1
|
Sanchez C, Ramirez A, Hodgson L. Unravelling molecular dynamics in living cells: Fluorescent protein biosensors for cell biology. J Microsc 2025; 298:123-184. [PMID: 38357769 PMCID: PMC11324865 DOI: 10.1111/jmi.13270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 02/16/2024]
Abstract
Genetically encoded, fluorescent protein (FP)-based Förster resonance energy transfer (FRET) biosensors are microscopy imaging tools tailored for the precise monitoring and detection of molecular dynamics within subcellular microenvironments. They are characterised by their ability to provide an outstanding combination of spatial and temporal resolutions in live-cell microscopy. In this review, we begin by tracing back on the historical development of genetically encoded FP labelling for detection in live cells, which lead us to the development of early biosensors and finally to the engineering of single-chain FRET-based biosensors that have become the state-of-the-art today. Ultimately, this review delves into the fundamental principles of FRET and the design strategies underpinning FRET-based biosensors, discusses their diverse applications and addresses the distinct challenges associated with their implementation. We place particular emphasis on single-chain FRET biosensors for the Rho family of guanosine triphosphate hydrolases (GTPases), pointing to their historical role in driving our understanding of the molecular dynamics of this important class of signalling proteins and revealing the intricate relationships and regulatory mechanisms that comprise Rho GTPase biology in living cells.
Collapse
Affiliation(s)
- Colline Sanchez
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Andrea Ramirez
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Louis Hodgson
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
2
|
Rowe JH, Josse M, Tang B, Jones AM. Quantifying Plant Biology with Fluorescent Biosensors. ANNUAL REVIEW OF PLANT BIOLOGY 2025; 76:285-315. [PMID: 40153610 DOI: 10.1146/annurev-arplant-061824-090615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2025]
Abstract
Plant biology is undergoing a spatial omics revolution, but these approaches are limited to snapshots of a plant's state. Direct, genetically encoded fluorescent biosensors complement the omics approaches, giving researchers tools to assess energetic, metabolic, and signaling molecules at multiple scales, from fast subcellular dynamics to organismal patterns in living plants. This review focuses on how biosensors illuminate plant biology across these scales and the major discoveries to which they have contributed. We also discuss the core principles and common pitfalls affecting biosensor engineering, deployment, imaging, and analysis to help aspiring biosensor researchers. Innovative technologies are driving forward developments both biological and technical with implications for synergizing biosensor research with other approaches and expanding the scope of in vivo quantitative biology.
Collapse
Affiliation(s)
- James H Rowe
- Sainsbury Laboratory Cambridge University, University of Cambridge, Cambridge, United Kingdom;
- Current affiliation: School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Max Josse
- Sainsbury Laboratory Cambridge University, University of Cambridge, Cambridge, United Kingdom;
| | - Bijun Tang
- Sainsbury Laboratory Cambridge University, University of Cambridge, Cambridge, United Kingdom;
| | - Alexander M Jones
- Sainsbury Laboratory Cambridge University, University of Cambridge, Cambridge, United Kingdom;
| |
Collapse
|
3
|
González-Gutiérrez A, Gaete J, Esparza A, Ibacache A, Contreras EG, Sierralta J. Starvation Induces Upregulation of Monocarboxylate Transport in Glial Cells at the Drosophila Blood-Brain Barrier. Glia 2025. [PMID: 40241296 DOI: 10.1002/glia.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/11/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025]
Abstract
Living organisms can sense and adapt to constant changes in food availability. Maintaining a homeostatic supply of energy molecules is crucial for animal survival and normal organ functioning, particularly the brain, due to its high-energy demands. However, the mechanisms underlying brain adaptive responses to food availability have not been completely established. The nervous system is separated from the rest of the body by a physical barrier called the blood-brain barrier (BBB). In addition to its structural role, the BBB regulates the transport of metabolites and nutrients into the nervous system. This regulation is achieved through adaptive mechanisms that control the transport of nutrients, including glucose and monocarboxylates such as lactate, pyruvate, and ketone bodies. In Drosophila melanogaster, carbohydrate transporters increase their expression in glial cells of the BBB in response to starvation. However, changes in the expression or activity of Drosophila monocarboxylate transporters (dMCTs) at the BBB have not yet been reported. Here, we show that neuronal ATP levels remain unaffected despite reduced energy-related metabolites in the hemolymph of Drosophila larvae during starvation. Simultaneously, the transport of lactate and beta-hydroxybutyrate increases in the glial cells of the BBB. Using genetically encoded sensors, we identified Yarqay as a proton-coupled monocarboxylate transporter whose expression is upregulated in the subperineurial glia of the BBB during starvation. Our findings reveal a novel component of the adaptive response of the brain to starvation: the increase in the transport of monocarboxylates across the BBB, mediated by Yarqay, a novel dMCT enriched in the BBB.
Collapse
Affiliation(s)
- Andrés González-Gutiérrez
- Department of Neuroscience, School of Medicine, University of Chile, Independencia, Chile
- Institute of Biomedical Neurosciences (BNI), School of Medicine, University of Chile, Independencia, Chile
| | - Jorge Gaete
- Department of Neuroscience, School of Medicine, University of Chile, Independencia, Chile
| | - Andrés Esparza
- Department of Neuroscience, School of Medicine, University of Chile, Independencia, Chile
| | - Andrés Ibacache
- Department of Neuroscience, School of Medicine, University of Chile, Independencia, Chile
| | - Esteban G Contreras
- Department of Cell Biology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Jimena Sierralta
- Department of Neuroscience, School of Medicine, University of Chile, Independencia, Chile
- Institute of Biomedical Neurosciences (BNI), School of Medicine, University of Chile, Independencia, Chile
| |
Collapse
|
4
|
Miyazaki I, Tsao KK, Kamijo Y, Nasu Y, Terai T, Campbell RE. Synthesis and application of a photocaged-L-lactate for studying the biological roles of L-lactate. Commun Chem 2025; 8:104. [PMID: 40188278 PMCID: PMC11972357 DOI: 10.1038/s42004-025-01495-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 03/20/2025] [Indexed: 04/07/2025] Open
Abstract
L-Lactate, once considered a metabolic waste product of glycolysis, is now recognized as a vitally important metabolite and signaling molecule in multiple biological pathways. However, exploring L-lactate's emerging intra- and extra-cellular roles is hindered by a lack of tools to perturb L-lactate concentration intracellularly and extracellularly. Photocaged compounds are a powerful way to introduce bioactive molecules with spatiotemporal precision using illumination. Here, we report the development of a photocaged derivative of L-lactate, 4-methoxy-7-nitroindolinyl-L-lactate (MNI-L-lac), that releases L-lactate upon illumination. We validated MNI-L-lac in cell culture by demonstrating that the photorelease of L-lactate elicits a response from genetically encoded extra- and intracellular L-lactate biosensors (eLACCO1, eLACCO2.1, R-iLACCO1.2). To demonstrate the utility of MNI-L-lac, we employed the photorelease of L-lactate to activate G protein-coupled receptor 81 (GPR81), as revealed by the inhibition of adenylyl cyclase activity and concomitant decrease of cAMP. These results indicate that MNI-L-lac may be useful for perturbing the concentration of endogenous L-lactate in order to investigate L-lactate's roles in metabolic and signaling pathways.
