1
|
Straub JS, Patel ML, Nowotarski MS, Rao L, Turiansky ME, Fisher MPA, Helgeson ME. Evidence for a possible quantum effect on the formation of lithium-doped amorphous calcium phosphate from solution. Proc Natl Acad Sci U S A 2025; 122:e2423211122. [PMID: 40048269 PMCID: PMC11912366 DOI: 10.1073/pnas.2423211122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/29/2025] [Indexed: 03/19/2025] Open
Abstract
Differential isotope effects are an emerging tool for discovering possible nontrivial quantum mechanical effects within biological systems. However, it is often nearly impossible to elucidate the exact mechanisms by which a biological isotope effect manifests due to the complexity of these systems. As such, one proposed in vitro system of study for a quantum isotope effect is calcium phosphate aggregation, where symmetric calcium phosphate molecular species, known as Posner molecules, have been theorized to have phosphorus nuclear spin-dependent self-binding rates, which could be differently modulated by doping with stable lithium isotopes. Here, we present in vitro evidence for such a differential lithium isotope effect on the formation and aggregation of amorphous calcium phosphate from solution under certain conditions. Experiments confirm that lithium incorporates into amorphous calcium phosphate, with 7Li found to promote a greater abundance of observable calcium phosphate particles than 6Li under identical solution preparations. These in vitro results offer a potential explanation for in vivo biological studies that have shown differential lithium isotope effects. Given the importance of calcium phosphate in biological systems-ranging from mitochondrial signaling pathways to key biomineralization processes, as well as the proposed role of Posner molecules as a "neural qutrit"-these results present an important step in understanding calcium phosphate nucleation as well as the potential role of calcium phosphate for quantum biology and processing.
Collapse
Affiliation(s)
- Joshua S. Straub
- Department of Physics, University of California, Santa Barbara, CA93106
| | - Manisha L. Patel
- Department of Physics, University of California, Santa Barbara, CA93106
| | | | - Lokeswara Rao
- Department of Chemistry, University of California, Santa Barbara, CA93106
| | - Mark E. Turiansky
- Department of Materials, University of California, Santa Barbara, CA93106
| | | | - Matthew E. Helgeson
- Department of Chemical Engineering, University of California, Santa Barbara, CA93106
| |
Collapse
|
2
|
Raynes JK, Mata J, Wilde KL, Carver JA, Kelly SM, Holt C. Structure of biomimetic casein micelles: Critical tests of the hydrophobic colloid and multivalent-binding models using recombinant deuterated and phosphorylated β-casein. J Struct Biol X 2024; 9:100096. [PMID: 38318529 PMCID: PMC10840362 DOI: 10.1016/j.yjsbx.2024.100096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/08/2024] [Accepted: 01/17/2024] [Indexed: 02/07/2024] Open
Abstract
Milk contains high concentrations of amyloidogenic casein proteins and is supersaturated with respect to crystalline calcium phosphates such as apatite. Nevertheless, the mammary gland normally remains unmineralized and free of amyloid. Unlike κ-casein, β- and αS-caseins are highly effective mineral chaperones that prevent ectopic and pathological calcification of the mammary gland. Milk invariably contains a mixture of two to five different caseins that act on each other as molecular chaperones. Instead of forming amyloid fibrils, several thousand caseins and hundreds of nanoclusters of amorphous calcium phosphate combine to form fuzzy complexes called casein micelles. To understand the biological functions of the casein micelle its structure needs to be understood better than at present. The location in micelles of the highly amyloidogenic κ-casein is disputed. In traditional hydrophobic colloid models, it, alone, forms a stabilizing surface coat that also determines the average size of the micelles. In the recent multivalent-binding model, κ-casein is present throughout the micelle, in intimate contact with the other caseins. To discriminate between these models, a range of biomimetic micelles was prepared using a fixed concentration of the mineral chaperone β-casein and nanoclusters of calcium phosphate, with variable concentrations of κ-casein. A biomimetic micelle was also prepared using a highly deuterated and in vivo phosphorylated recombinant β-casein with calcium phosphate and unlabelled κ-casein. Neutron and X-ray scattering experiments revealed that κ-casein is distributed throughout the micelle, in quantitative agreement with the multivalent-binding model but contrary to the hydrophobic colloid models.
Collapse
Affiliation(s)
- Jared K. Raynes
- CSIRO Agriculture & Food, 671 Sneydes Road, Werribee, VIC 3031, Australia
- All G Foods, Waterloo, NSW 2006, Australia
| | - Jitendra Mata
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234, Australia
- School of Chemistry, University of New South Wales, Sydney 2052, Australia
| | - Karyn L. Wilde
- National Deuteration Facility, Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234, Australia
| | - John A. Carver
- Research School of Chemistry, The Australian National University, Acton, ACT 2601, Australia
| | - Sharon M. Kelly
- School of Molecular Biosciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Carl Holt
- School of Molecular Biosciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
3
|
Perrone S, Caporilli C, Grassi F, Ferrocino M, Biagi E, Dell’Orto V, Beretta V, Petrolini C, Gambini L, Street ME, Dall’Asta A, Ghi T, Esposito S. Prenatal and Neonatal Bone Health: Updated Review on Early Identification of Newborns at High Risk for Osteopenia. Nutrients 2023; 15:3515. [PMID: 37630705 PMCID: PMC10459154 DOI: 10.3390/nu15163515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/24/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Bone health starts with maternal health and nutrition, which influences bone mass and density already in utero. The mechanisms underlying the effect of the intrauterine environment on bone health are partly unknown but certainly include the 'foetal programming' of oxidative stress and endocrine systems, which influence later skeletal growth and development. With this narrative review, we describe the current evidence for identifying patients with risk factors for developing osteopenia, today's management of these populations, and screening and prevention programs based on gestational age, weight, and morbidity. Challenges for bone health prevention include the need for new technologies that are specific and applicable to pregnant women, the foetus, and, later, the newborn. Radiofrequency ultrasound spectrometry (REMS) has proven to be a useful tool in the assessment of bone mineral density (BMD) in pregnant women. Few studies have reported that transmission ultrasound can also be used to assess BMD in newborns. The advantages of this technology in the foetus and newborn are the absence of ionising radiation, ease of use, and, above all, the possibility of performing longitudinal studies from intrauterine to extrauterine life. The use of these technologies already in the intrauterine period could help prevent associated diseases, such as osteoporosis and osteopenia, which are characterised by a reduction in bone mass and degeneration of bone structure and lead to an increased risk of fractures in adulthood with considerable social repercussions for the related direct and indirect costs.
Collapse
Affiliation(s)
- Serafina Perrone
- Neonatology Unit, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (V.D.); (V.B.); (C.P.); (L.G.)
| | - Chiara Caporilli
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (C.C.); (F.G.); (M.F.); (E.B.); (M.E.S.); (S.E.)
| | - Federica Grassi
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (C.C.); (F.G.); (M.F.); (E.B.); (M.E.S.); (S.E.)
| | - Mandy Ferrocino
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (C.C.); (F.G.); (M.F.); (E.B.); (M.E.S.); (S.E.)
| | - Eleonora Biagi
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (C.C.); (F.G.); (M.F.); (E.B.); (M.E.S.); (S.E.)
| | - Valentina Dell’Orto
- Neonatology Unit, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (V.D.); (V.B.); (C.P.); (L.G.)
| | - Virginia Beretta
- Neonatology Unit, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (V.D.); (V.B.); (C.P.); (L.G.)
| | - Chiara Petrolini
- Neonatology Unit, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (V.D.); (V.B.); (C.P.); (L.G.)
| | - Lucia Gambini
- Neonatology Unit, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (V.D.); (V.B.); (C.P.); (L.G.)
| | - Maria Elisabeth Street
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (C.C.); (F.G.); (M.F.); (E.B.); (M.E.S.); (S.E.)
| | - Andrea Dall’Asta
- Obstetric and Gynecology Unit, University Hospital of Parma, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (A.D.); (T.G.)
| | - Tullio Ghi
- Obstetric and Gynecology Unit, University Hospital of Parma, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (A.D.); (T.G.)
| | - Susanna Esposito
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (C.C.); (F.G.); (M.F.); (E.B.); (M.E.S.); (S.E.)
| |
Collapse
|
4
|
Muneyama T, Hasegawa T, Yamamoto T, Hongo H, Haraguchi-Kitakamae M, Abe M, Maruoka H, Ishizu H, Shimizu T, Sasano Y, Li M, Amizuka N. Histochemical assessment on osteoclasts in long bones of toll-like receptor 2 (TLR2) deficient mice. J Oral Biosci 2023; 65:163-174. [PMID: 37088152 DOI: 10.1016/j.job.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 04/25/2023]
Abstract
OBJECTIVE Toll-like receptor 2 (TLR2), recognizes a wide variety of pathogen-associated molecular patterns such as lipopolysaccharides, peptidoglycans, and lipopeptides, and is generally believed to be present in monocytes, macrophages, dendritic cells, and vascular endothelial cells. However, no histological examination of osteoclasts, which differentiate from precursors common to macrophages/monocytes, has been performed in a non-infected state of TLR2 deficiency. The objective of this study was to examine the histological properties and function of osteoclasts in the long bones of 8-week-old male TLR2 deficient (TLR2-/-) mice to gain insight into TLR2 function in biological circumstances without microbial infection. METHODS Eight-week-old male wild-type and TLR2-/- mice were fixed with paraformaldehyde solution, and their tibiae and femora were used for micro-CT analysis, immunohistochemistry, transmission electron microscopy, and real-time PCR analysis. RESULTS TLR2-/- tibiae and femora exhibited increased bone volume of metaphyseal trabeculae and elevated numbers of TRAP-positive osteoclasts. However, the number of multinucleated TRAP-positive osteoclasts was reduced, whereas mononuclear TRAP-positive cells increased, despite the high expression levels of Dc-Stamp and Oc-Stamp. Although TRAP-positive multinucleated and mononuclear osteoclasts showed the immunoreactivity and elevated expression of RANK and siglec-15, they revealed weak cathepsin K-positivity and less incorporation of the mineralized bone matrix, and often missing ruffled borders. It seemed likely that, despite the increased numbers, TLR2-/- osteoclasts reduced cell fusion and bone resorption activity. CONCLUSION It seems likely that even without bacterial infection, TLR2 might participate in cell fusion and subsequent bone resorption of osteoclasts.
