1
|
Huang J, Jiang W, Ma H, Zhang H, Zhao H, Wang Q, Zhang J. Effect of Lipopolysaccharide (LPS) on Oxidative Stress and Apoptosis in Immune Tissues from Schizothorax prenanti. Animals (Basel) 2025; 15:1298. [PMID: 40362113 PMCID: PMC12070837 DOI: 10.3390/ani15091298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/27/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
Schizothorax prenanti is an economically important cold-water fish in China. Lipopolysaccharide (LPS) can induce an immune response in S. prenanti; however, little is known about the effects of LPS on oxidative stress (OS) and apoptosis in S. prenanti. In this study, S. prenanti fish were stimulated with LPS at a dose of 10 mg/kg of body weight. After 0 h, 12 h and 24 h, the tissue samples were collected. The OS- and apoptosis-related genes and enzymatic activities in the liver, head kidney (HK), and spleen of S. prenanti were analyzed by a two-way repeated-measures analysis of variance (ANOVA). Hematoxylin and eosin and terminal transferase uridyl nick end labeling staining were also performed. In S. prenanti, LPS administration downregulated the catalase (CAT) and B-cell lymphoma/Leukemia-2 (Bcl-2) expression levels, and upregulated BCL2-associated X (Bax) and cysteine-aspartic-specific protease-3 (caspase-3) expression levels. Meanwhile, superoxide dismutase and CAT enzymatic activities were inhibited and malondialdehyde (MDA) content was increased by LPS treatment. Additionally, LPS treatment induced OS damage and apoptosis in tissue sections. These results indicated that apoptosis in the liver, HK, and spleen of LPS-administered S. prenanti may be mediated by OS via the mitochondrial apoptotic signaling pathway. Our findings are expected to contribute to a better understanding of the responses of different tissues to bacterial challenges. In addition, we can increase the tolerance of fish to the OS through dietary manipulation in the future.
Collapse
Affiliation(s)
- Jiqin Huang
- Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi’an 710032, China; (J.H.); (W.J.); (H.M.); (H.Z.); (H.Z.); (Q.W.)
| | - Wei Jiang
- Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi’an 710032, China; (J.H.); (W.J.); (H.M.); (H.Z.); (H.Z.); (Q.W.)
| | - Hongying Ma
- Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi’an 710032, China; (J.H.); (W.J.); (H.M.); (H.Z.); (H.Z.); (Q.W.)
| | - Han Zhang
- Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi’an 710032, China; (J.H.); (W.J.); (H.M.); (H.Z.); (H.Z.); (Q.W.)
| | - Hu Zhao
- Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi’an 710032, China; (J.H.); (W.J.); (H.M.); (H.Z.); (H.Z.); (Q.W.)
| | - Qijun Wang
- Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi’an 710032, China; (J.H.); (W.J.); (H.M.); (H.Z.); (H.Z.); (Q.W.)
| | - Jianlu Zhang
- Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi’an 710032, China; (J.H.); (W.J.); (H.M.); (H.Z.); (H.Z.); (Q.W.)
- College of Urban and Environmental Sciences, Northwest University, Xi’an 710127, China
| |
Collapse
|
2
|
Song Q, Meng Q, Meng X, Wang X, Zhang Y, Zhao T, Cong J. Size- and duration-dependent toxicity of heavy vehicle tire wear particles in zebrafish. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138299. [PMID: 40253784 DOI: 10.1016/j.jhazmat.2025.138299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 04/09/2025] [Accepted: 04/14/2025] [Indexed: 04/22/2025]
Abstract
Tire wear particles (TWPs), as a pervasive environmental pollutant, pose significant risks to aquatic ecosystems. This study investigates the effects of small (HS) and large (HL) TWPs produced by heavy vehicles on zebrafish, focusing on physiological, microbial, and transcriptomic levels, as well as their intergenerational consequences, under short-term (15 days) and long-term (90 days) exposure. Short-term exposure to small particles (HS15) significantly reduced body width and triggered widespread oxidative stress, while long-term exposure to large particles (HL90) increased gut weight and decreased gill weight, reflecting respiratory and digestive disruptions. Tissue-level analyses revealed that smaller particles accumulated more readily in internal organs, whereas larger particles caused localized physiological stress. Gut microbiota profiling indicated a marked decline in microbial diversity, compositional shifts, and network simplification, with HL15 enriched in Acinetobacter and xenobiotic metabolism pathways, and HS15 exhibiting Proteobacteria-dominated dysbiosis and enrichment of LPS biosynthesis genes. Liver transcriptomics revealed group-specific responses: HL15 exposure activated innate immunity via the NOD-MAPK axis, while HS15 induced atypical PI3K-NF-κB signaling, potentially linked to microbial LPS. Notably, all TWP-exposed groups showed enrichment of the herpes simplex virus 1 (HSV-1) infection pathway, suggesting a conserved antiviral-like host response. Transgenerational effects were evidenced by impaired growth and significant downregulation of GH/IGF signaling and upregulation of apoptotic genes in offspring, despite only subtle transcriptomic changes in long-term exposed parents. These findings underscore the importance of particle size, exposure duration, and microbiota-gut-liver axis interactions in mediating TWP toxicity and highlight potential transgenerational risks associated with environmental microplastic exposure.
Collapse
Affiliation(s)
- Qianqian Song
- College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266000, China
| | - Qingxuan Meng
- College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266000, China
| | - Xinrui Meng
- College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266000, China
| | - Xiaolong Wang
- College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266000, China
| | - Yun Zhang
- College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266000, China
| | - Tianyu Zhao
- College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266000, China
| | - Jing Cong
- College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266000, China.
| |
Collapse
|
3
|
Rondanelli M, Borromeo S, Cavioni A, Gasparri C, Gattone I, Genovese E, Lazzarotti A, Minonne L, Moroni A, Patelli Z, Razza C, Sivieri C, Valentini EM, Barrile GC. Therapeutic Strategies to Modulate Gut Microbial Health: Approaches for Chronic Metabolic Disorder Management. Metabolites 2025; 15:127. [PMID: 39997751 PMCID: PMC11857149 DOI: 10.3390/metabo15020127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/17/2025] [Accepted: 01/28/2025] [Indexed: 02/26/2025] Open
Abstract
Numerous recent studies have suggested that the composition of the intestinal microbiota can trigger metabolic disorders, such as diabetes, prediabetes, obesity, metabolic syndrome, sarcopenia, dyslipidemia, hyperhomocysteinemia, and non-alcoholic fatty liver disease. Since then, considerable effort has been made to understand the link between the composition of intestinal microbiota and metabolic disorders, as well as the role of probiotics in the modulation of the intestinal microbiota. The aim of this review was to summarize the reviews and individual articles on the state of the art regarding ideal therapy with probiotics and prebiotics in order to obtain the reversion of dysbiosis (alteration in microbiota) to eubiosis during metabolic diseases, such as diabetes, prediabetes, obesity, hyperhomocysteinemia, dyslipidemia, sarcopenia, and non-alcoholic fatty liver diseases. This review includes 245 eligible studies. In conclusion, a condition of dysbiosis, or in general, alteration of the intestinal microbiota, could be implicated in the development of metabolic disorders through different mechanisms, mainly linked to the release of pro-inflammatory factors. Several studies have already demonstrated the potential of using probiotics and prebiotics in the treatment of this condition, detecting significant improvements in the specific symptoms of metabolic diseases. These findings reinforce the hypothesis that a condition of dysbiosis can lead to a generalized inflammatory picture with negative consequences on different organs and systems. Moreover, this review confirms that the beneficial effects of probiotics on metabolic diseases are promising, but more research is needed to determine the optimal probiotic strains, doses, and administration forms for specific metabolic conditions.
Collapse
Affiliation(s)
- Mariangela Rondanelli
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy;
| | - Sara Borromeo
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Alessandro Cavioni
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Clara Gasparri
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Ilaria Gattone
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Elisa Genovese
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Alessandro Lazzarotti
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Leonardo Minonne
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Alessia Moroni
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Zaira Patelli
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Claudia Razza
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Claudia Sivieri
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Eugenio Marzio Valentini
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Gaetan Claude Barrile
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| |
Collapse
|
4
|
Lucas LN, Mallikarjun J, Cattaneo LE, Gangwar B, Zhang Q, Kerby RL, Stevenson D, Rey FE, Amador-Noguez D. Investigation of Bile Salt Hydrolase Activity in Human Gut Bacteria Reveals Production of Conjugated Secondary Bile Acids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.16.633392. [PMID: 39868271 PMCID: PMC11760432 DOI: 10.1101/2025.01.16.633392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Through biochemical transformation of host-derived bile acids (BAs), gut bacteria mediate host-microbe crosstalk and sit at the interface of nutrition, the microbiome, and disease. BAs play a crucial role in human health by facilitating the absorption of dietary lipophilic nutrients, interacting with hormone receptors to regulate host physiology, and shaping gut microbiota composition through antimicrobial activity. Bile acid deconjugation by bacterial bile salt hydrolase (BSH) has long been recognized as the first necessary BA modification required before further transformations can occur. Here, we show that BSH activity is common among human gut bacterial isolates spanning seven major phyla. We observed variation in both the extent and the specificity of deconjugation of BAs among the tested taxa. Unexpectedly, we discovered that certain strains were capable of directly dehydrogenating conjugated BAs via hydroxysteroid dehydrogenases (HSD) to produce conjugated secondary BAs. These results challenge the prevailing notion that deconjugation is a prerequisite for further BA modifications and lay a foundation for new hypotheses regarding how bacteria act individually or in concert to diversify the BA pool and influence host physiology.
Collapse
Affiliation(s)
- Lauren N. Lucas
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jillella Mallikarjun
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lea E. Cattaneo
- Doctoral Training Program, University of Wisconsin-Madison, Wisconsin, USA
| | - Bhavana Gangwar
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Qijun Zhang
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Robert L. Kerby
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - David Stevenson
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Federico E. Rey
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Daniel Amador-Noguez
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
5
|
Palkovsky M, Modrackova N, Neuzil-Bunesova V, Liberko M, Soumarova R. The Bidirectional Impact of Cancer Radiotherapy and Human Microbiome: Microbiome as Potential Anti-tumor Treatment Efficacy and Toxicity Modulator. In Vivo 2025; 39:37-54. [PMID: 39740900 PMCID: PMC11705129 DOI: 10.21873/invivo.13803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/02/2024] [Accepted: 10/14/2024] [Indexed: 01/02/2025]
Abstract
Microbiome and radiotherapy represent bidirectionally interacting entities. The human microbiome has emerged as a pivotal modulator of the efficacy and toxicity of radiotherapy; however, a reciprocal effect of radiotherapy on microbiome composition alterations has also been observed. This review explores the relationship between the microbiome and extracranial solid tumors, particularly focusing on the bidirectional impact of radiotherapy on organ-specific microbiome. This article aims to provide a systematic review on the radiotherapy-induced microbial alteration in-field as well as in distant microbiomes. In this review, particular focus is directed to the oral and gut microbiome, its role in the development and progression of cancer, and how it is altered throughout radiotherapy. This review concludes with recommendations for future research, such as exploring microbiome modification to optimize radiotherapy-induced toxicities or enhance its anti-cancer effects.
Collapse
Affiliation(s)
- Martin Palkovsky
- Department of Oncology, University Hospital Kralovske Vinohrady, Prague, Czech Republic;
- Charles University, Third Faculty of Medicine, Department of Oncology, Prague, Czech Republic
| | - Nikol Modrackova
- Czech University of Life Sciences Prague, Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Prague, Czech Republic
| | - Vera Neuzil-Bunesova
- Czech University of Life Sciences Prague, Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Prague, Czech Republic
| | - Marian Liberko
- Department of Oncology, University Hospital Kralovske Vinohrady, Prague, Czech Republic
- Charles University, Third Faculty of Medicine, Department of Oncology, Prague, Czech Republic
| | - Renata Soumarova
- Department of Oncology, University Hospital Kralovske Vinohrady, Prague, Czech Republic
- Charles University, Third Faculty of Medicine, Department of Oncology, Prague, Czech Republic
| |
Collapse
|
6
|
Burra P, Zanetto A, Schnabl B, Reiberger T, Montano-Loza AJ, Asselta R, Karlsen TH, Tacke F. Hepatic immune regulation and sex disparities. Nat Rev Gastroenterol Hepatol 2024; 21:869-884. [PMID: 39237606 DOI: 10.1038/s41575-024-00974-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/25/2024] [Indexed: 09/07/2024]
Abstract
Chronic liver disease is a major cause of morbidity and mortality worldwide. Epidemiology, clinical phenotype and response to therapies for gastrointestinal and liver diseases are commonly different between women and men due to sex-specific hormonal, genetic and immune-related factors. The hepatic immune system has unique regulatory functions that promote the induction of intrahepatic tolerance, which is key for maintaining liver health and homeostasis. In liver diseases, hepatic immune alterations are increasingly recognized as a main cofactor responsible for the development and progression of chronic liver injury and fibrosis. In this Review, we discuss the basic mechanisms of sex disparity in hepatic immune regulation and how these mechanisms influence and modify the development of autoimmune liver diseases, genetic liver diseases, portal hypertension and inflammation in chronic liver disease. Alterations in gut microbiota and their crosstalk with the hepatic immune system might affect the progression of liver disease in a sex-specific manner, creating potential opportunities for novel diagnostic and therapeutic approaches to be evaluated in clinical trials. Finally, we identify and propose areas for future basic, translational and clinical research that will advance our understanding of sex disparities in hepatic immunity and liver disease.
