1
|
Karami E, Bazgir B, Shirvani H, Mohammadi MT, Khaledi M. Unraveling the bidirectional relationship between muscle inflammation and satellite cells activity: influencing factors and insights. J Muscle Res Cell Motil 2025; 46:35-51. [PMID: 39508952 DOI: 10.1007/s10974-024-09683-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024]
Abstract
Inflammation stands as a vital and innate function of the immune system, essential for maintaining physiological homeostasis. Its role in skeletal muscle regeneration is pivotal, with the activation of satellite cells (SCs) driving the repair and generation of new myofibers. However, the relationship between inflammation and SCs is intricate, influenced by various factors. Muscle injury and repair prompt significant infiltration of immune cells, particularly macrophages, into the muscle tissue. The interplay of cytokines and chemokines from diverse cell types, including immune cells, fibroadipogenic progenitors, and SCs, further shapes the inflammation-SCs dynamic. While some studies suggest heightened inflammation associates with reduced SC activity and increased fibro- or adipogenesis, others indicate an inflammatory stimulus benefits SC function. Yet, the existing literature struggles to delineate clearly between the stimulatory and inhibitory effects of inflammation on SCs and muscle regeneration. This paper comprehensively reviews studies exploring the impact of pharmacological agents, dietary interventions, genetic factors, and exercise regimes on the interplay between inflammation and SC activity.
Collapse
Affiliation(s)
- Esmail Karami
- Exercise Physiology Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Behzad Bazgir
- Exercise Physiology Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hossein Shirvani
- Exercise Physiology Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghi Mohammadi
- Department of Physiology and Medical Physics, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mansoor Khaledi
- Department of Microbiology and Immunology, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
2
|
Ouellette JM, Mallender MD, Hian-Cheong DJ, Scurto DL, Nicholas JE, Trumble SJ, Hawke TJ, Krause MP. Altered sphingolipid profile in response to skeletal muscle injury in a mouse model of type 1 diabetes mellitus. Am J Physiol Cell Physiol 2025; 328:C273-C287. [PMID: 39611411 DOI: 10.1152/ajpcell.00158.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 11/06/2024] [Accepted: 11/19/2024] [Indexed: 11/30/2024]
Abstract
A complication of type 1 diabetes mellitus (T1DM) is diabetic myopathy that includes reduced regenerative capacity of skeletal muscle. Sphingolipids are a diverse family of lipids with roles in skeletal muscle regeneration. Some studies have found changes in sphingolipid species levels in T1DM, however, the effect of T1DM on a sphingolipid panel in regenerating skeletal muscle has not been examined. Wild-type (WT) and diabetic Ins2Akita+/- (Akita) mice received cardiotoxin-induced muscle injury in their left quadriceps, gastrocnemius-plantaris-soleus, and tibialis anterior muscles with the contralateral muscles serving as uninjured controls. Muscles were collected at 1, 3, 5, or 7 days postinjury. In regenerating muscle from Akita mice, lipid staining with BODIPY 493/503 revealed increased intramyocellular and total lipids and perilipin-1-positive cell numbers as compared with WT. Liquid chromatography-mass spectrometry of quadriceps was used to identify sphingolipid levels in skeletal muscle. The C22:0 and C24:0 ceramides were significantly elevated in uninjured Akita, whereas ceramide C24:1 was decreased in injured Akita compared with WT. Ceramide-1-phosphate was increased in Akita compared with WT regardless of injury, whereas sphingosine-1-phosphate (S1P) was elevated with injury in WT but this response was muted in Akita mice. Western blotting of key enzymes involved in sphingolipid metabolism revealed S1P lyase, the enzyme that degrades S1P irreversibly, was significantly elevated in the injured muscle in Akita mice during regeneration, in accordance with lower S1P levels. This mouse model of T1DM demonstrates sphingolipidomic changes that may contribute to delayed muscle regeneration.NEW & NOTEWORTHY Muscle lipids become elevated, and the sphingolipid profile is altered by T1DM in skeletal muscle regeneration. A loss of S1P is accompanied by greater expression of sphingosine-1-phosphate lyase (SPL) in response to injury in Akita mice, suggesting a role for sphingolipids in the attenuated repair of skeletal muscle in T1DM rodent models. Although ceramide-1-phosphate (C1P) is increased with T1DM, there was no increase in ceramide kinase (CerK) suggesting an alternative route of ceramide phosphorylation in skeletal muscle.
Collapse
Affiliation(s)
- Jacob M Ouellette
- Department of Kinesiology, Faculty of Human Kinetics, University of Windsor, Windsor, Ontario, Canada
| | - Michael D Mallender
- Department of Kinesiology, Faculty of Human Kinetics, University of Windsor, Windsor, Ontario, Canada
| | - Dylan J Hian-Cheong
- Department of Kinesiology, Faculty of Human Kinetics, University of Windsor, Windsor, Ontario, Canada
| | - Daniel L Scurto
- Department of Kinesiology, Faculty of Human Kinetics, University of Windsor, Windsor, Ontario, Canada
| | - James E Nicholas
- Department of Kinesiology, Faculty of Human Kinetics, University of Windsor, Windsor, Ontario, Canada
| | | | - Thomas J Hawke
- Department of Pathology & Molecular Medicine, Faculty of Health Science, McMaster University, Hamilton, Ontario, Canada
| | - Matthew P Krause
- Department of Kinesiology, Faculty of Human Kinetics, University of Windsor, Windsor, Ontario, Canada
| |
Collapse
|
3
|
Hoang SH, Tveter KM, Mezhibovsky E, Roopchand DE. Proanthocyanidin B2 derived metabolites may be ligands for bile acid receptors S1PR2, PXR and CAR: an in silico approach. J Biomol Struct Dyn 2024; 42:4249-4262. [PMID: 37340688 PMCID: PMC10730774 DOI: 10.1080/07391102.2023.2224886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/24/2023] [Indexed: 06/22/2023]
Abstract
Bile acids (BAs) act as signaling molecules via their interactions with various nuclear (FXR, VDR, PXR and CAR) and G-protein coupled (TGR5, M3R, S1PR2) BA receptors. Stimulation of these BA receptors influences several processes, including inflammatory responses and glucose and xenobiotic metabolism. BA profiles and BA receptor activity are deregulated in cardiometabolic diseases; however, dietary polyphenols were shown to alter BA profile and signaling in association with improved metabolic phenotypes. We previously reported that supplementing mice with a proanthocyanidin (PAC)-rich grape polyphenol (GP) extract attenuated symptoms of glucose intolerance in association with changes to BA profiles, BA receptor gene expression, and/or downstream markers of BA receptor activity. Exact mechanisms by which polyphenols modulate BA signaling are not known, but some hypotheses include modulation of the BA profile via changes to gut bacteria, or alteration of ligand-availability via BA sequestration. Herein, we used an in silico approach to investigate putative binding affinities of proanthocyanidin B2 (PACB2) and PACB2 metabolites to nuclear and G-protein coupled BA receptors. Molecular docking and dynamics simulations revealed that certain PACB2 metabolites had stable binding affinities to S1PR2, PXR and CAR, comparable to that of known natural and synthetic BA ligands. These findings suggest PACB2 metabolites may be novel ligands of S1PR2, CAR, and PXR receptors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Skyler H. Hoang
- Department of Food Science, New Jersey Institute for Food, Nutrition, and Health (Rutgers Center for Lipid Research and Center for Nutrition, Microbiome, and Health), Rutgers University, 61 Dudley Road, New Brunswick, New Jersey, 08901 USA
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, USA
| | - Kevin M. Tveter
- Department of Food Science, New Jersey Institute for Food, Nutrition, and Health (Rutgers Center for Lipid Research and Center for Nutrition, Microbiome, and Health), Rutgers University, 61 Dudley Road, New Brunswick, New Jersey, 08901 USA
| | - Esther Mezhibovsky
- Department of Food Science, New Jersey Institute for Food, Nutrition, and Health (Rutgers Center for Lipid Research and Center for Nutrition, Microbiome, and Health), Rutgers University, 61 Dudley Road, New Brunswick, New Jersey, 08901 USA
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Diana E. Roopchand
- Department of Food Science, New Jersey Institute for Food, Nutrition, and Health (Rutgers Center for Lipid Research and Center for Nutrition, Microbiome, and Health), Rutgers University, 61 Dudley Road, New Brunswick, New Jersey, 08901 USA
| |
Collapse
|
4
|
Bhattacharyya A, Khan R, Lee JY, Tassew G, Oskouian B, Allende ML, Proia RL, Yin X, Ortega JG, Bhattacharya M, Saba JD. Gene therapy with AAV9-SGPL1 in an animal model of lung fibrosis. J Pathol 2024; 263:22-31. [PMID: 38332723 PMCID: PMC10987276 DOI: 10.1002/path.6256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/29/2023] [Accepted: 12/18/2023] [Indexed: 02/10/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive scarring disease of the lung that leads rapidly to respiratory failure. Novel approaches to treatment are urgently needed. The bioactive lipid sphingosine-1-phosphate (S1P) is increased in IPF lungs and promotes proinflammatory and profibrotic TGF-β signaling. Hence, decreasing lung S1P represents a potential therapeutic strategy for IPF. S1P is degraded by the intracellular enzyme S1P lyase (SPL). Here we find that a knock-in mouse with a missense SPL mutation mimicking human disease resulted in reduced SPL activity, increased S1P, increased TGF-β signaling, increased lung fibrosis, and higher mortality after injury compared to wild type (WT). We then tested adeno-associated virus 9 (AAV9)-mediated overexpression of human SGPL1 (AAV-SPL) in mice as a therapeutic modality. Intravenous treatment with AAV-SPL augmented lung SPL activity, attenuated S1P levels within the lungs, and decreased injury-induced fibrosis compared to controls treated with saline or only AAV. We confirmed that AAV-SPL treatment led to higher expression of SPL in the epithelial and fibroblast compartments during bleomycin-induced lung injury. Additionally, AAV-SPL decreased expression of the profibrotic cytokines TNFα and IL1β as well as markers of fibroblast activation, such as fibronectin (Fn1), Tgfb1, Acta2, and collagen genes in the lung. Taken together, our results provide proof of concept for the use of AAV-SPL as a therapeutic strategy for the treatment of IPF. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Aritra Bhattacharyya
- Division of Pulmonary, Critical Care, Allergy, and Sleep, Department of Medicine, University of California, San Francisco, CA, USA
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA, USA
| | - Ranjha Khan
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Joanna Y. Lee
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Gizachew Tassew
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Babak Oskouian
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Maria L. Allende
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Richard L. Proia
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Xiaoyang Yin
- Division of Pulmonary, Critical Care, Allergy, and Sleep, Department of Medicine, University of California, San Francisco, CA, USA
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA, USA
| | - Javier G. Ortega
- Division of Pulmonary, Critical Care, Allergy, and Sleep, Department of Medicine, University of California, San Francisco, CA, USA
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA, USA
| | - Mallar Bhattacharya
- Division of Pulmonary, Critical Care, Allergy, and Sleep, Department of Medicine, University of California, San Francisco, CA, USA
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA, USA
| | - Julie D. Saba
- Department of Pediatrics, University of California, San Francisco, CA, USA
| |
Collapse
|
5
|
Yuen JS, Barrick BM, DiCindio H, Pietropinto JA, Kaplan DL. Optimization of Culture Media and Cell Ratios for 3D In Vitro Skeletal Muscle Tissues with Endothelial Cells. ACS Biomater Sci Eng 2023; 9:4558-4566. [PMID: 37326372 DOI: 10.1021/acsbiomaterials.3c00358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A major challenge of engineering larger macroscale tissues in vitro is the limited diffusion of nutrients and oxygen to the interior. For skeletal muscle, this limitation results in millimeter scale outcomes to avoid necrosis. One method to address this constraint may be to vascularize in vitro-grown muscle tissue, to support nutrient (culture media) flow into the interior of the structure. In this exploratory study, we examine culture conditions that enable myogenic development and endothelial cell survival within tissue engineered 3D muscles. Myoblasts (C2C12s), endothelial cells (HUVECs), and endothelial support cells (C3H 10T1/2s) were seeded into Matrigel-fibrin hydrogels and cast into 3D printed frames to form 3D in vitro skeletal muscle tissues. Our preliminary results suggest that the simultaneous optimization of culture media formulation and cell concentrations is necessary for 3D cultured muscles to exhibit robust myosin heavy chain expression and GFP expression from GFP-transfected endothelial cells. The ability to form differentiated 3D muscles containing endothelial cells is a key step toward achieving vascularized 3D muscle tissues, which have potential use as tissue for implantation in a medical setting, as well as for future foods such as cultivated meats.
