1
|
Zheng XQ, Wang DB, Jiang YR, Song CL. Gut microbiota and microbial metabolites for osteoporosis. Gut Microbes 2025; 17:2437247. [PMID: 39690861 DOI: 10.1080/19490976.2024.2437247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/13/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024] Open
Abstract
Osteoporosis is an age-related bone metabolic disease. As an essential endocrine organ, the skeletal system is intricately connected with extraosseous organs. The crosstalk between bones and other organs supports this view. In recent years, the link between the gut microecology and bone metabolism has become an important research topic, both in preclinical studies and in clinical trials. Many studies have shown that skeletal changes are accompanied by changes in the composition and structure of the gut microbiota (GM). At the same time, natural or artificial interventions targeting the GM can subsequently affect bone metabolism. Moreover, microbiome-related metabolites may have important effects on bone metabolism. We aim to review the relationships among the GM, microbial metabolites, and bone metabolism and to summarize the potential mechanisms involved and the theory of the gut‒bone axis. We also describe existing bottlenecks in laboratory studies, as well as existing challenges in clinical settings, and propose possible future research directions.
Collapse
Affiliation(s)
- Xuan-Qi Zheng
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Ding-Ben Wang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Yi-Rong Jiang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Chun-Li Song
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
| |
Collapse
|
2
|
Le Cosquer G, Pannier M, Meunier E, Thevenin J, Pyhourquet E, Guyonnet S, Vellas B, Santin Y, Guiard B, Parini A, Buscail L, Bournet B, Guillemet D, Deraison C, Vergnolle N, Motta JP, IHU HealthAge INSPIRE/Open Science study group. Pathogenicity of commensal gut biofilm in prefrail aging. NPJ Biofilms Microbiomes 2025; 11:84. [PMID: 40404666 PMCID: PMC12098755 DOI: 10.1038/s41522-025-00716-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 05/01/2025] [Indexed: 05/24/2025] Open
Abstract
Pathophysiological mechanisms of unhealthy aging, particularly the transition from robustness to frailty, remain poorly understood. Despite extensive microbiome research on taxonomy, the behavior of early prefrail gut bacteria in their natural community-host mucosal tissue context remains unexplored. Using fecal samples from the INSPIRE-T aging human cohort, we characterized gut microbiota phenotype during prefrailty stages using a polymicrobial biofilm model. Results revealed that prefrail-derived biofilms exhibited distinct taxonomic and physical alterations, enhanced dispersal, and increased epithelial virulence compared to robust counterparts. Multiparametric analyses linked biofilm characteristics to clinical traits, suggesting their potential as aging status indicators. Polyphenol-rich grape pomace extract partially reversed prefrail biofilm alterations and reduced proinflammatory prefrail biofilm responses in vitro. Microbiota from prefrail-aged mice induced colon damage in antibiotic-treated recipients, establishing a prefrail microbiome-inflammation causality. Overall, the findings identified novel prefrail microbiome characteristics, established causal inflammatory links, and supported microbiota-targeted geroprotective interventions for the prefrail populations.
Collapse
Affiliation(s)
- Guillaume Le Cosquer
- Institute of Digestive Health Research (IRSD), INSERM, Toulouse University, INRAe, ENVT, University Toulouse III Paul Sabatier (UPS), Toulouse, France
- Department of Gastroenterology and Pancreatology, Toulouse University Hospital (CHU Toulouse), Toulouse, France and Toulouse University, University Toulouse III Paul Sabatier (UPS), Toulouse, France
| | - Melissa Pannier
- Institute of Digestive Health Research (IRSD), INSERM, Toulouse University, INRAe, ENVT, University Toulouse III Paul Sabatier (UPS), Toulouse, France
| | - Elodie Meunier
- Institute of Digestive Health Research (IRSD), INSERM, Toulouse University, INRAe, ENVT, University Toulouse III Paul Sabatier (UPS), Toulouse, France
| | - Julie Thevenin
- Institute of Digestive Health Research (IRSD), INSERM, Toulouse University, INRAe, ENVT, University Toulouse III Paul Sabatier (UPS), Toulouse, France
| | - Elise Pyhourquet
- Institute of Digestive Health Research (IRSD), INSERM, Toulouse University, INRAe, ENVT, University Toulouse III Paul Sabatier (UPS), Toulouse, France
| | - Sophie Guyonnet
- Institute of Aging, Toulouse University Hospital (CHU Toulouse), Toulouse, France and CERPOP, Toulouse University, INSERM, University Toulouse III Paul Sabatier (UPS), Toulouse, France
| | - Bruno Vellas
- Institute of Aging, Toulouse University Hospital (CHU Toulouse), Toulouse, France and CERPOP, Toulouse University, INSERM, University Toulouse III Paul Sabatier (UPS), Toulouse, France
| | - Yohan Santin
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM, Toulouse University, University Toulouse III Paul Sabatier (UPS), Toulouse, France
| | - Bruno Guiard
- Research Center on Animal Cognition (CRCA), Center of Integrative Biology (CBI), Université de Toulouse, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Angelo Parini
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM, Toulouse University, University Toulouse III Paul Sabatier (UPS), Toulouse, France
| | - Louis Buscail
- Department of Gastroenterology and Pancreatology, Toulouse University Hospital (CHU Toulouse), Toulouse, France and Toulouse University, University Toulouse III Paul Sabatier (UPS), Toulouse, France
| | - Barbara Bournet
- Department of Gastroenterology and Pancreatology, Toulouse University Hospital (CHU Toulouse), Toulouse, France and Toulouse University, University Toulouse III Paul Sabatier (UPS), Toulouse, France
| | | | - Celine Deraison
- Institute of Digestive Health Research (IRSD), INSERM, Toulouse University, INRAe, ENVT, University Toulouse III Paul Sabatier (UPS), Toulouse, France
| | - Nathalie Vergnolle
- Institute of Digestive Health Research (IRSD), INSERM, Toulouse University, INRAe, ENVT, University Toulouse III Paul Sabatier (UPS), Toulouse, France
- Department of Physiology and Pharmacology, University of Calgary Cumming School of Medicine, 3330 Hospital Drive, NW Calgary, AB, Canada
| | - Jean-Paul Motta
- Institute of Digestive Health Research (IRSD), INSERM, Toulouse University, INRAe, ENVT, University Toulouse III Paul Sabatier (UPS), Toulouse, France.
| | | |
Collapse
|
3
|
Chen J, Zhu Z, Xu Y. Signs of Alzheimer's Disease: Tied to Aging. Int J Mol Sci 2025; 26:4974. [PMID: 40507786 PMCID: PMC12154111 DOI: 10.3390/ijms26114974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2025] [Revised: 05/16/2025] [Accepted: 05/19/2025] [Indexed: 06/16/2025] Open
Abstract
: Alzheimer's disease (AD) is a neurodegenerative disorder closely associated with aging, and its pathogenesis involves the interaction of multidimensional pathophysiologic processes. This review outlines the core mechanisms linking aging and AD. The amyloid cascade hypothesis emphasizes that abnormal deposition of amyloid-β (Aβ) triggers neuronal damage and synaptic dysfunction, which is exacerbated by aging-associated declines in protein clearance. Neuroinflammation, a synergistic pathogenetic factor in AD, is mediated by microglia activation, creating a vicious cycle with Aβ and tau pathology. The cholinergic hypothesis states that the degeneration of cholinergic neurons in the basal forebrain can lead to acetylcholine deficiency, which is directly associated with cognitive decline. Endothelial disorders promote neuroinflammation and metabolic waste accumulation through blood-brain barrier dysfunction and cerebral vascular abnormalities. In addition, glutamate-mediated excitotoxicity and mitochondrial dysfunction (e.g., oxidative stress and energy metabolism imbalance) further lead to neuronal death, and aging-associated declines in mitochondrial autophagy exacerbate such damage. This review also explores the application of animal models that mimic AD and aging in studying these mechanisms and summarizes therapeutic strategies targeting these pathways. Future studies need to integrate multi-targeted therapies and focus on the role of the aging microenvironment in regulating AD pathology in order to develop more effective early diagnosis and treatment options.
Collapse
Affiliation(s)
| | | | - Yuanyuan Xu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun 130062, China; (J.C.); (Z.Z.)
| |
Collapse
|
4
|
Biada I, Santacreu MA, Blasco A, Pena RN, Ibáñez-Escriche N. Gut microbiota variations over the lifespan and longevity in rabbit's maternal lines. Sci Rep 2025; 15:17874. [PMID: 40404677 PMCID: PMC12098699 DOI: 10.1038/s41598-025-01729-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 05/07/2025] [Indexed: 05/24/2025] Open
Abstract
In rabbit breeding, selection for production efficiency traits has been successful but has reduced rabbit functional longevity. The gut microbiota, which influences host health, is linked to longevity and undergoes significant changes with age. While previous studies have focused on young rabbits, research on gut microbiota changes in adult rabbits is limited. Understanding how gut microbiota evolves with age and its impact on longevity of does during reproductive life could offer insights into improving productivity, health and welfare. This study aims to investigate the evolution of gut microbiota through age and to compare different functional longevity groups between and within two maternal rabbit lines with different longevities; a standard commercial line (A) and another founded using longevity criteria (LP). Our analysis demonstrated a significant impact of age on the gut microbiome of does during their reproductive lifespan, with a decline in alpha diversity and change in beta diversity composition as age progressed. Differential abundance analysis revealed that 20% and 16% of taxa in lines A and LP, respectively, were influenced by age, predominantly showing a negative correlation. In terms of functional longevity, differences in abundance between groups were more pronounced within line A, with up to 16% of taxa differing between high-longevity HL (females with more than 10 parities) and low-longevity LL (females died/culled before 5th parity) groups, compared to only 4% within line LP, highlighting the role of genetic background in shaping microbiota composition and its potential influence on longevity. Finally, differences in microbiome between the two lines A and LP were consistent and maintained through their lifespan independently from their longevity. This study reveals that age significantly influences gut microbiome diversity and composition in adult female rabbits, leading to decreased alpha diversity and notable shifts in composition. Microbiome also differs according to functional longevity, with differences varying by genetic line. This suggests that using microbiome through selection or using specific taxa within it as biomarkers could be a promising avenue for improving longevity. Moreover, microbiome differences between genetic lines persist throughout life, even among animals with the same longevity.
Collapse
Affiliation(s)
- Iliyass Biada
- Institute for Animal Science and Technology, Universitat Politècnica de València, 46022, València, Spain
| | - Maria A Santacreu
- Institute for Animal Science and Technology, Universitat Politècnica de València, 46022, València, Spain
| | - Agustín Blasco
- Institute for Animal Science and Technology, Universitat Politècnica de València, 46022, València, Spain
| | - Ramona N Pena
- Department of Animal Science, Universitat de Lleida, Av. Rovira Roure, 191, 25198, Lleida, Spain
| | - Noelia Ibáñez-Escriche
- Institute for Animal Science and Technology, Universitat Politècnica de València, 46022, València, Spain.
| |
Collapse
|
5
|
Oliver PJ, Civitelli L, Hu MT. The gut-brain axis in early Parkinson's disease: from prodrome to prevention. J Neurol 2025; 272:413. [PMID: 40394204 PMCID: PMC12092510 DOI: 10.1007/s00415-025-13138-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/28/2025] [Accepted: 04/30/2025] [Indexed: 05/22/2025]
Abstract
Parkinson's disease is the second most common neurodegenerative disorder and fastest growing neurological condition worldwide, yet its etiology and progression remain poorly understood. This disorder is characterized pathologically by the prion-like spread of misfolded neuronal alpha-synuclein proteins in specific brain regions leading to Lewy body formation, neurodegeneration, and progressive neurological impairment. It is unclear what triggers Parkinson's and where α-synuclein protein aggregation begins, although proposed induction sites include the olfactory bulb and dorsal motor nucleus of the vagus nerve. Within the last 20 years, there has been increasing evidence that Parkinson's could be triggered by early microbiome changes and α-synuclein accumulation in the gastrointestinal system. Gut microbiota dysbiosis that alters gastrointestinal motility, permeability, and inflammation could enable prion-like spread of α-synuclein from the gut-to-brain via the enteric nervous system. Individuals with isolated rapid eye movement sleep behavior disorder have a high likelihood of developing Parkinson's and might represent a prodromal 'gut-first' subtype of the condition. The gut-first model of Parkinson's offers novel gut-based therapeutic avenues, such as anti-, pre-, and pro-biotic preparations and fecal microbiota transplants. Crucially, gut-based interventions offer an avenue to treat Parkinson's at early prodromal stages with the aim of mitigating evolution to clinically recognizable Parkinson's disease characterized by motor impairment.
Collapse
Affiliation(s)
- Patrick James Oliver
- Clinical Medical School, University of Oxford, Oxford, UK
- Green Templeton College, University of Oxford, Oxford, UK
| | - Livia Civitelli
- Nuffield Department of Clinical Neurosciences, Oxford Parkinsons' Disease Center, University of Oxford, Oxford, UK
| | - Michele T Hu
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK.
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
- Department of Neurology, West Wing, Level 3, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK.
| |
Collapse
|
6
|
Ullah H. Gut-vitamin D interplay: key to mitigating immunosenescence and promoting healthy ageing. Immun Ageing 2025; 22:20. [PMID: 40390005 PMCID: PMC12087203 DOI: 10.1186/s12979-025-00514-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 04/26/2025] [Indexed: 05/21/2025]
Abstract
BACKGROUND Immunosenescence is the loss and change of immunological organs, as well as innate and adaptive immune dysfunction with ageing, which can lead to increased sensitivity to infections, age-related diseases, and cancer. Emerging evidence highlights the role of gut-vitamin D axis in the regulation of immune ageing, influencing chronic inflammation and systemic health. This review aims to explore the interplay between the gut microbiota and vitamin D in mitigating immunosenescence and preventing against chronic inflammation and age-related diseases. MAIN TEXT Gut microbiota dysbiosis and vitamin D insufficiency accelerate immunosenescence and risk of chronic diseases. Literature data reveal that vitamin D modulates gut microbiota diversity and composition, enhances immune resilience, and reduce systemic inflammation. Conversely, gut microbiota influences vitamin D metabolism to promote the synthesis of active vitamin D metabolites with implications for immune health. CONCLUSIONS These findings underscore the potential of targeting gut-vitamin D axis to modulate immune responses, delay the immune ageing, and mitigate age-related diseases. Further research is needed to integrate vitamin D supplementation and microbiome modulation into strategies aimed at promoting healthy ageing.
Collapse
Affiliation(s)
- Hammad Ullah
- School of Pharmacy, University of Management and Technology, Lahore, 54000, Pakistan.
| |
Collapse
|
7
|
Gyriki D, Nikolaidis CG, Bezirtzoglou E, Voidarou C, Stavropoulou E, Tsigalou C. The gut microbiota and aging: interactions, implications, and interventions. FRONTIERS IN AGING 2025; 6:1452917. [PMID: 40438731 PMCID: PMC12116569 DOI: 10.3389/fragi.2025.1452917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 04/25/2025] [Indexed: 06/01/2025]
Abstract
The human microbiota, a complex ecosystem of microorganisms inhabiting various body sites, particularly the gut, plays a crucial role in maintaining health and influencing disease susceptibility. Dysbiosis, characterized by alterations in microbial composition and diversity, has been implicated in numerous diseases, including those associated with aging. This review examines the complex relationship between gut microbiota and aging, highlighting the age-associated gut microbiota alterations, the factors contributing to these changes, the links between microbiota and age-related diseases, and the potential of interventions targeting the microbiome to extend lifespan and improve health outcomes in the elderly. Further research is needed to unravel the intricate mechanisms underlying the interplay between the microbiome and aging, paving the way for innovative strategies to promote healthy aging.
