Kameswara Rao M, Gopalan N, Rao PVL. A simple Pichia pastoris fermentation and downstream processing strategy for making recombinant pandemic Swine Origin Influenza a virus Hemagglutinin protein. J Ind Microbiol Biotechnol 2012; 40:245-55. [PMID: 23247902 DOI: 10.1007/s10295-012-1220-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 11/21/2012] [Indexed: 01/18/2023]
Abstract
The present Influenza vaccine manufacturing process has posed a clear impediment to initiation of rapid mass vaccination against spreading pandemic influenza. New vaccine strategies are therefore needed that can accelerate the vaccine production. Pichia offers several advantages for rapid and economical bulk production of recombinant proteins and, hence, can be attractive alternative for producing an effective influenza HA based subunit vaccine. The recombinant Pichia harboring the transgene was subjected to fed-batch fermentation at 10 L scale. A simple fermentation and downstream processing strategy is developed for high-yield secretory expression of the recombinant Hemagglutinin protein of pandemic Swine Origin Influenza A virus using Pichia pastoris via fed-batch fermentation. Expression and purification were optimized and the expressed recombinant Hemagglutinin protein was verified by sodium dodecyl sulfate polyacrylamide gel electrophoresis, Western blot and MALDI-TOF analysis. In this paper, we describe a fed-batch fermentation protocol for the secreted production of Swine Influenza A Hemagglutinin protein in the P. pastoris GS115 strain. We have shown that there is a clear relationship between product yield and specific growth rate. The fed-batch fermentation and downstream processing methods optimized in the present study have immense practical application for high-level production of the recombinant H1N1 HA protein in a cost effective way using P. pastoris.
Collapse
Affiliation(s)
- T N Athmaram
- Bioprocess and Scale Up Facility, Defence Research and Development Establishment, Ministry of Defence, Govt. of India, Gwalior 474 002, MP, India.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Lynch GW, Selleck P, Church WB, Sullivan JS. Seasoned adaptive antibody immunity for highly pathogenic pandemic influenza in humans. Immunol Cell Biol 2011; 90:149-58. [PMID: 21647170 DOI: 10.1038/icb.2011.38] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fundamentally new approaches are required for the development of vaccines to pre-empt and protect against emerging and pandemic influenzas. Current strategies involve post-emergent homotypic vaccines that are modelled upon select circulating 'seasonal' influenzas, but cannot induce cross-strain protection against newly evolved or zoonotically introduced highly pathogenic influenza (HPI). Avian H5N1 and the less-lethal 2009 H1N1 and their reassortants loom as candidates to seed a future HPI pandemic. Therefore, more universal 'seasoned' vaccine approaches are urgently needed for heterotypic protection ahead of time. Pivotal to this is the need to understand mechanisms that can deliver broad strain protection. Heterotypic and heterosubtypic humoral immunities have largely been overlooked for influenza cross-protection, with most 'seasoned' vaccine efforts for humans focussed on heterotypic cellular immunity. However, 5 years ago we began to identify direct and indirect indicators of humoral-herd immunity to protein sites preserved among H1N1, H3N2 and H5N1 influenzas. Since then the evidence for cross-protective antibodies in humans has been accumulating. Now proposed is a rationale to stimulate and enhance pre-existing heterotypic humoral responses that, together with cell-mediated initiatives, will deliver pre-emptive and universal human protection against emerging epidemic and pandemic influenzas.
Collapse
Affiliation(s)
- Garry W Lynch
- Biosafety, Immunobiology, Global Health and Pandemic Infections Research, Central Clinical School, The University of Sydney, Camperdown, New South Wales, Australia.