Collapse
Affiliation(s)
- John Sk Yuen
- David Kaplan Laboratory, Biomedical Engineering Department, Tufts University, 4 Colby Street, Medford, Massachusetts 02215, United States
| | - Brigid M Barrick
- David Kaplan Laboratory, Biomedical Engineering Department, Tufts University, 4 Colby Street, Medford, Massachusetts 02215, United States
| | - Hailey DiCindio
- David Kaplan Laboratory, Biomedical Engineering Department, Tufts University, 4 Colby Street, Medford, Massachusetts 02215, United States
| | - Jaymie A Pietropinto
- David Kaplan Laboratory, Biomedical Engineering Department, Tufts University, 4 Colby Street, Medford, Massachusetts 02215, United States
| | - David L Kaplan
- David Kaplan Laboratory, Biomedical Engineering Department, Tufts University, 4 Colby Street, Medford, Massachusetts 02215, United States
| |
Collapse
|
6
|
Li YJ, Zhang C, Martincuks A, Herrmann A, Yu H. STAT proteins in cancer: orchestration of metabolism. Nat Rev Cancer 2023; 23:115-134. [PMID: 36596870 DOI: 10.1038/s41568-022-00537-3] [Citation(s) in RCA: 106] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/14/2022] [Indexed: 01/04/2023]
Abstract
Reprogrammed metabolism is a hallmark of cancer. However, the metabolic dependency of cancer, from tumour initiation through disease progression and therapy resistance, requires a spectrum of distinct reprogrammed cellular metabolic pathways. These pathways include aerobic glycolysis, oxidative phosphorylation, reactive oxygen species generation, de novo lipid synthesis, fatty acid β-oxidation, amino acid (notably glutamine) metabolism and mitochondrial metabolism. This Review highlights the central roles of signal transducer and activator of transcription (STAT) proteins, notably STAT3, STAT5, STAT6 and STAT1, in orchestrating the highly dynamic metabolism not only of cancer cells but also of immune cells and adipocytes in the tumour microenvironment. STAT proteins are able to shape distinct metabolic processes that regulate tumour progression and therapy resistance by transducing signals from metabolites, cytokines, growth factors and their receptors; defining genetic programmes that regulate a wide range of molecules involved in orchestration of metabolism in cancer and immune cells; and regulating mitochondrial activity at multiple levels, including energy metabolism and lipid-mediated mitochondrial integrity. Given the central role of STAT proteins in regulation of metabolic states, they are potential therapeutic targets for altering metabolic reprogramming in cancer.
Collapse
Affiliation(s)
- Yi-Jia Li
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Chunyan Zhang
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Antons Martincuks
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Andreas Herrmann
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
- Sorrento Therapeutics, San Diego, CA, USA
| | - Hua Yu
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA.
| |
Collapse
|
7
|
Levesque MV, Hla T. Signal Transduction and Gene Regulation in the Endothelium. Cold Spring Harb Perspect Med 2023; 13:a041153. [PMID: 35667710 PMCID: PMC9722983 DOI: 10.1101/cshperspect.a041153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Extracellular signals act on G-protein-coupled receptors (GPCRs) to regulate homeostasis and adapt to stress. This involves rapid intracellular post-translational responses and long-lasting gene-expression changes that ultimately determine cellular phenotype and fate changes. The lipid mediator sphingosine 1-phosphate (S1P) and its receptors (S1PRs) are examples of well-studied GPCR signaling axis essential for vascular development, homeostasis, and diseases. The biochemical cascades involved in rapid S1P signaling are well understood. However, gene-expression regulation by S1PRs are less understood. In this review, we focus our attention to how S1PRs regulate nuclear chromatin changes and gene transcription to modulate vascular and lymphatic endothelial phenotypic changes during embryonic development and adult homeostasis. Because S1PR-targeted drugs approved for use in the treatment of autoimmune diseases cause substantial vascular-related adverse events, these findings are critical not only for general understanding of stimulus-evoked gene regulation in the vascular endothelium, but also for therapeutic development of drugs for autoimmune and perhaps vascular diseases.
Collapse
Affiliation(s)
- Michel V Levesque
- Vascular Biology Program, Boston Children's Hospital and Department of Surgery, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Timothy Hla
- Vascular Biology Program, Boston Children's Hospital and Department of Surgery, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
8
|
Assis JLD, Fernandes AM, Aniceto BS, Fernandes da Costa PP, Banchio C, Girardini J, Vieyra A, Valverde RRHF, Einicker‐Lamas M. Sphingosine 1‐Phosphate Prevents Human Embryonic Stem Cell Death Following Ischemic Injury. EUR J LIPID SCI TECH 2022. [DOI: 10.1002/ejlt.202200019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Juliane L. de Assis
- Laboratório de Biomembranas Instituto de Biofísica Carlos Chagas Filho–Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | - Aline M. Fernandes
- Laboratório de Biomembranas Instituto de Biofísica Carlos Chagas Filho–Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | - Bárbara S. Aniceto
- Laboratório de Biomembranas Instituto de Biofísica Carlos Chagas Filho–Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | - Pedro P. Fernandes da Costa
- Laboratório de Biomembranas Instituto de Biofísica Carlos Chagas Filho–Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | - Claudia Banchio
- Instituto de Biologia Molecular y Celular de Rosário Rosário Argentina
| | - Javier Girardini
- Instituto de Biologia Molecular y Celular de Rosário Rosário Argentina
| | - Adalberto Vieyra
- Laboratório de Físico‐Química Biológica Instituto de Biofísica Carlos Chagas Filho–Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | - Rafael R. H. F. Valverde
- Laboratório de Biomembranas Instituto de Biofísica Carlos Chagas Filho–Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | - Marcelo Einicker‐Lamas
- Laboratório de Biomembranas Instituto de Biofísica Carlos Chagas Filho–Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| |
Collapse
|
9
|
Zhao P, Tassew GB, Lee JY, Oskouian B, Muñoz DP, Hodgin JB, Watson GL, Tang F, Wang JY, Luo J, Yang Y, King S, Krauss RM, Keller N, Saba JD. Efficacy of AAV9-mediated SGPL1 gene transfer in a mouse model of S1P lyase insufficiency syndrome. JCI Insight 2021; 6:145936. [PMID: 33755599 PMCID: PMC8119223 DOI: 10.1172/jci.insight.145936] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/17/2021] [Indexed: 12/26/2022] Open
Abstract
Sphingosine-1-phosphate lyase insufficiency syndrome (SPLIS) is a rare metabolic disorder caused by inactivating mutations in sphingosine-1-phosphate lyase 1 (SGPL1), which is required for the final step of sphingolipid metabolism. SPLIS features include steroid-resistant nephrotic syndrome and impairment of neurological, endocrine, and hematopoietic systems. Many affected individuals die within the first 2 years. No targeted therapy for SPLIS is available. We hypothesized that SGPL1 gene replacement would address the root cause of SPLIS, thereby serving as a universal treatment for the condition. As proof of concept, we evaluated the efficacy of adeno-associated virus 9–mediated transfer of human SGPL1 (AAV-SPL) given to newborn Sgpl1-KO mice that model SPLIS and die in the first weeks of life. Treatment dramatically prolonged survival and prevented nephrosis, neurodevelopmental delay, anemia, and hypercholesterolemia. STAT3 pathway activation and elevated proinflammatory and profibrogenic cytokines observed in KO kidneys were attenuated by treatment. Plasma and tissue sphingolipids were reduced in treated compared with untreated KO pups. SGPL1 expression and activity were measurable for at least 40 weeks. In summary, early AAV-SPL treatment prevents nephrosis, lipidosis, and neurological impairment in a mouse model of SPLIS. Our results suggest that SGPL1 gene replacement holds promise as a durable and universal targeted treatment for SPLIS.
Collapse
Affiliation(s)
- Piming Zhao
- Department of Pediatrics, UCSF, San Francisco, California, USA.,Cure Genetics, Suzhou, China
| | | | - Joanna Y Lee
- Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Babak Oskouian
- Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Denise P Muñoz
- Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Jeffrey B Hodgin
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Gordon L Watson
- Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Felicia Tang
- Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Jen-Yeu Wang
- Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Jinghui Luo
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Yingbao Yang
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Sarah King
- Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Ronald M Krauss
- Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Nancy Keller
- Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Julie D Saba
- Department of Pediatrics, UCSF, San Francisco, California, USA
| |
Collapse
|
10
|
S1P induces proliferation of pulmonary artery smooth muscle cells by promoting YAP-induced Notch3 expression and activation. J Biol Chem 2021; 296:100599. [PMID: 33781742 PMCID: PMC8094894 DOI: 10.1016/j.jbc.2021.100599] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 03/15/2021] [Accepted: 03/25/2021] [Indexed: 12/26/2022] Open
Abstract
Sphingosine-1-phosphate (S1P), a natural multifunctional phospholipid, is highly increased in plasma from patients with pulmonary arterial hypertension and mediates proliferation of pulmonary artery smooth muscle cells (PASMCs) by activating the Notch3 signaling pathway. However, the mechanisms underpinning S1P-mediated induction of PASMCs proliferation remain unclear. In this study, using biochemical and molecular biology approaches, RNA interference and gene expression analyses, 5'-ethynyl-2'-deoxyuridine incorporation assay, and 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay, we demonstrated that S1P promoted the activation of signal transducers and activators of transcription 3 (STAT3) through sphingosine-1-phosphate receptor 2 (S1PR2), and subsequently upregulated the expression of the microRNA miR-135b, which further reduced the expression of E3 ubiquitin ligase β-transduction repeat-containing protein and led to a reduction in yes-associated protein (YAP) ubiquitinated degradation in PASMCs. YAP is the core effector of the Hippo pathway and mediates the expression of particular genes. The accumulation of YAP further increased the expression and activation of Notch3 and ultimately promoted the proliferation of PASMCs. In addition, we showed that preblocking S1PR2, prior silencing of STAT3, miR-135b, or YAP, and prior inhibition of Notch3 all attenuated S1P-induced PASMCs proliferation. Taken together, our study indicates that S1P stimulates PASMCs proliferation by activation of the S1PR2/STAT3/miR-135b/β-transduction repeat-containing protein/YAP/Notch3 pathway, and our data suggest that targeting this cascade might have potential value in ameliorating PASMCs hyperproliferation and benefit pulmonary arterial hypertension.
Collapse
|
11
|
Hodun K, Chabowski A, Baranowski M. Sphingosine-1-phosphate in acute exercise and training. Scand J Med Sci Sports 2020; 31:945-955. [PMID: 33345415 DOI: 10.1111/sms.13907] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/27/2020] [Accepted: 12/07/2020] [Indexed: 12/24/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid found in all eukaryotic cells. Although it may function as an intracellular second messenger, most of its effects are induced extracellularly via activation of a family of five specific membrane receptors. Sphingosine-1-phosphate is enriched in plasma, where it is transported by high-density lipoprotein and albumin, as well as in erythrocytes and platelets which store and release large amounts of this sphingolipid. Sphingosine-1-phosphate regulates a host of cellular processes such as growth, proliferation, differentiation, migration, and apoptosis suppression. It was also shown to play an important role in skeletal muscle physiology and pathophysiology. In recent years, S1P metabolism in both muscle and blood was found to be modulated by exercise. In this review, we summarize the current knowledge on the effect of acute exercise and training on S1P metabolism, highlighting the role of this sphingolipid in skeletal muscle adaptation to physical effort.
Collapse
Affiliation(s)
- Katarzyna Hodun
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Marcin Baranowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
12
|
Germinario E, Bondì M, Blaauw B, Betto R, Danieli-Betto D. Reduction of circulating sphingosine-1-phosphate worsens mdx soleus muscle dystrophic phenotype. Exp Physiol 2020; 105:1895-1906. [PMID: 32897592 DOI: 10.1113/ep088603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 09/02/2020] [Indexed: 12/13/2022]
Abstract
NEW FINDINGS What is the central question of the study? What are the consequences of reducing circulating sphingosine-1-phosphate (S1P) for muscle physiology in the murine model of Duchenne muscular dystrophy (DMD)? What is the main result and its importance? Reduction of the circulating S1P level in mdx mice aggravates the dystrophic phenotype, as seen by an increase in fibre atrophy, fibrosis and loss of specific force, suggesting that S1P signalling is a potential therapeutic target in DMD. Although further studies are needed, plasma S1P levels have the intriguing possibility of being used as a biomarker for disease severity, an important issue in DMD. ABSTRACT Sphingosine-1-phosphate (S1P) is an important regulator of skeletal muscle properties. The dystrophin-deficient mdx mouse possesses low levels of S1P (∼50%) compared with wild type. Increased S1P availability was demonstrated to ameliorate the dystrophic phenotype in Drosophila and in mdx mice. Here, we analysed the effects produced by further reduction of S1P availability on the mass, force and regenerative capacity of dystrophic mdx soleus. Circulating S1P was neutralized by a specific anti-S1P antibody (S1P-Ab) known to lower the extracellular concentration of this signalling lipid. The S1P-Ab was administered intraperitoneally in adult mdx mice every 2 days for the duration of experiments. Soleus muscle properties were analysed 7 or 14 days after the first injection. The decreased availability of circulating S1P after the 14 day treatment reduced mdx soleus fibre cross-sectional area (-16%, P < 0.05), an effect that was associated with an increase in markers of proteolytic (MuRF1 and atrogin-1) and autophagic (p62 and LC3-II/LC3-I ratio) pathways. Moreover, an increase of fibrosis was also observed (+26%, P < 0.05). Notably, the treatment also caused a reduction of specific tetanic tension (-29%, P < 0.05). The mdx soleus regenerative capacity was only slightly influenced by reduced S1P. In conclusion, neutralization of circulating S1P reduces the mass and specific force and increases fibrosis of mdx soleus muscle, thus worsening the dystrophic phenotype. The results confirm that active, functional S1P signalling might counteract the progression of soleus mdx pathology and validate the pathway as a potential therapeutic target for muscular dystrophies.