Collapse
Affiliation(s)
- Despoina Gyriki
- Master Program in “Food, Nutrition and Microbiome”, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Eugenia Bezirtzoglou
- Master Program in “Food, Nutrition and Microbiome”, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Chrysa Voidarou
- Department of Agriculture, University of Ioannina, Arta, Greece
| | - Elisavet Stavropoulou
- Master Program in “Food, Nutrition and Microbiome”, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Christina Tsigalou
- Master Program in “Food, Nutrition and Microbiome”, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
8
|
Zhang T, Wang Y, Gu Y, Wu J, Zhan X, Gong P. Gellan gum-sialoglycan conjugates: a mucin mimic for alleviating inflammation in Caco-2 cells and modulating gut microbiota in the elderly. Int J Biol Macromol 2025; 310:143478. [PMID: 40286969 DOI: 10.1016/j.ijbiomac.2025.143478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 04/13/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
The sialylation of intestinal mucins plays a crucial role in maintaining intestinal homeostasis and shaping the gut microbiota. This study aims to develop a mucin-like polymer to modulate the intestinal microbiota in the elderly individuals. We synthesized functionalized conjugates using sialic acid monomer, 3'-sialyllactose, and Gellan gum, resulting in a series of GG-sialoglycan conjugates with diverse glycan chain lengths and terminal structures. The sialic acid contents of GG-EDA-Sia, GG-EDA-SL, GG-HAD-Sia, and GG-HAD-SL were 28.48 %, 29.78 %, 23.45 and 41.58 %, respectively. These conjugates exhibited anti-digestion effects. In addition, they demonstrated favorable biocompatibility and exhibited notable anti-inflammatory properties. In vitro fermentation experiments using fecal bacteria from elderly individuals revealed that GG-sialoglycan conjugates enhanced the proliferation of beneficial bacteria such as Lactobacillus, Bifidobacterium, and Blautia, while simultaneously suppressing pathogens like Escherichia-Shigella. It is worth noting that GG-sialoglycan conjugates containing 3'-sialyllactose exhibited superior prebiotic activity compared to those with sialic acid monomer. In summary, our findings strongly support the promising potential of functional sialic acid-based macromolecular glycan conjugates as a novel strategy to improve aging-related intestinal health.
Collapse
Affiliation(s)
- Tiantian Zhang
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yuying Wang
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yiqun Gu
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jianrong Wu
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Xiaobei Zhan
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Ping Gong
- Department of Obstetrical, Affiliated Hospital of Jiangnan University, Wuxi 214123, China
| |
Collapse
|
9
|
Litichevskiy L, Considine M, Gill J, Shandar V, Cox TO, Descamps HC, Wright KM, Amses KR, Dohnalová L, Liou MJ, Tetlak M, Galindo-Fiallos MR, Wong AC, Lundgren P, Kim J, Uhr GT, Rahman RJ, Mason S, Merenstein C, Bushman FD, Raj A, Harding F, Chen Z, Prateek GV, Mullis M, Deighan AG, Robinson L, Tanes C, Bittinger K, Chakraborty M, Bhatt AS, Li H, Barnett I, Davenport ER, Broman KW, Levy M, Cohen RL, Botstein D, Freund A, Di Francesco A, Churchill GA, Li M, Thaiss CA. Gut metagenomes reveal interactions between dietary restriction, ageing and the microbiome in genetically diverse mice. Nat Microbiol 2025; 10:1240-1257. [PMID: 40164832 DOI: 10.1038/s41564-025-01963-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 02/19/2025] [Indexed: 04/02/2025]
Abstract
The gut microbiome changes with age and has been proposed to mediate the benefit of lifespan-extending interventions such as dietary restriction. However, the causes and consequences of microbiome ageing and the potential of such interventions remain unclear. Here we analysed 2,997 metagenomes collected longitudinally from 913 deeply phenotyped, genetically diverse mice to investigate interactions between the microbiome, ageing, dietary restriction (caloric restriction and fasting), host genetics and a range of health parameters. Among the numerous age-associated microbiome changes that we find in this cohort, increased microbiome uniqueness is the most consistent parameter across a second longitudinal mouse experiment that we performed on inbred mice and a compendium of 4,101 human metagenomes. Furthermore, cohousing experiments show that age-associated microbiome changes may be caused by an accumulation of stochastic environmental exposures (neutral theory) rather than by the influence of an ageing host (selection theory). Unexpectedly, the majority of taxonomic and functional microbiome features show small but significant heritability, and the amount of variation explained by host genetics is similar to ageing and dietary restriction. We also find that more intense dietary interventions lead to larger microbiome changes and that dietary restriction does not rejuvenate the microbiome. Lastly, we find that the microbiome is associated with multiple health parameters, including body composition, immune components and frailty, but not lifespan. Overall, this study sheds light on the factors influencing microbiome ageing and aspects of host physiology modulated by the microbiome.
Collapse
Affiliation(s)
- Lev Litichevskiy
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Maya Considine
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jasleen Gill
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vasuprada Shandar
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Timothy O Cox
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hélène C Descamps
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Kevin R Amses
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lenka Dohnalová
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Megan J Liou
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Monika Tetlak
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mario R Galindo-Fiallos
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrea C Wong
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Patrick Lundgren
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Junwon Kim
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Giulia T Uhr
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ryan J Rahman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sydney Mason
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Carter Merenstein
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Frederic D Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anil Raj
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | - Fiona Harding
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | - Zhenghao Chen
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | - G V Prateek
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | - Martin Mullis
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | | | | | - Ceylan Tanes
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Perelman School of Medicine, Philadelphia, PA, USA
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Perelman School of Medicine, Philadelphia, PA, USA
- Division of Pediatrics, Children's Hospital of Philadelphia, Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Ami S Bhatt
- Department of Genetics, Stanford University, Stanford, CA, USA
- Divisions of Hematology and Blood & Marrow Transplantation, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Hongzhe Li
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ian Barnett
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Emily R Davenport
- Department of Biology, Pennsylvania State University, University Park, PA, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Karl W Broman
- Department of Biostatistics & Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - Maayan Levy
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
- Arc Institute, Palo Alto, CA, USA
| | | | | | - Adam Freund
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | | | | | - Mingyao Li
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christoph A Thaiss
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Pathology, Stanford University, Stanford, CA, USA.
- Arc Institute, Palo Alto, CA, USA.
| |
Collapse
|
10
|
Ajith TA, Anita B. Impact of Gut Microbiota and Probiotics on Rheumatoid Arthritis: A Potential Treatment Challenge. Int J Rheum Dis 2025; 28:e70266. [PMID: 40329613 DOI: 10.1111/1756-185x.70266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 04/02/2025] [Accepted: 04/30/2025] [Indexed: 05/08/2025]
Abstract
Over the past few decades, there has been a surge in global study on the relationship between gut microbiota and human health. Numerous human illnesses have been linked to dysbiosis. Gram-positive firmicutes and Gram-negative bacteroidetes are the two leading bacterial phyla that make up 90% of the gut microbiome. Many symbionts in the gut environment establish intricate relationships with host defense to stop both local and non-native dangerous bacteria from colonizing and invading. Dysbiosis alters the paracellular route and damages the epithelium, enabling them to penetrate the epithelium and come into contact with the immune cells. Impaired intestinal barrier function, immune regulation mediated by metabolites derived from the gut microbiota, posttranslational modification of host proteins such as increased citrullination, regulation of the gut microbiota's effect on immune cells, intestinal epithelial cell autophagy, interaction between the microbiome and human leukocyte antigen alleles, and interaction with microRNAs are some of the mechanisms involved in rheumatoid arthritis (RA). The gut microbiota, Prevotella copri, and Collinsella spp. were shown to be higher in the early/preclinical phases of RA, while Bacteroidetes, Bifidobacteria, and Eubacterium rectale were found to be lower. Probiotic-based early dietary intervention may reduce inflammation and slow the rate of joint deterioration, and such intervention can also aid in the restoration of gut microbiota equilibrium. This review article describes the gut microbial dysbiosis and role of probiotics in RA.
Collapse
Affiliation(s)
| | - Bejoy Anita
- Department of General Medicine, Amala Institute of Medical Sciences, Thrissur, Kerala, India
| |
Collapse
|
11
|
Agarwal P, Sampson A, Hueneman K, Choi K, Jakobsen NA, Uible E, Ishikawa C, Yeung J, Bolanos L, Zhao X, Setchell KD, Haslam DB, Galloway-Pena J, Byrd JC, Vyas P, Starczynowski DT. Microbial metabolite drives ageing-related clonal haematopoiesis via ALPK1. Nature 2025:10.1038/s41586-025-08938-8. [PMID: 40269158 DOI: 10.1038/s41586-025-08938-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 03/26/2025] [Indexed: 04/25/2025]
Abstract
Clonal haematopoiesis of indeterminate potential (CHIP) involves the gradual expansion of mutant pre-leukaemic haematopoietic cells, which increases with age and confers a risk for multiple diseases, including leukaemia and immune-related conditions1. Although the absolute risk of leukaemic transformation in individuals with CHIP is very low, the strongest predictor of progression is the accumulation of mutant haematopoietic cells2. Despite the known associations between CHIP and increased all-cause mortality, our understanding of environmental and regulatory factors that underlie this process during ageing remains rudimentary. Here we show that intestinal alterations, which can occur with age, lead to systemic dissemination of a microbial metabolite that promotes pre-leukaemic cell expansion. Specifically, ADP-D-glycero-β-D-manno-heptose (ADP-heptose), a biosynthetic bi-product specific to Gram-negative bacteria3-5, is uniquely found in the circulation of older individuals and favours the expansion of pre-leukaemic cells. ADP-heptose is also associated with increased inflammation and cardiovascular risk in CHIP. Mechanistically, ADP-heptose binds to its receptor, ALPK1, triggering transcriptional reprogramming and NF-κB activation that endows pre-leukaemic cells with a competitive advantage due to excessive clonal proliferation. Collectively, we identify that the accumulation of ADP-heptose represents a direct link between ageing and expansion of rare pre-leukaemic cells, suggesting that the ADP-heptose-ALPK1 axis is a promising therapeutic target to prevent progression of CHIP to overt leukaemia and immune-related conditions.
Collapse
Affiliation(s)
- Puneet Agarwal
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Avery Sampson
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kathleen Hueneman
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kwangmin Choi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Niels Asger Jakobsen
- MRC Molecular Haematology Unit, Oxford Centre for Haematology, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Emma Uible
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Chiharu Ishikawa
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jennifer Yeung
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Lyndsey Bolanos
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Xueheng Zhao
- Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kenneth D Setchell
- Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - David B Haslam
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jessica Galloway-Pena
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA
| | - John C Byrd
- Division of Hematology, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
- University of Cincinnati Cancer Center, Cincinnati, OH, USA
| | - Paresh Vyas
- MRC Molecular Haematology Unit, Oxford Centre for Haematology, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Daniel T Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- University of Cincinnati Cancer Center, Cincinnati, OH, USA.
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
12
|
Agostini D, Bartolacci A, Rotondo R, De Pandis MF, Battistelli M, Micucci M, Potenza L, Polidori E, Ferrini F, Sisti D, Pegreffi F, Pazienza V, Virgili E, Stocchi V, Donati Zeppa S. Homocysteine, Nutrition, and Gut Microbiota: A Comprehensive Review of Current Evidence and Insights. Nutrients 2025; 17:1325. [PMID: 40284190 PMCID: PMC12030302 DOI: 10.3390/nu17081325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
Homocysteine, a sulfur-containing amino acid, is an intermediate product during the metabolism of methionine, a vital amino acid. An elevated concentration of homocysteine in the plasma, named hyperhomocysteinemia, has been significantly related to the onset of several diseases, including diabetes, multiple sclerosis, osteoporosis, cancer, and neurodegenerative disorders such as dementia, Alzheimer's and Parkinson's diseases. An interaction between metabolic pathways of homocysteine and gut microbiota has been reported, and specific microbial signatures have been found in individuals experiencing hyperhomocysteinemia. Furthermore, some evidence suggests that gut microbial modulation may exert an influence on homocysteine levels and related disease progression. Conventional approaches for managing hyperhomocysteinemia typically involve dietary interventions alongside the administration of supplements such as B vitamins and betaine. The present review aims to synthesize recent advancements in understanding interventions targeted at mitigating hyperhomocysteinemia, with a particular emphasis on the role of gut microbiota in these strategies. The emerging therapeutic potential of gut microbiota has been reported for several diseases. Indeed, a better understanding of the complex interaction between microbial species and homocysteine metabolism may help in finding novel therapeutic strategies to counteract hyperhomocysteinemia.
Collapse
Affiliation(s)
- Deborah Agostini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (D.A.); (M.B.); (M.M.); (L.P.); (E.P.); (F.F.); (D.S.); (S.D.Z.)
| | - Alessia Bartolacci
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (D.A.); (M.B.); (M.M.); (L.P.); (E.P.); (F.F.); (D.S.); (S.D.Z.)
| | - Rossella Rotondo
- Department of Human Science and Promotion of Quality of Life, San Raffaele Rome Open University, 00166 Rome, Italy; (M.F.D.P.); (V.S.)
- San Raffaele Cassino, 03043 Cassino, Italy
| | - Maria Francesca De Pandis
- Department of Human Science and Promotion of Quality of Life, San Raffaele Rome Open University, 00166 Rome, Italy; (M.F.D.P.); (V.S.)
- San Raffaele Cassino, 03043 Cassino, Italy
| | - Michela Battistelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (D.A.); (M.B.); (M.M.); (L.P.); (E.P.); (F.F.); (D.S.); (S.D.Z.)
| | - Matteo Micucci
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (D.A.); (M.B.); (M.M.); (L.P.); (E.P.); (F.F.); (D.S.); (S.D.Z.)
| | - Lucia Potenza
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (D.A.); (M.B.); (M.M.); (L.P.); (E.P.); (F.F.); (D.S.); (S.D.Z.)
| | - Emanuela Polidori
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (D.A.); (M.B.); (M.M.); (L.P.); (E.P.); (F.F.); (D.S.); (S.D.Z.)
| | - Fabio Ferrini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (D.A.); (M.B.); (M.M.); (L.P.); (E.P.); (F.F.); (D.S.); (S.D.Z.)
| | - Davide Sisti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (D.A.); (M.B.); (M.M.); (L.P.); (E.P.); (F.F.); (D.S.); (S.D.Z.)
| | - Francesco Pegreffi
- Department of Medicine and Surgery, Kore University of Enna, 94100 Enna, Italy;
| | - Valerio Pazienza
- Division of Gastroenterology, “Casa Sollievo della Sofferenza” Hospital, 71013 San Giovanni Rotondo, Italy;
| | - Edy Virgili
- School of Biosciences and Veterinary Medicine, University of Camerino, 62031 Camerino, Italy;
| | - Vilberto Stocchi
- Department of Human Science and Promotion of Quality of Life, San Raffaele Rome Open University, 00166 Rome, Italy; (M.F.D.P.); (V.S.)
| | - Sabrina Donati Zeppa
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (D.A.); (M.B.); (M.M.); (L.P.); (E.P.); (F.F.); (D.S.); (S.D.Z.)