Collapse
Affiliation(s)
- Takafumi Muneyama
- Developmental Biology of Hard Tissue Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Tomoka Hasegawa
- Developmental Biology of Hard Tissue Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan.
| | - Tomomaya Yamamoto
- Developmental Biology of Hard Tissue Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan; Northern Army Medical Unit, Camp Makomanai, Japan Ground Self-Defense Forces, Sapporo, Japan
| | - Hiromi Hongo
- Developmental Biology of Hard Tissue Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Mai Haraguchi-Kitakamae
- Developmental Biology of Hard Tissue Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan; Division of Craniofacial Development and Tissue Biology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Miki Abe
- Developmental Biology of Hard Tissue Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Haruhi Maruoka
- Developmental Biology of Hard Tissue Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Hotaka Ishizu
- Developmental Biology of Hard Tissue Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan; Orthopedics, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Tomohiro Shimizu
- Orthopedics, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yasuyuki Sasano
- Division of Craniofacial Development and Tissue Biology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Minqi Li
- Shandong Provincial Key Laboratory of Oral Biomedicine, The School of Stomatology, Shandong University, Jinan, China
| | - Norio Amizuka
- Developmental Biology of Hard Tissue Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
5
|
Hasegawa T, Hongo H, Yamamoto T, Abe M, Yoshino H, Haraguchi-Kitakamae M, Ishizu H, Shimizu T, Iwasaki N, Amizuka N. Matrix Vesicle-Mediated Mineralization and Osteocytic Regulation of Bone Mineralization. Int J Mol Sci 2022; 23:ijms23179941. [PMID: 36077336 PMCID: PMC9456179 DOI: 10.3390/ijms23179941] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Bone mineralization entails two mineralization phases: primary and secondary mineralization. Primary mineralization is achieved when matrix vesicles are secreted by osteoblasts, and thereafter, bone mineral density gradually increases during secondary mineralization. Nearby extracellular phosphate ions (PO43−) flow into the vesicles via membrane transporters and enzymes located on the vesicles’ membranes, while calcium ions (Ca2+), abundant in the tissue fluid, are also transported into the vesicles. The accumulation of Ca2+ and PO43− in the matrix vesicles induces crystal nucleation and growth. The calcium phosphate crystals grow radially within the vesicle, penetrate the vesicle’s membrane, and continue to grow outside the vesicle, ultimately forming mineralized nodules. The mineralized nodules then attach to collagen fibrils, mineralizing them from the contact sites (i.e., collagen mineralization). Afterward, the bone mineral density gradually increases during the secondary mineralization process. The mechanisms of this phenomenon remain unclear, but osteocytes may play a key role; it is assumed that osteocytes enable the transport of Ca2+ and PO43− through the canaliculi of the osteocyte network, as well as regulate the mineralization of the surrounding bone matrix via the Phex/SIBLINGs axis. Thus, bone mineralization is biologically regulated by osteoblasts and osteocytes.
Collapse
Affiliation(s)
- Tomoka Hasegawa
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
- Correspondence: (T.H.); (N.A.); Tel.: +81-11-706-4226 (T.H.); +81-11-706-4223 (N.A.)
| | - Hiromi Hongo
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
| | - Tomomaya Yamamoto
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
- Northern Army Medical Unit, Camp Makomanai, Japan Ground Self-Defense Forces, Sapporo 005-8543, Japan
| | - Miki Abe
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
| | - Hirona Yoshino
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
| | - Mai Haraguchi-Kitakamae
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
- Division of Craniofacial Development and Tissue Biology, Graduate School of Dentistry, Tohoku University, Sendai 980-8577, Japan
| | - Hotaka Ishizu
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
- Orthopedic Surgery, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Tomohiro Shimizu
- Orthopedic Surgery, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Norimasa Iwasaki
- Orthopedic Surgery, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Norio Amizuka
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
- Correspondence: (T.H.); (N.A.); Tel.: +81-11-706-4226 (T.H.); +81-11-706-4223 (N.A.)
| |
Collapse
|
6
|
Enzymatic Approach in Calcium Phosphate Biomineralization: A Contribution to Reconcile the Physicochemical with the Physiological View. Int J Mol Sci 2021; 22:ijms222312957. [PMID: 34884758 PMCID: PMC8657759 DOI: 10.3390/ijms222312957] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 01/22/2023] Open
Abstract
Biomineralization is the process by which organisms produce hard inorganic matter from soft tissues with outstanding control of mineral deposition in time and space. For this purpose, organisms deploy a sophisticated "toolkit" that has resulted in significant evolutionary innovations, for which calcium phosphate (CaP) is the biomineral selected for the skeleton of vertebrates. While CaP mineral formation in aqueous media can be investigated by studying thermodynamics and kinetics of phase transitions in supersaturated solutions, biogenic mineralization requires coping with the inherent complexity of biological systems. This mainly includes compartmentalization and homeostatic processes used by organisms to regulate key physiological factors, including temperature, pH and ion concentration. A detailed analysis of the literature shows the emergence of two main views describing the mechanism of CaP biomineralization. The first one, more dedicated to the study of in vivo systems and supported by researchers in physiology, often involves matrix vesicles (MVs). The second one, more investigated by the physicochemistry community, involves collagen intrafibrillar mineralization particularly through in vitro acellular models. Herein, we show that there is an obvious need in the biological systems to control both where and when the mineral forms through an in-depth survey of the mechanism of CaP mineralization. This necessity could gather both communities of physiologists and physicochemists under a common interest for an enzymatic approach to better describe CaP biomineralization. Both homogeneous and heterogeneous enzymatic catalyses are conceivable for these systems, and a few preliminary promising results on CaP mineralization for both types of enzymatic catalysis are reported in this work. Through them, we aim to describe the relevance of our point of view and the likely findings that could be obtained when adding an enzymatic approach to the already rich and creative research field dealing with CaP mineralization. This complementary approach could lead to a better understanding of the biomineralization mechanism and inspire the biomimetic design of new materials.
Collapse
|
7
|
Holzinger J, Kotisch H, Richter KW, Konrat R. Binding Mode Characterization of Osteopontin on Hydroxyapatite by Solution NMR Spectroscopy. Chembiochem 2021; 22:2300-2305. [PMID: 33914399 PMCID: PMC8359842 DOI: 10.1002/cbic.202100139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/28/2021] [Indexed: 01/13/2023]
Abstract
Extracellular matrix glycoproteins play a major role in bone mineralization and modulation of osteogenesis. Among these, the intrinsically disordered protein osteopontin (OPN) is associated with the inhibition of formation, growth and proliferation of the bone mineral hydroxyapatite (HAP). Furthermore, post-translational modifications like phosphorylation can alter conformations and interaction properties of intrinsically disordered proteins (IDPs). Therefore, the actual interaction of OPN with a HAP surface on an atomic level and how this interaction is affected by phosphorylation is of great interest. Here, we study the interaction of full-length OPN on the surface of suspended HAP nanoparticles by solution NMR spectroscopy. We report the binding modes of this IDP and provide evidence for the influence of hyperphosphorylation on the binding character and an explanation for the differing roles in biomineralization. Our study moreover presents an easy and suitable option to measure interaction of nanoparticles in a stable suspension with full-length proteins.
Collapse
Affiliation(s)
- Julian Holzinger
- Department of Structural and Computational BiologyUniversity of Vienna, Max Perutz LabsVienna BioCenter Campus 51030ViennaAustria
| | - Harald Kotisch
- Vienna Biocenter Core Facilities GmbHDr. Bohr Gasse 31030ViennaAustria
| | - Klaus W. Richter
- Department of Inorganic Chemistry, Functional MaterialsUniversity of ViennaWähringer Str. 421090ViennaAustria
| | - Robert Konrat
- Department of Structural and Computational BiologyUniversity of Vienna, Max Perutz LabsVienna BioCenter Campus 51030ViennaAustria
| |
Collapse
|
8
|
Quan BD, Wojtas M, Sone ED. Polyaminoacids in Biomimetic Collagen Mineralization: Roles of Isomerization and Disorder in Polyaspartic and Polyglutamic Acids. Biomacromolecules 2021; 22:2996-3004. [PMID: 34152724 DOI: 10.1021/acs.biomac.1c00402] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The extracellular matrix of hard connective tissues is composed primarily of mineralized collagen fibrils. Acidic noncollagenous proteins play important roles in mediating mineralization of collagen. Polyaspartate, a homopolymer substitute for such proteins, has been used extensively in in vitro models to produce biomimetic mineralized collagen. Polyglutamate behaves differently in mineralization models, despite its chemical similarity. We show that polyaspartate is a 350 times more effective inhibitor of solution precipitation of hydroxyapatite than polyglutamate. Supersaturated CaP solutions stabilized with polyaspartic acid produce collagen with aligned intrafibrillar mineral, while solutions containing polyglutamate lead to the formation of unaligned mineral clusters on the fibril surface. Molecular analysis showed that the commercial polyaspartic acid contains substantial isomerization, unlike polyglutamic acid. Hence, the secondary structure of polyaspartic acid is more disordered than that of polyglutamic acid. The increased flexibility of the polyaspartic acid chain may explain its potency as an inhibitor of solution crystallization and a mediator of intrafibrillar collagen mineralization.
Collapse
Affiliation(s)
- Bryan D Quan
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Magdalena Wojtas
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Eli D Sone
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada.,Department of Materials Science & Engineering, University of Toronto, Toronto, Ontario M5S 3E4, Canada.,Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada
| |
Collapse
|
9
|
Mateos B, Holzinger J, Conrad-Billroth C, Platzer G, Żerko S, Sealey-Cardona M, Anrather D, Koźmiński W, Konrat R. Hyperphosphorylation of Human Osteopontin and Its Impact on Structural Dynamics and Molecular Recognition. Biochemistry 2021; 60:1347-1355. [PMID: 33876640 PMCID: PMC8154273 DOI: 10.1021/acs.biochem.1c00050] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 04/13/2021] [Indexed: 12/26/2022]
Abstract
Protein phosphorylation is an abundant post-translational modification (PTM) and an essential modulator of protein functionality in living cells. Intrinsically disordered proteins (IDPs) are particular targets of PTM protein kinases due to their involvement in fundamental protein interaction networks. Despite their dynamic nature, IDPs are far from having random-coil conformations but exhibit significant structural heterogeneity. Changes in the molecular environment, most prominently in the form of PTM via phosphorylation, can modulate these structural features. Therefore, how phosphorylation events can alter conformational ensembles of IDPs and their interactions with binding partners is of great interest. Here we study the effects of hyperphosphorylation on the IDP osteopontin (OPN), an extracellular target of the Fam20C kinase. We report a full characterization of the phosphorylation sites of OPN using a combined nuclear magnetic resonance/mass spectrometry approach and provide evidence for an increase in the local flexibility of highly phosphorylated regions and the ensuing overall structural elongation. Our study emphasizes the simultaneous importance of electrostatic and hydrophobic interactions in the formation of compact substates in IDPs and their relevance for molecular recognition events.