Collapse
Affiliation(s)
- Elena Germinario
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Interuniversity Institute of Myology, Italy
| | - Michela Bondì
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Bert Blaauw
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Interuniversity Institute of Myology, Italy
| | - Romeo Betto
- Interuniversity Institute of Myology, Italy.,CNR-Institute for Neuroscience, CNR, Padova, Italy
| | - Daniela Danieli-Betto
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Interuniversity Institute of Myology, Italy
| |
Collapse
|
13
|
Activation of sphingosine 1-phosphate receptor 2 attenuates chemotherapy-induced neuropathy. J Biol Chem 2020. [DOI: 10.1016/s0021-9258(17)49922-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
14
|
Tan-Chen S, Guitton J, Bourron O, Le Stunff H, Hajduch E. Sphingolipid Metabolism and Signaling in Skeletal Muscle: From Physiology to Physiopathology. Front Endocrinol (Lausanne) 2020; 11:491. [PMID: 32849282 PMCID: PMC7426366 DOI: 10.3389/fendo.2020.00491] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022] Open
Abstract
Sphingolipids represent one of the major classes of eukaryotic lipids. They play an essential structural role, especially in cell membranes where they also possess signaling properties and are capable of modulating multiple cell functions, such as apoptosis, cell proliferation, differentiation, and inflammation. Many sphingolipid derivatives, such as ceramide, sphingosine-1-phosphate, and ganglioside, have been shown to play many crucial roles in muscle under physiological and pathological conditions. This review will summarize our knowledge of sphingolipids and their effects on muscle fate, highlighting the role of this class of lipids in modulating muscle cell differentiation, regeneration, aging, response to insulin, and contraction. We show that modulating sphingolipid metabolism may be a novel and interesting way for preventing and/or treating several muscle-related diseases.
Collapse
Affiliation(s)
- Sophie Tan-Chen
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
- Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Jeanne Guitton
- Université Saclay, CNRS UMR 9197, Institut des Neurosciences Paris-Saclay, Orsay, France
| | - Olivier Bourron
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
- Institut Hospitalo-Universitaire ICAN, Paris, France
- Assistance Publique-Hôpitaux de Paris, Département de Diabétologie et Maladies Métaboliques, Hôpital Pitié-Salpêtrière, Paris, France
| | - Hervé Le Stunff
- Université Saclay, CNRS UMR 9197, Institut des Neurosciences Paris-Saclay, Orsay, France
| | - Eric Hajduch
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
- Institut Hospitalo-Universitaire ICAN, Paris, France
- *Correspondence: Eric Hajduch
| |
Collapse
|
15
|
Wang W, Xiang P, Chew WS, Torta F, Bandla A, Lopez V, Seow WL, Lam BWS, Chang JK, Wong P, Chayaburakul K, Ong WY, Wenk MR, Sundar R, Herr DR. Activation of sphingosine 1-phosphate receptor 2 attenuates chemotherapy-induced neuropathy. J Biol Chem 2019; 295:1143-1152. [PMID: 31882542 DOI: 10.1074/jbc.ra119.011699] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/07/2019] [Indexed: 12/11/2022] Open
Abstract
Platinum-based therapeutics are used to manage many forms of cancer, but frequently result in peripheral neuropathy. Currently, the only option available to attenuate chemotherapy-induced neuropathy is to limit or discontinue this treatment. Sphingosine 1-phosphate (S1P) is a lipid-based signaling molecule involved in neuroinflammatory processes by interacting with its five cognate receptors: S1P1-5 In this study, using a combination of drug pharmacodynamic analysis in human study participants, disease modeling in rodents, and cell-based assays, we examined whether S1P signaling may represent a potential target in the treatment of chemotherapy-induced neuropathy. To this end, we first investigated the effects of platinum-based drugs on plasma S1P levels in human cancer patients. Our analysis revealed that oxaliplatin treatment specifically increases one S1P species, d16:1 S1P, in these patients. Although d16:1 S1P is an S1P2 agonist, it has lower potency than the most abundant S1P species (d18:1 S1P). Therefore, as d16:1 S1P concentration increases, it is likely to disproportionately activate proinflammatory S1P1 signaling, shifting the balance away from S1P2 We further show that a selective S1P2 agonist, CYM-5478, reduces allodynia in a rat model of cisplatin-induced neuropathy and attenuates the associated inflammatory processes in the dorsal root ganglia, likely by activating stress-response proteins, including ATF3 and HO-1. Cumulatively, the findings of our study suggest that the development of a specific S1P2 agonist may represent a promising therapeutic approach for the management of chemotherapy-induced neuropathy.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
| | - Ping Xiang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
| | - Wee Siong Chew
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
| | - Federico Torta
- Singapore Lipidomics Incubator (SLING), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
| | - Aishwarya Bandla
- The N.1 Institute for Health, National University of Singapore, Singapore 119077
| | - Violeta Lopez
- Alice Lee Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
| | - Wei Lun Seow
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
| | - Brenda Wan Shing Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
| | - Jing Kai Chang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
| | - Peiyan Wong
- Neuroscience Phenotyping Core, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
| | | | - Wei-Yi Ong
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228.,Neurobiology and Ageing Research Programme, National University of Singapore, Singapore 119077
| | - Markus R Wenk
- Singapore Lipidomics Incubator (SLING), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
| | - Raghav Sundar
- The N.1 Institute for Health, National University of Singapore, Singapore 119077 .,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228.,Department of Haematology-Oncology, National University Health System, Singapore 119074
| | - Deron R Herr
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228 .,Department of Biology, San Diego State University, San Diego, California 92182
| |
Collapse
|
16
|
S1P/S1P Receptor Signaling in Neuromuscolar Disorders. Int J Mol Sci 2019; 20:ijms20246364. [PMID: 31861214 PMCID: PMC6941007 DOI: 10.3390/ijms20246364] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/06/2019] [Accepted: 12/13/2019] [Indexed: 12/13/2022] Open
Abstract
The bioactive sphingolipid metabolite, sphingosine 1-phosphate (S1P), and the signaling pathways triggered by its binding to specific G protein-coupled receptors play a critical regulatory role in many pathophysiological processes, including skeletal muscle and nervous system degeneration. The signaling transduced by S1P binding appears to be much more complex than previously thought, with important implications for clinical applications and for personalized medicine. In particular, the understanding of S1P/S1P receptor signaling functions in specific compartmentalized locations of the cell is worthy of being better investigated, because in various circumstances it might be crucial for the development or/and the progression of neuromuscular diseases, such as Charcot-Marie-Tooth disease, myasthenia gravis, and Duchenne muscular dystrophy.
Collapse
|
17
|
Sphingosine 1-Phosphate (S1P)/ S1P Receptor Signaling and Mechanotransduction: Implications for Intrinsic Tissue Repair/Regeneration. Int J Mol Sci 2019; 20:ijms20225545. [PMID: 31703256 PMCID: PMC6888058 DOI: 10.3390/ijms20225545] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 12/16/2022] Open
Abstract
Tissue damage, irrespective from the underlying etiology, destroys tissue structure and, eventually, function. In attempt to achieve a morpho-functional recover of the damaged tissue, reparative/regenerative processes start in those tissues endowed with regenerative potential, mainly mediated by activated resident stem cells. These cells reside in a specialized niche that includes different components, cells and surrounding extracellular matrix (ECM), which, reciprocally interacting with stem cells, direct their cell behavior. Evidence suggests that ECM stiffness represents an instructive signal for the activation of stem cells sensing it by various mechanosensors, able to transduce mechanical cues into gene/protein expression responses. The actin cytoskeleton network dynamic acts as key mechanotransducer of ECM signal. The identification of signaling pathways influencing stem cell mechanobiology may offer therapeutic perspectives in the regenerative medicine field. Sphingosine 1-phosphate (S1P)/S1P receptor (S1PR) signaling, acting as modulator of ECM, ECM-cytoskeleton linking proteins and cytoskeleton dynamics appears a promising candidate. This review focuses on the current knowledge on the contribution of S1P/S1PR signaling in the control of mechanotransduction in stem/progenitor cells. The potential contribution of S1P/S1PR signaling in the mechanobiology of skeletal muscle stem cells will be argued based on the intriguing findings on S1P/S1PR action in this mechanically dynamic tissue.
Collapse
|
18
|
Rahar B, Chawla S, Tulswani R, Saxena S. Acute Hypobaric Hypoxia-Mediated Biochemical/Metabolic Shuffling and Differential Modulation of S1PR-SphK in Cardiac and Skeletal Muscles. High Alt Med Biol 2019; 20:78-88. [PMID: 30892968 DOI: 10.1089/ham.2018.0046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
AIM High altitude exposure alters biochemical, metabolic, and physiological features of heart and skeletal muscles, and hence has pathological consequences in these tissues. Central to these hypoxia-associated biochemical/metabolic shuffling are energy deficit accumulation of free radicals and ensuing oxidative damage in the tissue. Recent preclinical/clinical studies indicate sphingosine-1-phosphate (S1P) axis, comprising S1P G protein coupled receptors (S1PR1-5) and its synthesizing enzyme-sphingosine kinase (SphK) to have key regulatory roles in homeostatic cardiac and skeletal muscle biology. In view of this, the aim of the present study was to chart the initiation and progression of biochemical/metabolic shuffling and assess the coincident differential modulation of S1PR(1-5) expression and total SphK activity in cardiac and skeletal muscles from rats exposed to progressive hypobaric hypoxia (HH; 21,000 feet for 12, 24, and 48 hours). RESULTS HH-associated responses were evident as raised damage markers in plasma, oxidative stress, decreased total tissue protein, imbalance of intermediate metabolites, and aerobic/anaerobic enzyme activities in cardiac and skeletal muscles (gastrocnemius and soleus) culminating as energy deficit. CONCLUSION Cardiac and gastrocnemius muscles were more susceptible to hypoxic environment than soleus muscle. These differential responses were directly and indirectly coincident with temporal expression of S1PR(1-5) and SphK activity.
Collapse
Affiliation(s)
- Babita Rahar
- 1 Experimental Biology Division, Defense Institute of Physiology and Allied Sciences, Defense Research and Development Organization, Delhi, India
| | - Sonam Chawla
- 1 Experimental Biology Division, Defense Institute of Physiology and Allied Sciences, Defense Research and Development Organization, Delhi, India
| | - Rajkumar Tulswani
- 2 PACT Division, Defense Institute of Physiology and Allied Sciences, Defense Research and Development Organization, Delhi, India
| | - Shweta Saxena
- 3 Medicinal and Aromatic Plant Division, Defense Institute of High Altitude Research (DIHAR), Defense Research and Development Organization, Jammu and Kashmir, India
| |
Collapse
|
19
|
Bittel DC, Jaiswal JK. Contribution of Extracellular Vesicles in Rebuilding Injured Muscles. Front Physiol 2019; 10:828. [PMID: 31379590 PMCID: PMC6658195 DOI: 10.3389/fphys.2019.00828] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/13/2019] [Indexed: 12/22/2022] Open
Abstract
Skeletal myofibers are injured due to mechanical stresses experienced during physical activity, or due to myofiber fragility caused by genetic diseases. The injured myofiber needs to be repaired or regenerated to restore the loss in muscle tissue function. Myofiber repair and regeneration requires coordinated action of various intercellular signaling factors-including proteins, inflammatory cytokines, miRNAs, and membrane lipids. It is increasingly being recognized release and transmission of these signaling factors involves extracellular vesicle (EV) released by myofibers and other cells in the injured muscle. Intercellular signaling by these EVs alters the phenotype of their target cells either by directly delivering the functional proteins and lipids or by modifying longer-term gene expression. These changes in the target cells activate downstream pathways involved in tissue homeostasis and repair. The EVs are heterogeneous with regards to their size, composition, cargo, location, as well as time-course of genesis and release. These differences impact on the subsequent repair and regeneration of injured skeletal muscles. This review focuses on how intracellular vesicle production, cargo packaging, and secretion by injured muscle, modulates specific reparative, and regenerative processes. Insights into the formation of these vesicles and their signaling properties offer new understandings of the orchestrated response necessary for optimal muscle repair and regeneration.
Collapse
Affiliation(s)
- Daniel C Bittel
- Children's National Health System, Center for Genetic Medicine Research, Washington, DC, United States
| | - Jyoti K Jaiswal
- Children's National Health System, Center for Genetic Medicine Research, Washington, DC, United States.,Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| |
Collapse
|
20
|
Cordeiro AV, Silva VRR, Pauli JR, da Silva ASR, Cintra DE, Moura LP, Ropelle ER. The role of sphingosine-1-phosphate in skeletal muscle: Physiology, mechanisms, and clinical perspectives. J Cell Physiol 2018; 234:10047-10059. [PMID: 30523638 DOI: 10.1002/jcp.27870] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/15/2018] [Indexed: 12/21/2022]
Abstract
Sphingolipids were discovered more than a century ago and were simply considered as a class of cell membrane lipids for a long time. However, after the discovery of several intracellular functions and their role in the control of many physiological and pathophysiological conditions, these molecules have gained much attention. For instance, the sphingosine-1-phosphate (S1P) is a circulating bioactive sphingolipid capable of triggering strong intracellular reactions through the family of S1P receptors (S1PRs) spread in several cell types and tissues. Recently, the role of S1P in the control of skeletal muscle metabolism, atrophy, regeneration, and metabolic disorders has been widely investigated. In this review, we summarized the knowledge of S1P and its effects in skeletal muscle metabolism, highlighting the role of S1P/S1PRs axis in skeletal muscle regeneration, fatigue, ceramide accumulation, and insulin resistance. Finally, we discussed the physical exercise role in S1P/S1PRs signaling in skeletal muscle cells, and how this nonpharmacological strategy may be prospective for future investigations due to its ability to increase S1P levels.