Collapse
Affiliation(s)
- Patrizia Burra
- Gastroenterology and Multivisceral Transplant Unit, Department of Surgery, Oncology, and Gastroenterology, Padua University Hospital, Padua, Italy.
| | - Alberto Zanetto
- Gastroenterology and Multivisceral Transplant Unit, Department of Surgery, Oncology, and Gastroenterology, Padua University Hospital, Padua, Italy
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Aldo J Montano-Loza
- Division of Gastroenterology and Liver Unit, Department of Medicine, University of Alberta Hospital, Edmonton, Alberta, Canada
| | - Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Tom Hemming Karlsen
- Department of Transplantation Medicine, Clinic of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital and University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Clinic of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Berlin, Germany
| |
Collapse
|
7
|
Parthasarathy G, Malhi H, Bajaj JS. Therapeutic manipulation of the microbiome in liver disease. Hepatology 2024:01515467-990000000-00932. [PMID: 38922826 DOI: 10.1097/hep.0000000000000987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Myriad associations between the microbiome and various facets of liver physiology and pathology have been described in the literature. Building on descriptive and correlative sequencing studies, metagenomic studies are expanding our collective understanding of the functional and mechanistic role of the microbiome as mediators of the gut-liver axis. Based on these mechanisms, the functional activity of the microbiome represents an attractive, tractable, and precision medicine therapeutic target in several liver diseases. Indeed, several therapeutics have been used in liver disease even before their description as a microbiome-dependent approach. To bring successful microbiome-targeted and microbiome-inspired therapies to the clinic, a comprehensive appreciation of the different approaches to influence, collaborate with, or engineer the gut microbiome to coopt a disease-relevant function of interest in the right patient is key. Herein, we describe the various levels at which the microbiome can be targeted-from prebiotics, probiotics, synbiotics, and antibiotics to microbiome reconstitution and precision microbiome engineering. Assimilating data from preclinical animal models, human studies as well as clinical trials, we describe the potential for and rationale behind studying such therapies across several liver diseases, including metabolic dysfunction-associated steatotic liver disease, alcohol-associated liver disease, cirrhosis, HE as well as liver cancer. Lastly, we discuss lessons learned from previous attempts at developing such therapies, the regulatory framework that needs to be navigated, and the challenges that remain.
Collapse
Affiliation(s)
| | - Harmeet Malhi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jasmohan S Bajaj
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Central Virginia Veterans Healthcare System, Richmond, Virginia, USA
| |
Collapse
|
8
|
Foppa C, Rizkala T, Repici A, Hassan C, Spinelli A. Microbiota and IBD: Current knowledge and future perspectives. Dig Liver Dis 2024; 56:911-922. [PMID: 38008696 DOI: 10.1016/j.dld.2023.11.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/18/2023] [Accepted: 11/09/2023] [Indexed: 11/28/2023]
Abstract
Inflammatory Bowel Disease (IBD) is a chronic relapsing-remitting disease with a remarkable increase in incidence worldwide and a substantial disease burden. Although the pathophysiology is not fully elucidated yet an aberrant immune reaction against the intestinal microbiota and the gut microbial dysbiosis have been identified to play a major role. The composition of gut microbiota in IBD patients is distinct from that of healthy individuals, with certain organisms predominating over others. Differences in the microbial dysbiosis have been also observed between Crohn Disease (CD) and Ulcerative Colitis (UC). A disruption of the microbiota's balance can lead to inflammation and intestinal damage. Microbiota composition in IBD can be affected both by endogenous (i.e., interaction with the immune system and intestinal epithelial cells) and exogenous (i.e., medications, surgery, diet) factors. The complex interplay between the gut microbiota and IBD is an area of great interest for understanding disease pathogenesis and developing new treatments. The purpose of this review is to summarize the latest evidence on the role of microbiota in IBD pathogenesis and to explore possible future areas of research.
Collapse
Affiliation(s)
- Caterina Foppa
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090, Milan, Italy; IRCCS Humanitas Research Hospital, Division of Colon and Rectal Surgery, via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - Tommy Rizkala
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090, Milan, Italy
| | - Alessandro Repici
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090, Milan, Italy; IRCCS Humanitas Research Hospital, Division of Gastroenterology and Digestive Endoscopy Unit, via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - Cesare Hassan
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090, Milan, Italy; IRCCS Humanitas Research Hospital, Division of Gastroenterology and Digestive Endoscopy Unit, via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - Antonino Spinelli
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090, Milan, Italy; IRCCS Humanitas Research Hospital, Division of Colon and Rectal Surgery, via Manzoni 56, Rozzano, 20089, Milan, Italy.
| |
Collapse
|
9
|
Mei EH, Yao C, Chen YN, Nan SX, Qi SC. Multifunctional role of oral bacteria in the progression of non-alcoholic fatty liver disease. World J Hepatol 2024; 16:688-702. [PMID: 38818294 PMCID: PMC11135273 DOI: 10.4254/wjh.v16.i5.688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/26/2024] [Accepted: 04/07/2024] [Indexed: 05/22/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) encompasses a spectrum of liver disorders of varying severity, ultimately leading to fibrosis. This spectrum primarily consists of NAFL and non-alcoholic steatohepatitis. The pathogenesis of NAFLD is closely associated with disturbances in the gut microbiota and impairment of the intestinal barrier. Non-gut commensal flora, particularly bacteria, play a pivotal role in the progression of NAFLD. Notably, Porphyromonas gingivalis, a principal bacterium involved in periodontitis, is known to facilitate lipid accumulation, augment immune responses, and induce insulin resistance, thereby exacerbating fibrosis in cases of periodontitis-associated NAFLD. The influence of oral microbiota on NAFLD via the "oral-gut-liver" axis is gaining recognition, offering a novel perspective for NAFLD management through microbial imbalance correction. This review endeavors to encapsulate the intricate roles of oral bacteria in NAFLD and explore underlying mechanisms, emphasizing microbial control strategies as a viable therapeutic avenue for NAFLD.
Collapse
Affiliation(s)
- En-Hua Mei
- Shanghai Medical College, Fudan University, Shanghai 200000, China
- Department of Prothodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai 200000, China
- Shanghai Key Laboratory of Craniomaxiofacial Development and Diseases, Fudan University, Shanghai 200000, China
| | - Chao Yao
- Department of Prothodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai 200000, China
- Shanghai Key Laboratory of Craniomaxiofacial Development and Diseases, Fudan University, Shanghai 200000, China
| | - Yi-Nan Chen
- Shanghai Medical College, Fudan University, Shanghai 200000, China
| | - Shun-Xue Nan
- Shanghai Medical College, Fudan University, Shanghai 200000, China
| | - Sheng-Cai Qi
- Department of Prothodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai 200000, China
- Shanghai Key Laboratory of Craniomaxiofacial Development and Diseases, Fudan University, Shanghai 200000, China.
| |
Collapse
|
10
|
Zhang Y, Liu T, Zhao Y, Zhao C, Zhao M. Deciphering the enigma between low bioavailability and high anti-hepatic fibrosis efficacy of Yinchen Wuling powder based on drug metabolism and network pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117538. [PMID: 38056536 DOI: 10.1016/j.jep.2023.117538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/19/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yinchen Wuling powder (YCWLP) is a famous traditional Chinese medicine formula with the effect of "removing jaundice and eliminating dampness", which has the potential to prevent and treat hepatic fibrosis (HF). However, the mechanism of the active ingredients of YCWLP in treating HF remains to be clarified. AIM OF THE STUDY This study aims to investigate the in vivo metabolic profile of YCWLP and the mechanism of its gut microbiota-mediated therapeutic effect on HF via network pharmacology. MATERIALS AND METHODS In this comprehensive study, the UHPLC-FT-ICR-MS platform was used for the systematic characterization of the in vivo metabolic profile of YCWLP, and the mediating effect of gut microbiota was elucidated by comparing the differences of metabolites between the normal rats and pseudo germ-free rats administrated with YCWLP. Then, the identified active ingredients of YCWLP metabolized by gut microbiota and their targets associated with HF were used for further network pharmacological analysis, including the construction of PPI network, GO and KEGG enrichment and compound-target-pathway-disease network. RESULTS Overall, 41 prototype compounds and 138 metabolites were identified in the biosamples after YCWLP administration. Among them, 15 drug prototypes are clearly metabolized by gut microbiota, and 91 metabolites showed significant differences between the N-YCWLP group and the PGF-YCWLP group, which might be attributed to the mediation of gut microbiota. Network pharmacology studies on the aforementioned 15 prototype components indicated crucial roles of arginine biosynthesis and complement and coagulation cascades-related genes such as PLG, NOS3, GC and F2 in the treatment of HF by YCWLP mediated by gut microbiota. CONCLUSIONS The therapeutic effects of multiple active ingredients in YCWLP on HF depend on the metabolism of gut microbiota. This study offers novel insights into the relationship between bioactive chemical constituents and the action mechanism of YCWLP against HF.
Collapse
Affiliation(s)
- Yumeng Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning, 110016, China
| | - Tingting Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning, 110016, China
| | - Yanhui Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning, 110016, China
| | - Chunjie Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning, 110016, China.
| | - Min Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning, 110016, China.
| |
Collapse
|
11
|
Mrázek J, Mrázková L, Mekadim C, Jarošíková T, Krayem I, Sohrabi Y, Demant P, Lipoldová M. Effects of Leishmania major infection on the gut microbiome of resistant and susceptible mice. Appl Microbiol Biotechnol 2024; 108:145. [PMID: 38240984 PMCID: PMC10799115 DOI: 10.1007/s00253-024-13002-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/22/2023] [Accepted: 01/03/2024] [Indexed: 01/22/2024]
Abstract
Cutaneous leishmaniasis, a parasitic disease caused by Leishmania major, is a widely frequent form in humans. To explore the importance of the host gut microbiota and to investigate its changes during L. major infection, two different groups of mouse models were assessed. The microbiome of two parts of the host gut-ileum and colon-from infected and non-infected mice were characterised by sequencing of 16S rDNA using an Ion Torrent PGM platform. Microbiome analysis was performed to reveal changes related to the susceptibility and the genetics of mice strains in two different gut compartments and to compare the results between infected and non-infected mice. The results showed that Leishmania infection affects mainly the ileum microbiota, whereas the colon bacterial community was more stable. Different biomarkers were determined in the gut microbiota of infected resistant mice and infected susceptible mice using LEfSe analysis. Lactobacillaceae was associated with resistance in the colon microbiota of all resistant mice strains infected with L. major. Genes related to xenobiotic biodegradation and metabolism and amino acid metabolism were primarily enriched in the small intestine microbiome of resistant strains, while genes associated with carbohydrate metabolism and glycan biosynthesis and metabolism were most abundant in the gut microbiome of the infected susceptible mice. These results should improve our understanding of host-parasite interaction and provide important insights into the effect of leishmaniasis on the gut microbiota. Also, this study highlights the role of host genetic variation in shaping the diversity and composition of the gut microbiome. KEY POINTS: • Leishmaniasis may affect mainly the ileum microbiota while colon microbiota was more stable. • Biomarkers related with resistance or susceptibility were determined in the gut microbiota of mice. • Several pathways were predicted to be upregulated in the gut microbiota of resistant or susceptible mice.
