1
|
De Cristofaro R. Thrombin reveals new faces with a tiny trick. J Thromb Haemost 2025; 23:1203-1204. [PMID: 40187846 DOI: 10.1016/j.jtha.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/03/2025] [Accepted: 01/03/2025] [Indexed: 04/07/2025]
Affiliation(s)
- Raimondo De Cristofaro
- Dipartimento di Medicina e Chirurgia Traslazionale, Facoltà di Medicina e Chirurgia "Agostino Gemelli," Università Cattolica S. Cuore, Roma, Italy; Servizio Malattie Emorragiche e Trombotiche, Fondazione Policlinico Universitario "A. Gemell" Istituto di Ricerca e Cura a Carattere Scientifico, Roma, Italy.
| |
Collapse
|
2
|
El Hamaoui D, Marchelli A, Gandrille S, Reboul E, Stepanian A, Palmier B, Jovine L, Lebrin F, Smadja DM, Bernabeu C, Denis CV, Gaussem P, Pasquali S, Kauskot A, Rossi E. Thrombin cleaves membrane-bound endoglin potentially contributing to the heterogeneity of circulating endoglin in preeclampsia. Commun Biol 2025; 8:316. [PMID: 40011679 PMCID: PMC11865430 DOI: 10.1038/s42003-025-07751-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 02/15/2025] [Indexed: 02/28/2025] Open
Abstract
Increased levels of soluble endoglin (sEng) are found in serum, plasma, and urine of preeclampsia patients. sEng is released from membrane-bound endoglin through the proteolytic activity of metalloproteases, but its structural heterogeneity suggests the involvement of additional proteases. Considering the roles of thrombin and sEng in preeclampsia pathogenesis, we investigated whether thrombin cleaves endoglin. Sequence analysis revealed a conserved peptide in endoglin similar to the α-thrombin cleavage site of protease-activated receptor-1. Western blot analysis of plasma from preeclamptic women showed endoglin fragments consistent with thrombin-mediated cleavage. Incubation of purified endoglin with thrombin generated specific fragments, whose N- and C-terminal sequencing confirmed the predicted cleavage sites. Furthermore, thrombin treatment of endoglin-expressing cells released sEng and reduced cell surface endoglin. These findings suggest that multiple protease-targeted cleavage sites lead to the generation of sEng fragments, which may reflect endothelial dysfunction and preeclampsia progression.
Collapse
Affiliation(s)
- Divina El Hamaoui
- Innovative Therapies in Hemostasis, INSERM U1140, Université Paris Cité, Paris, France
| | - Aurore Marchelli
- Innovative Therapies in Hemostasis, INSERM U1140, Université Paris Cité, Paris, France
| | - Sophie Gandrille
- Innovative Therapies in Hemostasis, INSERM U1140, Université Paris Cité, Paris, France
- Service d'hématologie biologique, AP-HP, Hôpital Européen Georges Pompidou, F-75015, Paris, France
| | - Etienne Reboul
- Innovative Therapies in Hemostasis, INSERM U1140, Université Paris Cité, Paris, France
| | - Alain Stepanian
- Service d'Hématologie biologique, Hôpital Saint-Eloi - 80 avenue Augustin Fliche - F-34090, Montpellier, France
| | - Bruno Palmier
- Innovative Therapies in Hemostasis, INSERM U1140, Université Paris Cité, Paris, France
| | - Luca Jovine
- Karolinska Institutet, Department of Medicine (MedH), Blickagången 16, SE-141 83, Huddinge, Sweden
| | - Franck Lebrin
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, The Netherlands
- Institute Physics for Medicine Paris, INSERM U1273, ESPCI Paris-PSL, CNRS UMR8063, F-75015, Paris, France
| | - David M Smadja
- Innovative Therapies in Hemostasis, INSERM U1140, Université Paris Cité, Paris, France
- Service d'hématologie biologique, AP-HP, Hôpital Européen Georges Pompidou, F-75015, Paris, France
| | - Carmelo Bernabeu
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040, Madrid, Spain
| | - Cecile V Denis
- HITh, Unite Mixte de Recherche 1176 INSERM, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Pascale Gaussem
- Innovative Therapies in Hemostasis, INSERM U1140, Université Paris Cité, Paris, France
- Service d'hématologie biologique, AP-HP, Hôpital Européen Georges Pompidou, F-75015, Paris, France
| | - Samuela Pasquali
- Laboratoire Biologie Fonctionnelle et Adaptative, INSERM ERL1133 F-75013, Paris, France
| | - Alexandre Kauskot
- HITh, Unite Mixte de Recherche 1176 INSERM, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Elisa Rossi
- Innovative Therapies in Hemostasis, INSERM U1140, Université Paris Cité, Paris, France.
| |
Collapse
|
3
|
Osiro KO, Duque HM, Sampaio de Oliveira KB, Melo NTM, Lima LF, Paes HC, Franco OL. Cleaving the way for heterologous peptide production: An overview of cleavage strategies. Methods 2025; 234:36-44. [PMID: 39638163 DOI: 10.1016/j.ymeth.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/12/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024] Open
Abstract
One of the main bottlenecks for recombinant peptide production is choosing the proper cleavage method to remove fusion protein tags from target peptides. While these tags are crucial for inhibiting the activity of the target peptide during heterologous expression, incorporating a cleavage site is essential for their later removal, ensuring the pure sequencing of the peptide. This review evaluates different cleavage methods, including protease-mediated, self-cleavable protein, and chemical-mediated sites, regarding their advantages and limitations. For instance, intein, Npro EDDIE, enterokinase, factor Xa, SUMO, and CNBr are options for residue-free cleavage. Although protease-mediated cleavage is widely used, it can be expensive, due to its own cost added to the whole process. As an alternative, self-cleavable sites eliminate the requirement for proteinases. Another crucial step in defining the proper cleavage method is cost consideration, which relates to the purpose of peptide production. Here, we explore a range of cleavage approaches, meeting the needs of both cost-constrained applications and a more flexible budget. Overall, selecting the most suitable cleavage method should be based on careful consideration of toxicity, cost, accuracy, and specific application requirements to ensure a state-of-the-art approach.
Collapse
Affiliation(s)
- Karen Ofuji Osiro
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 70790-160, Brazil
| | - Harry Morales Duque
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 70790-160, Brazil
| | | | - Nadielle Tamires Moreira Melo
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 70790-160, Brazil; Colegiado de Clínica Médica da Faculdade de Medicina, Universidade de Brasília (UnB), Brasília 70910-900, Brazil
| | - Letícia Ferreira Lima
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 70790-160, Brazil
| | - Hugo Costa Paes
- Colegiado de Clínica Médica da Faculdade de Medicina, Universidade de Brasília (UnB), Brasília 70910-900, Brazil
| | - Octavio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 70790-160, Brazil; S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande CEP 79.117-900, Brazil; Pós-graduação em Patologia Molecular, Universidade de Brasília, Campus Darcy Ribeiro, Brasília, Brazil.
| |
Collapse
|
4
|
Messaabi A, Merindol N, Bohnenblust L, Fantino E, Meddeb-Mouelhi F, Desgagné-Penix I. In vivo thrombin activity in the diatom Phaeodactylum tricornutum: biotechnological insights. Appl Microbiol Biotechnol 2024; 108:481. [PMID: 39377797 PMCID: PMC11461642 DOI: 10.1007/s00253-024-13322-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/24/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024]
Abstract
Diatoms are responsible for 20% of global carbon dioxide fixation and have significant potential in various biotechnological and industrial applications. Recently, the pennate diatom Phaeodactylum tricornutum has emerged as a prominent platform organism for metabolic engineering and synthetic biology. The availability of its genome sequence has facilitated the development of new bioengineering tools. In this study, we used in silico analyses to identify sequences potentially encoding thrombin-like proteins, which are involved in recognizing and cleaving the thrombin sequence LVPRGS in P. tricornutum. Protein structure prediction and docking studies indicated a similar active site and ligand positioning compared to characterized human and bovine thrombin. The evidence and efficiency of the cleavage were determined in vivo using two fusion-protein constructs that included YFP to measure expression, protein accumulation, and cleavage. Western blot analysis revealed 50-100% cleavage between YFP and N-terminal fusion proteins. Our findings suggest the existence of a novel thrombin-like protease in P. tricornutum. This study advances the application of diatoms for the synthesis and production of complex proteins and enhances our understanding of the functional role of these putative thrombin sequences in diatom physiology. KEY POINTS: • Protein structure predictions reveal thrombin-like active sites in P. tricornutum. • Validated cleavage efficiency of thrombin-like protease on fusion proteins in vivo. • Study advances bioengineering tools for diatom-based biotechnological applications.
Collapse
Affiliation(s)
- Anis Messaabi
- Department of Chemistry, Biochemistry and Physics, Université du Québec À Trois-Rivières, Trois-Rivières, QC, Canada
| | - Natacha Merindol
- Department of Chemistry, Biochemistry and Physics, Université du Québec À Trois-Rivières, Trois-Rivières, QC, Canada
| | - Lea Bohnenblust
- Department of Chemistry, Biochemistry and Physics, Université du Québec À Trois-Rivières, Trois-Rivières, QC, Canada
| | - Elisa Fantino
- Department of Chemistry, Biochemistry and Physics, Université du Québec À Trois-Rivières, Trois-Rivières, QC, Canada
- Plant Biology Research Group, Université du Québec À Trois-Rivières, Trois-Rivières, QC, Canada
| | - Fatma Meddeb-Mouelhi
- Department of Chemistry, Biochemistry and Physics, Université du Québec À Trois-Rivières, Trois-Rivières, QC, Canada
- Plant Biology Research Group, Université du Québec À Trois-Rivières, Trois-Rivières, QC, Canada
| | - Isabel Desgagné-Penix
- Department of Chemistry, Biochemistry and Physics, Université du Québec À Trois-Rivières, Trois-Rivières, QC, Canada.
- Plant Biology Research Group, Université du Québec À Trois-Rivières, Trois-Rivières, QC, Canada.
| |
Collapse
|
5
|
Gitto S, Fiorillo C, Argento FR, Fini E, Borghi S, Falcini M, Roccarina D, La Delfa R, Lillo L, Zurli T, Forte P, Ghinolfi D, De Simone P, Chiesi F, Ingravallo A, Vizzutti F, Aspite S, Laffi G, Lynch E, Petruccelli S, Carrai P, Palladino S, Sofi F, Stefani L, Amedei A, Baldi S, Toscano A, Lau C, Marra F, Becatti M. Oxidative stress-induced fibrinogen modifications in liver transplant recipients: unraveling a novel potential mechanism for cardiovascular risk. Res Pract Thromb Haemost 2024; 8:102555. [PMID: 39309232 PMCID: PMC11416524 DOI: 10.1016/j.rpth.2024.102555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/25/2024] [Accepted: 08/15/2024] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND Cardiovascular events represent a major cause of non-graft-related death after liver transplant. Evidence suggest that chronic inflammation associated with a remarkable oxidative stress in the presence of endothelial dysfunction and procoagulant environment plays a major role in the promotion of thrombosis. However, the underlying molecular mechanisms are not completely understood. OBJECTIVES In order to elucidate the mechanisms of posttransplant thrombosis, the aim of the present study was to investigate the role of oxidation-induced structural and functional fibrinogen modifications in liver transplant recipients. METHODS A case-control study was conducted on 40 clinically stable liver transplant recipients and 40 age-matched, sex-matched, and risk factor-matched controls. Leukocyte reactive oxygen species (ROS) production, lipid peroxidation, glutathione content, plasma antioxidant capacity, fibrinogen oxidation, and fibrinogen structural and functional features were compared between patients and controls. RESULTS Patients displayed enhanced leukocyte ROS production and an increased plasma lipid peroxidation with a reduced total antioxidant capacity compared with controls. This systemic oxidative stress was associated with fibrinogen oxidation with fibrinogen structural alterations. Thrombin-catalyzed fibrin polymerization and fibrin resistance to plasmin-induced lysis were significantly altered in patients compared with controls. Moreover, steatotic graft and smoking habit were associated with high fibrin degradation rate. CONCLUSION ROS-induced fibrinogen structural changes might increase the risk of thrombosis in liver transplant recipients.
