1
|
Chakraborty C, Saha S, Bhattacharya M. Recent Advances in Immunological Landscape and Immunotherapeutic Agent of Nipah Virus Infection. Cell Biochem Biophys 2024; 82:3053-3069. [PMID: 39052192 DOI: 10.1007/s12013-024-01424-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 07/27/2024]
Abstract
Over the last two decades, the Nipah virus (NiV) emerged as a highly lethal zoonotic pathogen to humans. Outbreaks occurred occasionally in South and Southeast Asia. Therefore, a safe and effective vaccine against the virus is needed to fight against the deadly virus. Understanding the immunological landscape during this lethal virus infection is necessary in this direction. However, we found scattered information on the immunological landscape of the virus's reservoir, as well as hosts such as humans and livestock. The review provides a recent understanding of the immunological landscape of the virus's reservoir, human hosts, monoclonal antibodies, and vaccines for NiV infection. To describe the immunological landscape, we divided our review article into some points. Firstly, we illustrated bats' immune response as a reservoir during the NiV infection. Secondly, we illustrated an overview of the molecular mechanisms underlying the immune response to the NiV infection, various immune cells, humans' innate immune response, adaptive immunity, and the landscape of cytokines and chemokines. We also discussed INF escape, NET evasion, the T cell landscape, and the B cell landscape during virus infection. Thirdly, we also demonstrated the potential monoclonal antibody therapeutics, and vaccines. Finally, neutralizing antibodies (nAbs) of NiV and potentially other therapeutic strategies were discussed. The review will help researchers for better understanding the immunological landscape, mAbs, and vaccines, enabling them to develop their next-generation versions.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, 700126, India.
| | - Sagnik Saha
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, 700126, India
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, 756020, Odisha, India
| |
Collapse
|
2
|
Amurri L, Dumont C, Pelissier R, Reynard O, Mathieu C, Spanier J, Pályi B, Déri D, Karkowski L, Gonzalez C, Skerra J, Kis Z, Kalinke U, Horvat B, Iampietro M. Multifaceted activation of STING axis upon Nipah and measles virus-induced syncytia formation. PLoS Pathog 2024; 20:e1012569. [PMID: 39283943 PMCID: PMC11426520 DOI: 10.1371/journal.ppat.1012569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 09/26/2024] [Accepted: 08/28/2024] [Indexed: 09/27/2024] Open
Abstract
Activation of the DNA-sensing STING axis by RNA viruses plays a role in antiviral response through mechanisms that remain poorly understood. Here, we show that the STING pathway regulates Nipah virus (NiV) replication in vivo in mice. Moreover, we demonstrate that following both NiV and measles virus (MeV) infection, IFNγ-inducible protein 16 (IFI16), an alternative DNA sensor in addition to cGAS, induces the activation of STING, leading to the phosphorylation of NF-κB p65 and the production of IFNβ and interleukin 6. Finally, we found that paramyxovirus-induced syncytia formation is responsible for loss of mitochondrial membrane potential and leakage of mitochondrial DNA in the cytoplasm, the latter of which is further detected by both cGAS and IFI16. These results contribute to improve our understanding about NiV and MeV immunopathogenesis and provide potential paths for alternative therapeutic strategies.
Collapse
Affiliation(s)
- Lucia Amurri
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon, École Normale Supérieure de Lyon, Lyon, France
| | - Claire Dumont
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon, École Normale Supérieure de Lyon, Lyon, France
| | - Rodolphe Pelissier
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon, École Normale Supérieure de Lyon, Lyon, France
| | - Olivier Reynard
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon, École Normale Supérieure de Lyon, Lyon, France
| | - Cyrille Mathieu
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon, École Normale Supérieure de Lyon, Lyon, France
| | - Julia Spanier
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection research, Hanover, Germany
| | - Bernadett Pályi
- National Biosafety Laboratory, National Center for Public Health and Pharmacy, Budapest, Hungary
- Semmelweis University, Institute of Medical Microbiology, Budapest, Hungary
| | - Daniel Déri
- National Biosafety Laboratory, National Center for Public Health and Pharmacy, Budapest, Hungary
- Semmelweis University, Institute of Medical Microbiology, Budapest, Hungary
| | - Ludovic Karkowski
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon, École Normale Supérieure de Lyon, Lyon, France
| | - Claudia Gonzalez
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon, École Normale Supérieure de Lyon, Lyon, France
| | - Jennifer Skerra
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection research, Hanover, Germany
| | - Zoltán Kis
- National Biosafety Laboratory, National Center for Public Health and Pharmacy, Budapest, Hungary
- Semmelweis University, Institute of Medical Microbiology, Budapest, Hungary
- European Research Infrastructure on Highly Pathogenic Agents (ERINHA-AISBL), Brussels, Belgium
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection research, Hanover, Germany
| | - Branka Horvat
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon, École Normale Supérieure de Lyon, Lyon, France
| | - Mathieu Iampietro
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon, École Normale Supérieure de Lyon, Lyon, France
| |
Collapse
|
3
|
Meier K, Olejnik J, Hume AJ, Mühlberger E. A Comparative Assessment of the Pathogenic Potential of Newly Discovered Henipaviruses. Pathogens 2024; 13:587. [PMID: 39057814 PMCID: PMC11280395 DOI: 10.3390/pathogens13070587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/05/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Recent advances in high-throughput sequencing technologies have led to the discovery of a plethora of previously unknown viruses in animal samples. Some of these newly detected viruses are closely related to human pathogens. A prime example are the henipaviruses. Both Nipah (NiV) and Hendra virus (HeV) cause severe disease in humans. Henipaviruses are of zoonotic origin, and animal hosts, including intermediate hosts, play a critical role in viral transmission to humans. The natural reservoir hosts of NiV and HeV seem to be restricted to a few fruit bat species of the Pteropus genus in distinct geographic areas. However, the recent discovery of novel henipa- and henipa-like viruses suggests that these viruses are far more widespread than was originally thought. To date, these new viruses have been found in a wide range of animal hosts, including bats, shrews, and rodents in Asia, Africa, Europe, and South America. Since these viruses are closely related to human pathogens, it is important to learn whether they pose a threat to human health. In this article, we summarize what is known about the newly discovered henipaviruses, highlight differences to NiV and HeV, and discuss their pathogenic potential.
Collapse
Affiliation(s)
- Kristina Meier
- Department of Virology, Immunology and Microbiology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA; (K.M.); (J.O.); (A.J.H.)
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02218, USA
| | - Judith Olejnik
- Department of Virology, Immunology and Microbiology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA; (K.M.); (J.O.); (A.J.H.)
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02218, USA
| | - Adam J. Hume
- Department of Virology, Immunology and Microbiology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA; (K.M.); (J.O.); (A.J.H.)
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02218, USA
| | - Elke Mühlberger
- Department of Virology, Immunology and Microbiology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA; (K.M.); (J.O.); (A.J.H.)
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02218, USA
| |
Collapse
|
4
|
Wilson CS, Vashi B, Genzor P, Gregory MK, Yau J, Wolfe L, Lochhead MJ, Papst P, Pettrone K, Blair PW, Krishnan S, Chenoweth JG, Clark DV. Point-of-care biomarker assay for rapid multiplexed detection of CRP and IP-10. SLAS Technol 2023; 28:442-448. [PMID: 37844868 DOI: 10.1016/j.slast.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/14/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
Rapid and accurate measurements of immune protein markers are essential for diagnosis and treatment in all clinical settings. The recent pandemic has revealed a stark need for developing new tools and assays that could be rapidly used in diverse settings and provide useful information to clinicians. Here, we describe the development and test application of a novel one-step CRP/IP-10 duplex assay for the LightDeck platform capable of delivering reproducible and accurate measurements in under eight minutes. We used the optimized assay to measure CRP and IP-10 levels in human blood and serum samples from healthy, SARS-CoV-2 (COVID-19) positive, and influenza-like illness (ILI) presenting patients. Our results agreed with previously published analyte levels and enabled us to make statistically significant comparisons relevant to multiple clinical parameters. Our duplex assay is a simple and powerful tool for aiding prognostic decision-making in diverse settings.
Collapse
Affiliation(s)
- Claire S Wilson
- The Austere environments Consortium for Enhanced Sepsis Outcomes (ACESO), The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Bhavya Vashi
- The Austere environments Consortium for Enhanced Sepsis Outcomes (ACESO), The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Pavol Genzor
- The Austere environments Consortium for Enhanced Sepsis Outcomes (ACESO), The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Melissa K Gregory
- The Austere environments Consortium for Enhanced Sepsis Outcomes (ACESO), The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Jason Yau
- LightDeck Diagnostics, Inc., Boulder, CO, USA
| | | | | | - Phil Papst
- LightDeck Diagnostics, Inc., Boulder, CO, USA
| | - Kristen Pettrone
- The Austere environments Consortium for Enhanced Sepsis Outcomes (ACESO), The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Paul W Blair
- The Austere environments Consortium for Enhanced Sepsis Outcomes (ACESO), The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Subramaniam Krishnan
- The Austere environments Consortium for Enhanced Sepsis Outcomes (ACESO), The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Josh G Chenoweth
- The Austere environments Consortium for Enhanced Sepsis Outcomes (ACESO), The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA.
| | - Danielle V Clark
- The Austere environments Consortium for Enhanced Sepsis Outcomes (ACESO), The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| |
Collapse
|
5
|
Escudero-Pérez B, Lawrence P, Castillo-Olivares J. Immune correlates of protection for SARS-CoV-2, Ebola and Nipah virus infection. Front Immunol 2023; 14:1156758. [PMID: 37153606 PMCID: PMC10158532 DOI: 10.3389/fimmu.2023.1156758] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/20/2023] [Indexed: 05/09/2023] Open
Abstract
Correlates of protection (CoP) are biological parameters that predict a certain level of protection against an infectious disease. Well-established correlates of protection facilitate the development and licensing of vaccines by assessing protective efficacy without the need to expose clinical trial participants to the infectious agent against which the vaccine aims to protect. Despite the fact that viruses have many features in common, correlates of protection can vary considerably amongst the same virus family and even amongst a same virus depending on the infection phase that is under consideration. Moreover, the complex interplay between the various immune cell populations that interact during infection and the high degree of genetic variation of certain pathogens, renders the identification of immune correlates of protection difficult. Some emerging and re-emerging viruses of high consequence for public health such as SARS-CoV-2, Nipah virus (NiV) and Ebola virus (EBOV) are especially challenging with regards to the identification of CoP since these pathogens have been shown to dysregulate the immune response during infection. Whereas, virus neutralising antibodies and polyfunctional T-cell responses have been shown to correlate with certain levels of protection against SARS-CoV-2, EBOV and NiV, other effector mechanisms of immunity play important roles in shaping the immune response against these pathogens, which in turn might serve as alternative correlates of protection. This review describes the different components of the adaptive and innate immune system that are activated during SARS-CoV-2, EBOV and NiV infections and that may contribute to protection and virus clearance. Overall, we highlight the immune signatures that are associated with protection against these pathogens in humans and could be used as CoP.
