1
|
Chen Y, Wang X, Chen S, Zhang M, Cheng Z, Zhang W, Liu D, Shan Y, Du G, Li W, Yang L, Wang J, Chu Y, Liu M. Evaluation of immune effect to recombinant potential protective antigens of Mycoplasma ovipneumoniae in mice. Microb Pathog 2025; 204:107555. [PMID: 40203960 DOI: 10.1016/j.micpath.2025.107555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/24/2025] [Accepted: 04/05/2025] [Indexed: 04/11/2025]
Abstract
Mycoplasma ovipneumoniae is a primary causative agent of pneumonia in ruminants, causing chronic non-progressive pneumonia in domestic sheep and goats, but leading to higher morbidity and mortality in bighorn sheep and wild small ruminants. This disease has become a widespread epidemic, resulting in significant losses to the sheep industry. In this study, we evaluated the immunogenicity and initial protective effects of four antigenic proteins of M. ovipneumoniae, namely Eno, EF-Tu, Ulad, and T4SS. These proteins were used to immunize BALB/c mice either individually or in a combination (rProteins group). The mice were intranasally infected with 109 CCU50/mL M. ovipneumoniae strain NJ01 twice, on days 28 and 30 after immunization. Among the four recombinant proteins, rEno demonstrated the most promising results in terms of inducing specific humoral and cellular immune responses. It also resulted in the lowest lung lesion scores and the lowest M. ovipneumoniae loads in the lungs and bronchoalveolar lavage fluid (BALF). Compared to the other three proteins, rEno provided superior protection. Furthermore, the rEno vaccine significantly reduced the inflammatory response in the lungs of mice, as evidenced by the evaluation of pro-inflammatory cytokines. The expression of IL-1β and NF-κB was significantly reduced, while the expression of IL-4 was significantly increased. In conclusion, the rEno vaccine elicited a favorable immunological response and conferred protection against M. ovipneumoniae. This finding presents a novel approach to controlling the global spread of this pathogen.
Collapse
MESH Headings
- Animals
- Mice, Inbred BALB C
- Mycoplasma ovipneumoniae/immunology
- Mycoplasma ovipneumoniae/genetics
- Pneumonia, Mycoplasma/prevention & control
- Pneumonia, Mycoplasma/immunology
- Pneumonia, Mycoplasma/microbiology
- Pneumonia, Mycoplasma/pathology
- Mice
- Antigens, Bacterial/immunology
- Antigens, Bacterial/genetics
- Cytokines/metabolism
- Lung/pathology
- Lung/microbiology
- Lung/immunology
- Recombinant Proteins/immunology
- Recombinant Proteins/genetics
- Antibodies, Bacterial/blood
- Bacterial Vaccines/immunology
- Bacterial Vaccines/administration & dosage
- Bronchoalveolar Lavage Fluid/microbiology
- Female
- Immunity, Cellular
- Bacterial Proteins/immunology
- Bacterial Proteins/genetics
- Disease Models, Animal
- NF-kappa B/metabolism
- Interleukin-1beta/metabolism
- Immunity, Humoral
- Sheep
- Immunization
Collapse
Affiliation(s)
- Yi Chen
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China; College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, PR China
| | - Xiaonan Wang
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China; College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, PR China
| | - Siyu Chen
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China; College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, PR China
| | - Mengjie Zhang
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Zilong Cheng
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China; Guotai Technology Innovation Center for Veterinary Bioproducts (Taizhou), Taizhou, 225300, PR China
| | - Wenwen Zhang
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China; Guotai Technology Innovation Center for Veterinary Bioproducts (Taizhou), Taizhou, 225300, PR China
| | - Diyue Liu
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China
| | - Yiyi Shan
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Gaimei Du
- College of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing, 211169, PR China
| | - Wenliang Li
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China; Guotai Technology Innovation Center for Veterinary Bioproducts (Taizhou), Taizhou, 225300, PR China
| | - Leilei Yang
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China; Guotai Technology Innovation Center for Veterinary Bioproducts (Taizhou), Taizhou, 225300, PR China
| | - Jinquan Wang
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, PR China
| | - Yuefeng Chu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, PR China
| | - Maojun Liu
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China; State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, PR China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China; Guotai Technology Innovation Center for Veterinary Bioproducts (Taizhou), Taizhou, 225300, PR China.
| |
Collapse
|
2
|
Moustafa DA, Lou E, Schafer-Kestenman ME, Mateu-Borrás M, Doménech-Sanchez A, Albertí S, Goldberg JB. Pseudomonas aeruginosa elongation factor-Tu (EF-Tu) is an immunogenic protective protein antigen. Vaccine 2024; 42:126476. [PMID: 39476472 PMCID: PMC11645190 DOI: 10.1016/j.vaccine.2024.126476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/02/2024] [Accepted: 10/22/2024] [Indexed: 12/14/2024]
Abstract
Pseudomonas aeruginosa is a Gram-negative, opportunistic pathogen that infects immunocompromised individuals, especially in the hospital setting. This bacterium is an important pathogen in people with weakened immune systems, injuries, and other underlying physiologic dysfunctions. P. aeruginosa is responsible for up to 20 % of all hospital-acquired pneumonias. It is one of the major causes of nosocomial infections and has been noted to be one of the most common bacteria co-infecting patients with COVID-19 or causing super-infections following COVID-19 infections. Despite improvements in antimicrobial therapy and hospital care, P. aeruginosa bacteremia and pneumonia remain fatal in about 30 % of cases. P. aeruginosa is also the leading cause of chronic life-threatening lung infections in cystic fibrosis patients. This bacterium is naturally antibiotic resistant, and infections are notoriously difficult to treat once established, with no vaccine available. We have previously shown that elongation factor-Tu (EF-Tu), a protein best known for its role in protein synthesis, is surface exposed on P. aeruginosa. As this protein is highly expressed, evolutionally conserved, and essential, we hypothesized it would make a good vaccine target. In this study, we found that P. aeruginosa EF-Tu is immunogenic in people, and that mice can develop an immune response following immunization with recombinant P. aeruginosa EF-Tu. Furthermore, immunized mice were protected from subsequent P. aeruginosa pneumonia and transfer of this vaccine antisera to naïve mice resulted in decreased colonization. Altogether these findings support the consideration of EF-Tu as a new vaccine candidate against P. aeruginosa.
Collapse
Affiliation(s)
- Dina A Moustafa
- Emory-Children's Cystic Fibrosis Center, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Emma Lou
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Morgan E Schafer-Kestenman
- Emory-Children's Cystic Fibrosis Center, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Margalida Mateu-Borrás
- Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Universidad de las Islas Baleares, Palma de Mallorca, Spain
| | - Antonio Doménech-Sanchez
- Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Universidad de las Islas Baleares, Palma de Mallorca, Spain
| | - Sebastián Albertí
- Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Universidad de las Islas Baleares, Palma de Mallorca, Spain
| | - Joanna B Goldberg
- Emory-Children's Cystic Fibrosis Center, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
3
|
Kaplan BS, Dassanayake RP, Briggs RE, Kanipe CR, Boggiatto PM, Crawford LS, Olsen SC, Menghwar H, Casas E, Tatum FM. An injectable subunit vaccine containing Elongation Factor Tu and Heat Shock Protein 70 partially protects American bison from Mycoplasma bovis infection. Front Vet Sci 2024; 11:1408861. [PMID: 38988984 PMCID: PMC11234848 DOI: 10.3389/fvets.2024.1408861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/11/2024] [Indexed: 07/12/2024] Open
Abstract
Mycoplasma bovis (M. bovis) is the etiologic agent of high mortality epizootics of chronic respiratory disease in American bison (Bison bison). Despite the severity of the disease, no efficacious commercial vaccines have been licensed for the prevention of M. bovis infection in bison. Elongation factor thermal unstable (EFTu) and Heat Shock Protein 70 (Hsp70, DnaK) are highly conserved, constitutively expressed proteins that have previously been shown to provide protection against M. bovis infection in cattle. To assess the suitability of EFTu and Hsp70 as vaccine antigens in bison, the immune response to and protection conferred by an injectable, adjuvanted subunit vaccine comprised of recombinantly expressed EFTu and Hsp70 was evaluated. Vaccinates developed robust antibody and cellular immune responses against both EFTu and Hsp70 antigens. To assess vaccine efficacy, unvaccinated control and vaccinated bison were experimentally challenged with bovine herpes virus-1 (BHV-1) 4 days prior to intranasal infection with M. bovis. Vaccinated bison displayed reductions in joint infection, lung bacterial loads, and lung lesions compared to unvaccinated controls. Together, these results showed that this subunit vaccine reduced clinical disease and bacterial dissemination from the lungs in M. bovis challenged bison and support the further development of protein subunit vaccines against M. bovis for use in bison.
Collapse
Affiliation(s)
- Bryan S. Kaplan
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | - Rohana P. Dassanayake
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | - Robert E. Briggs
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | - Carly R. Kanipe
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | - Paola M. Boggiatto
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | - Lauren S. Crawford
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | - Steven C. Olsen
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | - Harish Menghwar
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | - Eduardo Casas
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | - Fred M. Tatum
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| |
Collapse
|
4
|
Dobrut A, Skibiński J, Bekier A, Drożdż K, Rudnicka K, Płociński P, Siemińska I, Brzychczy-Włoch M. Development of a prototypic, field-usable diagnostic tool for the detection of gram-positive cocci-induced mastitis in cattle. BMC Vet Res 2024; 20:169. [PMID: 38698383 PMCID: PMC11064325 DOI: 10.1186/s12917-024-04028-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/22/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Bovine mastitis is one of the most widespread diseases affecting cattle, leading to significant losses for the dairy industry. Currently, the so-called gold standard in mastitis diagnosis involves determining the somatic cell count (SCC). Apart from a number of advantages, this method has one serious flaw: It does not identify the etiological factor causing a particular infection, making it impossible to introduce targeted antimicrobial therapy. This can contribute to multidrug-resistance in bacterial species. The diagnostic market lacks a test that has the advantages of SCC and also recognizes the species of pathogen causing the inflammation. Therefore, the aim of our study was to develop a lateral flow immunoassay (LFIA) based on elongation factor Tu for identifying most prevalent Gram-positive cocci responsible for causing mastitis including Streptococcus uberis, Streptococcus agalactiae and Staphylococcus aureus. RESULTS As a result, we showed that the assay for S. uberis detection demonstrated a specificity of 89.02%, a sensitivity of 43.59%, and an accuracy of 80.3%. In turn, the second variant - assay for Gram-positive cocci reached a specificity of 95.59%, a sensitivity of 43.28%, and an accuracy of 78.33%. CONCLUSIONS Our study shows that EF-Tu is a promising target for LFIA and we have delivered evidence that further evaluation could improve test parameters and fill the gap in the mastitis diagnostics market.
Collapse
Affiliation(s)
- Anna Dobrut
- Department of Molecular Medical Microbiology, Chair of Microbiology, Jagiellonian University Medical College, Krakow, Poland.
| | - Jakub Skibiński
- BioMedChem Doctoral School of University of Lodz and Lodz Institutes of The Polish Academy of Sciences, University of Lodz, Lodz, Poland
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Adrian Bekier
- Department of Immunology and Allergy, Chair of Pulmonology, Rheumatology and Clinical Immunology, Medical University of Lodz, Lodz, Poland
| | - Kamil Drożdż
- Department of Molecular Medical Microbiology, Chair of Microbiology, Jagiellonian University Medical College, Krakow, Poland
| | - Karolina Rudnicka
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
| | - Przemysław Płociński
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Izabela Siemińska
- Institute of Veterinary Sciences, University Center of Veterinary Medicine JU-AU, University of Agriculture in Krakow, Krakow, Poland
| | - Monika Brzychczy-Włoch
- Department of Molecular Medical Microbiology, Chair of Microbiology, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
5
|
Haems K, Strubbe D, Van Rysselberghe N, Rasschaert G, Martel A, Pasmans F, Garmyn A. Role of Maternal Antibodies in the Protection of Broiler Chicks against Campylobacter Colonization in the First Weeks of Life. Animals (Basel) 2024; 14:1291. [PMID: 38731295 PMCID: PMC11083098 DOI: 10.3390/ani14091291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/08/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Thermophilic Campylobacter species are the most common cause of bacterium-mediated diarrheal disease in humans globally. Poultry is considered the most important reservoir of human campylobacteriosis, but so far, no effective countermeasures are in place to prevent the bacterium from colonizing broiler flocks. This study investigated maternal antibodies' potential to offer protection against Campylobacter in broiler chicks via a field trial and an immunization trial. In the field trial, breeder flocks with high and low anti-Campylobacter antibody levels in the yolk were selected based on serological screening. Offspring were subsequently monitored for maternal antibodies and Campylobacter prevalence during early life. Although maternal antibodies declined rapidly in the serum of broilers, offspring from flocks with lower anti-Campylobacter antibody levels seemed to be more susceptible to colonization. In the immunization trial, breeders from a seropositive breeder flock were vaccinated with an experimental bacterin or subunit vaccine. Immunization increased antibody levels in the yolk and consequently in the offspring. Elevated maternal antibody levels were significantly associated with reduced Campylobacter susceptibility in broilers at 2 weeks old but not at 1 and 3 weeks old. Overall, the protective effect of maternal immunity should be cautiously considered in the context of Campylobacter control in broilers. Immunization of breeders may enhance resistance but is not a comprehensive solution.