- Department of Human Science and Promotion of Quality of Life, San Raffaele Rome Open University, 00166 Rome, Italy; (M.F.D.P.); (V.S.)
| |
Collapse
|
13
|
Yilmaz Y. Green Tea Mitigates the Hallmarks of Aging and Age-Related Multisystem Deterioration. Aging Dis 2025:AD.2025.0398. [PMID: 40249928 DOI: 10.14336/ad.2025.0398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Accepted: 04/04/2025] [Indexed: 04/20/2025] Open
Abstract
Aging is characterized by progressive multisystem deterioration driven by molecular and cellular mechanisms encapsulated in the twelve hallmarks of aging. Green tea (GT), derived from Camellia sinensis, has garnered significant scientific interest due to its rich polyphenolic composition, particularly epigallocatechin-3-gallate, and its pleiotropic health benefits. In this narrative review, we explored the multifaceted mechanisms through which GT may mitigate the aging hallmarks. Evidence from in vitro, animal, and human studies has shown that GT polyphenols can enhance DNA repair pathways, preserve telomere length, modulate epigenetic aging markers, improve proteostasis and autophagic flux, regulate nutrient-sensing networks, and rejuvenate mitochondrial function. Additionally, GT exhibits anti-inflammatory properties and may restore a physiological gut microbiota composition. Beyond molecular and cellular effects, GT consumption in humans has been associated with improved cognitive function, cardiovascular health, muscle preservation, and metabolic regulation in aging populations. Collectively, these findings highlight GT's potential as a naturally occurring geroscience intervention capable of addressing the interconnected network of aging processes more comprehensively than single-target pharmaceuticals. Future research should focus on optimizing dosing regimens, exploring synergies with other anti-aging strategies, and investigating personalized responses to GT interventions.
Collapse
|
14
|
Mohammadzadeh R, Mahnert A, Shinde T, Kumpitsch C, Weinberger V, Schmidt H, Moissl-Eichinger C. Age-related dynamics of predominant methanogenic archaea in the human gut microbiome. BMC Microbiol 2025; 25:193. [PMID: 40181255 PMCID: PMC11969853 DOI: 10.1186/s12866-025-03921-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 03/20/2025] [Indexed: 04/05/2025] Open
Abstract
BACKGROUND The reciprocal relationship between aging and alterations in the gut microbiota is a subject of ongoing research. While the role of bacteria in the gut microbiome is well-documented, specific changes in the composition of methanogens during extreme aging and the impact of high methane production in general on health remain unclear. This study was designed to explore the association of predominant methanogenic archaea within the human gut and aging. METHODS Shotgun metagenomic data from the stool samples of young adults (n = 127, Age: 19-59 y), older adults (n = 86, Age: 60-99 y), and centenarians (n = 34, age: 100-109 years) were analyzed. RESULTS Our findings reveal a compelling link between age and the prevalence of high methanogen phenotype, while overall archaeal diversity diminishes. Surprisingly, the archaeal composition of methanogens in the microbiome of centenarians appears more akin to that of younger adults, showing an increase in Methanobrevibacter smithii, rather than Candidatus Methanobrevibacter intestini. Remarkably, Ca. M. intestini emerged as a central player in the stability of the archaea-bacteria network in adults, paving the way for M. smithii in older adults and centenarians. Notably, centenarians exhibit a highly complex and stable network of these two methanogens with other bacteria. The mutual exclusion between Lachnospiraceae and these methanogens throughout all age groups suggests that these archaeal communities may compensate for the age-related drop in Lachnospiraceae by co-occurring with Oscillospiraceae. CONCLUSIONS This study underscores the dynamics of archaeal microbiome in human physiology and aging. It highlights age-related shifts in methanogen composition, emphasizing the significance of both M. smithii and Ca. M. intestini and their partnership with butyrate-producing bacteria for potential enhanced health.
Collapse
Affiliation(s)
- Rokhsareh Mohammadzadeh
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, Graz, 8010, Austria
| | - Alexander Mahnert
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, Graz, 8010, Austria
| | - Tejus Shinde
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, Graz, 8010, Austria
| | - Christina Kumpitsch
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, Graz, 8010, Austria
| | - Viktoria Weinberger
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, Graz, 8010, Austria
| | - Helena Schmidt
- Division of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Christine Moissl-Eichinger
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, Graz, 8010, Austria.
- BioTechMed, Graz, 8010, Austria.
| |
Collapse
|
15
|
Du X, Pian H, Zhao D, Zhang Y, Wu X, He J, Chen L, Liu F, Yu D. Enhancing gut-ovary health in aged laying hens: the impact of dietary betaine supplementation. Poult Sci 2025; 104:104894. [PMID: 40020408 PMCID: PMC11910711 DOI: 10.1016/j.psj.2025.104894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 03/03/2025] Open
Abstract
The gut-ovary axis involves a complex interplay of various physiological and molecular mechanisms, which significantly impact poultry production and health. This study investigated the effects of betaine (Bet) on the gut-ovary axis of laying hens in aged laying hens. A total of 108 Hy-Line Brown hens, aged 500 days, were randomly divided into three groups (n = 36 per group) and fed diets containing 0, 1000, and 3000 mg/kg of Bet (designated as CON, l-Bet, and H-Bet, respectively) over a 42-day trial. The results indicated that dietary supplementation with Bet improved laying performance. Specifically, H-Bet Supplementation increased villus height (VH) and villus height/crypt depth ratio (VH/CD), and up-regulated the expression of Claudin-1 in the jejunal and ileal mucosa. Additionally, H-Bet enhanced the richness of Bacteroidetes and reduced Firmicutes/Bacterodietes ratio. LEfSe analysis revealed significant enrichment Eubacteriaceae, Merdibacter, Anaerorhabdus_furcosa_group, Syntrophococcus, and Clostridium_innocuum_group in Bet group. Transcriptome sequencing of small yellow follicles (SYFs) showed significant up-regulation of ATP6 and down-regulation of EGR1. KEGG enrichment analysis indicated that H-Bet influenced oxidative phosphorylation, peroxisome, and other pathways, with GESA was primarily enriched in oxidative phosphorylation, and MAPK signaling pathway. Furthermore, H-Bet supplementation increased SOD, CAT, Nrf2, NQO-1, and HO-1 expression in the jejunum, while only HO-1 expression was up-regulated in the ileum. In the ovary, H-Bet differentially affected GPX, and CAT expression. These results demonstrate that dietary supplementation with Bet improves intestinal and ovarian health in aged laying hens, likely due to enhanced antioxidant capacity and improved intestinal morphology.
Collapse
Affiliation(s)
- Xubin Du
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China; Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Biochemistry & Bioengineering Laboratory, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Huifang Pian
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Dong Zhao
- School of Animal Medical, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu, 225300, PR China
| | - Yuchen Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Xinyue Wu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Jiawen He
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Li Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Fei Liu
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Biochemistry & Bioengineering Laboratory, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Debing Yu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| |
Collapse
|
16
|
Zhang L, Wei J, Liu X, Li D, Pang X, Chen F, Cao H, Lei P. Gut microbiota-astrocyte axis: new insights into age-related cognitive decline. Neural Regen Res 2025; 20:990-1008. [PMID: 38989933 PMCID: PMC11438350 DOI: 10.4103/nrr.nrr-d-23-01776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/04/2024] [Indexed: 07/12/2024] Open
Abstract
With the rapidly aging human population, age-related cognitive decline and dementia are becoming increasingly prevalent worldwide. Aging is considered the main risk factor for cognitive decline and acts through alterations in the composition of the gut microbiota, microbial metabolites, and the functions of astrocytes. The microbiota-gut-brain axis has been the focus of multiple studies and is closely associated with cognitive function. This article provides a comprehensive review of the specific changes that occur in the composition of the gut microbiota and microbial metabolites in older individuals and discusses how the aging of astrocytes and reactive astrocytosis are closely related to age-related cognitive decline and neurodegenerative diseases. This article also summarizes the gut microbiota components that affect astrocyte function, mainly through the vagus nerve, immune responses, circadian rhythms, and microbial metabolites. Finally, this article summarizes the mechanism by which the gut microbiota-astrocyte axis plays a role in Alzheimer's and Parkinson's diseases. Our findings have revealed the critical role of the microbiota-astrocyte axis in age-related cognitive decline, aiding in a deeper understanding of potential gut microbiome-based adjuvant therapy strategies for this condition.
Collapse
Affiliation(s)
- Lan Zhang
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Jingge Wei
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xilei Liu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Dai Li
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaoqi Pang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Fanglian Chen
- Tianjin Neurological Institution, Tianjin Medical University General Hospital, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Ping Lei
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
17
|
Ramos C, Magistro D, Walton GE, Whitham A, Camp N, Poveda C, Gibson GR, Hough J, Kinnear W, Hunter K. Assessing the gut microbiota composition in older adults: connections to physical activity and healthy ageing. GeroScience 2025:10.1007/s11357-025-01605-w. [PMID: 40095191 DOI: 10.1007/s11357-025-01605-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 03/05/2025] [Indexed: 03/19/2025] Open
Abstract
The composition and functionality of the gut microbiota (GM) changes throughout the life course. As we move into older age, it starts to shift towards a less healthy one, which may lead to an imbalance in the GM community. Strategies that can reverse age-related dysbiosis are an important part of healthy aging. Little is known about the GM composition of older adults with different physical activity (PA) levels and whether it might contribute to healthy ageing. The aim of this study was to compare the GM composition of older adults with different PA levels and assess if it is associated with healthy ageing. 101 participants aged between 65-85 years undertook anthropometric measures, a 6-min walking test, wore an accelerometer for 7 days and provided a faecal sample. Faecal GM composition was analysed using 16S rRNA sequencing. We found that those who fulfilled the WHO/UK PA recommendations had higher relative abundance of several health-related bacteria such as Lactobacillus, F. prausnitzii and Roseburia intestinalis and lower abundance of disease-associated bacteria such as D.piger or Enterobacterales when compared to those who did not reach PA recommendations. These findings suggest that PA might improve the GM composition and has the potential to, at least partially, revert age-associated dysbiosis and promote healthy ageing.
Collapse
Affiliation(s)
- Catarina Ramos
- Department of Sport Science, Sport, Health and Performance Enhancement (SHAPE) Research Centre, Nottingham Trent University, Nottingham, UK.
| | - Daniele Magistro
- Department of Sport Science, Sport, Health and Performance Enhancement (SHAPE) Research Centre, Nottingham Trent University, Nottingham, UK
| | - Gemma E Walton
- Department of Food and Nutritional Sciences, The University of Reading, Whiteknights, Reading, UK
| | - Anya Whitham
- Department of Sport Science, Sport, Health and Performance Enhancement (SHAPE) Research Centre, Nottingham Trent University, Nottingham, UK
| | - Nicola Camp
- Department of Sport Science, Sport, Health and Performance Enhancement (SHAPE) Research Centre, Nottingham Trent University, Nottingham, UK
| | - Carlos Poveda
- Department of Food and Nutritional Sciences, The University of Reading, Whiteknights, Reading, UK
| | - Glenn R Gibson
- Department of Food and Nutritional Sciences, The University of Reading, Whiteknights, Reading, UK
| | - John Hough
- Department of Sport Science, Sport, Health and Performance Enhancement (SHAPE) Research Centre, Nottingham Trent University, Nottingham, UK
| | - Will Kinnear
- Department of Sport Science, Sport, Health and Performance Enhancement (SHAPE) Research Centre, Nottingham Trent University, Nottingham, UK
| | - Kirsty Hunter
- Department of Sport Science, Sport, Health and Performance Enhancement (SHAPE) Research Centre, Nottingham Trent University, Nottingham, UK
- Reynolds Contamination Control, Lincoln, UK
| |
Collapse
|
18
|
Bonkhoff AK, Coughlan G, Perosa V, Alhadid K, Schirmer MD, Regenhardt RW, van Veluw S, Buckley R, Fox MD, Rost NS. Sex differences in age-associated neurological diseases-A roadmap for reliable and high-yield research. SCIENCE ADVANCES 2025; 11:eadt9243. [PMID: 40043111 PMCID: PMC11881909 DOI: 10.1126/sciadv.adt9243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/06/2025] [Indexed: 03/09/2025]
Abstract
Once taken into consideration, sex differences in neurological diseases emerge in abundance: (i) Stroke severity is significantly higher in females than in males, (ii) Alzheimer's disease (AD) pathology is more pronounced in females, and (iii) conspicuous links with hormonal cycles led to female-specific diagnoses, such as catamenial migraines and epilepsy. While these differences receive increasing attention in isolation, they likely link to similar processes in the brain. Hence, this review aims to present an overview of the influences of sex chromosomes, hormones, and aging on male and female brains across health and disease, with a particular focus on AD and stroke. The focus here on advancements across several fields holds promise to fuel future research and to lead to an enriched understanding of the brain and more effective personalized neurologic care for all.
Collapse
Affiliation(s)
- Anna K. Bonkhoff
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Gillian Coughlan
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Valentina Perosa
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Kenda Alhadid
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Markus D. Schirmer
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Robert W. Regenhardt
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Susanne van Veluw
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Rachel Buckley
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Michael D. Fox
- Department of Neurology, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA, USA
| | - Natalia S. Rost
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| |
Collapse
|
19
|
Wang S, Zhang R, Guo P, Yang H, Liu Y, Zhu H. Association of prebiotic/probiotic intake with MASLD: evidence from NHANES and randomized controlled trials in the context of prediction, prevention, and a personalized medicine framework. EPMA J 2025; 16:183-197. [PMID: 39991098 PMCID: PMC11842653 DOI: 10.1007/s13167-025-00398-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 01/13/2025] [Indexed: 02/25/2025]
Abstract
Objective Metabolic-associated fatty liver disease (MASLD) is a growing global health concern. From the standpoint of preventive and personalized medicine, understanding the early determinants and modifiable risk factors is essential for targeted prevention and personalized treatment strategies. This study aimed to evaluate the specific association between probiotics/prebiotics and the occurrence of MASLD, contributing to the development of innovative preventive measures and personalized therapeutic approaches. Methods Data were obtained from the National Health and Nutrition Examination Survey (NHANES) from 2001 to 2018. The study employed logistic regression analysis to examine the relation between MASLD and probiotics/prebiotics. The efficacy of various MASLD predictive models was assessed using receiver operating characteristic (ROC) curves. A meta-analysis was conducted by searching databases up to 4 May 2024. The analysis included randomized controlled trials of liver function in patients with MASLD or nonalcoholic steatohepatitis treated with probiotics, prebiotics, or yogurt for a minimum of 6 months. Results A total of 5014 adults from NHANES were included in this study, with a weighted prevalence of MASLD observed at 24.47%. MASLD adults who consumed both probiotics and prebiotics exhibited a reduced risk of MASLD (OR = 0.71, 95% CI: 0.53 to 0.94). The use of probiotics/prebiotics can enhance the simplicity and practicality of the model. Model 1, adjusted for sex, BMI, race, and HEI-2015, achieved an area under the curve (AUC) of 0.8544, while Model 2, adjusted for sex, BMI, race, and prebiotics/probiotics use, showed a similar AUC of 0.8537. The comparison between the two models revealed no statistically significant difference (0.8544 vs. 0.8537; 95% CI: - 0.0010 to 0.0025; Z = 0.8332; p = 0.4047). Subgroup analysis of the NHANES data revealed that individuals aged 40 and older benefit from consuming probiotics or prebiotics. Furthermore, the meta-analysis demonstrated that probiotic or prebiotic interventions resulted in significant improvements in biochemical markers, including alanine aminotransferase, aspartate aminotransferase, low-density lipoprotein cholesterol, and triglycerides. Conclusions The consumption of probiotics/prebiotics has been linked to a reduced risk of developing MASLD in adults. Integrating probiotics/prebiotics into early intervention and personalized treatment plans may facilitate targeted prevention and management of MASLD, promoting a more individualized approach to disease prevention and care. Supplementary information The online version contains supplementary material available at 10.1007/s13167-025-00398-4.