Collapse
Affiliation(s)
- Beatriz Escudero-Pérez
- WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Reims, Braunschweig, Germany
- *Correspondence: Beatriz Escudero-Pérez, ; Javier Castillo-Olivares,
| | - Philip Lawrence
- CONFLUENCE: Sciences et Humanités (EA 1598), Université Catholique de Lyon (UCLy), Lyon, France
| | - Javier Castillo-Olivares
- Laboratory of Viral Zoonotics, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Beatriz Escudero-Pérez, ; Javier Castillo-Olivares,
| |
Collapse
|
6
|
Rocamonde B, Hasan U, Mathieu C, Dutartre H. Viral-induced neuroinflammation: Different mechanisms converging to similar exacerbated glial responses. Front Neurosci 2023; 17:1108212. [PMID: 36937670 PMCID: PMC10017484 DOI: 10.3389/fnins.2023.1108212] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
There is increasing evidence that viral infections are the source/origin of various types of encephalitis, encephalomyelitis, and other neurological and cognitive disorders. While the involvement of certain viruses, such as the Nipah virus and measles virus, is known, the mechanisms of neural invasion and the factors that trigger intense immune reactions are not fully understood. Based on recent publications, this review discusses the role of the immune response, interactions between viruses and glial cells, and cytokine mediators in the development of inflammatory diseases in the central nervous system. It also highlights the significant gaps in knowledge regarding these mechanisms.
Collapse
Affiliation(s)
- Brenda Rocamonde
- Centre International de Recherche en Infectiologie, Équipe d’Oncogenèse Rétrovirale, INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, UMR 5308, École Normale Supérieure de Lyon, Université Lyon, Lyon, France
- Equipe Labellisée par la Fondation pour la Recherche Médicale, Labex Ecofect, Lyon, France
- *Correspondence: Brenda Rocamonde,
| | - Uzma Hasan
- Centre International de Recherche en Infectiologie, Team Enveloped Viruses, Vectors and Immunotherapy INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, UMR 5308, École Normale Supérieure de Lyon, Université Lyon, Lyon, France
- The Lyon Immunotherapy for Cancer Laboratory (LICL), Centre de Recherche en Cancérologie de Lyon (CRCL, UMR INSERM 1052 – CNRS 5286) Centre Léon Bérard, Lyon, France
| | - Cyrille Mathieu
- Centre International de Recherche en Infectiologie Équipe Neuro-Invasion, Tropism and Viral Encephalitis, INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, UMR 5308, École Normale Supérieure de Lyon, Université Lyon, Lyon, France
- Cyrille Mathieu,
| | - Hélène Dutartre
- Centre International de Recherche en Infectiologie, Équipe d’Oncogenèse Rétrovirale, INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, UMR 5308, École Normale Supérieure de Lyon, Université Lyon, Lyon, France
- Equipe Labellisée par la Fondation pour la Recherche Médicale, Labex Ecofect, Lyon, France
- Hélène Dutartre,
| |
Collapse
|
7
|
Bruno L, Nappo MA, Ferrari L, Di Lecce R, Guarnieri C, Cantoni AM, Corradi A. Nipah Virus Disease: Epidemiological, Clinical, Diagnostic and Legislative Aspects of This Unpredictable Emerging Zoonosis. Animals (Basel) 2022; 13:ani13010159. [PMID: 36611767 PMCID: PMC9817766 DOI: 10.3390/ani13010159] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Nipah virus (NiV) infection is a viral disease caused by a Henipavirus, belonging to the Paramyxoviridae family, responsible for a zoonosis. The course of the disease can be very serious and lead to death. NiV natural hosts are fruit bats (also known as megabats) belonging to the Pteropodidae family, especially those of the Pteropus genus. Natural infection in domestic animals has been described in farming pigs, horses, domestic and feral dogs and cats. Natural NiV transmission is possible intra-species (pig-to-pig, human-to-human) and inter-species (flying bat-to-human, pig-to-human, horse-to-human). The infection can be spread by humans or animals in different ways. It is peculiar how the viral transmission modes among different hosts also change depending on the geographical area for different reasons, including different breeding methods, eating habits and the recently identified genetic traits/molecular features of main virus proteins related to virulence. Outbreaks have been described in Malaysia, Singapore, Bangladesh, India and the Philippines with, in some cases, severe respiratory and neurological disease and high mortality in both humans and pigs. Diagnosis can be made using different methods including serological, molecular, virological and immunohistochemical methods. The cornerstones for control of the disease are biosecurity (via the correct management of reservoir and intermediate/amplifying hosts) and potential vaccines which are still under development. However, the evaluation of the potential influence of climate and anthropogenic changes on the NiV reservoir bats and their habitat as well as on disease spread and inter-specific infections is of great importance. Bats, as natural reservoirs of the virus, are responsible for the viral spread and, therefore, for the outbreaks of the disease in humans and animals. Due to the worldwide distribution of bats, potential new reports and spillovers are not to be dismissed in the future.
Collapse
Affiliation(s)
- Luigi Bruno
- Department of Prevention, Azienda Sanitaria Locale (A.S.L.) Napoli 3 Sud, 80053 Castellammare di Stabia, Italy
- Correspondence: (L.B.); (L.F.)
| | - Maria Anna Nappo
- Department of Prevention, Azienda Sanitaria Locale (A.S.L.) Napoli 3 Sud, 80053 Castellammare di Stabia, Italy
| | - Luca Ferrari
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy
- Correspondence: (L.B.); (L.F.)
| | - Rosanna Di Lecce
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy
| | - Chiara Guarnieri
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy
| | - Anna Maria Cantoni
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy
| | - Attilio Corradi
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy
| |
Collapse
|
8
|
Abstract
Bats perform important ecological roles in our ecosystem. However, recent studies have demonstrated that bats are reservoirs of emerging viruses that have spilled over into humans and agricultural animals to cause severe diseases. These viruses include Hendra and Nipah paramyxoviruses, Ebola and Marburg filoviruses, and coronaviruses that are closely related to severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and the recently emerged SARS-CoV-2. Intriguingly, bats that are naturally or experimentally infected with these viruses do not show clinical signs of disease. Here we have reviewed ecological, behavioral, and molecular factors that may influence the ability of bats to harbor viruses. We have summarized known zoonotic potential of bat-borne viruses and stress on the need for further studies to better understand the evolutionary relationship between bats and their viruses, along with discovering the intrinsic and external factors that facilitate the successful spillover of viruses from bats.
Collapse
Affiliation(s)
- Victoria Gonzalez
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Arinjay Banerjee
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
9
|
Ang LT, Nguyen AT, Liu KJ, Chen A, Xiong X, Curtis M, Martin RM, Raftry BC, Ng CY, Vogel U, Lander A, Lesch BJ, Fowler JL, Holman AR, Chai T, Vijayakumar S, Suchy FP, Nishimura T, Bhadury J, Porteus MH, Nakauchi H, Cheung C, George SC, Red-Horse K, Prescott JB, Loh KM. Generating human artery and vein cells from pluripotent stem cells highlights the arterial tropism of Nipah and Hendra viruses. Cell 2022; 185:2523-2541.e30. [PMID: 35738284 DOI: 10.1016/j.cell.2022.05.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 03/26/2022] [Accepted: 05/26/2022] [Indexed: 02/07/2023]
Abstract
Stem cell research endeavors to generate specific subtypes of classically defined "cell types." Here, we generate >90% pure human artery or vein endothelial cells from pluripotent stem cells within 3-4 days. We specified artery cells by inhibiting vein-specifying signals and vice versa. These cells modeled viral infection of human vasculature by Nipah and Hendra viruses, which are extraordinarily deadly (∼57%-59% fatality rate) and require biosafety-level-4 containment. Generating pure populations of artery and vein cells highlighted that Nipah and Hendra viruses preferentially infected arteries; arteries expressed higher levels of their viral-entry receptor. Virally infected artery cells fused into syncytia containing up to 23 nuclei, which rapidly died. Despite infecting arteries and occupying ∼6%-17% of their transcriptome, Nipah and Hendra largely eluded innate immune detection, minimally eliciting interferon signaling. We thus efficiently generate artery and vein cells, introduce stem-cell-based toolkits for biosafety-level-4 virology, and explore the arterial tropism and cellular effects of Nipah and Hendra viruses.
Collapse
Affiliation(s)
- Lay Teng Ang
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA.
| | - Alana T Nguyen
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
| | - Kevin J Liu
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Angela Chen
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
| | - Xiaochen Xiong
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
| | - Matthew Curtis
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA
| | - Renata M Martin
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Brian C Raftry
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Chun Yi Ng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Uwe Vogel
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin 13353, Germany
| | - Angelika Lander
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin 13353, Germany
| | - Benjamin J Lesch
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Jonas L Fowler
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
| | - Alyssa R Holman
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
| | - Timothy Chai
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
| | - Siva Vijayakumar
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
| | - Fabian P Suchy
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Toshinobu Nishimura
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Joydeep Bhadury
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Matthew H Porteus
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Hiromitsu Nakauchi
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Christine Cheung
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore
| | - Steven C George
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA
| | - Kristy Red-Horse
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Joseph B Prescott
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin 13353, Germany.
| | - Kyle M Loh
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
10
|
Liew YJM, Ibrahim PAS, Ong HM, Chong CN, Tan CT, Schee JP, Gómez Román R, Cherian NG, Wong WF, Chang LY. The Immunobiology of Nipah Virus. Microorganisms 2022; 10:microorganisms10061162. [PMID: 35744680 PMCID: PMC9228579 DOI: 10.3390/microorganisms10061162] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 12/23/2022] Open
Abstract
Nipah virus (NiV) is a highly lethal zoonotic paramyxovirus that emerged in Malaysia in 1998. It is a human pathogen capable of causing severe respiratory infection and encephalitis. The natural reservoir of NiV, Pteropus fruit bats, remains a continuous virus source for future outbreaks, although infection in the bats is largely asymptomatic. NiV provokes serious disease in various mammalian species. In the recent human NiV outbreaks in Bangladesh and India, both bats-to-human and human-to-human transmissions have been observed. NiV has been demonstrated to interfere with the innate immune response via interferon type I signaling, promoting viral dissemination and preventing antiviral response. Studies of humoral immunity in infected NiV patients and animal models have shown that NiV-specific antibodies were produced upon infection and were protective. Studies on cellular immunity response to NiV infection in human and animal models also found that the adaptive immune response, specifically CD4+ and CD8+ T cells, was stimulated upon NiV infection. The experimental vaccines and therapeutic strategies developed have provided insights into the immunological requirements for the development of successful medical countermeasures against NiV. This review summarizes the current understanding of NiV pathogenesis and innate and adaptive immune responses induced upon infection.