Collapse
Affiliation(s)
- Kristof Haems
- Department of Pathobiology, Pharmacology and Zoological Medicine, Ghent University, B9820 Merelbeke, Belgium
| | - Diederik Strubbe
- Terrestrial Ecology Unit (TEREC), Ghent University, B9000 Ghent, Belgium
| | - Nathalie Van Rysselberghe
- Department of Pathobiology, Pharmacology and Zoological Medicine, Ghent University, B9820 Merelbeke, Belgium
| | - Geertrui Rasschaert
- Technology & Food Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), B9090 Melle, Belgium
| | - An Martel
- Department of Pathobiology, Pharmacology and Zoological Medicine, Ghent University, B9820 Merelbeke, Belgium
| | - Frank Pasmans
- Department of Pathobiology, Pharmacology and Zoological Medicine, Ghent University, B9820 Merelbeke, Belgium
| | - An Garmyn
- Department of Pathobiology, Pharmacology and Zoological Medicine, Ghent University, B9820 Merelbeke, Belgium
| |
Collapse
|
6
|
Wagner GE, Stanjek TFP, Albrecht D, Lipp M, Dunachie SJ, Föderl-Höbenreich E, Riedel K, Kohler A, Steinmetz I, Kohler C. Deciphering the human antibody response against Burkholderia pseudomallei during melioidosis using a comprehensive immunoproteome approach. Front Immunol 2023; 14:1294113. [PMID: 38146371 PMCID: PMC10749318 DOI: 10.3389/fimmu.2023.1294113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/22/2023] [Indexed: 12/27/2023] Open
Abstract
Introduction The environmental bacterium Burkholderia pseudomallei causes the often fatal and massively underreported infectious disease melioidosis. Antigens inducing protective immunity in experimental models have recently been identified and serodiagnostic tools have been improved. However, further elucidation of the antigenic repertoire of B. pseudomallei during human infection for diagnostic and vaccine purposes is required. The adaptation of B. pseudomallei to very different habitats is reflected by a huge genome and a selective transcriptional response to a variety of conditions. We, therefore, hypothesized that exposure of B. pseudomallei to culture conditions mimicking habitats encountered in the human host might unravel novel antigens that are recognized by melioidosis patients. Methods and results In this study, B. pseudomallei was exposed to various stress and growth conditions, including anaerobiosis, acid stress, oxidative stress, iron starvation and osmotic stress. Immunogenic proteins were identified by probing two-dimensional Western blots of B. pseudomallei intracellular and extracellular protein extracts with sera from melioidosis patients and controls and subsequent MALDI-TOF MS. Among B. pseudomallei specific immunogenic signals, 90 % (55/61) of extracellular immunogenic proteins were identified by acid, osmotic or oxidative stress. A total of 84 % (44/52) of intracellular antigens originated from the stationary growth phase, acidic, oxidative and anaerobic conditions. The majority of the extracellular and intracellular protein antigens were identified in only one of the various stress conditions. Sixty-three immunoreactive proteins and an additional 38 candidates from a literature screening were heterologously expressed and subjected to dot blot analysis using melioidosis sera and controls. Our experiments confirmed melioidosis-specific signals in 58 of our immunoproteome candidates. These include 15 antigens with average signal ratios (melioidosis:controls) greater than 10 and another 26 with average ratios greater than 5, including new promising serodiagnostic candidates with a very high signal-to-noise ratio. Conclusion Our study shows that a comprehensive B. pseudomallei immunoproteomics approach, using conditions which are likely to be encountered during infection, can identify novel antibody targets previously unrecognized in human melioidosis.
Collapse
Affiliation(s)
- Gabriel E. Wagner
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | | | - Dirk Albrecht
- Institute of Microbiology, Department of Microbial Physiology and Molecular Biology, University of Greifswald, Greifswald, Germany
| | - Michaela Lipp
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Susanna J. Dunachie
- Nuffield Department of Medicine (NDM) Centre for Global Health Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- National Institute for Health and Care Research (NIHR) Oxford Biomedical Centre, Oxford University Hospitals National Health Service (NHS) Foundation Trust, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Esther Föderl-Höbenreich
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
- Diagnostic & Research Institute of Pathology, Medical University Graz, Graz, Austria
| | - Katharina Riedel
- Institute of Microbiology, Department of Microbial Physiology and Molecular Biology, University of Greifswald, Greifswald, Germany
| | - Anne Kohler
- Friedrich Loeffler Institute of Medical Microbiology, University Medicine, Greifswald, Germany
| | - Ivo Steinmetz
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
- Friedrich Loeffler Institute of Medical Microbiology, University Medicine, Greifswald, Germany
| | - Christian Kohler
- Friedrich Loeffler Institute of Medical Microbiology, University Medicine, Greifswald, Germany
| |
Collapse
|
7
|
Haems K, Van Rysselberghe N, Goossens E, Strubbe D, Rasschaert G, Martel A, Pasmans F, Garmyn A. Reducing Campylobacter colonization in broilers by active immunization of naive broiler breeders using a bacterin and subunit vaccine. Poult Sci 2023; 102:103075. [PMID: 37748236 PMCID: PMC10522981 DOI: 10.1016/j.psj.2023.103075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/27/2023] Open
Abstract
Campylobacter is the main cause of human gastroenteritis worldwide, with 50 to 80% of the cases related to consumption of poultry products. Maternal antibodies (MAB) from commercial breeder flocks may protect their progeny against infection during the first few weeks of life. We here studied the prevalence of Campylobacter antibody titers in broiler breeder flocks and to which extent immunization of broiler breeders increases maternal anti-Campylobacter titers in their progeny and protects the offspring against Campylobacter colonization. Two vaccines were used: a bacterin mix of 13 Campylobacter strains and a subunit vaccine comprising 6 immunodominant Campylobacter antigens. All sampled on-farm breeder flocks were positive for anti-Campylobacter antibodies, yet in some breeder flocks only very low titers were detected. Vaccination of SPF broiler breeder flocks with both subunit and bacterin vaccines resulted in a prolonged presence of anti-Campylobacter antibodies in the serum and intestinal mucus of chicks. These bacterin- or subunit vaccine-induced MAB conferred protection against Campylobacter colonization in chicks until 7 and 21 d of age, respectively, but only at a low challenge dose (102.5 cfu). The concentration of MAB in the mucus is probably too low to sufficiently capture Campylobacter when higher challenge doses are used. In conclusion, vaccinating broiler breeders protects their offspring against Campylobacter colonization under low pathogen exposure conditions.
Collapse
Affiliation(s)
- Kristof Haems
- Department of Pathobiology, Pharmacology and Zoological Medicine, Ghent University, B9820 Merelbeke, Belgium
| | - Nathalie Van Rysselberghe
- Department of Pathobiology, Pharmacology and Zoological Medicine, Ghent University, B9820 Merelbeke, Belgium
| | - Evy Goossens
- Department of Pathobiology, Pharmacology and Zoological Medicine, Ghent University, B9820 Merelbeke, Belgium
| | - Diederik Strubbe
- Terrestrial Ecology Unit (TEREC), Ghent University, B9000 Ghent, Belgium
| | - Geertrui Rasschaert
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology & Food Sciences Unit, B9090 Melle, Belgium
| | - An Martel
- Department of Pathobiology, Pharmacology and Zoological Medicine, Ghent University, B9820 Merelbeke, Belgium
| | - Frank Pasmans
- Department of Pathobiology, Pharmacology and Zoological Medicine, Ghent University, B9820 Merelbeke, Belgium
| | - An Garmyn
- Department of Pathobiology, Pharmacology and Zoological Medicine, Ghent University, B9820 Merelbeke, Belgium.
| |
Collapse
|
8
|
Settles EW, Sonderegger D, Shannon AB, Celona KR, Lederer R, Yi J, Seavey C, Headley K, Mbegbu M, Harvey M, Keener M, Allender C, Hornstra H, Monroy FP, Woerle C, Theobald V, Mayo M, Currie BJ, Keim P. Development and evaluation of a multiplex serodiagnostic bead assay (BurkPx) for accurate melioidosis diagnosis. PLoS Negl Trop Dis 2023; 17:e0011072. [PMID: 36753506 PMCID: PMC9907819 DOI: 10.1371/journal.pntd.0011072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/06/2023] [Indexed: 02/09/2023] Open
Abstract
Burkholderia pseudomallei, the causative agent of melioidosis, is a gram-negative soil bacterium well recognized in Southeast Asia and northern Australia. However, wider and expanding global distribution of B. pseudomallei has been elucidated. Early diagnosis is critical for commencing the specific therapy required to optimize outcome. Serological testing using the indirect hemagglutination (IHA) antibody assay has long been used to augment diagnosis of melioidosis and to monitor progress. However, cross reactivity and prior exposure may complicate the diagnosis of current clinical disease (melioidosis). The goal of our study was to develop and initially evaluate a serology assay (BurkPx) that capitalized upon host response to multiple antigens. Antigens were selected from previous studies for expression/purification and conjugation to microspheres for multiantigen analysis. Selected serum samples from non-melioidosis controls and serial samples from culture-confirmed melioidosis patients were used to characterize the diagnostic power of individual and combined antigens at two times post admission. Multiple variable models were developed to evaluate multivariate antigen reactivity, identify important antigens, and determine sensitivity and specificity for the diagnosis of melioidosis. The final multiplex assay had a diagnostic sensitivity of 90% and specificity of 93%, which was superior to any single antigen in side-by-side comparisons. The sensitivity of the assay started at >85% for the initial serum sample after admission and increased to 94% 21 days later. Weighting antigen contribution to each model indicated that certain antigen contributed to diagnosis more than others, which suggests that the number of antigens in the assay can be decreased. In summation, the BurkPx assay can facilitate the diagnosis of melioidosis and potentially improve on currently available serology assays. Further evaluation is now required in both melioidosis-endemic and non-endemic settings.
Collapse
Affiliation(s)
- Erik W. Settles
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Derek Sonderegger
- Department of Mathematics and Statistics, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Austin B. Shannon
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Kimberly R. Celona
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Rachel Lederer
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Jinhee Yi
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Courtney Seavey
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Kyle Headley
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Mimi Mbegbu
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Maxx Harvey
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Mitch Keener
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Chris Allender
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Heidie Hornstra
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Fernando P. Monroy
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Celeste Woerle
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Vanessa Theobald
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Mark Mayo
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Bart J. Currie
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
- Infectious Diseases Department and Northern Territory Medical Program, Royal Darwin Hospital, Darwin, Northern Territory, Australia
| | - Paul Keim
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, United States of America
| |
Collapse
|
9
|
Du Y, Li H, Xu W, Hu X, Wu T, Chen J. Cell surface-associated elongation factor Tu interacts with fibronectin mediating the adhesion of Lactobacillus plantarum HC-2 to Penaeus vannamei intestinal cells and inhibiting the apoptosis induced by LPS and pathogen in Caco-2 cells. Int J Biol Macromol 2022; 224:32-47. [DOI: 10.1016/j.ijbiomac.2022.11.252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
|
10
|
Sun Y, Wang X, Li J, Xue F, Tang F, Dai J. Extraintestinal pathogenic Escherichia coli utilizes the surface-expressed elongation factor Tu to bind and acquire iron from holo-transferrin. Virulence 2022; 13:698-713. [PMID: 35443872 PMCID: PMC9037478 DOI: 10.1080/21505594.2022.2066274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) is a common anthropozoonotic pathogen that causes systemic infections. To establish infection, ExPEC must utilize essential nutrients including iron from the host. Transferrin is an important iron source for multiple bacteria. However, the mechanism by which ExPEC utilizes transferrin remains unclear. In this study, we found that iron-saturated holo-transferrin rather than iron-free apo-transferrin promoted the vitality of ExPEC in heat-inactivated human serum. The multifunctional protein Elongation factor Tu (EFTu) worked as a holo-transferrin binding protein. EFTu not only bound holo-transferrin rather than apo-transferrin but also released transferrin-related iron, with all domains of EFTu involved in holo-transferrin binding and iron release events. We also identified the surface location of EFTu on ExPEC. Overexpression of EFTu on the surface of nonpathogenic E. coli not only promoted the binding of bacteria to holo-transferrin but also facilitated the uptake of transferrin-related iron. More importantly, it significantly enhanced the survival of E. coli in heat-inactivated human serum, which was positively correlated with holo-transferrin but not apo-transferrin. Our research revealed a novel function of EFTu in binding holo-transferrin to promote iron uptake by bacteria, suggesting that EFTu was a potential virulence factor of ExPEC. In addition, our study provided research avenues into the iron acquisition and pathogenicity mechanisms of ExPEC.
Collapse
Affiliation(s)
- Yu Sun
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xuhang Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jin Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Feng Xue
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Fang Tang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jianjun Dai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
11
|
Dobrut A, Brzychczy-Włoch M. Immunogenic Proteins of Group B Streptococcus-Potential Antigens in Immunodiagnostic Assay for GBS Detection. Pathogens 2021; 11:43. [PMID: 35055991 PMCID: PMC8778278 DOI: 10.3390/pathogens11010043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/29/2021] [Accepted: 12/29/2021] [Indexed: 12/21/2022] Open
Abstract
Streptococcus agalactiae (Group B Streptococcus, GBS) is an opportunistic pathogen, which asymptomatically colonizes the gastrointestinal and genitourinary tract of up to one third of healthy adults. Nevertheless, GBS carriage in pregnant women may lead to several health issues in newborns causing life threatening infection, such as sepsis, pneumonia or meningitis. Recommended GBS screening in pregnant women significantly reduced morbidity and mortality in infants. Nevertheless, intrapartum antibiotic prophylaxis, recommended following the detection of carriage or in case of lack of a carriage test result for pregnant women who demonstrate certain risk factors, led to the expansion of the adverse phenomenon of bacterial resistance to antibiotics. In our paper, we reviewed some immunogenic GBS proteins, i.e., Alp family proteins, β protein, Lmb, Sip, BibA, FsbA, ScpB, enolase, elongation factor Tu, IMPDH, and GroEL, which possess features characteristic of good candidates for immunodiagnostic assays for GBS carriage detection, such as immunoreactivity and specificity. We assume that they can be used as an alternative diagnostic method to the presently recommended bacteriological cultivation and MALDI.