Collapse
Affiliation(s)
- Ikumi Miyazaki
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kelvin K Tsao
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
- Global Standard Science Education Division, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| | - Yuki Kamijo
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yusuke Nasu
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- PRESTO, Japan Science and Technology Agency, Chiyoda-ku, Tokyo, Japan
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei, Taiwan
| | - Takuya Terai
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| | - Robert E Campbell
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
- CERVO, Brain Research Center and Department of Biochemistry, Microbiology, and Bioinformatics, Université Laval, Québec, Québec, Canada.
| |
Collapse
|
5
|
Petrova B, Guler AT. Recent Developments in Single-Cell Metabolomics by Mass Spectrometry─A Perspective. J Proteome Res 2025; 24:1493-1518. [PMID: 39437423 PMCID: PMC11976873 DOI: 10.1021/acs.jproteome.4c00646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Recent advancements in single-cell (sc) resolution analyses, particularly in sc transcriptomics and sc proteomics, have revolutionized our ability to probe and understand cellular heterogeneity. The study of metabolism through small molecules, metabolomics, provides an additional level of information otherwise unattainable by transcriptomics or proteomics by shedding light on the metabolic pathways that translate gene expression into functional outcomes. Metabolic heterogeneity, critical in health and disease, impacts developmental outcomes, disease progression, and treatment responses. However, dedicated approaches probing the sc metabolome have not reached the maturity of other sc omics technologies. Over the past decade, innovations in sc metabolomics have addressed some of the practical limitations, including cell isolation, signal sensitivity, and throughput. To fully exploit their potential in biological research, however, remaining challenges must be thoroughly addressed. Additionally, integrating sc metabolomics with orthogonal sc techniques will be required to validate relevant results and gain systems-level understanding. This perspective offers a broad-stroke overview of recent mass spectrometry (MS)-based sc metabolomics advancements, focusing on ongoing challenges from a biologist's viewpoint, aimed at addressing pertinent and innovative biological questions. Additionally, we emphasize the use of orthogonal approaches and showcase biological systems that these sophisticated methodologies are apt to explore.
Collapse
Affiliation(s)
- Boryana Petrova
- Medical
University of Vienna, Vienna 1090, Austria
- Department
of Pathology, Boston Children’s Hospital, Boston, Massachusetts 02115, United States
| | - Arzu Tugce Guler
- Department
of Pathology, Boston Children’s Hospital, Boston, Massachusetts 02115, United States
- Institute
for Experiential AI, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
6
|
Nguyen NTB, Gevers S, Kok RNU, Burgering LM, Neikes H, Akkerman N, Betjes MA, Ludikhuize MC, Gulersonmez C, Stigter ECA, Vercoulen Y, Drost J, Clevers H, Vermeulen M, van Zon JS, Tans SJ, Burgering BMT, Rodríguez Colman MJ. Lactate controls cancer stemness and plasticity through epigenetic regulation. Cell Metab 2025; 37:903-919.e10. [PMID: 39933514 DOI: 10.1016/j.cmet.2025.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 11/04/2024] [Accepted: 01/03/2025] [Indexed: 02/13/2025]
Abstract
Tumors arise from uncontrolled cell proliferation driven by mutations in genes that regulate stem cell renewal and differentiation. Intestinal tumors, however, retain some hierarchical organization, maintaining both cancer stem cells (CSCs) and cancer differentiated cells (CDCs). This heterogeneity, coupled with cellular plasticity enabling CDCs to revert to CSCs, contributes to therapy resistance and relapse. Using genetically encoded fluorescent reporters in human tumor organoids, combined with our machine-learning-based cell tracker, CellPhenTracker, we simultaneously traced cell-type specification, metabolic changes, and reconstructed cell lineage trajectories during tumor organoid development. Our findings reveal distinctive metabolic phenotypes in CSCs and CDCs. We find that lactate regulates tumor dynamics, suppressing CSC differentiation and inducing dedifferentiation into a proliferative CSC state. Mechanistically, lactate increases histone acetylation, epigenetically activating MYC. Given that lactate's regulation of MYC depends on the bromodomain-containing protein 4 (BRD4), targeting cancer metabolism and BRD4 inhibitors emerge as a promising strategy to prevent tumor relapse.
Collapse
Affiliation(s)
- Nguyen T B Nguyen
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Sira Gevers
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Rutger N U Kok
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Lotte M Burgering
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Hannah Neikes
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen 6525 GA, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Ninouk Akkerman
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Marlies C Ludikhuize
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands
| | - Can Gulersonmez
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands
| | - Edwin C A Stigter
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands
| | - Yvonne Vercoulen
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands
| | - Jarno Drost
- Oncode Institute, Utrecht, the Netherlands; Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - Hans Clevers
- Oncode Institute, Utrecht, the Netherlands; Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen 6525 GA, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | | | - Sander J Tans
- AMOLF, Amsterdam, the Netherlands; Bionanoscience Department, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Boudewijn M T Burgering
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Maria J Rodríguez Colman
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands.
| |
Collapse
|
7
|
Tiedjens F, Menzel M, Stahnke P, Grotewold H, Uzun C, Yildirim D, Beitz E. A Yeast-Based Assay for Inhibitors of l-Lactate Transport Utilizing Fluorescent Biosensors. ChemMedChem 2025; 20:e202400918. [PMID: 39671273 PMCID: PMC11961148 DOI: 10.1002/cmdc.202400918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/13/2024] [Accepted: 12/13/2024] [Indexed: 12/15/2024]
Abstract
Inhibitors of ʟ-lactate transport are in development as a novel mode of action in antitumor therapy and malaria. Previously, we used radiolabeled ʟ-lactate to assay transport via the human monocarboxylate transporter 1, MCT1, and the structurally unrelated malaria parasite's transporter, PfFNT. We encountered a sensitivity limit at IC50 around 100 nM possibly resulting from the required high cell number per sample. Here, we describe a sensitive background-free high-throughput assay in yeast based on fluorescent iLACCO biosensors. We used iLACCO for co-expression and fusions with the transporter protein. Uptake of ʟ-lactate produced strong intensiometric fluorescent responses that could be monitored in cell suspensions using a fluorometer and in individual cells by fluorescence microscopy. The signal decreased dose-dependently in the presence of specific MCT1 and PfFNT inhibitors. Re-evaluation of 36 PfFNT inhibitors yielded IC50 values below 100 nM now matching previous data on Ki compound affinity to isolated transporter protein.
Collapse
Affiliation(s)
- Finn Tiedjens
- Department of Pharmaceutical and Medicinal ChemistryChristian-Albrechts-University of KielGutenbergstr. 7624118KielGermany
| | - Maike Menzel
- Department of Pharmaceutical and Medicinal ChemistryChristian-Albrechts-University of KielGutenbergstr. 7624118KielGermany
| | - Pauline Stahnke
- Department of Pharmaceutical and Medicinal ChemistryChristian-Albrechts-University of KielGutenbergstr. 7624118KielGermany
| | - Hanna Grotewold
- Department of Pharmaceutical and Medicinal ChemistryChristian-Albrechts-University of KielGutenbergstr. 7624118KielGermany
| | - Cane Uzun
- Department of Pharmaceutical and Medicinal ChemistryChristian-Albrechts-University of KielGutenbergstr. 7624118KielGermany
| | - Derya Yildirim
- Department of Pharmaceutical and Medicinal ChemistryChristian-Albrechts-University of KielGutenbergstr. 7624118KielGermany
| | - Eric Beitz
- Department of Pharmaceutical and Medicinal ChemistryChristian-Albrechts-University of KielGutenbergstr. 7624118KielGermany
| |
Collapse
|
8
|
Liu R, Zhou B. Harmine promotes axon regeneration through enhancing glucose metabolism. J Biol Chem 2025; 301:108254. [PMID: 39904483 PMCID: PMC11927705 DOI: 10.1016/j.jbc.2025.108254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/11/2025] [Accepted: 01/28/2025] [Indexed: 02/06/2025] Open
Abstract
Axon regeneration requires a substantial mitochondrial energy supply. However, injured mature neurons often fail to regenerate due to their inability to meet these elevated energy demands. Our findings indicate that harmine compensates for the energy deficit following axonal injury by enhancing the coupling between glucose metabolism and mitochondrial homeostasis, thereby promoting axon regeneration. Notably, harmine facilitates mitochondrial biogenesis and enhances mitophagy, ensuring efficient mitochondrial turnover, and energy supply. Thus, harmine plays a crucial role in enhancing glucose metabolism to maintain mitochondrial function, demonstrating significant potential in treating mature neuronal axon injuries and sciatic nerve injuries.