Collapse
Affiliation(s)
- Stefano Gitto
- Internal Medicine and Liver Unit, University Hospital Careggi, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Claudia Fiorillo
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio,” University of Florence, Florence, Italy
| | - Flavia Rita Argento
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio,” University of Florence, Florence, Italy
| | - Eleonora Fini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio,” University of Florence, Florence, Italy
| | - Serena Borghi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio,” University of Florence, Florence, Italy
| | - Margherita Falcini
- Internal Medicine and Liver Unit, University Hospital Careggi, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Davide Roccarina
- Internal Medicine and Liver Unit, University Hospital Careggi, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Rosario La Delfa
- Internal Medicine and Liver Unit, University Hospital Careggi, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Ludovica Lillo
- Internal Medicine and Liver Unit, University Hospital Careggi, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Tommaso Zurli
- Internal Medicine and Liver Unit, University Hospital Careggi, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Paolo Forte
- Gastroenterology Unit, University Hospital Careggi, Florence, Italy
| | - Davide Ghinolfi
- Hepatobiliary Surgery and Liver Transplantation, University of Pisa Medical School Hospital, Pisa, Italy
| | - Paolo De Simone
- Hepatobiliary Surgery and Liver Transplantation, University of Pisa Medical School Hospital, Pisa, Italy
| | - Francesca Chiesi
- Department of Neuroscience, Psychology, Drug, and Child’s Health (NEUROFARBA), Section of Psychology, University of Florence, Florence, Italy
| | - Angelica Ingravallo
- Internal Medicine and Liver Unit, University Hospital Careggi, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Francesco Vizzutti
- Internal Medicine and Liver Unit, University Hospital Careggi, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Silvia Aspite
- Internal Medicine and Liver Unit, University Hospital Careggi, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Giacomo Laffi
- Internal Medicine and Liver Unit, University Hospital Careggi, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Erica Lynch
- Gastroenterology Unit, University Hospital Careggi, Florence, Italy
| | - Stefania Petruccelli
- Hepatobiliary Surgery and Liver Transplantation, University of Pisa Medical School Hospital, Pisa, Italy
| | - Paola Carrai
- Hepatobiliary Surgery and Liver Transplantation, University of Pisa Medical School Hospital, Pisa, Italy
| | - Simona Palladino
- Hepatobiliary Surgery and Liver Transplantation, University of Pisa Medical School Hospital, Pisa, Italy
| | - Francesco Sofi
- Unit of Clinical Nutrition, Careggi University Hospital, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Laura Stefani
- Sports Medicine Center Clinical and Experimental Medicine Department, University of Florence, Florence, Italy
| | - Amedeo Amedei
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Simone Baldi
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Arianna Toscano
- Division of Internal Medicine, University Hospital of Policlinico G. Martino, Messina, Italy
| | - Chloe Lau
- Department of Psychology, University of Western Ontario, London, Ontario, Canada
| | - Fabio Marra
- Internal Medicine and Liver Unit, University Hospital Careggi, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio,” University of Florence, Florence, Italy
| |
Collapse
|
6
|
Brewitz L, Brasnett A, Schnaubelt LI, Rabe P, Tumber A, Schofield CJ. Methods for production and assaying catalysis of isolated recombinant human aspartate/asparagine-β-hydroxylase. Methods Enzymol 2024; 704:313-344. [PMID: 39300654 DOI: 10.1016/bs.mie.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Aspartate/asparagine-β-hydroxylase (AspH) is a transmembrane 2-oxoglutarate (2OG)-dependent oxygenase that catalyzes the post-translational hydroxylation of aspartate- and asparagine-residues in epidermal growth factor-like domains (EGFDs) of its substrate proteins. Upregulation of ASPH and translocation of AspH from the endoplasmic reticulum membrane to the surface membrane of cancer cells is associated with enhanced cell motility and worsened clinical prognosis. AspH is thus a potential therapeutic and diagnostic target for cancer. This chapter describes methods for the production and purification of soluble constructs of recombinant human AspH suitable for biochemical and crystallographic studies. The chapter also describes efficient methods for performing turnover and inhibition assays which monitor catalysis of isolated recombinant human AspH in vitro using solid phase extraction coupled to mass spectrometry (SPE-MS). The SPE-MS assays employ synthetic disulfide- or thioether-bridged macrocyclic oligopeptides as substrates; a macrocycle is an apparently essential requirement for productive AspH catalysis and mimics an EGFD disulfide isomer that is not typically observed in crystal and NMR structures. SPE-MS assays can be used to monitor catalysis of 2OG oxygenases other than AspH; the methods described herein are representative for 2OG oxygenase SPE-MS assays useful for performing kinetic and/or inhibition studies.
Collapse
Affiliation(s)
- Lennart Brewitz
- Chemistry Research Laboratory and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, United Kingdom.
| | - Amelia Brasnett
- Chemistry Research Laboratory and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, United Kingdom
| | - Lara I Schnaubelt
- Chemistry Research Laboratory and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, United Kingdom
| | - Patrick Rabe
- Chemistry Research Laboratory and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, United Kingdom
| | - Anthony Tumber
- Chemistry Research Laboratory and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, United Kingdom
| | - Christopher J Schofield
- Chemistry Research Laboratory and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
7
|
Lubinski B, Whittaker GR. Host Cell Proteases Involved in Human Respiratory Viral Infections and Their Inhibitors: A Review. Viruses 2024; 16:984. [PMID: 38932275 PMCID: PMC11209347 DOI: 10.3390/v16060984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Viral tropism is most commonly linked to receptor use, but host cell protease use can be a notable factor in susceptibility to infection. Here we review the use of host cell proteases by human viruses, focusing on those with primarily respiratory tropism, particularly SARS-CoV-2. We first describe the various classes of proteases present in the respiratory tract, as well as elsewhere in the body, and incorporate the targeting of these proteases as therapeutic drugs for use in humans. Host cell proteases are also linked to the systemic spread of viruses and play important roles outside of the respiratory tract; therefore, we address how proteases affect viruses across the spectrum of infections that can occur in humans, intending to understand the extrapulmonary spread of SARS-CoV-2.
Collapse
Affiliation(s)
- Bailey Lubinski
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850, USA;
| | - Gary R. Whittaker
- Department of Microbiology & Immunology and Public & Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
8
|
Wu J, Zheng Y, Zhang LN, Gu CL, Chen WL, Chang MQ. Advanced nanomedicines and immunotherapeutics to treat respiratory diseases especially COVID-19 induced thrombosis. World J Clin Cases 2024; 12:2704-2712. [PMID: 38899301 PMCID: PMC11185334 DOI: 10.12998/wjcc.v12.i16.2704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/06/2024] [Accepted: 04/16/2024] [Indexed: 05/29/2024] Open
Abstract
Immunotherapy and associated immune regulation strategies gained huge attraction in order to be utilized for treatment and prevention of respiratory diseases. Engineering specifically nanomedicines can be used to regulate host immunity in lungs in the case of respiratory diseases including coronavirus disease 2019 (COVID-19) infection. COVID-19 causes pulmonary embolisms, thus new therapeutic options are required to target thrombosis, as conventional treatment options are either not effective due to the complexity of the immune-thrombosis pathophysiology. In this review, we discuss regulation of immune response in respiratory diseases especially COVID-19. We further discuss thrombosis and provide an overview of some antithrombotic nanoparticles, which can be used to develop nanomedicine against thrombo-inflammation induced by COVID-19 and other respiratory infectious diseases. We also elaborate the importance of immunomodulatory nanomedicines that can block pro-inflammatory signalling pathways, and thus can be recommended to treat respiratory infectious diseases.
Collapse
Affiliation(s)
- Jie Wu
- Department of Respiratory and Oncology, 72nd Group Army Hospital of PLA, Huzhou 313000, Zhejiang Province, China
| | - Ying Zheng
- Department of Respiratory and Oncology, 72nd Group Army Hospital of PLA, Huzhou 313000, Zhejiang Province, China
| | - Li-Na Zhang
- Department of Respiratory and Oncology, 72nd Group Army Hospital of PLA, Huzhou 313000, Zhejiang Province, China
| | - Cai-Li Gu
- Department of Respiratory and Oncology, 72nd Group Army Hospital of PLA, Huzhou 313000, Zhejiang Province, China
| | - Wang-Li Chen
- Department of Respiratory and Oncology, 72nd Group Army Hospital of PLA, Huzhou 313000, Zhejiang Province, China
| | - Min-Qiang Chang
- Department of Otorhinolaryngology, 72nd Group Army Hospital of PLA, Huzhou 313000, Zhejiang Province, China
| |
Collapse
|
9
|
Dai Y, Kretz CA, Kim PY, Gross PL. A specific fluorescence resonance energy quenching-based biosensor for measuring thrombin activity in whole blood. J Thromb Haemost 2024; 22:1627-1639. [PMID: 38382740 DOI: 10.1016/j.jtha.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND At sites of vessel injury, thrombin acts as the central mediator of coagulation by catalyzing fibrin clot formation and platelet activation. Thrombin generation is most frequently measured in plasma samples using small-molecule substrates; however, these have low specificity for thrombin and limited utility in whole blood. Plasma assays are limited because they ignore the hemostatic contributions of blood cells and require anticoagulation and the addition of supraphysiological concentrations of calcium. OBJECTIVES To overcome these limitations, we designed and characterized a fluorescence resonance energy quenching-based thrombin sensor (FTS) protein. METHODS The fluorescence resonance energy quenching pair of mAmetrine and tTomato, separated by a thrombin recognition sequence, was developed. The protein was expressed using Escherichia coli, and purity was assessed using sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The cleavage of FTS was monitored by fluorescence using excitation at 406 nm and emission at 526 nm and 581 nm. RESULTS Compared with small-molecule substrates, the FTS demonstrated high specificity for thrombin; it is not cleaved by thrombin or inhibited by α2-macroglobulin and interacts with thrombin's anion-binding exosite I. The FTS can effectively measure thrombin generation in plasma and in finger-prick whole blood, which allows it to be developed into a point-of-care test of thrombin generation. The FTS does not inhibit standard thrombin-generation assays. Lastly, FTS-based thrombin generation in nonanticoagulated finger-prick blood was delayed but enhanced compared with that in citrated plasma. CONCLUSION The FTS will broaden our understanding of thrombin generation in ways that are not attainable with current methods.
Collapse
Affiliation(s)
- Ying Dai
- Hamilton Health Sciences and Departments of Medicine and Medical Sciences, Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Colin A Kretz
- Hamilton Health Sciences and Departments of Medicine and Medical Sciences, Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Paul Y Kim
- Hamilton Health Sciences and Departments of Medicine and Medical Sciences, Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Peter L Gross
- Hamilton Health Sciences and Departments of Medicine and Medical Sciences, Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
10
|
Heurich M, McCluskey G. Complement and coagulation crosstalk - Factor H in the spotlight. Immunobiology 2023; 228:152707. [PMID: 37633063 DOI: 10.1016/j.imbio.2023.152707] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/02/2023] [Accepted: 07/10/2023] [Indexed: 08/28/2023]
Abstract
The immune complement and the coagulation systems are blood-based proteolytic cascades that are activated by pathway-specific triggers, based on protein-protein interactions and enzymatic cleavage reactions. Activation of these systems is finely balanced and controlled through specific regulatory mechanisms. The complement and coagulation systems are generally viewed as distinct, but have common evolutionary origins, and several interactions between these homologous systems have been reported. This complement and coagulation crosstalk can affect activation, amplification and regulatory functions in both systems. In this review, we summarize the literature on coagulation factors contributing to complement alternative pathway activation and regulation and highlight molecular interactions of the complement alternative pathway regulator factor H with several coagulation factors. We propose a mechanism where factor H interactions with coagulation factors may contribute to both complement and coagulation activation and regulation within the haemostatic system and fibrin clot microenvironment and introduce the emerging role of factor H as a modulator of coagulation. Finally, we discuss the potential impact of these protein interactions in diseases associated with factor H dysregulation or deficiency as well as evidence of coagulation dysfunction.
Collapse
Affiliation(s)
- Meike Heurich
- School of Pharmacy and Pharmaceutical Sciences, College of Biomedical and Life Sciences, Cardiff University, United Kingdom.
| | - Geneviève McCluskey
- Université Paris-Saclay, INSERM, Hémostase, Inflammation, Thrombose HITH U1176, 94276 Le Kremlin-Bicêtre, France
| |
Collapse
|
11
|
Bettiol A, Argento FR, Fini E, Bello F, Di Scala G, Taddei N, Emmi G, Prisco D, Becatti M, Fiorillo C. ROS-driven structural and functional fibrinogen modifications are reverted by interleukin-6 inhibition in Giant Cell Arteritis. Thromb Res 2023; 230:1-10. [PMID: 37598635 DOI: 10.1016/j.thromres.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/26/2023] [Accepted: 08/14/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND Cranial and extra-cranial vascular events are among the major determinants of morbidity and mortality in Giant Cell Arteritis (GCA). Vascular events seem mostly of inflammatory nature, although the precise pathogenetic mechanisms are still unclear. We investigated the role of oxidation-induced structural and functional fibrinogen modifications in GCA. The effects of the anti-IL6R tocilizumab in counteracting these mechanisms were also assessed. MATERIALS AND METHODS A cross-sectional study was conducted on 65 GCA patients and 65 matched controls. Leucocyte reactive oxygen species (ROS) production, redox state, and fibrinogen structural and functional features were compared between patients and controls. In 19 patients receiving tocilizumab, pre vs post treatment variations were assessed. RESULTS GCA patients displayed enhanced blood lymphocyte, monocyte and neutrophil ROS production compared to controls, with an increased plasma lipid peroxidation and a reduced total antioxidant capacity. This oxidative impairment resulted in a sustained fibrinogen oxidation (i.e. dityrosine content 320 (204-410) vs 136 (120-176) Relative Fluorescence Units (RFU), p < 0.0001), with marked alterations in fibrinogen secondary and tertiary structure [intrinsic fluorescence: 134 (101-227) vs 400 (366-433) RFU, p < 0.001]. Structural alterations paralleled a remarkable fibrinogen functional impairment, with a reduced ability to polymerize into fibrin and a lower fibrin susceptibility to plasmin-induced lysis. In patients receiving tocilizumab, a significant improvement in redox status was observed, accompanied by a significant improvement in fibrinogen structural and functional features (p < 0.001). CONCLUSIONS An impaired redox status accounts for structural and functional fibrinogen modifications in GCA, suggesting a potential role of tocilizumab for cardiovascular prevention in GCA.