Collapse
Affiliation(s)
- Borja Mateos
- Department
of Structural and Computational Biology, University of Vienna, Max Perutz Labs, Vienna BioCenter Campus 5, 1030 Vienna, Austria
| | - Julian Holzinger
- Department
of Structural and Computational Biology, University of Vienna, Max Perutz Labs, Vienna BioCenter Campus 5, 1030 Vienna, Austria
| | - Clara Conrad-Billroth
- Department
of Structural and Computational Biology, University of Vienna, Max Perutz Labs, Vienna BioCenter Campus 5, 1030 Vienna, Austria
| | - Gerald Platzer
- Department
of Structural and Computational Biology, University of Vienna, Max Perutz Labs, Vienna BioCenter Campus 5, 1030 Vienna, Austria
| | - Szymon Żerko
- Faculty
of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 02093 Warsaw, Poland
| | | | - Dorothea Anrather
- Mass
Spectrometry Facility, Max Perutz Laboratories, Vienna BioCenter Campus 5, Dr. Bohr
Gasse 3, 1030 Vienna, Austria
| | - Wiktor Koźmiński
- Faculty
of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 02093 Warsaw, Poland
| | - Robert Konrat
- Department
of Structural and Computational Biology, University of Vienna, Max Perutz Labs, Vienna BioCenter Campus 5, 1030 Vienna, Austria
| |
Collapse
|
10
|
Hoac B, Østergaard M, Wittig NK, Boukpessi T, Buss DJ, Chaussain C, Birkedal H, Murshed M, McKee MD. Genetic Ablation of Osteopontin in Osteomalacic Hyp Mice Partially Rescues the Deficient Mineralization Without Correcting Hypophosphatemia. J Bone Miner Res 2020; 35:2032-2048. [PMID: 32501585 DOI: 10.1002/jbmr.4101] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/24/2020] [Accepted: 06/01/2020] [Indexed: 11/09/2022]
Abstract
PHEX is predominantly expressed by bone and tooth-forming cells, and its inactivating mutations in X-linked hypophosphatemia (XLH) lead to renal phosphate wasting and severe hypomineralization of bones and teeth. Also present in XLH are hallmark hypomineralized periosteocytic lesions (POLs, halos) that persist despite stable correction of serum phosphate (Pi ) that improves bulk bone mineralization. In XLH, mineralization-inhibiting osteopontin (OPN, a substrate for PHEX) accumulates in the extracellular matrix of bone. To investigate how OPN functions in Hyp mice (a model for XLH), double-null (Hyp;Opn-/- ) mice were generated. Undecalcified histomorphometry performed on lumbar vertebrae revealed that Hyp;Opn-/- mice had significantly reduced osteoid area/bone area (OV/BV) and osteoid thickness of trabecular bone as compared to Hyp mice, despite being as hypophosphatemic as Hyp littermate controls. However, tibias examined by synchrotron radiation micro-CT showed that mineral lacunar volumes remained abnormally enlarged in these double-null mice. When Hyp;Opn-/- mice were fed a high-Pi diet, serum Pi concentration increased, and OV/BV and osteoid thickness normalized, yet mineral lacunar area remained abnormally enlarged. Enpp1 and Ankh gene expression were increased in double-null mice fed a high-Pi diet, potentially indicating a role for elevated inhibitory pyrophosphate (PPi ) in the absence of OPN. To further investigate the persistence of POLs in Hyp mice despite stable correction of serum Pi , immunohistochemistry for OPN on Hyp mice fed a high-Pi diet showed elevated OPN in the osteocyte pericellular lacunar matrix as compared to Hyp mice fed a control diet. This suggests that POLs persisting in Hyp mice despite correction of serum Pi may be attributable to the well-known upregulation of mineralization-inhibiting OPN by Pi , and its accumulation in the osteocyte pericellular matrix. This study shows that OPN contributes to osteomalacia in Hyp mice, and that genetic ablation of OPN in Hyp mice improves the mineralization phenotype independent of systemic Pi -regulating factors. © 2020 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Betty Hoac
- Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - Maja Østergaard
- Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | - Nina K Wittig
- Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | - Tchilalo Boukpessi
- Faculty of Dentistry, McGill University, Montreal, QC, Canada.,EA 2496, Laboratory Orofacial Pathologies, Imaging and Biotherapies, School of Dentistry Université de Paris, Paris, France.,Assistance Publique-Hôpitaux de Paris (AP-HP) Department of Odontology, Charles Foix and Bretonneau Hospitals and Reference Center for Rare Diseases of Calcium and Phosphorus Metabolism, Paris, France
| | - Daniel J Buss
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Catherine Chaussain
- EA 2496, Laboratory Orofacial Pathologies, Imaging and Biotherapies, School of Dentistry Université de Paris, Paris, France.,Assistance Publique-Hôpitaux de Paris (AP-HP) Department of Odontology, Charles Foix and Bretonneau Hospitals and Reference Center for Rare Diseases of Calcium and Phosphorus Metabolism, Paris, France
| | - Henrik Birkedal
- Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | - Monzur Murshed
- Faculty of Dentistry, McGill University, Montreal, QC, Canada.,Department of Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada.,Shriners Hospital for Children, Montreal, QC, Canada
| | - Marc D McKee
- Faculty of Dentistry, McGill University, Montreal, QC, Canada.,Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
11
|
Iline-Vul T, Nanda R, Mateos B, Hazan S, Matlahov I, Perelshtein I, Keinan-Adamsky K, Althoff-Ospelt G, Konrat R, Goobes G. Osteopontin regulates biomimetic calcium phosphate crystallization from disordered mineral layers covering apatite crystallites. Sci Rep 2020; 10:15722. [PMID: 32973201 PMCID: PMC7518277 DOI: 10.1038/s41598-020-72786-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023] Open
Abstract
Details of apatite formation and development in bone below the nanometer scale remain enigmatic. Regulation of mineralization was shown to be governed by the activity of non-collagenous proteins with many bone diseases stemming from improper activity of these proteins. Apatite crystal growth inhibition or enhancement is thought to involve direct interaction of these proteins with exposed faces of apatite crystals. However, experimental evidence of the molecular binding events that occur and that allow these proteins to exert their functions are lacking. Moreover, recent high-resolution measurements of apatite crystallites in bone have shown that individual crystallites are covered by a persistent layer of amorphous calcium phosphate. It is therefore unclear whether non-collagenous proteins can interact with the faces of the mineral crystallites directly and what are the consequences of the presence of a disordered mineral layer to their functionality. In this work, the regulatory effect of recombinant osteopontin on biomimetic apatite is shown to produce platelet-shaped apatite crystallites with disordered layers coating them. The protein is also shown to regulate the content and properties of the disordered mineral phase (and sublayers within it). Through solid-state NMR atomic carbon-phosphorous distance measurements, the protein is shown to be located in the disordered phases, reaching out to interact with the surfaces of the crystals only through very few sidechains. These observations suggest that non-phosphorylated osteopontin acts as regulator of the coating mineral layers and exerts its effect on apatite crystal growth processes mostly from afar with a limited number of contact points with the crystal.
Collapse
Affiliation(s)
- Taly Iline-Vul
- Department of Chemistry, Bar Ilan University, 5290002, Ramat Gan, Israel
| | - Raju Nanda
- Department of Chemistry, Bar Ilan University, 5290002, Ramat Gan, Israel
| | - Borja Mateos
- Max F. Perutz Laboratories, Department of Computational and Structural Biology, University of Vienna, 1030, Vienna, Austria
| | - Shani Hazan
- Department of Chemistry, Bar Ilan University, 5290002, Ramat Gan, Israel
| | - Irina Matlahov
- Department of Chemistry, Bar Ilan University, 5290002, Ramat Gan, Israel
| | - Ilana Perelshtein
- Department of Chemistry, Bar Ilan University, 5290002, Ramat Gan, Israel
| | | | | | - Robert Konrat
- Max F. Perutz Laboratories, Department of Computational and Structural Biology, University of Vienna, 1030, Vienna, Austria
| | - Gil Goobes
- Department of Chemistry, Bar Ilan University, 5290002, Ramat Gan, Israel.
| |
Collapse
|
12
|
Reznikov N, Hoac B, Buss DJ, Addison WN, Barros NMT, McKee MD. Biological stenciling of mineralization in the skeleton: Local enzymatic removal of inhibitors in the extracellular matrix. Bone 2020; 138:115447. [PMID: 32454257 DOI: 10.1016/j.bone.2020.115447] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/14/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022]
Abstract
Biomineralization is remarkably diverse and provides myriad functions across many organismal systems. Biomineralization processes typically produce hardened, hierarchically organized structures usually having nanostructured mineral assemblies that are formed through inorganic-organic (usually protein) interactions. Calcium‑carbonate biomineral predominates in structures of small invertebrate organisms abundant in marine environments, particularly in shells (remarkably it is also found in the inner ear otoconia of vertebrates), whereas calcium-phosphate biomineral predominates in the skeletons and dentitions of both marine and terrestrial vertebrates, including humans. Reconciliation of the interplay between organic moieties and inorganic crystals in bones and teeth is a cornerstone of biomineralization research. Key molecular determinants of skeletal and dental mineralization have been identified in health and disease, and in pathologic ectopic calcification, ranging from small molecules such as pyrophosphate, to small membrane-bounded matrix vesicles shed from cells, and to noncollagenous extracellular matrix proteins such as osteopontin and their derived bioactive peptides. Beyond partly knowing the regulatory role of the direct actions of inhibitors on vertebrate mineralization, more recently the importance of their enzymatic removal from the extracellular matrix has become increasingly understood. Great progress has been made in deciphering the relationship between mineralization inhibitors and the enzymes that degrade them, and how adverse changes in this physiologic pathway (such as gene mutations causing disease) result in mineralization defects. Two examples of this are rare skeletal diseases having osteomalacia/odontomalacia (soft bones and teeth) - namely hypophosphatasia (HPP) and X-linked hypophosphatemia (XLH) - where inactivating mutations occur in the gene for the enzymes tissue-nonspecific alkaline phosphatase (TNAP, TNSALP, ALPL) and phosphate-regulating endopeptidase homolog X-linked (PHEX), respectively. Here, we review and provide a concept for how existing and new information now comes together to describe the dual nature of regulation of mineralization - through systemic mineral ion homeostasis involving circulating factors, coupled with molecular determinants operating at the local level in the extracellular matrix. For the local mineralization events in the extracellular matrix, we present a focused concept in skeletal mineralization biology called the Stenciling Principle - a principle (building upon seminal work by Neuman and Fleisch) describing how the action of enzymes to remove tissue-resident inhibitors defines with precision the location and progression of mineralization.