Collapse
Affiliation(s)
- Jakub Mrázek
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Lucie Mrázková
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
- Faculty of Biomedical Engineering, Czech Technical University in Prague, Namestí Sitna 3105, 272 01, Kladno, Czech Republic
| | - Chahrazed Mekadim
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic.
| | - Taťána Jarošíková
- Faculty of Biomedical Engineering, Czech Technical University in Prague, Namestí Sitna 3105, 272 01, Kladno, Czech Republic
| | - Imtissal Krayem
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Yahya Sohrabi
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
- Department of Medical Genetics, 3Rd Faculty of Medicine, Charles University, Ruská 87, 100 00, Prague 10, Czech Republic
- Department of Cardiology I-Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Münster, Westfälische Wilhelms-Universität, Münster, Germany
| | - Peter Demant
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Marie Lipoldová
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
- Faculty of Biomedical Engineering, Czech Technical University in Prague, Namestí Sitna 3105, 272 01, Kladno, Czech Republic
- Department of Medical Genetics, 3Rd Faculty of Medicine, Charles University, Ruská 87, 100 00, Prague 10, Czech Republic
| |
Collapse
|
12
|
Chu XY, Ho PC. Intestinal Microbiome and Its Impact on Metabolism and Safety of Drugs. ORAL BIOAVAILABILITY AND DRUG DELIVERY 2023:483-500. [DOI: 10.1002/9781119660699.ch25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
13
|
Xiang Z, Wu J, Li J, Zheng S, Wei X, Xu X. Gut Microbiota Modulation: A Viable Strategy to Address Medical Needs in Hepatocellular Carcinoma and Liver Transplantation. ENGINEERING 2023; 29:59-72. [DOI: 10.1016/j.eng.2022.12.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
|
14
|
Zhao R, Cheng W, Shen J, Liang W, Zhang Z, Sheng Y, Chai T, Chen X, Zhang Y, Huang X, Yang H, Song C, Pang L, Nan C, Zhang Y, Chen R, Mei J, Wei H, Fang X. Single-cell and spatiotemporal transcriptomic analyses reveal the effects of microorganisms on immunity and metabolism in the mouse liver. Comput Struct Biotechnol J 2023; 21:3466-3477. [PMID: 38152123 PMCID: PMC10751235 DOI: 10.1016/j.csbj.2023.06.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 12/29/2023] Open
Abstract
The gut-liver axis is a complex bidirectional communication pathway between the intestine and the liver in which microorganisms and their metabolites flow from the intestine through the portal vein to the liver and influence liver function. In a sterile environment, the phenotype or function of the liver is altered, but few studies have investigated the specific cellular and molecular effects of microorganisms on the liver. To this end, we constructed single-cell and spatial transcriptomic (ST) profiles of germ-free (GF) and specific-pathogen-free (SPF) mouse livers. Single-cell RNA sequencing (scRNA-seq) and single-nucleus RNA sequencing (snRNA-seq) revealed that the ratio of most immune cells was altered in the liver of GF mice; in particular, natural killer T (NKT) cells, IgA plasma cells (IgAs) and Kupffer cells (KCs) were significantly reduced in GF mice. Spatial enhanced resolution omics sequencing (Stereo-seq) confirmed that microorganisms mediated the accumulation of Kupffer cells in the periportal zone. Unexpectedly, IgA plasma cells were more numerous and concentrated in the periportal vein in liver sections from SPF mice but less numerous and scattered in GF mice. ST technology also enables the precise zonation of liver lobules into eight layers and three patterns based on the gene expression level in each layer, allowing us to further investigate the effects of microbes on gene zonation patterns and functions. Furthermore, untargeted metabolism experiments of the liver revealed that the propionic acid levels were significantly lower in GF mice, and this reduction may be related to the control of genes involved in bile acid and fatty acid metabolism. In conclusion, the combination of sc/snRNA-seq, Stereo-seq, and untargeted metabolomics revealed immune system defects as well as altered bile acid and lipid metabolic processes at the single-cell and spatial levels in the livers of GF mice. This study will be of great value for understanding host-microbiota interactions.
Collapse
Affiliation(s)
- Ruizhen Zhao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI-Shenzhen, Shenzhen 518083, China
| | - Wei Cheng
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Juan Shen
- BGI-Shenzhen, Shenzhen 518083, China
| | | | - Zhao Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI-Shenzhen, Shenzhen 518083, China
| | - Yifei Sheng
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI-Shenzhen, Shenzhen 518083, China
| | - Tailiang Chai
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI-Shenzhen, Shenzhen 518083, China
| | - Xueting Chen
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI-Shenzhen, Shenzhen 518083, China
| | - Yin Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI-Shenzhen, Shenzhen 518083, China
| | - Xiang Huang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Chunqing Song
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Li Pang
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
| | - Cuoji Nan
- BGI-Shenzhen, Shenzhen 518083, China
| | | | - Rouxi Chen
- BGI-Sanya, BGI-Shenzhen, Sanya 572025, China
| | - Junpu Mei
- BGI-Shenzhen, Shenzhen 518083, China
- BGI-Sanya, BGI-Shenzhen, Sanya 572025, China
| | - Hong Wei
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xiaodong Fang
- BGI-Shenzhen, Shenzhen 518083, China
- BGI-Sanya, BGI-Shenzhen, Sanya 572025, China
| |
Collapse
|
15
|
Yang H, Zhang Y, Zhou R, Wu T, Zhu P, Liu Y, Zhou J, Xiong Y, Xiong Y, Zhou H, Zhang W, Shu Y, Li X, Li Q. Antibiotics-Induced Depletion of Rat Microbiota Induces Changes in the Expression of Host Drug-Processing Genes and Pharmacokinetic Behaviors of CYPs Probe Drugs. Drug Metab Dispos 2023; 51:509-520. [PMID: 36623881 DOI: 10.1124/dmd.122.001173] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/10/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023] Open
Abstract
The metabolism of exogenous substances is affected by the gut microbiota, and the relationship between them has become a hot topic. However, the mechanisms by which the microbiota regulates drug metabolism have not been clearly defined. This study characterizes the expression profiles of host drug-processing genes (DPGs) in antibiotics-treated rats by using an unbias quantitative RNA-sequencing method and investigates the effects of antibiotics-induced depletion of rat microbiota on the pharmacokinetic behaviors of cytochrome P450s (CYPs) probe drugs, and bile acids metabolism by ultra-performance liquid chromatography-tandem mass spectrometry. Our results show that antibiotics treatments altered the mRNA expressions of 112 DPGs in the liver and jejunum of rats. The mRNA levels of CYP2A1, CYP2C11, CYP2C13, CYP2D, CYP2E1, and CYP3A of CYP family members were significantly downregulated in antibiotics-treated rats. Furthermore, antibiotics treatments also resulted in a significant decrease in the protein expressions and enzyme activities of CYP3A1 and CYP2E1 in rat liver. Pharmacokinetic results showed that, except for tolbutamide, antibiotics treatments significantly altered the pharmacokinetic behaviors of phenacetin, omeprazole, metoprolol, chlorzoxazone, and midazolam. In conclusion, the presence of stable, complex, and diverse gut microbiota plays a significant role in regulating the expression of host DPGs, which could contribute to some individual differences in pharmacokinetics. SIGNIFICANCE STATEMENT: This study investigated how the depletion of rat microbiota by antibiotics treatments influences the expression profiles of host DPGs and the pharmacokinetic behaviors of CYPs probe drugs. Combined with previous studies in germ-free mice, this study will improve the understanding of the role of gut microbiota in drug metabolism and contribute to the understanding of individual differences in the pharmacokinetics of some drugs.
Collapse
Affiliation(s)
- Haijun Yang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., X.L., Q.L.); National Clinical Research Center for Geriatric Disorders, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Yanjuan Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., X.L., Q.L.); National Clinical Research Center for Geriatric Disorders, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Rong Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., X.L., Q.L.); National Clinical Research Center for Geriatric Disorders, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Tianyuan Wu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., X.L., Q.L.); National Clinical Research Center for Geriatric Disorders, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Peng Zhu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., X.L., Q.L.); National Clinical Research Center for Geriatric Disorders, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Yujie Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., X.L., Q.L.); National Clinical Research Center for Geriatric Disorders, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Jian Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., X.L., Q.L.); National Clinical Research Center for Geriatric Disorders, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Yalan Xiong
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., X.L., Q.L.); National Clinical Research Center for Geriatric Disorders, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Yanling Xiong
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., X.L., Q.L.); National Clinical Research Center for Geriatric Disorders, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., X.L., Q.L.); National Clinical Research Center for Geriatric Disorders, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., X.L., Q.L.); National Clinical Research Center for Geriatric Disorders, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Yan Shu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., X.L., Q.L.); National Clinical Research Center for Geriatric Disorders, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Xiong Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., X.L., Q.L.); National Clinical Research Center for Geriatric Disorders, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Qing Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., X.L., Q.L.); National Clinical Research Center for Geriatric Disorders, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| |
Collapse
|
16
|
Džidić-Krivić A, Kusturica J, Sher EK, Selak N, Osmančević N, Karahmet Farhat E, Sher F. Effects of intestinal flora on pharmacokinetics and pharmacodynamics of drugs. Drug Metab Rev 2023; 55:126-139. [PMID: 36916327 DOI: 10.1080/03602532.2023.2186313] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Gut microbiota is known as unique collection of microorganisms (including bacteria, archaea, eukaryotes and viruses) that exist in a complex environment of the gut. Recently, this has become one of the most popular areas of research in medicine because this plays not only an important role in disease development, but gut microbiota also influences drug pharmacokinetics. These alterations in drug pharmacokinetic pathways and drug concentration in plasma and blood often lead to an increase in the incidence of toxicological events in patients. This review aims to present current knowledge of the most commonly used drugs in clinical practice and their dynamic interplay with the host's gut microbiota as well as the mechanisms underlying these metabolic processes and the consequent effect on their therapeutic efficacy and safety. These new findings set a foundation for the development of personalized treatments specific to each metabolism, maximizing drugs' therapeutic effects and minimizing the side effects because they are one of the major limiting factors in treating patients.
Collapse
Affiliation(s)
- Amina Džidić-Krivić
- Zenica Cantonal Hospital, Zenica, Bosnia and Herzegovina.,International Society of Engineering Science and Technology, Nottingham, UK
| | - Jasna Kusturica
- Faculty of Medicine, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Emina Karahmet Sher
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Nejra Selak
- Dom zdravlja Zenica, Zenica, Bosnia and Herzegovina
| | | | - Esma Karahmet Farhat
- International Society of Engineering Science and Technology, Nottingham, UK.,Department of Food and Nutrition Research, Faculty of Food Technology, Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| |
Collapse
|
17
|
Becker HEF, Demers K, Derijks LJJ, Jonkers DMAE, Penders J. Current evidence and clinical relevance of drug-microbiota interactions in inflammatory bowel disease. Front Microbiol 2023; 14:1107976. [PMID: 36910207 PMCID: PMC9996055 DOI: 10.3389/fmicb.2023.1107976] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Background Inflammatory bowel disease (IBD) is a chronic relapsing-remitting disease. An adverse immune reaction toward the intestinal microbiota is involved in the pathophysiology and microbial perturbations are associated with IBD in general and with flares specifically. Although medical drugs are the cornerstone of current treatment, responses vary widely between patients and drugs. The intestinal microbiota can metabolize medical drugs, which may influence IBD drug (non-)response and side effects. Conversely, several drugs can impact the intestinal microbiota and thereby host effects. This review provides a comprehensive overview of current evidence on bidirectional interactions between the microbiota and relevant IBD drugs (pharmacomicrobiomics). Methods Electronic literature searches were conducted in PubMed, Web of Science and Cochrane databases to identify relevant publications. Studies reporting on microbiota composition and/or drug metabolism were included. Results The intestinal microbiota can both enzymatically activate IBD pro-drugs (e.g., in case of thiopurines), but also inactivate certain drugs (e.g., mesalazine by acetylation via N-acetyltransferase 1 and infliximab via IgG-degrading enzymes). Aminosalicylates, corticosteroids, thiopurines, calcineurin inhibitors, anti-tumor necrosis factor biologicals and tofacitinib were all reported to alter the intestinal microbiota composition, including changes in microbial diversity and/or relative abundances of various microbial taxa. Conclusion Various lines of evidence have shown the ability of the intestinal microbiota to interfere with IBD drugs and vice versa. These interactions can influence treatment response, but well-designed clinical studies and combined in vivo and ex vivo models are needed to achieve consistent findings and evaluate clinical relevance.
Collapse
Affiliation(s)
- Heike E. F. Becker
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
- Department of Medical Microbiology, Infectious Diseases and Infection Prevention, NUTRIM School of Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Karlijn Demers
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Luc J. J. Derijks
- Department of Clinical Pharmacy and Pharmacology, Máxima Medical Center, Veldhoven, Netherlands
- Department of Clinical Pharmacy and Toxicology, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Daisy M. A. E. Jonkers
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - John Penders
- Department of Medical Microbiology, Infectious Diseases and Infection Prevention, NUTRIM School of Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
- Department of Medical Microbiology, Infectious Diseases and Infection Prevention, CAPHRI School of Public Health and Primary Care, Maastricht University Medical Centre+, Maastricht, Netherlands
| |
Collapse
|
18
|
Yeo XY, Tan LY, Chae WR, Lee DY, Lee YA, Wuestefeld T, Jung S. Liver's influence on the brain through the action of bile acids. Front Neurosci 2023; 17:1123967. [PMID: 36816113 PMCID: PMC9932919 DOI: 10.3389/fnins.2023.1123967] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
The liver partakes as a sensor and effector of peripheral metabolic changes and a regulator of systemic blood and nutrient circulation. As such, abnormalities arising from liver dysfunction can influence the brain in multiple ways, owing to direct and indirect bilateral communication between the liver and the brain. Interestingly, altered bile acid composition resulting from perturbed liver cholesterol metabolism influences systemic inflammatory responses, blood-brain barrier permeability, and neuron synaptic functions. Furthermore, bile acids produced by specific bacterial species may provide a causal link between dysregulated gut flora and neurodegenerative disease pathology through the gut-brain axis. This review will cover the role of bile acids-an often-overlooked category of active metabolites-in the development of neurological disorders associated with neurodegeneration. Further studies into bile acid signaling in the brain may provide insights into novel treatments against neurological disorders.