| | | | | | | |
Collapse
|
16
|
Ding H, Tsai C, Zhou F, Buchy P, Deubel V, Zhou P. Heterosubtypic antibody response elicited with seasonal influenza vaccine correlates partial protection against highly pathogenic H5N1 virus. PLoS One 2011; 6:e17821. [PMID: 21464977 PMCID: PMC3064567 DOI: 10.1371/journal.pone.0017821] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 02/11/2011] [Indexed: 11/23/2022] Open
Abstract
Background The spread of highly pathogenic avian influenza (HPAI) H5N1 virus in human remains a global health concern. Heterosubtypic antibody response between seasonal influenza vaccine and potential pandemic influenza virus has important implications for public health. Previous studies by Corti et al. and by Gioia et al. demonstrate that heterosubtypic neutralizing antibodies against the highly pathogenic H5N1 virus can be elicited with a seasonal influenza vaccine in humans. However, whether such response offers immune protection against highly pathogenic H5N1 virus remained to be determined. Methodology/Principal Findings In this study, using a sensitive influenza HA (hemagglutinin) and NA (neuraminidase) pseudotype-based neutralization (PN) assay we first confirmed that low levels of heterosubtypic neutralizing antibody response against H5N1 virus were indeed elicited with seasonal influenza vaccine in humans. We then immunized mice with the seasonal influenza vaccine and challenged them with lethal doses of highly pathogenic H5N1 virus. As controls, we immunized mice with homosubtypic H5N1 virus like particles (VLP) or PBS and challenged them with the same H5N1 virus. Here we show that low levels of heterosubtypic neutralizing antibody response were elicited with seasonal influenza vaccine in mice, which were significantly higher than those in PBS control. Among them 2 out of 27 whose immune sera exhibited similar levels of neutralizing antibody response as VLP controls actually survived from highly pathogenic H5N1 virus challenge. Conclusions/Significance Therefore, we conclude that low levels of heterosubtypic neutralizing antibody response are indeed elicited with seasonal influenza vaccine in humans and mice and at certain levels such response offers immune protection against severity of H5N1 virus infection.
Collapse
MESH Headings
- Adult
- Animals
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Antibody Formation/immunology
- Cell Line
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Humans
- Immune Sera/immunology
- Influenza A Virus, H5N1 Subtype/immunology
- Influenza A Virus, H5N1 Subtype/pathogenicity
- Influenza A Virus, H5N1 Subtype/physiology
- Influenza Vaccines/immunology
- Influenza, Human/blood
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Mice
- Neuraminidase/immunology
- Neutralization Tests
- Orthomyxoviridae Infections/blood
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/virology
- Seasons
- Titrimetry
- Treatment Outcome
- Virus Internalization
Collapse
Affiliation(s)
- Heng Ding
- Unit of Anti-Viral Immunity and Genetic Therapy, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Cheguo Tsai
- Unit of Anti-Viral Immunity and Genetic Therapy, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Fan Zhou
- Unit of Anti-Viral Immunity and Genetic Therapy, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | | | | | - Paul Zhou
- Unit of Anti-Viral Immunity and Genetic Therapy, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- * E-mail:
| |
Collapse
|
17
|
The magnitude of local immunity in the lungs of mice induced by live attenuated influenza vaccines is determined by local viral replication and induction of cytokines. J Virol 2010; 85:76-85. [PMID: 20962087 DOI: 10.1128/jvi.01564-10] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
While live attenuated influenza vaccines (LAIVs) have been shown to be efficacious and have been licensed for human use, the surface glycoproteins hemagglutinin (HA) and neuraminidase (NA) have to be updated for optimal protective efficacy. Little is known about the effect of different HA and NA proteins on the immunogenicity of LAIVs developed using the same backbone. A panel of LAIVs that share the internal protein genes, with unique HA and NA gene segments from different influenza subtypes, was rescued by reverse genetics, and a comparative study of immune responses induced by these vaccines was conducted in mice. The results suggest that the magnitude of lung immunity, including pulmonary IgA antibody and memory CD8(+) T lymphocytes, induced by the vaccines depends on the replication efficiency of the LAIVs, as well as the induction of cytokines/chemokines in the lungs. However, these factors are not important in determining systemic immunity such as serum antibody titers and memory CD8(+) T cells in the spleen. A qualitative analysis of immune responses induced by a single dose of an H5N1 LAIV revealed that the vaccine induced robust systemic and mucosal immunity in mice. In addition, antibodies and memory lymphocytes established in the lungs following vaccination were required for protection against lethal challenge with homologous and heterologous H5N1 viruses. Our results highlight the different requirements for inducing systemic and lung immunity that can be explored for the development of pulmonary immunity for protection against respiratory pathogens.