Collapse
Affiliation(s)
- André V Cordeiro
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Vagner R R Silva
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - José R Pauli
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil.,School of Applied Sciences, Center of Research in Sport Sciences (CEPECE), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Adelino S R da Silva
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, USP, Ribeirão Preto, São Paulo, Brazil.,School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Dennys E Cintra
- Laboratory of Nutritional Genomics (LabGeN), School of Applied Sciences, University of Campinas, Limeira, São Paulo, Brazil
| | - Leandro P Moura
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil.,School of Applied Sciences, Center of Research in Sport Sciences (CEPECE), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Eduardo R Ropelle
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil.,School of Applied Sciences, Center of Research in Sport Sciences (CEPECE), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil.,Department of Internal Medicine, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
21
|
Pierucci F, Frati A, Battistini C, Matteini F, Iachini MC, Vestri A, Penna F, Costelli P, Meacci E. Involvement of released sphingosine 1-phosphate/sphingosine 1-phosphate receptor axis in skeletal muscle atrophy. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3598-3614. [PMID: 30279138 DOI: 10.1016/j.bbadis.2018.08.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 07/27/2018] [Accepted: 08/30/2018] [Indexed: 12/18/2022]
Abstract
Skeletal muscle (SkM) atrophy is caused by several and heterogeneous conditions, such as cancer, neuromuscular disorders and aging. In most types of SkM atrophy overall rates of protein synthesis are suppressed, protein degradation is consistently elevated and atrogenes, such as the ubiquitin ligase Atrogin-1/MAFbx, are up-regulated. The molecular regulators of SkM waste are multiple and only in part known. Sphingolipids represent a class of bioactive molecules capable of modulating the destiny of many cell types, including SkM cells. In particular, we and others have shown that sphingosine 1phosphate (S1P), formed by sphingosine kinase (SphK), is able to act as trophic and morphogenic factor in myoblasts. Here, we report the first evidence that the atrophic phenotype observed in both muscle obtained from mice bearing the C26 adenocarcinoma and C2C12 myotubes treated with dexamethasone was characterized by reduced levels of active phospho-SphK1. The importance of SphK1 activity is also confirmed by the specific pharmacological inhibition of SphK1 able to increase Atrogin-1/MAFbx expression and reduce myotube size and myonuclei number. Furthermore, we found that SkM atrophy was accomplished by significant increase of S1P transporter Spns2 and in changes in the pattern of S1P receptor (S1PRs) subtype expression paralleled by increased Atrogin-1/MAFbx expression, suggesting a role for the released S1P and of specific S1PR-mediated signaling pathways in the control of the ubiquitin ligase. Altogether, these findings provide the first evidence that SphK1/released S1P/S1PR axis acts as a molecular regulator of SkM atrophy, thereby representing a new possible target for therapy in many patho-physiological conditions.
Collapse
Affiliation(s)
- Federica Pierucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio" -Unit of Biochemical Sciences and Molecular Biology, University of Florence, Viale GB Morgagni, 50, Florence, Italy
| | - Alessia Frati
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio" -Unit of Biochemical Sciences and Molecular Biology, University of Florence, Viale GB Morgagni, 50, Florence, Italy
| | - Chiara Battistini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio" -Unit of Biochemical Sciences and Molecular Biology, University of Florence, Viale GB Morgagni, 50, Florence, Italy
| | - Francesca Matteini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio" -Unit of Biochemical Sciences and Molecular Biology, University of Florence, Viale GB Morgagni, 50, Florence, Italy
| | - Maria Chiara Iachini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio" -Unit of Biochemical Sciences and Molecular Biology, University of Florence, Viale GB Morgagni, 50, Florence, Italy
| | - Ambra Vestri
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio" -Unit of Biochemical Sciences and Molecular Biology, University of Florence, Viale GB Morgagni, 50, Florence, Italy
| | - Fabio Penna
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, Orbassano (TO), Italy
| | - Paola Costelli
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, Orbassano (TO), Italy
| | - Elisabetta Meacci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio" -Unit of Biochemical Sciences and Molecular Biology, University of Florence, Viale GB Morgagni, 50, Florence, Italy.
| |
Collapse
|
22
|
Guadagnin E, Mázala D, Chen YW. STAT3 in Skeletal Muscle Function and Disorders. Int J Mol Sci 2018; 19:ijms19082265. [PMID: 30072615 PMCID: PMC6121875 DOI: 10.3390/ijms19082265] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/19/2018] [Accepted: 07/23/2018] [Indexed: 12/17/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) signaling plays critical roles in regulating skeletal muscle mass, repair, and diseases. In this review, we discuss the upstream activators of STAT3 in skeletal muscles, with a focus on interleukin 6 (IL6) and transforming growth factor beta 1 (TGF-β1). We will also discuss the double-edged effect of STAT3 activation in the muscles, including the role of STAT3 signaling in muscle hypertrophy induced by exercise training or muscle wasting in cachectic diseases and muscular dystrophies. STAT3 is a critical regulator of satellite cell self-renewal after muscle injury. STAT3 knock out affects satellite cell myogenic progression by impairing proliferation and inducing premature differentiation. Recent studies in STAT3 signaling demonstrated its direct role in controlling myogenic capacity of myoblasts and satellite cells, as well as the potential benefit in using STAT3 inhibitors to treat muscle diseases. However, prolonged STAT3 activation in muscles has been shown to be responsible for muscle wasting by activating protein degradation pathways. It is important to balance the extent of STAT3 activation and the duration and location (cell types) of the STAT3 signaling when developing therapeutic interventions. STAT3 signaling in other tissues and organs that can directly or indirectly affects skeletal muscle health are also discussed.
Collapse
Affiliation(s)
- Eleonora Guadagnin
- Department of Orthopeadic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Davi Mázala
- Center for Genetic Medicine Research, Children's National Health System, Washington, DC 20010, USA.
| | - Yi-Wen Chen
- Center for Genetic Medicine Research, Children's National Health System, Washington, DC 20010, USA.
- Department Genomics and Precision Medicine, George Washington University, Washington, DC 20052, USA.
| |
Collapse
|
23
|
Moruno-Manchon JF, Uzor NE, Ambati CR, Shetty V, Putluri N, Jagannath C, McCullough LD, Tsvetkov AS. Sphingosine kinase 1-associated autophagy differs between neurons and astrocytes. Cell Death Dis 2018; 9:521. [PMID: 29743513 PMCID: PMC5943283 DOI: 10.1038/s41419-018-0599-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 04/05/2018] [Accepted: 04/12/2018] [Indexed: 02/07/2023]
Abstract
Autophagy is a degradative pathway for removing aggregated proteins, damaged organelles, and parasites. Evidence indicates that autophagic pathways differ between cell types. In neurons, autophagy plays a homeostatic role, compared to a survival mechanism employed by starving non-neuronal cells. We investigated if sphingosine kinase 1 (SK1)-associated autophagy differs between two symbiotic brain cell types-neurons and astrocytes. SK1 synthesizes sphingosine-1-phosphate, which regulates autophagy in non-neuronal cells and in neurons. We found that benzoxazine autophagy inducers upregulate SK1 and neuroprotective autophagy in neurons, but not in astrocytes. Starvation enhances SK1-associated autophagy in astrocytes, but not in neurons. In astrocytes, SK1 is cytoprotective and promotes the degradation of an autophagy substrate, mutant huntingtin, the protein that causes Huntington's disease. Overexpressed SK1 is unexpectedly toxic to neurons, and its toxicity localizes to the neuronal soma, demonstrating an intricate relationship between the localization of SK1's activity and neurotoxicity. Our results underscore the importance of cell type-specific autophagic differences in any efforts to target autophagy therapeutically.
Collapse
Affiliation(s)
- Jose F Moruno-Manchon
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Ndidi-Ese Uzor
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, 77030, USA
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Chandrashekar R Ambati
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Vivekananda Shetty
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Chinnaswamy Jagannath
- Department of Pathology and Laboratory Medicine, The University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Louise D McCullough
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
- Department of Neurology, The University of Texas McGovern Medical School at Houston, Houston, TX, 77030, USA
| | - Andrey S Tsvetkov
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, 77030, USA.
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
- UT Health Consortium on Aging, The University of Texas McGovern Medical School, Houston, TX, 77030, USA.
| |
Collapse
|
24
|
Rahar B, Chawla S, Pandey S, Bhatt AN, Saxena S. Sphingosine-1-phosphate pretreatment amends hypoxia-induced metabolic dysfunction and impairment of myogenic potential in differentiating C2C12 myoblasts by stimulating viability, calcium homeostasis and energy generation. J Physiol Sci 2018; 68:137-151. [PMID: 28070865 PMCID: PMC10717551 DOI: 10.1007/s12576-016-0518-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 12/26/2016] [Indexed: 12/19/2022]
Abstract
Sphingosine-1-phosphate (S1P) has a role in transpiration in patho-physiological signaling in skeletal muscles. The present study evaluated the pre-conditioning efficacy of S1P in facilitating differentiation of C2C12 myoblasts under a normoxic/hypoxic cell culture environment. Under normoxia, exogenous S1P significantly promoted C2C12 differentiation as evident from morphometric descriptors and differentiation markers of the mature myotubes, but it could facilitate only partial recovery from hypoxia-induced compromised differentiation. Pretreatment of S1P optimized the myokine secretion, intracellular calcium release and energy generation by boosting the aerobic/anaerobic metabolism and mitochondrial mass. In the hypoxia-exposed cells, there was derangement of the S1PR1-3 expression patterns, while the same could be largely restored with S1P pretreatment. This is being proposed as a plausible underlying mechanism for the observed pro-myogenic efficacy of exogenous S1P preconditioning. The present findings are an invaluable addition to the existing knowledge on the pro-myogenic potential of S1P and may prove beneficial in the field of hypoxia-related myo-pathologies.
Collapse
Affiliation(s)
- Babita Rahar
- Experimental Biology Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Sonam Chawla
- Experimental Biology Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Sanjay Pandey
- Division of Metabolic and Cell Signaling Research, Institute of Nuclear Medicine and Allied Sciences (INMAS), Defence Research and Development Organization (DRDO), Brig. S.K. Mazumdar Road, Delhi, 110054, India
| | - Anant Narayan Bhatt
- Division of Metabolic and Cell Signaling Research, Institute of Nuclear Medicine and Allied Sciences (INMAS), Defence Research and Development Organization (DRDO), Brig. S.K. Mazumdar Road, Delhi, 110054, India
| | - Shweta Saxena
- Medicinal and Aromatic Plant Division, Defence Institute of High Altitude Research (DIHAR), Defence Research and Development Organization (DRDO), Ministry of Defence, Leh-Ladakh, 194101, Jammu and Kashmir, India.
| |
Collapse
|
25
|
Sukocheva OA. Expansion of Sphingosine Kinase and Sphingosine-1-Phosphate Receptor Function in Normal and Cancer Cells: From Membrane Restructuring to Mediation of Estrogen Signaling and Stem Cell Programming. Int J Mol Sci 2018; 19:420. [PMID: 29385066 PMCID: PMC5855642 DOI: 10.3390/ijms19020420] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/21/2018] [Accepted: 01/24/2018] [Indexed: 02/05/2023] Open
Abstract
Sphingolipids, sphingolipid metabolizing enzymes, and their receptors network are being recognized as part of the signaling mechanisms, which govern breast cancer cell growth, migration, and survival during chemotherapy treatment. Approximately 70% of breast cancers are estrogen receptor (ER) positive and, thus, rely on estrogen signaling. Estrogen activates an intracellular network composed of many cytoplasmic and nuclear mediators. Some estrogen effects can be mediated by sphingolipids. Estrogen activates sphingosine kinase 1 (SphK1) and amplifies the intracellular concentration of sphingosine-1-phosphate (S1P) in breast cancer cells during stimulation of proliferation and survival. Specifically, Estrogen activates S1P receptors (S1PR) and induces growth factor receptor transactivation. SphK, S1P, and S1PR expression are causally associated with endocrine resistance and progression to advanced tumor stages in ER-positive breast cancers in vivo. Recently, the network of SphK/S1PR was shown to promote the development of ER-negative cancers and breast cancer stem cells, as well as stimulating angiogenesis. Novel findings confirm and broaden our knowledge about the cross-talk between sphingolipids and estrogen network in normal and malignant cells. Current S1PRs therapeutic inhibition was indicated as a promising chemotherapy approach in non-responsive and advanced malignancies. Considering that sphingolipid signaling has a prominent role in terminally differentiated cells, the impact should be considered when designing specific SphK/S1PR inhibitors. This study analyzes the dynamic of the transformation of sphingolipid axis during a transition from normal to pathological condition on the level of the whole organism. The sphingolipid-based mediation and facilitation of global effects of estrogen were critically accented as a bridging mechanism that should be explored in cancer prevention.
Collapse
Affiliation(s)
- Olga A Sukocheva
- College of Nursing and Health Sciences, Flinders University of South Australia, Bedford Park, SA 5042, Australia.
| |
Collapse
|
26
|
Tsui JH, Janebodin K, Ieronimakis N, Yama DMP, Yang HS, Chavanachat R, Hays AL, Lee H, Reyes M, Kim DH. Harnessing Sphingosine-1-Phosphate Signaling and Nanotopographical Cues To Regulate Skeletal Muscle Maturation and Vascularization. ACS NANO 2017; 11:11954-11968. [PMID: 29156133 PMCID: PMC6133580 DOI: 10.1021/acsnano.7b00186] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Despite possessing substantial regenerative capacity, skeletal muscle can suffer from loss of function due to catastrophic traumatic injury or degenerative disease. In such cases, engineered tissue grafts hold the potential to restore function and improve patient quality of life. Requirements for successful integration of engineered tissue grafts with the host musculature include cell alignment that mimics host tissue architecture and directional functionality, as well as vascularization to ensure tissue survival. Here, we have developed biomimetic nanopatterned poly(lactic-co-glycolic acid) substrates conjugated with sphingosine-1-phosphate (S1P), a potent angiogenic and myogenic factor, to enhance myoblast and endothelial maturation. Primary muscle cells cultured on these functionalized S1P nanopatterned substrates developed a highly aligned and elongated morphology and exhibited higher expression levels of myosin heavy chain, in addition to genes characteristic of mature skeletal muscle. We also found that S1P enhanced angiogenic potential in these cultures, as evidenced by elevated expression of endothelial-related genes. Computational analyses of live-cell videos showed a significantly improved functionality of tissues cultured on S1P-functionalized nanopatterns as indicated by greater myotube contraction displacements and velocities. In summary, our study demonstrates that biomimetic nanotopography and S1P can be combined to synergistically regulate the maturation and vascularization of engineered skeletal muscles.