Collapse
Affiliation(s)
- Senlin Wang
- The Center of Obesity and Metabolic Diseases, Department of General Surgery, Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, No. 19 Yangshi Road, Chengdu, Sichuan 610031 China
- College of Medicine, Southwest Jiaotong University, Chengdu, China
- The Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People’s Hospital of Chengdu, College of Medicine, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan China
| | - Ruimin Zhang
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Peisen Guo
- The Center of Obesity and Metabolic Diseases, Department of General Surgery, Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, No. 19 Yangshi Road, Chengdu, Sichuan 610031 China
| | - Huawu Yang
- The Center of Obesity and Metabolic Diseases, Department of General Surgery, Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, No. 19 Yangshi Road, Chengdu, Sichuan 610031 China
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Yanjun Liu
- The Center of Obesity and Metabolic Diseases, Department of General Surgery, Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, No. 19 Yangshi Road, Chengdu, Sichuan 610031 China
- College of Medicine, Southwest Jiaotong University, Chengdu, China
- The Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People’s Hospital of Chengdu, College of Medicine, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan China
| | - Hongmei Zhu
- The Center of Obesity and Metabolic Diseases, Department of General Surgery, Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, No. 19 Yangshi Road, Chengdu, Sichuan 610031 China
- Medical Research Center, The Third People’s Hospital of Chengdu, Chengdu, China
| |
Collapse
|
20
|
Göpel S, Guther J, Gladstone BP, Conzelmann N, Bunk S, Terzer T, Verschuuren TD, Martak D, Rivera ES, Autenrieth IB, Peter S, Kluytmans JAJW, Hocquet D, Rodriguez-Baño J, Tacconelli E. Drivers of extended-spectrum β-lactamase (ESBL)- producing Enterobacterales colonization among residents of long-term care facilities: a European multicentre prospective cohort study. J Hosp Infect 2025; 157:67-74. [PMID: 39788455 DOI: 10.1016/j.jhin.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/25/2024] [Accepted: 12/17/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND Extended-spectrum β-lactamase (ESBL)-producing Enterobacterales (ESBL-PE) are highly prevalent in long-term care (LTCF) settings. In order to estimate the acquisition rate of ESBL-producing Escherichia coli and Klebsiella pneumoniae in LTCF settings, and identify clinical and environmental risk factors, a multi-centre, prospective cohort study was conducted in six LTCFs in Germany, France, Spain and the Netherlands. METHODS Longitudinal screening of residents was performed over 32 weeks, collecting epidemiological and clinical data and environmental samples. The primary outcome was the rate of new acquisition of ESBL-PE among LTCF residents. Molecular epidemiology was studied using whole genome sequencing, and risk factor analysis was undertaken using logistic and Poisson regression models. RESULTS In total, 299 residents provided 1958 samples during follow-up. The prevalence of ESBL-PE colonization at baseline was 16.4%, and the incidence of acquisition was 0.79 per 1000 resident-days, both with high variability between LTCFs. Age ≥80 years, vascular disease and antibiotic consumption within the preceding year were risk factors for baseline colonization. Lack of hand sanitizers and a low nurse:resident ratio were associated with colonization. The presence of medical devices was associated with risk of acquisition. Vascular disease, hemiplegia, antibiotic consumption, and non-availability of private bathrooms were associated with carriage of multiple sequence types (STs). The prevalence of ESBL-PE among environmental samples was 2%, exclusively in LTCFs with high prevalence among residents. Genetic analysis showed a high prevalence of ST10 E. coli and ST405 K. pneumoniae at two study sites. CONCLUSION Infection prevention interventions, including availability of hand sanitizers, the number of nurses per resident, and antimicrobial stewardship, constitute important measures to control ESBL-PE in LTCFs. Genome-based surveillance could guide targeted interventions.
Collapse
Affiliation(s)
- S Göpel
- Infectious Diseases, Department of Internal Medicine I, University Hospital Tübingen, Tübingen, Germany; DZIF-Clinical Research Unit, Infectious Diseases, Department of Internal Medicine I, University Hospital Tübingen, Tübingen, Germany.
| | - J Guther
- Institute of Medical Microbiology and Hygiene, University Hospital Tübingen, Tübingen, Germany
| | - B P Gladstone
- Infectious Diseases, Department of Internal Medicine I, University Hospital Tübingen, Tübingen, Germany; DZIF-Clinical Research Unit, Infectious Diseases, Department of Internal Medicine I, University Hospital Tübingen, Tübingen, Germany
| | - N Conzelmann
- Infectious Diseases, Department of Internal Medicine I, University Hospital Tübingen, Tübingen, Germany
| | - S Bunk
- Infectious Diseases, Department of Internal Medicine I, University Hospital Tübingen, Tübingen, Germany
| | - T Terzer
- Deutsches Krebsforschungszentrum, Division of Biostatistics, Heidelberg, Germany
| | - T D Verschuuren
- Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - D Martak
- Infection Control Unit, University Hospital of Besançon, Besançon, France
| | - E Salamanca Rivera
- Infectious Diseases and Microbiology Division, Virgen Macarena University Hospital, Seville, Spain; Department of Medicine, University of Seville, Seville, Spain; Biomedicine Institute of Seville/CSIC, Seville, Spain; CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | | | - S Peter
- Institute of Medical Microbiology and Hygiene, University Hospital Tübingen, Tübingen, Germany
| | - J A J W Kluytmans
- Department of Medical Microbiology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - D Hocquet
- Infection Control Unit, University Hospital of Besançon, Besançon, France
| | - J Rodriguez-Baño
- Infectious Diseases and Microbiology Division, Virgen Macarena University Hospital, Seville, Spain; Department of Medicine, University of Seville, Seville, Spain; Biomedicine Institute of Seville/CSIC, Seville, Spain; CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - E Tacconelli
- Infectious Diseases, Department of Internal Medicine I, University Hospital Tübingen, Tübingen, Germany; Infectious Diseases, Department of Diagnostic and Public Health, University Hospital Verona, Verona, Italy; DZIF-Clinical Research Unit, Infectious Diseases, Department of Internal Medicine I, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
21
|
Junyi L, Yueyang W, Bin L, Xiaohong D, Wenhui C, Ning Z, Hong Z. Gut Microbiota Mediates Neuroinflammation in Alzheimer's Disease: Unraveling Key Factors and Mechanistic Insights. Mol Neurobiol 2025; 62:3746-3763. [PMID: 39317889 DOI: 10.1007/s12035-024-04513-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
The gut microbiota, the complex community of microorganisms that inhabit the gastrointestinal tract, has emerged as a key player in the pathogenesis of neurodegenerative disorders, including Alzheimer's disease (AD). AD is characterized by progressive cognitive decline and neuronal loss, associated with the accumulation of amyloid-β plaques, neurofibrillary tangles, and neuroinflammation in the brain. Increasing evidence suggests that alterations in the composition and function of the gut microbiota, known as dysbiosis, may contribute to the development and progression of AD by modulating neuroinflammation, a chronic and maladaptive immune response in the central nervous system. This review aims to comprehensively analyze the current role of the gut microbiota in regulating neuroinflammation and glial cell function in AD. Its objective is to deepen our understanding of the pathogenesis of AD and to discuss the potential advantages and challenges of using gut microbiota modulation as a novel approach for the diagnosis, treatment, and prevention of AD.
Collapse
Affiliation(s)
- Liang Junyi
- Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, Heilongjiang Province, China
| | - Wang Yueyang
- Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, Heilongjiang Province, China
| | - Liu Bin
- Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, Heilongjiang Province, China.
| | - Dong Xiaohong
- Jiamusi College, Heilongjiang University of Traditional Chinese Medicine, Jiamusi, Heilongjiang Province, China
| | - Cai Wenhui
- Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, Heilongjiang Province, China
| | - Zhang Ning
- Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, Heilongjiang Province, China
| | - Zhang Hong
- Heilongjiang Jiamusi Central Hospital, Jiamusi, Heilongjiang Province, China
| |
Collapse
|
22
|
Ribeiro G, Schellekens H, Cuesta-Marti C, Maneschy I, Ismael S, Cuevas-Sierra A, Martínez JA, Silvestre MP, Marques C, Moreira-Rosário A, Faria A, Moreno LA, Calhau C. A menu for microbes: unraveling appetite regulation and weight dynamics through the microbiota-brain connection across the lifespan. Am J Physiol Gastrointest Liver Physiol 2025; 328:G206-G228. [PMID: 39811913 DOI: 10.1152/ajpgi.00227.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/14/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025]
Abstract
Appetite, as the internal drive for food intake, is often dysregulated in a broad spectrum of conditions associated with over- and under-nutrition across the lifespan. Appetite regulation is a complex, integrative process comprising psychological and behavioral events, peripheral and metabolic inputs, and central neurotransmitter and metabolic interactions. The microbiota-gut-brain axis has emerged as a critical mediator of multiple physiological processes, including energy metabolism, brain function, and behavior. Therefore, the role of the microbiota-gut-brain axis in appetite and obesity is receiving increased attention. Omics approaches such as genomics, epigenomics, transcriptomics, proteomics, and metabolomics in appetite and weight regulation offer new opportunities for featuring obesity phenotypes. Furthermore, gut-microbiota-targeted approaches such as pre-, pro-, post-, and synbiotic, personalized nutrition, and fecal microbiota transplantation are novel avenues for precision treatments. The aim of this narrative review is 1) to provide an overview of the role of the microbiota-gut-brain axis in appetite regulation across the lifespan and 2) to discuss the potential of omics and gut microbiota-targeted approaches to deepen understanding of appetite regulation and obesity.
Collapse
Affiliation(s)
- Gabriela Ribeiro
- Metabolism and Nutrition Department, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
- CHRC - Center for Health Technology and Services Research, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Harriët Schellekens
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Cristina Cuesta-Marti
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Ivie Maneschy
- Growth, Exercise, Nutrition and Development Research Group, Instituto Agroalimentario de Aragón, University of Zaragoza, Zaragoza, Spain
- Instituto de Investigación Sanitaria de Aragón, University of Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Shámila Ismael
- Metabolism and Nutrition Department, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
- CHRC - Center for Health Technology and Services Research, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
- CINTESIS - Comprehensive Health Research Centre, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Amanda Cuevas-Sierra
- Metabolism and Nutrition Department, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
- Precision Nutrition and Cardiometabolic Health, IMDEA-Food Institute (Madrid Institute for Advanced Studies), Campus of International Excellence (CEI) UAM+CSIC, Spanish National Research Council, Madrid, Spain
| | - J Alfredo Martínez
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Precision Nutrition and Cardiometabolic Health, IMDEA-Food Institute (Madrid Institute for Advanced Studies), Campus of International Excellence (CEI) UAM+CSIC, Spanish National Research Council, Madrid, Spain
| | - Marta P Silvestre
- Metabolism and Nutrition Department, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
- CHRC - Center for Health Technology and Services Research, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Cláudia Marques
- Metabolism and Nutrition Department, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
- CHRC - Center for Health Technology and Services Research, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - André Moreira-Rosário
- Metabolism and Nutrition Department, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
- CINTESIS - Comprehensive Health Research Centre, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Ana Faria
- Metabolism and Nutrition Department, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
- CHRC - Center for Health Technology and Services Research, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
- CINTESIS - Comprehensive Health Research Centre, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Luis A Moreno
- Growth, Exercise, Nutrition and Development Research Group, Instituto Agroalimentario de Aragón, University of Zaragoza, Zaragoza, Spain
- Instituto de Investigación Sanitaria de Aragón, University of Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Conceição Calhau
- Metabolism and Nutrition Department, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
- CHRC - Center for Health Technology and Services Research, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| |
Collapse
|
23
|
Ioannou A, Berkhout MD, Geerlings SY, Belzer C. Akkermansia muciniphila: biology, microbial ecology, host interactions and therapeutic potential. Nat Rev Microbiol 2025; 23:162-177. [PMID: 39406893 DOI: 10.1038/s41579-024-01106-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2024] [Indexed: 01/03/2025]
Abstract
Akkermansia muciniphila is a gut bacterium that colonizes the gut mucosa, has a role in maintaining gut health and shows promise for potential therapeutic applications. The discovery of A. muciniphila as an important member of our gut microbiome, occupying an extraordinary niche in the human gut, has led to new hypotheses on gut health, beneficial microorganisms and host-microbiota interactions. This microorganism has established a unique position in human microbiome research, similar to its role in the gut ecosystem. Its unique traits in using mucin sugars and mechanisms of action that can modify host health have made A. muciniphila a subject of enormous attention from multiple research fields. A. muciniphila is becoming a model organism studied for its ability to modulate human health and gut microbiome structure, leading to commercial products, a genetic model and possible probiotic formulations. This Review provides an overview of A. muciniphila and Akkermansia genus phylogeny, ecophysiology and diversity. Furthermore, the Review discusses perspectives on ecology, strategies for harnessing beneficial effects of A. muciniphila for human mucosal metabolic and gut health, and its potential as a biomarker for diagnostics and prognostics.
Collapse
Affiliation(s)
- Athanasia Ioannou
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Maryse D Berkhout
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Sharon Y Geerlings
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands.
| |
Collapse
|
24
|
Peesh P, Blasco-Conesa MP, El Hamamy A, Khan R, Guzman GU, Honarpisheh P, Mohan EC, Goodman GW, Nguyen JN, Banerjee A, West BE, Ko KA, Korf JM, Tan C, Fan H, Colpo GD, Ahnstedt H, Couture L, Roh S, Kofler JK, Moruno-Manchon JF, Maniskas ME, Aronowski J, Ritzel RM, Lee J, Li J, Bryan RM, Chauhan A, Venna VR, McCullough LD, Ganesh BP. Benefits of equilibrium between microbiota- and host-derived ligands of the aryl hydrocarbon receptor after stroke in aged male mice. Nat Commun 2025; 16:1767. [PMID: 39971928 PMCID: PMC11839985 DOI: 10.1038/s41467-025-57014-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 02/04/2025] [Indexed: 02/21/2025] Open
Abstract
Recent studies have highlighted the crucial role of microglia (MG) and their interactions with the gut microbiome in post-stroke neuroinflammation. The activation of immunoregulatory pathways, including the aryl hydrocarbon receptor (AHR) pathway, is influenced by a dynamic balance of ligands derived from both the host and microbiota. This study aimed to investigate the association between stroke-induced dysbiosis and the resultant imbalance in AHR ligand sources (loss of microbiota-derived [indole-based] and increase of host-derived [kynurenine-based]) after stroke. Microbiota-derived AHR ligands decreased in human plasma and remained low for days following an ischemic stroke highlighting the translational significance. Transient-middle-cerebral-artery-occlusion was performed in aged wild-type and germ-free male mice. MG-AHR expression and activity increased in both in vivo and ex vivo stroke models. Germ-free mice showed altered neuroinflammation and antigen presentation while aged mice showed reduced infarct volume and neurological deficits following treatment with microbiota-derived AHR ligands after stroke. Restoring a balanced pool of host- and microbiota-derived AHR ligands may be beneficial after stroke and may represent a therapeutic target.