Collapse
Affiliation(s)
| | - Monika Brzychczy-Włoch
- Department of Molecular Medical Microbiology, Faculty of Medicine, Medical College, Jagiellonian University, 31-121 Krakow, Poland;
| |
Collapse
|
12
|
Sousa SA, Seixas AMM, Marques JMM, Leitão JH. Immunization and Immunotherapy Approaches against Pseudomonas aeruginosa and Burkholderia cepacia Complex Infections. Vaccines (Basel) 2021; 9:vaccines9060670. [PMID: 34207253 PMCID: PMC8234409 DOI: 10.3390/vaccines9060670] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/28/2022] Open
Abstract
Human infections caused by the opportunist pathogens Burkholderia cepacia complex and Pseudomonas aeruginosa are of particular concern due to their severity, their multiple antibiotic resistance, and the limited eradication efficiency of the current available treatments. New therapeutic options have been pursued, being vaccination strategies to prevent or limit these infections as a rational approach to tackle these infections. In this review, immunization and immunotherapy approaches currently available and under study against these bacterial pathogens is reviewed. Ongoing active and passive immunization clinical trials against P. aeruginosa infections is also reviewed. Novel identified bacterial targets and their possible exploitation for the development of immunization and immunotherapy strategies against P. aeruginosa and B. cepacia complex and infections are also presented and discussed.
Collapse
Affiliation(s)
- Sílvia A. Sousa
- Department of Bioengineering, IBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (A.M.M.S.); (J.M.M.M.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Correspondence: (S.A.S.); (J.H.L.); Tel.: +351-218417688 (J.H.L.)
| | - António M. M. Seixas
- Department of Bioengineering, IBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (A.M.M.S.); (J.M.M.M.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Joana M. M. Marques
- Department of Bioengineering, IBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (A.M.M.S.); (J.M.M.M.)
| | - Jorge H. Leitão
- Department of Bioengineering, IBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (A.M.M.S.); (J.M.M.M.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Correspondence: (S.A.S.); (J.H.L.); Tel.: +351-218417688 (J.H.L.)
| |
Collapse
|
13
|
Blackburn SA, Shepherd M, Robinson GK. Reciprocal Packaging of the Main Structural Proteins of Type 1 Fimbriae and Flagella in the Outer Membrane Vesicles of "Wild Type" Escherichia coli Strains. Front Microbiol 2021; 12:557455. [PMID: 33643229 PMCID: PMC7907004 DOI: 10.3389/fmicb.2021.557455] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 01/22/2021] [Indexed: 11/23/2022] Open
Abstract
Fundamental aspects of outer membrane vesicle (OMV) biogenesis and the engineering of producer strains have been major research foci for many in recent years. The focus of this study was OMV production in a variety of Escherichia coli strains including wild type (WT) (K12 and BW25113), mutants (from the Keio collection) and proprietary [BL21 and BL21 (DE3)] strains. The present study investigated the proteome and prospective mechanism that underpinned the key finding that the dominant protein present in E. coli K-12 WT OMVs was fimbrial protein monomer (FimA) (a polymerizable protein which is the key structural monomer from which Type 1 fimbriae are made). However, mutations in genes involved in fimbriae biosynthesis (ΔfimA, B, C, and F) resulted in the packaging of flagella protein monomer (FliC) (the major structural protein of flagella) into OMVs instead of FimA. Other mutations (ΔfimE, G, H, I, and ΔlrhA-a transcriptional regulator of fimbriation and flagella biosynthesis) lead to the packaging of both FimA and Flagellin into the OMVs. In the majority of instances shown within this research, the production of OMVs is considered in K-12 WT strains where structural appendages including fimbriae or flagella are temporally co-expressed throughout the growth curve as shown previously in the literature. The hypothesis, proposed and supported within the present paper, is that the vesicular packaging of the major FimA is reciprocally regulated with the major FliC in E. coli K-12 OMVs but this is abrogated in a range of mutated, non-WT E. coli strains. We also demonstrate, that a protein of interest (GFP) can be targeted to OMVs in an E. coli K-12 strain by protein fusion with FimA and that this causes normal packaging to be disrupted. The findings and underlying implications for host interactions and use in biotechnology are discussed.
Collapse
Affiliation(s)
| | | | - Gary K. Robinson
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| |
Collapse
|
14
|
Comparative proteomic analysis of outer membrane vesicles from Brucella suis, Brucella ovis, Brucella canis and Brucella neotomae. Arch Microbiol 2021; 203:1611-1626. [PMID: 33432377 PMCID: PMC7799404 DOI: 10.1007/s00203-020-02170-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 10/22/2020] [Accepted: 12/27/2020] [Indexed: 01/18/2023]
Abstract
Gram-negative bacteria release nanovesicles, called outer membrane vesicles (OMVs), from their outer membrane. Proteomics has been used to determine their composition. OMVs contain proteins able to elicit an immune response, so they have been proposed as a model to develop acellular vaccines. In this study, OMVs of Brucella suis, B. ovis, B. canis, and B. neotomae were purified and analyzed by SDS-PAGE, transmission electron microscopy and liquid chromatography coupled to mass spectrometry to determine the pan-proteome of these vesicles. In addition, antigenic proteins were detected by western blot with anti-Brucella sera. The in silico analysis of the pan-proteome revealed many homologous proteins, such as Omp16, Omp25, Omp31, SodC, Omp2a, and BhuA. Proteins contained in the vesicles from different Brucella species were detected by anti-Brucella sera. The occurrence of previously described immunogenic proteins derived from OMVs supports the use of these vesicles as candidates to be evaluated as an acellular brucellosis vaccine.
Collapse
|
15
|
Zandonadi FS, Ferreira SP, Alexandrino AV, Carnielli CM, Artier J, Barcelos MP, Nicolela NCS, Prieto EL, Goto LS, Belasque J, Novo-Mansur MTM. Periplasm-enriched fractions from Xanthomonas citri subsp. citri type A and X. fuscans subsp. aurantifolii type B present distinct proteomic profiles under in vitro pathogenicity induction. PLoS One 2020; 15:e0243867. [PMID: 33338036 PMCID: PMC7748154 DOI: 10.1371/journal.pone.0243867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 11/29/2020] [Indexed: 12/24/2022] Open
Abstract
The causative agent of Asiatic citrus canker, the Gram-negative bacterium Xanthomonas citri subsp. citri (XAC), produces more severe symptoms and attacks a larger number of citric hosts than Xanthomonas fuscans subsp. aurantifolii XauB and XauC, the causative agents of cancrosis, a milder form of the disease. Here we report a comparative proteomic analysis of periplasmic-enriched fractions of XAC and XauB in XAM-M, a pathogenicity- inducing culture medium, for identification of differential proteins. Proteins were resolved by two-dimensional electrophoresis combined with liquid chromatography-mass spectrometry. Among the 12 proteins identified from the 4 unique spots from XAC in XAM-M (p<0.05) were phosphoglucomutase (PGM), enolase, xylose isomerase (XI), transglycosylase, NAD(P)H-dependent glycerol 3-phosphate dehydrogenase, succinyl-CoA synthetase β subunit, 6-phosphogluconate dehydrogenase, and conserved hypothetical proteins XAC0901 and XAC0223; most of them were not detected as differential for XAC when both bacteria were grown in NB medium, a pathogenicity non-inducing medium. XauB showed a very different profile from XAC in XAM-M, presenting 29 unique spots containing proteins related to a great diversity of metabolic pathways. Preponderant expression of PGM and XI in XAC was validated by Western Blot analysis in the periplasmic-enriched fractions of both bacteria. This work shows remarkable differences between the periplasmic-enriched proteomes of XAC and XauB, bacteria that cause symptoms with distinct degrees of severity during citrus infection. The results suggest that some proteins identified in XAC can have an important role in XAC pathogenicity.
Collapse
Affiliation(s)
- Flávia S. Zandonadi
- Laboratório de Bioquímica e Biologia Molecular Aplicada, Departamento de Genética e Evolução, Universidade Federal de São Carlos, UFSCar, São Carlos, São Paulo, Brazil
| | - Sílvia P. Ferreira
- Laboratório de Bioquímica e Biologia Molecular Aplicada, Departamento de Genética e Evolução, Universidade Federal de São Carlos, UFSCar, São Carlos, São Paulo, Brazil
| | - André V. Alexandrino
- Laboratório de Bioquímica e Biologia Molecular Aplicada, Departamento de Genética e Evolução, Universidade Federal de São Carlos, UFSCar, São Carlos, São Paulo, Brazil
| | - Carolina M. Carnielli
- Laboratório de Bioquímica e Biologia Molecular Aplicada, Departamento de Genética e Evolução, Universidade Federal de São Carlos, UFSCar, São Carlos, São Paulo, Brazil
| | - Juliana Artier
- Laboratório de Bioquímica e Biologia Molecular Aplicada, Departamento de Genética e Evolução, Universidade Federal de São Carlos, UFSCar, São Carlos, São Paulo, Brazil
| | - Mariana P. Barcelos
- Laboratório de Bioquímica e Biologia Molecular Aplicada, Departamento de Genética e Evolução, Universidade Federal de São Carlos, UFSCar, São Carlos, São Paulo, Brazil
| | - Nicole C. S. Nicolela
- Laboratório de Bioquímica e Biologia Molecular Aplicada, Departamento de Genética e Evolução, Universidade Federal de São Carlos, UFSCar, São Carlos, São Paulo, Brazil
| | - Evandro L. Prieto
- Laboratório de Bioquímica e Biologia Molecular Aplicada, Departamento de Genética e Evolução, Universidade Federal de São Carlos, UFSCar, São Carlos, São Paulo, Brazil
| | - Leandro S. Goto
- Laboratório de Bioquímica e Biologia Molecular Aplicada, Departamento de Genética e Evolução, Universidade Federal de São Carlos, UFSCar, São Carlos, São Paulo, Brazil
| | - José Belasque
- Departamento de Fitopatologia e Nematologia, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, USP, Piracicaba, São Paulo, Brazil
| | - Maria Teresa Marques Novo-Mansur
- Laboratório de Bioquímica e Biologia Molecular Aplicada, Departamento de Genética e Evolução, Universidade Federal de São Carlos, UFSCar, São Carlos, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
16
|
Mohammadzadeh R, Ghazvini K, Farsiani H, Soleimanpour S. Mycobacterium tuberculosis extracellular vesicles: exploitation for vaccine technology and diagnostic methods. Crit Rev Microbiol 2020; 47:13-33. [PMID: 33044878 DOI: 10.1080/1040841x.2020.1830749] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Tuberculosis (TB) is a fatal epidemic disease usually caused by Mycobacterium tuberculosis (Mtb). Pervasive latent infection, multidrug- and extensively drug-resistant tuberculosis (MDR- and XDR-TB), and TB/HIV co-infection make TB a global health problem, which emphasises the design and development of efficient vaccines and diagnostic biomarkers. Extracellular vesicles (EVs) secretion is a conserved phenomenon in all the domains of life. Various cargos such as nucleic acids, toxins, lipoproteins, and enzymes have been recognised in these nano-sized vesicles that may be involved in bacterial physiology and pathogenesis. The intrinsic adjuvant effect, native immunogenic cargo, sensing by host immune cells, circulation in all body fluids, and comprehensive distribution of antigens introduce EVs as a promising tool for designing novel vaccines, diagnostic biomarkers, and drug delivery systems. Genetic engineering of the EV-producing bacteria and the subsequent production of proper EVs could facilitate the development of the EV-based therapeutic applications. Recently, it was demonstrated that thick-walled mycobacteria release EVs, which contain immunodominant cargos such as lipoglycans and lipoproteins. The present article is a comprehensive review on the recent findings of Mtb EVs biology and the exploitation of EVs for the vaccine technology and diagnostic methods.
Collapse
Affiliation(s)
- Roghayeh Mohammadzadeh
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kiarash Ghazvini
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadi Farsiani
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Soleimanpour
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Reference Tuberculosis Laboratory, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
17
|
Sánchez-Jiménez MM, de la Cuesta Zuluaga JJ, Garcia-Montoya GM, Dabral N, Alzate JF, Vemulapalli R, Olivera-Angel M. Diagnosis of human and canine Brucella canis infection: development and evaluation of indirect enzyme-linked immunosorbent assays using recombinant Brucella proteins. Heliyon 2020; 6:e04393. [PMID: 32685723 PMCID: PMC7358725 DOI: 10.1016/j.heliyon.2020.e04393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/02/2020] [Accepted: 07/01/2020] [Indexed: 01/18/2023] Open
Abstract
Brucella canis, a Gram-negative coccobacilli belonging to the genus Brucellae, is a pathogenic bacterium that can produce infections in dogs and humans. Multiple studies have been carried out to develop diagnostic techniques to detect all zoonotic Brucellae. Diagnosis of Brucella canis infection is challenging due to the lack of highly specific and sensitive diagnostic assays. This work was divided in two phases: in the first one, were identified antigenic proteins in B. canis that could potentially be used for serological diagnosis of brucellosis. Human sera positive for canine brucellosis infection was used to recognize immunoreactive proteins that were then identified by performing 2D-GEL and immunoblot assays. These spots were analyzed using MALDI TOF MS and predicted proteins were identified. Of the 35 protein spots analyzed, 14 proteins were identified and subsequently characterized using bioinformatics, two of this were selected for the next phase. In the second phase, we developed and validated an indirect enzyme-linked immunosorbent assays using those recombinant proteins: inosine 5' phosphate dehydrogenase, pyruvate dehydrogenase E1 subunit beta (PdhB) and elongation factor Tu (Tuf). These genes were PCR-amplified from genomic DNA of B. canis strain Oliveri, cloned, and expressed in Escherichia coli. Recombinant proteins were purified by metal affinity chromatography, and used as antigens in indirect ELISA. Serum samples from healthy and B. canis-infected humans and dogs were used to evaluate the performance of indirect ELISAs. Our results suggest that PdhB and Tuf proteins could be used as antigens for serologic detection of B. canis infection in humans, but not in dogs. The use of recombinant antigens in iELISA assays to detect B. canis-specific antibodies in human serum could be a valuable tool to improve diagnosis of human brucellosis caused by B. canis.