Collapse
Affiliation(s)
- Alessandra Bettiol
- Department of Experimental and Clinical Medicine, University of Firenze, Largo Brambilla 3, 50134, Firenze, Italy
| | - Flavia Rita Argento
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze; viale Pieraccini, 6 - 50139 Firenze, Italy
| | - Eleonora Fini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze; viale Pieraccini, 6 - 50139 Firenze, Italy
| | - Federica Bello
- Department of Experimental and Clinical Medicine, University of Firenze, Largo Brambilla 3, 50134, Firenze, Italy
| | - Gerardo Di Scala
- Department of Experimental and Clinical Medicine, University of Firenze, Largo Brambilla 3, 50134, Firenze, Italy
| | - Niccolò Taddei
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze; viale Pieraccini, 6 - 50139 Firenze, Italy
| | - Giacomo Emmi
- Department of Experimental and Clinical Medicine, University of Firenze, Largo Brambilla 3, 50134, Firenze, Italy; Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Melbourne, Australia
| | - Domenico Prisco
- Department of Experimental and Clinical Medicine, University of Firenze, Largo Brambilla 3, 50134, Firenze, Italy
| | - Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze; viale Pieraccini, 6 - 50139 Firenze, Italy.
| | - Claudia Fiorillo
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze; viale Pieraccini, 6 - 50139 Firenze, Italy
| |
Collapse
|
12
|
Wei T, Liu J, Li C, Tan Y, Wei R, Wang J, Wu H, Li Q, Liu H, Tang Y, Li X. Revealing the extracellular function of HMGB1 N-terminal region acetylation assisted by a protein semi-synthesis approach. Chem Sci 2023; 14:10297-10307. [PMID: 37772093 PMCID: PMC10530822 DOI: 10.1039/d3sc01109g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 09/05/2023] [Indexed: 09/30/2023] Open
Abstract
HMGB1 (high-mobility group box 1) is a non-histone chromatin-associated protein that has been widely reported as a representative damage-associated molecular pattern (DAMP) and to play a pivotal role in the proinflammatory process once it is in an extracellular location. Accumulating evidence has shown that HMGB1 undergoes extensive post-translational modifications (PTMs) that actively regulate its conformation, localization, and intermolecular interactions. However, fully characterizing the functional implications of these PTMs has been challenging due to the difficulty in accessing homogeneous HMGB1 with site-specific PTMs of interest. In this study, we developed a streamlined protein semi-synthesis strategy via salicylaldehyde ester-mediated chemical ligations (Ser/Thr ligation and Cys/Pen ligation, STL/CPL). This methodology enabled us to generate a series of N-terminal region acetylated HMGB1 proteins. Further studies revealed that acetylation regulates HMGB1-heparin interaction and modulates HMGB1's stability against thrombin, representing a regulatory switch to control HMGB1's extracellular activity.
Collapse
Affiliation(s)
- Tongyao Wei
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Jiamei Liu
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Can Li
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Yi Tan
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Ruohan Wei
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Jinzheng Wang
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Hongxiang Wu
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Qingrong Li
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Heng Liu
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Yubo Tang
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Xuechen Li
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| |
Collapse
|
13
|
Motta G, Juliano L, Chagas JR. Human plasma kallikrein: roles in coagulation, fibrinolysis, inflammation pathways, and beyond. Front Physiol 2023; 14:1188816. [PMID: 37711466 PMCID: PMC10499198 DOI: 10.3389/fphys.2023.1188816] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/15/2023] [Indexed: 09/16/2023] Open
Abstract
Human plasma kallikrein (PKa) is obtained by activating its precursor, prekallikrein (PK), historically named the Fletcher factor. Human PKa and tissue kallikreins are serine proteases from the same family, having high- and low-molecular weight kininogens (HKs and LKs) as substrates, releasing bradykinin (Bk) and Lys-bradykinin (Lys-Bk), respectively. This review presents a brief history of human PKa with details and recent observations of its evolution among the vertebrate coagulation proteins, including the relations with Factor XI. We explored the role of Factor XII in activating the plasma kallikrein-kinin system (KKS), the mechanism of activity and control in the KKS, and the function of HK on contact activation proteins on cell membranes. The role of human PKa in cell biology regarding the contact system and KSS, particularly the endothelial cells, and neutrophils, in inflammatory processes and infectious diseases, was also approached. We examined the natural plasma protein inhibitors, including a detailed survey of human PKa inhibitors' development and their potential market.
Collapse
Affiliation(s)
- Guacyara Motta
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Luiz Juliano
- Departamento de Biofisica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Jair Ribeiro Chagas
- Departamento de Biofisica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
14
|
Lee I, Tantisirivat P, Edgington-Mitchell LE. Chemical Tools to Image the Activity of PAR-Cleaving Proteases. ACS BIO & MED CHEM AU 2023; 3:295-304. [PMID: 37599791 PMCID: PMC10436261 DOI: 10.1021/acsbiomedchemau.3c00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 08/22/2023]
Abstract
Protease-activated receptors (PARs) comprise a family of four G protein-coupled receptors (GPCRs) that have broad functions in health and disease. Unlike most GPCRs, PARs are uniquely activated by proteolytic cleavage of their extracellular N termini. To fully understand PAR activation and function in vivo, it is critical to also study the proteases that activate them. As proteases are heavily regulated at the post-translational level, measures of total protease abundance have limited utility. Measures of protease activity are instead required to inform their function. This review will introduce several classes of chemical probes that have been developed to measure the activation of PAR-cleaving proteases. Their strengths, weaknesses, and applications will be discussed, especially as applied to image protease activity at the whole organism, tissue, and cellular level.
Collapse
Affiliation(s)
- Irene
Y. Lee
- Department
of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology
Institute, The University of Melbourne, Parkville, Victoria 3052 Australia
| | - Piyapa Tantisirivat
- Department
of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology
Institute, The University of Melbourne, Parkville, Victoria 3052 Australia
| | - Laura E. Edgington-Mitchell
- Department
of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology
Institute, The University of Melbourne, Parkville, Victoria 3052 Australia
| |
Collapse
|
15
|
Aybay E, Ryu J, Fu Z, Akula S, Enriquez EM, Hallgren J, Wernersson S, Olsson AK, Hellman L. Extended cleavage specificities of human granzymes A and K, two closely related enzymes with conserved but still poorly defined functions in T and NK cell-mediated immunity. Front Immunol 2023; 14:1211295. [PMID: 37497217 PMCID: PMC10366535 DOI: 10.3389/fimmu.2023.1211295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/23/2023] [Indexed: 07/28/2023] Open
Abstract
Granzymes A and K are two highly homologous serine proteases expressed by mammalian cytotoxic T cells (CTL) and natural killer cells (NK). Granzyme A is the most abundant of the different granzymes (gzms) expressed by these two cell types. Gzms A and K are found in all jawed vertebrates and are the most well conserved of all hematopoietic serine proteases. Their potential functions have been studied extensively for many years, however, without clear conclusions. Gzm A was for many years thought to serve as a key component in the defense against viral infection by the induction of apoptosis in virus-infected cells, similar to gzm B. However, later studies have questioned this role and instead indicated that gzm A may act as a potent inducer of inflammatory cytokines and chemokines. Gzms A and K form clearly separate branches in a phylogenetic tree indicating separate functions. Transcriptional analyses presented here demonstrate the presence of gzm A and K transcripts in both CD4+ and CD8+ T cells. To enable screening for their primary biological targets we have made a detailed analysis of their extended cleavage specificities. Phage display analysis of the cleavage specificity of the recombinant enzymes showed that both gzms A and K are strict tryptases with high selectivity for Arg over Lys in the P1 position. The major differences in the specificities of these two enzymes are located N-terminally of the cleavage site, where gzm A prefers small amino acids such as Gly in the P3 position and shows a relatively relaxed selectivity in the P2 position. In contrast, gzm K prefers large amino acids such as Phe, Tyr, and Trp in both the P2 and P3 positions and does not tolerate negatively charged residues in the P2 position. This major distinction in extended specificities is likely reflected also in preferred in vivo targets of these two enzymes. This information can now be utilized for high-precision screening of primary targets for gzms A and K in search of their highly conserved but still poorly defined functions in vertebrate immunity.
Collapse
Affiliation(s)
- Erdem Aybay
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, The Biomedical Center, Uppsala, Sweden
| | - Jinhye Ryu
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, The Biomedical Center, Uppsala, Sweden
| | - Zhirong Fu
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, The Biomedical Center, Uppsala, Sweden
| | - Srinivas Akula
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, The Biomedical Center, Uppsala, Sweden
- Department of Anatomy, Physiology, and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Erika Mendez Enriquez
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Uppsala, Sweden
| | - Jenny Hallgren
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Uppsala, Sweden
| | - Sara Wernersson
- Department of Anatomy, Physiology, and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Anna-Karin Olsson
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Uppsala, Sweden
| | - Lars Hellman
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, The Biomedical Center, Uppsala, Sweden
| |
Collapse
|
16
|
Current Status of Oligonucleotide-Based Protein Degraders. Pharmaceutics 2023; 15:pharmaceutics15030765. [PMID: 36986626 PMCID: PMC10055846 DOI: 10.3390/pharmaceutics15030765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Transcription factors (TFs) and RNA-binding proteins (RBPs) have long been considered undruggable, mainly because they lack ligand-binding sites and are equipped with flat and narrow protein surfaces. Protein-specific oligonucleotides have been harnessed to target these proteins with some satisfactory preclinical results. The emerging proteolysis-targeting chimera (PROTAC) technology is no exception, utilizing protein-specific oligonucleotides as warheads to target TFs and RBPs. In addition, proteolysis by proteases is another type of protein degradation. In this review article, we discuss the current status of oligonucleotide-based protein degraders that are dependent either on the ubiquitin–proteasome system or a protease, providing a reference for the future development of degraders.
Collapse
|
17
|
O'Leary MK, Ahmed A, Alabi CA. Development of Host-Cleavable Antibody-Bactericide Conjugates against Extracellular Pathogens. ACS Infect Dis 2023; 9:322-329. [PMID: 36626184 DOI: 10.1021/acsinfecdis.2c00492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Novel antimicrobial agents with potent bactericidal activity are needed to treat infections caused by multidrug-resistant (MDR) extracellular pathogens, such as Pseudomonas aeruginosa. Antimicrobial peptides (AMPs) and peptidomimetics are promising alternatives to traditional antibiotics, but their therapeutic use is limited due to the lack of specificity and resulting off-target effects. The incorporation of an antibody into the drug design would alleviate these challenges by localizing the AMP to the target bacterial cells. Antibody-drug conjugates (ADCs) have already achieved clinical success as anticancer therapeutics, due to the ability of the antibody to deliver the payload directly to the cancer cells. This strategy involves the selective delivery of highly cytotoxic drugs to the target cells, which enables a broad therapeutic window. This platform can be translated to the treatment of infections, whereby an antibody is used to deliver an antimicrobial agent to the bacterial antigen. Herein, we propose the development of an antibody-bactericide conjugate (ABC) in which the antibacterial oligothioetheramide (oligoTEA), BDT-4G, is coupled to an anti-P. aeruginosa antibody via a cleavable linker. The drug BDT-4G was chosen based on its efficacy against a range of P. aeruginosa isolates and its ability to evade mechanisms conferring resistance to the last-resort agent polymyxin B. We demonstrate that the ABC binds to the bacterial cell surface, and following cleavage of the peptide linker, the oligoTEA payload is released and exhibits antipseudomonal activity.
Collapse
Affiliation(s)
- Meghan K O'Leary
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Asraa Ahmed
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Christopher A Alabi
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
18
|
Navaee F, Renaud P, Kleger A, Braschler T. Highly Efficient Cardiac Differentiation and Maintenance by Thrombin-Coagulated Fibrin Hydrogels Enriched with Decellularized Porcine Heart Extracellular Matrix. Int J Mol Sci 2023; 24:2842. [PMID: 36769166 PMCID: PMC9917900 DOI: 10.3390/ijms24032842] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
Biochemical and biophysical properties instruct cardiac tissue morphogenesis. Here, we are reporting on a blend of cardiac decellularized extracellular matrix (dECM) from porcine ventricular tissue and fibrinogen that is suitable for investigations employing an in vitro 3D cardiac cell culture model. Rapid and specific coagulation with thrombin facilitates the gentle inclusion of cells while avoiding sedimentation during formation of the dECM-fibrin composite. Our investigations revealed enhanced cardiogenic differentiation in the H9c2 myoblast cells when using the system in a co-culture with Nor-10 fibroblasts. Further enhancement of differentiation efficiency was achieved by 3D embedding of rat neonatal cardiomyocytes in the 3D system. Calcium imaging and analysis of beating motion both indicate that the dECM-fibrin composite significantly enhances recovery, frequency, synchrony, and the maintenance of spontaneous beating, as compared to various controls including Matrigel, pure fibrin and collagen I as well as a fibrin-collagen I blend.
Collapse
Affiliation(s)
- Fatemeh Navaee
- Microsystems Laboratory-LMIS4, EPFL, 1015 Lausanne, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, CMU, 1211 Geneva, Switzerland
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, 89081 Ulm, Germany
| | - Philippe Renaud
- Microsystems Laboratory-LMIS4, EPFL, 1015 Lausanne, Switzerland
| | - Alexander Kleger
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, 89081 Ulm, Germany
- Interdisciplinary Pancreatology, Department of Internal Medicine 1, Ulm University Hospital, 89081 Ulm, Germany
- Organoid Core Facility, Medical Faculty, Ulm University Hospital, 89081 Ulm, Germany
| | - Thomas Braschler
- Department of Pathology and Immunology, Faculty of Medicine, CMU, 1211 Geneva, Switzerland
| |
Collapse
|
19
|
Hoshiyama J, Okada Y, Cho S, Ueki R, Sando S. Apt-clean: aptamer-mediated cleavage of extracellular antigens for the inhibition of membrane protein functions. Biomater Sci 2023; 11:445-449. [PMID: 36594498 DOI: 10.1039/d2bm01695h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Recently, targeted protein degradation (TPD) has attracted much attention as a powerful strategy for effective inhibition of disease-related proteins. However, development of ligands with high affinity and specificity for a target protein is still a demanding task and poses a particular challenge for designing TPD therapeutics. In this work, we report a novel TPD strategy called aptamer-mediated cleavage of extracellular antigen (Apt-clean), where oligonucleotide-based affinity agents are used for selective recruitment of proteases to target membrane proteins. Our data demonstrate that Apt-clean induces selective degradation of the target protein both in vitro and in cellulo. In addition, the potential of Apt-clean was demonstrated through the inhibition of tumor-related growth factor signaling. This novel TPD modality may serve as an efficient and flexible strategy for targeting membrane proteins.