Collapse
Affiliation(s)
- N Reznikov
- Object Research Systems Inc., 760 St. Paul West, Montreal, Quebec H3C 1M4, Canada.
| | - B Hoac
- Faculty of Dentistry, McGill University, 3640 University St., Montreal, Quebec H3A 0C7, Canada
| | - D J Buss
- Department of Anatomy and Cell Biology, McGill University, 3640 University St., Montreal, Quebec H3A 0C7, Canada
| | - W N Addison
- Department of Molecular Signaling and Biochemistry, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka, Japan
| | - N M T Barros
- Departamento de Biofísica, São Paulo, Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Diadema, Brazil
| | - M D McKee
- Faculty of Dentistry, McGill University, 3640 University St., Montreal, Quebec H3A 0C7, Canada; Department of Anatomy and Cell Biology, McGill University, 3640 University St., Montreal, Quebec H3A 0C7, Canada.
| |
Collapse
|
13
|
Structural Biology of Calcium Phosphate Nanoclusters Sequestered by Phosphoproteins. CRYSTALS 2020. [DOI: 10.3390/cryst10090755] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Biofluids that contain stable calcium phosphate nanoclusters sequestered by phosphopeptides make it possible for soft and hard tissues to co-exist in the same organism with relative ease. The stability diagram of a solution of nanocluster complexes shows how the minimum concentration of phosphopeptide needed for stability increases with pH. In the stable region, amorphous calcium phosphate cannot precipitate. Nevertheless, if the solution is brought into contact with hydroxyapatite, the crystalline phase will grow at the expense of the nanocluster complexes. The physico-chemical principles governing the formation, composition, size, structure, and stability of the complexes are described. Examples are given of complexes formed by casein, osteopontin, and recombinant phosphopeptides. Application of these principles and properties to blood serum, milk, urine, and resting saliva is described to show that under physiological conditions they are in the stable region of their stability diagram and so cannot cause soft tissue calcification. Stimulated saliva, however, is in the metastable region, consistent with its role in tooth remineralization. Destabilization of biofluids, with consequential ill-effects, can occur when there is a failure of homeostasis, such as an increase in pH without a balancing increase in the concentration of sequestering phosphopeptides.
Collapse
|
14
|
Ustriyana P, Michel FM, Wilson MC, Harmon E, Chen J, Liu T, Sahai N. Oligo(l-glutamic acids) in Calcium Phosphate Precipitation: Mechanism of Delayed Phase Transformation. J Phys Chem B 2020; 124:6288-6298. [PMID: 32600044 DOI: 10.1021/acs.jpcb.0c01690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Proteins and their mimics that contain negatively charged sequences are important in natural and biomimetic mineralization. The mechanism by which these sequences affect calcium phosphate mineralization is not well understood. Here, peptides containing different numbers of repeat units of contiguous glutamic acid residues, oligo(l-glutamic acid)n (n = 3, 7, 8, 10), were investigated with regards to the mechanism in delaying the crystallization of amorphous calcium phosphate (ACP) while holding the amount of carboxylic acid groups in solution constant. Increasing peptide chain length increases the stability of ACP at a certain total amount of carboxylic acid groups in solution. This effect is shown to be due to stronger binding as well as binding to more calcium ions per peptide by the longer oligopeptides compared to the shorter ones. It is proposed that these associations delay the structural rearrangement of calcium ions and the dehydration of ACP, which are required for the crystallization of hydroxyapatite. The initial nucleation and the local structure of ACP, however, do not vary with chain length. This second part of a two-part series provides an improved mechanistic understanding of how organic additives, especially those with contiguous acidic amino acid sequences, modulate the kinetics of calcium phosphate precipitation and phase transformation.
Collapse
Affiliation(s)
- Putu Ustriyana
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - F Marc Michel
- Department of Geosciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Michael C Wilson
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Emma Harmon
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Jiahui Chen
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Tianbo Liu
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Nita Sahai
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States.,Department of Geosciences, The University of Akron, Akron, Ohio 44325, United States.,Integrated Bioscience Program, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
15
|
Wang X, Liu Q, Chen W, Liu L. FGF adsorbed mesoporous bioactive glass with larger pores in enhancing bone tissue engineering. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:48. [PMID: 30982116 DOI: 10.1007/s10856-019-6252-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 04/04/2019] [Indexed: 06/09/2023]
Abstract
Mesoporous bioactive glass (MBG) is performed as a bone tissue engineering material because of its good bioactivity, biocompatibility and osteoinducion characteristics. Here, we propose MBG with larger pores (MBG-L) adsorbed fibroblast growth factor (FGF) to facilitate osteoblast differentiation and matrix mineralization. Specifically, we observed that MBG-L promotes calcium deposit precipitation in vitro. In addition, adhesion, proliferation, differentiation and matrix mineralization were promoted after osteoblast cultured on MBG-L/FGF. Interestingly, we found that the transcriptional activity of the critical transcription factor Runx2 was increased through MAPK pathway after osteoblast cultured on MBG-L/FGF. Support for this result, we found that the expression of osteoblastic marker genes, Osteocalcin (Ocn), Osteopontin (Opn), and Runx2 were increased. Thus, our findings provided that MBG-L/FGF could be a promising new material in bone tissue engineering.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, 410073, Changsha, Hunan, P. R. China.
| | - Qianqian Liu
- Department of Biochemistry, School of Life Sciences, Central South University, 410013, Changsha, Hunan, P. R. China
| | - Wei Chen
- Department of Life Sciences, College of Life Sciences, Hunan Normal University, 410081, Changsha, Hunan, P. R. China
| | - Long Liu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, 410073, Changsha, Hunan, P. R. China
| |
Collapse
|
16
|
Quan BD, Sone ED. The effect of polyaspartate chain length on mediating biomimetic remineralization of collagenous tissues. J R Soc Interface 2018; 15:rsif.2018.0269. [PMID: 30333243 DOI: 10.1098/rsif.2018.0269] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/20/2018] [Indexed: 12/13/2022] Open
Abstract
Formation of hydroxyapatite (HAP) within collagen fibrils, as found in bone, dentine and cementum, is thought to be mediated by proteins rich in aspartate (Asp) and glutamate such as osteopontin and bone sialoprotein, respectively. Indeed polyaspartate (pAsp), a homopolymer analogue of such proteins, has been shown to induce intrafibrillar mineralization of collagen from solutions of calcium and phosphate that are supersaturated with respect to HAP. To elucidate the role of pAsp in mineralization of collagen, we explored the effect of pAsp chain length on in vitro HAP deposition in demineralized mouse periodontal tissue sections. Through characterization of both tissue sections and mineralizing solution, we show that chain length contributes to the effectiveness of pAsp in mediating intrafibrillar mineralization. This function appears to be associated with inhibition of otherwise kinetically favoured crystallization in the bulk solution, which allows for intrafibrillar crystallization, though this does not preclude the possibility of a more active role for pAsp in addition. Inhibition of crystallization in solution by pAsp occurs by slowing the growth of amorphous calcium phosphate and stabilization of this phase, rather than by sequestration of Ca2+ ions. These results suggest that the length of Asp-rich sequences of mineralizing proteins may be essential to their function, and could also be useful in optimization of mineralized tissue replacement synthesis.
Collapse
Affiliation(s)
- Bryan D Quan
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Eli D Sone
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada .,Department of Materials Science & Engineering, University of Toronto, Toronto, Ontario, Canada.,Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Meisel CL, Bainbridge P, Mitsouras D, Wong JY. Targeted Nanoparticle Binding to Hydroxyapatite in a High Serum Environment for Early Detection of Heart Disease. ACS APPLIED NANO MATERIALS 2018; 1:4927-4939. [PMID: 31867573 PMCID: PMC6924636 DOI: 10.1021/acsanm.8b01099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The impact of the protein-rich in vivo environment on targeted binding of functionalized nanoparticles has been an active field of research over the past several years. Current research aims at better understanding the nature of the protein corona and how it may be possible for targeted binding to occur even in the presence of serum. Much of the current research focuses on nanoparticles targeted to particular cell receptors or features with the aim of cellular uptake. However, similar research has not been performed on nanoparticles that are targeted to non-protein disease features, such as hydroxyapatite (HA). HA is a crystalline calcium-phosphate mineral that is present in large quantities in bone, and in smaller quantities in diseased cardiovascular tissue in cases of atherosclerosis or various stenoses. Our work aims to gain a better understanding of the behavior of PEGylated, peptide-coated superparamagnetic iron oxide nanoparticles (SPIONs) in a biologically-relevant high-protein environment (50% serum). We first determined that specific binding to HA occurs at significantly higher rates than non-specific binding in the absence of serum protein. We then examined nanoparticle interactions with serum proteins, including determination of the relative quantities of protein in the hard vs. soft protein corona. Finally, we examined specific and non-specific binding of targeted SPIONs in 50% serum, and determined that targeted binding may still occur with significant (p < 0.05) selectivity. We hypothesize that this may be because the nature of the binding interactions between the peptides and the HA are, by definition, less specific than the protein-protein interactions required for nanoparticles to bind to specific cells or cell features. These results suggest that these targeted SPIONs may be further developed for use in early detection of heart diseases such as atherosclerosis and aortic stenosis.