Collapse
Affiliation(s)
- Pedram Peesh
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX, USA
- The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Neurosurgery, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Maria P Blasco-Conesa
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Ahmad El Hamamy
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Romeesa Khan
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Gary U Guzman
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Parisa Honarpisheh
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Eric C Mohan
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Grant W Goodman
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Justin N Nguyen
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Anik Banerjee
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX, USA
- The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Bryce E West
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Kyung Ae Ko
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Janelle M Korf
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX, USA
- The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Chunfeng Tan
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Huihui Fan
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Gabriela D Colpo
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Hilda Ahnstedt
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Lucy Couture
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Solji Roh
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Julia K Kofler
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jose F Moruno-Manchon
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Michael E Maniskas
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Jaroslaw Aronowski
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Rodney M Ritzel
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Juneyoung Lee
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Jun Li
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Robert M Bryan
- Baylor College of Medicine, Department of Anesthesiology, Houston, TX, USA
| | - Anjali Chauhan
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Venugopal Reddy Venna
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Louise D McCullough
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX, USA.
| | - Bhanu Priya Ganesh
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX, USA.
- The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
25
|
Arakelyan NA, Kupriyanova DA, Vasilevska J, Rogaev EI. Sexual dimorphism in immunity and longevity among the oldest old. Front Immunol 2025; 16:1525948. [PMID: 40034689 PMCID: PMC11872714 DOI: 10.3389/fimmu.2025.1525948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 01/28/2025] [Indexed: 03/05/2025] Open
Abstract
Human longevity is a sex-biased process in which sex chromosomes and sex-specific immunity may play a crucial role in the health and lifespan disparities between men and women. Generally, women have a higher life expectancy than men, exhibiting lower infection rates for a broad range of pathogens, which results in a higher prevalence of female centenarians compared to males. Investigation of the immunological changes that occur during the process of healthy aging, while taking into account the differences between sexes, can significantly enhance our understanding of the mechanisms that underlie longevity. In this review, we aim to summarize the current knowledge on sexual dimorphism in the human immune system and gut microbiome during aging, with a particular focus on centenarians, based exclusively on human data.
Collapse
Affiliation(s)
- Nelli A. Arakelyan
- Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, Russia
| | - Daria A. Kupriyanova
- Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, Russia
| | - Jelena Vasilevska
- Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, Russia
| | - Evgeny I. Rogaev
- Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, Russia
- Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
26
|
Schmieder H, Leischner C, Piotrowsky A, Marongiu L, Venturelli S, Burkard M. Exploring the link between fat-soluble vitamins and aging-associated immune system status: a literature review. Immun Ageing 2025; 22:8. [PMID: 39962579 PMCID: PMC11831837 DOI: 10.1186/s12979-025-00501-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/31/2025] [Indexed: 02/21/2025]
Abstract
The importance of vitamin D for a well-functioning immune system is becoming increasingly evident. Nevertheless, the other fat-soluble vitamins A, E and K also seem to play a central role regarding the adequate function of immune cells and to counteract excessive immune reactions and inflammatory processes. However, recognizing hidden hunger, particularly micronutrient deficiencies in vulnerable groups like the elderly, is crucial because older adults often lack sufficient micronutrients for various reasons. This review summarizes the latest findings on the immune modulating functions of fat-soluble vitamins in a physiological and pathophysiological context, provides a graphical comparison of the Recommended Daily Allowances between Deutschland, Austria, Confoederatio Helvetica (D-A-CH; eng. GSA, Germany, Switzerland, Austria), Deutsche Gesellschaft für Ernährung (DGE; eng. German Nutrition Society) and National Institutes of Health (NIH) across all age groups and, in particular, addresses the question regarding the benefits of supplementation of the respective micronutrients for the aging population of industrialized nations to strengthen the immune system. The following review highlights the importance of fat-soluble vitamins A, D, E and K which play critical roles in maintaining immune system function and, in some cases, in preventing excessive immune activation. Therefore, a better understanding of the relevance of adequate blood levels and consequently potential supplementation strategies may contribute to the prevention and management of infectious diseases as well as better overall health of the elderly.
Collapse
Affiliation(s)
- Hendrik Schmieder
- Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, Stuttgart, 70599, Germany
| | - Christian Leischner
- Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, Stuttgart, 70599, Germany
| | - Alban Piotrowsky
- Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, Stuttgart, 70599, Germany
| | - Luigi Marongiu
- Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, Stuttgart, 70599, Germany
| | - Sascha Venturelli
- Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, Stuttgart, 70599, Germany.
- Department of Vegetative and Clinical Physiology, Institute of Physiology, University of Tuebingen, Wilhelmstraße 56, Tuebingen, 72074, Germany.
| | - Markus Burkard
- Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, Stuttgart, 70599, Germany.
| |
Collapse
|
27
|
Xiao Y, Feng Y, Zhao J, Chen W, Lu W. Achieving healthy aging through gut microbiota-directed dietary intervention: Focusing on microbial biomarkers and host mechanisms. J Adv Res 2025; 68:179-200. [PMID: 38462039 PMCID: PMC11785574 DOI: 10.1016/j.jare.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/23/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND Population aging has become a primary global public health issue, and the prevention of age-associated diseases and prolonging healthy life expectancies are of particular importance. Gut microbiota has emerged as a novel target in various host physiological disorders including aging. Comprehensive understanding on changes of gut microbiota during aging, in particular gut microbiota characteristics of centenarians, can provide us possibility to achieving healthy aging or intervene pathological aging through gut microbiota-directed strategies. AIM OF REVIEW This review aims to summarize the characteristics of the gut microbiota associated with aging, explore potential biomarkers of aging and address microbiota-associated mechanisms of host aging focusing on intestinal barrier and immune status. By summarizing the existing effective dietary strategies in aging interventions, the probability of developing a diet targeting the gut microbiota in future is provided. KEY SCIENTIFIC CONCEPTS OF REVIEW This review is focused on three key notions: Firstly, gut microbiota has become a new target for regulating health status and lifespan, and its changes are closely related to age. Thus, we summarized aging-associated gut microbiota features at the levels of key genus/species and important metabolites through comparing the microbiota differences among centenarians, elderly people and younger people. Secondly, exploring microbiota biomarkers related to aging and discussing future possibility using dietary regime/components targeted to aging-related microbiota biomarkers promote human healthy lifespan. Thirdly, dietary intervention can effectively improve the imbalance of gut microbiota related to aging, such as probiotics, prebiotics, and postbiotics, but their effects vary among.
Collapse
Affiliation(s)
- Yue Xiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China.
| | - Yingxuan Feng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
28
|
Villaume MT, Savona MR. Pathogenesis and inflammaging in myelodysplastic syndrome. Haematologica 2025; 110:283-299. [PMID: 39445405 PMCID: PMC11788632 DOI: 10.3324/haematol.2023.284944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/09/2024] [Indexed: 10/25/2024] Open
Abstract
Myelodysplastic syndromes (MDS) are a genetically complex and phenotypically diverse set of clonal hematologic neoplasms that occur with increasing frequency with age. MDS has long been associated with systemic inflammatory conditions and disordered inflammatory signaling is implicated in MDS pathogenesis. A rise in sterile inflammation occurs with ageing and the term "inflammaging" has been coined by to describe this phenomenon. This distinct form of sterile inflammation has an unknown role in in the pathogenesis of myeloid malignancies despite shared correlations with age and ageing-related diseases. More recent is a discovery that many cases of MDS arise from clonal hematopoiesis of indeterminate potential (CHIP), an age associated, asymptomatic pre-disease state. The interrelationship between ageing, inflammation and clonal CHIP is complex and likely bidirectional with causality between inflammaging and CHIP potentially instrumental to understanding MDS pathogenesis. Here we review the concept of inflammaging and MDS pathogenesis and explore their causal relationship by introducing a novel framing mechanism of "pre-clonal inflammaging" and "clonal inflammaging". We aim to harmonize research on ageing, inflammation and MDS pathogenesis by contextualizing the current understanding of inflammaging and the ageing hematopoietic system with what is known about the etiology of MDS via its progression from CHIP.
Collapse
Affiliation(s)
- Matthew T Villaume
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Michael R Savona
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232; Vanderbilt-Ingram Cancer Center, Program in Cancer Biology, and Center for Immunobiology Nashville, TN 37232.
| |
Collapse
|
29
|
Kaur S, Patel BCK, Collen A, Malhotra R. The microbiome and the eye: a new era in ophthalmology. Eye (Lond) 2025; 39:436-448. [PMID: 39702789 PMCID: PMC11794629 DOI: 10.1038/s41433-024-03517-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/10/2024] [Accepted: 11/26/2024] [Indexed: 12/21/2024] Open
Abstract
The human microbiome has progressively been recognised for its role in various disease processes. In ophthalmology, complex interactions between the gut and distinct ocular microbiota within each structure and microenvironment of the eye has advanced our knowledge on the multi-directional relationships of these ecosystems. Increasingly, studies have shown that modulation of the microbiome can be achieved through faecal microbiota transplantation and synbiotics producing favourable outcomes for ophthalmic diseases. As ophthalmologists, we are obliged to educate our patients on measures to cultivate a healthy gut microbiome through a range of holistic measures. Further integrative studies combining microbial metagenomics, metatranscriptomics and metabolomics are necessary to fully characterise the human microbiome and enable targeted therapeutic interventions.
Collapse
Affiliation(s)
- Simerdip Kaur
- Department of Ophthalmology, University Hospitals Sussex NHS Foundation Trust, Sussex Eye Hospital, Eastern Road, Brighton, BN2 5BF, UK.
- Corneoplastic Unit, Queen Victoria Hospital, East Grinstead, RH19 3DZ, UK.
| | - Bhupendra C K Patel
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, 84132, USA
| | - Alanna Collen
- Unaffiliated officially. Independent author, London, UK
| | - Raman Malhotra
- Corneoplastic Unit, Queen Victoria Hospital, East Grinstead, RH19 3DZ, UK
| |
Collapse
|
30
|
Putumbaka S, Schut GJ, Thorgersen MP, Poole FL, Shao N, Rodionov DA, Adams MWW. Tungsten is utilized for lactate consumption and SCFA production by a dominant human gut microbe Eubacterium limosum. Proc Natl Acad Sci U S A 2025; 122:e2411809121. [PMID: 39793044 PMCID: PMC11725836 DOI: 10.1073/pnas.2411809121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 11/08/2024] [Indexed: 01/12/2025] Open
Abstract
Eubacterium limosum is a dominant member of the human gut microbiome and produces short-chain fatty acids (SCFAs). These promote immune system function and inhibit inflammation, making this microbe important for human health. Lactate is a primary source of gut SCFAs but its utilization by E. limosum has not been explored. We show that E. limosum growing on lactate takes up added tungstate rather than molybdate and produces the SCFAs acetate and butyrate, but not propionate. The genes encoding an electron bifurcating, tungsten-containing oxidoreductase (WOR1) and a tungsten-containing formate dehydrogenase (FDH), along with an electron bifurcating lactate dehydrogenase (LCT), lactate permease, and enzymes of the propanediol pathway, are all up-regulated on lactate compared to growth on glucose. Lactate metabolism is controlled by a GntR-family repressor (LctR) and two global regulators, Rex and CcpA, where Rex in part controls W storage and tungstopyranopterin (Tuco) biosynthesis. Tuco-dependent riboswitches, along with CcpA, also control two iron transporters, consistent with the increased iron demand for many iron-containing enzymes, including WOR1 and FDH, involved in SCFA production. From intracellular aldehyde concentrations and the substrate specificity of WOR1, we propose that WOR1 is involved in detoxifying acetaldehyde produced during lactate degradation. Lactate to SCFA conversion by E. limosum is clearly highly tungstocentric and tungsten might be an overlooked micronutrient in the human microbiome and in overall human health.
Collapse
Affiliation(s)
- Saisuki Putumbaka
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA30602
| | - Gerrit J. Schut
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA30602
| | - Michael P. Thorgersen
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA30602
| | - Farris L. Poole
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA30602
| | - Nana Shao
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA30602
| | | | - Michael W. W. Adams
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA30602
| |
Collapse
|
31
|
Simbirtseva KY, O'Toole PW. Healthy and Unhealthy Aging and the Human Microbiome. Annu Rev Med 2025; 76:115-127. [PMID: 39531852 DOI: 10.1146/annurev-med-042423-042542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
An altered gut microbiome is a feature of many multifactorial diseases, and microbiome effects on host metabolism, immune function, and possibly neurological function are implicated. Increased biological age is accompanied by a change in the gut microbiome. However, age-related health loss does not occur uniformly across all subjects but rather depends on differential loss of gut commensals and gain of pathobionts. In this article, we summarize the known and possible effects of the gut microbiome on the hallmarks of aging and describe the most plausible mechanisms. Understanding and targeting these factors could lead to prolonging health span by rationally maintaining the gut microbiome.
Collapse
Affiliation(s)
- Kseniya Y Simbirtseva
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland;
| | - Paul W O'Toole
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland;
| |
Collapse
|
32
|
Sheets K, Baker JV. HIV and Inflamm-Aging: How Do We Reach the Summit of Healthy Aging? TOPICS IN ANTIVIRAL MEDICINE 2024; 32:589-596. [PMID: 39765238 PMCID: PMC11737810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
People with HIV (PWH) are living longer and experiencing a greater burden of morbidity from non-AIDS-defining conditions. Chronically treated HIV disease is associated with ongoing systemic inflammation that contributes to the development of chronic conditions (eg, cardiovascular disease) and geriatric syndromes (eg, frailty). Apart from HIV disease, a progressive increase in systemic inflammation is a characteristic feature of biologic aging, a process described as "inflammaging." Inflamm-aging is driven by persistent antigen stimulation and stress, leading to an immune profile characterized by elevated levels of blood inflammatory markers and cellular activation and senescence. Chronic HIV disease is hypothesized to accentuate the immune profile of inflamm-aging, in part through viral persistence in lymphatic tissues, permanent injury impairing immune recovery, the presence of copathogens, gut dysbiosis and microbial translocation, and chromosomal and genetic alterations associated with immune activation. Few strategies exist for safe and effective modulation of systemic inflammation among older PWH. The strongest current evidence supports aggressive management of modifiable risk factors such as lipids, blood pressure, and levels of physical activity. Future inflamm-aging research should be directed toward advancing the implementation of proven approaches, such as physical activity, as well as studying novel mechanisms of, and treatments for, inflamm-aging among PWH.