Collapse
Affiliation(s)
- Junya Hoshiyama
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Yuga Okada
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Seojung Cho
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Ryosuke Ueki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan. .,Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
20
|
ZNF185 prevents stress fiber formation through the inhibition of RhoA in endothelial cells. Commun Biol 2023; 6:29. [PMID: 36631535 PMCID: PMC9834212 DOI: 10.1038/s42003-023-04416-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023] Open
Abstract
Signaling through cAMP/protein kinase A (PKA) promotes endothelial barrier function to prevent plasma leakage induced by inflammatory mediators. The discovery of PKA substrates in endothelial cells increases our understanding of the molecular mechanisms involved in vessel maturation. In this study, we evaluate a cAMP inducer, forskolin, and a phospho-PKA substrate antibody to identify ZNF185 as a PKA substrate. ZNF185 interacts with PKA and colocalizes with F-actin in endothelial cells. Both ZNF185 and F-actin accumulate in the plasma membrane region in response to forskolin to stabilize the cortical actin structure. By contrast, ZNF185 knockdown disrupts actin filaments and promotes stress fiber formation without inflammatory mediators. Constitutive activation of RhoA is induced by ZNF185 knockdown, which results in forskolin-resistant endothelial barrier dysfunction. Knockout of mouse Zfp185 which is an orthologous gene of human ZNF185 increases vascular leakage in response to inflammatory stimuli in vivo. Thrombin protease is used as a positive control to assemble stress fibers via RhoA activation. Unexpectedly, ZNF185 is cleaved by thrombin, resulting in an N-terminal actin-targeting domain and a C-terminal PKA-interacting domain. Irreversible dysfunction of ZNF185 protein potentially causes RhoA-dependent stress fiber formation by thrombin.
Collapse
|
21
|
Russell P, Esser L, Hagemeyer CE, Voelcker NH. The potential impact of nanomedicine on COVID-19-induced thrombosis. NATURE NANOTECHNOLOGY 2023; 18:11-22. [PMID: 36536042 DOI: 10.1038/s41565-022-01270-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 10/12/2022] [Indexed: 06/17/2023]
Abstract
Extensive reports of pulmonary embolisms, ischaemic stroke and myocardial infarctions caused by coronavirus disease 2019 (COVID-19), as well as a significantly increased long-term risk of cardiovascular diseases in COVID-19 survivors, have highlighted severe deficiencies in our understanding of thromboinflammation and the need for new therapeutic options. Due to the complexity of the immunothrombosis pathophysiology, the efficacy of treatment with conventional anti-thrombotic medication is questioned. Thrombolytics do appear efficacious, but are hindered by severe bleeding risks, limiting their use. Nanomedicine can have profound impact in this context, protecting delicate (bio)pharmaceuticals from degradation en route and enabling delivery in a targeted and on demand manner. We provide an overview of the most promising nanocarrier systems and design strategies that may be adapted to develop nanomedicine for COVID-19-induced thromboinflammation, including dual-therapeutic approaches with antiviral and immunosuppressants. Resultant targeted and side-effect-free treatment may aid greatly in the fight against the ongoing COVID-19 pandemic.
Collapse
Affiliation(s)
- Peije Russell
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Manufacturing, Clayton, Victoria, Australia
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Lars Esser
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Manufacturing, Clayton, Victoria, Australia
| | - Christoph E Hagemeyer
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia.
| | - Nicolas H Voelcker
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
- Melbourne Centre for Nanofabrication, Victorian Node of Australian National Fabrication Facility, Clayton, Victoria, Australia.
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
22
|
Yokoyama H, Tateishi K, Baba Y, Kobayashi A, Hashimoto M, Fukuda S, Yamao H, Maruyama T, Nakata M, Matsushita M. Thrombin cleaves recombinant soluble thrombomodulin into a lectin-like domain fragment and a fragment with protein C-activating cofactor activity. Biosci Trends 2022; 16:444-446. [PMID: 36450579 DOI: 10.5582/bst.2022.01472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Thrombomodulin (TM) is a transmembrane protein that plays an important role in regulating the coagulation system by acting as a cofactor for thrombin in protein C activation. Additionally, TM is involved in inflammation. Previous studies have shown that soluble fragments of TM of varying sizes, which are derived from membrane-bound TM, are present in plasma and urine. Soluble fragments of TM are speculated to exhibit biological activity. Among these, a lectin-like domain fragment (TMD1) is of particular importance. Recombinant TMD1 has previously been shown to attenuate lipopolysaccharide-induced inflammation. Here, we report that thrombin cleaves recombinant soluble TM, which is used for the treatment of disseminated intravascular coagulation associated with sepsis, into TMD1 and a fragment comprising the C-terminal portion of TM (TMD23), the latter of which retains the cofactor activity for activating protein C. Our findings suggest that thrombin not only activates protein C on membrane-bound TM but may also cleave TM to generate TMD1.
Collapse
Affiliation(s)
- Hirota Yokoyama
- Department of Applied Biochemistry, Tokai University, Hiratsuka, Japan
| | - Koichiro Tateishi
- Department of Applied Biochemistry, Tokai University, Hiratsuka, Japan
| | - Yurie Baba
- Department of Applied Biochemistry, Tokai University, Hiratsuka, Japan
| | - Akina Kobayashi
- Department of Applied Biochemistry, Tokai University, Hiratsuka, Japan
| | - Manami Hashimoto
- Department of Applied Biochemistry, Tokai University, Hiratsuka, Japan
| | - Shion Fukuda
- Department of Applied Biochemistry, Tokai University, Hiratsuka, Japan
| | - Hinano Yamao
- Department of Applied Biochemistry, Tokai University, Hiratsuka, Japan
| | - Taiga Maruyama
- Department of Applied Biochemistry, Tokai University, Hiratsuka, Japan
| | - Munehiro Nakata
- Department of Applied Biochemistry, Tokai University, Hiratsuka, Japan
| | - Misao Matsushita
- Department of Applied Biochemistry, Tokai University, Hiratsuka, Japan
| |
Collapse
|
23
|
Stojanovski BM, Di Cera E. Comparative sequence analysis of vitamin K-dependent coagulation factors. J Thromb Haemost 2022; 20:2837-2849. [PMID: 36156849 PMCID: PMC9669250 DOI: 10.1111/jth.15897] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 01/13/2023]
Abstract
BACKGROUND Prothrombin, protein C, and factors VII, IX, and X are vitamin K (VK)-dependent coagulation proteins that play an important role in the initiation, amplification, and subsequent attenuation of the coagulation response. Blood coagulation evolved in the common vertebrate ancestor as a specialization of the complement system and immune response, which in turn bear close evolutionary ties with developmental enzyme cascades. There is currently no comprehensive analysis of the evolutionary changes experienced by these coagulation proteins during the radiation of vertebrates and little is known about conservation of residues that are important for zymogen activation and catalysis. OBJECTIVES To characterize the conservation level of functionally important residues among VK-dependent coagulation proteins from different vertebrate lineages. METHODS The conservation level of residues important for zymogen activation and catalysis was analyzed in >1600 primary sequences of VK-dependent proteins. RESULTS Functionally important residues are most conserved in prothrombin and least conserved in protein C. Some of the most profound functional modifications in protein C occurred in the ancestor of bony fish when the basic residue in the activation site was replaced by an aromatic residue. Furthermore, during the radiation of placental mammals from marsupials, protein C acquired a cysteine-rich insert that introduced an additional disulfide in the EGF1 domain and evolved a proprotein convertase cleavage site in the activation peptide linker that also became significantly elongated. CONCLUSIONS Sequence variabilities at functionally important residues may lead to interspecies differences in the zymogen activation and catalytic properties of orthologous VK-dependent proteins.
Collapse
Affiliation(s)
- Bosko M. Stojanovski
- Edward A. Doisy Department of Biochemistry and Molecular BiologySaint Louis University School of MedicineSt. LouisMissouriUSA
| | - Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular BiologySaint Louis University School of MedicineSt. LouisMissouriUSA
| |
Collapse
|
24
|
Effect of thrombin conjugation on hemostatic efficacy of PLGA mesh through reagent free surface modification. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.10.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
25
|
Shestopal SA, Parunov LA, Olivares P, Chun H, Ovanesov MV, Pettersson JR, Sarafanov AG. Isolated Variable Domains of an Antibody Can Assemble on Blood Coagulation Factor VIII into a Functional Fv-like Complex. Int J Mol Sci 2022; 23:ijms23158134. [PMID: 35897712 PMCID: PMC9330781 DOI: 10.3390/ijms23158134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 11/29/2022] Open
Abstract
Single-chain variable fragments (scFv) are antigen-recognizing variable fragments of antibodies (FV) where both subunits (VL and VH) are connected via an artificial linker. One particular scFv, iKM33, directed against blood coagulation factor VIII (FVIII) was shown to inhibit major FVIII functions and is useful in FVIII research. We aimed to investigate the properties of iKM33 enabled with protease-dependent disintegration. Three variants of iKM33 bearing thrombin cleavage sites within the linker were expressed using a baculovirus system and purified by two-step chromatography. All proteins retained strong binding to FVIII by surface plasmon resonance, and upon thrombin cleavage, dissociated into VL and VH as shown by size-exclusion chromatography. However, in FVIII activity and low-density lipoprotein receptor-related protein 1 binding assays, the thrombin-cleaved iKM33 variants were still inhibitory. In a pull-down assay using an FVIII-affinity sorbent, the isolated VH, a mixture of VL and VH, and intact iKM33 were carried over via FVIII analyzed by electrophoresis. We concluded that the isolated VL and VH assembled into scFv-like heterodimer on FVIII, and the isolated VH alone also bound FVIII. We discuss the potential use of both protease-cleavable scFvs and isolated Fv subunits retaining high affinity to the antigens in various practical applications such as therapeutics, diagnostics, and research.
Collapse
|
26
|
Modrzycka S, Kołt S, Polderdijk SGI, Adams TE, Potoczek S, Huntington JA, Kasperkiewicz P, Drąg M. Parallel imaging of coagulation pathway proteases activated protein C, thrombin, and factor Xa in human plasma. Chem Sci 2022; 13:6813-6829. [PMID: 35774156 PMCID: PMC9200056 DOI: 10.1039/d2sc01108e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/22/2022] [Indexed: 12/12/2022] Open
Abstract
Activated protein C (APC), thrombin, and factor (f) Xa are vitamin K-dependent serine proteases that are key factors in blood coagulation. Moreover, they play important roles in inflammation, apoptosis, fibrosis, angiogenesis, and viral infections. Abnormal activity of these coagulation factors has been related to multiple conditions, such as bleeding and thrombosis, Alzheimer's disease, sepsis, multiple sclerosis, and COVID-19. The individual activities of APC, thrombin, and fXa in coagulation and in various diseases are difficult to establish since these proteases are related and have similar substrate preferences. Therefore, the development of selective chemical tools that enable imaging and discrimination between coagulation factors in biological samples may provide better insight into their roles in various conditions and potentially aid in the establishment of novel diagnostic tests. In our study, we used a large collection of unnatural amino acids, and this enabled us to extensively explore the binding pockets of the enzymes' active sites. Based on the specificity profiles obtained, we designed highly selective substrates, inhibitors, and fluorescent activity-based probes (ABPs) that were used for fast, direct, and simultaneous detection of APC, thrombin, and fXa in human plasma. Using a collection of natural and unnatural amino acids, we synthesized a set of fluorescent activity-based probes for the fast, direct, and simultaneous detection of coagulation factors in human plasma.![]()
Collapse
Affiliation(s)
- Sylwia Modrzycka
- Department of Chemical Biology and Bioimaging, Faculty of Chemistry, Wrocław University of Science and Technology Wybrzeże Wyspiańskiego 27 50-370 Wrocław Poland
| | - Sonia Kołt
- Department of Chemical Biology and Bioimaging, Faculty of Chemistry, Wrocław University of Science and Technology Wybrzeże Wyspiańskiego 27 50-370 Wrocław Poland
| | - Stéphanie G I Polderdijk
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge The Keith Peters Building, Hills Road Cambridge CB2 0XY UK
| | - Ty E Adams
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge The Keith Peters Building, Hills Road Cambridge CB2 0XY UK
| | - Stanisław Potoczek
- Department of Haematology, Blood Neoplasms, and Bone Marrow Transplantation, Wrocław Medical University Pasteura 1 50-367 Wrocław Poland
| | - James A Huntington
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge The Keith Peters Building, Hills Road Cambridge CB2 0XY UK
| | - Paulina Kasperkiewicz
- Department of Chemical Biology and Bioimaging, Faculty of Chemistry, Wrocław University of Science and Technology Wybrzeże Wyspiańskiego 27 50-370 Wrocław Poland
| | - Marcin Drąg
- Department of Chemical Biology and Bioimaging, Faculty of Chemistry, Wrocław University of Science and Technology Wybrzeże Wyspiańskiego 27 50-370 Wrocław Poland
| |
Collapse
|
27
|
Fu Z, Akula S, Olsson AK, Hellman L. Chicken cathepsin G-like - A highly specific serine protease with a peculiar tryptase specificity expressed by chicken thrombocytes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 129:104337. [PMID: 34919980 DOI: 10.1016/j.dci.2021.104337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Serine proteases are major granule constituents of cells from several mammalian hematopoietic cell lineages. Despite the relatively extensive knowledge about these mammalian proteases, very little is known about their bird, reptile and amphibian homologs. In order to close this gap in our understanding of the evolution of these proteases, we have characterized the extended cleavage specificity and hematopoietic expression pattern of the chicken serine protease cathepsin G-like. This protease, which clusters in a separate subfamily of serine proteases among the vertebrate hematopoietic serine proteases, has been characterized using substrate phage display and further validated by using a panel of recombinant substrates. A preference for a lysine in the P1 position of a substrate, arginines in positions P2 and P3, and the aromatic amino acid tryptophane in the P4 position was observed. Based on the sequence alignment we could identify a consensus sequence for this protease as being PGGWRRK↓ALSV. Mass spectrometry analysis of a peptide with the consensus sequence obtained by phage display showed that cleavage of this peptide occurred after the conserved Lys (K) residue. A screening of potential in vivo substrates based on the derived P5-P3' consensus sequence resulted in a relatively limited number of potential substrates, due to the high selectivity of this enzyme. The most interesting of these were PDGF-A, coagulation factor V and low-density lipoprotein receptor like-8. Immunohistochemical analysis of chicken white blood cells with antisera produced against chicken cathepsin G-like and chicken egg lysozyme, as a reference protein known to be expressed by hematopoietic cells, showed presence of chicken cathepsin G-like almost exclusively in thrombocytes whereas lysozyme was found at very high amounts in heterophils, and lower amounts in monocytes and thrombocytes.