Collapse
Affiliation(s)
- Miryan Margot Sánchez-Jiménez
- Vericel-Biogénesis Group, School of Veterinary Medicine, Faculty of Agricultural Sciences, Universidad of Antioquia, Medellín, Colombia
- Colombian Institute of Tropical Medicine, ICMT - CES University, Medellín, Colombia
| | - Juan Jacobo de la Cuesta Zuluaga
- Vericel-Biogénesis Group, School of Veterinary Medicine, Faculty of Agricultural Sciences, Universidad of Antioquia, Medellín, Colombia
| | - Gisela María Garcia-Montoya
- National Center for Genomic Sequencing -CNSG, University of Antioquia, Medellín, Colombia
- Parasitology Group, School of Medicine, University of Antioquia, Medellín, Colombia
| | - Neha Dabral
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States
| | - Juan Fernando Alzate
- National Center for Genomic Sequencing -CNSG, University of Antioquia, Medellín, Colombia
- Parasitology Group, School of Medicine, University of Antioquia, Medellín, Colombia
| | - Ramesh Vemulapalli
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States
| | - Martha Olivera-Angel
- Vericel-Biogénesis Group, School of Veterinary Medicine, Faculty of Agricultural Sciences, Universidad of Antioquia, Medellín, Colombia
| |
Collapse
|
18
|
In vitro passage alters virulence, immune activation and proteomic profiles of Burkholderia pseudomallei. Sci Rep 2020; 10:8320. [PMID: 32433516 PMCID: PMC7239947 DOI: 10.1038/s41598-020-64914-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/27/2020] [Indexed: 11/12/2022] Open
Abstract
Serial passage is a problem among many bacterial species, especially those where strains have been stored (banked) for several decades. Prior to banking with an organization such as ATCC, many bacterial strains were passaged for many years, so the characteristics of each strain may be extremely different. This is in addition to any differences in the original host environment. For Burkholderia pseudomallei, the number of serial passages should be carefully defined for each experiment because it undergoes adaptation during the course of serial passages. In the present study, we found that passaged B. pseudomallei fresh clinical isolates and reference strain in Luria-Bertani broth exhibited increased plaque formation, invasion, intracellular replication, Galleria mellonella killing abilities, and cytokine production of host cells. These bacteria also modulated proteomic profiles during in vitro passage. We presume that the modulation of protein expression during in vitro passage caused changes in virulence and immunogenicity phenotypes. Therefore, we emphasize the need for caution regarding the use of data from passaged B. pseudomallei. These findings of phenotypic adaptation during in vitro serial passage can help researchers working on B. pseudomallei and on other species to better understand disparate findings among strains that have been reported for many years.
Collapse
|
19
|
Mikhalchik E, Balabushevich N, Vakhrusheva T, Sokolov A, Baykova J, Rakitina D, Scherbakov P, Gusev S, Gusev A, Kharaeva Z, Bukato O, Pobeguts O. Mucin adsorbed by E. coli can affect neutrophil activation in vitro. FEBS Open Bio 2019; 10:180-196. [PMID: 31785127 PMCID: PMC6996330 DOI: 10.1002/2211-5463.12770] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 11/08/2019] [Accepted: 11/28/2019] [Indexed: 12/12/2022] Open
Abstract
Bacteria colonizing human intestine adhere to the gut mucosa and avoid the innate immune system. We previously demonstrated that Escherichia coli isolates can adsorb mucin from a diluted solution in vitro. Here, we evaluated the effect of mucin adsorption by E. coli cells on neutrophil activation in vitro. Activation was evaluated based on the detection of reactive oxygen species production by a chemiluminescent reaction (ChL), observation of morphological alterations in neutrophils and detection of exocytosis of myeloperoxidase and lactoferrin. We report that mucin adsorbed by cells of SharL1 isolate from Crohn's disease patient's inflamed ileum suppressed the potential for the activation of neutrophils in whole blood. Also, the binding of plasma complement proteins and immunoglobulins to the bacteria was reduced. Desialylated mucin, despite having the same adsorption efficiency to bacteria, had no effect on the blood ChL response. The effect of mucin suggests that it shields epitopes that interact with neutrophils and plasma proteins on the bacterial outer membrane. Potential candidates for these epitopes were identified among the proteins within the bacterial outer membrane fraction by 2D‐PAGE, fluorescent mucin binding on a blot and HPLC‐MS/MS. In vitro, the following proteins demonstrated mucin adsorption: outer membrane porins (OmpA, OmpC, OmpD and OmpF), adhesin OmpX, the membrane assembly factor OmpW, cobalamine transporter, ferrum uptake protein and the elongation factor Ef Tu‐1. In addition to their other functions, these proteins are known to be bacterial surface antigens. Therefore, the shielding of epitopes by mucin may affect the dynamics and intensity of an immune response.
Collapse
Affiliation(s)
- Elena Mikhalchik
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | | | - Tatiana Vakhrusheva
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - Alexey Sokolov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia.,Institute of Experimental Medicine, St. Petersburg, Russia
| | - Julia Baykova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - Daria Rakitina
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - Petr Scherbakov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - Sergey Gusev
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - Alexander Gusev
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | | | - Olga Bukato
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - Olga Pobeguts
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| |
Collapse
|
20
|
Sousa SA, Soares-Castro P, Seixas AMM, Feliciano JR, Balugas B, Barreto C, Pereira L, Santos PM, Leitão JH. New insights into the immunoproteome of B. cenocepacia J2315 using serum samples from cystic fibrosis patients. N Biotechnol 2019; 54:62-70. [PMID: 31465856 DOI: 10.1016/j.nbt.2019.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 07/09/2019] [Accepted: 08/24/2019] [Indexed: 11/26/2022]
Abstract
Bacteria of the Burkholderia cepacia complex (Bcc) are ubiquitous multidrug resistant organisms and opportunistic pathogens capable of causing life threatening lung infections among cystic fibrosis (CF) patients. No effective therapies are currently available to eradicate Bcc bacteria from CF patients, as these organisms are inherently resistant to the majority of clinically available antimicrobials. An immunoproteomics approach was used to identify Bcc proteins that stimulate the humoral immune response of the CF host, using bacterial cells grown under conditions mimicking the CF lung environment and serum samples from CF patients with a clinical record of Bcc infection. 24 proteins of the Bcc strain B. cenocepacia J2315 were identified as immunoreactive, 19 here reported as immunogenic for the first time. Ten proteins were predicted as extracytoplasmic, 9 of them being conserved in Bcc genomes. The immunogenic Bcc extracytoplasmic proteins are potential targets for development of novel therapeutic strategies and diagnostic tools to protect patients against the onset of chronic Bcc lung infections.
Collapse
Affiliation(s)
- Sílvia A Sousa
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal.
| | - Pedro Soares-Castro
- CBMA-Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, Braga, Portugal
| | - António M M Seixas
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Joana R Feliciano
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Bernardo Balugas
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Celeste Barreto
- Cystic Fibrosis Center, Department of Paediatrics, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | - Luísa Pereira
- Cystic Fibrosis Center, Department of Paediatrics, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | - Pedro M Santos
- CBMA-Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Jorge H Leitão
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal.
| |
Collapse
|
21
|
Vandeputte J, Martel A, Canessa S, Van Rysselberghe N, De Zutter L, Heyndrickx M, Haesebrouck F, Pasmans F, Garmyn A. Reducing Campylobacter jejuni colonization in broiler chickens by in-feed supplementation with hyperimmune egg yolk antibodies. Sci Rep 2019; 9:8931. [PMID: 31222043 PMCID: PMC6586802 DOI: 10.1038/s41598-019-45380-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 06/05/2019] [Indexed: 12/19/2022] Open
Abstract
Campylobacter infections sourced mainly to poultry products, are the most important bacterial foodborne zoonoses worldwide. No effective measures to control these infections in broiler production exist to date. Here, we used passive immunization with hyperimmune egg yolks to confer broad protection of broilers against Campylobacter infection. Two novel vaccines, a bacterin of thirteen Campylobacter jejuni (C. jejuni) and C. coli strains and a subunit vaccine of six immunodominant Campylobacter antigens, were used for the immunization of layers, resulting in high and prolonged levels of specific immunoglobulin Y (IgY) in the hens' yolks. In the first in vivo trial, yolks (sham, bacterin or subunit vaccine derived) were administered prophylactically in the broiler feed. Both the bacterin- and subunit vaccine-induced IgY significantly reduced the number of Campylobacter-colonized broilers. In the second in vivo trial, the yolks were administered therapeutically during three days before euthanasia. The bacterin IgY resulted in a significant decrease in C. jejuni counts per infected bird. The hyperimmune yolks showed strong reactivity to a broad representation of C. jejuni and C. coli clonal complexes. These results indicate that passive immunization with hyperimmune yolks, especially bacterin derived, offers possibilities to control Campylobacter colonization in poultry.
Collapse
Affiliation(s)
- Jasmien Vandeputte
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B9820, Merelbeke, Belgium.
| | - An Martel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B9820, Merelbeke, Belgium
| | - Stefano Canessa
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B9820, Merelbeke, Belgium
| | - Nathalie Van Rysselberghe
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B9820, Merelbeke, Belgium
| | - Lieven De Zutter
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B9820, Merelbeke, Belgium
| | - Marc Heyndrickx
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B9820, Merelbeke, Belgium
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology & Food Sciences Unit, Brusselsesteenweg 370, B9090, Melle, Belgium
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B9820, Merelbeke, Belgium
| | - Frank Pasmans
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B9820, Merelbeke, Belgium
| | - An Garmyn
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B9820, Merelbeke, Belgium.
| |
Collapse
|
22
|
Dean SN, Leary DH, Sullivan CJ, Oh E, Walper SA. Isolation and characterization of Lactobacillus-derived membrane vesicles. Sci Rep 2019; 9:877. [PMID: 30696852 PMCID: PMC6351534 DOI: 10.1038/s41598-018-37120-6] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/22/2018] [Indexed: 12/17/2022] Open
Abstract
Bacterial membrane vesicles have been implicated in a broad range of functions in microbial communities from pathogenesis to gene transfer. Though first thought to be a phenomenon associated with Gram-negative bacteria, vesicle production in Staphylococcus aureus, Lactobacillus plantarum, and other Gram-positives has recently been described. Given that many Lactobacillus species are Generally Regarded as Safe and often employed as probiotics, the engineering of Lactobacillus membrane vesicles presents a new avenue for the development of therapeutics and vaccines. Here we characterize and compare the membrane vesicles (MVs) from three different Lactobacillus species (L. acidophilus ATCC 53544, L. casei ATCC 393, and L. reuteri ATCC 23272), with the aim of developing future strategies for vesicle engineering. We characterize the vesicles from each Lactobacillus species comparing the physiochemical properties and protein composition of each. More than 80 protein components from Lactobacillus-derived MVs were identified, including some that were enriched in the vesicles themselves suggesting vesicles as a vehicle for antimicrobial delivery. Additionally, for each species vesicular proteins were categorized based on biological pathway and examined for subcellular localization signals in an effort to identify possible sorting mechanisms for MV proteins.
Collapse
Affiliation(s)
- Scott N Dean
- National Research Council Associate, Washington, DC, USA
| | - Dagmar H Leary
- Center for Bio/Molecular Science & Engineering (Code 6900), US Naval Research Laboratory, Washington, DC, USA
| | - Claretta J Sullivan
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Ohio, USA
| | - Eunkeu Oh
- Sotera Defense Solutions, Inc, Columbia, MD, USA
| | - Scott A Walper
- Center for Bio/Molecular Science & Engineering (Code 6900), US Naval Research Laboratory, Washington, DC, USA.
| |
Collapse
|
23
|
Thofte O, Kaur R, Su YC, Brant M, Rudin A, Hood D, Riesbeck K. Anti-EF-Tu IgG titers increase with age and may contribute to protection against the respiratory pathogen Haemophilus influenzae. Eur J Immunol 2019; 49:490-499. [PMID: 30566236 PMCID: PMC6491980 DOI: 10.1002/eji.201847871] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 11/23/2018] [Accepted: 12/17/2018] [Indexed: 11/21/2022]
Abstract
Non‐typeable Haemophilus influenzae (NTHi) is a pathogen that commonly colonizes the nasopharynx of preschool children, causing opportunistic infections including acute otitis media (AOM). Patients suffering from chronic obstructive pulmonary disease (COPD) are persistently colonized with NTHi and occasionally suffer from exacerbations by the bacterium leading to increased morbidity. Elongation‐factor thermo unstable (EF‐Tu), a protein critical for bacterial protein synthesis, has been found to moonlight on the surface of several bacteria. Here, we show that antibodies against NTHi EF‐Tu were present in children already at 18 months of age, and that the IgG antibody titers increased with age. Children harboring NTHi in the nasopharynx also displayed significantly higher IgG concentrations. Interestingly, children suffering from AOM had significantly higher anti‐EF‐Tu IgG levels when NTHi was the causative agent. Human sera recognized mainly the central and C‐terminal part of the EF‐Tu molecule and peptide‐based epitope mapping confirmed similar binding patterns for sera from humans and immunized mice. Immunization of BALB/c and otitis‐prone Junbo (C3H/HeH) mice promoted lower infection rates in the nasopharynx and middle ear, respectively. In conclusion, our results suggest that IgG directed against NTHi EF‐Tu may play an important role in the host immune response against NTHi.