Collapse
Affiliation(s)
- Cari L. Meisel
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215
| | - Polly Bainbridge
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215
| | - Dimitrios Mitsouras
- Applied Imaging Science Laboratory, Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02215
- Department of Biochemistry Microbiology and Immunology, The University of Ottawa, Faculty of Medicine, 501 Smyth Rd., Ottowa, ON K1H 3L7 Canada
| | - Joyce Y. Wong
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215
| |
Collapse
|
18
|
Amorphous Calcium Phosphate Formation and Aggregation Process Revealed by Light Scattering Techniques. CRYSTALS 2018. [DOI: 10.3390/cryst8060254] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
19
|
Zhao W, Wang Z, Xu Z, Sahai N. Osteocalcin facilitates calcium phosphate ion complex growth as revealed by free energy calculation. Phys Chem Chem Phys 2018; 20:13047-13056. [PMID: 29713719 DOI: 10.1039/c8cp01105b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The nanoscopic structural and thermodynamic basis of biomolecule-regulated assembly and crystallization of inorganic solids have a tremendous impact on the rational design of novel functional nanomaterials, but are concealed by many difficulties in molecular-level characterization. Here we demonstrate that the free energy calculation approach, enabled by combining advanced molecular simulation techniques, can unravel the structural and energetic mechanisms of protein-mediated inorganic solid nucleation. It is observed that osteocalcin (OCN), an important non-collagenous protein involved in regulating bone formation, promotes the growth of nanosized calcium phosphate (CaP) ion clusters from a supersaturated solution. Free energy calculation by umbrella sampling indicates that this effect by OCN is prominent at the scale of 1 to 3 nm ion-association complexes (IACs). The binding interactions between gamma-carboxyl glutamate and the C-terminal and, interestingly, the arginine side chains of OCN and IACs stabilize under-coordinated IACs, thus promoting their growth. The promoter effect of OCN on the enlargement and further aggregation of IACs into cluster assemblies of tens of nm are confirmed by conventional molecular dynamics simulation and dynamic light scattering experiments. To the best of our knowledge, this is the first time that the free energy landscape of the early stages of CaP nucleation is shown. The free energy change as a function of IAC size shares the feature of decreasing monotonically as shown previously for the calcium carbonate system. Therefore, the nucleation of both these major biominerals apparently involves an initial phase of liquid-like ionic aggregates. The structural and thermodynamic information regarding OCN-CaP interactions amplifies the current understanding of biomineralization mechanisms at the nanoscale, with general relevance to biomolecule-tuned fabrication of inorganic materials.
Collapse
Affiliation(s)
- Weilong Zhao
- Department of Polymer Science, University of Akron, 170 University Ave, Akron, Ohio 44325-3909, USA.
| | | | | | | |
Collapse
|
20
|
Hoac B, Susan-Resiga D, Essalmani R, Marcinkiweicz E, Seidah NG, McKee MD. Osteopontin as a novel substrate for the proprotein convertase 5/6 (PCSK5) in bone. Bone 2018; 107:45-55. [PMID: 29126984 DOI: 10.1016/j.bone.2017.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 11/05/2017] [Accepted: 11/06/2017] [Indexed: 12/30/2022]
Abstract
Seven proprotein convertases cleave the basic amino acid consensus sequence K/R-Xn-K/R↓ (where n=0, 2, 4 or 6 variable amino acids) to activate precursor proteins. Despite similarities in substrate specificity, basic amino acid-specific proprotein convertases have a distinct tissue distribution allowing for enzymatic actions on tissue-resident substrates. Proprotein convertase 5/6 (PC5/6) has two splice variants - soluble PC5/6A and membrane-bound PC5/6B - and is expressed during mouse development in many tissues including bone and tooth, but little is known about the substrates for PC5/6 therein. Osteopontin (OPN) is an abundant bone extracellular matrix protein with roles in mineralization, cell adhesion and cell migration, and it has putative consensus sequence sites for cleavage by PC5/6, which may modify its function in bone. Since PC5/6-knockout mouse embryos show developmental abnormalities, and reduced overall mineralization, we designed this study to determine whether OPN is a substrate of PC5/6. In silico analysis of OPN protein sequences identified four potential PC5/6 consensus cleavage sites in human OPN, and three sites - including a noncanonical sequence - in mouse OPN. Ex vivo co-transfections with human OPN revealed complete OPN cleavage reducing full-length OPN (~70kDa) to an N-terminal fragment migrating at ~50kDa and two C-terminal fragments at ~18kDa and ~16kDa. Direct cleavage of OPN by PC5/6A - the predominant isoform expressed in human osteoblast cells - was confirmed by cell-free enzyme-substrate assays and by mass spectrometry. The latter was also used to investigate potential cleavage sites. Co-transfections of PC5/6 and mouse OPN showed partial cleavage of OPN into a C-terminal OPN fragment migrating at ~30kDa and an N-terminal fragment migrating at ~29kDa. Micro-computed tomography of PC5/6-knockout embryos at E18.5 confirmed a reduction in mineralized bone, and in situ hybridization performed on cryo-sections of normal mouse bone using Pcsk5 and Opn anti-sense and control-sense cRNA probes indicated the co-localization of the expression of these genes in bone cells. This mRNA expression profile was supported by semi-quantitative RT-PCR using osteoblast primary cultures, and cultured MC3T3-E1 osteoblast and MLO-Y4 osteocyte cell lines. Immunoblotting for OPN from mouse bone extracts showed altered OPN processing in PC5/6-knockout mice compared to wildtype mice. OPN fragments migrated at ~25kDa and ~16kDa in wildtype bone and were not present in PC5/6-deficient bone. In conclusion, this study demonstrates that Pcsk5 is expressed in bone-forming cells, and that OPN is a novel substrate for PC5/6. Cleavage of OPN by PC5/6 may modify the function of OPN in bone and/or modulate other enzymatic cleavages of OPN, leading to alterations in the bone phenotype.
Collapse
Affiliation(s)
- Betty Hoac
- Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - Delia Susan-Resiga
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute, Affiliated with the University of Montreal, Montreal, QC, Canada
| | - Rachid Essalmani
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute, Affiliated with the University of Montreal, Montreal, QC, Canada
| | - Edwige Marcinkiweicz
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute, Affiliated with the University of Montreal, Montreal, QC, Canada
| | - Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute, Affiliated with the University of Montreal, Montreal, QC, Canada
| | - Marc D McKee
- Faculty of Dentistry, McGill University, Montreal, QC, Canada; Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
21
|
Huynh TNS, Vidaud C, Hagège A. Investigation of uranium interactions with calcium phosphate-binding proteins using ICP/MS and CE-ICP/MS. Metallomics 2017; 8:1185-1192. [PMID: 27714043 DOI: 10.1039/c6mt00147e] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
During long-term exposure, uranium accumulates in bone. Since uranium in U(vi) complexes shares similar coordination properties to calcium, this toxicant is assumed to be exchanged with calcium ions at the surfaces of bone mineral crystals. Recently, two proteins involved in bone turnover, fetuin A and osteopontin, were shown to exhibit a high affinity for U(vi). A common biochemical feature of both fetuin A and osteopontin is their inhibiting role in calcium phosphate precipitation. Therefore it is conceivable that complexation of U(vi) with these proteins may alter their interaction with calcium and/or calcium phosphate. Quantitative analyses of calcium, phosphorus and uranium performed using inductively coupled plasma/mass spectrometry (ICP/MS) demonstrated the inhibition of the precipitation of calcium phosphate by fetuin A and osteopontin for 2 h. In addition, the presence of U(vi) did not seem to alter the duration of this process. However, dynamic light scattering studies revealed that the size of the colloidal particles formed with osteopontin was altered by the presence of U(vi) in a concentration-dependent manner. Finally, using hyphenated capillary electrophoresis-ICP/MS (CE-ICP/MS), we showed that in these systems, at a low concentration of U(vi) (protein : U(vi) 8 : 1), U(vi) might remain in solution by forming a complex with proteins and not by sequestration of a precipitate of either autunite or uranyl orthophosphate.
Collapse
Affiliation(s)
| | - Claude Vidaud
- CEA/DSV/iBEB/SBTN, BP 17171, 30207 Bagnols sur Cèze Cedex, France
| | - Agnès Hagège
- CEA/DSV/iBEB/SBTN, BP 17171, 30207 Bagnols sur Cèze Cedex, France and CNRS, UMR 7265, CEA/DSV/iBEB, 13108 St. Paul Les Durance, France and Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Ens de Lyon, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, 69100 Villeurbanne, France.
| |
Collapse
|
22
|
Mebarki M, Coquelin L, Layrolle P, Battaglia S, Tossou M, Hernigou P, Rouard H, Chevallier N. Enhanced human bone marrow mesenchymal stromal cell adhesion on scaffolds promotes cell survival and bone formation. Acta Biomater 2017. [PMID: 28636926 DOI: 10.1016/j.actbio.2017.06.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In order to induce an efficient bone formation with human bone marrow mesenchymal stromal cells (hBMSC) associated to a scaffold, it is crucial to determine the key points of the hBMSC action after in vivo transplantation as well as the appropriate features of a scaffold. To this aim we compared the hBMSC behavior when grafted onto two biomaterials allowing different bone potential in vivo. The cancellous devitalized Tutoplast®-processed bone (TPB) and the synthetic hydroxyapatite/β-tricalcium-phosphate (HA/βTCP) which give at 6weeks 100% and 50% of bone formation respectively. We first showed that hBMSC adhesion is two times favored on TPB in vitro and in vivo compared to HA/βTCP. Biomaterial structure analysis indicated that the better cell adhesion on TPB is associated to its higher and smooth open pore architecture as well as its content in collagen. Our 6week time course analysis, showed using qPCR that only adherent cells are able to survive in vivo giving thus an advantage in term of cell number on TPB during the first 4weeks after graft. We then showed that grafted hBMSC survival is crucial as cells participate directly to bone formation and play a paracrine action via the secretion of hIGF1 and hRANKL which are known to regulate the bone formation and resorption pathways respectively. Altogether our results point out the importance of developing a smooth and open pore scaffold to optimize hBMSC adhesion and ensure cell survival in vivo as it is a prerequisite to potentiate their direct and paracrine functions. STATEMENT OF SIGNIFICANCE Around 10% of skeletal fractures do not heal correctly causing nonunion. An approach involving mesenchymal stromal cells (MSC) associated with biomaterials emerges as an innovative strategy for bone repair. The diversity of scaffolds is a source of heterogeneity for bone formation efficiency. In order to better determine the characteristics of a powerful scaffold it is crucial to understand their relationship with cells after graft. Our results highlight that a biomaterial architecture similar to cancellous bone is important to promote MSC adhesion and ensure cell survival in vivo. Additionally, we demonstrated that the grafted MSC play a direct role coupled to a paracrine effect to enhance bone formation and that both of those roles are governed by the used scaffold.