Collapse
Affiliation(s)
- Ruixuan Liu
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China; School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Bing Zhou
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China; Interdisciplinary Innovation Institute of Medicine and Engineering Interdisciplinary, Beihang University, Beijing, China.
| |
Collapse
|
9
|
Tutas J, Tolve M, Özer-Yildiz E, Ickert L, Klein I, Silverman Q, Liebsch F, Dethloff F, Giavalisco P, Endepols H, Georgomanolis T, Neumaier B, Drzezga A, Schwarz G, Thorens B, Gatto G, Frezza C, Kononenko NL. Autophagy regulator ATG5 preserves cerebellar function by safeguarding its glycolytic activity. Nat Metab 2025; 7:297-320. [PMID: 39815080 PMCID: PMC11860254 DOI: 10.1038/s42255-024-01196-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 11/29/2024] [Indexed: 01/18/2025]
Abstract
Dysfunctions in autophagy, a cellular mechanism for breaking down components within lysosomes, often lead to neurodegeneration. The specific mechanisms underlying neuronal vulnerability due to autophagy dysfunction remain elusive. Here we show that autophagy contributes to cerebellar Purkinje cell (PC) survival by safeguarding their glycolytic activity. Outside the conventional housekeeping role, autophagy is also involved in the ATG5-mediated regulation of glucose transporter 2 (GLUT2) levels during cerebellar maturation. Autophagy-deficient PCs exhibit GLUT2 accumulation on the plasma membrane, along with increased glucose uptake and alterations in glycolysis. We identify lysophosphatidic acid and serine as glycolytic intermediates that trigger PC death and demonstrate that the deletion of GLUT2 in ATG5-deficient mice mitigates PC neurodegeneration and rescues their ataxic gait. Taken together, this work reveals a mechanism for regulating GLUT2 levels in neurons and provides insights into the neuroprotective role of autophagy by controlling glucose homeostasis in the brain.
Collapse
Affiliation(s)
- Janine Tutas
- CECAD Excellence Center, University of Cologne, Cologne, Germany
- Center for Physiology and Pathophysiology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Marianna Tolve
- CECAD Excellence Center, University of Cologne, Cologne, Germany
- Center for Physiology and Pathophysiology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Ebru Özer-Yildiz
- CECAD Excellence Center, University of Cologne, Cologne, Germany
- Center for Physiology and Pathophysiology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Lotte Ickert
- CECAD Excellence Center, University of Cologne, Cologne, Germany
- Center for Physiology and Pathophysiology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Ines Klein
- Department of Neurology, University Hospital of Cologne, Cologne, Germany
| | - Quinn Silverman
- Department of Neurology, University Hospital of Cologne, Cologne, Germany
| | - Filip Liebsch
- Institute of Biochemistry, Department of Chemistry, University of Cologne, Cologne, Germany
| | | | | | - Heike Endepols
- Department of Nuclear Medicine, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Jülich, Germany
| | | | - Bernd Neumaier
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Jülich, Germany
| | - Alexander Drzezga
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Molecular Organization of the Brain (INM-2), Jülich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn-Cologne, Germany
| | - Guenter Schwarz
- Institute of Biochemistry, Department of Chemistry, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Bernard Thorens
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Graziana Gatto
- Department of Neurology, University Hospital of Cologne, Cologne, Germany
| | - Christian Frezza
- CECAD Excellence Center, University of Cologne, Cologne, Germany
- Institute for Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Natalia L Kononenko
- CECAD Excellence Center, University of Cologne, Cologne, Germany.
- Center for Physiology and Pathophysiology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
- Institute for Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany.
| |
Collapse
|
10
|
Price MS, Rastegari E, Gupta R, Vo K, Moore TI, Venkatachalam K. Intracellular Lactate Dynamics in Drosophila Glutamatergic Neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.02.26.582095. [PMID: 38464270 PMCID: PMC10925175 DOI: 10.1101/2024.02.26.582095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Rates of lactate production and consumption reflect the metabolic state of many cell types, including neurons. Here, we investigate the effects of nutrient deprivation on lactate dynamics in Drosophila glutamatergic neurons by leveraging the limiting effects of the diffusion barrier surrounding cells in culture. We found that neurons constitutively consume lactate when availability of trehalose, the glucose disaccharide preferred by insects, is limited by the diffusion barrier. Acute mechanical disruption of the barrier reduced this reliance on lactate. Through kinetic modeling and experimental validation, we demonstrate that neuronal lactate consumption rates correlate inversely with their mitochondrial density. Further, we found that lactate levels in neurons exhibited temporal correlations that allowed prediction of cytosolic lactate dynamics after the disruption of the diffusion barrier from pre-perturbation lactate fluctuations. Collectively, our findings reveal the influence of diffusion barriers on neuronal metabolic preferences, and demonstrate the existence of temporal correlations between lactate dynamics under conditions of nutrient deprivation and those evoked by the subsequent restoration of nutrient availability.
Collapse
Affiliation(s)
- Matthew S. Price
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center (UTHealth), Houston, TX, USA
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences
| | - Elham Rastegari
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center (UTHealth), Houston, TX, USA
| | - Richa Gupta
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center (UTHealth), Houston, TX, USA
| | - Katie Vo
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center (UTHealth), Houston, TX, USA
| | - Travis I. Moore
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center (UTHealth), Houston, TX, USA
- Molecular and Translational Biology Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences
| | - Kartik Venkatachalam
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center (UTHealth), Houston, TX, USA
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences
- Molecular and Translational Biology Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences
| |
Collapse
|
11
|
Doi H, Muraguchi H, Horio T, Choi YJ, Takahashi K, Noda T, Sawada K. Real-time simultaneous visualization of lactate and proton dynamics using a 6-μm-pitch CMOS multichemical image sensor. Biosens Bioelectron 2025; 268:116898. [PMID: 39522470 DOI: 10.1016/j.bios.2024.116898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 10/17/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Multi-analyte detection and imaging of extracellular chemical signaling molecules are crucial for understanding brain function and molecular pathology. In this work, we present a 6-μm-pitch, CMOS-based multichemical image sensor that enables the simultaneous visualization and spatiotemporal multimodal analysis of the lactate and proton (H+) dynamics without any labeling. Using semiconductor lithography, gold electrode patterns functioning as lactate-sensing regions were formed on a potentiometric sensor array. Lactate is detected potentiometrically because of redox reactions using lactate oxidase and horseradish peroxidase. The resulting multichemical image sensor exhibited a pH sensitivity of 65 mV and a superior detection limit of 1 μM for lactate with a reasonable selectivity. Furthermore, diffusion images of lactate and H+ distributions were obtained concurrently, allowing for simultaneous real-time imaging of the two chemicals with subcellular resolution. We believe that our novel imaging device can be successfully applied to extracellular microenvironments in tissue or cell samples as an effective bioimaging tool.