Collapse
Affiliation(s)
- Zhirong Fu
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Srinivas Akula
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Anna-Karin Olsson
- Department of Medical Biochemistry and Microbiology, BMC, Box 589, SE-751 23, Uppsala, Sweden
| | - Lars Hellman
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
28
|
Ryu J, Fu Z, Akula S, Olsson AK, Hellman L. Extended cleavage specificity of a Chinese alligator granzyme B homologue, a strict Glu-ase in contrast to the mammalian Asp-ases. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 128:104324. [PMID: 34826501 DOI: 10.1016/j.dci.2021.104324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Granzyme B (GzmB) is primarily expressed by mammalian cytotoxic T cells and serves as one of the key components in the defense against viral infection by the induction of apoptosis in virus infected cells. By direct cell to cell contact and delivery into target cells by perforin, cytotoxic T cells activate apoptosis through the action of GzmB by both caspase-dependent and -independent pathways. In search for early ancestors of GzmB we have in the current study identified and characterized a GzmB homologue from a reptile, the Chinese alligator. This enzyme is encoded from the same locus as the mammalian counterparts, the chymase locus. Phage display analysis of the cleavage specificity of the recombinant alligator enzyme (named MCP1A-like) shows that it is a relatively strict Glu-ase, with strong preference for glutamic acid in the P1 position of a substrate. The majority of mammalian GzmB:s are, in marked contrast to the alligator enzyme, relatively strict Asp-ases. The alligator enzyme also showed strong preference for Ala, Pro and Gly in the P2 position and Val in the P3 position indicating that it has a narrow specificity, similar to the mammalian counterparts. Analysis of the three amino acids forming the substrate binding pocket (S1 pocket) in three amphibian homologues to MCP1A-like, from the frogs Xenopus laevis and Xenopus tropicalis, shows that these amphibian enzymes have similar substrate binding pocket as their mammalian counterparts. This finding, together with the apparent lack of GzmB homologs in fish, indicates that the ancestor of GzmB did appear with the amphibians at the base of tetrapod evolution. This study is a first step in a larger effort to understand the evolutionary processes involved in shaping anti-viral immunity in non-mammalian vertebrates.
Collapse
Affiliation(s)
- Jinhye Ryu
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, The Biomedical Center, Box 596, SE-751 24, Uppsala, Sweden
| | - Zhirong Fu
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, The Biomedical Center, Box 596, SE-751 24, Uppsala, Sweden
| | - Srinivas Akula
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, The Biomedical Center, Box 596, SE-751 24, Uppsala, Sweden
| | - Anna-Karin Olsson
- Department of Medical Biochemistry and Microbiology, BMC, Box 589, SE-751 23, Uppsala, Sweden
| | - Lars Hellman
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, The Biomedical Center, Box 596, SE-751 24, Uppsala, Sweden.
| |
Collapse
|
29
|
Yu H, Palazzolo JS, Zhou J, Hu Y, Niego B, Pan S, Ju Y, Wang TY, Lin Z, Hagemeyer CE, Caruso F. Bioresponsive Polyphenol-Based Nanoparticles as Thrombolytic Drug Carriers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3740-3751. [PMID: 35019268 DOI: 10.1021/acsami.1c19820] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Thrombolytic (clot-busting) therapies with plasminogen activators (PAs) are first-line treatments against acute thrombosis and ischemic stroke. However, limitations such as narrow therapeutic windows, low success rates, and bleeding complications hinder their clinical use. Drug-loaded polyphenol-based nanoparticles (NPs) could address these shortfalls by delivering a more targeted and safer thrombolysis, coupled with advantages such as improved biocompatibility and higher stability in vivo. Herein, a template-mediated polyphenol-based supramolecular assembly strategy is used to prepare nanocarriers of thrombolytic drugs. A thrombin-dependent drug release mechanism is integrated using tannic acid (TA) to cross-link urokinase-type PA (uPA) and a thrombin-cleavable peptide on a sacrificial mesoporous silica template via noncovalent interactions. Following drug loading and template removal, the resulting NPs retain active uPA and demonstrate enhanced plasminogen activation in the presence of thrombin (1.14-fold; p < 0.05). Additionally, they display lower association with macrophage (RAW 264.7) and monocytic (THP-1) cell lines (43 and 7% reduction, respectively), reduced hepatic accumulation, and delayed blood clearance in vivo (90% clearance at 60 min vs 5 min) compared with the template-containing NPs. Our thrombin-responsive, polyphenol-based NPs represent a promising platform for advanced drug delivery applications, with potential to improve thrombolytic therapies.
Collapse
Affiliation(s)
- Haitao Yu
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jason S Palazzolo
- NanoBiotechnology Laboratory, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| | - Jiajing Zhou
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yingjie Hu
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Be'eri Niego
- NanoBiotechnology Laboratory, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| | - Shuaijun Pan
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yi Ju
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ting-Yi Wang
- NanoBiotechnology Laboratory, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| | - Zhixing Lin
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Christoph E Hagemeyer
- NanoBiotechnology Laboratory, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
30
|
Huang Y, Li X, Zhu L, Huang C, Chen W, Ling Z, Zhu S, Feng X, Yi C, Gu W, Yan C, Wang J, Ma L, Su X, Dai R, Shi G, Sun B, Zhang Y. Thrombin cleaves IL-33 and modulates IL-33-activated allergic lung inflammation. Allergy 2022; 77:2104-2120. [PMID: 34995358 DOI: 10.1111/all.15210] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/19/2021] [Accepted: 12/11/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Organisms have orchestrated coagulation and immune systems. Although a link between inflammation and haemostasis has been reported in asthma, the interaction mechanism has not been completely elucidated. Here, we investigated the direct link between the mammalian immune and coagulation systems. METHODS Mice were administered protease or antigens intranasally to induce airway inflammation with or without thrombin inhibitors treatment. The effects of thrombin and its inhibitors on interleukin (IL)-33 were investigated both in vivo and in vitro. Peripheral blood mononuclear cells (PBMCs) and plasma from asthma patients are collected to verify the correlation between thrombin and group 2 innate lymphocytes (ILC2s). RESULTS Low-molecular-weight heparin (LMWH, an indirect inhibitor of thrombin) restrained both papain- and fungus-induced type 2 immune responses in mice by inhibiting IL-33 cleavage. Upon examining the potential thrombin protease consensus sites, we found that IL-33 was directly cleaved by thrombin at specific amino acids (R48 and R106) to generate a mature form of IL-33 with potent biological activity. In addition, we found that bivalirudin TFA (a direct inhibitor of thrombin) inhibited a variety of type 2 inflammatory responses, such as those in house dust mite (HDM)- and ovalbumin (OVA)-mediated pulmonary inflammation models. We found that plasma thrombin-antithrombin complex (TATc) levels in asthma patients were positively associated with the number and function of IL-33-responder group 2 innate lymphocytes (ILC2s) among peripheral blood mononuclear cells (PBMCs) from asthma patients. CONCLUSION The data suggested that thrombin inhibitors administration could be effective in treating lung inflammation by regulating ILC2s via IL-33 maturation, indicating that targeting thrombin is a potential way to treat allergic diseases.
Collapse
Affiliation(s)
- Yuying Huang
- State Key Laboratory of Cell Biology CAS Center for Excellence in Molecular Cell Science Shanghai Institute of Biochemistry and Cell Biology Chinese Academy of Sciences University of Chinese Academy of Sciences Shanghai China
| | - Xuezhen Li
- State Key Laboratory of Cell Biology CAS Center for Excellence in Molecular Cell Science Shanghai Institute of Biochemistry and Cell Biology Chinese Academy of Sciences University of Chinese Academy of Sciences Shanghai China
| | - Lin Zhu
- State Key Laboratory of Cell Biology CAS Center for Excellence in Molecular Cell Science Shanghai Institute of Biochemistry and Cell Biology Chinese Academy of Sciences University of Chinese Academy of Sciences Shanghai China
| | - Chunrong Huang
- Department of Respiratory and Critical Care Medicine Ruijin HospitalShanghai Jiao Tong University School of Medicine Shanghai China
| | - Wen Chen
- State Key Laboratory of Cell Biology CAS Center for Excellence in Molecular Cell Science Shanghai Institute of Biochemistry and Cell Biology Chinese Academy of Sciences University of Chinese Academy of Sciences Shanghai China
| | - Zhiyang Ling
- State Key Laboratory of Cell Biology CAS Center for Excellence in Molecular Cell Science Shanghai Institute of Biochemistry and Cell Biology Chinese Academy of Sciences University of Chinese Academy of Sciences Shanghai China
| | - SongLing Zhu
- State Key Laboratory of Cell Biology CAS Center for Excellence in Molecular Cell Science Shanghai Institute of Biochemistry and Cell Biology Chinese Academy of Sciences University of Chinese Academy of Sciences Shanghai China
| | - Xintong Feng
- Unit of Respiratory Infection and Immunity Chinese Academy of Sciences Institute Pasteur of Shanghai Shanghai China
| | - Chunyan Yi
- State Key Laboratory of Cell Biology CAS Center for Excellence in Molecular Cell Science Shanghai Institute of Biochemistry and Cell Biology Chinese Academy of Sciences University of Chinese Academy of Sciences Shanghai China
| | - Wangpeng Gu
- State Key Laboratory of Cell Biology CAS Center for Excellence in Molecular Cell Science Shanghai Institute of Biochemistry and Cell Biology Chinese Academy of Sciences University of Chinese Academy of Sciences Shanghai China
| | - Chenghua Yan
- State Key Laboratory of Cell Biology CAS Center for Excellence in Molecular Cell Science Shanghai Institute of Biochemistry and Cell Biology Chinese Academy of Sciences University of Chinese Academy of Sciences Shanghai China
| | - Jing Wang
- Department of Respiratory Medicine First Affiliated Hospital of Xinjiang Medical University Wulumuqi China
| | - Liyan Ma
- State Key Laboratory of Cell Biology CAS Center for Excellence in Molecular Cell Science Shanghai Institute of Biochemistry and Cell Biology Chinese Academy of Sciences University of Chinese Academy of Sciences Shanghai China
| | - Xiao Su
- Unit of Respiratory Infection and Immunity Chinese Academy of Sciences Institute Pasteur of Shanghai Shanghai China
| | - Ranran Dai
- Department of Respiratory and Critical Care Medicine Ruijin HospitalShanghai Jiao Tong University School of Medicine Shanghai China
| | - Guochao Shi
- Department of Respiratory and Critical Care Medicine Ruijin HospitalShanghai Jiao Tong University School of Medicine Shanghai China
| | - Bing Sun
- State Key Laboratory of Cell Biology CAS Center for Excellence in Molecular Cell Science Shanghai Institute of Biochemistry and Cell Biology Chinese Academy of Sciences University of Chinese Academy of Sciences Shanghai China
| | - Yaguang Zhang
- State Key Laboratory of Cell Biology CAS Center for Excellence in Molecular Cell Science Shanghai Institute of Biochemistry and Cell Biology Chinese Academy of Sciences University of Chinese Academy of Sciences Shanghai China
| |
Collapse
|
31
|
Zamora M, Robles JP, Aguilar MB, Romero-Gómez SDJ, Bertsch T, Martínez de la Escalera G, Triebel J, Clapp C. Thrombin Cleaves Prolactin Into a Potent 5.6-kDa Vasoinhibin: Implication for Tissue Repair. Endocrinology 2021; 162:6356167. [PMID: 34418052 DOI: 10.1210/endocr/bqab177] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Indexed: 12/17/2022]
Abstract
Vasoinhibin is an endogenous prolactin (PRL) fragment with profibrinolytic, antivasopermeability, and antiangiogenic effects. The fact that blood clotting, vascular permeability, and angiogenesis are functionally linked during the wound-healing process led us to investigate whether thrombin, a major protease in tissue repair, generates vasoinhibin. Here, we have incubated human PRL with thrombin and analyzed the resulting proteolytic products by Western blot, mass spectrometry, high-performance liquid chromatography purification, recombinant production, and bioactivity. We unveil a main thrombin cleavage site at R48-G49 that rapidly (< 10 minutes) generates a 5.6-kDa fragment (residues 1-48) with full vasoinhibin activity, that is, it inhibited the proliferation, invasion, and permeability of cultured endothelial cells and promoted the lysis of a fibrin clot in plasma with a similar potency to that of a conventional 14-kDa vasoinhibin (residues 1-123). The R48-G49 cleavage site is highly conserved throughout evolution and precedes the intramolecular disulfide bond (C58-C174), thereby allowing the 5.6-kDa vasoinhibin to be released without a reduction step. Furthermore, the 5.6-kDa vasoinhibin is produced by endogenous thrombin during the clotting process. These findings uncover the smallest vasoinhibin known, add thrombin to the list of PRL-cleaving proteases generating vasoinhibin, and introduce vasoinhibin as a thrombin-activated mechanism for the regulation of hemostasis, vasopermeability, and angiogenesis in response to tissue injury.