Collapse
Affiliation(s)
- Xin Yi Yeo
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore,Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Li Yang Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore,Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Woo Ri Chae
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore,Department of BioNano Technology, Gachon University, Seongnam, South Korea
| | - Dong-Yup Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Yong-An Lee
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore,*Correspondence: Yong-An Lee,
| | - Torsten Wuestefeld
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore,School of Biological Sciences, Nanyang Technological University, Singapore, Siingapore,National Cancer Centre Singapore, Singapore, Singapore,Torsten Wuestefeld,
| | - Sangyong Jung
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore,Sangyong Jung,
| |
Collapse
|
19
|
Campana AM, Laue HE, Shen Y, Shrubsole MJ, Baccarelli AA. Assessing the role of the gut microbiome at the interface between environmental chemical exposures and human health: Current knowledge and challenges. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120380. [PMID: 36220576 PMCID: PMC10239610 DOI: 10.1016/j.envpol.2022.120380] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 05/05/2023]
Abstract
The explosion of microbiome research over the past decade has shed light on the various ways that external factors interact with the human microbiome to drive health and disease. Each individual is exposed to more than 300 environmental chemicals every day. Accumulating evidence indicates that the microbiome is involved in the early response to environmental toxicants and biologically mediates their adverse effects on human health. However, few review articles to date provided a comprehensive framework for research and translation of the role of the gut microbiome in environmental health science. This review summarizes current evidence on environmental compounds and their effect on the gut microbiome, discusses the involved compound metabolic pathways, and covers environmental pollution-induced gut microbiota disorders and their long-term outcomes on host health. We conclude that the gut microbiota may crucially mediate and modify the disease-causing effects of environmental chemicals. Consequently, gut microbiota needs to be further studied to assess the complete toxicity of environmental exposures. Future research in this field is required to delineate the key interactions between intestinal microbiota and environmental pollutants and further to elucidate the long-term human health effects.
Collapse
Affiliation(s)
- Anna Maria Campana
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA.
| | - Hannah E Laue
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Yike Shen
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Martha J Shrubsole
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, School of Medicine, Vanderbilt University, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| |
Collapse
|
20
|
Zhou J, Zhang R, Guo P, Li P, Huang X, Wei Y, Yang C, Zhou J, Yang T, Liu Y, Shi S. Effects of intestinal microbiota on pharmacokinetics of cyclosporine a in rats. Front Microbiol 2022; 13:1032290. [PMID: 36483198 PMCID: PMC9723225 DOI: 10.3389/fmicb.2022.1032290] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/25/2022] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Intestinal microbiota has been confirmed to influencing the pharmacokinetic processes of a variety of oral drugs. However, the pharmacokinetic effects of the gut microbiota on cyclosporine A, a drug with a narrow therapeutic window, remain to be studied. METHOD Twenty-one rats were randomly divided into three groups: (a) control group (CON), (b) antibiotic treatment group (ABT) and (c) fecal microbe transplantation group (FMT). The ABT group was administrated with water containing multiple antibiotics to deplete microorganisms. FMT was with the same treatment, followed by oral administration of conventional rat fecal microorganisms for normalization. RESULT The bioavailability of CSA increased by 155.6% after intestinal microbes were consumed by antibiotics. After intestinal microbiota reconstruction by fecal transplantation, the increased bioavailability was significantly reduced and basically returned to the control group level. Changes in gut microbiota alter the protein expression of CYP3A1, UGT1A1 and P-gp in liver. The expressions of these three proteins in ABT group were significantly lower than those in CON and FMT groups. The relative abundance of Alloprevolleta and Oscillospiraceae UCG 005 was negatively correlated with CSA bioavailability while the relative abundance of Parasutterella and Eubacterium xylanophilum group was negatively correlated with CSA bioavailability. CONCLUSION Intestinal microbiota affects the pharmacokinetics of CSA by regulating the expression of CYP3A1, UGT1A1 and P-GP.
Collapse
Affiliation(s)
- Jinping Zhou
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengpeng Guo
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peixia Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xixi Huang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ye Wei
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunxiao Yang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiali Zhou
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingyu Yang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yani Liu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaojun Shi
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Union Jiangnan Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
21
|
Gulnaz A, Chang JE, Maeng HJ, Shin KH, Lee KR, Chae YJ. A mechanism-based understanding of altered drug pharmacokinetics by gut microbiota. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00600-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Silini AR, Ramuta TŽ, Pires AS, Banerjee A, Dubus M, Gindraux F, Kerdjoudj H, Maciulatis J, Weidinger A, Wolbank S, Eissner G, Giebel B, Pozzobon M, Parolini O, Kreft ME. Methods and criteria for validating the multimodal functions of perinatal derivatives when used in oncological and antimicrobial applications. Front Bioeng Biotechnol 2022; 10:958669. [PMID: 36312547 PMCID: PMC9607958 DOI: 10.3389/fbioe.2022.958669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/26/2022] [Indexed: 11/18/2022] Open
Abstract
Perinatal derivatives or PnDs refer to tissues, cells and secretomes from perinatal, or birth-associated tissues. In the past 2 decades PnDs have been highly investigated for their multimodal mechanisms of action that have been exploited in various disease settings, including in different cancers and infections. Indeed, there is growing evidence that PnDs possess anticancer and antimicrobial activities, but an urgent issue that needs to be addressed is the reproducible evaluation of efficacy, both in vitro and in vivo. Herein we present the most commonly used functional assays for the assessment of antitumor and antimicrobial properties of PnDs, and we discuss their advantages and disadvantages in assessing the functionality. This review is part of a quadrinomial series on functional assays for the validation of PnDs spanning biological functions such as immunomodulation, anticancer and antimicrobial, wound healing, and regeneration.
Collapse
Affiliation(s)
- Antonietta R. Silini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Taja Železnik Ramuta
- Faculty of Medicine, Institute of Cell Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Ana Salomé Pires
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment, Genetics and Oncobiology (CIMAGO), Institute of Biophysics, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Asmita Banerjee
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Marie Dubus
- Université de Reims Champagne Ardenne, EA 4691 Biomatériaux et Inflammation en Site Osseux (BIOS), Reims, France
| | - Florelle Gindraux
- Service de Chirurgie Orthopédique, Traumatologique et Plastique, CHU Besançon and Laboratoire de Nanomédecine, Imagerie, Thérapeutique EA 4662, Université Bourgogne Franche-Comté, Besançon, France
| | - Halima Kerdjoudj
- Université de Reims Champagne Ardenne, EA 4691 Biomatériaux et Inflammation en Site Osseux (BIOS), Reims, France
| | - Justinas Maciulatis
- The Institute of Physiology and Pharmacology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Adelheid Weidinger
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Susanne Wolbank
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Günther Eissner
- Systems Biology Ireland, UCD School of Medicine, University College Dublin, Dublin, Ireland
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Michela Pozzobon
- Stem Cells and Regenerative Medicine Lab, Department of Women’s and Children’s Health, University of Padova, Fondazione Istituto di Ricerca Pediatrica Città Della Speranza, Padoa, Italy
| | - Ornella Parolini
- Department of Life Science and Public Health, Università Cattolica Del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
| | - Mateja Erdani Kreft
- Faculty of Medicine, Institute of Cell Biology, University of Ljubljana, Ljubljana, Slovenia
- *Correspondence: Mateja Erdani Kreft,
| |
Collapse
|
23
|
Basic M, Dardevet D, Abuja PM, Bolsega S, Bornes S, Caesar R, Calabrese FM, Collino M, De Angelis M, Gérard P, Gueimonde M, Leulier F, Untersmayr E, Van Rymenant E, De Vos P, Savary-Auzeloux I. Approaches to discern if microbiome associations reflect causation in metabolic and immune disorders. Gut Microbes 2022; 14:2107386. [PMID: 35939623 PMCID: PMC9361767 DOI: 10.1080/19490976.2022.2107386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Our understanding of microorganisms residing within our gut and their roles in the host metabolism and immunity advanced greatly over the past 20 years. Currently, microbiome studies are shifting from association and correlation studies to studies demonstrating causality of identified microbiome signatures and identification of molecular mechanisms underlying these interactions. This transformation is crucial for the efficient translation into clinical application and development of targeted strategies to beneficially modulate the intestinal microbiota. As mechanistic studies are still quite challenging to perform in humans, the causal role of microbiota is frequently evaluated in animal models that need to be appropriately selected. Here, we provide a comprehensive overview on approaches that can be applied in addressing causality of host-microbe interactions in five major animal model organisms (Caenorhabditis elegans, Drosophila melanogaster, zebrafish, rodents, and pigs). We particularly focused on discussing methods available for studying the causality ranging from the usage of gut microbiota transfer, diverse models of metabolic and immune perturbations involving nutritional and chemical factors, gene modifications and surgically induced models, metabolite profiling up to culture-based approached. Furthermore, we addressed the impact of the gut morphology, physiology as well as diet on the microbiota composition in various models and resulting species specificities. Finally, we conclude this review with the discussion on models that can be applied to study the causal role of the gut microbiota in the context of metabolic syndrome and host immunity. We hope this review will facilitate important considerations for appropriate animal model selection.
Collapse
Affiliation(s)
- Marijana Basic
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Dominique Dardevet
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Peter Michael Abuja
- Diagnostic & Research Centre of Molecular Biomedicine, Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Silvia Bolsega
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Stéphanie Bornes
- University Clermont Auvergne, Inrae, VetAgro Sup, Umrf, Aurillac, France
| | - Robert Caesar
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Massimo Collino
- Rita Levi-Montalcini Department of Neuroscience, University of Turin, Turin, Italy
| | - Maria De Angelis
- Department of Soil, Plant and Science, “Aldo Moro” University Bari, Bari, Italy
| | - Philippe Gérard
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, France
| | - Miguel Gueimonde
- Department of Microbiology and Biochemistry of Dairy Products, IPLA-CSIC;Villaviciosa, Spain
| | - François Leulier
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, UMR5242 CNRS, Université Claude Bernard-Lyon1, Lyon, France
| | - Eva Untersmayr
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria
| | - Evelien Van Rymenant
- Flanders Research Institute for Agriculture, Fisheries and Food (Ilvo), Merelbeke, Belgium
| | - Paul De Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen; Groningen, Netherlands
| | - Isabelle Savary-Auzeloux
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France,CONTACT Isabelle Savary-Auzeloux Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| |
Collapse
|
24
|
Ganguly R, Gupta A, Pandey AK. Role of baicalin as a potential therapeutic agent in hepatobiliary and gastrointestinal disorders: A review. World J Gastroenterol 2022; 28:3047-3062. [PMID: 36051349 PMCID: PMC9331529 DOI: 10.3748/wjg.v28.i26.3047] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/21/2022] [Accepted: 05/22/2022] [Indexed: 02/06/2023] Open
Abstract
Baicalin is a natural bioactive compound derived from Scutellaria baicalensis, which is extensively used in traditional Chinese medicine. A literature survey demonstrated the broad spectrum of health benefits of baicalin such as antioxidant, anticancer, anti-inflammatory, antimicrobial, cardio-protective, hepatoprotective, renal protective, and neuroprotective properties. Baicalin is hydrolyzed to its metabolite baicalein by the action of gut microbiota, which is further reconverted to baicalin via phase 2 metabolism in the liver. Many studies have suggested that baicalin exhibits therapeutic potential against several types of hepatic disorders including hepatic fibrosis, xenobiotic-induced liver injury, fatty liver disease, viral hepatitis, cholestasis, ulcerative colitis, hepatocellular and colorectal cancer. During in vitro and in vivo examinations, it has been observed that baicalin showed a protective role against liver and gut-associated abnormalities by modifying several signaling pathways such as nuclear factor-kappa B, transforming growth factor beta 1/SMAD3, sirtuin 1, p38/mitogen-activated protein kinase/Janus kinase, and calcium/calmodulin-dependent protein kinase kinaseβ/adenosine monophosphate-activated protein kinase/acetyl-coenzyme A carboxylase pathways. Furthermore, baicalin also regulates the expression of fibrotic genes such as smooth muscle actin, connective tissue growth factor, β-catenin, and inflammatory cytokines such as interferon gamma, interleukin-6 (IL-6), tumor necrosis factor-alpha, and IL-1β, and attenuates the production of apoptotic proteins such as caspase-3, caspase-9 and B-cell lymphoma 2. However, due to its low solubility and poor bioavailability, widespread therapeutic applications of baicalin still remain a challenge. This review summarized the hepatic and gastrointestinal protective attributes of baicalin with an emphasis on the molecular mechanisms that regulate the interaction of baicalin with the gut microbiota.