Collapse
Affiliation(s)
- Hideo Doi
- Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempakucho, Toyohashi, Aichi, 441-8122, Japan.
| | - Hayato Muraguchi
- Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempakucho, Toyohashi, Aichi, 441-8122, Japan
| | - Tomoko Horio
- Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempakucho, Toyohashi, Aichi, 441-8122, Japan
| | - Yong-Joon Choi
- Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempakucho, Toyohashi, Aichi, 441-8122, Japan
| | - Kazuhiro Takahashi
- Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempakucho, Toyohashi, Aichi, 441-8122, Japan; Institute for Research on Next-generation Semiconductor and Sensing Science (IRES(2)), Toyohashi University of Technology, 1-1 Hibarigaoka, Tempakucho, Toyohashi, Aichi, 441-8122, Japan
| | - Toshihiko Noda
- Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempakucho, Toyohashi, Aichi, 441-8122, Japan; Institute for Research on Next-generation Semiconductor and Sensing Science (IRES(2)), Toyohashi University of Technology, 1-1 Hibarigaoka, Tempakucho, Toyohashi, Aichi, 441-8122, Japan
| | - Kazuaki Sawada
- Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempakucho, Toyohashi, Aichi, 441-8122, Japan; Institute for Research on Next-generation Semiconductor and Sensing Science (IRES(2)), Toyohashi University of Technology, 1-1 Hibarigaoka, Tempakucho, Toyohashi, Aichi, 441-8122, Japan
| |
Collapse
|
12
|
DeCuzzi N, Kosaisawe N, Pargett M, Cabel M, Albeck JG. Monitoring Cellular Energy Balance in Single Cells Using Fluorescent Biosensors for AMPK. Methods Mol Biol 2025; 2882:47-79. [PMID: 39992504 DOI: 10.1007/978-1-0716-4284-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
5'-Adenosine monophosphate-activated protein kinase (AMPK) senses cellular metabolic status and reflects the balance between ATP production and ATP usage. This balance varies from cell to cell and changes over time, creating a need for methods that can capture cellular heterogeneity and temporal dynamics. Fluorescent biosensors for AMPK activity offer a unique approach to measure metabolic status nondestructively in single cells in real time. In this chapter, we provide a brief rationale for using live-cell biosensors to measure AMPK activity, survey the current AMPK biosensors, and discuss considerations for using this approach. We provide methodology for introducing AMPK biosensors into a cell line of choice, setting up experiments for live-cell fluorescent microscopy of AMPK activity, and calibrating the biosensors using immunoblot data.
Collapse
Affiliation(s)
- Nicholaus DeCuzzi
- Department of Molecular and Cellular Biology, University of California, Davis, CA, USA
| | - Nont Kosaisawe
- Department of Molecular and Cellular Biology, University of California, Davis, CA, USA
| | - Michael Pargett
- Department of Molecular and Cellular Biology, University of California, Davis, CA, USA
| | - Markhus Cabel
- Department of Molecular and Cellular Biology, University of California, Davis, CA, USA
| | - John G Albeck
- Department of Molecular and Cellular Biology, University of California, Davis, CA, USA.
| |
Collapse
|
13
|
Wolff C, John D, Winkler U, Hochmuth L, Hirrlinger J, Köhler S. Insulin and leptin acutely modulate the energy metabolism of primary hypothalamic and cortical astrocytes. J Neurochem 2025; 169:e16211. [PMID: 39175305 PMCID: PMC11657920 DOI: 10.1111/jnc.16211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/06/2024] [Accepted: 08/11/2024] [Indexed: 08/24/2024]
Abstract
Astrocytes constitute a heterogeneous cell population within the brain, contributing crucially to brain homeostasis and playing an important role in overall brain function. Their function and metabolism are not only regulated by local signals, for example, from nearby neurons, but also by long-range signals such as hormones. Thus, two prominent hormones primarily known for regulating the energy balance of the whole organism, insulin, and leptin, have been reported to also impact astrocytes within the brain. In this study, we investigated the acute regulation of astrocytic metabolism by these hormones in cultured astrocytes prepared from the mouse cortex and hypothalamus, a pivotal region in the context of nutritional regulation. Utilizing genetically encoded, fluorescent nanosensors, the cytosolic concentrations of glucose, lactate, and ATP, along with glycolytic rate and the NADH/NAD+ redox state were measured. Under basal conditions, differences between the two populations of astrocytes were observed for glucose and lactate concentrations as well as the glycolytic rate. Additionally, astrocytic metabolism responded to insulin and leptin in both brain regions, with some unique characteristics for each cell population. Finally, both hormones influenced how cells responded to elevated extracellular levels of potassium ions, a common indicator of neuronal activity. In summary, our study provides evidence that insulin and leptin acutely regulate astrocytic metabolism within minutes. Additionally, while astrocytes from the hypothalamus and cortex share similarities in their metabolism, they also exhibit distinct properties, further underscoring the growing recognition of astrocyte heterogeneity.
Collapse
Affiliation(s)
- Christopher Wolff
- Faculty of MedicineCarl‐Ludwig‐Institute for Physiology, University of LeipzigLeipzigGermany
| | - Dorit John
- Faculty of MedicineCarl‐Ludwig‐Institute for Physiology, University of LeipzigLeipzigGermany
- Medical Department II—Division of Oncology, Gastroenterology, Hepatology and PneumologyUniversity of Leipzig Medical CenterLeipzigGermany
| | - Ulrike Winkler
- Faculty of MedicineCarl‐Ludwig‐Institute for Physiology, University of LeipzigLeipzigGermany
| | - Luise Hochmuth
- Faculty of MedicineCarl‐Ludwig‐Institute for Physiology, University of LeipzigLeipzigGermany
| | - Johannes Hirrlinger
- Faculty of MedicineCarl‐Ludwig‐Institute for Physiology, University of LeipzigLeipzigGermany
- Department of NeurogeneticsMax‐Planck‐Institute for Multidisciplinary SciencesGöttingenGermany
| | - Susanne Köhler
- Faculty of MedicineCarl‐Ludwig‐Institute for Physiology, University of LeipzigLeipzigGermany
- Sächsisches Krankenhaus AltscherbitzClinic for NeurologySchkeuditzGermany
| |
Collapse
|
14
|
DeCuzzi NL, Hu JY, Xu F, Rodriguez B, Pargett M, Albeck JG. Two Novel Red-FRET ERK Biosensors in the 670-720nm Range. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.30.626109. [PMID: 39677763 PMCID: PMC11642818 DOI: 10.1101/2024.11.30.626109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Cell fate decisions are regulated by intricate signaling networks, with Extracellular signal-Regulated Kinase (ERK) being a central regulator. However, ERK is rarely the only signaling pathway involved, creating a need to study multiple signaling pathways simultaneously at the single-cell level. Many existing fluorescent biosensors for ERK and other pathways have significant spectral overlap, limiting their ability to be multiplexed. To address this limitation, we developed two novel red-FRET ERK biosensors, REKAR67 and REKAR76, which operate in the 670-720 nm range using miRFP670nano3 and miRFP720. REKAR67 and REKAR76 differ in fluorophore position, which impacts biosensor characteristics; REKAR67 displayed a higher dynamic range but greater signal variance than REKAR76. Mixed populations of REKAR67 or REKAR76 displayed similar Signal-to-Noise ratio (SNR), but in clonal cell populations, REKAR76 had a significantly higher SNR. Overall, our red-FRET ERK biosensors were highly consistent with existing ERK FRET biosensors and in reporting ERK activity and are spectrally compatible with CFP/YFP FRET and cpGFP -based biosensors. Both REKAR biosensors expand the available methods for measuring single-cell ERK activity.