Collapse
Affiliation(s)
- Jonathan H. Tsui
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Kajohnkiart Janebodin
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
- Department of Pathology, University of Washington, Seattle, Washington, USA
- Department of Anatomy, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - Nicholas Ieronimakis
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
- Department of Pathology, University of Washington, Seattle, Washington, USA
- Department of Clinical Investigation, Madigan Army Medical Center, Tacoma, Washington, USA
| | - David M. P. Yama
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Hee Seok Yang
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, South Korea
| | | | - Aislinn L. Hays
- Department of Pathology, University of Washington, Seattle, Washington, USA
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Haeshin Lee
- Department of Chemistry and the Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Morayma Reyes
- Department of Pathology, University of Washington, Seattle, Washington, USA
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Deok-Ho Kim
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
27
|
Abstract
After undergoing positive and negative selection in the thymus, surviving mature T cells egress from the thymic parenchyma and enter the bloodstream to participate in adaptive immunity. Thymic egress requires signals mediated by sphingosine-1-phosphate (S1P), a bioactive lipid that serves as the ligand for a family of G protein-coupled receptors (S1P1-5) expressed on many cell types, including T cells. In the final stage of their development, T cells upregulate S1P1 expression on the cell surface, which enables them to recognize and respond to a chemotactic S1P gradient that lures them into the bloodstream. The gradient is generated by an S1P source close to the site of egress combined with an S1P sink generated by the actions of S1P catabolic enzymes including S1P lyase (SPL), the only enzyme that irreversibly degrades S1P. The requisite contribution of SPL to thymic egress is demonstrated by the profound lymphopenia observed in SPL knockout (KO) mice and wild type mice treated with SPL inhibitors. SPL is robustly expressed in thymic epithelial cells (TECs), which make up the stromal reticular network of the thymus. However, TEC SPL was recently found to be dispensable for thymic egress. In contrast, deletion of SPL in dendritic cells (DCs) - which represent only a small percent of thymic stroma - disrupts the S1P gradient and blocks thymic egress. These recent observations identify DCs as homeostatic regulators of thymic export through the actions of SPL, thereby adding one more piece to the complex puzzle of how S1P signaling contributes to the regulation of T cell trafficking.
Collapse
Affiliation(s)
- Julie D Saba
- University of California San Francisco Benioff Children's Hospital Oakland, Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA 94611 USA
| |
Collapse
|
28
|
S1P Lyase Regulation of Thymic Egress and Oncogenic Inflammatory Signaling. Mediators Inflamm 2017; 2017:7685142. [PMID: 29333002 PMCID: PMC5733215 DOI: 10.1155/2017/7685142] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 09/13/2017] [Indexed: 12/17/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) is a potent lipid signaling molecule that regulates pleiotropic biological functions including cell migration, survival, angiogenesis, immune cell trafficking, inflammation, and carcinogenesis. It acts as a ligand for a family of cell surface receptors. S1P concentrations are high in blood and lymph but low in tissues, especially the thymus and lymphoid organs. S1P chemotactic gradients are essential for lymphocyte egress and other aspects of physiological cell trafficking. S1P is irreversibly degraded by S1P lyase (SPL). SPL regulates lymphocyte trafficking, inflammation and other physiological and pathological processes. For example, SPL located in thymic dendritic cells acts as a metabolic gatekeeper that controls the normal egress of mature T lymphocytes from the thymus into the circulation, whereas SPL deficiency in gut epithelial cells promotes colitis and colitis-associated carcinogenesis (CAC). Recently, we identified a complex syndrome comprised of nephrosis, adrenal insufficiency, and immunological defects caused by inherited mutations in human SGPL1, the gene encoding SPL. In the present article, we review current evidence supporting the role of SPL in thymic egress, inflammation, and cancer. Lastly, we summarize recent progress in understanding other SPL functions, its role in inherited disease, and SPL targeting for therapeutic purposes.
Collapse
|
29
|
Bondì M, Germinario E, Pirazzini M, Zanetti G, Cencetti F, Donati C, Gorza L, Betto R, Bruni P, Danieli-Betto D. Ablation of S1P3 receptor protects mouse soleus from age-related drop in muscle mass, force, and regenerative capacity. Am J Physiol Cell Physiol 2017; 313:C54-C67. [DOI: 10.1152/ajpcell.00027.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/11/2017] [Accepted: 04/19/2017] [Indexed: 12/31/2022]
Abstract
We investigated the effects of S1P3 deficiency on the age-related atrophy, decline in force, and regenerative capacity of soleus muscle from 23-mo-old male (old) mice. Compared with muscle from 5-mo-old (adult) mice, soleus mass and muscle fiber cross-sectional area (CSA) in old wild-type mice were reduced by ~26% and 24%, respectively. By contrast, the mass and fiber CSA of soleus muscle in old S1P3-null mice were comparable to those of adult muscle. Moreover, in soleus muscle of wild-type mice, twitch and tetanic tensions diminished from adulthood to old age. A slowing of contractile properties was also observed in soleus from old wild-type mice. In S1P3-null mice, neither force nor the contractile properties of soleus changed during aging. We also evaluated the regenerative capacity of soleus in old S1P3-null mice by stimulating muscle regeneration through myotoxic injury. After 10 days of regeneration, the mean fiber CSA of soleus in old wild-type mice was significantly smaller (−28%) compared with that of regenerated muscle in adult mice. On the contrary, the mean fiber CSA of regenerated soleus in old S1P3-null mice was similar to that of muscle in adult mice. We conclude that in the absence of S1P3, soleus muscle is protected from the decrease in muscle mass and force, and the attenuation of regenerative capacity, all of which are typical characteristics of aging.
Collapse
Affiliation(s)
- Michela Bondì
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Elena Germinario
- Department of Biomedical Sciences, University of Padova, Padua, Italy
- Interuniversity Institute of Myology, Italy
| | - Marco Pirazzini
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Giulia Zanetti
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Francesca Cencetti
- Interuniversity Institute of Myology, Italy
- Department of Biomedical, Experimental and Clinical Sciences, Mario Serio, University of Firenze, Florence, Italy; and
| | - Chiara Donati
- Interuniversity Institute of Myology, Italy
- Department of Biomedical, Experimental and Clinical Sciences, Mario Serio, University of Firenze, Florence, Italy; and
| | - Luisa Gorza
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Romeo Betto
- Interuniversity Institute of Myology, Italy
- National Research Council-Institute for Neuroscience, Padua, Italy
| | - Paola Bruni
- Interuniversity Institute of Myology, Italy
- Department of Biomedical, Experimental and Clinical Sciences, Mario Serio, University of Firenze, Florence, Italy; and
| | - Daniela Danieli-Betto
- Department of Biomedical Sciences, University of Padova, Padua, Italy
- Interuniversity Institute of Myology, Italy
| |
Collapse
|
30
|
Heydemann A. Severe murine limb-girdle muscular dystrophy type 2C pathology is diminished by FTY720 treatment. Muscle Nerve 2017; 56:486-494. [PMID: 27935071 DOI: 10.1002/mus.25503] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 11/28/2016] [Accepted: 11/30/2016] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Limb-girdle muscular dystrophy type 2C (LGMD-2C) is caused by mutations in γ-sarcoglycan and is a devastating, progressive, and fully lethal human muscle-wasting disease that has no effective treatment. This study examined the efficacy of the sphingosine-1-phosphate receptor modulator FTY720 in treating Sgcg-/- DBA2/J, a severe mouse model of LGMD-2C. FTY720 treatment was expected to target LGMD-2C disease progression at 2 key positions by reducing chronic inflammation and fibrosis. METHODS The treatment protocol was initiated at age 3 weeks and was continued with alternate-day injections for 3 weeks. RESULTS The treatment produced significant functional benefit by plethysmography and significant reductions of membrane permeability and fibrosis. Furthermore, the protocol elevated protein levels of δ-sarcoglycan, a dystrophin-glycoprotein family member. CONCLUSION This study showed that FTY720 is an effective muscular dystrophy treatment when therapy is initiated early in the disease progression. Muscle Nerve 56: 486-494, 2017.
Collapse
Affiliation(s)
- Ahlke Heydemann
- Department of Physiology and Biophysics, University of Illinois at Chicago, 835 South Wolcott Avenue, COMRB 2035, MC 901, Chicago, Illinois, 60612, USA.,The Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
31
|
Dietary supplementation with bovine-derived milk fat globule membrane lipids promotes neuromuscular development in growing rats. Nutr Metab (Lond) 2017; 14:9. [PMID: 28127382 PMCID: PMC5259894 DOI: 10.1186/s12986-017-0161-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 01/15/2017] [Indexed: 12/11/2022] Open
Abstract
Background The milk fat globule membrane (MFGM) is primarily composed of polar phospho- and sphingolipids, which have established biological effects on neuroplasticity. The present study aimed to investigate the effect of dietary MFGM supplementation on the neuromuscular system during post-natal development. Methods Growing rats received dietary supplementation with bovine-derived MFGM mixtures consisting of complex milk lipids (CML), beta serum concentrate (BSC) or a complex milk lipid concentrate (CMLc) (which lacks MFGM proteins) from post-natal day 10 to day 70. Results Supplementation with MFGM mixtures enriched in polar lipids (BSC and CMLc, but not CML) increased the plasma phosphatidylcholine (PC) concentration, with no effect on plasma phosphatidylinositol (PI), phosphatidylethanolamine (PE), phosphatidylserine (PS) or sphingomyelin (SM). In contrast, muscle PC was reduced in rats receiving supplementation with both BSC and CMLc, whereas muscle PI, PE, PS and SM remained unchanged. Rats receiving BSC and CMLc (but not CML) displayed a slow-to-fast muscle fibre type profile shift (MyHCI → MyHCIIa) that was associated with elevated expression of genes involved in myogenic differentiation (myogenic regulatory factors) and relatively fast fibre type specialisation (Myh2 and Nfatc4). Expression of neuromuscular development genes, including nerve cell markers, components of the synaptogenic agrin–LRP4 pathway and acetylcholine receptor subunits, was also increased in muscle of rats supplemented with BSC and CMLc (but not CML). Conclusions These findings demonstrate that dietary supplementation with bovine-derived MFGM mixtures enriched in polar lipids can promote neuromuscular development during post-natal growth in rats, leading to shifts in adult muscle phenotype. Electronic supplementary material The online version of this article (doi:10.1186/s12986-017-0161-y) contains supplementary material, which is available to authorized users.
Collapse
|
32
|
Terashita T, Kobayashi K, Nagano T, Kawa Y, Tamura D, Nakata K, Yamamoto M, Tachihara M, Kamiryo H, Nishimura Y. Administration of JTE013 abrogates experimental asthma by regulating proinflammatory cytokine production from bronchial epithelial cells. Respir Res 2016; 17:146. [PMID: 27829417 PMCID: PMC5103479 DOI: 10.1186/s12931-016-0465-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 11/01/2016] [Indexed: 12/18/2022] Open
Abstract
Background Sphingosine-1-phosphate (S1P) is a bioactive phospholipid that acts as a signal transducer by binding to S1P receptors (S1PR) 1 to 5. The S1P/S1PRs pathway has been associated with remodeling and allergic inflammation in asthma, but the expression pattern of S1PR and its effects on non-immune cells have not been completely clarified. The aim of this study was to examine the contribution of the signaling of S1P and S1PRs expressed in airway epithelial cells (ECs) to asthma responses in mice. Methods Bronchial asthma was experimentally induced in BALB/c mice by ovalbumin (OVA) sensitization followed by an OVA inhalation challenge. The effects of S1PR antagonists on the development of asthma were analyzed 24 h after the OVA challenge. Results Immunohistological analysis revealed S1PR1-3 expression on mouse airway ECs. Quantitative real-time polymerase chain reaction demonstrated that S1P greatly stimulated the induction of CCL3 and TIMP2 mRNA in human airway ECs, i.e., BEAS-2B cells, in a dose-dependent manner. Pretreatment with the S1PR2 antagonist JTE013 inhibited the CCL3 gene expression in BEAS-2B cells. Immunohistological analysis also showed that the expression level of CCL3 was attenuated by JTE013 in asthmatic mice. Furthermore, JTE013 as well as anti-CCL3 antibody attenuated allergic responses. Intratracheal administration of JTE013 also attenuated eosinophilic reactions in bronchoalveolar lavage fluids. S1P induced transcription factor NFκB activation, while JTE013 greatly reduced the NFκB activation. Conclusions JTE013 attenuated allergic airway reactions by regulating CCL3 production from bronchial ECs. The intratracheal administration of JTE013 may be a promising therapeutic strategy for bronchial asthma. Electronic supplementary material The online version of this article (doi:10.1186/s12931-016-0465-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tomomi Terashita
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Kazuyuki Kobayashi
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Tatsuya Nagano
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Yoshitaka Kawa
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Daisuke Tamura
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Kyosuke Nakata
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Masatsugu Yamamoto
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Motoko Tachihara
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Hiroshi Kamiryo
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Yoshihiro Nishimura
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| |
Collapse
|
33
|
Kreipke RE, Kwon YV, Shcherbata HR, Ruohola-Baker H. Drosophila melanogaster as a Model of Muscle Degeneration Disorders. Curr Top Dev Biol 2016; 121:83-109. [PMID: 28057309 DOI: 10.1016/bs.ctdb.2016.07.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Drosophila melanogaster provides a powerful platform with which researchers can dissect complex genetic questions and biochemical pathways relevant to a vast array of human diseases and disorders. Of particular interest, much work has been done with flies to elucidate the molecular mechanisms underlying muscle degeneration diseases. The fly is particularly useful for modeling muscle degeneration disorders because there are no identified satellite muscle cells to repair adult muscle following injury. This allows for the identification of endogenous processes of muscle degeneration as discrete events, distinguishable from phenotypes due to the lack of stem cell-based regeneration. In this review, we will discuss the ways in which the fruit fly provides a powerful platform with which to study human muscle degeneration disorders.