Collapse
Affiliation(s)
- Kerry Sheets
- Hennepin Healthcare, Minneapolis, Minnesota, and University of Minnesota, Minneapolis
| | - Jason V. Baker
- Hennepin Healthcare, Minneapolis, Minnesota, and University of Minnesota, Minneapolis
| |
Collapse
|
33
|
Khandayataray P, Murthy MK. Dietary interventions in mitigating the impact of environmental pollutants on Alzheimer's disease - A review. Neuroscience 2024; 563:148-166. [PMID: 39542342 DOI: 10.1016/j.neuroscience.2024.11.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/23/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
Numerous studies linking environmental pollutants to oxidative stress, inflammation, and neurotoxicity have assigned pollutants to several neurodegenerative disorders, including Alzheimer's disease (AD). Heavy metals, pesticides, air pollutants, and endocrine disruptor chemicals have been shown to play important roles in AD development, with some traditional functions in amyloid-β formation, tau kinase action, and neuronal degeneration. However, pharmacological management and supplementation have resulted in limited improvement. This raises the interesting possibility that activities usually considered preventive, including diet, exercise, or mental activity, might be more similar to treatment or therapy for AD. This review focuses on the effects of diet on the effects of environmental pollutants on AD. One of the primary issues addressed in this review is a group of specific diets, including the Mediterranean diet (MeDi), Dietary Approaches to Stop Hypertension (DASH), and Mediterranean-DASH intervention for Neurodegenerative Delay (MIND), which prevent exposure to these toxins. Such diets have been proven to decrease oxidative stress and inflammation, which are unfavorable for neuronal growth. Furthermore, they contribute to positive changes in the composition of the human gut microbiota and thus encourage interactions in the Gut-Brain Axis, reducing inflammation caused by pollutants. This review emphasizes a multi-professional approach with reference to nutritional activities that would lower the neurotoxic load in populations with a high level of exposure to pollutants. Future studies focusing on diet and environment association plans may help identify preventive measures aimed at enhancing current disease deceleration.
Collapse
Affiliation(s)
- Pratima Khandayataray
- Department of Biotechnology, Academy of Management and Information Technology, Utkal University, Bhubaneswar, Odisha 752057, India
| | - Meesala Krishna Murthy
- Department of Allied Health Sciences, Chitkara School of Health Sciences, Chitkara University, Rajpura, Punjab 140401, India.
| |
Collapse
|
34
|
Islam SMS, Singh S, Keshavarzian A, Abdel-Mohsen M. Intestinal Microbiota and Aging in People with HIV-What We Know and What We Don't. Curr HIV/AIDS Rep 2024; 22:9. [PMID: 39666149 PMCID: PMC11874070 DOI: 10.1007/s11904-024-00717-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2024] [Indexed: 12/13/2024]
Abstract
PURPOSE OF REVIEW People with HIV (PWH) experience premature aging and an elevated risk of age-related comorbidities, even with viral suppression through antiretroviral therapy (ART). We examine gastrointestinal disruptions, specifically impaired intestinal barrier integrity and microbial dysbiosis, as contributors to these comorbidities. RECENT FINDINGS HIV infection compromises the intestinal epithelial barrier, increasing permeability and microbial translocation, which trigger inflammation and cellular stress. ART does not fully restore gut barrier integrity, leading to persistent inflammation and cellular stress. Additionally, HIV-associated microbial dysbiosis favors pro-inflammatory bacteria, intensifying inflammation and tissue damage, which may contribute to premature aging in PWH. Understanding the interactions between intestinal microbiota, chronic inflammation, cellular stress, and aging is essential to developing therapies aimed at reducing inflammation and slowing age-related diseases in PWH. In this review, we discuss critical knowledge gaps and highlight the therapeutic potential of microbiota-targeted interventions to mitigate inflammation and delay age-associated pathologies in PWH.
Collapse
Affiliation(s)
| | - Shalini Singh
- Northwestern University, 300 E Superior St, Chicago, IL, 60611, USA
| | - Ali Keshavarzian
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, USA
- Departments of Internal Medicine, physiology Rush University Medical Center, Anatomy & Cell Biology, Chicago, IL, USA
| | | |
Collapse
|
35
|
Zhu F, Yin S, Wang Y, Zhong Y, Ji Q, Wu J. Effects of Probiotics on Neurodegenerative Disease-Related Symptoms and Systemic Inflammation: A Systematic Review. Int J Gen Med 2024; 17:5941-5958. [PMID: 39678681 PMCID: PMC11645901 DOI: 10.2147/ijgm.s499406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 12/05/2024] [Indexed: 12/17/2024] Open
Abstract
In recent years, probiotics, as a class of biologically active microorganisms, have increasingly attracted attention for their potential in treating neurodegenerative diseases (NDDs). To comprehensively assess the effects of probiotics on clinical symptoms and systemic inflammation regulation in various NDDs, this systematic review conducted a detailed search of the Cochrane Library, Embase, PubMed, and Web of Science databases, ultimately including 22 eligible randomized controlled trials (RCTs), with 4 RCTs for Alzheimer's Disease (AD), 10 RCTs for Parkinson's Disease (PD), 2 RCTs for Multiple Sclerosis (MS), and 2 RCTs for Mild Cognitive Impairment (MCI), and intervention durations ranging from 4 to 16 weeks. The comprehensive analysis indicates that probiotics help improve clinical symptoms related to NDDs, including gastrointestinal function, cognitive function, quality of life, and mental health. Additionally, probiotics generally have a positive effect on reducing systemic inflammation and enhancing antioxidant capacity in patients. In conclusion, existing evidence supports the promising potential of probiotics in treating NDDs. However, further large-scale, high-quality studies are needed to explore specific differences in efficacy among various probiotic strains, dosages, and modes of administration. Moreover, considering that lifestyle and dietary habits may modulate the effects of probiotics, these external factors should also be included in research considerations to gain a more comprehensive understanding of the mechanisms and application strategies of probiotics in NDDs treatment.
Collapse
Affiliation(s)
- Fengya Zhu
- Traditional Chinese Medicine Department, Zigong First People’s Hospital, Zigong, People’s Republic of China
| | - Shao Yin
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Yuan Wang
- Acupuncture and Moxibustion School, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Yue Zhong
- Traditional Chinese Medicine Department, Zigong First People’s Hospital, Zigong, People’s Republic of China
| | - Qiang Ji
- Traditional Chinese Medicine Department, Zigong First People’s Hospital, Zigong, People’s Republic of China
| | - Jie Wu
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| |
Collapse
|
36
|
Shi F, Peng J, Li H, Liu D, Han L, Wang Y, Liu Q, Liu Q. Probiotics as a targeted intervention in anti-ageing: a review. Biomarkers 2024; 29:577-585. [PMID: 39484861 DOI: 10.1080/1354750x.2024.2424388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/21/2024] [Indexed: 11/03/2024]
Abstract
CONTEXT The age-induced disruption of gut flora, termed gut dysbiosis, is intimately tied to compromised immune function, augmented oxidative stress and a spectrum of age-linked disorders. OBJECTIVE This review examines the fundamental mechanisms employed by probiotic strains to modulate gut microbiota composition and metabolic profiles, mitigate cognitive decline via the gut-brain axis (GBA), modulate gene transcription and alleviate inflammatory responses and oxidative stress. CONCLUSION We elucidate the capacity of probiotics as a precision intervention to restore gut microbiome homeostasis and alleviate age-related conditions, thereby offering a theoretical framework for probiotics to decelerate ageing, manage age-related diseases, and elevate quality of life.
Collapse
Affiliation(s)
- Fengcui Shi
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, PR China
| | - Jingwen Peng
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, PR China
| | - Haojin Li
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, PR China
| | - Denghai Liu
- Yuncheng County People's Hospital, Heze City, Shandong, China
| | - Li Han
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, PR China
| | - Ying Wang
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, PR China
| | - Qingli Liu
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, PR China
| | - Qian Liu
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, PR China
| |
Collapse
|
37
|
Kramer CS, Monsegue A, Morwani-Mangnani J, Grootswagers P, Beekman M, Slagboom PE, Verdijk LB, de Groot LCPGM. Design of the VOILA-intervention study: A 12-week nutrition and resistance exercise intervention in metabolic or mobility compromised Dutch older adults and the response on immune-metabolic, gut and muscle health parameters. Mech Ageing Dev 2024; 222:112002. [PMID: 39490538 DOI: 10.1016/j.mad.2024.112002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/16/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Exercise and nutrition interventions can slow ageing-induced decline in physiology. However, effects are heterogeneous and usually studied separately per outcome domain. In the VOILA study, we simultaneously study various health outcomes relevant for older adults and the inter-individual heterogeneity in response to a lifestyle intervention. METHODS VOILA is a 12-week lifestyle intervention in 3 groups of older adults (≥60 years), with compromised mobility (n=50), compromised metabolic health (n=50), or recovering from total knee replacement (TKR, n=70, of which 20 randomized to standard care only). The intervention includes high-intensity resistance exercise training thrice weekly, nutritional counselling, and nutritional supplements every morning and evening (including 20-25 g whey protein and (evening only) 5.5 g Biotis™ GOS). We measure immune-metabolic, gut health, muscle mass and physical functioning at baseline and after completion of the intervention/standard care. An additional reference group of healthy older adults (n=50) will undergo baseline measurements only. DISCUSSION Improvements in various physiological systems are expected, but with differences between groups/individuals. This study will provide insights into how the physiological state of older adults influences the extent of lifestyle-induced health improvements to create better tailored interventions to attenuate biological ageing and improve the health span of subgroups and individuals.
Collapse
Affiliation(s)
- C S Kramer
- Wageningen University & Research, Wageningen Campus, Agrotechnology and Food Sciences Group, Division of Human Nutrition and Health, PO Box 17, Wageningen 6700 AA, the Netherlands.
| | - A Monsegue
- Maastricht University Medical Center+, Department of Human Biology, NUTRIM Institute of nutrition and translational research in metabolism, PO Box 616, Maastricht 6200 MD, the Netherlands.
| | - J Morwani-Mangnani
- Leiden University Medical Centre, Department of Biomedical Data Sciences, Section of Molecular Epidemiology, Einthovenweg 20, Leiden 2333 ZC, the Netherlands.
| | - P Grootswagers
- Wageningen University & Research, Wageningen Campus, Agrotechnology and Food Sciences Group, Division of Human Nutrition and Health, PO Box 17, Wageningen 6700 AA, the Netherlands.
| | - M Beekman
- Leiden University Medical Centre, Department of Biomedical Data Sciences, Section of Molecular Epidemiology, Einthovenweg 20, Leiden 2333 ZC, the Netherlands.
| | - P E Slagboom
- Leiden University Medical Centre, Department of Biomedical Data Sciences, Section of Molecular Epidemiology, Einthovenweg 20, Leiden 2333 ZC, the Netherlands.
| | - L B Verdijk
- Maastricht University Medical Center+, Department of Human Biology, NUTRIM Institute of nutrition and translational research in metabolism, PO Box 616, Maastricht 6200 MD, the Netherlands.
| | - L C P G M de Groot
- Wageningen University & Research, Wageningen Campus, Agrotechnology and Food Sciences Group, Division of Human Nutrition and Health, PO Box 17, Wageningen 6700 AA, the Netherlands.
| |
Collapse
|
38
|
Aging Biomarker Consortium, Huang N, Ge M, Liu X, Tian X, Yin P, Bao Z, Cao F, Shyh-Chang N, Dong B, Dai L, Gan Z, Hu P, Qu J, Wang S, Wang H, Xiao Q, Yue R, Yue J, Zhang L, Zhang Y, Zhang H, Zhang W, Liu GH, Pei G, Liu Y, Zhu D, Dong B. A framework of biomarkers for skeletal muscle aging: a consensus statement by the Aging Biomarker Consortium. LIFE MEDICINE 2024; 3:lnaf001. [PMID: 40008206 PMCID: PMC11851484 DOI: 10.1093/lifemedi/lnaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/24/2025] [Indexed: 02/27/2025]
Abstract
The skeletal muscle is an important organ for movement and metabolism in human body, and its physiological aging underlies the occurrence of muscle atrophy and sarcopenia. China has the largest aging population in the world and is facing a grand challenge with how to prevent and treat skeletal muscle aging-related diseases. To address this difficult problem, the Aging Biomarker Consortium (ABC) of China has reached an expert consensus on biomarkers of skeletal muscle aging by synthesizing literatures and insights from scientists and clinicians. This consensus attempts to provide a comprehensive assessment of biomarkers associated with skeletal muscle aging, and proposes a systematic framework to classify them into three dimensions: functional, structural, and humoral. Within each dimension, the experts recommend clinically relevant biomarkers for skeletal muscle aging. This consensus aims to lay the foundation for future research on skeletal muscle aging, facilitating precise prediction, diagnosis, and treatment of skeletal muscle aging and sarcopenia. It is anticipated to make significant contributions to healthy aging of skeletal muscle in the elderly population in China and around the world as well.
Collapse
Affiliation(s)
| | - Ning Huang
- The Center of Gerontology and Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Meiling Ge
- The Center of Gerontology and Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaolei Liu
- The Center of Gerontology and Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xu Tian
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| | - Pengbin Yin
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| | - Zhijun Bao
- Department of Geriatrics, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Feng Cao
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing 100853, China
| | - Ng Shyh-Chang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Biao Dong
- National Clinical Research Center for Geriatrics and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Sichuan Real and Best Biotech Co., Ltd., Chengdu 610041, China
| | - Lunzhi Dai
- National Clinical Research Center for Geriatrics and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhenji Gan
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University Medical School, Nanjing University, Nanjing 210061, China
| | - Ping Hu
- Spine Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200072, China
- Guangzhou Laboratory, Guangzhou 510005, China
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510005, China
- The Tenth People’s Hospital Affiliated to Tongji University, Shanghai 200072, China
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Institute for Stem Cell and Regenerative Medicine, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Si Wang
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Huating Wang
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
- Department of Orthopedics and Traumatology, Prince of Wales Hospital, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Qian Xiao
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Rui Yue
- Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University, Shanghai 200092, China
| | - Jirong Yue
- The Center of Gerontology and Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Licheng Zhang
- Department of Orthopaedic Trauma, the Fourth Medical Center, National Clinical Research Center for Orthopaedics & Sports Rehabilitation in China, Chinese PLA General Hospital, Beijing 100853, China
| | - Yong Zhang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Hongbo Zhang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
- The SYSU-YSG Joint Laboratory for Skin Health Research, Sun Yat-sen University, Guangzhou 510080, China
- Advanced Medical Technology Center, The First Afiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Gang Pei
- The Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai 200070, China
| | - Yong Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; TaiKang Center for Life and Medical Sciences; the Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| | - Dahai Zhu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Birong Dong
- The Center of Gerontology and Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
39
|
Shi L, Gao P, Zhang Y, Liu Q, Hu R, Zhao Z, Hu Y, Xu X, Shen Y, Liu J, Long J. 2-(3,4-Dihydroxyphenyl)ethyl 3-hydroxybutanoate Ameliorates Cognitive Dysfunction and Inflammation Via Modulating Gut Microbiota in Aged Senescence-Accelerated Mouse Prone8 Mice. J Gerontol A Biol Sci Med Sci 2024; 79:glae220. [PMID: 39215682 DOI: 10.1093/gerona/glae220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Indexed: 09/04/2024] Open
Abstract
Numerous studies have indicated a close association between gut microbiota dysbiosis, inflammation, and cognitive impairment, highlighting their crucial role in the aging process. 2-(3,4-Dihydroxyphenyl)ethyl 3-hydroxybutanoate (HTHB), a novel derivative of hydroxytyrosol, known for its metabolic and anti-inflammatory properties, was investigated for its effects on memory, inflammation, and gut microbiota in senescence-accelerated mouse prone 8 mice. The study employed behavioral testing, biochemical detection, and 16S RNA analysis. Results revealed that HTHB mitigated memory decline and lymphocyte aberrance, reduced inflammation in the brain cortex, intestine and peripheral system, and modulated gut microbiota dysbiosis. Interestingly, the cognitive function and serum inflammation of mice significantly correlated with differences in gut microbiota in senescence-accelerated mouse prone 8 mice. Furthermore, HTHB treatment exhibited an enhancement of gut barrier integrity in colon tissue in SAMP8 mice. In vitro experiments using HCT116 and DLD1 cells further evidenced that HTHB rescued the tight junction protein levels impaired by lipopolysaccharide. These findings demonstrate that HTHB effectively ameliorates cognitive dysfunction in aged mice, by modulating gut microbiota, suppressing inflammation, and promoting intestinal barrier integrity. This highlights the potential of HTHB as a therapeutic agent for age-related cognitive loss.