Collapse
Affiliation(s)
| | - Jason Y. Hu
- Department of Molecular and Cellular Biology, University of California, Davis
| | - Florene Xu
- Department of Molecular and Cellular Biology, University of California, Davis
| | - Brayant Rodriguez
- Department of Molecular and Cellular Biology, University of California, Davis
| | - Michael Pargett
- Department of Molecular and Cellular Biology, University of California, Davis
| | - John G. Albeck
- Department of Molecular and Cellular Biology, University of California, Davis
| |
Collapse
|
15
|
Soleja N, Mohsin M. Exploring the landscape of FRET-based molecular sensors: Design strategies and recent advances in emerging applications. Biotechnol Adv 2024; 77:108466. [PMID: 39419421 DOI: 10.1016/j.biotechadv.2024.108466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
Probing biological processes in living organisms that could provide one-of-a-kind insights into real-time alterations of significant physiological parameters is a formidable task that calls for specialized analytic devices. Classical biochemical methods have significantly aided our understanding of the mechanisms that regulate essential biological processes. These methods, however, are typically insufficient for investigating transient molecular events since they focus primarily on the end outcome. Fluorescence resonance energy transfer (FRET) microscopy is a potent tool used for exploring non-invasively real-time dynamic interactions between proteins and a variety of biochemical signaling events using sensors that have been meticulously constructed. Due to their versatility, FRET-based sensors have enabled the rapid and standardized assessment of a large array of biological variables, facilitating both high-throughput research and precise subcellular measurements with exceptional temporal and spatial resolution. This review commences with a brief introduction to FRET theory and a discussion of the fluorescent molecules that can serve as tags in different sensing modalities for studies in chemical biology, followed by an outlining of the imaging techniques currently utilized to quantify FRET highlighting their strengths and shortcomings. The article also discusses the various donor-acceptor combinations that can be utilized to construct FRET scaffolds. Specifically, the review provides insights into the latest real-time bioimaging applications of FRET-based sensors and discusses the common architectures of such devices. There has also been discussion of FRET systems with multiplexing capabilities and multi-step FRET protocols for use in dual/multi-analyte detections. Future research directions in this exciting field are also mentioned, along with the obstacles and opportunities that lie ahead.
Collapse
Affiliation(s)
- Neha Soleja
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Mohd Mohsin
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
16
|
Chacón M, Dixon N. Genetically encoded biosensors for the circular plastics bioeconomy. Metab Eng Commun 2024; 19:e00255. [PMID: 39737114 PMCID: PMC11683335 DOI: 10.1016/j.mec.2024.e00255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/21/2024] [Accepted: 11/27/2024] [Indexed: 01/01/2025] Open
Abstract
Current plastic production and consumption routes are unsustainable due to impact upon climate change and pollution, and therefore reform across the entire value chain is required. Biotechnology offers solutions for production from renewable feedstocks, and to aid end of life recycling/upcycling of plastics. Biology sequence/design space is complex requiring high-throughput analytical methods to facilitate the iterative optimisation, design-build, test-learn (DBTL), cycle of Synthetic Biology. Furthermore, genetic regulatory tools can enable harmonisation between biotechnological demands and the physiological constraints of the selected production host. Genetically encoded biosensors offer a solution for both requirements to facilitate the circular plastic bioeconomy. In this review we present a summary of biosensors developed to date reported to be responsive to plastic precursors/monomers. In addition, we provide a summary of the demonstrated and prospective applications of these biosensors for the construction and deconstruction of plastics. Collectively, this review provides a valuable resource of biosensor tools and enabled applications to support the development of the circular plastics bioeconomy.
Collapse
Affiliation(s)
- Micaela Chacón
- Manchester Institute of Biotechnology (MIB), Department of Chemistry, University of Manchester, Manchester, M1 7DN, UK
| | - Neil Dixon
- Manchester Institute of Biotechnology (MIB), Department of Chemistry, University of Manchester, Manchester, M1 7DN, UK
| |
Collapse
|
17
|
Gest AM, Sahan AZ, Zhong Y, Lin W, Mehta S, Zhang J. Molecular Spies in Action: Genetically Encoded Fluorescent Biosensors Light up Cellular Signals. Chem Rev 2024; 124:12573-12660. [PMID: 39535501 PMCID: PMC11613326 DOI: 10.1021/acs.chemrev.4c00293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/07/2024] [Accepted: 09/20/2024] [Indexed: 11/16/2024]
Abstract
Cellular function is controlled through intricate networks of signals, which lead to the myriad pathways governing cell fate. Fluorescent biosensors have enabled the study of these signaling pathways in living systems across temporal and spatial scales. Over the years there has been an explosion in the number of fluorescent biosensors, as they have become available for numerous targets, utilized across spectral space, and suited for various imaging techniques. To guide users through this extensive biosensor landscape, we discuss critical aspects of fluorescent proteins for consideration in biosensor development, smart tagging strategies, and the historical and recent biosensors of various types, grouped by target, and with a focus on the design and recent applications of these sensors in living systems.
Collapse
Affiliation(s)
- Anneliese
M. M. Gest
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Ayse Z. Sahan
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
- Biomedical
Sciences Graduate Program, University of
California, San Diego, La Jolla, California 92093, United States
| | - Yanghao Zhong
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Wei Lin
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Sohum Mehta
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Jin Zhang
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
- Shu
Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
18
|
Li X, Wen X, Tang W, Wang C, Chen Y, Yang Y, Zhang Z, Zhao Y. Elucidating the spatiotemporal dynamics of glucose metabolism with genetically encoded fluorescent biosensors. CELL REPORTS METHODS 2024; 4:100904. [PMID: 39536758 PMCID: PMC11705769 DOI: 10.1016/j.crmeth.2024.100904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 08/20/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Glucose metabolism has been well understood for many years, but some intriguing questions remain regarding the subcellular distribution, transport, and functions of glycolytic metabolites. To address these issues, a living cell metabolic monitoring technology with high spatiotemporal resolution is needed. Genetically encoded fluorescent sensors can achieve specific, sensitive, and spatiotemporally resolved metabolic monitoring in living cells and in vivo, and dozens of glucose metabolite sensors have been developed recently. Here, we highlight the importance of tracking specific intermediate metabolites of glycolysis and glycolytic flux measurements, monitoring the spatiotemporal dynamics, and quantifying metabolite abundance. We then describe the working principles of fluorescent protein sensors and summarize the existing biosensors and their application in understanding glucose metabolism. Finally, we analyze the remaining challenges in developing high-quality biosensors and the huge potential of biosensor-based metabolic monitoring at multiple spatiotemporal scales.
Collapse
Affiliation(s)
- Xie Li
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China; Research Unit of New Techniques for Live-Cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing 100730, China.
| | - Xueyi Wen
- Research Unit of New Techniques for Live-Cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Weitao Tang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Chengnuo Wang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Yaqiong Chen
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Yi Yang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Zhuo Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China; Research Unit of New Techniques for Live-Cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing 100730, China.
| | - Yuzheng Zhao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China; Research Unit of New Techniques for Live-Cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing 100730, China.
| |
Collapse
|
19
|
Combs JE, Murray AB, Lomelino CL, Mboge MY, Mietzsch M, Horenstein NA, Frost SC, McKenna R, Becker HM. Disruption of the Physical Interaction Between Carbonic Anhydrase IX and the Monocarboxylate Transporter 4 Impacts Lactate Transport in Breast Cancer Cells. Int J Mol Sci 2024; 25:11994. [PMID: 39596062 PMCID: PMC11593560 DOI: 10.3390/ijms252211994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
It has been previously established that breast cancer cells exhibit high expression of the monocarboxylate (lactate) transporters (MCT1 and/or MCT4) and carbonic anhydrase IX (CAIX) and form a functional metabolon for proton-coupled lactate export, thereby stabilizing intracellular pH. CD147 is the MCT accessory protein that facilitates the creation of the MCT/CAIX complex. This study describes how the small molecule Beta-Galactose 2C (BGal2C) blocks the physical and functional interaction between CAIX and either MCT1 or MCT4 in Xenopus oocytes, which reduces the rate of proton and lactate flux with an IC50 of ~90 nM. This value is similar to the Ki for inhibition of CAIX activity. Furthermore, it is shown that BGal2C blocks hypoxia-induced lactate transport in MDA-MB-231 and MCF-7 breast cancer cells, both of which express CAIX. As in oocytes, BGal2C interferes with the physical interaction between CAIX and MCTs in both cell types. Finally, X-ray crystallographic studies highlight unique interactions between BGal2C and a CAIX-mimic that are not observed within the CAII active site and which may underlie the strong specificity of BGal2C for CAIX. These studies demonstrate the utility of a novel sulfonamide in interfering with elevated proton and lactate flux, a hallmark of many solid tumors.