Collapse
|
18
|
Yan S, Wu G. Evidence obtained from ANOVA to reason cross-species infection and cross-subtype mutation in neuraminidases of influenza A viruses. Transbound Emerg Dis 2010; 57:254-61. [PMID: 20545912 DOI: 10.1111/j.1865-1682.2010.01143.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The current pandemic of A/H1N1 influenza raises a serious question on cross-species infection and cross-subtype mutation because our previous focus on possible influenza pandemic laid on H5N1 subtype and the cross-species infection between avian and human. In this study, we analyse 3874 neuraminidases from influenza A viruses using anova to answer the question of if there is barrier between species and between subtypes. The results show that there is no cross-species barrier in some species, and the intra-species variation is larger than the inter-species variation in some species hosting the viruses, and the cross-subtype mutation is possible because there is no cross-subtype barrier in some subtypes and the intra-subtype variation is larger than the inter-subtype variation in some subtypes. These results highlight the state of barrier of influenza A virus, which can help us understand the current pandemic and manufacture more effective vaccines.
Collapse
Affiliation(s)
- S Yan
- National Engineering Research Center for Non-food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | | |
Collapse
|
19
|
Khurana S, Verma S, Verma N, Crevar CJ, Carter DM, Manischewitz J, King LR, Ross TM, Golding H. Properly folded bacterially expressed H1N1 hemagglutinin globular head and ectodomain vaccines protect ferrets against H1N1 pandemic influenza virus. PLoS One 2010; 5:e11548. [PMID: 20634959 PMCID: PMC2902520 DOI: 10.1371/journal.pone.0011548] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 06/16/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND In the face of impending influenza pandemic, a rapid vaccine production and mass vaccination is the most effective approach to prevent the large scale mortality and morbidity that was associated with the 1918 "Spanish Flu". The traditional process of influenza vaccine production in eggs is time consuming and may not meet the demands of rapid global vaccination required to curtail influenza pandemic. METHODOLOGY/PRINCIPAL FINDINGS Recombinant technology can be used to express the hemagglutinin (HA) of the emerging new influenza strain in a variety of systems including mammalian, insect, and bacterial cells. In this study, two forms of HA proteins derived from the currently circulating novel H1N1 A/California/07/2009 virus, HA1 (1-330) and HA (1-480), were expressed and purified from E. coli under controlled redox refolding conditions that favoured proper protein folding. However, only the recombinant HA1 (1-330) protein formed oligomers, including functional trimers that bound receptor and caused agglutination of human red blood cells. These proteins were used to vaccinate ferrets prior to challenge with the A/California/07/2009 virus. Both proteins induced neutralizing antibodies, and reduced viral loads in nasal washes. However, the HA1 (1-330) protein that had higher content of multimeric forms provided better protection from fever and weight loss at a lower vaccine dose compared with HA (1-480). Protein yield for the HA1 (1-330) ranged around 40 mg/Liter, while the HA (1-480) yield was 0.4-0.8 mg/Liter. CONCLUSIONS/SIGNIFICANCE This is the first study that describes production in bacterial system of properly folded functional globular HA1 domain trimers, lacking the HA2 transmembrane protein, that elicit potent neutralizing antibody responses following vaccination and protect ferrets from in vivo challenge. The combination of bacterial expression system with established quality control methods could provide a mechanism for rapid large scale production of influenza vaccines in the face of influenza pandemic threat.
Collapse
Affiliation(s)
- Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States of America
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
B cell responses to H5 influenza HA in human subjects vaccinated with a drifted variant. Vaccine 2009; 28:907-15. [PMID: 19932673 DOI: 10.1016/j.vaccine.2009.11.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 10/16/2009] [Accepted: 11/03/2009] [Indexed: 11/22/2022]
Abstract
B cell responses after immunization with a drifted H5 influenza/A/Vietnam/1203/04 vaccine were characterized in the peripheral blood of human subjects primed with experimental recombinant H5 influenza A/Hong Kong/156/97 vaccine. Antibody secreting cells were assayed by ELISPOT against a panel of recombinant hemagglutinin and control proteins. Increased frequencies of H5 HA-specific antibody secreting and memory B cells could be observed within 7 days of re-vaccination. Furthermore, these responses were cross-reactive to both H5 HA variants, but not H3 or avian H6 HA strains. These observations suggest prior vaccination against H5 influenza HA induces cellular immune responses that cross-react among drifted variants, without precluding a response to new, or existing HA strains.
Collapse
|