Collapse
Affiliation(s)
- R E Kreipke
- University of Washington, School of Medicine, Seattle, WA, United States; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, United States
| | - Y V Kwon
- University of Washington, School of Medicine, Seattle, WA, United States
| | - H R Shcherbata
- Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - H Ruohola-Baker
- University of Washington, School of Medicine, Seattle, WA, United States; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, United States.
| |
Collapse
|
34
|
Vogt D, Stark H. Therapeutic Strategies and Pharmacological Tools Influencing S1P Signaling and Metabolism. Med Res Rev 2016; 37:3-51. [PMID: 27480072 DOI: 10.1002/med.21402] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 06/01/2016] [Accepted: 06/28/2016] [Indexed: 02/06/2023]
Abstract
During the last two decades the study of the sphingolipid anabolic, catabolic, and signaling pathways has attracted enormous interest. Especially the introduction of fingolimod into market as first p.o. therapeutic for the treatment of multiple sclerosis has boosted this effect. Although the complex regulation of sphingosine-1-phosphate (S1P) and other catabolic and anabolic sphingosine-related compounds is not fully understood, the influence on different (patho)physiological states from inflammation to cytotoxicity as well as the availability of versatile pharmacological tools that represent new approaches to study these states are described. Here, we have summarized various aspects concerning the many faces of sphingolipid function modulation by different pharmacological tools up to clinical candidates. Due to the immense heterogeneity of physiological or pharmacological actions and complex cross regulations, it is difficult to predict their role in upcoming therapeutic approaches. Currently, inflammatory, immunological, and/or antitumor aspects are discussed.
Collapse
Affiliation(s)
- Dominik Vogt
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, D-60438, Frankfurt, Germany
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225, Düsseldorf, Germany
| |
Collapse
|
35
|
Germinario E, Bondì M, Cencetti F, Donati C, Nocella M, Colombini B, Betto R, Bruni P, Bagni MA, Danieli-Betto D. S1P3 receptor influences key physiological properties of fast-twitch extensor digitorum longus muscle. J Appl Physiol (1985) 2016; 120:1288-300. [DOI: 10.1152/japplphysiol.00345.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 12/23/2015] [Indexed: 12/15/2022] Open
Abstract
To examine the role of sphingosine 1-phosphate (S1P) receptor 3 (S1P3) in modulating muscle properties, we utilized transgenic mice depleted of the receptor. Morphological analyses of extensor digitorum longus (EDL) muscle did not show evident differences between wild-type and S1P3-null mice. The body weight of 3-mo-old S1P3-null mice and the mean cross-sectional area of transgenic EDL muscle fibers were similar to those of wild-type. S1P3 deficiency enhanced the expression level of S1P1 and S1P2 receptors mRNA in S1P3-null EDL muscle. The contractile properties of S1P3-null EDL diverge from those of wild-type, largely more fatigable and less able to recover. The absence of S1P3 appears responsible for a lower availability of calcium during fatigue. S1P supplementation, expected to stimulate residual S1P receptors and signaling, reduced fatigue development of S1P3-null muscle. Moreover, in the absence of S1P3, denervated EDL atrophies less than wild-type. The analysis of atrophy-related proteins in S1P3-null EDL evidences high levels of the endogenous regulator of mitochondria biogenesis peroxisome proliferative-activated receptor-γ coactivator 1α (PGC-1α); preserving mitochondria could protect the muscle from disuse atrophy. In conclusion, the absence of S1P3 makes the muscle more sensitive to fatigue and slows down atrophy development after denervation, indicating that S1P3 is involved in the modulation of key physiological properties of the fast-twitch EDL muscle.
Collapse
Affiliation(s)
- Elena Germinario
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- IIM, Interuniversity Institute of Myology, Italy
| | - Michela Bondì
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Francesca Cencetti
- IIM, Interuniversity Institute of Myology, Italy
- Department of Biomedical, Experimental and Clinical Sciences, Mario Serio, University of Firenze, Florence, Italy
| | - Chiara Donati
- IIM, Interuniversity Institute of Myology, Italy
- Department of Biomedical, Experimental and Clinical Sciences, Mario Serio, University of Firenze, Florence, Italy
| | - Marta Nocella
- IIM, Interuniversity Institute of Myology, Italy
- Department of Experimental and Clinical Medicine, University of Firenze, Florence, Italy
| | - Barbara Colombini
- IIM, Interuniversity Institute of Myology, Italy
- Department of Experimental and Clinical Medicine, University of Firenze, Florence, Italy
| | - Romeo Betto
- IIM, Interuniversity Institute of Myology, Italy
- CNR-Institute for Neuroscience, CNR, Padova, Italy
| | - Paola Bruni
- IIM, Interuniversity Institute of Myology, Italy
- Department of Biomedical, Experimental and Clinical Sciences, Mario Serio, University of Firenze, Florence, Italy
| | - Maria Angela Bagni
- IIM, Interuniversity Institute of Myology, Italy
- Department of Experimental and Clinical Medicine, University of Firenze, Florence, Italy
| | - Daniela Danieli-Betto
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- IIM, Interuniversity Institute of Myology, Italy
| |
Collapse
|
36
|
Kelly-Laubscher RF, King JC, Hacking D, Somers S, Hastie S, Stewart T, Imamdin A, Maarman G, Pedretti S, Lecour S. Cardiac preconditioning with sphingosine-1-phosphate requires activation of signal transducer and activator of transcription-3. Cardiovasc J Afr 2015; 25:118-23. [PMID: 25000441 PMCID: PMC4120131 DOI: 10.5830/cvja-2014-016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 03/31/2014] [Indexed: 02/05/2023] Open
Abstract
Aims Sphingosine-1-phosphate (S1P) is a cardioprotective agent. Signal transducer and activator of transcription 3 (STAT-3) is a key mediator of many cardioprotective agents. We aimed to explore whether STAT-3 is a key mediator in S1P-induced preconditioning. Methods Langendorff-perfused hearts from Wistar rats and wild-type or cardiomyocyte-specific STAT-3 knockout mice were pre-treated with S1P (10 nmol/l), with or without the STAT-3 pathway inhibitor AG490, before an ischaemia–reperfusion insult. Triphenyltetrazolium chloride and Evans blue staining were used for the determination of infarct size. Western blot analysis was carried out on the S1P pre-treated hearts for detection of cytosolic, nuclear and mitochondrial phosphorylated and total STAT-3 proteins. Results Pre-treatment with S1P decreased the infarct size in isolated rat (5 ± 3% vs control 26 ± 8%, p < 0.01) and wild-type mouse hearts (13 ± 1% vs control 33 ± 3%, p < 0.05). This protective effect was abolished in the rat hearts pre-treated with AG490 (30 ± 10%, p = ns vs control) and in the hearts from STAT-3 knockout mice (35 ± 4% vs control 30 ± 3%, p = ns). Levels of phosphorylated STAT-3 were significantly increased in both the nuclear (p < 0.05 vs control) and mitochondrial (p < 0.05 vs control) fractions in the S1P pre-treated hearts, but remained unchanged in the cytosolic fraction (p = ns vs control). Conclusion These novel results demonstrate that pharmacological preconditioning with S1P in the isolated heart is mediated by activation of mitochondrial and nuclear STAT-3, therefore suggesting that S1P may be a novel therapeutic target to modulate mitochondrial and nuclear function in cardiovascular disease in order to protect the heart against ischaemia–reperfusion.
Collapse
Affiliation(s)
- Roisin F Kelly-Laubscher
- Hatter Institute for Cardiovascular Research in Africa, Chris Barnard Building, Medical School Campus, University of Cape Town, Cape Town, South Africa
| | - Jonathan C King
- Hatter Institute for Cardiovascular Research in Africa, Chris Barnard Building, Medical School Campus, University of Cape Town, Cape Town, South Africa
| | - Damian Hacking
- Hatter Institute for Cardiovascular Research in Africa, Chris Barnard Building, Medical School Campus, University of Cape Town, Cape Town, South Africa
| | - Sarin Somers
- Hatter Institute for Cardiovascular Research in Africa, Chris Barnard Building, Medical School Campus, University of Cape Town, Cape Town, South Africa
| | - Samantha Hastie
- Hatter Institute for Cardiovascular Research in Africa, Chris Barnard Building, Medical School Campus, University of Cape Town, Cape Town, South Africa
| | - Tessa Stewart
- Hatter Institute for Cardiovascular Research in Africa, Chris Barnard Building, Medical School Campus, University of Cape Town, Cape Town, South Africa
| | - Aqeela Imamdin
- Hatter Institute for Cardiovascular Research in Africa, Chris Barnard Building, Medical School Campus, University of Cape Town, Cape Town, South Africa
| | - Gerald Maarman
- Hatter Institute for Cardiovascular Research in Africa, Chris Barnard Building, Medical School Campus, University of Cape Town, Cape Town, South Africa
| | - Sarah Pedretti
- Hatter Institute for Cardiovascular Research in Africa, Chris Barnard Building, Medical School Campus, University of Cape Town, Cape Town, South Africa
| | - Sandrine Lecour
- Hatter Institute for Cardiovascular Research in Africa, Chris Barnard Building, Medical School Campus, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
37
|
Feeney SJ, McGrath MJ, Sriratana A, Gehrig SM, Lynch GS, D’Arcy CE, Price JT, McLean CA, Tupler R, Mitchell CA. FHL1 reduces dystrophy in transgenic mice overexpressing FSHD muscular dystrophy region gene 1 (FRG1). PLoS One 2015; 10:e0117665. [PMID: 25695429 PMCID: PMC4335040 DOI: 10.1371/journal.pone.0117665] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 12/29/2014] [Indexed: 01/01/2023] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal-dominant disease with no effective treatment. The genetic cause of FSHD is complex and the primary pathogenic insult underlying the muscle disease is unknown. Several disease candidate genes have been proposed including DUX4 and FRG1. Expression analysis studies of FSHD report the deregulation of genes which mediate myoblast differentiation and fusion. Transgenic mice overexpressing FRG1 recapitulate the FSHD muscular dystrophy phenotype. Our current study selectively examines how increased expression of FRG1 may contribute to myoblast differentiation defects. We generated stable C2C12 cell lines overexpressing FRG1, which exhibited a myoblast fusion defect upon differentiation. To determine if myoblast fusion defects contribute to the FRG1 mouse dystrophic phenotype, this strain was crossed with skeletal muscle specific FHL1-transgenic mice. We previously reported that FHL1 promotes myoblast fusion in vitro and FHL1-transgenic mice develop skeletal muscle hypertrophy. In the current study, FRG1 mice overexpressing FHL1 showed an improvement in the dystrophic phenotype, including a reduced spinal kyphosis, increased muscle mass and myofiber size, and decreased muscle fibrosis. FHL1 expression in FRG1 mice, did not alter satellite cell number or activation, but enhanced myoblast fusion. Primary myoblasts isolated from FRG1 mice showed a myoblast fusion defect that was rescued by FHL1 expression. Therefore, increased FRG1 expression may contribute to a muscular dystrophy phenotype resembling FSHD by impairing myoblast fusion, a defect that can be rescued by enhanced myoblast fusion via expression of FHL1.
Collapse
Affiliation(s)
- Sandra J. Feeney
- Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Meagan J. McGrath
- Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Absorn Sriratana
- Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Stefan M. Gehrig
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Victoria, 3010, Australia
| | - Gordon S. Lynch
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Victoria, 3010, Australia
| | - Colleen E. D’Arcy
- Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - John T. Price
- Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
- Centre for Chronic Disease Prevention and Management, College of Health and Biomedicine, Victoria University, Melbourne, Victoria, 8001, Australia
| | - Catriona A. McLean
- Department of Anatomical Pathology, Alfred Hospital, Prahran, Victoria, 3004, Australia
- Department of Medicine, Central Clinical School, Monash University, Clayton, VIC, 3800, Australia
| | - Rossella Tupler
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA, 01655, United States of America
- Dipartimento di Scienze della Vita, Universita di Modena e Reggio Emilia, 41125, Modena, Italy
| | - Christina A. Mitchell
- Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
- * E-mail:
| |
Collapse
|
38
|
Chen J, Tang H, Sysol JR, Moreno-Vinasco L, Shioura KM, Chen T, Gorshkova I, Wang L, Huang LS, Usatyuk PV, Sammani S, Zhou G, Raj JU, Garcia JGN, Berdyshev E, Yuan JXJ, Natarajan V, Machado RF. The sphingosine kinase 1/sphingosine-1-phosphate pathway in pulmonary arterial hypertension. Am J Respir Crit Care Med 2014; 190:1032-43. [PMID: 25180446 DOI: 10.1164/rccm.201401-0121oc] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Sphingosine kinases (SphKs) 1 and 2 regulate the synthesis of the bioactive sphingolipid sphingosine-1-phosphate (S1P), an important lipid mediator that promotes cell proliferation, migration, and angiogenesis. OBJECTIVES We aimed to examine whether SphKs and their product, S1P, play a role in the development of pulmonary arterial hypertension (PAH). METHODS SphK1(-/-), SphK2(-/-), and S1P lyase heterozygous (Sgpl1(+/-)) mice, a pharmacologic SphK inhibitor (SKI2), and a S1P receptor 2 (S1PR2) antagonist (JTE013) were used in rodent models of hypoxia-mediated pulmonary hypertension (HPH). S1P levels in lung tissues from patients with PAH and pulmonary arteries (PAs) from rodent models of HPH were measured. MEASUREMENTS AND MAIN RESULTS mRNA and protein levels of SphK1, but not SphK2, were significantly increased in the lungs and isolated PA smooth muscle cells (PASMCs) from patients with PAH, and in lungs of experimental rodent models of HPH. S1P levels were increased in lungs of patients with PAH and PAs from rodent models of HPH. Unlike SphK2(-/-) mice, SphK1(-/-) mice were protected against HPH, whereas Sgpl1(+/-) mice were more susceptible to HPH. Pharmacologic SphK1 and S1PR2 inhibition prevented the development of HPH in rodent models of HPH. Overexpression of SphK1 and stimulation with S1P potentially via ligation of S1PR2 promoted PASMC proliferation in vitro, whereas SphK1 deficiency inhibited PASMC proliferation. CONCLUSIONS The SphK1/S1P axis is a novel pathway in PAH that promotes PASMC proliferation, a major contributor to pulmonary vascular remodeling. Our results suggest that this pathway is a potential therapeutic target in PAH.