Collapse
Affiliation(s)
- Jacob E. Combs
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32611, USA (M.M.); (S.C.F.)
| | - Akilah B. Murray
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32611, USA (M.M.); (S.C.F.)
| | - Carrie L. Lomelino
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32611, USA (M.M.); (S.C.F.)
| | - Mam Y. Mboge
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32611, USA (M.M.); (S.C.F.)
| | - Mario Mietzsch
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32611, USA (M.M.); (S.C.F.)
| | | | - Susan C. Frost
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32611, USA (M.M.); (S.C.F.)
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32611, USA (M.M.); (S.C.F.)
| | - Holger M. Becker
- Institute of Physiological Chemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
20
|
Wang Q, Shi S, Liu S, Ye S. A user-friendly fluorescent biosensor for precise lactate detection and quantification in vitro. Chem Commun (Camb) 2024; 60:12884-12887. [PMID: 39404007 DOI: 10.1039/d4cc04925j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
As a critical metabolite, the standardization of lactate quantification is increasingly crucial. Therefore, we developed LaconicSF, a lactate-responsive biosensor exhibiting exceptional specificity in lactate detection. LaconicSF enables efficient lactate quantification in CHO cell culture medium and holds potential as a user-friendly detection tool for lactate quantification in vitro.
Collapse
Affiliation(s)
- Qiwei Wang
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China.
| | - Sai Shi
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China.
| | - Si Liu
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China.
| | - Sheng Ye
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China.
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058 Zhejiang, China
| |
Collapse
|
21
|
Ibacache-Chía AP, Sierralta JA, Schüller A. The Inhibitory Effects of the Natural Stilbene Piceatannol on Lactate Transport In Vitro Mediated by Monocarboxylate Transporters. Mol Nutr Food Res 2024; 68:e2400414. [PMID: 39344244 DOI: 10.1002/mnfr.202400414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/30/2024] [Indexed: 10/01/2024]
Abstract
SCOPE Lactate, a signaling molecule and energy source, crosses membranes through monocarboxylate transporters (MCTs). MCT1 and MCT4 are potential cancer drug targets due to their role in metabolic reprogramming of cancer cells. Stilbenes, plant secondary metabolites found in several food sources, have anticancer effects, though their mechanisms of action are not well understood. This study links the anticancer activity of natural stilbenes to tumor cell lactate metabolism. METHODS AND RESULTS The impact of resveratrol, pinostilbene, pterostilbene, rhapontigenin, and piceatannol on lactate transport is studied using a fluorescence resonance energy transfer (FRET)-based lactate sensor. The viability and migration of cells expressing MCT1 or MCT4 are also evaluated. Piceatannol inhibits MCT1 effectively at low micromolar concentrations, with less effect on MCT4. All stilbenes significantly reduce cell viability and migration. CONCLUSIONS These findings indicate that both MCTs are stilbene targets, with piceatannol highlighted as a cost-effective, low-toxicity compound for studying MCTs in cancer, providing a new mechanism of action of the therapeutic and nutraceutical effects of natural polyphenols. This enriches the understanding of dietary polyphenols in cancer prevention and therapy.
Collapse
Affiliation(s)
- Andrés P Ibacache-Chía
- School of Biological Sciences, Pontificia Universidad Católica de Chile, Av. Libertador General Bernardo O'Higgins 340, Santiago, 8331150, Chile
- Department of Neuroscience, School of Medicine, University of Chile, Av. Independencia 1027, Independencia, 8380000, Chile
- Institute of Biomedical Neurosciences (BNI), School of Medicine, University of Chile, Av. Independencia 1027, Independencia, 8380000, Chile
| | - Jimena A Sierralta
- Department of Neuroscience, School of Medicine, University of Chile, Av. Independencia 1027, Independencia, 8380000, Chile
- Institute of Biomedical Neurosciences (BNI), School of Medicine, University of Chile, Av. Independencia 1027, Independencia, 8380000, Chile
| | - Andreas Schüller
- School of Biological Sciences, Pontificia Universidad Católica de Chile, Av. Libertador General Bernardo O'Higgins 340, Santiago, 8331150, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago, 7820244, Chile
| |
Collapse
|
22
|
Rojas-Ríos P, Chartier A, Enjolras C, Cremaschi J, Garret C, Boughlita A, Ramat A, Simonelig M. piRNAs are regulators of metabolic reprogramming in stem cells. Nat Commun 2024; 15:8405. [PMID: 39333531 PMCID: PMC11437085 DOI: 10.1038/s41467-024-52709-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 09/17/2024] [Indexed: 09/29/2024] Open
Abstract
Stem cells preferentially use glycolysis instead of oxidative phosphorylation and this metabolic rewiring plays an instructive role in their fate; however, the underlying molecular mechanisms remain largely unexplored. PIWI-interacting RNAs (piRNAs) and PIWI proteins have essential functions in a range of adult stem cells across species. Here, we show that piRNAs and the PIWI protein Aubergine (Aub) are instrumental in activating glycolysis in Drosophila female germline stem cells (GSCs). Higher glycolysis is required for GSC self-renewal and aub loss-of-function induces a metabolic switch in GSCs leading to their differentiation. Aub directly binds glycolytic mRNAs and Enolase mRNA regulation by Aub depends on its 5'UTR. Furthermore, mutations of a piRNA target site in Enolase 5'UTR lead to GSC loss. These data reveal an Aub/piRNA function in translational activation of glycolytic mRNAs in GSCs, and pinpoint a mechanism of regulation of metabolic reprogramming in stem cells based on small RNAs.