Collapse
Affiliation(s)
- Magdalena Zamora
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro 76230, México
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, Nuremberg General Hospital and Paracelsus Medical University, Nuremberg 90419, Germany
| | - Juan Pablo Robles
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro 76230, México
| | - Manuel B Aguilar
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro 76230, México
| | | | - Thomas Bertsch
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, Nuremberg General Hospital and Paracelsus Medical University, Nuremberg 90419, Germany
| | | | - Jakob Triebel
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, Nuremberg General Hospital and Paracelsus Medical University, Nuremberg 90419, Germany
| | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro 76230, México
| |
Collapse
|
32
|
Fu Z, Akula S, Olsson AK, Kervinen J, Hellman L. Mast Cells and Basophils in the Defense against Ectoparasites: Efficient Degradation of Parasite Anticoagulants by the Connective Tissue Mast Cell Chymases. Int J Mol Sci 2021; 22:ijms222312627. [PMID: 34884431 PMCID: PMC8657707 DOI: 10.3390/ijms222312627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/08/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
Ticks, lice, flees, mosquitos, leeches and vampire bats need to prevent the host's blood coagulation during their feeding process. This is primarily achieved by injecting potent anticoagulant proteins. Basophils frequently accumulate at the site of tick feeding. However, this occurs only after the second encounter with the parasite involving an adaptive immune response and IgE. To study the potential role of basophils and mast cells in the defense against ticks and other ectoparasites, we produced anticoagulant proteins from three blood-feeding animals; tick, mosquito, and leech. We tested these anticoagulant proteins for their sensitivity to inactivation by a panel of hematopoietic serine proteases. The majority of the connective tissue mast cell proteases tested, originating from humans, dogs, rats, hamsters, and opossums, efficiently cleaved these anticoagulant proteins. Interestingly, the mucosal mast cell proteases that contain closely similar cleavage specificity, had little effect on these anticoagulant proteins. Ticks have been shown to produce serpins, serine protease inhibitors, upon a blood meal that efficiently inhibit the human mast cell chymase and cathepsin G, indicating that ticks have developed a strategy to inactivate these proteases. We show here that one of these tick serpins (IRS-2) shows broad activity against the majority of the mast cell chymotryptic enzymes and the neutrophil proteases from human to opossum. However, it had no effect on the mast cell tryptases or the basophil specific protease mMCP-8. The production of anticoagulants, proteases and anti-proteases by the parasite and the host presents a fascinating example of an arms race between the blood-feeding animals and the mammalian immune system with an apparent and potent role of the connective tissue mast cell chymases in the host defense.
Collapse
Affiliation(s)
- Zhirong Fu
- The Biomedical Center, Department of Cell and Molecular Biology, Uppsala University, SE-751 24 Uppsala, Sweden; (Z.F.); (S.A.)
| | - Srinivas Akula
- The Biomedical Center, Department of Cell and Molecular Biology, Uppsala University, SE-751 24 Uppsala, Sweden; (Z.F.); (S.A.)
| | - Anna-Karin Olsson
- Department of Medical Biochemistry and Microbiology, BMC, SE-751 23 Uppsala, Sweden;
| | - Jukka Kervinen
- Tosoh Bioscience LLC., 3604 Horizon Drive, King of Prussia, PA 19406, USA;
| | - Lars Hellman
- The Biomedical Center, Department of Cell and Molecular Biology, Uppsala University, SE-751 24 Uppsala, Sweden; (Z.F.); (S.A.)
- Correspondence: ; Tel.: +46-(0)18-471-4532; Fax: +46-(0)18-471-4862
| |
Collapse
|
33
|
Hattori M, Sugiura N, Wazawa T, Matsuda T, Nagai T. Ratiometric Bioluminescent Indicator for a Simple and Rapid Measurement of Thrombin Activity Using a Smartphone. Anal Chem 2021; 93:13520-13526. [PMID: 34570461 DOI: 10.1021/acs.analchem.1c02396] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hemostasis is an essential function that repairs tissues and maintains the survival of living organisms. To prevent diseases caused by the abnormality of the blood coagulation mechanism, it is important to carry out a blood test periodically by a method that is convenient and less burdensome for examiners. Thrombin is a protease that catalyzes the conversion of fibrinogen, and its cleavage activity can be an index of coagulation activity. Here, we developed a ratiometric bioluminescent indicator, Thrombastor (thrombin activity sensing indicator), which reflects the thrombin cleavage activity in blood by changing the emission color from green to blue. Compared to the current thrombin activity indicator, the rapid color change of the emission indicated a 2.5-fold decrease in the Km for thrombin, and the cleavage rate was more than two times faster. By improving the absolute bioluminescence intensity, detection from a small amount of plasma could be achieved with a smartphone camera. Using Thrombastor and a versatile device, an effective diagnosis for preventing coagulation disorders can be provided.
Collapse
Affiliation(s)
- Mitsuru Hattori
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan
| | - Nae Sugiura
- Graduate School of Frontier Biosciences, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan
| | - Tetsuichi Wazawa
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan
| | - Tomoki Matsuda
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan
| | - Takeharu Nagai
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan.,Graduate School of Frontier Biosciences, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan
| |
Collapse
|
34
|
The Evolutionary History of the Chymase Locus -a Locus Encoding Several of the Major Hematopoietic Serine Proteases. Int J Mol Sci 2021; 22:ijms222010975. [PMID: 34681635 PMCID: PMC8537139 DOI: 10.3390/ijms222010975] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 09/24/2021] [Accepted: 10/09/2021] [Indexed: 11/28/2022] Open
Abstract
Several hematopoietic cells of the immune system store large amounts of proteases in cytoplasmic granules. The absolute majority of these proteases belong to the large family of chymotrypsin-related serine proteases. The chymase locus is one of four loci encoding these granule-associated serine proteases in mammals. The chymase locus encodes only four genes in primates, (1) the gene for a mast-cell-specific chymotryptic enzyme, the chymase; (2) a T-cell-expressed asp-ase, granzyme B; (3) a neutrophil-expressed chymotryptic enzyme, cathepsin G; and (4) a T-cell-expressed chymotryptic enzyme named granzyme H. Interestingly, this locus has experienced a number of quite dramatic expansions during mammalian evolution. This is illustrated by the very large number of functional protease genes found in the chymase locus of mice (15 genes) and rats (18 genes). A separate expansion has also occurred in ruminants, where we find a new class of protease genes, the duodenases, which are expressed in the intestinal region. In contrast, the opossum has only two functional genes in this locus, the mast cell (MC) chymase and granzyme B. This low number of genes may be the result of an inversion, which may have hindered unequal crossing over, a mechanism which may have been a major factor in the expansion within the rodent lineage. The chymase locus can be traced back to early tetrapods as genes that cluster with the mammalian genes in phylogenetic trees can be found in frogs, alligators and turtles, but appear to have been lost in birds. We here present the collected data concerning the evolution of this rapidly evolving locus, and how these changes in gene numbers and specificities may have affected the immune functions in the various tetrapod species.
Collapse
|
35
|
Nilsson PH, Johnson C, Quach QH, Macpherson A, Durrant O, Pischke SE, Fure H, Landsem A, Bergseth G, Schjalm C, Haugaard-Kedström LM, Huber-Lang M, van den Elsen J, Brekke OL, Mollnes TE. A Conformational Change of Complement C5 Is Required for Thrombin-Mediated Cleavage, Revealed by a Novel Ex Vivo Human Whole Blood Model Preserving Full Thrombin Activity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:1641-1651. [PMID: 34380648 PMCID: PMC8428748 DOI: 10.4049/jimmunol.2001471] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 07/09/2021] [Indexed: 11/19/2022]
Abstract
Thrombin activation of C5 connects thrombosis to inflammation. Complement research in whole blood ex vivo necessitates anticoagulation, which potentially interferes with the inflammatory modulation by thrombin. We challenged the concept of thrombin as an activator of native C5 by analyzing complement activation and C5 cleavage in human whole blood anticoagulated with Gly-Pro-Arg-Pro (GPRP), a peptide targeting fibrin polymerization downstream of thrombin, allowing complete endogenous thrombin generation. GPRP dose-dependently inhibited coagulation but allowed for platelet activation in accordance with thrombin generation. Spontaneous and bacterial-induced complement activation by Escherichia coli and Staphylococcus aureus, analyzed at the level of C3 and C5, were similar in blood anticoagulated with GPRP and the thrombin inhibitor lepirudin. In the GPRP model, endogenous thrombin, even at supra-physiologic concentrations, did not cleave native C5, despite efficiently cleaving commercially sourced purified C5 protein, both in buffer and when added to C5-deficient serum. In normal serum, only exogenously added, commercially sourced C5 was cleaved, whereas the native plasma C5 remained intact. Crucially, affinity-purified C5, eluted under mild conditions using an MgCl2 solution, was not cleaved by thrombin. Acidification of plasma to pH ≤ 6.8 by hydrochloric or lactic acid induced a C5 antigenic change, nonreversible by pH neutralization, that permitted cleavage by thrombin. Circular dichroism on purified C5 confirmed the structural change during acidification. Thus, we propose that pH-induced conformational change allows thrombin-mediated cleavage of C5 and that, contrary to previous reports, thrombin does not cleave plasma C5 in its native form, suggesting that thrombin cleavage of C5 may be restricted to certain pathophysiological conditions.
Collapse
Affiliation(s)
- Per H Nilsson
- Department of Immunology, University of Oslo and Oslo University Hospital Rikshospitalet, Oslo, Norway
- Linnaeus Centre for Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Christina Johnson
- Department of Immunology, University of Oslo and Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Quang Huy Quach
- Department of Immunology, University of Oslo and Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Alex Macpherson
- UCB, Slough, UK
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Oliver Durrant
- UCB, Slough, UK
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Soeren E Pischke
- Department of Immunology, University of Oslo and Oslo University Hospital Rikshospitalet, Oslo, Norway
- Clinic for Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway
| | - Hilde Fure
- Research Laboratory, Nordland Hospital, Bodø, Norway
| | - Anne Landsem
- Research Laboratory, Nordland Hospital, Bodø, Norway
- Faculty of Health Sciences, K. G. Jebsen Thrombosis Research Center, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | | | - Camilla Schjalm
- Department of Immunology, University of Oslo and Oslo University Hospital Rikshospitalet, Oslo, Norway
| | | | - Markus Huber-Lang
- Department of Orthopedic Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital of Ulm, Ulm, Germany
| | - Jean van den Elsen
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
- Centre for Therapeutic Innovation, University of Bath, Bath, UK; and
| | - Ole-Lars Brekke
- Research Laboratory, Nordland Hospital, Bodø, Norway
- Faculty of Health Sciences, K. G. Jebsen Thrombosis Research Center, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Tom Eirik Mollnes
- Department of Immunology, University of Oslo and Oslo University Hospital Rikshospitalet, Oslo, Norway;
- Research Laboratory, Nordland Hospital, Bodø, Norway
- Faculty of Health Sciences, K. G. Jebsen Thrombosis Research Center, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
36
|
Milligan JC, Zeisner TU, Papageorgiou G, Joshi D, Soudy C, Ulferts R, Wu M, Lim CT, Tan KW, Weissmann F, Canal B, Fujisawa R, Deegan T, Nagaraj H, Bineva-Todd G, Basier C, Curran JF, Howell M, Beale R, Labib K, O'Reilly N, Diffley JF. Identifying SARS-CoV-2 antiviral compounds by screening for small molecule inhibitors of Nsp5 main protease. Biochem J 2021; 478:2499-2515. [PMID: 34198327 PMCID: PMC8286836 DOI: 10.1042/bcj20210197] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 02/06/2023]
Abstract
The coronavirus 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), spread around the world with unprecedented health and socio-economic effects for the global population. While different vaccines are now being made available, very few antiviral drugs have been approved. The main viral protease (nsp5) of SARS-CoV-2 provides an excellent target for antivirals, due to its essential and conserved function in the viral replication cycle. We have expressed, purified and developed assays for nsp5 protease activity. We screened the nsp5 protease against a custom chemical library of over 5000 characterised pharmaceuticals. We identified calpain inhibitor I and three different peptidyl fluoromethylketones (FMK) as inhibitors of nsp5 activity in vitro, with IC50 values in the low micromolar range. By altering the sequence of our peptidomimetic FMK inhibitors to better mimic the substrate sequence of nsp5, we generated an inhibitor with a subnanomolar IC50. Calpain inhibitor I inhibited viral infection in monkey-derived Vero E6 cells, with an EC50 in the low micromolar range. The most potent and commercially available peptidyl-FMK compound inhibited viral growth in Vero E6 cells to some extent, while our custom peptidyl FMK inhibitor offered a marked antiviral improvement.