Collapse
Affiliation(s)
- Yvonne Jing Mei Liew
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (Y.J.M.L.); (P.A.S.I.); (H.M.O.); (C.N.C.); (W.F.W.)
- Deputy Vice Chancellor’s Office (Research & Innovation), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Puteri Ainaa S. Ibrahim
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (Y.J.M.L.); (P.A.S.I.); (H.M.O.); (C.N.C.); (W.F.W.)
| | - Hui Ming Ong
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (Y.J.M.L.); (P.A.S.I.); (H.M.O.); (C.N.C.); (W.F.W.)
| | - Chee Ning Chong
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (Y.J.M.L.); (P.A.S.I.); (H.M.O.); (C.N.C.); (W.F.W.)
| | - Chong Tin Tan
- Division of Neurology, Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (C.T.T.); (J.P.S.)
| | - Jie Ping Schee
- Division of Neurology, Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (C.T.T.); (J.P.S.)
| | - Raúl Gómez Román
- Vaccine Research and Development, Coalition for Epidemic Preparedness Innovation (CEPI), Askekroken 11, 0277 Oslo, Norway; (R.G.R.); (N.G.C.)
| | - Neil George Cherian
- Vaccine Research and Development, Coalition for Epidemic Preparedness Innovation (CEPI), Askekroken 11, 0277 Oslo, Norway; (R.G.R.); (N.G.C.)
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (Y.J.M.L.); (P.A.S.I.); (H.M.O.); (C.N.C.); (W.F.W.)
| | - Li-Yen Chang
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (Y.J.M.L.); (P.A.S.I.); (H.M.O.); (C.N.C.); (W.F.W.)
- Correspondence:
| |
Collapse
|
11
|
Lawrence P, Escudero-Pérez B. Henipavirus Immune Evasion and Pathogenesis Mechanisms: Lessons Learnt from Natural Infection and Animal Models. Viruses 2022; 14:v14050936. [PMID: 35632678 PMCID: PMC9146692 DOI: 10.3390/v14050936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 02/01/2023] Open
Abstract
Nipah henipavirus (NiV) and Hendra henipavirus (HeV) are zoonotic emerging paramyxoviruses causing severe disease outbreaks in humans and livestock, mostly in Australia, India, Malaysia, Singapore and Bangladesh. Both are bat-borne viruses and in humans, their mortality rates can reach 60% in the case of HeV and 92% for NiV, thus being two of the deadliest viruses known for humans. Several factors, including a large cellular tropism and a wide zoonotic potential, con-tribute to their high pathogenicity. This review provides an overview of HeV and NiV pathogenicity mechanisms and provides a summary of their interactions with the immune systems of their different host species, including their natural hosts bats, spillover-hosts pigs, horses, and humans, as well as in experimental animal models. A better understanding of the interactions between henipaviruses and their hosts could facilitate the development of new therapeutic strategies and vaccine measures against these re-emerging viruses.
Collapse
Affiliation(s)
- Philip Lawrence
- Science and Humanities Confluence Research Centre (EA 1598), Catholic University of Lyon (UCLy), 69002 Lyon, France
- Correspondence: (P.L.); (B.E.-P.)
| | - Beatriz Escudero-Pérez
- WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel, 38124 Braunschweig, Germany
- Correspondence: (P.L.); (B.E.-P.)
| |
Collapse
|
12
|
A recombinant VSV-vectored vaccine rapidly protects nonhuman primates against lethal Nipah virus disease. Proc Natl Acad Sci U S A 2022; 119:e2200065119. [PMID: 35286211 PMCID: PMC8944267 DOI: 10.1073/pnas.2200065119] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Concern has increased about the pandemic potential of Nipah virus (NiV). Similar to SARS-CoV-2, NiV is an RNA virus that is transmitted by respiratory droplets. There are currently no NiV vaccines licensed for human use. While several preventive vaccines have shown promise in protecting animals against lethal NiV disease, most studies have assessed protection 1 mo after vaccination. However, in order to contain and control outbreaks, vaccines that can rapidly confer protection in days rather than months are needed. Here, we show that a recombinant vesicular stomatitis virus vector expressing the NiV glycoprotein can completely protect monkeys vaccinated 7 d prior to NiV exposure and 67% of animals vaccinated 3 d before NiV challenge. Nipah virus (NiV) is an emerging highly lethal zoonotic disease that, like SARS-CoV-2, can be transmitted via respiratory droplets. Single-injection vaccines that rapidly control NiV outbreaks are needed. To assess the ability of a vaccine to induce fast-acting protection, we immunized African green monkeys with a recombinant vesicular stomatitis virus (VSV) expressing the Bangladesh strain glycoprotein (NiVBG) of NiV (rVSV-ΔG-NiVBG). Monkeys were challenged 3 or 7 d later with a lethal dose of NiVB. All monkeys vaccinated with rVSV-ΔG-NiVBG 7 d prior to NiVB exposure were protected from lethal disease, while 67% of animals vaccinated 3 d before NiVB challenge survived. Vaccine protection correlated with natural killer cell and cytotoxic T cell transcriptional signatures, whereas lethality was linked to sustained interferon signaling. NiV G-specific antibodies in vaccinated survivors corroborated additional transcriptomic findings, supporting activation of humoral immunity. This study demonstrates that rVSV-based vaccines may have utility in rapidly protecting humans against NiV infection.
Collapse
|
13
|
Reprogrammed Pteropus Bat Stem Cells as A Model to Study Host-Pathogen Interaction during Henipavirus Infection. Microorganisms 2021; 9:microorganisms9122567. [PMID: 34946167 PMCID: PMC8706405 DOI: 10.3390/microorganisms9122567] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/04/2021] [Accepted: 12/08/2021] [Indexed: 01/13/2023] Open
Abstract
Bats are natural hosts for numerous zoonotic viruses, including henipaviruses, which are highly pathogenic for humans, livestock, and other mammals but do not induce clinical disease in bats. Pteropus bats are identified as a reservoir of henipaviruses and the source of transmission of the infection to humans over the past 20 years. A better understanding of the molecular and cellular mechanisms allowing bats to control viral infections requires the development of relevant, stable, and permissive cellular experimental models. By applying a somatic reprogramming protocol to Pteropus bat primary cells, using a combination of ESRRB (Estrogen Related Receptor Beta), CDX2 (Caudal type Homeobox 2), and c-MYC (MYC proto-oncogene) transcription factors, we generated bat reprogrammed cells. These cells exhibit stem cell-like characteristics and neural stem cell molecular signature. In contrast to primary fibroblastic cells, these reprogrammed stem cells are highly permissive to henipaviruses and exhibit specific transcriptomic profiles with the particular expression of certain susceptibility factors such as interferon-stimulated genes (ISG), which may be related to viral infection. These Pteropus bat reprogrammed stem cells should represent an important experimental tool to decipher interactions during henipaviruses infection in Pteropus bats, facilitate isolation and production of bat-borne viruses, and to better understand the bat biology.
Collapse
|
14
|
Semmler G, Griebler H, Aberle SW, Stiasny K, Richter L, Holzmann H, Weseslindtner L. Elevated CXCL10 Serum Levels in Measles Virus Primary Infection and Reinfection Correlate With the Serological Stage and Hospitalization Status. J Infect Dis 2021; 222:2030-2034. [PMID: 32515478 DOI: 10.1093/infdis/jiaa326] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/04/2020] [Indexed: 01/21/2023] Open
Abstract
We quantified serum concentrations of chemokine CXCL10 in 288 patients with measles virus (MeV) primary infection and 16 patients with reinfection (vaccine failure). CXCL10 peaked with emergence of IgM antibodies and was elevated in hospitalized patients (3233 vs 1930 pg/mL, P < .0001). CXCL10 differed between primary and reinfection (1958 vs 932 pg/mL, P = .0402). In comparison to other viral infections with rash-like symptoms, CXCL10 was highly elevated in MeV infection (area under the curve = 0.935; 95% confidence interval, .905-.965; P < .0001). CXCL10 is a potential marker for diagnosis, stage, and severity of MeV infection.
Collapse
Affiliation(s)
- Georg Semmler
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Hannah Griebler
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Stephan W Aberle
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Karin Stiasny
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Lukas Richter
- Department of Surveillance and Infectious Disease Epidemiology, Austrian Agency for Health and Food Safety, Vienna, Austria
| | | | | |
Collapse
|
15
|
Gaudino M, Aurine N, Dumont C, Fouret J, Ferren M, Mathieu C, Reynard O, Volchkov VE, Legras-Lachuer C, Georges-Courbot MC, Horvat B. High Pathogenicity of Nipah Virus from Pteropus lylei Fruit Bats, Cambodia. Emerg Infect Dis 2021; 26:104-113. [PMID: 31855143 PMCID: PMC6924896 DOI: 10.3201/eid2601.191284] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We conducted an in-depth characterization of the Nipah virus (NiV) isolate previously obtained from a Pteropus lylei bat in Cambodia in 2003 (CSUR381). We performed full-genome sequencing and phylogenetic analyses and confirmed CSUR381 is part of the NiV-Malaysia genotype. In vitro studies revealed similar cell permissiveness and replication of CSUR381 (compared with 2 other NiV isolates) in both bat and human cell lines. Sequence alignments indicated conservation of the ephrin-B2 and ephrin-B3 receptor binding sites, the glycosylation site on the G attachment protein, as well as the editing site in phosphoprotein, suggesting production of nonstructural proteins V and W, known to counteract the host innate immunity. In the hamster animal model, CSUR381 induced lethal infections. Altogether, these data suggest that the Cambodia bat-derived NiV isolate has high pathogenic potential and, thus, provide insight for further studies and better risk assessment for future NiV outbreaks in Southeast Asia.