Collapse
Affiliation(s)
- Patricia Rojas-Ríos
- Institute of Human Genetics, Université de Montpellier, CNRS, Montpellier, France
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Aymeric Chartier
- Institute of Human Genetics, Université de Montpellier, CNRS, Montpellier, France
| | - Camille Enjolras
- Institute of Human Genetics, Université de Montpellier, CNRS, Montpellier, France
| | - Julie Cremaschi
- Institute of Human Genetics, Université de Montpellier, CNRS, Montpellier, France
| | - Céline Garret
- Institute of Human Genetics, Université de Montpellier, CNRS, Montpellier, France
| | - Adel Boughlita
- Institute of Human Genetics, Université de Montpellier, CNRS, Montpellier, France
| | - Anne Ramat
- Institute of Human Genetics, Université de Montpellier, CNRS, Montpellier, France
| | - Martine Simonelig
- Institute of Human Genetics, Université de Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
23
|
Shi C, Xu J, Ding Y, Chen X, Yuan F, Zhu F, Duan C, Hu J, Lu H, Wu T, Jiang L. MCT1-mediated endothelial cell lactate shuttle as a target for promoting axon regeneration after spinal cord injury. Theranostics 2024; 14:5662-5681. [PMID: 39310103 PMCID: PMC11413787 DOI: 10.7150/thno.96374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
Rationale: Spinal cord injury (SCI)-induced vascular damage causes ischemia and hypoxia at the injury site, which, in turn, leads to profound metabolic disruptions. The effects of these metabolic alterations on neural tissue remodeling and functional recovery have yet to be elucidated. The current study aimed to investigate the consequences of the SCI-induced hypoxic environment at the epicenter of the injury. Methods: This study employed metabolomics to assess changes in energy metabolism after SCI. The use of a lactate sensor identified lactate shuttle between endothelial cells (ECs) and neurons. Reanalysis of single-cell RNA sequencing data demonstrated reduced MCT1 expression in ECs after SCI. Additionally, an adeno-associated virus (AAV) overexpressing MCT1 was utilized to elucidate its role in endothelial-neuronal interactions, tissue repair, and functional recovery. Results: The findings revealed markedly decreased monocarboxylate transporter 1 (MCT1) expression that facilitates lactate delivery to neurons to support their energy metabolism in ECs post-SCI. This decreased expression of MCT1 disrupts lactate transport to neurons, resulting in a metabolic imbalance that impedes axonal regeneration. Strikingly, our results suggested that administering adeno-associated virus specifically to ECs to restore MCT1 expression enhances axonal regeneration and improves functional recovery in SCI mice. These findings indicate a novel link between lactate shuttling from endothelial cells to neurons following SCI and subsequent neural functional recovery. Conclusion: In summary, the current study highlights a novel metabolic pathway for therapeutic interventions in the treatment of SCI. Additionally, our findings indicate the potential benefits of targeting lactate transport mechanisms in recovery from SCI.
Collapse
Affiliation(s)
- Chaoran Shi
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Jiaqi Xu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Yinghe Ding
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Xingyi Chen
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Feifei Yuan
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Fengzhang Zhu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Chunyue Duan
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Jianzhong Hu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Hongbin Lu
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Tianding Wu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Liyuan Jiang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| |
Collapse
|
24
|
Fernández-Moncada I, Lavanco G, Fundazuri UB, Bollmohr N, Mountadem S, Dalla Tor T, Hachaguer P, Julio-Kalajzic F, Gisquet D, Serrat R, Bellocchio L, Cannich A, Fortunato-Marsol B, Nasu Y, Campbell RE, Drago F, Cannizzaro C, Ferreira G, Bouzier-Sore AK, Pellerin L, Bolaños JP, Bonvento G, Barros LF, Oliet SHR, Panatier A, Marsicano G. A lactate-dependent shift of glycolysis mediates synaptic and cognitive processes in male mice. Nat Commun 2024; 15:6842. [PMID: 39122700 PMCID: PMC11316019 DOI: 10.1038/s41467-024-51008-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024] Open
Abstract
Astrocytes control brain activity via both metabolic processes and gliotransmission, but the physiological links between these functions are scantly known. Here we show that endogenous activation of astrocyte type-1 cannabinoid (CB1) receptors determines a shift of glycolysis towards the lactate-dependent production of D-serine, thereby gating synaptic and cognitive functions in male mice. Mutant mice lacking the CB1 receptor gene in astrocytes (GFAP-CB1-KO) are impaired in novel object recognition (NOR) memory. This phenotype is rescued by the gliotransmitter D-serine, by its precursor L-serine, and also by lactate and 3,5-DHBA, an agonist of the lactate receptor HCAR1. Such lactate-dependent effect is abolished when the astrocyte-specific phosphorylated-pathway (PP), which diverts glycolysis towards L-serine synthesis, is blocked. Consistently, lactate and 3,5-DHBA promoted the co-agonist binding site occupancy of CA1 post-synaptic NMDA receptors in hippocampal slices in a PP-dependent manner. Thus, a tight cross-talk between astrocytic energy metabolism and gliotransmission determines synaptic and cognitive processes.
Collapse
Affiliation(s)
| | - Gianluca Lavanco
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, ''G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Unai B Fundazuri
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Nasrin Bollmohr
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Sarah Mountadem
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Tommaso Dalla Tor
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Pauline Hachaguer
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | | | - Doriane Gisquet
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Roman Serrat
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - Luigi Bellocchio
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Astrid Cannich
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | | | - Yusuke Nasu
- Department of Chemistry, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- PRESTO, Japan Science and Technology Agency, Chiyoda-ku, Tokyo, Japan
| | - Robert E Campbell
- Department of Chemistry, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- CERVO Brain Research Center and Department of Biochemistry, Microbiology, and Bioinformatics, Université Laval, Québec City, QC, Canada
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Carla Cannizzaro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Guillaume Ferreira
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - Anne-Karine Bouzier-Sore
- Univ. Bordeaux, CNRS, Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, F-33000, Bordeaux, France
| | - Luc Pellerin
- Université de Poitiers et CHU de Poitiers, INSERM, IRMETIST, U1313, Poitiers, France
| | - Juan P Bolaños
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Gilles Bonvento
- Universite Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodegeneratives, Fontenay-aux-Roses, France
| | - L Felipe Barros
- Centro de Estudios Cientificos, Valdivia, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile
| | - Stephane H R Oliet
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Aude Panatier
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Giovanni Marsicano
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France.
| |
Collapse
|
25
|
Rauseo D, Contreras-Baeza Y, Faurand H, Cárcamo N, Suárez R, von Faber-Castell A, Silva F, Mora-González V, Wyss MT, Baeza-Lehnert F, Ruminot I, Alvarez-Navarro C, San Martín A, Weber B, Sandoval PY, Barros LF. Lactate-carried Mitochondrial Energy Overflow. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.19.604361. [PMID: 39071354 PMCID: PMC11275747 DOI: 10.1101/2024.07.19.604361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
We addressed the question of mitochondrial lactate metabolism using genetically-encoded sensors. The organelle was found to contain a dynamic lactate pool that leads to dose- and time-dependent protein lactylation. In neurons, mitochondrial lactate reported blood lactate levels with high fidelity. The exchange of lactate across the inner mitochondrial membrane was found to be mediated by a high affinity H+-coupled transport system involving the mitochondrial pyruvate carrier MPC. Assessment of electron transport chain activity and determination of lactate flux showed that mitochondria are tonic lactate producers, a phenomenon driven by energization and stimulated by hypoxia. We conclude that an overflow mechanism caps the redox level of mitochondria, while saving energy in the form of lactate.