Collapse
Affiliation(s)
- Oskar Thofte
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Ravinder Kaur
- Center for Infectious Diseases and Immunology, Rochester General Hospital Research Institute, Rochester, NY
| | - Yu-Ching Su
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Marta Brant
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Anna Rudin
- Department of Immunology, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Derek Hood
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Science & Innovation Campus, Oxfordshire, UK
| | - Kristian Riesbeck
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
24
|
Wang S, Gao J, Wang Z. Outer membrane vesicles for vaccination and targeted drug delivery. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2018; 11:e1523. [PMID: 29701017 DOI: 10.1002/wnan.1523] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 12/17/2022]
Abstract
Extracellular vesicles (EVs) are cell membrane-derived compartments that spontaneously secrete from a wide range of cells and tissues. EVs have shown to be the carriers in delivering drugs and small interfering RNA. Among EVs, bacterial outer membrane vesicles (OMVs) recently have gained the interest in vaccine development and targeted drug delivery. In this review, we summarize the current discoveries of OMVs and their functions. In particular, we focus on the biogenesis of OMVs and their functions in bacterial virulence and pathogenesis. Furthermore, we discuss the applications of OMVs in vaccination and targeted drug delivery. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Lipid-Based Structures.
Collapse
Affiliation(s)
- Sihan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Jin Gao
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Zhenjia Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| |
Collapse
|
25
|
Feng L, Niu X, Mei W, Li W, Liu Y, Willias SP, Yuan C, Bei W, Wang X, Li J. Immunogenicity and protective capacity of EF-Tu and FtsZ of Streptococcus suis serotype 2 against lethal infection. Vaccine 2018; 36:2581-2588. [PMID: 29627237 DOI: 10.1016/j.vaccine.2018.03.079] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 03/24/2018] [Accepted: 03/28/2018] [Indexed: 10/17/2022]
Abstract
Vaccine development efforts against Streptococcus suis serotype 2 (S. suis 2) are often constrained by strain/serotype antigen variability. Bioinformatics analyses revealed two highly conserved S. suis 2 factors, EF-Tu and FtsZ. Murine immunization with recombinant proteins emulsified in white oil adjuvant or eukaryotic DNA vaccine vectors provided significant protection against lethal S. suis 2 challenge. Immune responses elicited by recombinant protein immunization revealed the robust generation of humoral immune responses, with a mixed induction of Th1-type and Th2-type responses. Furthermore, the antiserum from mice immunized with recombinant proteins significantly inhibited the growth of S. suis 2 in healthy pig whole blood, suggesting the triggering of a strong opsonizing response. Histological examination found that immunizing mice with purified recombinant proteins reduced neutrophil and macrophage accumulation in brain and lung tissues after challenge with virulent S. suis. Taken together, these findings reveal that EF-Tu and FtsZ may be promising targets for subunit and DNA vaccine candidates against S. suis 2 infection.
Collapse
Affiliation(s)
- Liping Feng
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China; Shanghai Laboratory Animal Research Center, Shanghai, People's Republic of China
| | - Xiaona Niu
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Wen Mei
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Weitian Li
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Yuan Liu
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Stephan P Willias
- Department of Infectious Diseases and Pathology, University of Florida, Gainesville, FL, USA
| | - Chao Yuan
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Weicheng Bei
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Xiaohong Wang
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Jinquan Li
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China.
| |
Collapse
|
26
|
Liu Y, Hammer LA, Liu W, Hobbs MM, Zielke RA, Sikora AE, Jerse AE, Egilmez NK, Russell MW. Experimental vaccine induces Th1-driven immune responses and resistance to Neisseria gonorrhoeae infection in a murine model. Mucosal Immunol 2017; 10:1594-1608. [PMID: 28272393 PMCID: PMC5591041 DOI: 10.1038/mi.2017.11] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 01/23/2017] [Indexed: 02/04/2023]
Abstract
Female mice were immunized intravaginally with gonococcal outer membrane vesicles (OMVs) plus microencapsulated interleukin-12 (IL-12), and challenged using an established model of genital infection with Neisseria gonorrhoeae. Whereas sham-immunized and control animals cleared the infection in 10-13 days, those immunized with OMV plus IL-12 cleared infection with homologous gonococcal strains in 6-9 days. Significant protection was also seen after challenge with antigenically distinct strains of N. gonorrhoeae, and protective anamnestic immunity persisted for at least 6 months after immunization. Serum and vaginal immunoglobulin G (IgG) and IgA antibodies were generated against antigens expressed by homologous and heterologous strains. Iliac lymph node CD4+ T cells secreted interferon-γ (IFNγ), but not IL-4, in response to immunization, and produced IL-17 in response to challenge regardless of immunization. Antigens recognized by immunized mouse serum included several shared between gonococcal strains, including two identified by immunoproteomics approaches as elongation factor-Tu (EF-Tu) and PotF3. Experiments with immunodeficient mice showed that protective immunity depended upon IFNγ and B cells, presumably to generate antibodies. The results demonstrated that immunity to gonococcal infection can be induced by immunization with a nonliving gonococcal antigen, and suggest that efforts to develop a human vaccine should focus on strategies to generate type 1 T helper cell (Th1)-driven immune responses in the genital tract.
Collapse
Affiliation(s)
- Yingru Liu
- TherapyX, Inc., Buffalo, NY, USA,Department of Microbiology and Immunology, University at Buffalo, Buffalo, NY, USA
| | | | - Wensheng Liu
- Department of Pediatrics, Digestive Diseases and Nutrition Center, University at Buffalo, Buffalo, NY, USA
| | - Marcia M. Hobbs
- Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Ryszard A. Zielke
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, USA
| | - Aleksandra E. Sikora
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, USA
| | - Ann E. Jerse
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Nejat K. Egilmez
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA
| | - Michael W. Russell
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
27
|
Elongation factor Tu is a multifunctional and processed moonlighting protein. Sci Rep 2017; 7:11227. [PMID: 28894125 PMCID: PMC5593925 DOI: 10.1038/s41598-017-10644-z] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/10/2017] [Indexed: 01/10/2023] Open
Abstract
Many bacterial moonlighting proteins were originally described in medically, agriculturally, and commercially important members of the low G + C Firmicutes. We show Elongation factor Tu (Ef-Tu) moonlights on the surface of the human pathogens Staphylococcus aureus (SaEf-Tu) and Mycoplasma pneumoniae (MpnEf-Tu), and the porcine pathogen Mycoplasma hyopneumoniae (MhpEf-Tu). Ef-Tu is also a target of multiple processing events on the cell surface and these were characterised using an N-terminomics pipeline. Recombinant MpnEf-Tu bound strongly to a diverse range of host molecules, and when bound to plasminogen, was able to convert plasminogen to plasmin in the presence of plasminogen activators. Fragments of Ef-Tu retain binding capabilities to host proteins. Bioinformatics and structural modelling studies indicate that the accumulation of positively charged amino acids in short linear motifs (SLiMs), and protein processing promote multifunctional behaviour. Codon bias engendered by an A + T rich genome may influence how positively-charged residues accumulate in SLiMs.
Collapse
|
28
|
López-Ochoa J, Montes-García JF, Vázquez C, Sánchez-Alonso P, Pérez-Márquez VM, Blackall PJ, Vaca S, Negrete-Abascal E. Gallibacterium elongation factor-Tu possesses amyloid-like protein characteristics, participates in cell adhesion, and is present in biofilms. J Microbiol 2017; 55:745-752. [DOI: 10.1007/s12275-017-7077-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 07/03/2017] [Accepted: 07/24/2017] [Indexed: 11/28/2022]
|
29
|
Abstract
Purpose of review Burkholderia pseudomallei's and Burkholderia mallei's high rate of infectivity, limited treatment options, and potential use as biological warfare agents underscore the need for development of effective vaccines against these bacteria. Research efforts focused on vaccines against these bacteria are in pre-clinical stages, with no approved formulations currently on the market. Recent findings Several live attenuated and subunit vaccine formulations have been evaluated in animal studies, with no reports of significant long term survival after lethal challenge. Summary This review encompasses the most current vaccine strategies to prevent B. pseudomallei and B. mallei infections while providing insight for successful vaccines moving forward.
Collapse
|
30
|
Th2-related immune responses by the Brucella abortus cellular antigens, malate dehydrogenase, elongation factor, and arginase. Microb Pathog 2017. [PMID: 28629726 DOI: 10.1016/j.micpath.2017.06.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Brucellosis is an important zoonotic disease caused by Brucella species. The disease is difficult to control due to the intracellular survival of the bacterium and the lack of precise understanding of pathogenesis. Despite of continuous researches on the pathogenesis of Brucella spp. infection, there is still question on the pathogenesis, especially earlier immune response in the bacterial infection. Malate dehydrogenase (MDH), elongation factor (Tsf), and arginase (RocF), which showed serological reactivity, were purified after gene cloning, and their immune modulating activities were then analyzed in a murine model. Cytokine production profiles were investigated by stimulating RAW 264.7 cells and naïve splenocytes with the three recombinant proteins. Also, immune responses were analyzed by ELISA and an ELIspot assay after immunizing mice with the three proteins. Only TNF-α was produced in stimulated RAW 264.7 cells, whereas Th1-related cytokines, IFN-γ and IL-2, were induced in naïve splenocytes. In contrast, Th2-type immune response was more strongly induced in antigen-secreting cells in the splenocytes obtained 28 days after immunizing mice with the three proteins, as were IgM and IgG. The induction of Th2-related antibody, IgG1, was higher than the Th1-related antibody, IgG2a, in immunized mice. These results suggest that the three proteins strongly induce Th2-type immune response in vivo, even though Th1-related cytokines were produced in vitro.
Collapse
|
31
|
Amimanan P, Tavichakorntrakool R, Fong-Ngern K, Sribenjalux P, Lulitanond A, Prasongwatana V, Wongkham C, Boonsiri P, Umka Welbat J, Thongboonkerd V. Elongation factor Tu on Escherichia coli isolated from urine of kidney stone patients promotes calcium oxalate crystal growth and aggregation. Sci Rep 2017; 7:2953. [PMID: 28592876 PMCID: PMC5462744 DOI: 10.1038/s41598-017-03213-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 04/25/2017] [Indexed: 12/23/2022] Open
Abstract
Escherichia coli is the most common bacterium isolated from urine and stone matrix of calcium oxalate (CaOx) stone formers. Whether it has pathogenic role(s) in kidney stone formation or is only entrapped inside the stone remains unclear. We thus evaluated differences between E. coli isolated from urine of patients with kidney stone (EUK) and that from patients with urinary tract infection (UTI) without stone (EUU). From 100 stone formers and 200 UTI patients, only four pairs of EUK/EUU isolates had identical antimicrobial susceptibility patterns. Proteomic analysis revealed nine common differentially expressed proteins. Among these, the greater level of elongation factor Tu (EF-Tu) in EUK was validated by Western blotting. Outer membrane vesicles (OMVs) derived from EUK had greater promoting activities on CaOx crystallization, crystal growth and aggregation as compared to those derived from EUU. Neutralizing the OMVs of EUK with monoclonal anti-EF-Tu antibody, not with an isotype antibody, significantly reduced all these OMVs-induced promoting effects. Moreover, immunofluorescence staining of EF-Tu on bacterial cell surface confirmed the greater expression of surface EF-Tu on EUK (vs. EUU). Our data indicate that surface EF-Tu and OMVs play significant roles in promoting activities of E. coli on CaOx crystallization, crystal growth and aggregation.
Collapse
Affiliation(s)
- Piyawan Amimanan
- Faculty of Graduate School, Khon Kaen University, Khon Kaen, Thailand.,Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Ratree Tavichakorntrakool
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand. .,Department of Clinical Microbiology, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand.
| | - Kedsarin Fong-Ngern
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pipat Sribenjalux
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand.,Department of Clinical Microbiology, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Aroonlug Lulitanond
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand.,Department of Clinical Microbiology, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Vitoon Prasongwatana
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Chaisiri Wongkham
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Patcharee Boonsiri
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Jariya Umka Welbat
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand. .,Center for Research in Complex Systems Science, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
32
|
Mendes JS, Santiago AS, Toledo MAS, Horta MAC, de Souza AA, Tasic L, de Souza AP. In vitro Determination of Extracellular Proteins from Xylella fastidiosa. Front Microbiol 2016; 7:2090. [PMID: 28082960 PMCID: PMC5183587 DOI: 10.3389/fmicb.2016.02090] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 12/09/2016] [Indexed: 12/20/2022] Open
Abstract
The phytopathogen Xylella fastidiosa causes economic losses in important agricultural crops. Xylem vessel occlusion caused by biofilm formation is the major mechanism underlying the pathogenicity of distinct strains of X. fastidiosa. Here, we provide a detailed in vitro characterization of the extracellular proteins of X. fastidiosa. Based on the results, we performed a comparison with a strain J1a12, which cannot induce citrus variegated chlorosis symptoms when inoculated into citrus plants. We then extend this approach to analyze the extracellular proteins of X. fastidiosa in media supplemented with calcium. We verified increases in extracellular proteins concomitant with the days of growth and, consequently, biofilm development (3-30 days). Outer membrane vesicles carrying toxins were identified beginning at 10 days of growth in the 9a5c strain. In addition, a decrease in extracellular proteins in media supplemented with calcium was observed in both strains. Using mass spectrometry, 71 different proteins were identified during 30 days of X. fastidiosa biofilm development, including proteases, quorum-sensing proteins, biofilm formation proteins, hypothetical proteins, phage-related proteins, chaperones, toxins, antitoxins, and extracellular vesicle membrane components.