Collapse
|
16
|
Fosse JH, Haraldsen G, Falk K, Edelmann R. Endothelial Cells in Emerging Viral Infections. Front Cardiovasc Med 2021; 8:619690. [PMID: 33718448 PMCID: PMC7943456 DOI: 10.3389/fcvm.2021.619690] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
There are several reasons to consider the role of endothelial cells in COVID-19 and other emerging viral infections. First, severe cases of COVID-19 show a common breakdown of central vascular functions. Second, SARS-CoV-2 replicates in endothelial cells. Third, prior deterioration of vascular function exacerbates disease, as the most common comorbidities of COVID-19 (obesity, hypertension, and diabetes) are all associated with endothelial dysfunction. Importantly, SARS-CoV-2's ability to infect endothelium is shared by many emerging viruses, including henipaviruses, hantavirus, and highly pathogenic avian influenza virus, all specifically targeting endothelial cells. The ability to infect endothelium appears to support generalised dissemination of infection and facilitate the access to certain tissues. The disturbed vascular function observed in severe COVID-19 is also a prominent feature of many other life-threatening viral diseases, underscoring the need to understand how viruses modulate endothelial function. We here review the role of vascular endothelial cells in emerging viral infections, starting with a summary of endothelial cells as key mediators and regulators of vascular and immune responses in health and infection. Next, we discuss endotheliotropism as a possible virulence factor and detail features that regulate viruses' ability to attach to and enter endothelial cells. We move on to review how endothelial cells detect invading viruses and respond to infection, with particular focus on pathways that may influence vascular function and the host immune system. Finally, we discuss how endothelial cell function can be dysregulated in viral disease, either by viral components or as bystander victims of overshooting or detrimental inflammatory and immune responses. Many aspects of how viruses interact with the endothelium remain poorly understood. Considering the diversity of such mechanisms among different emerging viruses allows us to highlight common features that may be of general validity and point out important challenges.
Collapse
Affiliation(s)
| | - Guttorm Haraldsen
- Department of Pathology, Oslo University Hospital, Oslo, Norway.,Department of Pathology, University of Oslo, Oslo, Norway
| | - Knut Falk
- Norwegian Veterinary Institute, Oslo, Norway.,AquaMed Consulting AS, Oslo, Norway
| | - Reidunn Edelmann
- Department of Clinical Medicine, Centre for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway
| |
Collapse
|
17
|
Woon AP, Boyd V, Todd S, Smith I, Klein R, Woodhouse IB, Riddell S, Crameri G, Bingham J, Wang LF, Purcell AW, Middleton D, Baker ML. Acute experimental infection of bats and ferrets with Hendra virus: Insights into the early host response of the reservoir host and susceptible model species. PLoS Pathog 2020; 16:e1008412. [PMID: 32226041 PMCID: PMC7145190 DOI: 10.1371/journal.ppat.1008412] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 04/09/2020] [Accepted: 02/19/2020] [Indexed: 12/22/2022] Open
Abstract
Bats are the natural reservoir host for a number of zoonotic viruses, including Hendra virus (HeV) which causes severe clinical disease in humans and other susceptible hosts. Our understanding of the ability of bats to avoid clinical disease following infection with viruses such as HeV has come predominantly from in vitro studies focusing on innate immunity. Information on the early host response to infection in vivo is lacking and there is no comparative data on responses in bats compared with animals that succumb to disease. In this study, we examined the sites of HeV replication and the immune response of infected Australian black flying foxes and ferrets at 12, 36 and 60 hours post exposure (hpe). Viral antigen was detected at 60 hpe in bats and was confined to the lungs whereas in ferrets there was evidence of widespread viral RNA and antigen by 60 hpe. The mRNA expression of IFNs revealed antagonism of type I and III IFNs and a significant increase in the chemokine, CXCL10, in bat lung and spleen following infection. In ferrets, there was an increase in the transcription of IFN in the spleen following infection. Liquid chromatography tandem mass spectrometry (LC-MS/MS) on lung tissue from bats and ferrets was performed at 0 and 60 hpe to obtain a global overview of viral and host protein expression. Gene Ontology (GO) enrichment analysis of immune pathways revealed that six pathways, including a number involved in cell mediated immunity were more likely to be upregulated in bat lung compared to ferrets. GO analysis also revealed enrichment of the type I IFN signaling pathway in bats and ferrets. This study contributes important comparative data on differences in the dissemination of HeV and the first to provide comparative data on the activation of immune pathways in bats and ferrets in vivo following infection. Bats are natural reservoirs for a number of viruses, including HeV that cause severe disease in humans and other susceptible hosts. We examined acute HeV infection in pteropid bats, compared to ferrets, a species that develops fulminating disease following exposure to HeV, similar to humans. Analysis of HeV replication and transcription of innate immune genes was performed at 12, 36 and 60 hpe and global proteomics was performed on tissues at 60 hpe to obtain insight into the mechanisms responsible for innocuous (bats) compared to fatal (ferrets) HeV infection. We confirmed that both animal species had become infected on the basis of detection of viral RNA in bat lung (60 hpe) and ferret lung, lymph node, spleen, heart and intestine (36 and/or 60 hpe). Analysis of the transcription of IFNs and CXCL10, combined with global proteomics analysis revealed differences in the activation of the immune response between bats and ferrets, consistent with the difference in the control of viral replication and the development of pathology associated with disease between the two species. This study represents the first in vivo comparison between bats and a susceptible host and contributes important information on the kinetics and control of HeV in these two model species.
Collapse
Affiliation(s)
- Amanda P Woon
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Immunocore Ltd, Abingdon, Oxford, United Kingdom
| | - Victoria Boyd
- CSIRO Health and Biosecurity Business Unit, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Shawn Todd
- CSIRO Health and Biosecurity Business Unit, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Ina Smith
- CSIRO Health and Biosecurity Business Unit, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Reuben Klein
- CSIRO Health and Biosecurity Business Unit, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Isaac B Woodhouse
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom.,Centre of Innate Immunity and Infectious Diseases, Hudson Institute of Medical Search, Clayton, Victoria, Australia
| | - Sarah Riddell
- CSIRO, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Gary Crameri
- CSIRO Health and Biosecurity Business Unit, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - John Bingham
- CSIRO, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore
| | - Anthony W Purcell
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Deborah Middleton
- CSIRO, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Michelle L Baker
- CSIRO Health and Biosecurity Business Unit, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| |
Collapse
|
18
|
Dawes BE, Freiberg AN. Henipavirus infection of the central nervous system. Pathog Dis 2020; 77:5462651. [PMID: 30985897 DOI: 10.1093/femspd/ftz023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/13/2019] [Indexed: 02/07/2023] Open
Abstract
Nipah virus (NiV) and Hendra virus are highly pathogenic zoonotic viruses of the genus Henipavirus, family Paramyxoviridae. These viruses were first identified as the causative agents of severe respiratory and encephalitic disease in the 1990s across Australia and Southern Asia with mortality rates reaching up to 75%. While outbreaks of Nipah and Hendra virus infections remain rare and sporadic, there is concern that NiV has pandemic potential. Despite increased attention, little is understood about the neuropathogenesis of henipavirus infection. Neuropathogenesis appears to arise from dual mechanisms of vascular disease and direct parenchymal brain infection, but the relative contributions remain unknown while respiratory disease arises from vasculitis and respiratory epithelial cell infection. This review will address NiV basic clinical disease, pathology and pathogenesis with a particular focus on central nervous system (CNS) infection and address the necessity of a model of relapsed CNS infection. Additionally, the innate immune responses to NiV infection in vitro and in the CNS are reviewed as it is likely linked to any persistent CNS infection.
Collapse
Affiliation(s)
- Brian E Dawes
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas, 77555, USA.,Department of Pathology, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas, 77555, USA
| | - Alexander N Freiberg
- Department of Pathology, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas, 77555, USA.,Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas, 77555, USA.,Institute for Human Infections and Immunity, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas, 77555, USA
| |
Collapse
|
19
|
Hassan MZ, Ahmed MS, Khan MM, Uddin MA, Chowdhury F, Kamruzzaman M. Genomic profiling of Nipah virus using NGS driven RNA-Seq expression data. Bioinformation 2019; 15:853-862. [PMID: 32256005 PMCID: PMC7088422 DOI: 10.6026/97320630015853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 12/31/2019] [Accepted: 12/31/2019] [Indexed: 01/20/2023] Open
Abstract
Nipah virus (NiV) is an ssRNA, enveloped paramyxovirus in the genus Henipaveridae with a case fatality rate >70%. We analyzed the NGS RNA-Seq gene expression data of NiV to detect differentially expressed genes (DEGs) using the statistical R package limma. We used the Cytoscape, Ensembl, and STRING tools to construct the gene-gene interaction tree, phylogenetic gene tree and protein-protein interaction networks towards functional annotation. We identified 2707 DEGs (p-value <0.05) among 54359 NiV genes. The top-up and down-regulated DEGs were EPST1, MX1, IFIT3, RSAD2, OAS1, OASL, CMPK2 and SLFN13, SPAC977.17 using log2FC criteria with optimum threshold 1.0. The top 20 up-regulated gene-gene interaction trees showed no significant association between Nipah and Tularemia virus. Similarly, the top 20 down-regulated genes of neither Ebola nor Tularemia virus showed an association with the Nipah virus. Hence, we document the top-up and down-regulated DEGs for further consideration as biomarkers and candidates for vaccine or drug design against Nipah virus to combat infection.
Collapse
Affiliation(s)
- Md. Zakiul Hassan
- Infectious Diseases Division, International Centre for Diarrheal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Md. Shakil Ahmed
- Infectious Diseases Division, International Centre for Diarrheal Disease Research, Bangladesh, Dhaka, Bangladesh
| | | | | | - Fahmida Chowdhury
- Infectious Diseases Division, International Centre for Diarrheal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Md Kamruzzaman
- Institute of Bangladesh Studies, University of Rajshahi, Rajshahi, Bangladesh
| |
Collapse
|
20
|
Control of Nipah Virus Infection in Mice by the Host Adaptors Mitochondrial Antiviral Signaling Protein (MAVS) and Myeloid Differentiation Primary Response 88 (MyD88). J Infect Dis 2019; 221:S401-S406. [DOI: 10.1093/infdis/jiz602] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Abstract
Interferon (IFN) type I plays a critical role in the protection of mice from lethal Nipah virus (NiV) infection, but mechanisms responsible for IFN-I induction remain unknown. In the current study, we demonstrated the critical role of the mitochondrial antiviral signaling protein signaling pathway in IFN-I production and NiV replication in murine embryonic fibroblasts in vitro, and the redundant but essential roles of both mitochondrial antiviral signaling protein and myeloid differentiation primary response 88 adaptors, but not toll/interleukin-1 receptor/resistance [TIR] domain–containing adaptor–inducing IFN-β (TRIF), in the control of NiV infection in mice. These results reveal potential novel targets for antiviral intervention and help in understanding NiV immunopathogenesis.