Collapse
Affiliation(s)
- Miryam Mebarki
- IMRB U955-E10, INSERM, Creteil, France; Faculty of Medicine, Paris Est University, Creteil, France; Engineering and Cellular Therapy Unit, Etablissement Français du Sang, Créteil, France
| | - Laura Coquelin
- IMRB U955-E10, INSERM, Creteil, France; Faculty of Medicine, Paris Est University, Creteil, France; Engineering and Cellular Therapy Unit, Etablissement Français du Sang, Créteil, France
| | - Pierre Layrolle
- INSERM U957, Lab. Pathophysiology of Bone Resorption, Faculty of Medicine, University of Nantes, Nantes, France
| | - Séverine Battaglia
- INSERM U957, Lab. Pathophysiology of Bone Resorption, Faculty of Medicine, University of Nantes, Nantes, France
| | - Marine Tossou
- IMRB U955-E10, INSERM, Creteil, France; Faculty of Medicine, Paris Est University, Creteil, France; Engineering and Cellular Therapy Unit, Etablissement Français du Sang, Créteil, France
| | - Philippe Hernigou
- IMRB U955-E10, INSERM, Creteil, France; Faculty of Medicine, Paris Est University, Creteil, France; Orthopaedic Surgery Department, Henri-Mondor AP-HP Hospital, Creteil, France
| | - Hélène Rouard
- IMRB U955-E10, INSERM, Creteil, France; Faculty of Medicine, Paris Est University, Creteil, France; Engineering and Cellular Therapy Unit, Etablissement Français du Sang, Créteil, France
| | - Nathalie Chevallier
- IMRB U955-E10, INSERM, Creteil, France; Faculty of Medicine, Paris Est University, Creteil, France; Engineering and Cellular Therapy Unit, Etablissement Français du Sang, Créteil, France.
| |
Collapse
|
23
|
Hoac B, Nelea V, Jiang W, Kaartinen MT, McKee MD. Mineralization-inhibiting effects of transglutaminase-crosslinked polymeric osteopontin. Bone 2017; 101:37-48. [PMID: 28428079 DOI: 10.1016/j.bone.2017.04.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 03/21/2017] [Accepted: 04/16/2017] [Indexed: 01/12/2023]
Abstract
Osteopontin (OPN) belongs to the SIBLING family (Small, Integrin-Binding LIgand N-linked Glycoproteins) of mineral-binding matrix proteins found in bones and teeth. OPN is a well-known inhibitor of matrix mineralization, and enzymatic modification of OPN can affect this inhibitory function. In bone, OPN exists both as a monomer and as a high-molecular-weight polymer - the latter is formed by transglutaminase-mediated crosslinking of glutamine and lysine residues in OPN to create homotypic protein assemblies. OPN can be covalently crosslinked by transglutaminase 2 (TG2) and Factor XIII-A. Polymeric OPN has increased binding to collagen and promotes osteoblast adhesion, but despite these initial observations, its role in mineralization is not clear. In this study, we investigated the effect of polymerized OPN on mineralization using a hydroxyapatite crystal growth assay and mineralizing MC3T3-E1 osteoblast cultures. In the cultures, endogenous polymeric OPN was detected after mineralization occurred. In cell-free conditions, TG2 was used to crosslink bovine OPN into its polymeric form, and atomic force microscopy and dynamic light scattering revealed variably-sized, large branched aggregates ranging across hundreds of nanometers. These OPN polymers inhibited the growth of hydroxyapatite crystals in solution at concentrations similar to monomeric OPN, although the crosslinking slightly reduced its inhibitory potency. When added to MC3T3-E1 osteoblast cultures, this exogenous polymeric OPN essentially did not inhibit mineralization when given during the later mineralization stages of culture; however, cultures treated early and then continuously with polymeric OPN throughout both the matrix assembly and mineral deposition stages showed reduced mineralization. Immunoblotting of protein extracts from these continuously treated cultures revealed exogenous OPN polymers incorporated into mature matrix that had not yet mineralized. These results suggest that in bone, the increased size and branched structure of crosslinked inhibitory polymeric OPN near the mineralization front could hinder it from accessing focal mineralization sites in the dense collagen-rich matrix, suggesting that OPN-crosslinking into polymers may represent a way to fine-tune the inhibitory potency of OPN on bone mineralization.
Collapse
Affiliation(s)
- Betty Hoac
- Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - Valentin Nelea
- Faculty of Dentistry, McGill University, Montreal, QC, Canada; Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Wenge Jiang
- Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - Mari T Kaartinen
- Faculty of Dentistry, McGill University, Montreal, QC, Canada; Division of Experimental Medicine, Department of Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Marc D McKee
- Faculty of Dentistry, McGill University, Montreal, QC, Canada; Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
24
|
Webb EA, Balasubramanian M, Fratzl-Zelman N, Cabral WA, Titheradge H, Alsaedi A, Saraff V, Vogt J, Cole T, Stewart S, Crabtree NJ, Sargent BM, Gamsjaeger S, Paschalis EP, Roschger P, Klaushofer K, Shaw NJ, Marini JC, Högler W. Phenotypic Spectrum in Osteogenesis Imperfecta Due to Mutations in TMEM38B: Unraveling a Complex Cellular Defect. J Clin Endocrinol Metab 2017; 102:2019-2028. [PMID: 28323974 PMCID: PMC5470761 DOI: 10.1210/jc.2016-3766] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/09/2017] [Indexed: 12/19/2022]
Abstract
CONTEXT Recessive mutations in TMEM38B cause type XIV osteogenesis imperfecta (OI) by dysregulating intracellular calcium flux. OBJECTIVES Clinical and bone material phenotype description and osteoblast differentiation studies. DESIGN AND SETTING Natural history study in pediatric research centers. PATIENTS Eight patients with type XIV OI. MAIN OUTCOME MEASURES Clinical examinations included bone mineral density, radiographs, echocardiography, and muscle biopsy. Bone biopsy samples (n = 3) were analyzed using histomorphometry, quantitative backscattered electron microscopy, and Raman microspectroscopy. Cellular differentiation studies were performed on proband and control osteoblasts and normal murine osteoclasts. RESULTS Type XIV OI clinical phenotype ranges from asymptomatic to severe. Previously unreported features include vertebral fractures, periosteal cloaking, coxa vara, and extraskeletal features (muscular hypotonia, cardiac abnormalities). Proband lumbar spine bone density z score was reduced [median -3.3 (range -4.77 to +0.1; n = 7)] and increased by +1.7 (1.17 to 3.0; n = 3) following bisphosphonate therapy. TMEM38B mutant bone has reduced trabecular bone volume, osteoblast, and particularly osteoclast numbers, with >80% reduction in bone resorption. Bone matrix mineralization is normal and nanoporosity low. We demonstrate a complex osteoblast differentiation defect with decreased expression of early markers and increased expression of late and mineralization-related markers. Predominance of trimeric intracellular cation channel type B over type A expression in murine osteoclasts supports an intrinsic osteoclast defect underlying low bone turnover. CONCLUSIONS OI type XIV has a bone histology, matrix mineralization, and osteoblast differentiation pattern that is distinct from OI with collagen defects. Probands are responsive to bisphosphonates and some show muscular and cardiovascular features possibly related to intracellular calcium flux abnormalities.
Collapse
Affiliation(s)
- Emma A. Webb
- Department of Endocrinology and Diabetes, Birmingham Children’s Hospital, Birmingham B4 6NH, United Kingdom
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TH, United Kingdom
| | - Meena Balasubramanian
- Sheffield Clinical Genetics Service, Sheffield Children’s National Health Service Foundation Trust, Sheffield S10 2TH United Kingdom
| | - Nadja Fratzl-Zelman
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of Wiener Gebietskrankenkasse and Allgemeine Unfallversicherungsanstalt Trama Centre Meidling, First Medical Department, Hanusch Hospital, 1140 Vienna, Austria
| | - Wayne A. Cabral
- Section on Heritable Disorders of Bone and Extracellular Matrix, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Hannah Titheradge
- Department of Clinical Genetics, Birmingham Women’s Hospital, Birmingham B15 2DG, United Kingdom
| | - Atif Alsaedi
- Department of Clinical Genetics, Birmingham Women’s Hospital, Birmingham B15 2DG, United Kingdom
| | - Vrinda Saraff
- Department of Endocrinology and Diabetes, Birmingham Children’s Hospital, Birmingham B4 6NH, United Kingdom
| | - Julie Vogt
- Department of Clinical Genetics, Birmingham Women’s Hospital, Birmingham B15 2DG, United Kingdom
| | - Trevor Cole
- Department of Clinical Genetics, Birmingham Women’s Hospital, Birmingham B15 2DG, United Kingdom
| | - Susan Stewart
- Department of Clinical Genetics, Birmingham Women’s Hospital, Birmingham B15 2DG, United Kingdom
| | - Nicola J. Crabtree
- Department of Endocrinology and Diabetes, Birmingham Children’s Hospital, Birmingham B4 6NH, United Kingdom
| | - Brandi M. Sargent
- Section on Heritable Disorders of Bone and Extracellular Matrix, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Sonja Gamsjaeger
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of Wiener Gebietskrankenkasse and Allgemeine Unfallversicherungsanstalt Trama Centre Meidling, First Medical Department, Hanusch Hospital, 1140 Vienna, Austria
| | - Eleftherios P. Paschalis
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of Wiener Gebietskrankenkasse and Allgemeine Unfallversicherungsanstalt Trama Centre Meidling, First Medical Department, Hanusch Hospital, 1140 Vienna, Austria
| | - Paul Roschger
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of Wiener Gebietskrankenkasse and Allgemeine Unfallversicherungsanstalt Trama Centre Meidling, First Medical Department, Hanusch Hospital, 1140 Vienna, Austria
| | - Klaus Klaushofer
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of Wiener Gebietskrankenkasse and Allgemeine Unfallversicherungsanstalt Trama Centre Meidling, First Medical Department, Hanusch Hospital, 1140 Vienna, Austria
| | - Nick J. Shaw
- Department of Endocrinology and Diabetes, Birmingham Children’s Hospital, Birmingham B4 6NH, United Kingdom
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TH, United Kingdom
| | - Joan C. Marini
- Section on Heritable Disorders of Bone and Extracellular Matrix, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Wolfgang Högler
- Department of Endocrinology and Diabetes, Birmingham Children’s Hospital, Birmingham B4 6NH, United Kingdom
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TH, United Kingdom
| |
Collapse
|
25
|
Nash LA, Peters SJ, Sullivan PJ, Ward WE. Supraphysiological Levels of Quercetin Glycosides are Required to Alter Mineralization in Saos2 Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:E460. [PMID: 27136576 PMCID: PMC4881085 DOI: 10.3390/ijerph13050460] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/12/2016] [Accepted: 04/25/2016] [Indexed: 11/16/2022]
Abstract
Flavonoid intake is positively correlated to bone mineral density (BMD) in women. Flavonoids such as quercetin exhibit strong anti-oxidant and anti-inflammatory activity that may be beneficial for bone health. Quercetin, previously shown to positively influence osteoblasts, is metabolized into glycosides including rutin and hyperoside. We compared the effects of these glycosides on mineralization in human osteoblast (Saos2) cells. Administration of rutin (≥25 µM) and hyperoside (≥5 µM) resulted in higher mineral content, determined using the alizarin red assay. This was accompanied by higher alkaline phosphatase activity with no cell toxicity. The expression of osteopontin, sclerostin, TNFα and IL6, known stimuli for decreasing osteoblast activity, were reduced with the addition of rutin or hyperoside. In summary, rutin and hyperoside require supraphysiological levels, when administered individually, to positively influence osteoblast activity. This information may be useful in developing nutraceuticals to support bone health.