Collapse
Affiliation(s)
- Juliano S. Mendes
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de CampinasCampinas, Brazil
| | - André S. Santiago
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de CampinasCampinas, Brazil
| | - Marcelo A. S. Toledo
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de CampinasCampinas, Brazil
| | - Maria A. C. Horta
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de CampinasCampinas, Brazil
| | | | - Ljubica Tasic
- Departamento de Química Orgânica, Instituto de Química, Universidade Estadual de CampinasCampinas, Brazil
| | - Anete P. de Souza
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de CampinasCampinas, Brazil
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de CampinasCampinas, Brazil
| |
Collapse
|
33
|
Chiu KH, Wang LH, Tsai TT, Lei HY, Liao PC. Secretomic Analysis of Host-Pathogen Interactions Reveals That Elongation Factor-Tu Is a Potential Adherence Factor of Helicobacter pylori during Pathogenesis. J Proteome Res 2016; 16:264-273. [PMID: 27764940 DOI: 10.1021/acs.jproteome.6b00584] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The secreted proteins of bacteria are usually accompanied by virulence factors, which can cause inflammation and damage host cells. Identifying the secretomes arising from the interactions of bacteria and host cells could therefore increase understanding of the mechanisms during initial pathogenesis. The present study used a host-pathogen coculture system of Helicobacter pylori and monocytes (THP-1 cells) to investigate the secreted proteins associated with initial H. pylori pathogenesis. The secreted proteins from the conditioned media from H. pylori, THP-1 cells, and the coculture were collected and analyzed using SDS-PAGE and LC-MS/MS. Results indicated the presence of 15 overexpressed bands in the coculture. Thirty-one proteins were identified-11 were derived from THP-1 cells and 20 were derived from H. pylori. A potential adherence factor from H. pylori, elongation factor-Tu (EF-Tu), was selected for investigation of its biological function. Results from confocal microscopic and flow cytometric analyses indicated the contribution of EF-Tu to the binding ability of H. pylori in THP-1. The data demonstrated that fluorescence of EF-Tu on THP-1 cells increased after the addition of the H. pylori-conditioned medium. This study reports a novel secretory adherence factor in H. pylori, EF-Tu, and further elucidates mechanisms of H. pylori adaptation for host-pathogen interaction during pathogenesis.
Collapse
Affiliation(s)
- Kuo-Hsun Chiu
- Department and Graduate Institute of Aquaculture, National Kaohsiung Marine University , Kaohsiung 81157, Taiwan
| | - Ling-Hui Wang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University , Tainan 70428, Taiwan
| | - Tsung-Ting Tsai
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University , Tainan 70101, Taiwan
| | - Huan-Yao Lei
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University , Tainan 70101, Taiwan
| | - Pao-Chi Liao
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University , Tainan 70428, Taiwan
| |
Collapse
|
34
|
Marcos CM, de Oliveira HC, da Silva JDF, Assato PA, Yamazaki DS, da Silva RAM, Santos CT, Santos-Filho NA, Portuondo DL, Mendes-Giannini MJS, Fusco-Almeida AM. Identification and characterisation of elongation factor Tu, a novel protein involved in Paracoccidioides brasiliensis-host interaction. FEMS Yeast Res 2016; 16:fow079. [PMID: 27634774 DOI: 10.1093/femsyr/fow079] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2016] [Indexed: 12/16/2022] Open
Abstract
Paracoccidioides spp., which are temperature-dependent dimorphic fungi, are responsible for the most prevalent human systemic mycosis in Latin America, the paracoccidioidomycosis. The aim of this study was to characterise the involvement of elongation factor Tu (EF-Tu) in Paracoccidioides brasiliensis-host interaction. Adhesive properties were examined using recombinant PbEF-Tu proteins and the respective polyclonal anti-rPbEF-Tu antibody. Immunogold analysis demonstrated the surface location of EF-Tu in P. brasiliensis. Moreover, PbEF-Tu was found to bind to fibronectin and plasminogen by enzyme-linked immunosorbent assay, and it was determined that the binding to plasminogen is at least partly dependent on lysine residues and ionic interactions. To verify the participation of EF-Tu in the interaction of P. brasiliensis with pneumocytes, we blocked the respective protein with an anti-rPbEF-Tu antibody and evaluated the consequences on the interaction index by flow cytometry. During the interaction, we observed a decrease of 2- and 3-fold at 8 and 24 h, respectively, suggesting the contribution of EF-Tu in fungal adhesion/invasion.
Collapse
Affiliation(s)
- Caroline Maria Marcos
- Faculdade de Ciências Farmacêuticas, UNESP - Univ Estadual Paulista, Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, São Paulo, Brasil
| | - Haroldo Cesar de Oliveira
- Faculdade de Ciências Farmacêuticas, UNESP - Univ Estadual Paulista, Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, São Paulo, Brasil
| | - Julhiany de Fátima da Silva
- Faculdade de Ciências Farmacêuticas, UNESP - Univ Estadual Paulista, Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, São Paulo, Brasil
| | - Patricia Akemi Assato
- Faculdade de Ciências Farmacêuticas, UNESP - Univ Estadual Paulista, Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, São Paulo, Brasil
| | - Daniella Sayuri Yamazaki
- Faculdade de Ciências Farmacêuticas, UNESP - Univ Estadual Paulista, Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, São Paulo, Brasil
| | - Rosângela Aparecida Moraes da Silva
- Faculdade de Ciências Farmacêuticas, UNESP - Univ Estadual Paulista, Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, São Paulo, Brasil
| | - Cláudia Tavares Santos
- Faculdade de Ciências Farmacêuticas, UNESP - Univ Estadual Paulista, Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, São Paulo, Brasil
| | - Norival Alves Santos-Filho
- Instituto de Química, UNESP - Univ Estadual Paulista, Departamento de Bioquímica e Tecnologia Química, Unidade de Síntese, Estrutura e Caracterização de Peptídeos e Proteínas, Araraquara, São Paulo, Brasil
| | - Deivys Leandro Portuondo
- Faculdade de Ciências Farmacéuticas, UNESP - Univ Estadual Paulista, Departamento de Análises Clínicas, Laboratório de Imunologia Clínica, Araraquara, São Paulo, Brasil
| | - Maria José Soares Mendes-Giannini
- Faculdade de Ciências Farmacêuticas, UNESP - Univ Estadual Paulista, Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, São Paulo, Brasil
| | - Ana Marisa Fusco-Almeida
- Faculdade de Ciências Farmacêuticas, UNESP - Univ Estadual Paulista, Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, São Paulo, Brasil
| |
Collapse
|
35
|
Jiang F, He J, Navarro-Alvarez N, Xu J, Li X, Li P, Wu W. Elongation Factor Tu and Heat Shock Protein 70 Are Membrane-Associated Proteins from Mycoplasma ovipneumoniae Capable of Inducing Strong Immune Response in Mice. PLoS One 2016; 11:e0161170. [PMID: 27537186 PMCID: PMC4990256 DOI: 10.1371/journal.pone.0161170] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 08/01/2016] [Indexed: 12/02/2022] Open
Abstract
Chronic non-progressive pneumonia, a disease that has become a worldwide epidemic has caused considerable loss to sheep industry. Mycoplasma ovipneumoniae (M. ovipneumoniae) is the causative agent of interstitial pneumonia in sheep, goat and bighorn. We here have identified by immunogold and immunoblotting that elongation factor Tu (EF-Tu) and heat shock protein 70 (HSP 70) are membrane-associated proteins on M. ovipneumonaiea. We have evaluated the humoral and cellular immune responses in vivo by immunizing BALB/c mice with both purified recombinant proteins rEF-Tu and rHSP70. The sera of both rEF-Tu and rHSP70 treated BALB/c mice demonstrated increased levels of IgG, IFN-γ, TNF-α, IL-12(p70), IL-4, IL-5 and IL-6. In addition, ELISPOT assay showed significant increase in IFN-γ+ secreting lymphocytes in the rHSP70 group when compared to other groups. Collectively our study reveals that rHSP70 induces a significantly better cellular immune response in mice, and may act as a Th1 cytokine-like adjuvant in immune response induction. Finally, growth inhibition test (GIT) of M. ovipneumoniae strain Y98 showed that sera from rHSP70 or rEF-Tu-immunized mice inhibited in vitro growth of M. ovipneumoniae. Our data strongly suggest that EF-Tu and HSP70 of M. ovipneumoniae are membrane-associated proteins capable of inducing antibody production, and cytokine secretion. Therefore, these two proteins may be potential candidates for vaccine development against M. ovipneumoniae infection in sheep.
Collapse
Affiliation(s)
- Fei Jiang
- Laboratory of Rapid Diagnostic Technology for Animal Disease, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P. R. China
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P. R. China
| | - Jinyan He
- Laboratory of Rapid Diagnostic Technology for Animal Disease, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P. R. China
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P. R. China
| | - Nalu Navarro-Alvarez
- Center For Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, United States of America
| | - Jian Xu
- Laboratory of Rapid Diagnostic Technology for Animal Disease, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P. R. China
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P. R. China
| | - Xia Li
- Laboratory of Rapid Diagnostic Technology for Animal Disease, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P. R. China
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P. R. China
| | - Peng Li
- Laboratory of Rapid Diagnostic Technology for Animal Disease, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P. R. China
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P. R. China
| | - Wenxue Wu
- Laboratory of Rapid Diagnostic Technology for Animal Disease, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P. R. China
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P. R. China
| |
Collapse
|
36
|
McClean S. Prospects for subunit vaccines: Technology advances resulting in efficacious antigens requires matching advances in early clinical trial investment. Hum Vaccin Immunother 2016; 12:3103-3106. [PMID: 27494532 DOI: 10.1080/21645515.2016.1216287] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
With the continued march of antimicrobial resistance, a renewed impetus for better vaccines has been heralded. Identification of potent subunit vaccines has been greatly facilitated by recent developments in reverse vaccinology and proteomics strategies. There are a range of antimicrobial resistant bacterial pathogens that could be targeted by potent vaccine antigens identified within the coming years. However, cost is a significant hurdle in progressing lead antigen candidates to clinical trials. In order for novel vaccine technologies to realize their clinical potential, there is a requirement to improve investment and incentives to expedite the development of vaccines that are apparently efficacious in preclinical trials.
Collapse
Affiliation(s)
- Siobhán McClean
- a Centre of Microbial Host Interactions , Institute of Technology Tallaght , Dublin , Ireland
| |
Collapse
|
37
|
Linocin and OmpW Are Involved in Attachment of the Cystic Fibrosis-Associated Pathogen Burkholderia cepacia Complex to Lung Epithelial Cells and Protect Mice against Infection. Infect Immun 2016; 84:1424-1437. [PMID: 26902727 DOI: 10.1128/iai.01248-15] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 02/15/2016] [Indexed: 11/20/2022] Open
Abstract
Members of the Burkholderia cepacia complex (Bcc) cause chronic opportunistic lung infections in people with cystic fibrosis (CF), resulting in a gradual lung function decline and, ultimately, patient death. The Bcc is a complex of 20 species and is rarely eradicated once a patient is colonized; therefore, vaccination may represent a better therapeutic option. We developed a new proteomics approach to identify bacterial proteins that are involved in the attachment of Bcc bacteria to lung epithelial cells. Fourteen proteins were reproducibly identified by two-dimensional gel electrophoresis from four Bcc strains representative of two Bcc species: Burkholderia cenocepacia, the most virulent, and B. multivorans, the most frequently acquired. Seven proteins were identified in both species, but only two were common to all four strains, linocin and OmpW. Both proteins were selected based on previously reported data on these proteins in other species. Escherichia coli strains expressing recombinant linocin and OmpW showed enhanced attachment (4.2- and 3.9-fold) to lung cells compared to the control, confirming that both proteins are involved in host cell attachment. Immunoproteomic analysis using serum from Bcc-colonized CF patients confirmed that both proteins elicit potent humoral responses in vivo Mice immunized with either recombinant linocin or OmpW were protected from B. cenocepacia and B. multivorans challenge. Both antigens induced potent antigen-specific antibody responses and stimulated strong cytokine responses. In conclusion, our approach identified adhesins that induced excellent protection against two Bcc species and are promising vaccine candidates for a multisubunit vaccine. Furthermore, this study highlights the potential of our proteomics approach to identify potent antigens against other difficult pathogens.
Collapse
|
38
|
Casey WT, Spink N, Cia F, Collins C, Romano M, Berisio R, Bancroft GJ, McClean S. Identification of an OmpW homologue in Burkholderia pseudomallei, a protective vaccine antigen against melioidosis. Vaccine 2016; 34:2616-21. [PMID: 27091689 DOI: 10.1016/j.vaccine.2016.03.088] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 03/10/2016] [Accepted: 03/27/2016] [Indexed: 12/14/2022]
Abstract
Burkholderia pseudomallei is the causative agent of melioidosis, which is associated with a range of clinical manifestations, including sepsis and fatal pneumonia and is endemic in Southeast Asia and Northern Australia. Treatment can be challenging and control of infection involves prolonged antibiotic therapy, yet there are no approved vaccines available to prevent infection. Our aim was to develop and assess the potential of a prophylactic vaccine candidate targeted against melioidosis. The identified candidate is the 22kDa outer membrane protein, OmpW. We previously demonstrated that this protein was immunoprotective in mouse models of Burkholderia cepacia complex (Bcc) infections. We cloned Bp_ompW in Escherichia coli, expressed and purified the protein. Endotoxin free protein administered with SAS adjuvant protected Balb/C mice (75% survival) relative to controls (25% survival) (p<0.05). A potent serological response was observed with IgG2a to IgG1 ratio of 6.0. Furthermore C57BL/6 mice were protected for up to 80 days against a lethal dose of B. pseudomallei and surpassed the efficacy of the live attenuated 2D2 positive control. BpompW is homologous across thirteen sequenced B. pseudomallei strains, indicating that it should be broadly protective against B. pseudomallei. In conclusion, we have demonstrated that BpOmpW is able to induce protective immunity against melioidosis and is likely to be an effective vaccine antigen, possibly in combination with other subunit antigens.