Collapse
Affiliation(s)
- Risha Ganguly
- Department of Biochemistry, University of Allahabad, Allahabad (Prayagraj) 211002, Uttar Pradesh, India
| | - Ashutosh Gupta
- Department of Biochemistry, University of Allahabad, Allahabad (Prayagraj) 211002, Uttar Pradesh, India
| | - Abhay K Pandey
- Department of Biochemistry, University of Allahabad, Allahabad (Prayagraj) 211002, Uttar Pradesh, India
| |
Collapse
|
25
|
Guo H, Ruan C, Zhan X, Pan H, Luo Y, Gao K. Crocetin Protected Human Hepatocyte LO2 Cell From TGF-β-Induced Oxygen Stress and Apoptosis but Promoted Proliferation and Autophagy via AMPK/m-TOR Pathway. Front Public Health 2022; 10:909125. [PMID: 35836988 PMCID: PMC9273739 DOI: 10.3389/fpubh.2022.909125] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Objective To investigate the protective effects of crocetin against transforming growth factor-β (TGF-β)—induced injury in LO2 cells. Methods Human hepatocyte LO2 cells were pre-treated with crocetin (10 μM) for 6, 12, and 24 h, and then induced by TGF-β. Proliferation, oxidative stress, apoptosis, autophagy, and related proteins were assessed. Results Crocetin pre-treating promoted proliferation but suppressed apoptosis in TGF-β-induced LO2 cells. Crocetin protected LO2 cells from TGF-β-induced inflammation and oxygen stress by reducing reactive oxygen species (ROS) and malondialdehyde (MDA) but enhancing superoxide dismutase (SOD) and glutathione (GSH). Autophagy was suppressed in TGF-β but crocetin promoted autophagy in LO2 cells by mediating Adenosine 5'-monophosphate—activated protein kinase (AMPK)/mammalian target of rapamycin (m-TOR) signaling pathway via upregulating p-AMPK and p-Beclin-1 but downregulating p-mTOR. Conclusions Crocetin protected LO2 cells from TGF-β-induced damage by promoting proliferation and autophagy, and suppressing apoptosis and anti-inflammation via regulation of AMPK/m-TOR signaling pathway.
Collapse
Affiliation(s)
- Hongxing Guo
- Department of Gastroenterology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Chenyu Ruan
- Department of Gastroenterology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Xiuhong Zhan
- Department of Gastroenterology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Hao Pan
- Department of Gastroenterology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Yumei Luo
- Department of Gastroenterology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Ke Gao
- Department of Pathology, Foshan Fosun Chancheng Hospital, Foshan, China
- *Correspondence: Ke Gao
| |
Collapse
|
26
|
Qiu H, Gao H, Yu F, Xiao B, Li X, Cai B, Ge L, Lu Y, Wan Z, Wang Y, Xia T, Wang A, Zhang S. Perinatal exposure to low-level PBDE-47 programs gut microbiota, host metabolism and neurobehavior in adult rats: An integrated analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:154150. [PMID: 35218822 DOI: 10.1016/j.scitotenv.2022.154150] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs), a major class of flame retardants, have been extensively applied in plastics, electrical equipment, textile fabrics, and so on. Early-life exposure to PBDEs is correlated to neurobehavioral deficits in adulthood, yet the underlying mechanism has not been fully understood. Increasing evidence has demonstrated that gut microbiota dysbiosis and serum metabolites alterations play a role in behavioral abnormalities. However, whether their perturbation is implicated in PBDEs-induced neurotoxicity remains unclear. Here, we sought to explore the effects of developmental exposure to environmentally relevant levels of 2, 2', 4, 4'-tetrabromodiphenyl ether (PBDE-47), a major congener in human samples, on gut microbiota and serum metabolic profile as well as their link to neurobehavioral parameters in adult rats. The open field test showed that gestational and lactational exposure to PBDE-47 caused hyperactivity and anxiety-like behavior. Moreover, 16S rRNA sequencing of fecal samples identified a distinct community composition in gut microbiota following PBDE-47 exposure, manifested as decreased genera Ruminococcaceae and Moraxella, increased families Streptococcaceae and Deferribacteraceae as well as genera Escherichia-Shigella, Pseudomonas and Peptococcus. Additionally, the metabolomics of the blood samples based on liquid chromatography-mass spectrometry revealed a significant shift after PBDE-47 treatment. Notably, these differential serum metabolites were mainly involved in amino acid, carbohydrate, nucleotide, xenobiotics, and lipid metabolisms, which were further validated by pathway analysis. Importantly, the disturbed gut microbiota and the altered serum metabolites were associated with each other and with neurobehavioral disorders, respectively. Collectively, these results suggest that gut microbiota dysbiosis and serum metabolites alterations potentially mediated early-life low-dose PBDE-47 exposure-induced neurobehavioral impairments, which provides a novel perspective on understanding the mechanisms of PBDE-47 neurotoxicity.
Collapse
Affiliation(s)
- Haixia Qiu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Gao
- Department of Clinical Nutrition, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fangjin Yu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Boya Xiao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoning Li
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Cai
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Long Ge
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yinting Lu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhengyi Wan
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yafei Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Xia
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Aiguo Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shun Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
27
|
Role of Bile Acids and Nuclear Receptors in Acupuncture in Improving Crohn's Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5814048. [PMID: 35600949 PMCID: PMC9122672 DOI: 10.1155/2022/5814048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/13/2021] [Accepted: 04/15/2022] [Indexed: 11/30/2022]
Abstract
Nuclear receptors (NRs) are ligand-dependent transcription factors that regulate the transcription of target genes. Bile acids (BAs) can be used as effector molecules to regulate physiological processes in the gut, and NRs are important receptors for bile acid signaling. Relevant studies have shown that NRs are closely related to the occurrence of Crohn's disease (CD). Although the mechanism of NRs in CD has not been clarified completely, growing evidence shows that NRs play an important role in regulating intestinal immunity, mucosal barrier, and intestinal flora. NRs can participate in the progress of CD by mediating inflammation, immunity, and autophagy. As the important parts of traditional Chinese medicine (TCM) therapy, acupuncture and moxibustion in the treatment of CD curative mechanism can get a lot of research support. At the same time, acupuncture and moxibustion can regulate the changes of related NRs. Therefore, to explore whether acupuncture can regulate BA circulation and NRs expression and then participate in the disease progression of CD, a new theoretical basis for acupuncture treatment of CD is provided.
Collapse
|
28
|
Abstract
The gut microbiome plays critical roles in human health and disease. Recent studies suggest it may also be associated with chronic pain and postoperative pain outcomes. In animal models, the composition of the gut microbiome changes after general anesthesia and affects the host response to medications, including anesthetics and opioids. In humans, the gut microbiome is associated with the development of postoperative pain and neurocognitive disorders. Additionally, the composition of the gut microbiome has been associated with pain conditions including visceral pain, nociplastic pain, complex regional pain syndrome, and headaches, partly through altered concentration of circulating bacterial-derived metabolites. Furthermore, animal studies demonstrate the critical role of the gut microbiome in neuropathic pain via immunomodulatory mechanisms. This article reviews basic concepts of the human gut microbiome and its interactions with the host and provide a comprehensive overview of the evidence linking the gut microbiome to anesthesiology, critical care, and pain medicine.
Collapse
|
29
|
Dutta M, Lim JJ, Cui JY. Pregnane X Receptor and the Gut-Liver Axis: A Recent Update. Drug Metab Dispos 2022; 50:478-491. [PMID: 34862253 PMCID: PMC11022899 DOI: 10.1124/dmd.121.000415] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 12/02/2021] [Indexed: 02/04/2023] Open
Abstract
It is well-known that the pregnane X receptor (PXR)/Nr1i2 is a critical xenobiotic-sensing nuclear receptor enriched in liver and intestine and is responsible for drug-drug interactions, due to its versatile ligand binding domain (LBD) and target genes involved in xenobiotic biotransformation. PXR can be modulated by various xenobiotics including pharmaceuticals, nutraceuticals, dietary factors, and environmental chemicals. Microbial metabolites such as certain secondary bile acids (BAs) and the tryptophan metabolite indole-3-propionic acid (IPA) are endogenous PXR activators. Gut microbiome is increasingly recognized as an important regulator for host xenobiotic biotransformation and intermediary metabolism. PXR regulates and is regulated by the gut-liver axis. This review summarizes recent research advancements leveraging pharmaco- and toxico-metagenomic approaches that have redefined the previous understanding of PXR. Key topics covered in this review include: (1) genome-wide investigations on novel PXR-target genes, novel PXR-DNA interaction patterns, and novel PXR-targeted intestinal bacteria; (2) key PXR-modulating activators and suppressors of exogenous and endogenous sources; (3) novel bidirectional interactions between PXR and gut microbiome under physiologic, pathophysiological, pharmacological, and toxicological conditions; and (4) modifying factors of PXR-signaling including species and sex differences and time (age, critical windows of exposure, and circadian rhythm). The review also discusses critical knowledge gaps and important future research topics centering around PXR. SIGNIFICANCE STATEMENT: This review summarizes recent research advancements leveraging O'mics approaches that have redefined the previous understanding of the xenobiotic-sensing nuclear receptor pregnane X receptor (PXR). Key topics include: (1) genome-wide investigations on novel PXR-targeted host genes and intestinal bacteria as well as novel PXR-DNA interaction patterns; (2) key PXR modulators including microbial metabolites under physiological, pathophysiological, pharmacological, and toxicological conditions; and (3) modifying factors including species, sex, and time.
Collapse
Affiliation(s)
- Moumita Dutta
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Joe Jongpyo Lim
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| |
Collapse
|
30
|
Chen W, Qian J, Fu J, Wu T, Lv M, Jiang S, Zhang J. Changes in the Gut Microbiota May Affect the Clinical Efficacy of Oral Anticoagulants. Front Pharmacol 2022; 13:860237. [PMID: 35401180 PMCID: PMC8989842 DOI: 10.3389/fphar.2022.860237] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/17/2022] [Indexed: 11/22/2022] Open
Abstract
The mechanism underlying large individual differences in the response to oral anticoagulants has not been fully clarified, and the influence of the intestinal microbiome on exogenous drug metabolism has gradually become an area of increased research interest. However, there has been no research into the influence of the gut microbiota on the pharmacokinetics of oral anticoagulants. Therefore, our study is the first to investigate the effect of the intestinal flora on oral anticoagulant metabolism and the associated mechanism. Antibiotics affected the diversity and abundance of the intestinal flora. Compared with the control group, the bioavailability of warfarin and rivaroxaban were significantly increased in the amoxicillin-treated group, whereas the bioavailability of dabigatran increased and subsequently decreased. Compared with the control group, the expression of P-glycoprotein (P-gp), CYP1A2, CYP2C9, CYP3A4, and nuclear receptor, PXR, were altered in the amoxicillin -treated groups. This trend was consistent with the pharmacokinetic results. Changes in the intestinal flora can affect the expression of liver drug enzymes and P-gp, as well as affect the transport and metabolism of oral anticoagulants (e.g., warfarin, dabigatracin, and rivaroxaban), leading to differences in the efficacy of oral anticoagulants. This study revealed a novel mechanism for influencing individual differences in the treatment efficacy of oral anticoagulants.
Collapse
Affiliation(s)
- Wenjun Chen
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, China
- College of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Jiafen Qian
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, China
- College of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Jinglan Fu
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, China
- College of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Tingting Wu
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, China
- College of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Meina Lv
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, China
- College of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Shaojun Jiang
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, China
- College of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Jinhua Zhang
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, China
- College of Pharmacy, Fujian Medical University, Fuzhou, China
- *Correspondence: Jinhua Zhang,
| |
Collapse
|
31
|
Peng B, Zhao H, Keerthisinghe TP, Yu Y, Chen D, Huang Y, Fang M. Gut microbial metabolite p-cresol alters biotransformation of bisphenol A: Enzyme competition or gene induction? JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128093. [PMID: 34952505 DOI: 10.1016/j.jhazmat.2021.128093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/06/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Recent studies on pharmaceuticals have revealed the direct and indirect mechanisms that link human gut microbiome to xenobiotic biotransformation. Though environmental contaminants compose a vital portion of xenobiotics and share overlapping biotransformation pathways with gut microbial metabolites, the possible interplay between gut microbiome and biotransformation of environmental contaminants remains obscure. This study utilized bisphenol A (BPA) and p-cresol as model compounds to explore whether gut microbial metabolites could affect environmental phenol metabolism on both in vitro and in vivo models. We have observed some distinct biotransformation behavior, where in vivo mouse examination using 171 & 1972 μg/kg bw p-cresol injection exhibited enhancing effect on BPA metabolism, but p-cresol was found as a strong inhibitor from 10/5 μM in a non-competitive pattern for BPA biotransformation in in vitro models of liver S9 fractions and HepG2 cell line, respectively. A further investigation revealed that the expression of biotransformation enzyme genes including Ugt1a1, Ugt2b1, or Sult1a1 of p-cresol treated mice were dynamically induced. In silico docking approach was also utilized to explore the non-competitive inhibition mechanism by estimating the binding affinity of key enzyme SULT 1A1. Overall, our results provided a novel insight into the biotransformation interaction between gut microbiome and environmental contaminants.