Collapse
|
21
|
Pelissier R, Iampietro M, Horvat B. Recent advances in the understanding of Nipah virus immunopathogenesis and anti-viral approaches. F1000Res 2019; 8. [PMID: 31656582 PMCID: PMC6798321 DOI: 10.12688/f1000research.19975.1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/08/2019] [Indexed: 12/24/2022] Open
Abstract
Nipah virus (NiV) is a highly lethal zoonotic paramyxovirus that emerged at the end of last century as a human pathogen capable of causing severe acute respiratory infection and encephalitis. Although NiV provokes serious diseases in numerous mammalian species, the infection seems to be asymptomatic in NiV natural hosts, the fruit bats, which provide a continuous virus source for further outbreaks. Consecutive human-to-human transmission has been frequently observed during outbreaks in Bangladesh and India. NiV was shown to interfere with the innate immune response and interferon type I signaling, restraining the anti-viral response and permitting viral spread. Studies of adaptive immunity in infected patients and animal models have suggested an unbalanced immune response during NiV infection. Here, we summarize some of the recent studies of NiV pathogenesis and NiV-induced modulation of both innate and adaptive immune responses, as well as the development of novel prophylactic and therapeutic approaches, necessary to control this highly lethal emerging infection.
Collapse
Affiliation(s)
- Rodolphe Pelissier
- International Center for Infectiology Research-CIRI, Immunobiology of Viral Infections team, Inserm U1111, CNRS, UMR5308, University of Lyon, Ecole Normale Supérieure de Lyon, France
| | - Mathieu Iampietro
- International Center for Infectiology Research-CIRI, Immunobiology of Viral Infections team, Inserm U1111, CNRS, UMR5308, University of Lyon, Ecole Normale Supérieure de Lyon, France
| | - Branka Horvat
- International Center for Infectiology Research-CIRI, Immunobiology of Viral Infections team, Inserm U1111, CNRS, UMR5308, University of Lyon, Ecole Normale Supérieure de Lyon, France
| |
Collapse
|
22
|
Dawes BE, Gao J, Atkins C, Nelson JT, Johnson K, Wu P, Freiberg AN. Human neural stem cell-derived neuron/astrocyte co-cultures respond to La Crosse virus infection with proinflammatory cytokines and chemokines. J Neuroinflammation 2018; 15:315. [PMID: 30442185 PMCID: PMC6236894 DOI: 10.1186/s12974-018-1356-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 10/31/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND La Crosse virus (LACV) causes pediatric encephalitis in the USA. LACV induces severe inflammation in the central nervous system, but the recruitment of inflammatory cells is poorly understood. A deeper understanding of LACV-induced neural pathology is needed in order to develop treatment options. However, there is a severe limitation of relevant human neuronal cell models of LACV infection. METHODS We utilized human neural stem cell (hNSC)-derived neuron/astrocyte co-cultures to study LACV infection in disease-relevant primary cells. hNSCs were differentiated into neurons and astrocytes and infected with LACV. To characterize susceptibility and responses to infection, we measured viral titers and levels of viral RNA, performed immunofluorescence analysis to determine the cell types infected, performed apoptosis and cytotoxicity assays, and evaluated cellular responses to infection using qRT-PCR and Bioplex assays. RESULTS hNSC-derived neuron/astrocyte co-cultures were susceptible to LACV infection and displayed apoptotic responses as reported in previous in vitro and in vivo studies. Neurons and astrocytes are both targets of LACV infection, with neurons becoming the predominant target later in infection possibly due to astrocytic responses to IFN. Additionally, neuron/astrocyte co-cultures responded to LACV infection with strong proinflammatory cytokine, chemokine, as well as MMP-2, MMP-7, and TIMP-1 responses. CONCLUSIONS hNSC-derived neuron/astrocyte co-cultures reproduce key aspects of LACV infection in humans and mice and are useful models to study encephalitic viruses. Specifically, we show astrocytes to be susceptible to LACV infection and that neurons and astrocytes are important drivers of the inflammatory responses seen in LACV infection through the production of proinflammatory cytokines and chemokines.
Collapse
Affiliation(s)
- Brian E. Dawes
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, USA
| | - Junling Gao
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, USA
| | - Colm Atkins
- Department of Pathology, University of Texas Medical Branch, 301 University Boulevard, Galveston, 77555-0609 USA
| | - Jacob T. Nelson
- Department of Pathology, University of Texas Medical Branch, 301 University Boulevard, Galveston, 77555-0609 USA
| | - Kendra Johnson
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, USA
| | - Ping Wu
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, USA
| | - Alexander N. Freiberg
- Department of Pathology, University of Texas Medical Branch, 301 University Boulevard, Galveston, 77555-0609 USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, USA
| |
Collapse
|
23
|
Henipavirus Infection: Natural History and the Virus-Host Interplay. CURRENT TREATMENT OPTIONS IN INFECTIOUS DISEASES 2018. [DOI: 10.1007/s40506-018-0155-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
24
|
Gourru-Lesimple G, Mathieu C, Thevenet T, Guillaume-Vasselin V, Jégou JF, Boer CG, Tomczak K, Bloyet LM, Giraud C, Grande S, Goujon C, Cornu C, Horvat B. Measles virus infection of human keratinocytes: Possible link between measles and atopic dermatitis. J Dermatol Sci 2017; 86:97-105. [PMID: 28233587 DOI: 10.1016/j.jdermsci.2017.01.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 12/21/2016] [Accepted: 01/10/2017] [Indexed: 01/15/2023]
Abstract
BACKGROUND Measles virus (MV) infection is marked with a skin rash in the acute phase of the disease, which pathogenesis remains poorly understood. Moreover, the association between measles and progression of skin diseases, such as atopic dermatitis (AD), is still elusive. OBJECTIVE We have thus analysed the susceptibility of human keratinocytes to MV infection and explore the potential relationship between MV vaccination and the pathogenesis the AD. METHODS We performed immunovirological characterisation of MV infection in human keratinocytes and then tested the effect of live attenuated measles vaccine on the progression of AD in adult patients, in a prospective, double-blind study. RESULTS We showed that both human primary keratinocytes and the keratinocyte cell line HaCaT express MV receptors and could be infected by MV. The infection significantly modulated the expression of several keratinocyte-produced cytokines, known to be implicated in the pathogenesis of inflammatory allergic diseases, including AD. We then analysed the relationship between exposure to MV by vaccination and the progression of AD in 20 adults during six weeks. We found a significant decrease in CCL26 and thymic stromal lymphopoietin (TSLP) mRNA in biopsies from acute lesions of vaccinated patients, suggesting MV-induced modulation of skin cytokine expression. Clinical analysis revealed a transient improvement of SCORAD index in vaccinated compared to placebo-treated patients, two weeks after vaccination. CONCLUSIONS Altogether, these results clearly demonstrate that keratinocytes are susceptible to MV infection, which could consequently modulate their cytokine production, resulting with a beneficial effect in the progression of AD. This study provides thus a proof of concept for the vaccination therapy in AD and may open new avenues for the development of novel strategies in the treatment of this allergic disease.
Collapse
Affiliation(s)
- Geraldine Gourru-Lesimple
- CIRI, International Centre for Infectiology Research (Immunobiology of Viral Infections team), Inserm, U1111, University Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, France
| | - Cyrille Mathieu
- CIRI, International Centre for Infectiology Research (Immunobiology of Viral Infections team), Inserm, U1111, University Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, France
| | - Thomas Thevenet
- CIRI, International Centre for Infectiology Research (Immunobiology of Viral Infections team), Inserm, U1111, University Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, France
| | - Vanessa Guillaume-Vasselin
- CIRI, International Centre for Infectiology Research (Immunobiology of Viral Infections team), Inserm, U1111, University Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, France
| | - Jean-François Jégou
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines, Equipe Accueil 4331, Université de Poitiers, Poitiers, France
| | - Cindy G Boer
- CIRI, International Centre for Infectiology Research (Immunobiology of Viral Infections team), Inserm, U1111, University Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, France
| | - Katarzyna Tomczak
- CIRI, International Centre for Infectiology Research (Immunobiology of Viral Infections team), Inserm, U1111, University Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, France
| | - Louis-Marie Bloyet
- CIRI, International Centre for Infectiology Research (Immunobiology of Viral Infections team), Inserm, U1111, University Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, France
| | - Celine Giraud
- CHU de Lyon, Service de Pharmacologie Clinique, Service de Pharmacologie Clinique, INSERM CIC1407, Lyon, France
| | - Sophie Grande
- Departement of Clinical Immunology and Allergy, Centre Hospitalier Lyon-Sud, Lyon, France
| | - Catherine Goujon
- CHU de Lyon, Service de Pharmacologie Clinique, Service de Pharmacologie Clinique, INSERM CIC1407, Lyon, France; Departement of Clinical Immunology and Allergy, Centre Hospitalier Lyon-Sud, Lyon, France
| | - Catherine Cornu
- CHU de Lyon, Service de Pharmacologie Clinique, Service de Pharmacologie Clinique, INSERM CIC1407, Lyon, France
| | - Branka Horvat
- CIRI, International Centre for Infectiology Research (Immunobiology of Viral Infections team), Inserm, U1111, University Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, France.
| |
Collapse
|
25
|
Satterfield BA, Geisbert TW, Mire CE. Inhibition of the host antiviral response by Nipah virus: current understanding and future perspectives. Future Virol 2016. [DOI: 10.2217/fvl-2016-0027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Nipah virus (NiV) is a lethal paramyxovirus that has recently emerged as a human pathogen capable of causing acute respiratory disease and encephalitis. Like many viral pathogens, NiV has developed multiple means of antagonizing the host antiviral response. The viral proteins responsible for this antiviral inhibition are encoded in the NiV P gene and include the P, V, W and C proteins, which contain various unique and overlapping roles. This review examines the current data on inhibition of the host antiviral response for each of these proteins gathered from viral protein expression systems, in vitro data using recombinant NiV mutants and from in vivo studies using recombinant NiV mutants, as well as a future perspective regarding the direction of the field.
Collapse
Affiliation(s)
- Benjamin A Satterfield
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Thomas W Geisbert
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Chad E Mire
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
26
|
Early Activation of Primary Brain Microvascular Endothelial Cells by Nipah Virus Glycoprotein-Containing Particles. J Virol 2015; 90:2706-9. [PMID: 26676791 DOI: 10.1128/jvi.02825-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/11/2015] [Indexed: 11/20/2022] Open
Abstract
Nipah virus (NiV) is a highly pathogenic paramyxovirus that causes pronounced infection of brain endothelia and central nervous system (CNS) inflammation. Using primary porcine brain microvascular endothelial cells, we showed that upregulation of E-selectin precedes cytokine induction and is induced not only by infectious NiV but also by NiV-glycoprotein-containing virus-like particles. This demonstrates that very early events in NiV brain endothelial infection do not depend on NiV replication but can be triggered by the NiV glycoproteins alone.