Collapse
Affiliation(s)
- Jennifer C. Milligan
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Theresa U. Zeisner
- Cell Cycle Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - George Papageorgiou
- Peptide Chemistry STP, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Dhira Joshi
- Peptide Chemistry STP, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Christelle Soudy
- Peptide Chemistry STP, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Rachel Ulferts
- Cell Biology of Infection Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Mary Wu
- High Throughput Screening STP, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Chew Theng Lim
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Kang Wei Tan
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Florian Weissmann
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Berta Canal
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Ryo Fujisawa
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Tom Deegan
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Hema Nagaraj
- Peptide Chemistry STP, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Ganka Bineva-Todd
- Peptide Chemistry STP, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Clovis Basier
- Cell Cycle Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Joseph F. Curran
- Cell Cycle Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Michael Howell
- High Throughput Screening STP, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Rupert Beale
- Cell Biology of Infection Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Karim Labib
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Nicola O'Reilly
- Peptide Chemistry STP, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - John F.X. Diffley
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| |
Collapse
|
37
|
Duodenases are a small subfamily of ruminant intestinal serine proteases that have undergone a remarkable diversification in cleavage specificity. PLoS One 2021; 16:e0252624. [PMID: 34048501 PMCID: PMC8162674 DOI: 10.1371/journal.pone.0252624] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/28/2021] [Indexed: 12/03/2022] Open
Abstract
Ruminants have a very complex digestive system adapted for the digestion of cellulose rich food. Gene duplications have been central in the process of adapting their digestive system for this complex food source. One of the new loci involved in food digestion is the lysozyme c locus where cows have ten active such genes compared to a single gene in humans and where four of the bovine copies are expressed in the abomasum, the real stomach. The second locus that has become part of the ruminant digestive system is the chymase locus. The chymase locus encodes several of the major hematopoietic granule proteases. In ruminants, genes within the chymase locus have duplicated and some of them are expressed in the duodenum and are therefore called duodenases. To obtain information on their specificities and functions we produced six recombinant proteolytically active duodenases (three from cows, two from sheep and one from pigs). Two of the sheep duodenases were found to be highly specific tryptases and one of the bovine duodenases was a highly specific asp-ase. The remaining two bovine duodenases were dual enzymes with potent tryptase and chymase activities. In contrast, the pig enzyme was a chymase with no tryptase or asp-ase activity. These results point to a remarkable flexibility in both the primary and extended specificities within a single chromosomal locus that most likely has originated from one or a few genes by several rounds of local gene duplications. Interestingly, using the consensus cleavage site for the bovine asp-ase to screen the entire bovine proteome, it revealed Mucin-5B as one of the potential targets. Using the same strategy for one of the sheep tryptases, this enzyme was found to have potential cleavage sites in two chemokine receptors, CCR3 and 7, suggesting a role for this enzyme to suppress intestinal inflammation.
Collapse
|
38
|
Fu Z, Akula S, Thorpe M, Hellman L. Marked difference in efficiency of the digestive enzymes pepsin, trypsin, chymotrypsin, and pancreatic elastase to cleave tightly folded proteins. Biol Chem 2021; 402:861-867. [PMID: 33977684 DOI: 10.1515/hsz-2020-0386] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/30/2021] [Indexed: 11/15/2022]
Abstract
In order for the intestinal mucosa to absorb dietary proteins they have to be digested into single amino acids or very short peptides of a length of not more than four amino acids. In order to study the efficiency of the digestive endopeptidases to digest folded proteins we have analyzed several target proteins under different conditions, native proteins, heat denatured and acid treated. The three pancreatic serine proteases, trypsin, chymotrypsin, and pancreatic elastase, were found to be remarkable inefficient in cleaving native folded proteins whereas pepsin, which acts at a very low pH (pH 1.2) was much more efficient, possibly due to the denaturing conditions and thereby better accessibility to internal cleavage sites at the low pH. Heat treatment improved the cleavage considerably by all three pancreatic enzymes, but acid treatment followed by return to neutral pH did not have any major effect. Cleavage at the low pH when the protein is in a denatured state, is apparently very efficient. This indicates that pepsin is the prime enzyme cleaving the properly folded native proteins and that the pancreatic enzymes primarily are involved in generating single amino acids or very short peptides for efficient uptake by the intestinal mucosa.
Collapse
Affiliation(s)
- Zhirong Fu
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, The Biomedical Center, Box 596, S-751 24Uppsala, Sweden
| | - Srinivas Akula
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, The Biomedical Center, Box 596, S-751 24Uppsala, Sweden
| | - Michael Thorpe
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, The Biomedical Center, Box 596, S-751 24Uppsala, Sweden
| | - Lars Hellman
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, The Biomedical Center, Box 596, S-751 24Uppsala, Sweden
| |
Collapse
|
39
|
Mapping specificity, cleavage entropy, allosteric changes and substrates of blood proteases in a high-throughput screen. Nat Commun 2021; 12:1693. [PMID: 33727531 PMCID: PMC7966775 DOI: 10.1038/s41467-021-21754-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 02/10/2021] [Indexed: 02/06/2023] Open
Abstract
Proteases are among the largest protein families and critical regulators of biochemical processes like apoptosis and blood coagulation. Knowledge of proteases has been expanded by the development of proteomic approaches, however, technology for multiplexed screening of proteases within native environments is currently lacking behind. Here we introduce a simple method to profile protease activity based on isolation of protease products from native lysates using a 96FASP filter, their analysis in a mass spectrometer and a custom data analysis pipeline. The method is significantly faster, cheaper, technically less demanding, easy to multiplex and produces accurate protease fingerprints. Using the blood cascade proteases as a case study, we obtain protease substrate profiles that can be used to map specificity, cleavage entropy and allosteric effects and to design protease probes. The data further show that protease substrate predictions enable the selection of potential physiological substrates for targeted validation in biochemical assays. Characterizing proteases in their native environment is still challenging. Here, the authors develop a proteomics workflow for analyzing protease-specific peptides from cell lysates in 96-well format, providing mechanistic insights into blood proteases and enabling the prediction of protease substrates.
Collapse
|
40
|
Berglund P, Akula S, Fu Z, Thorpe M, Hellman L. Extended Cleavage Specificity of the Rat Vascular Chymase, a Potential Blood Pressure Regulating Enzyme Expressed by Rat Vascular Smooth Muscle Cells. Int J Mol Sci 2020; 21:ijms21228546. [PMID: 33198413 PMCID: PMC7697883 DOI: 10.3390/ijms21228546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 01/25/2023] Open
Abstract
Serine proteases constitute the major protein content of the cytoplasmic granules of several hematopoietic cell lineages. These proteases are encoded from four different loci in mammals. One of these loci, the chymase locus, has in rats experienced a massive expansion in the number of functional genes. The human chymase locus encodes 4 proteases, whereas the corresponding locus in rats contains 28 such genes. One of these new genes has changed tissue specificity and has been found to be expressed primarily in vascular smooth muscle cells, and therefore been named rat vascular chymase (RVC). This β-chymase has been claimed to be a potent angiotensin-converting enzyme by cleaving angiotensin (Ang) I into Ang II and thereby having the potential to regulate blood pressure. To further characterize this enzyme, we have used substrate phage display and a panel of recombinant substrates to obtain a detailed quantitative view of its extended cleavage specificity. RVC was found to show a strong preference for Phe and Tyr in the P1 position, but also to accept Leu and Trp in this position. A strong preference for Ser or Arg in the P1’ position, just C-terminally of the cleavage site, and a preference for aliphatic amino acids in most other positions surrounding the cleavage site was also seen. Interesting also was a relatively strict preference for Gly in positions P3’ and P4’. RVC thereby shares similarity in its specificity to the mouse mucosal mast cell chymase mMCP-1, which efficiently converts Ang I to Ang II. This similarity adds support for the role of β-chymases as potent angiotensin converters in rodents, as their α-chymases, which have the capacity to efficiently convert Ang I into Ang II in other mammalian lineages, have become elastases. However, interestingly we found that RVC cleaved both after Arg2 and Phe8 in Ang I. Furthermore this cleavage was more than two hundred times less efficient than the consensus site obtained from the phage display analysis, indicating that RVC has a very low ability to cleave Ang I, raising serious doubts about its role in Ang I conversion.
Collapse
Affiliation(s)
| | | | | | | | - Lars Hellman
- Correspondence: ; Tel.: +46-(0)18-471-4532; Fax: +46-(0)18-471-4862
| |
Collapse
|
41
|
Becatti M, Mannucci A, Argento FR, Gitto S, Vizzutti F, Marra F, Taddei N, Fiorillo C, Laffi G. Super-Resolution Microscopy Reveals an Altered Fibrin Network in Cirrhosis: The Key Role of Oxidative Stress in Fibrinogen Structural Modifications. Antioxidants (Basel) 2020; 9:antiox9080737. [PMID: 32806658 PMCID: PMC7464401 DOI: 10.3390/antiox9080737] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023] Open
Abstract
Cirrhotic patients show a reduced synthesis of both pro- and anti-coagulant factors. Recent reports indicate that they are characterized by a higher risk of thrombotic rather than hemorrhagic complications, but the mechanisms conferring this risk are not fully elucidated. Oxidative-mediated fibrinogen modifications may explain, at least in part, a prothrombotic profile. The aim of the present pilot study was to investigate the alterations in fibrinogen structure and function in patients with cirrhosis of various severity and to correlate these findings with the mechanisms of thrombus formation. We assessed in plasma specific oxidative stress markers and measured oxidative modifications, functional and structural parameters in purified fibrinogen fractions obtained from cirrhotic patients and control subjects. We enrolled 15 cirrhotic patients (5 patients belonging to each of the three Child-Turcotte-Pugh classes) and 20 age- and sex-matched healthy controls. Plasma redox status, fibrinogen oxidative modifications, thrombin-catalyzed fibrin polymerization and fibrin resistance to plasmin-induced lysis were significantly altered in cirrhotic patients and were associated to disease severity. Importantly, clot structure obtained by stimulated emission depletion (STED) super-resolution microscopy indicated modifications in fiber diameter and in clot porosity in cirrhotic patients. Fibrin fiber diameter significantly decreased in cirrhotic patients when compared to controls, and this difference became more marked with disease progression. In parallel, fibrin pore size progressively decreased along with disease severity. In cirrhotic patients, fibrinogen clot analysis and oxidative-dependent changes reveal novel structural and functional fibrinogen modifications which may favor thrombotic complications in cirrhosis.
Collapse
Affiliation(s)
- Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (A.M.); (F.R.A.); (N.T.); (C.F.)
- Correspondence: ; Tel.: +39-0552751261
| | - Amanda Mannucci
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (A.M.); (F.R.A.); (N.T.); (C.F.)
| | - Flavia Rita Argento
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (A.M.); (F.R.A.); (N.T.); (C.F.)
| | - Stefano Gitto
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (S.G.); (F.V.); (F.M.); (G.L.)
| | - Francesco Vizzutti
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (S.G.); (F.V.); (F.M.); (G.L.)
| | - Fabio Marra
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (S.G.); (F.V.); (F.M.); (G.L.)
| | - Niccolò Taddei
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (A.M.); (F.R.A.); (N.T.); (C.F.)
| | - Claudia Fiorillo
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (A.M.); (F.R.A.); (N.T.); (C.F.)
| | - Giacomo Laffi
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (S.G.); (F.V.); (F.M.); (G.L.)
| |
Collapse
|
42
|
Thrombin rapidly digests adrenomedullin: Synthesis of adrenomedullin analogs resistant to thrombin. Biochem Biophys Res Commun 2020; 529:778-783. [DOI: 10.1016/j.bbrc.2020.06.057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 06/12/2020] [Indexed: 01/24/2023]
|
43
|
Andreae EA, Warejcka DJ, Twining SS. Thrombin alters the synthesis and processing of CYR61/CCN1 in human corneal stromal fibroblasts and myofibroblasts through multiple distinct mechanisms. Mol Vis 2020; 26:540-562. [PMID: 32818017 PMCID: PMC7406864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 07/27/2020] [Indexed: 11/08/2022] Open
Abstract
Purpose Previous research in our laboratory indicated that prothrombin and other coagulation enzymes required to activate prothrombin to thrombin are synthesized by the cornea and that apoptotic human corneal stromal cells can provide a surface for prothrombin activation through the intrinsic and extrinsic coagulation pathways. The purpose of the work reported here is to study the role of thrombin activity in the regulation of matricellular protein Cyr61 (CCN1) produced by wounded phenotype human corneal stromal fibroblasts and myofibroblasts. Methods Stromal cells from human donor corneas were converted to defined wounded phenotype fibroblasts and myofibroblasts with fetal bovine serum, followed by basic fibroblast growth factor (bFGF) and transforming growth factor beta-1 (TGFβ-1), respectively, and stimulated with varying concentrations (0-10.0 units (U)/ml) of thrombin from 1-7 h. Cyr61 transcript levels were determined using reverse transcriptase-PCR (RT-PCR) and quantitative PCR (qPCR) while protein forms were analyzed using western blot data. Protease activities were characterized via protease class-specific inhibitors and western blot analysis. Thrombin activity was quantified using the fluorogenic peptide Phe-Pro-Arg-AFC. Protease-activated receptor (PAR) agonist peptides-1 and -4 were used to determine whether cells increased Cyr61 through PAR signaling pathways. The PAR-1 antagonist SCH 79797 was used to block the thrombin cleavage of the receptor. PCR data were analyzed using MxPro software and western blot data were analyzed using Image Lab™ and Image J software. Student t test and one- and two-way ANOVA (with or without ranking, depending on sample distribution), together with Dunnett's test or Tukey comparison tests for post-hoc analysis, were used to determine statistical significance. Results: Full-length Cyr61 is expressed by human corneal stromal fibroblasts and myofibroblasts and is significantly upregulated by active thrombin stimulation at the message (p<0.03) and protein (p<0.03) levels for fibroblasts and myofibroblasts. Inhibition by the allosteric thrombin-specific inhibitor hirudin prevented the thrombin-associated increase in the Cyr61 protein expression, indicating that the proteolytic activity of thrombin is required for the increase of the Cyr61 protein level. PAR-1 agonist stimulation of fibroblasts and myofibroblasts significantly increased cell-associated Cyr61 protein levels (p<0.04), and PAR-1 antagonist SCH 79797 significantly inhibited the thrombin stimulated increase of Cyr61 in fibroblasts but not in myofibroblasts. In the fibroblast and myofibroblast conditioned media, Cyr61 was detected as the full-length 40 kDa protein in the absence of thrombin, and mainly at 24 kDa in the presence of thrombin at ≥0.5 U/ml, using an antibody directed toward the internal linker region between the von Willebrand factor type C and thrombospondin type-1 domains. Although known to undergo alternative splicing, Cyr61 that is synthesized by corneal fibroblasts and myofibroblasts is not alternatively spliced in response to thrombin stimulation nor is Cyr61 directly cleaved by thrombin to generate its 24 kDa form; instead, Cyr61 is proteolytically processed into 24 kDa N- and 16 kDa C-terminal fragments by a thrombin activated leupeptin-sensitive protease present in conditioned media with activity distinct from the proteolytic activity of thrombin. Conclusions In cultured human corneal stromal fibroblasts and myofibroblasts, thrombin regulates Cyr61 through two mechanisms: 1) thrombin increases the Cyr61 expression at the message and protein levels, and 2) thrombin increases the activation of a leupeptin-sensitive protease that stimulates the cleavage of Cyr61 into N- and C-terminal domain populations in or near the thrombospondin type-1 domain. Generation of Cyr61 peptides during corneal injury stimulation may reveal additional functions of the protein, which modulate corneal wound healing activities or decrease activities of the full-length Cyr61 form.