Collapse
Affiliation(s)
- Le Shi
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Peipei Gao
- Department of Health Education and Management, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Yue Zhang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Quanyu Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ranrui Hu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhuang Zhao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yachong Hu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiaohong Xu
- School of Pharmacy, Chengdu Medical College, Chengdu, Sichuan, China
| | - Yehua Shen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, China
| | - Jiankang Liu
- Department of Dermatology, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
40
|
Han YY, Li K, Hu JY, Wu JC, Li X, Liu DX, Li CH. Gender Differences in Dendritic Damage, Gut Microbiota Dysbiosis, and Cognitive Impairment During Aging Processes. CNS Neurosci Ther 2024; 30:e70164. [PMID: 39723486 DOI: 10.1111/cns.70164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/20/2024] [Accepted: 10/20/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Cognitive impairment is a common and feared characteristic of aging processes, and one key mechanism of cognition is hippocampal synaptic structure. Previous studies have reported that gut microbiota dysbiosis occurred in neurodegenerative diseases and other brain disorders with cognitive impairment. However, it is not clear how gender differences affect cognitive impairment in aging processes and whether they affect synaptic structure and gut microbiota. Here, we studied the gender differences in cognitive ability, dendritic morphology, and gut microbiota of adult, middle-, and old-aged rats. METHODS The cognitive ability of rats using was assessed by the Y-maze SAB test, the light/dark discrimination test, and the MWM test. Dendritic morphology was investegated by Golgi staining. Microbiota composition, diversity and richness were analyzed by 16S rRNA gene sequencing. RESULTS The results showed that the cognitive ability of old-aged rats was decreased than adult and middle-aged rats in the spontaneous alternation behavior test, the light/dark discrimination test in Y-maze, and the MWM test; males have better cognitive ability than the females for middle-aged rats. The neuronal dendritic structures of CA1, CA3, and DG regions of the hippocampus were damaged to different degrees during aging, and the spine loss of females was more than that of males in CA1 and CA3 of middle-aged rats. In addition, the microbial diversity of gut microbiota was significantly decreased in old-aged male rats; the distribution and composition of microbiota communities were different between male and female rats at different ages. CONCLUSION These findings revealed that cognitive impairment in aged rats might result from dendritic damage in the hippocampus and gut microbiota dysbiosis, which provides direct evidence that gender differences in dendritic damage and gut microbiota dysbiosis might associate with cognitive impairment in naturally aged rats.
Collapse
Affiliation(s)
- Yuan-Yuan Han
- Department of Radiology, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
- School of Life Science, South China Normal University, Guangzhou, China
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kang Li
- School of Life Science, South China Normal University, Guangzhou, China
| | - Jing-Yu Hu
- School of Life Science, South China Normal University, Guangzhou, China
| | - Ji-Chao Wu
- School of Life Science, South China Normal University, Guangzhou, China
| | - Xiao Li
- School of Life Science, South China Normal University, Guangzhou, China
| | - De-Xiang Liu
- Department of Radiology, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chu-Hua Li
- Department of Radiology, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
- School of Life Science, South China Normal University, Guangzhou, China
| |
Collapse
|
41
|
Rykalo N, Riehl L, Kress M. The gut microbiome and the brain. Curr Opin Support Palliat Care 2024; 18:282-291. [PMID: 39250732 DOI: 10.1097/spc.0000000000000717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
PURPOSE OF REVIEW The importance of the gut microbiome for human health and well-being is generally accepted, and elucidating the signaling pathways between the gut microbiome and the host offers novel mechanistic insight into the (patho)physiology and multifaceted aspects of healthy aging and human brain functions. RECENT FINDINGS The gut microbiome is tightly linked with the nervous system, and gut microbiota are increasingly emerging as important regulators of emotional and cognitive performance. They send and receive signals for the bidirectional communication between gut and brain via immunological, neuroanatomical, and humoral pathways. The composition of the gut microbiota and the spectrum of metabolites and neurotransmitters that they release changes with increasing age, nutrition, hypoxia, and other pathological conditions. Changes in gut microbiota (dysbiosis) are associated with critical illnesses such as cancer, cardiovascular, and chronic kidney disease but also neurological, mental, and pain disorders, as well as chemotherapies and antibiotics affecting brain development and function. SUMMARY Dysbiosis and a concomitant imbalance of mediators are increasingly emerging both as causes and consequences of diseases affecting the brain. Understanding the microbiota's role in the pathogenesis of these disorders will have major clinical implications and offer new opportunities for therapeutic interventions.
Collapse
Affiliation(s)
- Nadiia Rykalo
- Department of Physiology and Medical Physics, Institute of Physiology, Medical University Innsbruck, Austria
| | | | | |
Collapse
|
42
|
Fritz P, Fritz R, Bóday P, Bóday Á, Bató E, Kesserű P, Oláh C. Gut microbiome composition: link between sports performance and protein absorption? J Int Soc Sports Nutr 2024; 21:2297992. [PMID: 38151716 PMCID: PMC10763846 DOI: 10.1080/15502783.2023.2297992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 12/16/2023] [Indexed: 12/29/2023] Open
Abstract
BACKGROUND Sufficient protein intake is essential for adequate physical condition and athletic performance. However, numerous factors can influence the absorption of consumed protein, including timing, type of protein intake, and gut microbiota. In the present study, elite male water polo players consumed a plant-based, vegan protein supplement with (n = 10) or without (n = 10) pre- and probiotics daily during the 31-day study period. METHODS We determined the anthropometric characteristics and body composition, dietary habits, gut microbiota composition, and blood parameters of the players at the beginning and at the end of the study. Body composition parameters were analyzed using the InBody 970 bioimpedance analyzer. Gut microbiome composition was determined from stool samples by metagenome sequencing. Paired and unpaired t-tests were used to determine differences between body composition and blood parameters within the groups and between the two groups at the two different sampling times. The Wilcoxon test was used to determine the change in bacterial composition during the study. Correlations between changes in body composition, blood parameters, and taxonomic groups were analyzed using a linear correlation calculation. RESULTS Skeletal muscle mass (p < 0.001), body cell mass (p = 0.002), arm circumference (p = 0.003), and protein mass (p < 0.001) increased, while body fat mass (p = 0.004) decreased significantly in the intervention group which consumed pre- and probiotics in addition to protein supplement. Activated acetate (reductive TCA cycle I) and propionate (pyruvate fermentation to propanoate I) pathways correlated positively with increased skeletal muscle mass (p < 0.01 and p < 0.05), and the relative abundance of butyrate-producing species showed a significant positive correlation with changes in body fat mass in the intervention group (p < 0.05). These correlations were not observed in the control group without the intake of pre- and probiotics. CONCLUSIONS The composition of the gut microbiota may influence protein absorption and therefore body composition and consequently physical condition and sports performance.
Collapse
Affiliation(s)
- Péter Fritz
- Károli Gáspár University of the Reformed Church in Hungary, Faculty of Economics, Health Sciences and Social Studies, Budapest, Hungary
| | - Réka Fritz
- University of Szeged, Doctoral School of Clinical Medicine, Szeged, Hungary
| | - Pál Bóday
- Multi-domain Statistics Department, Hungarian Central Statistical Office, Budapest, Hungary
| | - Ádám Bóday
- Cordi R&D nonprofit Inc, Budapest, Hungary
| | | | - Péter Kesserű
- Eötvös Loránd Research Network, Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
- University of Pannonia Nagykanizsa - University Center for Circular Economy, Soós Ernő Research and Development Center, Nagykanizsa, Hungary
| | - Csilla Oláh
- University of Duisburg-Essen, Department of Urology, Essen, Germany
| |
Collapse
|
43
|
Kverka M, Stepan JJ. Associations Among Estrogens, the Gut Microbiome and Osteoporosis. Curr Osteoporos Rep 2024; 23:2. [PMID: 39585466 PMCID: PMC11588883 DOI: 10.1007/s11914-024-00896-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/25/2024] [Indexed: 11/26/2024]
Abstract
PURPOSE OF THE REVIEW The purpose of this Review was to summarize the evidence on the associations among estrogen status, cellular senescence, the gut microbiome and osteoporosis. RECENT FINDINGS Indicate that osteoporosis is a global public health problem that impacts individuals and society. In postmenopausal women, a decrease in estrogen levels is associated with a decrease in gut microbial diversity and richness, as well as increased permeability of the gut barrier, which allows for low-grade inflammation. The direct effects of estrogen status on the association between bone and the gut microbiome were observed in untreated and treated ovariectomized women. In addition to the direct effects of estrogens on bone remodeling, estrogen therapy could reduce the risk of postmenopausal osteoporosis by preventing increased gut epithelial permeability, bacterial translocation and inflammaging. However, in studies comparing the gut microbiota of older women, there were no changes at the phylum level, suggesting that age-related comorbidities may have a greater impact on changes in the gut microbiota than menopausal status does. Estrogens modify bone health not only by directly influencing bone remodeling, but also indirectly by influencing the gut microbiota, gut barrier function and the resulting changes in immune system reactivity.
Collapse
Affiliation(s)
- Miloslav Kverka
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology, Czech Academy of Sciences, Prague, Czechia
| | - Jan J Stepan
- Institute of Rheumatology, Prague, Czechia.
- Department of Rheumatology, First Faculty of Medicine, Charles University, Kateřinská 32, Praha 2, 121 08, Czech Republic.
| |
Collapse
|
44
|
Rooney CM, Jeffery IB, Mankia K, Wilcox MH, Emery P. Dynamics of the gut microbiome in individuals at risk of rheumatoid arthritis: a cross-sectional and longitudinal observational study. Ann Rheum Dis 2024:ard-2024-226362. [PMID: 39515835 DOI: 10.1136/ard-2024-226362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVES This work aimed to resolve the conflicting reports on Prevotellaceae abundance in the development of rheumatoid arthritis (RA) and to observe structural, functional and temporal changes in the gut microbiome in RA progressors versus non-progressors. METHODS Individuals at risk of RA were defined by the presence of anticyclic citrullinated protein (anti-CCP) antibodies and new musculoskeletal symptoms without clinical synovitis. Baseline sampling included 124 participants (30 progressed to RA), with longitudinal sampling of 19 participants (5 progressed to RA) over 15 months at five timepoints. Gut microbiome taxonomic alterations were investigated using 16S rRNA amplicon sequencing and confirmed with shotgun metagenomic DNA sequencing on 49 samples. RESULTS At baseline, CCP+ at risk progressors showed significant differences in Prevotellaceae abundance compared with non-progressors, contingent on intrinsic RA risk factors and time to progression. Longitudinal sampling revealed gut microbiome instability in progressors 10 months before RA onset, a phenomenon absent in non-progressors. This may indicate a late microbial shift before RA onset, with Prevotellaceae contributing but not dominating these changes. Structural changes in the gut microbiome during arthritis development were associated with increased amino acid metabolism. CONCLUSION These data suggest conflicting reports on Prevotellaceae overabundance are likely due to sampling within a heterogeneous population along a dynamic disease spectrum, with certain Prevotellaceae strains/clades possibly contributing to the establishment and/or progression of RA. Gut microbiome changes in RA may appear at the transition to clinical arthritis as a late manifestation, and it remains unclear whether they represent a primary or secondary phenomenon.
Collapse
Affiliation(s)
| | | | - Kulveer Mankia
- University of Leeds, Leeds Institute of Rheumatic and Musculoskeletal Medicine, Leeds, UK
- NIHR Leeds Musculoskeletal Biomedical Research Centre, Leeds, UK
| | - Mark H Wilcox
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Paul Emery
- University of Leeds, Leeds Institute of Rheumatic and Musculoskeletal Medicine, Leeds, UK
- NIHR Leeds Musculoskeletal Biomedical Research Centre, Leeds, UK
| |
Collapse
|
45
|
Nakamoto S, Kajiwara Y, Taniguchi K, Hida AI, Miyoshi Y, Kin T, Yamamoto M, Takabatake D, Kubo S, Hikino H, Ogasawara Y, Ikeda M, Doihara H, Shien T, Taira N, Iwamoto T, Toyooka S. Baseline gut microbiota as a predictive marker for the efficacy of neoadjuvant chemotherapy in patients with early breast cancer: a multicenter prospective cohort study in the Setouchi Breast Project-14. Breast Cancer Res Treat 2024; 208:67-77. [PMID: 38888797 DOI: 10.1007/s10549-024-07395-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024]
Abstract
PURPOSE Various studies have demonstrated the causal relationship between gut microbiota and efficacy of chemotherapy; however, the impact of gut microbiota on breast cancer has not been fully elucidated. This study aimed to evaluate the associations between the gut microbiota before neoadjuvant chemotherapy and its consequent efficacy in breast cancer. METHODS This prospective observational study included patients who received neoadjuvant chemotherapy for primary early breast cancer at eight institutions between October 1, 2019, and March 31, 2022. We performed 16S rRNA analysis of fecal samples and α and β diversity analyses of the gut microbiota. The primary endpoint was the association between the gut microbiota and pathological complete response (pCR) to neoadjuvant chemotherapy. RESULTS Among the 183 patients, the pCR rate after neoadjuvant chemotherapy was 36.1% in all patients and 12.9% (9/70), 69.5% (41/59), and 29.6% (16/54) in those with the luminal, human epidermal growth factor receptor 2, and triple-negative types, respectively. The α diversity of the gut microbiota did not significantly differ between patients with pCR and those without pCR. Among the gut microbiota, two species (Victivallales, P = 0.001 and Anaerolineales, P = 0.001) were associated with pCR, and one (Gemellales, P = 0.002) was associated with non-pCR. CONCLUSION Three species in the gut microbiota had potential associations with neoadjuvant chemotherapy efficacy, but the diversity of the gut microbiota was not associated with response to chemotherapy. Further research is needed to validate our findings.