Collapse
Affiliation(s)
- Bo Peng
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore; Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - Haoduo Zhao
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Tharushi P Keerthisinghe
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore; Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - Yanxia Yu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Da Chen
- School of Environment, Jinan University, Guangzhou 510632 China
| | - Yichao Huang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; School of Environment, Jinan University, Guangzhou 510632 China.
| | - Mingliang Fang
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore; Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore; Singapore Phenome Center, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore.
| |
Collapse
|
32
|
Almeida JI, Tenreiro MF, Martinez-Santamaria L, Guerrero-Aspizua S, Gisbert JP, Alves PM, Serra M, Baptista PM. Hallmarks of the human intestinal microbiome on liver maturation and function. J Hepatol 2022; 76:694-725. [PMID: 34715263 DOI: 10.1016/j.jhep.2021.10.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/05/2021] [Accepted: 10/17/2021] [Indexed: 12/18/2022]
Abstract
As one of the most metabolically complex systems in the body, the liver ensures multi-organ homeostasis and ultimately sustains life. Nevertheless, during early postnatal development, the liver is highly immature and takes about 2 years to acquire and develop almost all of its functions. Different events occurring at the environmental and cellular levels are thought to mediate hepatic maturation and function postnatally. The crosstalk between the liver, the gut and its microbiome has been well appreciated in the context of liver disease, but recent evidence suggests that the latter could also be critical for hepatic function under physiological conditions. The gut-liver crosstalk is thought to be mediated by a rich repertoire of microbial metabolites that can participate in a myriad of biological processes in hepatic sinusoids, from energy metabolism to tissue regeneration. Studies on germ-free animals have revealed the gut microbiome as a critical contributor in early hepatic programming, and this influence extends throughout life, mediating liver function and body homeostasis. In this seminar, we describe the microbial molecules that have a known effect on the liver and discuss how the gut microbiome and the liver evolve throughout life. We also provide insights on current and future strategies to target the gut microbiome in the context of hepatology research.
Collapse
Affiliation(s)
- Joana I Almeida
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain; Instituto de Biologia Experimental e Tecnológica (iBET), Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Miguel F Tenreiro
- Instituto de Biologia Experimental e Tecnológica (iBET), Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Lucía Martinez-Santamaria
- Carlos III University of Madrid. Bioengineering and Aerospace Engineering, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER, ISCIII), Madrid, Spain; Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Madrid, Spain
| | - Sara Guerrero-Aspizua
- Carlos III University of Madrid. Bioengineering and Aerospace Engineering, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER, ISCIII), Madrid, Spain
| | - Javier P Gisbert
- Gastroenterology Department. Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid (UAM), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Paula M Alves
- Instituto de Biologia Experimental e Tecnológica (iBET), Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Margarida Serra
- Instituto de Biologia Experimental e Tecnológica (iBET), Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Pedro M Baptista
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain; Carlos III University of Madrid. Bioengineering and Aerospace Engineering, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain; Fundación ARAID, Zaragoza, Spain.
| |
Collapse
|
33
|
Dhurjad P, Dhavaliker C, Gupta K, Sonti R. Exploring Drug Metabolism by the Gut Microbiota: Modes of Metabolism and Experimental Approaches. Drug Metab Dispos 2022; 50:224-234. [PMID: 34969660 DOI: 10.1124/dmd.121.000669] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 09/08/2021] [Indexed: 11/22/2022] Open
Abstract
Increasing evidence uncovers the involvement of gut microbiota in the metabolism of numerous pharmaceutical drugs. The human gut microbiome harbors 10-100 trillion symbiotic gut microbial bacteria that use drugs as substrates for enzymatic processes to alter host metabolism. Thus, microbiota-mediated drug metabolism can change the conventional drug action course and cause inter-individual differences in efficacy and toxicity, making it vital for drug discovery and development. This review focuses on drug biotransformation pathways and discusses different models for evaluating the role of gut microbiota in drug metabolism. SIGNIFICANCE STATEMENT: This review emphasizes the importance of gut microbiota and different modes of drug metabolism mediated by them. It provides information on in vivo, in vitro, ex vivo, in silico and multi-omics approaches for identifying the role of gut microbiota in metabolism. Further, it highlights the significance of gut microbiota-mediated metabolism in the process of new drug discovery and development as a rationale for safe and efficacious drug therapy.
Collapse
Affiliation(s)
- Pooja Dhurjad
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Chinmayi Dhavaliker
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Kajal Gupta
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Rajesh Sonti
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| |
Collapse
|
34
|
Patangia DV, Anthony Ryan C, Dempsey E, Paul Ross R, Stanton C. Impact of antibiotics on the human microbiome and consequences for host health. Microbiologyopen 2022; 11:e1260. [PMID: 35212478 PMCID: PMC8756738 DOI: 10.1002/mbo3.1260] [Citation(s) in RCA: 327] [Impact Index Per Article: 109.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022] Open
Abstract
It is well established that the gut microbiota plays an important role in host health and is perturbed by several factors including antibiotics. Antibiotic-induced changes in microbial composition can have a negative impact on host health including reduced microbial diversity, changes in functional attributes of the microbiota, formation, and selection of antibiotic-resistant strains making hosts more susceptible to infection with pathogens such as Clostridioides difficile. Antibiotic resistance is a global crisis and the increased use of antibiotics over time warrants investigation into its effects on microbiota and health. In this review, we discuss the adverse effects of antibiotics on the gut microbiota and thus host health, and suggest alternative approaches to antibiotic use.
Collapse
Affiliation(s)
- Dhrati V. Patangia
- School of MicrobiologyUniversity College CorkCorkIreland
- Teagasc Food Research Centre, MooreparkFermoy Co.CorkIreland
- APC MicrobiomeCorkIreland
| | | | - Eugene Dempsey
- School of MicrobiologyUniversity College CorkCorkIreland
| | - Reynolds Paul Ross
- School of MicrobiologyUniversity College CorkCorkIreland
- APC MicrobiomeCorkIreland
| | - Catherine Stanton
- Teagasc Food Research Centre, MooreparkFermoy Co.CorkIreland
- APC MicrobiomeCorkIreland
| |
Collapse
|
35
|
Salachan PV, Sørensen KD. Dysbiotic microbes and how to find them: a review of microbiome profiling in prostate cancer. J Exp Clin Cancer Res 2022; 41:31. [PMID: 35065652 PMCID: PMC8783429 DOI: 10.1186/s13046-021-02196-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/24/2021] [Indexed: 12/19/2022] Open
Abstract
The role of the microbiota in human health and disease is well established, including its effects on several cancer types. However, the role of microbial dysbiosis in prostate cancer development, progression, and response to treatment is less well understood. This knowledge gap could perhaps be implicated in the lack of better risk stratification and prognostic tools that incorporate risk factors such as bacterial infections and inflammatory signatures. With over a decade’s research investigating associations between microbiome and prostate carcinogenesis, we are ever closer to finding the crucial biological link between the two. Yet, definitive answers remain elusive, calling for continued research into this field. In this review, we outline the three frequently used NGS based analysis methodologies that are used for microbiome profiling, thereby serving as a quick guide for future microbiome research. We next provide a detailed overview of the current knowledge of the role of the human microbiome in prostate cancer development, progression, and treatment response. Finally, we describe proposed mechanisms of host-microbe interactions that could lead to prostate cancer development, progression or treatment response.
Collapse
|
36
|
Fu ZD, Selwyn FP, Cui JY, Klaassen CD. RNA-Seq unveiled section-specific host response to lack of gut microbiota in mouse intestine. Toxicol Appl Pharmacol 2021; 433:115775. [PMID: 34715074 DOI: 10.1016/j.taap.2021.115775] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 01/07/2023]
Abstract
To identify host responses induced by commensal microbiota in intestine, transcriptomes of four sections of the intestine were compared between germ-free (GF) mice and conventional (CV) controls using RNA-Seq. Cuffdiff revealed that jejunum had the highest number of differentially expressed genes (over 2000) between CV and GF mice, followed by large intestine (LI), duodenum, and ileum. Gene set association analysis identified section-specific alterations in pathways associated with the absence of commensal microbiota. For example, in GF mice, cytochrome P450 (Cyp)-mediated xenobiotic metabolism was preferably down-regulated in duodenum and ileum, whereas intermediary metabolism pathways such as protein digestion and amino acid metabolism were preferably up-regulated in duodenum, jejunum, and LI. In GF mice, carboxypeptidase A1 (Cpa1), which is important for protein digestion, was the top most up-regulated gene within the entire transcriptome in duodenum (53-fold) and LI (142-fold). Conversely, fatty acid binding protein 6 (Fabp6/Ibabp), which is important for bile acid intestinal reabsorption, was the top most down-regulated gene in jejunum (358-fold), and the drug-metabolizing enzyme Cyp1a1 was the top most down-regulated gene in ileum (40-fold). Section-specific host transcriptomic response to the absence of intestinal microbiota was also observed for other important physiological pathways such as cell junction, the absorption of small molecules, bile acid homeostasis, and immune response. In conclusion, the present study has revealed section-specific host gene transcriptional alterations in GF mice, highlighting the importance of intestinal microbiota in facilitating the physiological and drug responses of the host intestine.
Collapse
Affiliation(s)
- Zidong Donna Fu
- Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, United States of America
| | - Felcy Pavithra Selwyn
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States of America
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States of America
| | - Curtis D Klaassen
- Department of Pharmacology, Toxicology, and Therapeutics, School of Medicine, University of Kansas, Kansas City, KS, United States of America.
| |
Collapse
|
37
|
Mikrobiota jelitowa a leki. Interakcje wpływające na skuteczność i bezpieczeństwo farmakoterapii. POSTEP HIG MED DOSW 2021. [DOI: 10.2478/ahem-2021-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstrakt
Mikrobiota jelitowa stanowi nieodłączny element organizmu umożliwiający jego prawidłowe funkcjonowanie. Dzięki mikroorganizmom jelitowym możliwa jest stymulacja układu odpornościowego, synteza witamin czy poprawa wchłaniania składników odżywczych. Jednak jej aktywność może również niekorzystnie działać na organizm, m.in. z powodu przetwarzania treści jelitowej. Opisywana w artykule interakcja mikrobiota–lek uwzględnia pozytywny i negatywny wpływ mikroorganizmów jelitowych na farmakoterapię poprzez bezpośrednie i pośrednie oddziaływanie na lek w organizmie. Ze względu na to, że mikrobiom stanowi nieodłączny element organizmu, ingerencja nawet w jego niewielką część może doprowadzić do wystąpienia daleko idących, czasami niespodziewanych skutków. Stąd w celu poprawy skuteczności i bezpieczeństwa farmakoterapii konieczne jest wyjaśnienie mechanizmów oddziaływania mikrobioty na lek w organizmie.
W artykule podsumowano obecną wiedzę na temat biologicznej aktywności mikrobioty jelitowej, a zwłaszcza oddziaływań mikrobiota–leki determinujących skuteczność i bezpieczeństwo farmakoterapii. Wyszukiwanie przeprowadzono we wrześniu 2020 r. w bazach danych PubMed, Scopus, Web of Science, Cochrane Library i powszechnie dostępnej literaturze z użyciem terminów: „mikrobiota jelitowa”, „mikrobiom”, „metabolizm leku”, „interakcje mikrobiota–lek”. W artykule omówiono interakcje między mikrobiotą a lekami m.in. z grupy antybiotyków, inhibitorów pompy protonowej, sulfonamidów, pochodnych kwasu 5-aminosalicylowego, niesteroidowych leków przeciwzapalnych, przeciwnowotworowych, statyn czy metforminą.