Collapse
Affiliation(s)
- Emily A Andreae
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI
- Marshfield Clinic Research Institute, Marshfield, WI
| | - Debra J Warejcka
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI
| | - Sally S Twining
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
44
|
Eleftheriou P, Amanatidou D, Petrou A, Geronikaki A. In Silico Evaluation of the Effectivity of Approved Protease Inhibitors against the Main Protease of the Novel SARS-CoV-2 Virus. Molecules 2020; 25:molecules25112529. [PMID: 32485894 PMCID: PMC7321236 DOI: 10.3390/molecules25112529] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/11/2022] Open
Abstract
The coronavirus disease, COVID-19, caused by the novel coronavirus SARS-CoV-2, which first emerged in Wuhan, China and was made known to the World in December 2019 turned into a pandemic causing more than 126,124 deaths worldwide up to April 16th, 2020. It has 79.5% sequence identity with SARS-CoV-1 and the same strategy for host cell invasion through the ACE-2 surface protein. Since the development of novel drugs is a long-lasting process, researchers look for effective substances among drugs already approved or developed for other purposes. The 3D structure of the SARS-CoV-2 main protease was compared with the 3D structures of seven proteases, which are drug targets, and docking analysis to the SARS-CoV-2 protease structure of thirty four approved and on-trial protease inhibitors was performed. Increased 3D structural similarity between the SARS-CoV-2 main protease, the HCV protease and α-thrombin was found. According to docking analysis the most promising results were found for HCV protease, DPP-4, α-thrombin and coagulation Factor Xa known inhibitors, with several of them exhibiting estimated free binding energy lower than −8.00 kcal/mol and better prediction results than reference compounds. Since some of the compounds are well-tolerated drugs, the promising in silico results may warrant further evaluation for viral anticipation. DPP-4 inhibitors with anti-viral action may be more useful for infected patients with diabetes, while anti-coagulant treatment is proposed in severe SARS-CoV-2 induced pneumonia.
Collapse
Affiliation(s)
- Phaedra Eleftheriou
- Department of Biomedical Sciences, School of Health, International Hellenic University, 57400 Thessaloniki, Greece;
- Correspondence: (P.E.); (A.G.)
| | - Dionysia Amanatidou
- Department of Biomedical Sciences, School of Health, International Hellenic University, 57400 Thessaloniki, Greece;
| | - Anthi Petrou
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Athina Geronikaki
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Correspondence: (P.E.); (A.G.)
| |
Collapse
|
45
|
Li SW, Wright M, Healey JF, Hutchinson JM, O’Rourke S, Mesa KA, Lollar P, Berman PW. Gene editing in CHO cells to prevent proteolysis and enhance glycosylation: Production of HIV envelope proteins as vaccine immunogens. PLoS One 2020; 15:e0233866. [PMID: 32470085 PMCID: PMC7259603 DOI: 10.1371/journal.pone.0233866] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/13/2020] [Indexed: 01/12/2023] Open
Abstract
Several candidate HIV subunit vaccines based on recombinant envelope (Env) glycoproteins have been advanced into human clinical trials. To facilitate biopharmaceutical production, it is necessary to produce these in CHO (Chinese Hamster Ovary) cells, the cellular substrate used for the manufacturing of most recombinant protein therapeutics. However, previous studies have shown that when recombinant Env proteins from clade B viruses, the major subtype represented in North America, Europe, and other parts of the world, are expressed in CHO cells, they are proteolyzed and lack important glycan-dependent epitopes present on virions. Previously, we identified C1s, a serine protease in the complement pathway, as the endogenous CHO protease responsible for the cleavage of clade B laboratory isolates of -recombinant gp120s (rgp120s) expressed in stable CHO-S cell lines. In this paper, we describe the development of two novel CHOK1 cell lines with the C1s gene inactivated by gene editing, that are suitable for the production of any protein susceptible to C1s proteolysis. One cell line, C1s-/- CHOK1 2.E7, contains a deletion in the C1s gene. The other cell line, C1s-/- MGAT1- CHOK1 1.A1, contains a deletion in both the C1s gene and the MGAT1 gene, which limits glycosylation to mannose-5 or earlier intermediates in the N-linked glycosylation pathway. In addition, we compare the substrate specificity of C1s with thrombin on the cleavage of both rgp120 and human Factor VIII, two recombinant proteins known to undergo unintended proteolysis (clipping) when expressed in CHO cells. Finally, we demonstrate the utility and practicality of the C1s-/- MGAT1- CHOK1 1.A1 cell line for the expression of clinical isolates of clade B Envs from rare individuals that possess broadly neutralizing antibodies and are able to control virus replication without anti-retroviral drugs (elite neutralizer/controller phenotypes). The Envs represent unique HIV vaccine immunogens suitable for further immunogenicity and efficacy studies.
Collapse
Affiliation(s)
- Sophia W. Li
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California, United States of America
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Meredith Wright
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - John F. Healey
- Department of Pediatrics, Emory University, Atlanta, Georgia, United States of America
| | - Jennie M. Hutchinson
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Sara O’Rourke
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Kathryn A. Mesa
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Pete Lollar
- Department of Pediatrics, Emory University, Atlanta, Georgia, United States of America
| | - Phillip W. Berman
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| |
Collapse
|
46
|
Ngo K, Collins-Kautz C, Gerstenecker S, Wagner B, Heine A, Klebe G. Protein-Induced Change in Ligand Protonation during Trypsin and Thrombin Binding: Hint on Differences in Selectivity Determinants of Both Proteins? J Med Chem 2020; 63:3274-3289. [DOI: 10.1021/acs.jmedchem.9b02061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Khang Ngo
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | - Chelsey Collins-Kautz
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | - Stefan Gerstenecker
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | - Björn Wagner
- Pharma Research Non-Clinical Safety, F. Hoffmann-La Roche AG, 4070 Basel, Switzerland
| | - Andreas Heine
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | - Gerhard Klebe
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| |
Collapse
|
47
|
Extended cleavage specificities of two mast cell chymase-related proteases and one granzyme B-like protease from the platypus, a monotreme. Int J Mol Sci 2020; 21:ijms21010319. [PMID: 31906570 PMCID: PMC6981407 DOI: 10.3390/ijms21010319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/27/2019] [Accepted: 12/31/2019] [Indexed: 11/16/2022] Open
Abstract
Mast cells (MCs) are inflammatory cells primarily found in tissues in close contact with the external environment, such as the skin and the intestinal mucosa. They store large amounts of active components in cytoplasmic granules, ready for rapid release. The major protein content of these granules is proteases, which can account for up to 35 % of the total cellular protein. Depending on their primary cleavage specificity, they can generally be subdivided into chymases and tryptases. Here we present the extended cleavage specificities of two such proteases from the platypus. Both of them show an extended chymotrypsin-like specificity almost identical to other mammalian MC chymases. This suggests that MC chymotryptic enzymes have been conserved, both in structure and extended cleavage specificity, for more than 200 million years, indicating major functions in MC-dependent physiological processes. We have also studied a third closely related protease, originating from the same chymase locus whose cleavage specificity is closely related to the apoptosis-inducing protease from cytotoxic T cells, granzyme B. The presence of both a chymase and granzyme B in all studied mammals indicates that these two proteases bordering the locus are the founding members of this locus.
Collapse
|
48
|
Conway EM. Thrombin: Coagulation's master regulator of innate immunity. J Thromb Haemost 2019; 17:1785-1789. [PMID: 31429203 DOI: 10.1111/jth.14586] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Edward M Conway
- Centre for Blood Research, Life Sciences Institute, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
49
|
Pan H, Xie Y, Lu W, Chen Y, Lu Z, Zhen J, Wang W, Shang A. Engineering an enhanced thrombin-based GLP-1 analog with long-lasting glucose-lowering and efficient weight reduction. RSC Adv 2019; 9:30707-30714. [PMID: 35529389 PMCID: PMC9072222 DOI: 10.1039/c9ra06771j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 09/20/2019] [Indexed: 11/21/2022] Open
Abstract
Peptides are considered as potent therapeutic drugs primarily due to the exquisite potency and selectivity to targets. However, the development and clinical application of peptide drugs were severely limited by the poor in vivo lifespans. Here, we designed an improved small albumin-binding polypeptide that can associate with human serum albumin (HSA) and liberate the bioactive peptide. Using glucagon-like peptide-1 (GLP-1) as a model, two new long-lasting GLP-1 analogs (termed XTS1 and XTS2) containing an albumin-binding domain, a protease-cleavable linker and a mutated GLP-1(A8Aib) were designed to demonstrate the sustained release of GLP-1 due to the plasma thrombin (TBN) digestion. Two XTS peptides were prepared of high purity (>99%) and accurate molecular weight determined by reversed high-performance liquid chromatography and mass spectrometry, respectively. In vitro measurements of surface plasmon resonance indicated that XTS1 associate with serum albumins of all species with higher affinity compared with XTS2. Metabolic stability of XTS1 in vitro in human plasma was also better than that of XTS2. Protease cleavage assay results of XTS peptides demonstrated the controlled-release of transient GLP-1 from the XTS1 and XTS2 mixture after thrombin-catalyzed hydrolysis. Then the intraperitoneal glucose tolerance test (IPGTT) showed that the glucose-lowering efficacies of XTS1 were in a dosage-dependent manner within the range of 0.1–0.9 mg kg−1. In addition, XTS1 showed similar hypoglycemic intensity and significantly longer action duration compared to Liraglutide in both multiple IPGTTs and hypoglycemic duration test. Apparently extended plasma half-lives of ∼2.3 and ∼3.5 days were observed after a single subcutaneous administration of XTS1 (0.9 mg kg−1) in rats and cynomolgus monkeys, respectively. Furthermore, twice-weekly subcutaneously dosed XTS1 in db/db mice achieved long-term beneficial effects on body weight, hemoglobin A1C (HbA1C) lowering and the function of pancreatic beta cells. These studies support that XTS1 exerts potential as a therapeutic drug for the treatment of T2DM. Peptides are considered as potent therapeutic drugs primarily due to the exquisite potency and selectivity to targets.![]()
Collapse
Affiliation(s)
- Hongchao Pan
- Department of Laboratory Medicine, Shanghai Simple Gene Medical Laboratory Shanghai 200025 P.R. China
| | - Yini Xie
- Department of Laboratory Medicine, The People's Hospital of Jiedong Jieyang 515500 P. R. China
| | - Wenying Lu
- Department of Experimental Medicine Center, The Sixth People's Hospital of Yancheng City Yancheng 224001 P. R. China
| | - Yin Chen
- Key Laboratory of Biological Medicine, Department of Life Science and Technology, Jinan University 51000 P. R. China
| | - Zhao Lu
- Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University Nanjing 210000 P. R. China
| | - Jun Zhen
- Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University Nanjing 210000 P. R. China
| | - Weiwei Wang
- Department of Experimental Medicine Center, The Sixth People's Hospital of Yancheng City Yancheng 224001 P. R. China
| | - Anquan Shang
- Department of Laboratory Medicine, Tongji Hospital of Tongji University Shanghai 200065 P. R. China
| |
Collapse
|
50
|
Fernández-Fernández ÁD, Van der Hoorn RAL, Gevaert K, Van Breusegem F, Stael S. Caught green-handed: methods for in vivo detection and visualization of protease activity. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2125-2141. [PMID: 30805604 DOI: 10.1093/jxb/erz076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
Proteases are enzymes that cleave peptide bonds of other proteins. Their omnipresence and diverse activities make them important players in protein homeostasis and turnover of the total cell proteome as well as in signal transduction in plant stress responses and development. To understand protease function, it is of paramount importance to assess when and where a specific protease is active. Here, we review the existing methods to detect in vivo protease activity by means of imaging chemical activity-based probes and genetically encoded sensors. We focus on the diverse fluorescent and luminescent sensors at the researcher's disposal and evaluate the potential of imaging techniques to deliver in vivo spatiotemporal detail of protease activity. We predict that in the coming years, revised techniques will help to elucidate plant protease activity and functions and hence expand the current status of the field.
Collapse
Affiliation(s)
- Álvaro Daniel Fernández-Fernández
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | | | - Kris Gevaert
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Simon Stael
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB Center for Medical Biotechnology, Ghent, Belgium
| |
Collapse
|