Collapse
Affiliation(s)
- William T Casey
- Centre of Microbial Host Interactions, ITT Dublin, Tallaght, Dublin 24, Ireland
| | - Natasha Spink
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom
| | - Felipe Cia
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom
| | - Cassandra Collins
- Centre of Microbial Host Interactions, ITT Dublin, Tallaght, Dublin 24, Ireland
| | - Maria Romano
- Institute of Biostructures and Bioimaging, National Research Council, Via Mezzocannone 16, I-80134 Naples, Italy
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, National Research Council, Via Mezzocannone 16, I-80134 Naples, Italy
| | - Gregory J Bancroft
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom
| | - Siobhán McClean
- Centre of Microbial Host Interactions, ITT Dublin, Tallaght, Dublin 24, Ireland.
| |
Collapse
|
39
|
Ferreira RM, Moreira LM, Ferro JA, Soares MR, Laia ML, Varani AM, de Oliveira JC, Ferro MIT. Unravelling potential virulence factor candidates in Xanthomonas citri. subsp. citri by secretome analysis. PeerJ 2016; 4:e1734. [PMID: 26925342 PMCID: PMC4768671 DOI: 10.7717/peerj.1734] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/02/2016] [Indexed: 11/20/2022] Open
Abstract
Citrus canker is a major disease affecting citrus production in Brazil. It's mainly caused by Xanthomonas citri subsp. citri strain 306 pathotype A (Xac). We analysed the differential expression of proteins secreted by wild type Xac and an asymptomatic mutant for hrpB4 (ΔhrpB4) grown in Nutrient Broth (NB) and a medium mimicking growth conditions in the plant (XAM1). This allowed the identification of 55 secreted proteins, of which 37 were secreted by both strains when cultured in XAM1. In this secreted protein repertoire, the following stand out: Virk, Polyphosphate-selective porin, Cellulase, Endoglucanase, Histone-like protein, Ribosomal proteins, five hypothetical proteins expressed only in the wild type strain, Lytic murein transglycosylase, Lipoprotein, Leucyl-tRNA synthetase, Co-chaperonin, Toluene tolerance, C-type cytochrome biogenesis membrane protein, Aminopeptidase and two hypothetical proteins expressed only in the ΔhrpB4 mutant. Furthermore, Peptidoglycan-associated outer membrane protein, Regulator of pathogenicity factor, Outer membrane proteins, Endopolygalacturonase, Chorismate mutase, Peptidyl-prolyl cis-trans isomerase and seven hypothetical proteins were detected in both strains, suggesting that there was no relationship with the secretion mediated by the type III secretory system, which is not functional in the mutant strain. Also worth mentioning is the Elongation factor Tu (EF-Tu), expressed only the wild type strain, and Type IV pilus assembly protein, Flagellin (FliC) and Flagellar hook-associated protein, identified in the wild-type strain secretome when grown only in NB. Noteworthy, that FliC, EF-Tu are classically characterized as PAMPs (Pathogen-associated molecular patterns), responsible for a PAMP-triggered immunity response. Therefore, our results highlight proteins potentially involved with the virulence. Overall, we conclude that the use of secretome data is a valuable approach that may bring more knowledge of the biology of this important plant pathogen, which ultimately can lead to the establishment of new strategies to combat citrus canker.
Collapse
Affiliation(s)
- Rafael M. Ferreira
- Departamento de Tecnologia, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Jaboticabal, São Paulo, Brazil
| | - Leandro M. Moreira
- Departamento de Ciências Biológicas—Núcleo de Pesquisas em Ciências Biológicas-NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Jesus A. Ferro
- Departamento de Tecnologia, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Jaboticabal, São Paulo, Brazil
| | - Marcia R.R. Soares
- Departamento de Bioquímica, Universidade Federal do Rio de Janeiro, Instituto de Química, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo L. Laia
- Departamento de Engenharia Florestal, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
| | - Alessandro M. Varani
- Departamento de Tecnologia, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Jaboticabal, São Paulo, Brazil
| | - Julio C.F. de Oliveira
- Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil
| | - Maria Ines T. Ferro
- Departamento de Tecnologia, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Jaboticabal, São Paulo, Brazil
| |
Collapse
|
40
|
Mirzaei R, Saei A, Torkashvand F, Azarian B, Jalili A, Noorbakhsh F, Vaziri B, Hadjati J. Identification of proteins derived from Listeria monocytogenes inducing human dendritic cell maturation. Tumour Biol 2016; 37:10893-907. [PMID: 26886282 DOI: 10.1007/s13277-016-4933-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 01/28/2016] [Indexed: 01/25/2023] Open
Abstract
Dendritic cells (DCs) are potent antigen-presenting cells (APCs) that can promote antitumor immunity when pulsed with tumor antigens and then matured by stimulatory agents. Despite apparent progress in DC-based cancer immunotherapy, some discrepancies were reported in generating potent DCs. Listeria monocytogenes as an intracellular microorganism is able to effectively activate DCs through engaging pattern-recognition receptors (PRRs). This study aimed to find the most potent components derived from L. monocytogenes inducing DC maturation. The preliminary results demonstrated that the ability of protein components is higher than DNA components to promote DC maturation and activation. Protein lysate fractionation demonstrated that fraction 2 HIC (obtained by hydrophobic interaction chromatography) was able to efficiently mature DCs. F2HIC-matured DCs are able to induce allogeneic CD8(+) T cells proliferation better than LPS-matured DCs and induce IFN-γ producing CD8(+) T cells. Mass spectrometry results showed that F2HIC contains 109 proteins. Based on the bioinformatics analysis for these 109 proteins, elongation factor Tu (EF-Tu) could be considered as a PRR ligand for stimulating DC maturation.
Collapse
Affiliation(s)
- Reza Mirzaei
- Immunology Department, School of Medicine, Tehran University of Medical Sciences, Poursina Avenue, Tehran, Iran
| | - Azad Saei
- Immunology Department, School of Medicine, Tehran University of Medical Sciences, Poursina Avenue, Tehran, Iran
| | - Fatemeh Torkashvand
- Protein Chemistry Unit, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Bahareh Azarian
- Protein Chemistry Unit, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Ahmad Jalili
- Division of Immunology, Allergy and Infectious Diseases, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Farshid Noorbakhsh
- Immunology Department, School of Medicine, Tehran University of Medical Sciences, Poursina Avenue, Tehran, Iran
| | - Behrouz Vaziri
- Protein Chemistry Unit, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Jamshid Hadjati
- Immunology Department, School of Medicine, Tehran University of Medical Sciences, Poursina Avenue, Tehran, Iran.
| |
Collapse
|
41
|
Borrelia burgdorferi elongation factor EF-Tu is an immunogenic protein during Lyme borreliosis. Emerg Microbes Infect 2015; 4:e54. [PMID: 26954993 PMCID: PMC5176084 DOI: 10.1038/emi.2015.54] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/17/2015] [Accepted: 07/21/2015] [Indexed: 12/22/2022]
Abstract
Borrelia burgdorferi, the etiological agent of Lyme disease, does not produce lipopolysaccharide but expresses a large number of lipoproteins on its cell surface. These outer membrane lipoproteins are highly immunogenic and have been used for serodiagnosis of Lyme disease. Recent studies have shown that highly conserved cytosolic proteins such as enolase and elongation factor Tu (EF-Tu) unexpectedly localized on the surface of bacteria including B. burgdorferi, and surface-localized enolase has shown to contribute to the enzootic cycle of B. burgdorferi. In this study, we studied the immunogenicity, surface localization, and function of B. burgdorferi EF-Tu. We found that EF-Tu is highly immunogenic in mice, and EF-Tu antibodies were readily detected in Lyme disease patients. On the other hand, active immunization studies showed that EF-Tu antibodies did not protect mice from infection when challenged with B. burgdorferi via either needle inoculation or tick bites. Borrelial mouse-tick cycle studies showed that EF-Tu antibodies also did not block B. burgdorferi migration and survival in ticks. Consistent with these findings, we found that EF-Tu primarily localizes in the protoplasmic cylinder of spirochetes and is not on the surface of B. burgdorferi. Taken together, our studies suggest that B. burgdorferi EF-Tu is not surfaced exposed, but it is highly immunogenic and is a potential serodiagnostic marker for Lyme borreliosis.
Collapse
|
42
|
Dwivedi P, Alam SI, Kumar O, Kumar RB. Comparative analysis of extractable proteins from Clostridium perfringens type A and type C strains showing varying degree of virulence. Anaerobe 2015; 35:77-91. [PMID: 26238688 DOI: 10.1016/j.anaerobe.2015.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/19/2015] [Accepted: 07/20/2015] [Indexed: 01/18/2023]
Abstract
The prevailing scenario of bioterrorism warrants development of medical countermeasures with expanded coverage of select agents. Clostridium perfringens is a pathogen of medical, veterinary and military importance, and has been listed as Validated Biological Agent. We employed 2DE-MS approach to identify a total of 134 unique proteins (529 protein spot features) from the extractable proteome of four type A and type C strains. Proteins showing altered expression under host-simulated conditions from virulent type A strain (ATCC13124) were also elucidated. Significant among the differentially expressed proteins were elongation factor, molecular chaperones, ribosomal proteins, carbamoyl phosphate synthase, clpB protein, choloylglycine hydrolase, phosphopyruvate hydratase, and trigger factor. Predictive elucidation, of putative virulence associated proteins and sequence conservation pattern of selected candidates, was carried out using homologous proteins from other bacterial select agents to screen for the commonality of putative antigenic determinants. Pathogens (17 select agents) were observed to form three discrete clusters; composition of I and II being consistent in most of the phylogenetic reconstructions. This work provides a basis for further validation of putative candidate proteins as prophylactic agents and for their ability to provide protection against clusters of pathogenic select bacterial agents; aimed at mitigating the shadows of biothreat.
Collapse
Affiliation(s)
- Pratistha Dwivedi
- Biotechnology Division, Defence Research and Development Establishment, Gwalior 474002, India
| | - Syed Imteyaz Alam
- Biotechnology Division, Defence Research and Development Establishment, Gwalior 474002, India.
| | - Om Kumar
- Defence Research and Development Organisation, New Delhi, India
| | - Ravi Bhushan Kumar
- Biotechnology Division, Defence Research and Development Establishment, Gwalior 474002, India
| |
Collapse
|
43
|
Comparative Exoproteomics and Host Inflammatory Response in Staphylococcus aureus Skin and Soft Tissue Infections, Bacteremia, and Subclinical Colonization. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:593-603. [PMID: 25809633 DOI: 10.1128/cvi.00493-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 03/21/2015] [Indexed: 11/20/2022]
Abstract
The exoproteome of Staphylococcus aureus contains enzymes and virulence factors that are important for host adaptation. We investigated the exoprotein profiles and cytokine/chemokine responses obtained in three different S. aureus-host interaction scenarios by using two-dimensional gel electrophoresis (2-DGE) and two-dimensional immunoblotting (2D-IB) combined with tandem mass spectrometry (MS/MS) and cytometric bead array techniques. The scenarios included S. aureus bacteremia, skin and soft tissue infections (SSTIs), and healthy carriage. By the 2-DGE approach, 12 exoproteins (the chaperone protein DnaK, a phosphoglycerate kinase [Pgk], the chaperone GroEL, a multisensor hybrid histidine kinase, a 3-methyl-2-oxobutanoate hydroxymethyltransferase [PanB], cysteine synthase A, an N-acetyltransferase, four isoforms of elongation factor Tu [EF-Tu], and one signature protein spot that could not be reliably identified by MS/MS) were found to be consistently present in more than 50% of the bacteremia isolates, while none of the SSTI or healthy-carrier isolates showed any of these proteins. By the 2D-IB approach, we also identified five antigens (methionine aminopeptidase [MetAPs], exotoxin 15 [Set15], a peptidoglycan hydrolase [LytM], an alkyl hydroperoxide reductase [AhpC], and a haptoglobin-binding heme uptake protein [HarA]) specific for SSTI cases. Cytokine and chemokine production varied during the course of different infection types and carriage. Monokine induced by gamma interferon (MIG) was more highly stimulated in bacteremia patients than in SSTI patients and healthy carriers, especially during the acute phase of infection. MIG could therefore be further explored as a potential biomarker of bacteremia. In conclusion, 12 exoproteins from bacteremia isolates, MIG production, and five antigenic proteins identified during SSTIs should be further investigated for potential use as diagnostic markers.