Collapse
Affiliation(s)
- Leslie A Nash
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada.
- Centre for Bone and Muscle Health, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada.
| | - Sandra J Peters
- Centre for Bone and Muscle Health, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada.
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada.
| | - Philip J Sullivan
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada.
| | - Wendy E Ward
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada.
- Centre for Bone and Muscle Health, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada.
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada.
| |
Collapse
|
26
|
Boskey AL, Villarreal-Ramirez E. Intrinsically disordered proteins and biomineralization. Matrix Biol 2016; 52-54:43-59. [PMID: 26807759 DOI: 10.1016/j.matbio.2016.01.007] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/19/2016] [Accepted: 01/19/2016] [Indexed: 01/21/2023]
Abstract
In vertebrates and invertebrates, biomineralization is controlled by the cell and the proteins they produce. A large number of these proteins are intrinsically disordered, gaining some secondary structure when they interact with their binding partners. These partners include the component ions of the mineral being deposited, the crystals themselves, the template on which the initial crystals form, and other intrinsically disordered proteins and peptides. This review speculates why intrinsically disordered proteins are so important for biomineralization, providing illustrations from the SIBLING (small integrin binding N-glycosylated) proteins and their peptides. It is concluded that the flexible structure, and the ability of the intrinsically disordered proteins to bind to a multitude of surfaces is crucial, but details on the precise-interactions, energetics and kinetics of binding remain to be determined.
Collapse
Affiliation(s)
- Adele L Boskey
- Musculoskeletal Integrity Program, Hospital for Special Surgery, New York, NY 10021, USA.
| | | |
Collapse
|
27
|
Lenton S, Nylander T, Holt C, Sawyer L, Härtlein M, Müller H, Teixeira SCM. Structural studies of hydrated samples of amorphous calcium phosphate and phosphoprotein nanoclusters. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 45:405-12. [PMID: 26780236 DOI: 10.1007/s00249-015-1109-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 11/25/2015] [Accepted: 12/17/2015] [Indexed: 11/28/2022]
Abstract
There are abundant examples of nanoclusters and inorganic microcrystals in biology. Their study under physiologically relevant conditions remains challenging due to their heterogeneity, instability, and the requirements of sample preparation. Advantages of using neutron diffraction and contrast matching to characterize biomaterials are highlighted in this article. We have applied these and complementary techniques to search for nanocrystals within clusters of calcium phosphate sequestered by bovine phosphopeptides, derived from osteopontin or casein. The neutron diffraction patterns show broad features that could be consistent with hexagonal hydroxyapatite crystallites smaller than 18.9 Å. Such nanocrystallites are, however, undetected by the complementary X-ray and FTIR data, collected on the same samples. The absence of a distinct diffraction pattern from the nanoclusters supports the generally accepted amorphous calcium phosphate structure of the mineral core.
Collapse
Affiliation(s)
- Samuel Lenton
- EPSAM, Keele University, Staffordshire, ST5 5BG, UK.,Institut Laue-Langevin, 71 Avenue des Martyrs, 38042, Grenoble Cedex 9, France.,School of Physics and Astronomy, Astbury Center for Structural Molecular Biology, University of Leeds, LS2 9JT, Leeds, UK
| | - Tommy Nylander
- Division of Physical Chemistry, Department of Chemistry, Lund University, 124, Lund, S221 00, Sweden
| | - Carl Holt
- Institute of Molecular, Cell, and Systems Biology, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Lindsay Sawyer
- Structural Biochemistry Group, University of Edinburgh, Roger Land Building, The King's Buildings, Mayfield Road, EH9 3JR, Edinburgh, UK
| | - Michael Härtlein
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042, Grenoble Cedex 9, France
| | - Harrald Müller
- European Synchrotron Radiation Facility, CS 40220, 38043, Grenoble, France
| | - Susana C M Teixeira
- EPSAM, Keele University, Staffordshire, ST5 5BG, UK. .,Institut Laue-Langevin, 71 Avenue des Martyrs, 38042, Grenoble Cedex 9, France.
| |
Collapse
|
28
|
Abbarin N, San Miguel S, Holcroft J, Iwasaki K, Ganss B. The enamel protein amelotin is a promoter of hydroxyapatite mineralization. J Bone Miner Res 2015; 30:775-85. [PMID: 25407797 DOI: 10.1002/jbmr.2411] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 11/04/2014] [Accepted: 11/14/2014] [Indexed: 01/29/2023]
Abstract
Amelotin (AMTN) is a recently discovered protein that is specifically expressed during the maturation stage of dental enamel formation. It is localized at the interface between the enamel surface and the apical surface of ameloblasts. AMTN knock-out mice have hypomineralized enamel, whereas transgenic mice overexpressing AMTN have a compact but disorganized enamel hydroxyapatite (HA) microstructure, indicating a possible involvement of AMTN in regulating HA mineralization directly. In this study, we demonstrated that recombinant human (rh) AMTN dissolved in a metastable buffer system, based on light scattering measurements, promotes HA precipitation. The mineral precipitates were characterized by scanning and transmission electron microscopy and electron diffraction. Colloidal gold immunolabeling of AMTN in the mineral deposits showed that protein molecules were associated with HA crystals. The binding affinity of rh-AMTN to HA was found to be comparable to that of amelogenin, the major protein of the forming enamel matrix. Overexpression of AMTN in mouse calvaria cells also increased the formation of calcium deposits in the culture medium. Overexpression of AMTN during the secretory stage of enamel formation in vivo resulted in rapid and uncontrolled enamel mineralization. Site-specific mutagenesis of the potential serine phosphorylation motif SSEEL reduced the in vitro mineral precipitation to less than 25%, revealing that this motif is important for the HA mineralizing function of the protein. A synthetic short peptide containing the SSEEL motif was only able to facilitate mineralization in its phosphorylated form ((P)S(P) SEEL), indicating that this motif is necessary but not sufficient for the mineralizing properties of AMTN. These findings demonstrate that AMTN has a direct influence on biomineralization by promoting HA mineralization and suggest a critical role for AMTN in the formation of the compact aprismatic enamel surface layer during the maturation stage of amelogenesis.
Collapse
Affiliation(s)
- Nastaran Abbarin
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Canada
| | | | | | | | | |
Collapse
|
29
|
Process Optimisation to Control the Physico-Chemical Characteristics of Biomimetic Nanoscale Hydroxyapatites Prepared Using Wet Chemical Precipitation. MATERIALS 2015. [PMCID: PMC5455562 DOI: 10.3390/ma8052297] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hydroxyapatite nanoscale particles (nHA) were prepared by wet chemical precipitation using four different synthesis methods. Differences in physico-chemical properties including morphology, particle-size, and crystallinity were investigated following alteration of critical processing parameters. The nanoparticles were also studied using X-ray diffraction (XRD), Fourier Transform infrared spectroscopy in attenuated total reflectance mode (FTIR-ATR), and transmission electron microscopy (TEM) with energy dispersive X-ray (EDS) spectrometry. The results showed that the particles obtained were composed of nHA, with different morphologies and aspect ratios (1.5 to 4) and degrees of crystallinity (40% to 70% following calcination) depending on the different process parameters of the synthesis method used, such as temperature, ripening time and pH. This study demonstrated that relatively small adjustments to processing conditions of different wet chemical preparation methods significantly affect the morphological and chemical characteristics of nHA. For the predicable preparation of biomimetic nHA for specific applications, the selection of both production method and careful control of processing conditions are paramount.
Collapse
|
30
|
Selmani A, Coha I, Magdić K, Čolović B, Jokanović V, Šegota S, Gajović S, Gajović A, Jurašin D, Dutour Sikirić M. Multiscale study of the influence of cationic surfactants on amorphous calcium phosphate precipitation. CrystEngComm 2015. [DOI: 10.1039/c5ce01516b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Different effects that surfactant monomers and micelles exert on different length scales during CaPs formation in solution can lead to similar effects on the microscale.