Collapse
|
38
|
Saiman Y, David Shen TC, Lund PJ, Gershuni VM, Jang C, Patel S, Jung S, Furth EE, Friedman ES, Chau L, Garcia BA, Wu GD. Global Microbiota-Dependent Histone Acetylation Patterns Are Irreversible and Independent of Short Chain Fatty Acids. Hepatology 2021; 74:3427-3440. [PMID: 34233020 PMCID: PMC9867598 DOI: 10.1002/hep.32043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 06/07/2021] [Accepted: 06/13/2021] [Indexed: 01/26/2023]
Abstract
BACKGROUND AND AIMS Although germ-free mice are an indispensable tool in studying the gut microbiome and its effects on host physiology, they are phenotypically different than their conventional counterparts. While antibiotic-mediated microbiota depletion in conventional mice leads to physiologic alterations that often mimic the germ-free state, the degree to which the effects of microbial colonization on the host are reversible is unclear. The gut microbiota produce abundant short chain fatty acids (SCFAs), and previous studies have demonstrated a link between microbial-derived SCFAs and global hepatic histone acetylation in germ-free mice. APPROACH AND RESULTS We demonstrate that global hepatic histone acetylation states measured by mass spectrometry remained largely unchanged despite loss of luminal and portal vein SCFAs after antibiotic-mediated microbiota depletion. In contrast to stable hepatic histone acetylation states, we see robust hepatic transcriptomic alterations after microbiota depletion. Additionally, neither dietary supplementation with supraphysiologic levels of SCFA nor the induction of hepatocyte proliferation in the absence of microbiota-derived SCFAs led to alterations in global hepatic histone acetylation. CONCLUSIONS These results suggest that microbiota-dependent landscaping of the hepatic epigenome through global histone acetylation is static in nature, while the hepatic transcriptome is responsive to alterations in the gut microbiota.
Collapse
Affiliation(s)
- Yedidya Saiman
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ting-Chin David Shen
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Peder J. Lund
- Department of Biochemistry and Biophysics, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Victoria M. Gershuni
- Department of Surgery, Perelman School of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Cholsoon Jang
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ
| | - Shivali Patel
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | | | - Emma E. Furth
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Elliot S. Friedman
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Lillian Chau
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Benjamin A. Garcia
- Department of Biochemistry and Biophysics, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Gary D. Wu
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
39
|
Zemanová N, Lněničková K, Vavrečková M, Anzenbacherová E, Anzenbacher P, Zapletalová I, Hermanová P, Hudcovic T, Kozáková H, Jourová L. Gut microbiome affects the metabolism of metronidazole in mice through regulation of hepatic cytochromes P450 expression. PLoS One 2021; 16:e0259643. [PMID: 34752478 PMCID: PMC8577747 DOI: 10.1371/journal.pone.0259643] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/22/2021] [Indexed: 11/18/2022] Open
Abstract
Microbiome is now considered as a significant metabolic organ with an immense potential to influence overall human health. A number of diseases that are associated with pharmacotherapy interventions was linked with altered gut microbiota. Moreover, it has been reported earlier that gut microbiome modulates the fate of more than 30 commonly used drugs and, vice versa, drugs have been shown to affect the composition of the gut microbiome. The molecular mechanisms of this mutual relationship, however, remain mostly elusive. Recent studies indicate an indirect effect of the gut microbiome through its metabolites on the expression of biotransformation enzymes in the liver. The aim of this study was to analyse the effect of gut microbiome on the fate of metronidazole in the mice through modulation of system of drug metabolizing enzymes, namely by alteration of the expression and activity of selected cytochromes P450 (CYPs). To assess the influence of gut microbiome, germ-free mice (GF) in comparison to control specific-pathogen-free (SPF) mice were used. First, it has been found that the absence of microbiota significantly affected plasma concentration of metronidazole, resulting in higher levels (by 30%) of the parent drug in murine plasma of GF mice. Further, the significant interaction between presence/absence of the gut microbiome and effect of metronidazole application, which together influence mRNA expression of CAR, PPARα, Cyp2b10 and Cyp2c38 was determined. Administration of metronidazole itself influenced significantly mRNA expression of Cyp1a2, Cyp2b10, Cyp2c38 and Cyp2d22. Finally, GF mice have shown lower level of enzyme activity of CYP2A and CYP3A than their SPF counterparts. The results hence have shown that, beside direct bacterial metabolism, different expression and enzyme activity of hepatic CYPs in the presence/absence of gut microbiota may be responsible for the altered metronidazole metabolism.
Collapse
Affiliation(s)
- Nina Zemanová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| | - Kateřina Lněničková
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| | - Markéta Vavrečková
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| | - Eva Anzenbacherová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| | - Pavel Anzenbacher
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| | - Iveta Zapletalová
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| | - Petra Hermanová
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Nový Hrádek, Czech Republic
| | - Tomáš Hudcovic
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Nový Hrádek, Czech Republic
| | - Hana Kozáková
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Nový Hrádek, Czech Republic
| | - Lenka Jourová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| |
Collapse
|
40
|
Cheng P, Shen P, Shan Y, Yang Y, Deng R, Chen W, Lu Y, Wei Z. Gut Microbiota-Mediated Modulation of Cancer Progression and Therapy Efficacy. Front Cell Dev Biol 2021; 9:626045. [PMID: 34568308 PMCID: PMC8455814 DOI: 10.3389/fcell.2021.626045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 08/18/2021] [Indexed: 12/18/2022] Open
Abstract
The role of gut microbiota in the development of various tumors has been a rising topic of public interest, and in recent years, many studies have reported a close relationship between microbial groups and tumor development. Gut microbiota play a role in host metabolism, and the positive and negative alterations of these microbiota have an effect on tumor treatment. The microbiota directly promote, eliminate, and coordinate the efficacy of chemotherapy drugs and the toxicity of adjuvant drugs, and enhance the ability of patients to respond to tumors in adjuvant immunotherapy. In this review, we outline the significance of gut microbiota in tumor development, reveal its impacts on chemotherapy and immunotherapy, and discover various potential mechanisms whereby they influence tumor treatment. This review demonstrates the importance of intestinal microbiota-related research for clinical tumor treatment and provides additional strategy for clinical assistance in cancer treatment.
Collapse
Affiliation(s)
- Peng Cheng
- Jiangsu Key Laboratory for Pharmacolgy and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Peiliang Shen
- Jiangsu Key Laboratory for Pharmacolgy and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yunlong Shan
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yu Yang
- Jiangsu Key Laboratory for Pharmacolgy and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Rui Deng
- Jiangsu Key Laboratory for Pharmacolgy and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenxing Chen
- Jiangsu Key Laboratory for Pharmacolgy and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacolgy and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhonghong Wei
- Jiangsu Key Laboratory for Pharmacolgy and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
41
|
Lim JJ, Li X, Lehmler HJ, Wang D, Gu H, Cui JY. Gut Microbiome Critically Impacts PCB-induced Changes in Metabolic Fingerprints and the Hepatic Transcriptome in Mice. Toxicol Sci 2021; 177:168-187. [PMID: 32544245 DOI: 10.1093/toxsci/kfaa090] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Polychlorinated biphenyls (PCBs) are ubiquitously detected and have been linked to metabolic diseases. Gut microbiome is recognized as a critical regulator of disease susceptibility; however, little is known how PCBs and gut microbiome interact to modulate hepatic xenobiotic and intermediary metabolism. We hypothesized the gut microbiome regulates PCB-mediated changes in the metabolic fingerprints and hepatic transcriptome. Ninety-day-old female conventional and germ-free mice were orally exposed to the Fox River Mixture (synthetic PCB mixture, 6 or 30 mg/kg) or corn oil (vehicle control, 10 ml/kg), once daily for 3 consecutive days. RNA-seq was conducted in liver, and endogenous metabolites were measured in liver and serum by LC-MS. Prototypical target genes of aryl hydrocarbon receptor, pregnane X receptor, and constitutive androstane receptor were more readily upregulated by PCBs in conventional conditions, indicating PCBs, to the hepatic transcriptome, act partly through the gut microbiome. In a gut microbiome-dependent manner, xenobiotic, and steroid metabolism pathways were upregulated, whereas response to misfolded proteins-related pathways was downregulated by PCBs. At the high PCB dose, NADP, and arginine appear to interact with drug-metabolizing enzymes (ie, Cyp1-3 family), which are highly correlated with Ruminiclostridium and Roseburia, providing a novel explanation of gut-liver interaction from PCB-exposure. Utilizing the Library of Integrated Network-based Cellular Signatures L1000 database, therapeutics targeting anti-inflammatory and endoplasmic reticulum stress pathways are predicted to be remedies that can mitigate PCB toxicity. Our findings demonstrate that habitation of the gut microbiota drives PCB-mediated hepatic responses. Our study adds knowledge of physiological response differences from PCB exposure and considerations for further investigations for gut microbiome-dependent therapeutics.
Collapse
Affiliation(s)
- Joe Jongpyo Lim
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98195
| | - Xueshu Li
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa 52242; and
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa 52242; and
| | - Dongfang Wang
- Arizona Metabolomics Laboratory, School of Nutrition and Health Promotion, College of Health Solutions, Arizona State University, Scottsdale, Arizona 85259
| | - Haiwei Gu
- Arizona Metabolomics Laboratory, School of Nutrition and Health Promotion, College of Health Solutions, Arizona State University, Scottsdale, Arizona 85259
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98195
| |
Collapse
|
42
|
McCoubrey LE, Gaisford S, Orlu M, Basit AW. Predicting drug-microbiome interactions with machine learning. Biotechnol Adv 2021; 54:107797. [PMID: 34260950 DOI: 10.1016/j.biotechadv.2021.107797] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023]
Abstract
Pivotal work in recent years has cast light on the importance of the human microbiome in maintenance of health and physiological response to drugs. It is now clear that gastrointestinal microbiota have the metabolic power to promote, inactivate, or even toxify the efficacy of a drug to a level of clinically relevant significance. At the same time, it appears that drug intake has the propensity to alter gut microbiome composition, potentially affecting health and response to other drugs. Since the precise composition of an individual's microbiome is unique, one's drug-microbiome relationship is similarly unique. Thus, in the age of evermore personalised medicine, the ability to predict individuals' drug-microbiome interactions is highly sought. Machine learning (ML) offers a powerful toolkit capable of characterising and predicting drug-microbiota interactions at the individual patient level. ML techniques have the potential to learn the mechanisms operating drug-microbiome activities and measure patients' risk of such occurrences. This review will outline current knowledge at the drug-microbiota interface, and present ML as a technique for examining and forecasting personalised drug-microbiome interactions. When harnessed effectively, ML could alter how the pharmaceutical industry and healthcare professionals consider the drug-microbiome axis in patient care.
Collapse
Affiliation(s)
| | | | - Mine Orlu
- University College London, London, United Kingdom
| | | |
Collapse
|
43
|
Ji C, Tanabe P, Shi Q, Qian L, McGruer V, Magnuson JT, Wang X, Gan J, Gadepalli RS, Rimoldi J, Schlenk D. Stage Dependent Enantioselective Metabolism of Bifenthrin in Embryos of Zebrafish ( Danio rerio) and Japanese Medaka ( Oryzias latipes). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9087-9096. [PMID: 34106693 DOI: 10.1021/acs.est.1c01663] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bifenthrin (BF) is a widely used pyrethroid that has been frequently detected in surface waters. Previous studies indicated that BF had antiestrogenic activity in zebrafish embryos but estrogenic activity in posthatch fish. To determine whether age-related differences in metabolism contribute to the endocrine effects in developing fish, embryos from zebrafish and Japanese medaka were exposed to BF before and after liver development. Since the commercial mixture of BF is an isomer-enriched product containing two enantiomers (1R-cis-BF and 1S-cis-BF), enantioselective metabolism was also evaluated. The estrogenic metabolite, 4-hydroxybifenthrin (4-OH-BF) was identified in zebrafish embryos, and formation was higher in animals after liver development (>48 hpf). Treatments with β-glucuronidase indicated that 4-OH-BF underwent conjugation in embryos. Formation was reduced by cotreatment of the cytochrome P450 (CYP450) inhibitor, ketoconazole. Formation of 4-OH-BF was greater when treated with 1R-cis-BF compared to the S-enantiomer. However, metabolites were not observed in medaka embryos. These data indicate enantioselective oxidation of BF to an estrogenic metabolite occurs in zebrafish embryos and, since it is increased after liver development, may partially explain estrogenic activity observed in older animals. The lack of activity in medaka suggests species-specific effects with BF metabolism and may influence risk assessment strategies in wildlife.
Collapse
Affiliation(s)
- Chenyang Ji
- Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, P. R. China
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Philip Tanabe
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Qingyang Shi
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Le Qian
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
- College of Sciences, China Agricultural University, Beijing, 100193, P. R. China
| | - Victoria McGruer
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Jason T Magnuson
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Xinru Wang
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
- Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou, 310008, P. R. China
| | - Jay Gan
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Rama S Gadepalli
- Department of Biomolecular Sciences, College of Pharmacy, University of Mississipi, University, Mississippi 38677, United States
| | - John Rimoldi
- Department of Biomolecular Sciences, College of Pharmacy, University of Mississipi, University, Mississippi 38677, United States
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| |
Collapse
|
44
|
Abstract
Bile acids (BAs) are a family of hydroxylated steroids secreted by the liver that aid in the breakdown and absorption of dietary fats. BAs also function as nutrient and inflammatory signaling molecules, acting through cognate receptors, to coordinate host metabolism. Commensal bacteria in the gastrointestinal tract are functional modifiers of the BA pool, affecting composition and abundance. Deconjugation of host BAs creates a molecular network that inextricably links gut microtia with their host. In this review we highlight the roles of BAs in mediating this mutualistic relationship with a focus on those events that impact host physiology and metabolism.