Collapse
Affiliation(s)
- Jiwang Chen
- 1 Section of Pulmonary, Critical Care Medicine, Sleep and Allergy, Department of Medicine
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
The sphingosine-1-phosphate/sphingosine-1-phosphate receptor 2 axis regulates early airway T-cell infiltration in murine mast cell-dependent acute allergic responses. J Allergy Clin Immunol 2014; 135:1008-1018.e1. [PMID: 25512083 DOI: 10.1016/j.jaci.2014.10.044] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 10/28/2014] [Accepted: 10/31/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid produced by mast cells (MCs) on cross-linking of their high-affinity receptors for IgE by antigen that can amplify MC responses by binding to its S1P receptors. An acute MC-dependent allergic reaction can lead to systemic shock, but the early events of its development in lung tissues have not been investigated, and S1P functions in the onset of allergic processes remain to be examined. OBJECTIVE We used a highly specific neutralizing anti-S1P antibody (mAb) and the sphingosine-1-phosphate receptor 2 (S1PR2) antagonist JTE-013 to study the signaling contributions of S1P and S1PR2 to MC- and IgE-dependent airway allergic responses in mice within minutes after antigen challenge. METHODS Allergic reaction was triggered by a single intraperitoneal dose of antigen in sensitized mice pretreated intraperitoneally with anti-S1P, isotype control mAb, JTE-013, or vehicle before antigen challenge. RESULTS Kinetics experiments revealed early pulmonary infiltration of mostly T cells around blood vessels of sensitized mice 20 minutes after antigen exposure. Pretreatment with anti-S1P mAb inhibited in vitro MC activation, as well as in vivo development of airway infiltration and MC activation, reducing serum levels of histamine, cytokines, and the chemokines monocyte chemoattractant protein 1/CCL2, macrophage inflammatory protein 1α/CCL3, and RANTES/CCL5. S1PR2 antagonism or deficiency or MC deficiency recapitulated these results. Both in vitro and in vivo experiments demonstrated MC S1PR2 dependency for chemokine release and the necessity for signal transducer and activator of transcription 3 activation. CONCLUSION Activation of S1PR2 by S1P and downstream signal transducer and activator of transcription 3 signaling in MCs regulate early T-cell recruitment to antigen-challenged lungs through chemokine production.
Collapse
|
40
|
Sassoli C, Frati A, Tani A, Anderloni G, Pierucci F, Matteini F, Chellini F, Zecchi Orlandini S, Formigli L, Meacci E. Mesenchymal stromal cell secreted sphingosine 1-phosphate (S1P) exerts a stimulatory effect on skeletal myoblast proliferation. PLoS One 2014; 9:e108662. [PMID: 25264785 PMCID: PMC4181304 DOI: 10.1371/journal.pone.0108662] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 08/25/2014] [Indexed: 12/20/2022] Open
Abstract
Bone-marrow-derived mesenchymal stromal cells (MSCs) have the potential to significantly contribute to skeletal muscle healing through the secretion of paracrine factors that support proliferation and enhance participation of the endogenous muscle stem cells in the process of repair/regeneration. However, MSC-derived trophic molecules have been poorly characterized. The aim of this study was to investigate paracrine signaling effects of MSCs on skeletal myoblasts. It was found, using a biochemical and morphological approach that sphingosine 1-phosphate (S1P), a natural bioactive lipid exerting a broad range of muscle cell responses, is secreted by MSCs and represents an important factor by which these cells exert their stimulatory effects on C2C12 myoblast and satellite cell proliferation. Indeed, exposure to conditioned medium obtained from MSCs cultured in the presence of the selective sphingosine kinase inhibitor (iSK), blocked increased cell proliferation caused by the conditioned medium from untreated MSCs, and the addition of exogenous S1P in the conditioned medium from MSCs pre-treated with iSK further increased myoblast proliferation. Finally, we also demonstrated that the myoblast response to MSC-secreted vascular endothelial growth factor (VEGF) involves the release of S1P from C2C12 cells. Our data may have important implications in the optimization of cell-based strategies to promote skeletal muscle regeneration.
Collapse
Affiliation(s)
- Chiara Sassoli
- Department of Experimental and Clinical Medicine - Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Alessia Frati
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio” - Unit of Biochemical Sciences and Molecular Biology, University of Florence, Florence, Italy
| | - Alessia Tani
- Department of Experimental and Clinical Medicine - Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Giulia Anderloni
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio” - Unit of Biochemical Sciences and Molecular Biology, University of Florence, Florence, Italy
| | - Federica Pierucci
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio” - Unit of Biochemical Sciences and Molecular Biology, University of Florence, Florence, Italy
| | - Francesca Matteini
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio” - Unit of Biochemical Sciences and Molecular Biology, University of Florence, Florence, Italy
| | - Flaminia Chellini
- Department of Experimental and Clinical Medicine - Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Sandra Zecchi Orlandini
- Department of Experimental and Clinical Medicine - Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Lucia Formigli
- Department of Experimental and Clinical Medicine - Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Elisabetta Meacci
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio” - Unit of Biochemical Sciences and Molecular Biology, University of Florence, Florence, Italy
- * E-mail:
| |
Collapse
|
41
|
Silva VRR, Micheletti TO, Pimentel GD, Katashima CK, Lenhare L, Morari J, Mendes MCS, Razolli DS, Rocha GZ, de Souza CT, Ryu D, Prada PO, Velloso LA, Carvalheira JBC, Pauli JR, Cintra DE, Ropelle ER. Hypothalamic S1P/S1PR1 axis controls energy homeostasis. Nat Commun 2014; 5:4859. [PMID: 25255053 DOI: 10.1038/ncomms5859] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 07/31/2014] [Indexed: 02/07/2023] Open
Abstract
Sphingosine 1-phosphate receptor 1 (S1PR1) is a G-protein-coupled receptor for sphingosine-1-phosphate (S1P) that has a role in many physiological and pathophysiological processes. Here we show that the S1P/S1PR1 signalling pathway in hypothalamic neurons regulates energy homeostasis in rodents. We demonstrate that S1PR1 protein is highly enriched in hypothalamic POMC neurons of rats. Intracerebroventricular injections of the bioactive lipid, S1P, reduce food consumption and increase rat energy expenditure through persistent activation of STAT3 and the melanocortin system. Similarly, the selective disruption of hypothalamic S1PR1 increases food intake and reduces the respiratory exchange ratio. We further show that STAT3 controls S1PR1 expression in neurons via a positive feedback mechanism. Interestingly, several models of obesity and cancer anorexia display an imbalance of hypothalamic S1P/S1PR1/STAT3 axis, whereas pharmacological intervention ameliorates these phenotypes. Taken together, our data demonstrate that the neuronal S1P/S1PR1/STAT3 signalling axis plays a critical role in the control of energy homeostasis in rats.
Collapse
Affiliation(s)
- Vagner R R Silva
- Laboratory of Molecular Biology of Exercise (LaBMEx). School of Applied Science, University of Campinas (UNICAMP), Rua Pedro Zaccarias, 1300, CEP 13484-350 Limeira, São Paulo, Brazil
| | - Thayana O Micheletti
- Faculty of Medical Sciences, Department of Internal Medicine, University of Campinas (UNICAMP), CEP 13083-887 Campinas, São Paulo, Brazil
| | - Gustavo D Pimentel
- Faculty of Medical Sciences, Department of Internal Medicine, University of Campinas (UNICAMP), CEP 13083-887 Campinas, São Paulo, Brazil
| | - Carlos K Katashima
- Faculty of Medical Sciences, Department of Internal Medicine, University of Campinas (UNICAMP), CEP 13083-887 Campinas, São Paulo, Brazil
| | - Luciene Lenhare
- Faculty of Medical Sciences, Department of Internal Medicine, University of Campinas (UNICAMP), CEP 13083-887 Campinas, São Paulo, Brazil
| | - Joseane Morari
- Laboratory of Cell Signalling, Faculty of Medical Sciences, University of Campinas (UNICAMP), CEP 13083-887 Campinas, São Paulo, Brazil
| | - Maria Carolina S Mendes
- Faculty of Medical Sciences, Department of Internal Medicine, University of Campinas (UNICAMP), CEP 13083-887 Campinas, São Paulo, Brazil
| | - Daniela S Razolli
- Laboratory of Cell Signalling, Faculty of Medical Sciences, University of Campinas (UNICAMP), CEP 13083-887 Campinas, São Paulo, Brazil
| | - Guilherme Z Rocha
- Faculty of Medical Sciences, Department of Internal Medicine, University of Campinas (UNICAMP), CEP 13083-887 Campinas, São Paulo, Brazil
| | - Claudio T de Souza
- Laboratory of Exercise Biochemistry and Physiology, Health Sciences Unit, University of Southern Santa Catarina, CEP 88806-000 Criciúma, Santa Catarina, Brazil
| | - Dongryeol Ryu
- Laboratory of Integrative and Systems Physiology, School of Life Sciences, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Patrícia O Prada
- Faculty of Medical Sciences, Department of Internal Medicine, University of Campinas (UNICAMP), CEP 13083-887 Campinas, São Paulo, Brazil
| | - Lício A Velloso
- Laboratory of Cell Signalling, Faculty of Medical Sciences, University of Campinas (UNICAMP), CEP 13083-887 Campinas, São Paulo, Brazil
| | - José B C Carvalheira
- Faculty of Medical Sciences, Department of Internal Medicine, University of Campinas (UNICAMP), CEP 13083-887 Campinas, São Paulo, Brazil
| | - José Rodrigo Pauli
- Laboratory of Molecular Biology of Exercise (LaBMEx). School of Applied Science, University of Campinas (UNICAMP), Rua Pedro Zaccarias, 1300, CEP 13484-350 Limeira, São Paulo, Brazil
| | - Dennys E Cintra
- 1] Laboratory of Molecular Biology of Exercise (LaBMEx). School of Applied Science, University of Campinas (UNICAMP), Rua Pedro Zaccarias, 1300, CEP 13484-350 Limeira, São Paulo, Brazil [2] Faculty of Medical Sciences, Department of Internal Medicine, University of Campinas (UNICAMP), CEP 13083-887 Campinas, São Paulo, Brazil [3] Laboratory of Cell Signalling, Faculty of Medical Sciences, University of Campinas (UNICAMP), CEP 13083-887 Campinas, São Paulo, Brazil
| | - Eduardo R Ropelle
- 1] Laboratory of Molecular Biology of Exercise (LaBMEx). School of Applied Science, University of Campinas (UNICAMP), Rua Pedro Zaccarias, 1300, CEP 13484-350 Limeira, São Paulo, Brazil [2] Faculty of Medical Sciences, Department of Internal Medicine, University of Campinas (UNICAMP), CEP 13083-887 Campinas, São Paulo, Brazil
| |
Collapse
|
42
|
Cencetti F, Bruno G, Blescia S, Bernacchioni C, Bruni P, Donati C. Lysophosphatidic acid stimulates cell migration of satellite cells. A role for the sphingosine kinase/sphingosine 1-phosphate axis. FEBS J 2014; 281:4467-78. [DOI: 10.1111/febs.12955] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 07/04/2014] [Accepted: 07/29/2014] [Indexed: 12/01/2022]
Affiliation(s)
- Francesca Cencetti
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche ‘Mario Serio’; Università di Firenze; Italy
- Istituto Interuniversitario di Miologia; Italy
| | - Gennaro Bruno
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche ‘Mario Serio’; Università di Firenze; Italy
| | - Sabrina Blescia
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche ‘Mario Serio’; Università di Firenze; Italy
| | - Caterina Bernacchioni
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche ‘Mario Serio’; Università di Firenze; Italy
| | - Paola Bruni
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche ‘Mario Serio’; Università di Firenze; Italy
- Istituto Interuniversitario di Miologia; Italy
| | - Chiara Donati
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche ‘Mario Serio’; Università di Firenze; Italy
- Istituto Interuniversitario di Miologia; Italy
| |
Collapse
|
43
|
Nagata Y, Ohashi K, Wada E, Yuasa Y, Shiozuka M, Nonomura Y, Matsuda R. Sphingosine-1-phosphate mediates epidermal growth factor-induced muscle satellite cell activation. Exp Cell Res 2014; 326:112-24. [DOI: 10.1016/j.yexcr.2014.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/25/2014] [Accepted: 06/16/2014] [Indexed: 01/03/2023]
|
44
|
Kihara Y, Maceyka M, Spiegel S, Chun J. Lysophospholipid receptor nomenclature review: IUPHAR Review 8. Br J Pharmacol 2014; 171:3575-94. [PMID: 24602016 PMCID: PMC4128058 DOI: 10.1111/bph.12678] [Citation(s) in RCA: 266] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 02/03/2014] [Accepted: 02/12/2014] [Indexed: 12/11/2022] Open
Abstract
Lysophospholipids encompass a diverse range of small, membrane-derived phospholipids that act as extracellular signals. The signalling properties are mediated by 7-transmembrane GPCRs, constituent members of which have continued to be identified after their initial discovery in the mid-1990s. Here we briefly review this class of receptors, with a particular emphasis on their protein and gene nomenclatures that reflect their cognate ligands. There are six lysophospholipid receptors that interact with lysophosphatidic acid (LPA): protein names LPA1 - LPA6 and italicized gene names LPAR1-LPAR6 (human) and Lpar1-Lpar6 (non-human). There are five sphingosine 1-phosphate (S1P) receptors: protein names S1P1 -S1P5 and italicized gene names S1PR1-S1PR5 (human) and S1pr1-S1pr5 (non-human). Recent additions to the lysophospholipid receptor family have resulted in the proposed names for a lysophosphatidyl inositol (LPI) receptor - protein name LPI1 and gene name LPIR1 (human) and Lpir1 (non-human) - and three lysophosphatidyl serine receptors - protein names LyPS1 , LyPS2 , LyPS3 and gene names LYPSR1-LYPSR3 (human) and Lypsr1-Lypsr3 (non-human) along with a variant form that does not appear to exist in humans that is provisionally named LyPS2L . This nomenclature incorporates previous recommendations from the International Union of Basic and Clinical Pharmacology, the Human Genome Organization, the Gene Nomenclature Committee, and the Mouse Genome Informatix.