Collapse
|
27
|
Lieu KG, Marsh GA, Wang LF, Netter HJ. The non-pathogenic Henipavirus Cedar paramyxovirus phosphoprotein has a compromised ability to target STAT1 and STAT2. Antiviral Res 2015; 124:69-76. [PMID: 26526590 DOI: 10.1016/j.antiviral.2015.09.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 08/19/2015] [Accepted: 09/06/2015] [Indexed: 12/24/2022]
Abstract
Immune evasion by the lethal henipaviruses, Hendra (HeV) and Nipah virus, is mediated by its interferon (IFN) antagonist P gene products, phosphoprotein (P), and the related V and W proteins, which can target the signal transducer and activator of transcription 1 (STAT1) and STAT2 proteins to inhibit IFN/STAT signaling. However, it is not clear if the recently identified non-pathogenic Henipavirus, Cedar paramyxovirus (CedPV), is also able to antagonize the STAT proteins. We performed comparative studies between the HeV P gene products (P/V/W) and CedPV-P (CedPV does not encode V or W) and demonstrate that differences exist in their ability to engage the STAT proteins using immunoprecipitation and quantitative confocal microscopic analysis. In contrast to HeV-P gene encoded proteins, the ability of CedPV-P to interact with and relocalize STAT1 or STAT2 is compromised, correlating with a reduced capacity to inhibit the mRNA synthesis of IFN-inducible gene MxA. Furthermore, infection studies with HeV and CedPV demonstrate that HeV is more potent than CedPV in inhibiting the IFN-α-mediated nuclear accumulation of STAT1. These results strongly suggest that the ability of CedPV to counteract the IFN/STAT response is compromised compared to HeV.
Collapse
Affiliation(s)
- Kim G Lieu
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Glenn A Marsh
- CSIRO Biosecurity Flagship, Australian Animal Health Laboratory, Geelong, Australia
| | - Lin-Fa Wang
- CSIRO Biosecurity Flagship, Australian Animal Health Laboratory, Geelong, Australia; Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore
| | - Hans J Netter
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
28
|
Ong KC, Wong KT. Henipavirus Encephalitis: Recent Developments and Advances. Brain Pathol 2015; 25:605-13. [PMID: 26276024 PMCID: PMC7161744 DOI: 10.1111/bpa.12278] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 06/18/2015] [Indexed: 01/27/2023] Open
Abstract
The genus Henipavirus within the family Paramyxoviridae includes the Hendra virus (HeV) and Nipah virus (NiV) which were discovered in the 1990s in Australia and Malaysia, respectively, after emerging to cause severe and often fatal outbreaks in humans and animals. While HeV is confined to Australia, more recent NiV outbreaks have been reported in Bangladesh, India and the Philippines. The clinical manifestations of both henipaviruses in humans appear similar, with a predominance of an acute encephalitic syndrome. Likewise, the pathological features are similar and characterized by disseminated, multi-organ vasculopathy comprising endothelial infection/ulceration, vasculitis, vasculitis-induced thrombosis/occlusion, parenchymal ischemia/microinfarction, and parenchymal cell infection in the central nervous system (CNS), lung, kidney and other major organs. This unique dual pathogenetic mechanism of vasculitis-induced microinfarction and neuronal infection causes severe tissue damage in the CNS. Both viruses can also cause relapsing encephalitis months and years after the acute infection. Many animal models studied to date have largely confirmed the pathology of henipavirus infection, and provided the means to test new therapeutic agents and vaccines. As the bat is the natural host of henipaviruses and has worldwide distribution, spillover events into human populations are expected to occur in the future.
Collapse
Affiliation(s)
- Kien Chai Ong
- Department of Biomedical ScienceFaculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| | - Kum Thong Wong
- Department ofPathologyFaculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| |
Collapse
|
29
|
Abstract
UNLABELLED Nipah virus and Hendra virus are emerging, highly pathogenic, zoonotic paramyxoviruses that belong to the genus Henipavirus. They infect humans as well as numerous mammalian species. Both viruses use ephrin-B2 and -B3 as cell entry receptors, and following initial entry into an organism, they are capable of rapid spread throughout the host. We have previously reported that Nipah virus can use another attachment receptor, different from its entry receptors, to bind to nonpermissive circulating leukocytes, thereby promoting viral dissemination within the host. Here, this attachment molecule was identified as heparan sulfate for both Nipah virus and Hendra virus. Cells devoid of heparan sulfate were not able to mediate henipavirus trans-infection and showed reduced permissivity to infection. Virus pseudotyped with Nipah virus glycoproteins bound heparan sulfate and heparin but no other glycosaminoglycans in a surface plasmon resonance assay. Furthermore, heparin was able to inhibit the interaction of the viruses with the heparan sulfate and to block cell-mediated trans-infection of henipaviruses. Moreover, heparin was shown to bind to ephrin-B3 and to restrain infection of permissive cells in vitro. Consequently, treatment with heparin devoid of anticoagulant activity improved the survival of Nipah virus-infected hamsters. Altogether, these results reveal heparan sulfate as a new attachment receptor for henipaviruses and as a potential therapeutic target for the development of novel approaches against these highly lethal infections. IMPORTANCE The Henipavirus genus includes two closely related, highly pathogenic paramyxoviruses, Nipah virus and Hendra virus, which cause elevated morbidity and mortality in animals and humans. Pathogenesis of both Nipah virus and Hendra virus infection is poorly understood, and efficient antiviral treatment is still missing. Here, we identified heparan sulfate as a novel attachment receptor used by both viruses to bind host cells. We demonstrate that heparin was able to inhibit the interaction of the viruses with heparan sulfate and to block cell-mediated trans-infection of henipaviruses. Moreover, heparin also bound to the viral entry receptor and thereby restricted infection of permissive cells in vitro. Consequently, heparin treatment improved survival of Nipah virus-infected hamsters. These results uncover an important role of heparan sulfate in henipavirus infection and open novel perspectives for the development of heparan sulfate-targeting therapeutic approaches for these emerging infections.
Collapse
|
30
|
de Wit E, Munster VJ. Animal models of disease shed light on Nipah virus pathogenesis and transmission. J Pathol 2015; 235:196-205. [PMID: 25229234 DOI: 10.1002/path.4444] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 09/09/2014] [Accepted: 09/14/2014] [Indexed: 12/27/2022]
Abstract
Nipah virus is an emerging virus infection that causes yearly disease outbreaks with high case fatality rates in Bangladesh. Nipah virus causes encephalitis and systemic vasculitis, sometimes in combination with respiratory disease. Pteropus species fruit bats are the natural reservoir of Nipah virus and zoonotic transmission can occur directly or via an intermediate host; human-to-human transmission occurs regularly. In this review we discuss the current state of knowledge on the pathogenesis and transmission of Nipah virus, focusing on dissemination of the virus through its host, known determinants of pathogenicity and routes of zoonotic and human-to-human transmission. Since data from human cases are sparse, this knowledge is largely based on the results of studies performed in animal models that recapitulate Nipah virus disease in humans.
Collapse
Affiliation(s)
- Emmie de Wit
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | | |
Collapse
|
31
|
Abstract
Hendra virus and Nipah virus are closely related, recently emerged zoonotic paramyxoviruses, belonging to the Henipavirus genus. Both viruses induce generalized vasculitis affecting particularly the respiratory tract and CNS. The exceptionally broad species tropism of Henipavirus, the high case fatality rate and person-to-person transmission associated with Nipah virus outbreaks emphasize the necessity of effective antiviral strategies for these intriguing threatening pathogens. Current therapeutic approaches, validated in animal models, target early steps in viral infection; they include the use of neutralizing virus-specific antibodies and blocking membrane fusion with peptides that bind the viral fusion protein. A better understanding of Henipavirus pathogenesis is critical for the further advancement of antiviral treatment, and we summarize here the recent progress in the field.
Collapse
Affiliation(s)
- Cyrille Mathieu
- CIRI, International Center for Infectiology Research, 21 Avenue Tony Garnier, 69365 Lyon Cedex 07, France
| | | |
Collapse
|
32
|
Cachat A, Chevalier SA, Alais S, Ko NL, Ratner L, Journo C, Dutartre H, Mahieux R. Alpha interferon restricts human T-lymphotropic virus type 1 and 2 de novo infection through PKR activation. J Virol 2013; 87:13386-96. [PMID: 24089560 PMCID: PMC3838277 DOI: 10.1128/jvi.02758-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 09/25/2013] [Indexed: 01/24/2023] Open
Abstract
Type I interferon (IFN-I) inhibits the replication of different viruses. However, the effect of IFN-I on the human T-lymphotropic virus type 1 (HTLV-1) viral cycle is controversial. Here, we investigated the consequences of IFN-α addition for different steps of HTLV-1 and HTLV-2 infection. We first show that alpha interferon (IFN-α) efficiently impairs HTLV-1 and HTLV-2 de novo infection in a T cell line and in primary lymphocytes. Using pseudotyped viruses expressing HTLV-1 envelope, we then show that cell-free infection is insensitive to IFN-α, demonstrating that the cytokine does not affect the early stages of the viral cycle. In contrast, intracellular levels of Gag, Env, or Tax protein are affected by IFN-α treatment in T cells, primary lymphocytes, or 293T cells transfected with HTLV-1 or HTLV-2 molecular clones, demonstrating that IFN-α acts during the late stages of infection. We show that IFN-α does not affect Tax-mediated transcription and acts at a posttranscriptional level. Using either small interfering RNA (siRNA) directed against PKR or a PKR inhibitor, we demonstrate that PKR, whose expression is induced by interferon, plays a major role in IFN-α-induced HTLV-1/2 inhibition. These results indicate that IFN-α has a strong repressive effect on the HTLV-1 and HTLV-2 viral cycle during de novo infection of cells that are natural targets of the viruses.