Collapse
Affiliation(s)
- A. Selmani
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- 10000 Zagreb, Croatia
| | - I. Coha
- Division for Marine and Environmental Research
- Ruđer Bošković Institute
- Bijenička cesta 54
- 10000 Zagreb, Croatia
| | - K. Magdić
- Division for Marine and Environmental Research
- Ruđer Bošković Institute
- Bijenička cesta 54
- 10000 Zagreb, Croatia
| | - B. Čolović
- Vinča Institute of Nuclear Sciences
- University of Belgrade
- 11001 Belgrade, Serbia
| | - V. Jokanović
- Vinča Institute of Nuclear Sciences
- University of Belgrade
- 11001 Belgrade, Serbia
| | - S. Šegota
- Division for Marine and Environmental Research
- Ruđer Bošković Institute
- Bijenička cesta 54
- 10000 Zagreb, Croatia
| | - S. Gajović
- Croatian Institute for Brain Research
- School of Medicine
- University of Zagreb
- 10000 Zagreb, Croatia
| | - A. Gajović
- Division of Materials Physics
- Ruđer Bošković Institute
- 10000 Zagreb, Croatia
| | - D. Jurašin
- Division of Physical Chemistry
- Ruđer Bošković Institute
- 10000 Zagreb, Croatia
| | - M. Dutour Sikirić
- Division of Physical Chemistry
- Ruđer Bošković Institute
- 10000 Zagreb, Croatia
| |
Collapse
|
31
|
Mukhopadhyay A, Chakrabarti K. Enhancement of thermal and pH stability of an alkaline metalloprotease by nano-hydroxyapatite and its potential applications. RSC Adv 2015. [DOI: 10.1039/c5ra16179g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Protease stabilization using nanotechnology.
Collapse
Affiliation(s)
- Arka Mukhopadhyay
- Department of Biochemistry and Microbiology
- Rhodes University
- Grahamstown-6140
- South Africa
| | - Krishanu Chakrabarti
- Department of Biochemistry
- University College of Science
- Calcutta University
- Kolkata 700 019
- India
| |
Collapse
|
32
|
Kläning E, Christensen B, Sørensen ES, Vorup-Jensen T, Jensen JK. Osteopontin binds multiple calcium ions with high affinity and independently of phosphorylation status. Bone 2014; 66:90-5. [PMID: 24928493 DOI: 10.1016/j.bone.2014.05.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 05/15/2014] [Accepted: 05/27/2014] [Indexed: 10/25/2022]
Abstract
Osteopontin (OPN) is an acidic, intrinsically disordered extracellular matrix protein with a capacity to modulate biomineralization in vitro and in vivo. The role of posttranslational modification of osteopontin has been intensively studied. Phosphorylation of OPN has been demonstrated to play a role in inhibition of biomineral formation and growth in vitro. Here, we used isothermal titration calorimetry (ITC) to investigate the ability of OPN to bind the divalent cations Ca(2+) and Mg(2+), both essential components of inorganic minerals in vivo. We found, that bovine OPN binds ~10 Ca(2+) ions with an apparent affinity ~50-fold tighter than Mg(2+), both regardless of OPN phosphorylation, and with affinities significantly stronger than previously reported. These results were confirmed using human derived OPN. This implies that a majority of the acidic residues within OPN must be engaged in calcium interaction under physiological conditions.
Collapse
Affiliation(s)
- Eva Kläning
- Department of Molecular Biology and Genetics, Aarhus University, Denmark; Department of Biomedicine, Aarhus University, Denmark
| | - Brian Christensen
- Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | - Esben S Sørensen
- Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | | | - Jan K Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Denmark; Danish-Chinese Centre for Proteases and Cancer, Aarhus University, Denmark.
| |
Collapse
|
33
|
Uskoković V, Desai TA. Simultaneous bactericidal and osteogenic effect of nanoparticulate calcium phosphate powders loaded with clindamycin on osteoblasts infected with Staphylococcus aureus. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 37:210-22. [PMID: 24582242 DOI: 10.1016/j.msec.2014.01.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 12/05/2013] [Accepted: 01/05/2014] [Indexed: 01/06/2023]
Abstract
Staphylococcus aureus internalized by bone cells and shielded from the immune system provides a reservoir of bacteria in recurring osteomyelitis. Its targeting by the antibiotic therapy may thus be more relevant for treating chronic bone infection than eliminating only the pathogens colonizing the bone matrix. Assessed was the combined osteogenic and antibacterial effect of clindamycin-loaded calcium phosphate nanoparticles of different monophasic compositions on co-cultures comprising osteoblasts infected with S. aureus. Antibiotic-carrying particles were internalized by osteoblasts and minimized the concentration of intracellular bacteria. In vitro treatments of the infected cells, however, could not prevent cell necrosis due to the formation of toxic byproducts of the degradation of the bacterium. Antibiotic-loaded particles had a positive morphological effect on osteoblasts per se, without reducing their viability, alongside stimulating the upregulation of expression of different bone growth markers in infected osteoblasts to a higher degree than achieved during the treatment with antibiotic only.
Collapse
Affiliation(s)
- Vuk Uskoković
- Therapeutic Micro and Nanotechnology Laboratory, Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA; Department of Bioengineering, University of Illinois, Chicago, USA.
| | - Tejal A Desai
- Therapeutic Micro and Nanotechnology Laboratory, Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| |
Collapse
|
34
|
Goiko M, Dierolf J, Gleberzon JS, Liao Y, Grohe B, Goldberg HA, de Bruyn JR, Hunter GK. Peptides of Matrix Gla protein inhibit nucleation and growth of hydroxyapatite and calcium oxalate monohydrate crystals. PLoS One 2013; 8:e80344. [PMID: 24265810 PMCID: PMC3827180 DOI: 10.1371/journal.pone.0080344] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 10/01/2013] [Indexed: 01/07/2023] Open
Abstract
Matrix Gla protein (MGP) is a phosphorylated and γ-carboxylated protein that has been shown to prevent the deposition of hydroxyapatite crystals in the walls of blood vessels. MGP is also expressed in kidney and may inhibit the formation of kidney stones, which mainly consist of another crystalline phase, calcium oxalate monohydrate. To determine the mechanism by which MGP prevents soft-tissue calcification, we have synthesized peptides corresponding to the phosphorylated and γ-carboxylated sequences of human MGP in both post-translationally modified and non-modified forms. The effects of these peptides on hydroxyapatite formation and calcium oxalate crystallization were quantified using dynamic light scattering and scanning electron microscopy, respectively. Peptides YGlapS (MGP1-14: YγEpSHEpSMEpSYELNP), YEpS (YEpSHEpSMEpSYELNP), YGlaS (YγESHESMESYELNP) and SK-Gla (MGP43-56: SKPVHγELNRγEACDD) inhibited formation of hydroxyapatite in order of potency YGlapS > YEpS > YGlaS > SK-Gla. The effects of YGlapS, YEpS and YGlaS on hydroxyapatite formation were on both crystal nucleation and growth; the effect of SK-Gla was on nucleation. YGlapS and YEpS significantly inhibited the growth of calcium oxalate monohydrate crystals, while simultaneously promoting the formation of calcium oxalate dihydrate. The effects of these phosphopeptides on calcium oxalate monohydrate formation were on growth of crystals rather than nucleation. We have shown that the use of dynamic light scattering allows inhibitors of hydroxyapatite nucleation and growth to be distinguished. We have also demonstrated for the first time that MGP peptides inhibit the formation of calcium oxalate monohydrate. Based on the latter finding, we propose that MGP function not only to prevent blood-vessel calcification but also to inhibit stone formation in kidney.
Collapse
Affiliation(s)
- Maria Goiko
- Department of Physics & Astronomy, University of Western Ontario, London, Canada
| | - Joshua Dierolf
- School of Dentistry, University of Western Ontario, London, Canada
| | - Jared S. Gleberzon
- Department of Biochemistry, University of Western Ontario, London, Canada
| | - Yinyin Liao
- School of Dentistry, University of Western Ontario, London, Canada
| | - Bernd Grohe
- School of Dentistry, University of Western Ontario, London, Canada
| | - Harvey A. Goldberg
- School of Dentistry, University of Western Ontario, London, Canada
- Department of Biochemistry, University of Western Ontario, London, Canada
| | - John R. de Bruyn
- Department of Physics & Astronomy, University of Western Ontario, London, Canada
| | - Graeme K. Hunter
- School of Dentistry, University of Western Ontario, London, Canada
- Department of Biochemistry, University of Western Ontario, London, Canada
| |
Collapse
|
35
|
Niu LN, Zhang W, Pashley DH, Breschi L, Mao J, Chen JH, Tay FR. Biomimetic remineralization of dentin. Dent Mater 2013; 30:77-96. [PMID: 23927881 DOI: 10.1016/j.dental.2013.07.013] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 07/15/2013] [Accepted: 07/15/2013] [Indexed: 01/06/2023]
Abstract
OBJECTIVES Remineralization of demineralized dentin is important for improving dentin bonding stability and controlling primary and secondary caries. Nevertheless, conventional dentin remineralization strategy is not suitable for remineralizing completely demineralized dentin within hybrid layers created by etch-and-rinse and moderately aggressive self-etch adhesive systems, or the superficial part of a caries-affected dentin lesion left behind after minimally invasive caries removal. Biomimetic remineralization represents a different approach to this problem by attempting to backfill the demineralized dentin collagen with liquid-like amorphous calcium phosphate nanoprecursor particles that are stabilized by biomimetic analogs of noncollagenous proteins. METHODS This paper reviewed the changing concepts in calcium phosphate mineralization of fibrillar collagen, including the recently discovered, non-classical particle-based crystallization concept, formation of polymer-induced liquid-precursors (PILP), experimental collagen models for mineralization, and the need for using phosphate-containing biomimetic analogs for biomimetic mineralization of collagen. Published work on the remineralization of resin-dentin bonds and artificial caries-like lesions by various research groups was then reviewed. Finally, the problems and progress associated with the translation of a scientifically sound concept into a clinically applicable approach are discussed. RESULTS AND SIGNIFICANCE The particle-based biomimetic remineralization strategy based on the PILP process demonstrates great potential in remineralizing faulty hybrid layers or caries-like dentin. Based on this concept, research in the development of more clinically feasible dentin remineralization strategy, such as incorporating poly(anionic) acid-stabilized amorphous calcium phosphate nanoprecursor-containing mesoporous silica nanofillers in dentin adhesives, may provide a promising strategy for increasing of the durability of resin-dentin bonding and remineralizing caries-affected dentin.
Collapse
Affiliation(s)
- Li-Na Niu
- Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Wei Zhang
- Department of Stomatology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - David H Pashley
- Department of Oral Biology, Georgia Regents University, Augusta, GA, USA
| | - Lorenzo Breschi
- Department of Medical Sciences, University of Trieste, Trieste and IGM-CNR, Bologna, Italy
| | - Jing Mao
- Department of Stomatology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Ji-Hua Chen
- Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, China.
| | - Franklin R Tay
- Department of Oral Biology, Georgia Regents University, Augusta, GA, USA; Department of Endodontics, Georgia Regents University, Augusta, GA, USA.
| |
Collapse
|