Collapse
Affiliation(s)
- Yasuyuki Kihara
- Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research InstituteLa Jolla, CA, USA
| | - Michael Maceyka
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, School of Medicine, Virginia Commonwealth UniversityRichmond, VA, USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, School of Medicine, Virginia Commonwealth UniversityRichmond, VA, USA
| | - Jerold Chun
- Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research InstituteLa Jolla, CA, USA
| |
Collapse
|
45
|
Cruz-Orengo L, Daniels BP, Dorsey D, Basak SA, Grajales-Reyes JG, McCandless EE, Piccio L, Schmidt RE, Cross AH, Crosby SD, Klein RS. Enhanced sphingosine-1-phosphate receptor 2 expression underlies female CNS autoimmunity susceptibility. J Clin Invest 2014; 124:2571-84. [PMID: 24812668 DOI: 10.1172/jci73408] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 03/20/2014] [Indexed: 11/17/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory disease of the CNS that is characterized by BBB dysfunction and has a much higher incidence in females. Compared with other strains of mice, EAE in the SJL mouse strain models multiple features of MS, including an enhanced sensitivity of female mice to disease; however, the molecular mechanisms that underlie the sex- and strain-dependent differences in disease susceptibility have not been described. We identified sphingosine-1-phosphate receptor 2 (S1PR2) as a sex- and strain-specific, disease-modifying molecule that regulates BBB permeability by destabilizing adherens junctions. S1PR2 expression was increased in disease-susceptible regions of the CNS of both female SJL EAE mice and female patients with MS compared with their male counterparts. Pharmacological blockade or lack of S1PR2 signaling decreased EAE disease severity as the result of enhanced endothelial barrier function. Enhanced S1PR2 signaling in an in vitro BBB model altered adherens junction formation via activation of Rho/ROCK, CDC42, and caveolin endocytosis-dependent pathways, resulting in loss of apicobasal polarity and relocation of abluminal CXCL12 to vessel lumina. Furthermore, S1PR2-dependent BBB disruption and CXCL12 relocation were observed in vivo. These results identify a link between S1PR2 signaling and BBB polarity and implicate S1PR2 in sex-specific patterns of disease during CNS autoimmunity.
Collapse
MESH Headings
- Animals
- Autoimmunity/genetics
- Blood-Brain Barrier/immunology
- Blood-Brain Barrier/metabolism
- Case-Control Studies
- Central Nervous System/immunology
- Central Nervous System/metabolism
- Central Nervous System/pathology
- Encephalomyelitis, Autoimmune, Experimental/etiology
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Female
- Gene Expression Profiling
- Genetic Predisposition to Disease
- Humans
- Male
- Mice
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Knockout
- Multiple Sclerosis/etiology
- Multiple Sclerosis/genetics
- Multiple Sclerosis/metabolism
- Receptors, Lysosphingolipid/deficiency
- Receptors, Lysosphingolipid/genetics
- Receptors, Lysosphingolipid/metabolism
- Sex Characteristics
- Species Specificity
- Sphingosine-1-Phosphate Receptors
Collapse
|
46
|
Donati C, Cencetti F, Bruni P. Sphingosine 1-phosphate axis: a new leader actor in skeletal muscle biology. Front Physiol 2013; 4:338. [PMID: 24324439 PMCID: PMC3839259 DOI: 10.3389/fphys.2013.00338] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 11/01/2013] [Indexed: 12/23/2022] Open
Abstract
Sphingosine 1-phosphate (S1P) is a bioactive lipid involved in the regulation of biological processes such as proliferation, differentiation, motility, and survival. Here we review the role of S1P in the biology and homeostasis of skeletal muscle. S1P derives from the catabolism of sphingomyelin and is produced by sphingosine phosphorylation catalyzed by sphingosine kinase (SK). S1P can act either intracellularly or extracellularly through specific ligation to its five G protein-coupled receptors (GPCR) named S1P receptors (S1PR). Many experimental findings obtained in the last 20 years demonstrate that S1P and its metabolism play a multifaceted role in the regulation of skeletal muscle regeneration. Indeed, this lipid is known to activate muscle-resident satellite cells, regulating their proliferation and differentiation, as well as mesenchymal progenitors such as mesoangioblasts that originate outside skeletal muscle, both involved in tissue repair following an injury or disease. The molecular mechanism of action of S1P in skeletal muscle cell precursors is highly complex, especially because S1P axis is under the control of a number of growth factors and cytokines, canonical regulators of skeletal muscle biology. Moreover, this lipid is crucially involved in the regulation of skeletal muscle contractile properties, responsiveness to insulin, fatigue resistance and tropism. Overall, on the basis of these findings S1P signaling appears to be an appealing pharmacological target for improving skeletal muscle repair. Nevertheless, further understanding is required on the regulation of S1P downstream signaling pathways and the expression of S1PR. This article will resume our current knowledge on S1P signaling in skeletal muscle, hopefully stimulating further investigation in the field, aimed at individuating novel molecular targets for ameliorating skeletal muscle regeneration and reducing fibrosis of the tissue after a trauma or due to skeletal muscle diseases.
Collapse
Affiliation(s)
- Chiara Donati
- Dipartimento di Scienze Biomediche, Sperimentali e Cliniche, University of Florence Florence, Italy ; Istituto Interuniversitario di Miologia Italy
| | | | | |
Collapse
|
47
|
de la Garza-Rodea AS, Baldwin DM, Oskouian B, Place RF, Bandhuvula P, Kumar A, Saba JD. Sphingosine phosphate lyase regulates myogenic differentiation via S1P receptor-mediated effects on myogenic microRNA expression. FASEB J 2013; 28:506-19. [PMID: 24158395 DOI: 10.1096/fj.13-233155] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
S1P lyase (SPL) catalyzes the irreversible degradation of sphingosine-1-phosphate (S1P), a bioactive lipid whose signaling activities regulate muscle differentiation, homeostasis, and satellite cell (SC) activation. By regulating S1P levels, SPL also controls SC recruitment and muscle regeneration, representing a potential therapeutic target for muscular dystrophy. We found that SPL is induced during myoblast differentiation. To investigate SPL's role in myogenesis at the cellular level, we generated and characterized a murine myoblast SPL-knockdown (SPL-KD) cell line lacking SPL. SPL-KD cells accumulated intracellular and extracellular S1P and failed to form myotubes under conditions that normally stimulate myogenic differentiation. Under differentiation conditions, SPL-KD cells also demonstrated delayed induction of 3 myogenic microRNAs (miRNAs), miR-1, miR-206, and miR-486. SPL-KD cells successfully differentiated when treated with an S1P1 agonist, S1P2 antagonist, and combination treatments, which also increased myogenic miRNA levels. SPL-KD cells transfected with mimics for miR-1 or miR-206 also overcame the differentiation block. Thus, we show for the first time that the S1P/SPL/S1P-receptor axis regulates the expression of a number of miRNAs, thereby contributing to myogenic differentiation.
Collapse
Affiliation(s)
- Anabel S de la Garza-Rodea
- 1Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA 94609, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Defective sphingosine 1-phosphate receptor 1 (S1P1) phosphorylation exacerbates TH17-mediated autoimmune neuroinflammation. Nat Immunol 2013; 14:1166-72. [PMID: 24076635 PMCID: PMC4014310 DOI: 10.1038/ni.2730] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 09/04/2013] [Indexed: 12/12/2022]
Abstract
Sphingosine-1-phosphate (S1P) signaling regulates lymphocyte egress from lymphoid organs into systemic circulation. Sphingosine phosphate receptor 1 (S1P1) agonist, FTY-720 (Gilenya™) arrests immune trafficking and prevents multiple sclerosis (MS) relapses. However, alternative mechanisms of S1P-S1P1 signaling have been reported. Phosphoproteomic analysis of MS brain lesions revealed S1P1 phosphorylation on S351, a residue crucial for receptor internalization. Mutant mice harboring a S1pr1 gene encoding phosphorylation-deficient receptors [S1P1(S5A)] developed severe experimental autoimmune encephalomyelitis (EAE) due to T helper (TH) 17-mediated autoimmunity in the peripheral immune and nervous system. S1P1 directly activated Janus-like kinase–signal transducer and activator of transcription 3 (JAK-STAT3) pathway via interleukin 6 (IL-6). Impaired S1P1 phosphorylation enhances TH17 polarization and exacerbates autoimmune neuroinflammation. These mechanisms may be pathogenic in MS.
Collapse
|
49
|
Nguyen-Tran DH, Hait NC, Sperber H, Qi J, Fischer K, Ieronimakis N, Pantoja M, Hays A, Allegood J, Reyes M, Spiegel S, Ruohola-Baker H. Molecular mechanism of sphingosine-1-phosphate action in Duchenne muscular dystrophy. Dis Model Mech 2013; 7:41-54. [PMID: 24077965 PMCID: PMC3882047 DOI: 10.1242/dmm.013631] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal muscle-wasting disease. Studies in Drosophila showed that genetic increase of the levels of the bioactive sphingolipid sphingosine-1-phosphate (S1P) or delivery of 2-acetyl-5-tetrahydroxybutyl imidazole (THI), an S1P lyase inhibitor, suppresses dystrophic muscle degeneration. In the dystrophic mouse (mdx), upregulation of S1P by THI increases regeneration and muscle force. S1P can act as a ligand for S1P receptors and as a histone deacetylase (HDAC) inhibitor. Because Drosophila has no identified S1P receptors and DMD correlates with increased HDAC2 levels, we tested whether S1P action in muscle involves HDAC inhibition. Here we show that beneficial effects of THI treatment in mdx mice correlate with significantly increased nuclear S1P, decreased HDAC activity and increased acetylation of specific histone residues. Importantly, the HDAC2 target microRNA genes miR-29 and miR-1 are significantly upregulated, correlating with the downregulation of the miR-29 target Col1a1 in the diaphragm of THI-treated mdx mice. Further gene expression analysis revealed a significant THI-dependent decrease in inflammatory genes and increase in metabolic genes. Accordingly, S1P levels and functional mitochondrial activity are increased after THI treatment of differentiating C2C12 cells. S1P increases the capacity of the muscle cell to use fatty acids as an energy source, suggesting that THI treatment could be beneficial for the maintenance of energy metabolism in mdx muscles.
Collapse
Affiliation(s)
- Diem-Hang Nguyen-Tran
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195-7350, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
D'Arcy CE, Feeney SJ, McLean CA, Gehrig SM, Lynch GS, Smith JE, Cowling BS, Mitchell CA, McGrath MJ. Identification of FHL1 as a therapeutic target for Duchenne muscular dystrophy. Hum Mol Genet 2013; 23:618-36. [PMID: 24087791 DOI: 10.1093/hmg/ddt449] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Utrophin is a potential therapeutic target for the fatal muscle disease, Duchenne muscular dystrophy (DMD). In adult skeletal muscle, utrophin is restricted to the neuromuscular and myotendinous junctions and can compensate for dystrophin loss in mdx mice, a mouse model of DMD, but requires sarcolemmal localization. NFATc1-mediated transcription regulates utrophin expression and the LIM protein, FHL1 which promotes muscle hypertrophy, is a transcriptional activator of NFATc1. By generating mdx/FHL1-transgenic mice, we demonstrate that FHL1 potentiates NFATc1 activation of utrophin to ameliorate the dystrophic pathology. Transgenic FHL1 expression increased sarcolemmal membrane stability, reduced muscle degeneration, decreased inflammation and conferred protection from contraction-induced injury in mdx mice. Significantly, FHL1 expression also reduced progressive muscle degeneration and fibrosis in the diaphragm of aged mdx mice. FHL1 enhanced NFATc1 activation of the utrophin promoter and increased sarcolemmal expression of utrophin in muscles of mdx mice, directing the assembly of a substitute utrophin-glycoprotein complex, and revealing a novel FHL1-NFATc1-utrophin signaling axis that can functionally compensate for dystrophin.
Collapse
Affiliation(s)
- Colleen E D'Arcy
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|