Collapse
Affiliation(s)
- Anne Cachat
- Equipe Oncogenèse Rétrovirale
- Equipe Labelisée Ligue Nationale Contre le Cancer
- International Center for Research in Infectiology, INSERM U1111-CNRS UMR5308
- Ecole Normale Supérieure de Lyon
- Université Lyon 1, LabEx ECOFECT-Eco-Evolutionary Dynamics of Infectious Diseases, Lyon, France
| | - Sébastien Alain Chevalier
- Equipe Oncogenèse Rétrovirale
- Equipe Labelisée Ligue Nationale Contre le Cancer
- International Center for Research in Infectiology, INSERM U1111-CNRS UMR5308
- Ecole Normale Supérieure de Lyon
- Université Lyon 1, LabEx ECOFECT-Eco-Evolutionary Dynamics of Infectious Diseases, Lyon, France
| | - Sandrine Alais
- Equipe Oncogenèse Rétrovirale
- Equipe Labelisée Ligue Nationale Contre le Cancer
- International Center for Research in Infectiology, INSERM U1111-CNRS UMR5308
- Ecole Normale Supérieure de Lyon
- Université Lyon 1, LabEx ECOFECT-Eco-Evolutionary Dynamics of Infectious Diseases, Lyon, France
| | - Nga Ling Ko
- Unité d'Épidémiologie et Physiopathoglogie des Virus Oncogenes, Institut Pasteur, Paris, France
| | - Lee Ratner
- Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Chloé Journo
- Equipe Oncogenèse Rétrovirale
- Equipe Labelisée Ligue Nationale Contre le Cancer
- International Center for Research in Infectiology, INSERM U1111-CNRS UMR5308
- Ecole Normale Supérieure de Lyon
- Université Lyon 1, LabEx ECOFECT-Eco-Evolutionary Dynamics of Infectious Diseases, Lyon, France
| | - Hélène Dutartre
- Equipe Oncogenèse Rétrovirale
- Equipe Labelisée Ligue Nationale Contre le Cancer
- International Center for Research in Infectiology, INSERM U1111-CNRS UMR5308
- Ecole Normale Supérieure de Lyon
- Université Lyon 1, LabEx ECOFECT-Eco-Evolutionary Dynamics of Infectious Diseases, Lyon, France
| | - Renaud Mahieux
- Equipe Oncogenèse Rétrovirale
- Equipe Labelisée Ligue Nationale Contre le Cancer
- International Center for Research in Infectiology, INSERM U1111-CNRS UMR5308
- Ecole Normale Supérieure de Lyon
- Université Lyon 1, LabEx ECOFECT-Eco-Evolutionary Dynamics of Infectious Diseases, Lyon, France
| |
Collapse
|
33
|
Abstract
Measles virus (MV) infection causes an acute childhood disease that can include infection of the central nervous system and can rarely progress to severe neurological disease for which there is no specific treatment. We generated potent antiviral peptide inhibitors of MV entry and spreading and MV-induced cell fusion. Dimers of MV-specific peptides derived from the C-terminal heptad repeat region of the MV fusion protein, conjugated to cholesterol, efficiently protect SLAM transgenic mice from fatal MV infection. Fusion inhibitors hold promise for the prophylaxis of MV infection in unvaccinated and immunocompromised people, as well as potential for the treatment of grave neurological complications of measles.
Collapse
|
34
|
Fishbourne E, Hutet E, Abrams C, Cariolet R, Le Potier MF, Takamatsu HH, Dixon LK. Increase in chemokines CXCL10 and CCL2 in blood from pigs infected with high compared to low virulence African swine fever virus isolates. Vet Res 2013; 44:87. [PMID: 24083897 PMCID: PMC3832245 DOI: 10.1186/1297-9716-44-87] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 09/05/2013] [Indexed: 11/17/2022] Open
Abstract
Modulation of the expression of chemokines and chemokine receptors in whole blood was compared following infection of pigs with high and low virulence isolates of African swine fever virus. Levels of mRNAs for CCL2, CCL3L1, CCL4, CXCL10, CCR1 and CCR5 were significantly increased in at least one time point following infection in two experiments and CCL5, CCR9 and CXCR4 mRNA were significantly increased in one of the experiments. The results showed that greatest fold increases in mRNAs for CXCL10 and CCL2 were observed following infection of pigs. CXCL10 mRNA was increased by up to 15 fold in infected compared to uninfected pigs. CXCL10 protein was also detected in serum from pigs infected with the high virulence Benin 97/1 isolate. Levels of CCL2 mRNA were increased in pigs infected with high virulence Benin 97/1 isolate compared to low virulence OURT88/3 isolate and this correlated with an increase of greater than 30 fold in levels of CCL2 protein detected in serum from pigs infected with this isolate. An increase in overall chemotaxis active compounds in defibrinated plasma samples from Benin 97/1 infected pigs was observed at 3 days post-infection (dpi) and a decrease by 7 dpi as measured by chemotaxis assay using normal pig leucocytes in vitro. Increased levels of CXCL10 may either contribute to the activation of lymphocyte priming toward the Th1 phenotype or induction of T lymphocyte apoptosis. Increased levels of CCL2, a chemoattractant for macrophages, may result in increased recruitment of monocytes from bone marrow thus increasing the pool of cells susceptible to infection.
Collapse
Affiliation(s)
- Emma Fishbourne
- The Pirbright Institute, Pirbright, Woking, Surrey GU24 0NF, UK.
| | | | | | | | | | | | | |
Collapse
|
35
|
Witting SR, Vallanda P, Gamble AL. Characterization of a third generation lentiviral vector pseudotyped with Nipah virus envelope proteins for endothelial cell transduction. Gene Ther 2013; 20:997-1005. [PMID: 23698741 PMCID: PMC3839624 DOI: 10.1038/gt.2013.23] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 03/20/2013] [Accepted: 04/22/2013] [Indexed: 12/11/2022]
Abstract
Lentiviruses are becoming progressively more popular as gene therapy vectors due to their ability to integrate into quiescent cells and recent clinical trial successes. Directing these vectors to specific cell types and limiting off-target transduction in vivo remains a challenge. Replacing the viral envelope proteins responsible for cellular binding, or pseudotyping, remains a common method to improve lentiviral targeting. Here, we describe the development of a high titer, 3rd generation lentiviral vector pseudotyped with Nipah virus fusion protein (NiV-F) and attachment protein (NiV-G). Critical to high titers was truncation of the cytoplasmic domains of both NiV-F and NiV-G. As known targets of wild-type Nipah virus, primary endothelial cells are shown to be effectively transduced by the Nipah pseudotype. In contrast, human CD34+ hematopoietic progenitors were not significantly transduced. Additionally, the Nipah pseudotype has increased stability in human serum compared to VSV pseudotyped lentivirus. These findings suggest that the use of Nipah virus envelope proteins in 3rd generation lentiviral vectors would be a valuable tool for gene delivery targeted to endothelial cells.
Collapse
Affiliation(s)
- S R Witting
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | |
Collapse
|
36
|
Dhondt KP, Horvat B. Henipavirus infections: lessons from animal models. Pathogens 2013; 2:264-87. [PMID: 25437037 PMCID: PMC4235719 DOI: 10.3390/pathogens2020264] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 04/02/2013] [Accepted: 04/04/2013] [Indexed: 11/16/2022] Open
Abstract
The Henipavirus genus contains two highly lethal viruses, the Hendra and Nipah viruses and one, recently discovered, apparently nonpathogenic member; Cedar virus. These three, negative-sense single-stranded RNA viruses, are hosted by fruit bats and use EphrinB2 receptors for entry into cells. The Hendra and Nipah viruses are zoonotic pathogens that emerged in the middle of 90s and have caused severe, and often fatal, neurologic and/or respiratory diseases in both humans and different animals; including spillover into equine and porcine species. Development of relevant models is critical for a better understanding of viral pathogenesis, generating new diagnostic tools, and assessing anti-viral therapeutics and vaccines. This review summarizes available data on several animal models where natural and/or experimental infection has been demonstrated; including pteroid bats, horses, pigs, cats, hamsters, guinea pigs, ferrets, and nonhuman primates. It recapitulates the principal features of viral pathogenesis in these animals and current knowledge on anti-viral immune responses. Lastly it describes the recently characterized murine animal model, which provides the possibility to use numerous and powerful tools available for mice to further decipher henipaviruses immunopathogenesis, prophylaxis, and treatment. The utility of different models to analyze important aspects of henipaviruses-induced disease in humans, potential routes of transmission, and therapeutic approaches are equally discussed.
Collapse
Affiliation(s)
- Kévin P Dhondt
- International Center for Infectiology Research, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, University of Lyon 1, 21 Avenue T. Garnier, Lyon 69007, France.
| | - Branka Horvat
- International Center for Infectiology Research, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, University of Lyon 1, 21 Avenue T. Garnier, Lyon 69007, France.
| |
Collapse
|
37
|
DeBuysscher BL, de Wit E, Munster VJ, Scott D, Feldmann H, Prescott J. Comparison of the pathogenicity of Nipah virus isolates from Bangladesh and Malaysia in the Syrian hamster. PLoS Negl Trop Dis 2013; 7:e2024. [PMID: 23342177 PMCID: PMC3547834 DOI: 10.1371/journal.pntd.0002024] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 12/05/2012] [Indexed: 11/25/2022] Open
Abstract
Nipah virus is a zoonotic pathogen that causes severe disease in humans. The mechanisms of pathogenesis are not well described. The first Nipah virus outbreak occurred in Malaysia, where human disease had a strong neurological component. Subsequent outbreaks have occurred in Bangladesh and India and transmission and disease processes in these outbreaks appear to be different from those of the Malaysian outbreak. Until this point, virtually all Nipah virus studies in vitro and in vivo, including vaccine and pathogenesis studies, have utilized a virus isolate from the original Malaysian outbreak (NiV-M). To investigate potential differences between NiV-M and a Nipah virus isolate from Bangladesh (NiV-B), we compared NiV-M and NiV-B infection in vitro and in vivo. In hamster kidney cells, NiV-M-infection resulted in extensive syncytia formation and cytopathic effects, whereas NiV-B-infection resulted in little to no morphological changes. In vivo, NiV-M-infected Syrian hamsters had accelerated virus replication, pathology and death when compared to NiV-B-infected animals. NiV-M infection also resulted in the activation of host immune response genes at an earlier time point. Pathogenicity was not only a result of direct effects of virus replication, but likely also had an immunopathogenic component. The differences observed between NiV-M and NiV-B pathogeneis in hamsters may relate to differences observed in human cases. Characterization of the hamster model for NiV-B infection allows for further research of the strain of Nipah virus responsible for the more recent outbreaks in humans. This model can be used to study NiV-B pathogenesis, transmission, and countermeasures that could be used to control outbreaks. Nipah virus causes severe disease in humans and outbreaks have occurred in two geographic regions, Malaysia and Bangladesh, and viruses have been isolated during outbreaks from both of these regions (NiV-M and NiV-B, respectively). The original outbreak of Nipah virus occurred in Malaysia and caused severe encephalitis in humans. All subsequent outbreaks of Nipah virus have occurred in Bangladesh or India and disease has been characterized as having a strong respiratory component. Nipah virus is a public health concern that can cause up to 100% lethality in humans and there is no approved treatment or vaccine. Current research should focus on understanding disease progression and pathogenicity. We compared NiV-M and NiV-B infection and disease progression using the Syrian hamster model. We found that NiV-M is more destructive in cultured hamster cells and has faster onset of cytopathogenicity compared to NiV-B. This is also true in hamsters, where although both viruses are pathogenic and cause a similar disease, pathology caused by NiV-M infection is accelerated. These data show that there is a difference in disease progression between the two strains of Nipah virus and will allow for a more detailed understanding of the events leading to disease caused by these viruses.