Collapse
Affiliation(s)
- Shogo Nakamoto
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yukiko Kajiwara
- Department of Breast and Endocrine Surgery, Okayama University Hospital, Okayama, Japan
- Department of Breast Surgery, Hiroshima City Hiroshima Citizens Hospital, Hiroshima, Japan
| | - Kohei Taniguchi
- Department of Pathology, Hiroshima City Hiroshima Citizens Hospital, Hiroshima, Japan
| | - Akira I Hida
- Department of Pathology, Matsuyama Shimin Hospital, Matsuyama, Japan
| | - Yuichiro Miyoshi
- Department of Breast Oncology, NHO Shikoku Cancer Center, Matsuyama, Japan
- Department of Breast Endocrine Surgery, Kagawa Prefectural Center Hospital, Takamatsu, Japan
| | - Takanori Kin
- Department of Breast Surgery, Hiroshima City Hiroshima Citizens Hospital, Hiroshima, Japan
| | - Mari Yamamoto
- Department of Breast and Thyroid Surgery, Fukuyama City Hospital, Fukuyama, Japan
- Department of Breast and Thyroid Surgery, Onomichi Municipal Hospital, Onomichi, Japan
| | - Daisuke Takabatake
- Department of Breast Oncology, NHO Shikoku Cancer Center, Matsuyama, Japan
- Department of Breast and Thyroid Surgery, Kochi Health Science Center, Kochi, Japan
| | - Shinichiro Kubo
- Department of Breast and Thyroid Surgery, Fukuyama City Hospital, Fukuyama, Japan
| | - Hajime Hikino
- Department of Breast Surgery, Matsue Red Cross Hospital, Matsue, Japan
| | - Yutaka Ogasawara
- Department of Breast Endocrine Surgery, Kagawa Prefectural Center Hospital, Takamatsu, Japan
| | - Masahiko Ikeda
- Department of Breast and Thyroid Surgery, Fukuyama City Hospital, Fukuyama, Japan
| | - Hiroyoshi Doihara
- Department of Breast and Endocrine Surgery, Okayama University Hospital, Okayama, Japan
- Department of General Surgery, Kawasaki Medical School General Medical Center, Okayama, Japan
| | - Tadahiko Shien
- Department of Breast and Endocrine Surgery, Okayama University Hospital, Okayama, Japan
| | - Naruto Taira
- Department of Breast and Endocrine Surgery, Okayama University Hospital, Okayama, Japan
- Department of Breast and Thyroid Surgery, Kawasaki Medical School Hospital, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Takayuki Iwamoto
- Department of Breast and Endocrine Surgery, Okayama University Hospital, Okayama, Japan.
- Department of Breast and Thyroid Surgery, Kawasaki Medical School Hospital, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan.
| | - Shinichi Toyooka
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
46
|
Chen W, Altshuler RD, Daschner P, Salvador Morales C, St. Germain DC, Guida J, Prasanna PGS, Buchsbaum JC. Older adults with cancer and common comorbidities-challenges and opportunities in improving their cancer treatment outcomes. J Natl Cancer Inst 2024; 116:1730-1738. [PMID: 38995839 PMCID: PMC12116284 DOI: 10.1093/jnci/djae163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024] Open
Abstract
The older American population is rapidly increasing, and millions of older adults will be cancer survivors with comorbidities. This population faces specific challenges regarding treatment and has unique clinical needs. Recognizing this need, the National Cancer Institute, in collaboration with the National Institute on Aging, hosted a webinar series, entitled Cancer, Aging, and Comorbidities. This commentary provides a reflection of 5 thematic areas covered by the webinar series, which was focused on improving cancer treatment for older adults with cancer and comorbidities: 1) the impact of comorbidities on treatment tolerability and patient outcomes; 2) the impact of comorbidities on cancer clinical trial design; 3) the development of wearable devices in measuring comorbidities in cancer treatment; 4) the effects of nutrition and the microbiome on cancer therapy; and 5) the role of senescence and senotherapy in age-related diseases. Advances have been made in these areas, however, many gaps and challenges exist and are discussed in this commentary. To improve cancer survivorship in older populations with comorbidities, aging and comorbidities must be jointly considered and incorporated across the spectrum of cancer research. This includes more basic research of the mechanisms linking comorbidities and cancer development and treatment response, building critical resources and infrastructure (eg, preclinical models and patient samples), conducting clinical trials focused on the older population, integrating geriatric assessment into cancer treatment, and incorporating novel technologies, such as wearable devices, into clinical trials and cancer care.
Collapse
Affiliation(s)
- Weiwei Chen
- Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD, USA
| | - Rachel D Altshuler
- Breast and Gynecologic Cancer Research Group, Division of Cancer Prevention, National Cancer Institute, Rockville, MD, USA
| | - Phil Daschner
- Cancer Immunology, Hematology, and Etiology Branch, Division of Cancer Biology, National Cancer Institute, Rockville, MD, USA
| | - Carolina Salvador Morales
- Nanodelivery Systems and Devices Branch, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD, USA
| | | | - Jennifer Guida
- Basic Biobehavioral and Psychological Sciences Branch, Behavioral Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, Rockville, MD, USA
| | - Pataje G S Prasanna
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD, USA
| | - Jeffrey C Buchsbaum
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD, USA
| |
Collapse
|
47
|
Das S, Preethi B, Kushwaha S, Shrivastava R. Therapeutic strategies to modulate gut microbial health: Approaches for sarcopenia management. Histol Histopathol 2024; 39:1395-1425. [PMID: 38497338 DOI: 10.14670/hh-18-730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Sarcopenia is a progressive and generalized loss of skeletal muscle and functions associated with ageing with currently no definitive treatment. Alterations in gut microbial composition have emerged as a significant contributor to the pathophysiology of multiple diseases. Recently, its association with muscle health has pointed to its potential role in mediating sarcopenia. The current review focuses on the association of gut microbiota and mediators of muscle health, connecting the dots between the influence of gut microbiota and their metabolites on biomarkers of sarcopenia. It further delineates the mechanism by which the gut microbiota affects muscle health with progressing age, aiding the formulation of a multi-modal treatment plan involving nutritional supplements and pharmacological interventions along with lifestyle changes compiled in the review. Nutritional supplements containing proteins, vitamin D, omega-3 fatty acids, creatine, curcumin, kefir, and ursolic acid positively impact the gut microbiome. Dietary fibres foster a conducive environment for the growth of beneficial microbes such as Bifidobacterium, Faecalibacterium, Ruminococcus, and Lactobacillus. Probiotics and prebiotics act by protecting against reactive oxygen species (ROS) and inflammatory cytokines. They also increase the production of gut microbiota metabolites like short-chain fatty acids (SCFAs), which aid in improving muscle health. Foods rich in polyphenols are anti-inflammatory and have an antioxidant effect, contributing to a healthier gut. Pharmacological interventions like faecal microbiota transplantation (FMT), non-steroidal anti-inflammatory drugs (NSAIDs), ghrelin mimetics, angiotensin-converting enzyme inhibitors (ACEIs), and butyrate precursors lead to the production of anti-inflammatory fatty acids and regulate appetite, gut motility, and microbial impact on gut health. Further research is warranted to deepen our understanding of the interaction between gut microbiota and muscle health for developing therapeutic strategies for ameliorating sarcopenic muscle loss.
Collapse
Affiliation(s)
- Shreya Das
- Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, Rajasthan, India
| | - B Preethi
- Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, Rajasthan, India
| | - Sapana Kushwaha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, Lucknow, India.
| | - Richa Shrivastava
- Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, Rajasthan, India.
| |
Collapse
|
48
|
Long J, Zhang J, Zeng X, Wang M, Wang N. Prevention and Treatment of Alzheimer's Disease Via the Regulation of the Gut Microbiota With Traditional Chinese Medicine. CNS Neurosci Ther 2024; 30:e70101. [PMID: 39508315 PMCID: PMC11541599 DOI: 10.1111/cns.70101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/15/2024] Open
Abstract
Alzheimer's disease (AD) is caused by a variety of factors, and one of the most important factors is gut microbiota dysbiosis. An imbalance in the gut mincrobiota have been shown to change the concentrations of lipopolysaccharide and short-chain fatty acids. These microorganisms synthesize substances that can influence the levels of a variety of metabolites and cause multiple diseases through the immune response, fatty acid metabolism, and amino acid metabolism pathways. Furthermore, these metabolic changes promote the formation of β-amyloid plaques and neurofibrillary tangles. Thus, the microbiota-gut-brain axis plays an important role in AD development. In addition to traditional therapeutic drugs such as donepezil and memantine, traditional Chinese medicines (TCMs) have also showed to significantly decrease the severity of AD symptoms and suppress the underlying related mechanisms. We searched for studies on the effects of different herbal monomers, single herbs, and polyherbal formulas on the gut microbiota of AD patients and identified the relevant pathways through which the gut microbiota affected AD. We conclude that improvements in the gut microbiota not only decrease the occurrence of inflammatory reactions but also reduce the deposition of central pathological products. Herbal monomers have a stronger effect on improving of central pathology. Polyherbal formulas have the most extensive effect on the gut microbiota in patients with AD. Among the effects of formulas, the anti-inflammatory effect is the most essential and is also the main concern regarding the use of TCMs in treating AD from the viewpoint of the gut microbiota. We hope that this review will be helpful for providing new ideas for the clinical application of TCMs in the treatment of AD.
Collapse
Affiliation(s)
- Jinyao Long
- Department of NeurologyXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Jiani Zhang
- School of Life SciencesBeijing University of Chinese MedicineBeijingChina
| | - Xin Zeng
- Department of NeurologyXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Min Wang
- Dongfang Hospital Beijing University of Chinese MedicineBeijingChina
| | - Ningqun Wang
- Department of NeurologyXuanwu Hospital, Capital Medical UniversityBeijingChina
| |
Collapse
|
49
|
Batitucci G, Abud GF, Ortiz GU, Belisário LF, Travieso SG, de Lima Viliod MC, Venturini ACR, de Freitas EC. Sarcobesity: New paradigms for healthy aging related to taurine supplementation, gut microbiota and exercise. Ageing Res Rev 2024; 101:102460. [PMID: 39173917 DOI: 10.1016/j.arr.2024.102460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/16/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024]
Abstract
Enigmatic sarcopenic obesity is still a challenge for science and adds to the global public health burden. The progressive accumulation of body fat combined with a dysfunctional skeletal muscle structure and composition, oxidative stress, mitochondrial dysfunction, and anabolic resistance, among other aggravating factors, together represent the seriousness and complexity of treating the metabolic disorder of sarcobesity in aging. For this reason, further studies are needed that encourage the support of therapeutic management. It is along these lines that we direct the reader to therapeutic approaches that demonstrate important, but still obscure, outcomes in the physiological conditions of sarcobesity, such as the role of taurine in modulating inflammatory and antioxidant mechanisms in muscle and adipose tissue, as well as the management of gut microbiota, able to systemically re-establish the structure and function of the gut-muscle axis, in addition to the merits of physical exercise as an instrument to improve muscular health and lifestyle quality.
Collapse
Affiliation(s)
- Gabriela Batitucci
- School of Medical Sciences, Obesity and Comorbidities Research Center, University of Campinas - UNICAMP, Campinas, Sao Paulo, Brazil
| | - Gabriela Ferreira Abud
- Department of Health Sciences, Ribeirao Preto Medical School, University of São Paulo - FMRP/USP, Ribeirao Preto, Sao Paulo, Brazil
| | - Gabriela Ueta Ortiz
- Department of Health Sciences, Ribeirao Preto Medical School, University of São Paulo - FMRP/USP, Ribeirao Preto, Sao Paulo, Brazil
| | - Lucas Fernandes Belisário
- Laboratory of Exercise Physiology and Metabolism, School of Physical Education and Sports of Ribeirao Preto, University of Sao Paulo - EEFERP/USP, Ribeirao Preto, Brazil
| | - Sofia Germano Travieso
- Department of Health Sciences, Ribeirao Preto Medical School, University of São Paulo - FMRP/USP, Ribeirao Preto, Sao Paulo, Brazil
| | - Marcela Coffacci de Lima Viliod
- Laboratory of Exercise Physiology and Metabolism, School of Physical Education and Sports of Ribeirao Preto, University of Sao Paulo - EEFERP/USP, Ribeirao Preto, Brazil
| | - Ana Cláudia Rossini Venturini
- Laboratory of Exercise Physiology and Metabolism, School of Physical Education and Sports of Ribeirao Preto, University of Sao Paulo - EEFERP/USP, Ribeirao Preto, Brazil
| | - Ellen Cristini de Freitas
- Department of Health Sciences, Ribeirao Preto Medical School, University of São Paulo - FMRP/USP, Ribeirao Preto, Sao Paulo, Brazil; Laboratory of Exercise Physiology and Metabolism, School of Physical Education and Sports of Ribeirao Preto, University of Sao Paulo - EEFERP/USP, Ribeirao Preto, Brazil.
| |
Collapse
|
50
|
Li S, Fan S, Ma Y, Xia C, Yan Q. Influence of gender, age, and body mass index on the gut microbiota of individuals from South China. Front Cell Infect Microbiol 2024; 14:1419884. [PMID: 39544283 PMCID: PMC11560914 DOI: 10.3389/fcimb.2024.1419884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 10/07/2024] [Indexed: 11/17/2024] Open
Abstract
Background The symbiotic gut microbiota is pivotal for human health, with its composition linked to various diseases and metabolic disorders. Despite its significance, there remains a gap in systematically evaluating how host phenotypes, such as gender, age, and body mass index (BMI), influence gut microbiota. Methodology/principal findings We conducted an analysis of the gut microbiota of 185 Chinese adults based on whole-metagenome shotgun sequencing of fecal samples. Our investigation focused on assessing the effects of gender, age, and BMI on gut microbiota across three levels: diversity, gene/phylogenetic composition, and functional composition. Our findings suggest that these phenotypes have a minor impact on shaping the gut microbiome compared to enterotypes, they do not correlate significantly within- or between-sample diversity. We identified a substantial number of phenotype-associated genes and metagenomic linkage groups (MLGs), indicating variations in gut microflora composition. Specifically, we observed a decline in beneficial Firmicutes microbes, such as Eubacterium, Roseburia, Faecalibacterium and Ruminococcus spp., in both older individuals and those with higher BMI, while potentially harmful microbes like Erysipelotrichaceae, Subdoligranulum and Streptococcus spp. increased with age. Additionally, Blautia and Dorea spp. were found to increase with BMI, aligning with prior research. Surprisingly, individuals who were older or overweight exhibited a lack of Bacteroidetes, a dominant phylum in the human gut microbiota that includes opportunistic pathogens, while certain species of the well-known probiotics Bifidobacterium were enriched in these groups, suggesting a complex interplay of these bacteria warranting further investigation. Regarding gender, several gender-associated MLGs from Bacteroides, Parabacteroides, Clostridium and Akkermansia were enriched in females. Functional analysis revealed a multitude of phenotype-associated KEGG orthologs (KOs). Conclusions/significance Our study underscores the influence of gender, age, and BMI on gut metagenomes, affecting both phylogenetic and functional composition. However, further investigation is needed to elucidate the precise roles of these bacteria, including both pathogens and probiotics.
Collapse
Affiliation(s)
- Shenghui Li
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
- Puensum Genetech Institute, Wuhan, China
| | - Shao Fan
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yufang Ma
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Chuan Xia
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Qiulong Yan
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|