Collapse
Affiliation(s)
- James C Poland
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - C Robb Flynn
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
45
|
Fianchi F, Liguori A, Gasbarrini A, Grieco A, Miele L. Nonalcoholic Fatty Liver Disease (NAFLD) as Model of Gut-Liver Axis Interaction: From Pathophysiology to Potential Target of Treatment for Personalized Therapy. Int J Mol Sci 2021; 22:6485. [PMID: 34204274 PMCID: PMC8233936 DOI: 10.3390/ijms22126485] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the leading cause of liver disease worldwide, affecting both adults and children and will result, in the near future, as the leading cause of end-stage liver disease. Indeed, its prevalence is rapidly increasing, and NAFLD is becoming a major public health concern. For this reason, great efforts are needed to identify its pathogenetic factors and new therapeutic approaches. In the past decade, enormous advances understanding the gut-liver axis-the complex network of cross-talking between the gut, microbiome and liver through the portal circulation-have elucidated its role as one of the main actors in the pathogenesis of NAFLD. Indeed, evidence shows that gut microbiota is involved in the development and progression of liver steatosis, inflammation and fibrosis seen in the context of NAFLD, as well as in the process of hepatocarcinogenesis. As a result, gut microbiota is currently emerging as a non-invasive biomarker for the diagnosis of disease and for the assessment of its severity. Additionally, to its enormous diagnostic potential, gut microbiota is currently studied as a therapeutic target in NAFLD: several different approaches targeting the gut homeostasis such as antibiotics, prebiotics, probiotics, symbiotics, adsorbents, bariatric surgery and fecal microbiota transplantation are emerging as promising therapeutic options.
Collapse
Affiliation(s)
- Francesca Fianchi
- Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (F.F.); (A.L.); (A.G.); (A.G.)
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del S. Cuore, 00168 Rome, Italy
| | - Antonio Liguori
- Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (F.F.); (A.L.); (A.G.); (A.G.)
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del S. Cuore, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (F.F.); (A.L.); (A.G.); (A.G.)
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del S. Cuore, 00168 Rome, Italy
| | - Antonio Grieco
- Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (F.F.); (A.L.); (A.G.); (A.G.)
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del S. Cuore, 00168 Rome, Italy
| | - Luca Miele
- Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (F.F.); (A.L.); (A.G.); (A.G.)
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del S. Cuore, 00168 Rome, Italy
| |
Collapse
|
46
|
Ma W, Zhang W, Shen L, Liu J, Yang F, Maskey N, Wang H, Zhang J, Yan Y, Yao X. Can Smoking Cause Differences in Urine Microbiome in Male Patients With Bladder Cancer? A Retrospective Study. Front Oncol 2021; 11:677605. [PMID: 34168995 PMCID: PMC8217881 DOI: 10.3389/fonc.2021.677605] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/05/2021] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Tobacco smoking is a carcinogen for many cancers including bladder cancer. The microbiota is involved in the occurrence, development, and treatment of tumors. We explored the composition of male urinary microbiome and the correlation between tobacco smoking and microbiome in this study. METHODS Alpha diversity, principal component analysis (PCA) and Adonis analysis, linear discriminant analysis (LDA) coupled with effect size measurement, and PICRUSt function predictive analysis were used to compare different microbiome between smokers and non-smokers in men. RESULTS There were 26 qualified samples included in the study. Eleven of them are healthy controls, and the others are from men with bladder cancer. Simpson index and the result of PCA analysis between smokers and non-smokers were not different (P > 0.05) in healthy men. However, the abundance of Bacteroidaceae, Erysipelotrichales, Lachnospiraceae, Bacteroides, and so on in the urinary tract of smokers is much higher than that of non-smokers. Compared to non-smokers, the alpha diversity in smokers was elevated in patients with bladder cancer (P < 0.05). PCA analysis showed a significant difference between smokers and non-smokers (P < 0.001), indicating that tobacco smoking plays a vital role in urinary tract microbial composition. CONCLUSION The composition of microbiome in the urinary tract is closely related to tobacco smoking. This phenomenon is more significant in patients with bladder cancer. This indicates tobacco smoking may promote the occurrence and development of bladder cancer by changing urinary tract microbiome.
Collapse
Affiliation(s)
- Wenchao Ma
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- Shanghai Clinical College, Anhui Medical University, Hefei, China
| | - Wentao Zhang
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
| | - Liliang Shen
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- Department of Urology, The Affiliated People’s Hospital of Ningbo University, Ningbo, China
| | - Ji Liu
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
| | - Fuhang Yang
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
| | - Niraj Maskey
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
| | - Hong Wang
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
| | - Junfeng Zhang
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
| | - Yang Yan
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
| | - Xudong Yao
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- Shanghai Clinical College, Anhui Medical University, Hefei, China
| |
Collapse
|
47
|
Lucchetti M, Kaminska M, Oluwasegun AK, Mosig AS, Wilmes P. Emulating the gut-liver axis: Dissecting the microbiome's effect on drug metabolism using multiorgan-on-chip models. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2021; 18:94-101. [PMID: 34239997 PMCID: PMC8246515 DOI: 10.1016/j.coemr.2021.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The homeostatic relationship between the gut, its microbiome, and the liver is crucial for the regulation of drug metabolism processes. Gut microbes are known to influence human health and disease by enhancing food metabolism and providing a first line of defense against pathogens. In addition to this, the gut microbiome also plays a key role in the processing of exogenous pharmaceutical compounds. Modeling the highly variable luminal gut environment and understanding how gut microbes can modulate drug availability or induce liver toxicity remains a challenge. However, microfluidics-based technologies such as organ-on-chips could overcome current challenges in drug toxicity assessment assays because these technologies are able to better recapitulate complex human responses. Efforts are being made to create in vitro multiorgan platforms, tailored for an individual patient's microbial background. These platforms could be used as a tool to predict the effect of the gut microbiome on pharmacokinetics in a personalized way.
Collapse
Affiliation(s)
- Mara Lucchetti
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Mathilda Kaminska
- Institute of Biochemistry II, Jena University Hospital, Jena, Germany
| | | | | | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Luxembourg
| |
Collapse
|
48
|
Tsunoda SM, Gonzales C, Jarmusch AK, Momper JD, Ma JD. Contribution of the Gut Microbiome to Drug Disposition, Pharmacokinetic and Pharmacodynamic Variability. Clin Pharmacokinet 2021; 60:971-984. [PMID: 33959897 PMCID: PMC8332605 DOI: 10.1007/s40262-021-01032-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2021] [Indexed: 12/20/2022]
Abstract
The trillions of microbes that make up the gut microbiome are an important contributor to health and disease. With respect to xenobiotics, particularly orally administered compounds, the gut microbiome interacts directly with drugs to break them down into metabolic products. In addition, microbial products such as bile acids interact with nuclear receptors on host drug-metabolizing enzyme machinery, thus indirectly influencing drug disposition and pharmacokinetics. Gut microbes also influence drugs that undergo enterohepatic recycling by reversing host enzyme metabolic processes and increasing exposure to toxic metabolites as exemplified by the chemotherapy agent irinotecan and non-steroidal anti-inflammatory drugs. Recent data with immune checkpoint inhibitors demonstrate the impact of the gut microbiome on drug pharmacodynamics. We summarize the clinical importance of gut microbe interaction with digoxin, irinotecan, immune checkpoint inhibitors, levodopa, and non-steroidal anti-inflammatory drugs. Understanding the complex interactions of the gut microbiome with xenobiotics is challenging; and highly sensitive methods such as untargeted metabolomics with molecular networking along with other in silico methods and animal and human in vivo studies will uncover mechanisms and pathways. Incorporating the contribution of the gut microbiome to drug disposition, pharmacokinetics, and pharmacodynamics is vital in this era of precision medicine.
Collapse
Affiliation(s)
- Shirley M Tsunoda
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, MC 0657, La Jolla, San Diego, CA, 90293-0657, USA.
| | - Christopher Gonzales
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, MC 0657, La Jolla, San Diego, CA, 90293-0657, USA
| | - Alan K Jarmusch
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, MC 0657, La Jolla, San Diego, CA, 90293-0657, USA.,Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, San Diego, CA, USA
| | - Jeremiah D Momper
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, MC 0657, La Jolla, San Diego, CA, 90293-0657, USA
| | - Joseph D Ma
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, MC 0657, La Jolla, San Diego, CA, 90293-0657, USA
| |
Collapse
|
49
|
Barretto SA, Lasserre F, Huillet M, Régnier M, Polizzi A, Lippi Y, Fougerat A, Person E, Bruel S, Bétoulières C, Naylies C, Lukowicz C, Smati S, Guzylack L, Olier M, Théodorou V, Mselli-Lakhal L, Zalko D, Wahli W, Loiseau N, Gamet-Payrastre L, Guillou H, Ellero-Simatos S. The pregnane X receptor drives sexually dimorphic hepatic changes in lipid and xenobiotic metabolism in response to gut microbiota in mice. MICROBIOME 2021; 9:93. [PMID: 33879258 PMCID: PMC8059225 DOI: 10.1186/s40168-021-01050-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/16/2021] [Indexed: 05/10/2023]
Abstract
BACKGROUND The gut microbiota-intestine-liver relationship is emerging as an important factor in multiple hepatic pathologies, but the hepatic sensors and effectors of microbial signals are not well defined. RESULTS By comparing publicly available liver transcriptomics data from conventional vs. germ-free mice, we identified pregnane X receptor (PXR, NR1I2) transcriptional activity as strongly affected by the absence of gut microbes. Microbiota depletion using antibiotics in Pxr+/+ vs Pxr-/- C57BL/6J littermate mice followed by hepatic transcriptomics revealed that most microbiota-sensitive genes were PXR-dependent in the liver in males, but not in females. Pathway enrichment analysis suggested that microbiota-PXR interaction controlled fatty acid and xenobiotic metabolism. We confirmed that antibiotic treatment reduced liver triglyceride content and hampered xenobiotic metabolism in the liver from Pxr+/+ but not Pxr-/- male mice. CONCLUSIONS These findings identify PXR as a hepatic effector of microbiota-derived signals that regulate the host's sexually dimorphic lipid and xenobiotic metabolisms in the liver. Thus, our results reveal a potential new mechanism for unexpected drug-drug or food-drug interactions. Video abstract.
Collapse
Affiliation(s)
- Sharon Ann Barretto
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Frederic Lasserre
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Marine Huillet
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Marion Régnier
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Arnaud Polizzi
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Yannick Lippi
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Anne Fougerat
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Elodie Person
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Sandrine Bruel
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Colette Bétoulières
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Claire Naylies
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Céline Lukowicz
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Sarra Smati
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Laurence Guzylack
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Maïwenn Olier
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Vassilia Théodorou
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Laila Mselli-Lakhal
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Daniel Zalko
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Walter Wahli
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, 308232, Singapore
- Center for Integrative Genomics, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Nicolas Loiseau
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Laurence Gamet-Payrastre
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Hervé Guillou
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Sandrine Ellero-Simatos
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France.
| |
Collapse
|
50
|
Luo Y, Zhou T. Connecting the dots: Targeting the microbiome in drug toxicity. Med Res Rev 2021; 42:83-111. [PMID: 33856076 DOI: 10.1002/med.21805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/22/2021] [Accepted: 03/31/2021] [Indexed: 12/13/2022]
Abstract
The gut microbiota has a vast influence on human health and its role in initiating, aggravating, or ameliorating diseases is beginning to emerge. Recently, its contribution to heterogeneous toxicological responses is also gaining attention, especially in drug-induced toxicity. Whether they are orally administered or not, drugs may interact with the gut microbiota directly or indirectly, which leads to altered toxicity. Present studies focus more on the unidirectional influence of how xenobiotics disturb intestinal microbial composition and functions, and thus induce altered homeostasis. However, interactions between the gut microbiota and xenobiotics are bidirectional and the impact of the gut microbiota on xenobiotics, especially on drugs, should not be neglected. Thus, in this review, we focus on how the gut microbiota modulates drug toxicity by highlighting the microbiome, microbial enzyme, and microbial metabolites. We connect the dots between drugs, the microbiome, microbial enzymes or metabolites, drug metabolites, and host toxicological responses to facilitate the discovery of microbial targets and mechanisms associated with drug toxicity. Besides this, current mainstream strategies to manipulate drug toxicity by targeting the microbiome are summarized and discussed. The review provides technical reference for the evaluation of medicinal properties in the research and development of innovative drugs, and for the future exploitation of strategies to reduce drug toxicity by targeting the microbiome.
Collapse
Affiliation(s)
- Yusha Luo
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai, China.,Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Tingting Zhou
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai, China.,Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|