Collapse
Affiliation(s)
- Blair L. DeBuysscher
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Emmie de Wit
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Vincent J. Munster
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Dana Scott
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
- * E-mail: (HF); (JP)
| | - Joseph Prescott
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
- * E-mail: (HF); (JP)
| |
Collapse
|
38
|
Dragunow M. Meningeal and choroid plexus cells--novel drug targets for CNS disorders. Brain Res 2013; 1501:32-55. [PMID: 23328079 DOI: 10.1016/j.brainres.2013.01.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 01/07/2013] [Indexed: 12/13/2022]
Abstract
The meninges and choroid plexus perform many functions in the developing and adult human central nervous system (CNS) and are composed of a number of different cell types. In this article I focus on meningeal and choroid plexus cells as targets for the development of drugs to treat a range of traumatic, ischemic and chronic brain disorders. Meningeal cells are involved in cortical development (and their dysfunction may be involved in cortical dysplasia), fibrotic scar formation after traumatic brain injuries (TBI), brain inflammation following infections, and neurodegenerative disorders such as Multiple Sclerosis (MS) and Alzheimer's disease (AD) and other brain disorders. The choroid plexus regulates the composition of the cerebrospinal fluid (CSF) as well as brain entry of inflammatory cells under basal conditions and after injuries. The meninges and choroid plexus also link peripheral inflammation (occurring in the metabolic syndrome and after infections) to CNS inflammation which may contribute to the development and progression of a range of CNS neurological and psychiatric disorders. They respond to cytokines generated systemically and secrete cytokines and chemokines that have powerful effects on the brain. The meninges may also provide a stem cell niche in the adult brain which could be harnessed for brain repair. Targeting meningeal and choroid plexus cells with therapeutic agents may provide novel therapies for a range of human brain disorders.
Collapse
Affiliation(s)
- Mike Dragunow
- Department of Pharmacology and Centre for Brain Research, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
39
|
Abstract
Hendra virus (HeV) and Nipah virus (NiV) are deadly zoonotic viruses for which no vaccines or therapeutics are licensed for human use. Henipavirus infection causes severe respiratory illness and encephalitis. Although the exact route of transmission in human is unknown, epidemiological studies and in vivo studies suggest that the respiratory tract is important for virus replication. However, the target cells in the respiratory tract are unknown, as are the mechanisms by which henipaviruses can cause disease. In this study, we characterized henipavirus pathogenesis using primary cells derived from the human respiratory tract. The growth kinetics of NiV-Malaysia, NiV-Bangladesh, and HeV were determined in bronchial/tracheal epithelial cells (NHBE) and small airway epithelial cells (SAEC). In addition, host responses to infection were assessed by gene expression analysis and immunoassays. Viruses replicated efficiently in both cell types and induced large syncytia. The host response to henipavirus infection in NHBE and SAEC highlighted a difference in the inflammatory response between HeV and NiV strains as well as intrinsic differences in the ability to mount an inflammatory response between NHBE and SAEC. These responses were highest during HeV infection in SAEC, as characterized by the levels of key cytokines (interleukin 6 [IL-6], IL-8, IL-1α, monocyte chemoattractant protein 1 [MCP-1], and colony-stimulating factors) responsible for immune cell recruitment. Finally, we identified virus strain-dependent variability in type I interferon antagonism in NHBE and SAEC: NiV-Malaysia counteracted this pathway more efficiently than NiV-Bangladesh and HeV. These results provide crucial new information in the understanding of henipavirus pathogenesis in the human respiratory tract at an early stage of infection.
Collapse
|
40
|
Dhondt KP, Mathieu C, Chalons M, Reynaud JM, Vallve A, Raoul H, Horvat B. Type I interferon signaling protects mice from lethal henipavirus infection. J Infect Dis 2012; 207:142-51. [PMID: 23089589 PMCID: PMC7107294 DOI: 10.1093/infdis/jis653] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Hendra virus (HeV) and Nipah virus (NiV) are closely related, recently emerged paramyxoviruses that form Henipavirus genus and are capable of causing considerable morbidity and mortality in a number of mammalian species, including humans. However, in contrast to many other species and despite expression of functional virus entry receptors, mice are resistant to henipavirus infection. We report here the susceptibility of mice deleted for the type I interferon receptor (IFNAR-KO) to both HeV and NiV. Intraperitoneally infected mice developed fatal encephalitis, with pathology and immunohistochemical features similar to what was found in humans. Viral RNA was found in the majority of analyzed organs, and sublethally infected animals developed virus-specific neutralizing antibodies. Altogether, these results reveal IFNAR-KO mice as a new small animal model to study HeV and NiV pathogenesis, prophylaxis, and treatment and suggest the critical role of type I interferon signaling in the control of henipavirus infection.
Collapse
|
41
|
Lo MK, Peeples ME, Bellini WJ, Nichol ST, Rota PA, Spiropoulou CF. Distinct and overlapping roles of Nipah virus P gene products in modulating the human endothelial cell antiviral response. PLoS One 2012; 7:e47790. [PMID: 23094089 PMCID: PMC3477106 DOI: 10.1371/journal.pone.0047790] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 09/17/2012] [Indexed: 12/15/2022] Open
Abstract
Nipah virus (NiV) is a highly pathogenic zoonotic paramyxovirus that causes fatal encephalitis in up to 75% of infected humans. Like other paramyxoviruses, NiV employs co-transcriptional mRNA editing during transcription of the phosphoprotein (P) gene to generate additional mRNAs encoding the V and W proteins. The C protein is translated from the P mRNA, but in an alternative reading frame. There is evidence from both in vitro and in vivo studies to show that the P gene products play a role in NiV pathogenesis. We have developed a reverse genetic system to dissect the individual roles of the NiV P gene products in limiting the antiviral response in primary human microvascular lung endothelial cells, which represent important targets in human NiV infection. By characterizing growth curves and early antiviral responses against a number of recombinant NiVs with genetic modifications altering expression of the proteins encoded by the P gene, we observed that multiple elements encoded by the P gene have both distinct and overlapping roles in modulating virus replication as well as in limiting expression of antiviral mediators such as IFN-β, CXCL10, and CCL5. Our findings corroborate observations from in vivo hamster infection studies, and provide molecular insights into the attenuation and the histopathology observed in hamsters infected with C, V, and W-deficient NiVs. The results of this study also provide an opportunity to verify the results of earlier artificial plasmid expression studies in the context of authentic viral infection.
Collapse
Affiliation(s)
- Michael K Lo
- Centers for Disease Control & Prevention, Viral Special Pathogens Branch, Atlanta, Georgia, United States of America.
| | | | | | | | | | | |
Collapse
|
42
|
Rapid Nipah virus entry into the central nervous system of hamsters via the olfactory route. Sci Rep 2012; 2:736. [PMID: 23071900 PMCID: PMC3471094 DOI: 10.1038/srep00736] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 09/05/2012] [Indexed: 12/25/2022] Open
Abstract
Encephalitis is a hallmark of Nipah virus (NiV) infection in humans. The exact route of entry of NiV into the central nervous system (CNS) is unknown. Here, we performed a spatio-temporal analysis of NiV entry into the CNS of hamsters. NiV initially predominantly targeted the olfactory epithelium in the nasal turbinates. From there, NiV infected neurons were visible extending through the cribriform plate into the olfactory bulb, providing direct evidence of rapid CNS entry. Subsequently, NiV disseminated to the olfactory tubercle and throughout the ventral cortex. Transmission electron microscopy on brain tissue showed extravasation of plasma cells, neuronal degeneration and nucleocapsid inclusions in affected tissue and axons, providing further evidence for axonal transport of NiV. NiV entry into the CNS coincided with the occurrence of respiratory disease, suggesting that the initial entry of NiV into the CNS occurs simultaneously with, rather than as a result of, systemic virus replication.
Collapse
|
43
|
Prescott J, de Wit E, Feldmann H, Munster VJ. The immune response to Nipah virus infection. Arch Virol 2012; 157:1635-41. [PMID: 22669317 PMCID: PMC3432143 DOI: 10.1007/s00705-012-1352-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 04/20/2012] [Indexed: 02/07/2023]
Abstract
Nipah virus has recently emerged as a zoonotic agent that is highly pathogenic in humans. Outbreaks have occurred regularly over the last two decades in South and Southeast Asia, where mortality rates reach as high as 100 %. The natural reservoir of Nipah virus has been identified as bats from the Pteropus family, where infection is largely asymptomatic. Human disease is characterized by both respiratory and encephalitic components, and thus far, no effective vaccine or intervention strategies are available. Little is know about how the immune response of either the reservoir host or incidental hosts responds to infection, and how this immune response is either inadequate or might contribute to disease in the dead-end host. Experimental vaccines strategies have given us some insight into the immunological requirements for protection. This review summarizes our current understanding of the immune response to Nipah virus infection and emphasizes the need for further research.
Collapse
Affiliation(s)
- Joseph Prescott
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | | | | | | |
Collapse
|
44
|
Nonstructural Nipah virus C protein regulates both the early host proinflammatory response and viral virulence. J Virol 2012; 86:10766-75. [PMID: 22837207 DOI: 10.1128/jvi.01203-12] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Nipah virus (NiV) is a highly pathogenic, negative-strand RNA paramyxovirus that has recently emerged from flying foxes to cause serious human disease. We have analyzed the role of the nonstructural NiV C protein in viral immunopathogenesis using recombinant virus lacking the expression of NiV C (NiVΔC). While wild-type NiV was highly pathogenic in the hamster animal model, NiVΔC was strongly attenuated. Replication of NiVΔC was followed by the production of NiV-specific antibodies and associated with higher recruitment of inflammatory cells and less intensive histopathological lesions in different organs than in wild-type-NiV-infected animals. To analyze the molecular basis of NiVΔC attenuation, we studied early changes in gene expression in infected primary human endothelial cells, a major cellular target of NiV infection. The transcriptomic approach revealed the striking difference between wild-type and mutant NiV in the expression of genes involved in immunity, with the particularly interesting differential patterns of proinflammatory cytokines. Compared to wild-type virus, NiVΔC induced increased expression of interleukin 1 beta (IL-1β), IL-8, CXCL2, CXCL3, CXCL6, CCL20, and beta interferon. Furthermore, the expression of NiV C in stably transfected cells decreased the production of the same panel of cytokines, revealing a role of the C protein in the regulation of cytokine balance. Together, these results suggest that NiV C regulates expression of proinflammatory cytokines, therefore providing a signal responsible for the coordination of leukocyte recruitment and the chemokine-induced immune response and controlling the lethal outcome of the infection.
Collapse
|