Collapse
|
44
|
Moumène A, Marcelino I, Ventosa M, Gros O, Lefrançois T, Vachiéry N, Meyer DF, Coelho AV. Proteomic profiling of the outer membrane fraction of the obligate intracellular bacterial pathogen Ehrlichia ruminantium. PLoS One 2015; 10:e0116758. [PMID: 25710494 PMCID: PMC4339577 DOI: 10.1371/journal.pone.0116758] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 12/13/2014] [Indexed: 01/27/2023] Open
Abstract
The outer membrane proteins (OMPs) of Gram-negative bacteria play a crucial role in virulence and pathogenesis. Identification of these proteins represents an important goal for bacterial proteomics, because it aids in vaccine development. Here, we have developed such an approach for Ehrlichia ruminantium, the obligate intracellular bacterium that causes heartwater. A preliminary whole proteome analysis of elementary bodies, the extracellular infectious form of the bacterium, had been performed previously, but information is limited about OMPs in this organism and about their role in the protective immune response. Identification of OMPs is also essential for understanding Ehrlichia's OM architecture, and how the bacterium interacts with the host cell environment. First, we developed an OMP extraction method using the ionic detergent sarkosyl, which enriched the OM fraction. Second, proteins were separated via one-dimensional electrophoresis, and digested peptides were analyzed via nano-liquid chromatographic separation coupled with mass spectrometry (LC-MALDI-TOF/TOF). Of 46 unique proteins identified in the OM fraction, 18 (39%) were OMPs, including 8 proteins involved in cell structure and biogenesis, 4 in transport/virulence, 1 porin, and 5 proteins of unknown function. These experimental data were compared to the predicted subcellular localization of the entire E. ruminantium proteome, using three different algorithms. This work represents the most complete proteome characterization of the OM fraction in Ehrlichia spp. The study indicates that suitable subcellular fractionation experiments combined with straightforward computational analysis approaches are powerful for determining the predominant subcellular localization of the experimentally observed proteins. We identified proteins potentially involved in E. ruminantium pathogenesis, which are good novel targets for candidate vaccines. Thus, combining bioinformatics and proteomics, we discovered new OMPs for E. ruminantium that are valuable data for those investigating new vaccines against this organism. In summary, we provide both pioneering data and novel insights into the pathogenesis of this obligate intracellular bacterium.
Collapse
Affiliation(s)
- Amal Moumène
- CIRAD, UMR CMAEE, Site de Duclos, Prise d’eau, F-97170, Petit-Bourg, Guadeloupe, France
- INRA, UMR1309 CMAEE, F-34398, Montpellier, France
- Université des Antilles et de la Guyane, 97159, Pointe-à-Pitre cedex, Guadeloupe, France
| | - Isabel Marcelino
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Miguel Ventosa
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Olivier Gros
- Université des Antilles et de la Guyane, Institut de Biologie Paris Seine, UMR7138 UPMC-CNRS, Equipe Biologie de la Mangrove, UFR des Sciences Exactes et Naturelles, Département de Biologie, BP 592, 97159, Pointe-à-Pitre cedex, Guadeloupe, France
| | | | - Nathalie Vachiéry
- CIRAD, UMR CMAEE, Site de Duclos, Prise d’eau, F-97170, Petit-Bourg, Guadeloupe, France
- INRA, UMR1309 CMAEE, F-34398, Montpellier, France
| | - Damien F. Meyer
- CIRAD, UMR CMAEE, Site de Duclos, Prise d’eau, F-97170, Petit-Bourg, Guadeloupe, France
- INRA, UMR1309 CMAEE, F-34398, Montpellier, France
- * E-mail:
| | - Ana V. Coelho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| |
Collapse
|
45
|
Mohan S, Hertweck C, Dudda A, Hammerschmidt S, Skerka C, Hallström T, Zipfel PF. Tuf of Streptococcus pneumoniae is a surface displayed human complement regulator binding protein. Mol Immunol 2014; 62:249-64. [PMID: 25046156 DOI: 10.1016/j.molimm.2014.06.029] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 06/21/2014] [Accepted: 06/23/2014] [Indexed: 11/15/2022]
Abstract
Streptococcus pneumoniae is a Gram-positive bacterium, causing acute sinusitis, otitis media, and severe diseases such as pneumonia, bacteraemia, meningitis and sepsis. Here we identify elongation factor Tu (Tuf) as a new Factor H binding protein of S. pneumoniae. The surface protein PspC which also binds a series of other human immune inhibitors, was the first identified pneumococcal Factor H binding protein of S. pneumoniae. Pneumococcal Tuf, a 55 kDa pneumococcal moonlighting protein which is displayed on the surface of pneumococci, is also located in the cytoplasm and is detected in the culture supernatant. Tuf binds the human complement inhibitors Factor H, FHL-1, CFHR1 and also the proenzyme plasminogen. Factor H and FHL-1 bound to Tuf, retain their complement regulatory activities. Similarly, plasminogen bound to Tuf was accessible for the activator uPA and activated plasmin cleaved the synthetic chromogenic substrate S-2251 as well as the natural substrates fibrinogen and the complement proteins C3 and C3b. Taken together, Tuf of S. pneumoniae is a new multi-functional bacterial virulence factor that helps the pathogen in complement escape and likely also in ECM degradation.
Collapse
Affiliation(s)
- Sarbani Mohan
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany
| | - Antje Dudda
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany
| | - Sven Hammerschmidt
- Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, Ernst Moritz Arndt University, Greifswald, Germany
| | - Christine Skerka
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany
| | - Teresia Hallström
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany
| | - Peter F Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany; Faculty of Biology, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
46
|
Liu H, Cheng Z, Song W, Wu W, Zhou Z. Immunoproteomic to analysis the pathogenicity factors in leukopenia caused by Klebsiella pneumonia bacteremia. PLoS One 2014; 9:e110011. [PMID: 25330314 PMCID: PMC4199714 DOI: 10.1371/journal.pone.0110011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 09/03/2014] [Indexed: 12/13/2022] Open
Abstract
Incidences of leukopenia caused by bacteremia have increased significantly and it is associated with prolonged hospital stay and increased cost. Immunoproteomic is a promising method to identify pathogenicity factors of different diseases. In the present study, we used immunoproteomic to analysis the pathogenicity factors in leukopenia caused by Klebsiella Pneumonia bacteremia. Approximately 40 protein spots localized in the 4 to 7 pI range were detected on two-dimensional electrophoresis gels, and 6 differentially expressed protein spots between 10 and 170 kDa were identified. Pathogenicity factors including S-adenosylmethionine synthetase, pyruvate dehydrogenase, glutathione synthetase, UDP-galactose-4-epimerase, acetate kinase A and elongation factor tu (EF-Tu). In validation of the pathogenicity factor, we used western blotting to show that Klebsiella pneumonia had higher (EF-Tu) expression when they accompanied by leukopenia rather than leukocytosis. Thus, we report 6 pathogenicity factors of leukopenia caused by Klebsiella pneumonia bacteremia, including 5 housekeeping enzymes and EF-Tu. We suggest EF-Tu could be a potential pathogenicity factor for leukopenia caused by Klebsiella pneumonia.
Collapse
Affiliation(s)
- Haiyan Liu
- Department of Critical Care, First Affiliated Hospital of Anhui Medical University, Anhui, Hefei, P.R. China
| | - Zhongle Cheng
- Department of Clinical Laboratory, First Affiliated Hospital of Anhui Medical University, Anhui, Hefei, P.R. China
| | - Wen Song
- Department of Radiology, First Affiliated Hospital of Anhui Medical University, Anhui, Hefei, P.R. China
| | - Wenyong Wu
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Anhui, Hefei, P.R. China
| | - Zheng Zhou
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Anhui, Hefei, P.R. China
- * E-mail:
| |
Collapse
|
47
|
Immunoproteomic analysis to identify Shiga toxin-producing Escherichia coli outer membrane proteins expressed during human infection. Infect Immun 2014; 82:4767-77. [PMID: 25156722 DOI: 10.1128/iai.02030-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Shiga-toxin producing Escherichia coli (STEC) is the etiologic agent of acute diarrhea, dysentery, and hemolytic-uremic syndrome (HUS). There is no approved vaccine for STEC infection in humans, and antibiotic use is contraindicated, as it promotes Shiga toxin production. In order to identify STEC-associated antigens and immunogenic proteins, outer membrane proteins (OMPs) were extracted from STEC O26:H11, O103, O113:H21, and O157:H7 strains, and commensal E. coli strain HS was used as a control. SDS-PAGE, two-dimensional-PAGE analysis, Western blot assays using sera from pediatric HUS patients and controls, and matrix-assisted laser desorption ionization-tandem time of flight analyses were used to identify 12 immunogenic OMPs, some of which were not reactive with control sera. Importantly, seven of these proteins have not been previously reported to be immunogenic in STEC strains. Among these seven proteins, OmpT and Cah displayed IgG and IgA reactivity with sera from HUS patients. Genes encoding these two proteins were present in a majority of STEC strains. Knowledge of the antigens produced during infection of the host and the immune response to those antigens will be important for future vaccine development.
Collapse
|
48
|
Ouidir T, Jarnier F, Cosette P, Jouenne T, Hardouin J. Extracellular Ser/Thr/Tyr phosphorylated proteins ofPseudomonas aeruginosaPA14 strain. Proteomics 2014; 14:2017-30. [DOI: 10.1002/pmic.201400190] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 06/19/2014] [Accepted: 06/23/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Tassadit Ouidir
- Polymers, Biopolymers, Surfaces Laboratory; CNRS; UMR 6270 Mont-Saint-Aignan France
- Normandie University, UR; Mont-Saint-Aignan France
- PISSARO Proteomic Platform; Institute for Research and Innovation in Biomedicine; University of Rouen; Mont Saint Aignan France
| | - Frédérique Jarnier
- Normandie University, UR; Mont-Saint-Aignan France
- PISSARO Proteomic Platform; Institute for Research and Innovation in Biomedicine; University of Rouen; Mont Saint Aignan France
| | - Pascal Cosette
- Polymers, Biopolymers, Surfaces Laboratory; CNRS; UMR 6270 Mont-Saint-Aignan France
- Normandie University, UR; Mont-Saint-Aignan France
- PISSARO Proteomic Platform; Institute for Research and Innovation in Biomedicine; University of Rouen; Mont Saint Aignan France
| | - Thierry Jouenne
- Polymers, Biopolymers, Surfaces Laboratory; CNRS; UMR 6270 Mont-Saint-Aignan France
- Normandie University, UR; Mont-Saint-Aignan France
- PISSARO Proteomic Platform; Institute for Research and Innovation in Biomedicine; University of Rouen; Mont Saint Aignan France
| | - Julie Hardouin
- Polymers, Biopolymers, Surfaces Laboratory; CNRS; UMR 6270 Mont-Saint-Aignan France
- Normandie University, UR; Mont-Saint-Aignan France
- PISSARO Proteomic Platform; Institute for Research and Innovation in Biomedicine; University of Rouen; Mont Saint Aignan France
| |
Collapse
|
49
|
Al-Maleki AR, Mariappan V, Vellasamy KM, Shankar EM, Tay ST, Vadivelu J. Enhanced intracellular survival and epithelial cell adherence abilities of Burkholderia pseudomallei morphotypes are dependent on differential expression of virulence-associated proteins during mid-logarithmic growth phase. J Proteomics 2014; 106:205-20. [DOI: 10.1016/j.jprot.2014.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 03/21/2014] [Accepted: 04/02/2014] [Indexed: 10/25/2022]
|
50
|
Premkumar L, Kurth F, Duprez W, Grøftehauge MK, King GJ, Halili MA, Heras B, Martin JL. Structure of the Acinetobacter baumannii dithiol oxidase DsbA bound to elongation factor EF-Tu reveals a novel protein interaction site. J Biol Chem 2014; 289:19869-80. [PMID: 24860094 DOI: 10.1074/jbc.m114.571737] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The multidrug resistant bacterium Acinetobacter baumannii is a significant cause of nosocomial infection. Biofilm formation, that requires both disulfide bond forming and chaperone-usher pathways, is a major virulence trait in this bacterium. Our biochemical characterizations show that the periplasmic A. baumannii DsbA (AbDsbA) enzyme has an oxidizing redox potential and dithiol oxidase activity. We found an unexpected non-covalent interaction between AbDsbA and the highly conserved prokaryotic elongation factor, EF-Tu. EF-Tu is a cytoplasmic protein but has been localized extracellularly in many bacterial pathogens. The crystal structure of this complex revealed that the EF-Tu switch I region binds to the non-catalytic surface of AbDsbA. Although the physiological and pathological significance of a DsbA/EF-Tu association is unknown, peptides derived from the EF-Tu switch I region bound to AbDsbA with submicromolar affinity. We also identified a seven-residue DsbB-derived peptide that bound to AbDsbA with low micromolar affinity. Further characterization confirmed that the EF-Tu- and DsbB-derived peptides bind at two distinct sites. These data point to the possibility that the non-catalytic surface of DsbA is a potential substrate or regulatory protein interaction site. The two peptides identified in this work together with the newly characterized interaction site provide a novel starting point for inhibitor design targeting AbDsbA.
Collapse
Affiliation(s)
- Lakshmanane Premkumar
- From the Institute for Molecular Bioscience, Division of Chemistry and Structural Biology, University of Queensland, St. Lucia, Queensland 4067, Australia
| | - Fabian Kurth
- From the Institute for Molecular Bioscience, Division of Chemistry and Structural Biology, University of Queensland, St. Lucia, Queensland 4067, Australia
| | - Wilko Duprez
- From the Institute for Molecular Bioscience, Division of Chemistry and Structural Biology, University of Queensland, St. Lucia, Queensland 4067, Australia
| | - Morten K Grøftehauge
- From the Institute for Molecular Bioscience, Division of Chemistry and Structural Biology, University of Queensland, St. Lucia, Queensland 4067, Australia
| | - Gordon J King
- From the Institute for Molecular Bioscience, Division of Chemistry and Structural Biology, University of Queensland, St. Lucia, Queensland 4067, Australia
| | - Maria A Halili
- From the Institute for Molecular Bioscience, Division of Chemistry and Structural Biology, University of Queensland, St. Lucia, Queensland 4067, Australia
| | - Begoña Heras
- From the Institute for Molecular Bioscience, Division of Chemistry and Structural Biology, University of Queensland, St. Lucia, Queensland 4067, Australia
| | - Jennifer L Martin
- From the Institute for Molecular Bioscience, Division of Chemistry and Structural Biology, University of Queensland, St. Lucia, Queensland 4067, Australia
| |
Collapse
|