Collapse
Affiliation(s)
- Daniela Rauseo
- Centro de Estudios Científicos-CECs, Valdivia, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile
- Universidad Austral de Chile, Valdivia, Chile
| | - Yasna Contreras-Baeza
- Centro de Estudios Científicos-CECs, Valdivia, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile
- Universidad Austral de Chile, Valdivia, Chile
| | - Hugo Faurand
- Centro de Estudios Científicos-CECs, Valdivia, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile
| | - Nataly Cárcamo
- Centro de Estudios Científicos-CECs, Valdivia, Chile
- Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Valdivia, Chile
| | - Raibel Suárez
- Centro de Estudios Científicos-CECs, Valdivia, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile
| | - Alexandra von Faber-Castell
- Institute of Pharmacology and Toxicology, University and ETH Zurich, Switzerland
- Neuroscience Center Zurich, ETH and University Zurich, Switzerland
| | - Franco Silva
- Centro de Estudios Científicos-CECs, Valdivia, Chile
- Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Valdivia, Chile
| | | | - Matthias T Wyss
- Institute of Pharmacology and Toxicology, University and ETH Zurich, Switzerland
- Neuroscience Center Zurich, ETH and University Zurich, Switzerland
| | - Felipe Baeza-Lehnert
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University of Leipzig, Germany
| | - Iván Ruminot
- Centro de Estudios Científicos-CECs, Valdivia, Chile
- Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Valdivia, Chile
| | - Carlos Alvarez-Navarro
- Instituto de Inmunología, Facultad de Medicina, Universidad Austral de Chile
- Unidad de Proteómica, AUSTRAL-omics, Universidad Austral de Chile
| | - Alejandro San Martín
- Centro de Estudios Científicos-CECs, Valdivia, Chile
- Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Valdivia, Chile
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University and ETH Zurich, Switzerland
- Neuroscience Center Zurich, ETH and University Zurich, Switzerland
| | - Pamela Y Sandoval
- Centro de Estudios Científicos-CECs, Valdivia, Chile
- Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Valdivia, Chile
| | - L Felipe Barros
- Centro de Estudios Científicos-CECs, Valdivia, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile
| |
Collapse
|
26
|
Bischof H, Maier S, Koprowski P, Kulawiak B, Burgstaller S, Jasińska J, Serafimov K, Zochowska M, Gross D, Schroth W, Matt L, Juarez Lopez DA, Zhang Y, Bonzheim I, Büttner FA, Fend F, Schwab M, Birkenfeld AL, Malli R, Lämmerhofer M, Bednarczyk P, Szewczyk A, Lukowski R. mitoBK Ca is functionally expressed in murine and human breast cancer cells and potentially contributes to metabolic reprogramming. eLife 2024; 12:RP92511. [PMID: 38808578 PMCID: PMC11136494 DOI: 10.7554/elife.92511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024] Open
Abstract
Alterations in the function of K+ channels such as the voltage- and Ca2+-activated K+ channel of large conductance (BKCa) reportedly promote breast cancer (BC) development and progression. Underlying molecular mechanisms remain, however, elusive. Here, we provide electrophysiological evidence for a BKCa splice variant localized to the inner mitochondrial membrane of murine and human BC cells (mitoBKCa). Through a combination of genetic knockdown and knockout along with a cell permeable BKCa channel blocker, we show that mitoBKCa modulates overall cellular and mitochondrial energy production, and mediates the metabolic rewiring referred to as the 'Warburg effect', thereby promoting BC cell proliferation in the presence and absence of oxygen. Additionally, we detect mitoBKCa and BKCa transcripts in low or high abundance, respectively, in clinical BC specimens. Together, our results emphasize, that targeting mitoBKCa could represent a treatment strategy for selected BC patients in future.
Collapse
Affiliation(s)
- Helmut Bischof
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of TübingenTübingenGermany
| | - Selina Maier
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of TübingenTübingenGermany
- Dr Margarete Fischer-Bosch Institute of Clinical PharmacologyStuttgartGermany
| | - Piotr Koprowski
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of SciencesWarsawPoland
| | - Bogusz Kulawiak
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of SciencesWarsawPoland
| | - Sandra Burgstaller
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of TübingenTübingenGermany
- NMI Natural and Medical Sciences Institute at the University of TübingenReutlingenGermany
- Center for Medical Research, CF Bioimaging, Medical University of GrazGrazAustria
| | - Joanna Jasińska
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of SciencesWarsawPoland
| | - Kristian Serafimov
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of TübingenTübingenGermany
| | - Monika Zochowska
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of SciencesWarsawPoland
| | - Dominic Gross
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of TübingenTübingenGermany
| | - Werner Schroth
- Dr Margarete Fischer-Bosch Institute of Clinical PharmacologyStuttgartGermany
- University of TübingenTübingenGermany
| | - Lucas Matt
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of TübingenTübingenGermany
| | | | - Ying Zhang
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of TübingenTübingenGermany
| | - Irina Bonzheim
- Institute of Pathology and Neuropathology, University Hospital TübingenTübingenGermany
| | - Florian A Büttner
- Dr Margarete Fischer-Bosch Institute of Clinical PharmacologyStuttgartGermany
- University of TübingenTübingenGermany
| | - Falko Fend
- Institute of Pathology and Neuropathology, University Hospital TübingenTübingenGermany
| | - Matthias Schwab
- Dr Margarete Fischer-Bosch Institute of Clinical PharmacologyStuttgartGermany
- iFIT Cluster of Excellence (EXC 2180) “Image-guided and Functionally Instructed Tumor Therapies”, University of TübingenTübingenGermany
- Department of Clinical Pharmacology, Universityhostpital of TübingenTübingenGermany
- Department of Biochemistry and Pharmacy, University of TübingenTübingenGermany
- German Cancer Consortium (DKTK), German Cancer Research Center, Partner Site TübingenTübingenGermany
| | - Andreas L Birkenfeld
- Medical Clinic IV, University Hospital TübingenTübingenGermany
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the Eberhard Karls University Tübingen, University of TübingenTübingenGermany
- German Center for Diabetes Research (DZD)NeuherbergGermany
| | - Roland Malli
- Center for Medical Research, CF Bioimaging, Medical University of GrazGrazAustria
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of GrazGrazAustria
- BioTechMed GrazGrazAustria
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of TübingenTübingenGermany
| | - Piotr Bednarczyk
- Department of Physics and Biophysics, Warsaw University of Life Sciences (SGGW)WarsawPoland
| | - Adam Szewczyk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of SciencesWarsawPoland
| | - Robert Lukowski
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of TübingenTübingenGermany
| |
Collapse
|
27
|
Dienel GA, Rothman DL. In vivo calibration of genetically encoded metabolite biosensors must account for metabolite metabolism during calibration and cellular volume. J Neurochem 2024; 168:506-532. [PMID: 36726217 DOI: 10.1111/jnc.15775] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/21/2023] [Accepted: 01/28/2023] [Indexed: 02/03/2023]
Abstract
Isotopic assays of brain glucose utilization rates have been used for more than four decades to establish relationships between energetics, functional activity, and neurotransmitter cycling. Limitations of these methods include the relatively long time (1-60 min) for the determination of labeled metabolite levels and the lack of cellular resolution. Identification and quantification of fuels for neurons and astrocytes that support activation and higher brain functions are a major, unresolved issues. Glycolysis is preferentially up-regulated during activation even though oxygen level and supply are adequate, causing lactate concentrations to quickly rise during alerting, sensory processing, cognitive tasks, and memory consolidation. However, the fate of lactate (rapid release from brain or cell-cell shuttling coupled with local oxidation) is long disputed. Genetically encoded biosensors can determine intracellular metabolite concentrations and report real-time lactate level responses to sensory, behavioral, and biochemical challenges at the cellular level. Kinetics and time courses of cellular lactate concentration changes are informative, but accurate biosensor calibration is required for quantitative comparisons of lactate levels in astrocytes and neurons. An in vivo calibration procedure for the Laconic lactate biosensor involves intracellular lactate depletion by intravenous pyruvate-mediated trans-acceleration of lactate efflux followed by sensor saturation by intravenous infusion of high doses of lactate plus ammonium chloride. In the present paper, the validity of this procedure is questioned because rapid lactate-pyruvate interconversion in blood, preferential neuronal oxidation of both monocarboxylates, on-going glycolytic metabolism, and cellular volumes were not taken into account. Calibration pitfalls for the Laconic lactate biosensor also apply to other metabolite biosensors that are standardized in vivo by infusion of substrates that can be metabolized in peripheral tissues. We discuss how technical shortcomings negate the conclusion that Laconic sensor calibrations support the existence of an in vivo astrocyte-neuron lactate concentration gradient linked to lactate shuttling from astrocytes to neurons to fuel neuronal activity.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Douglas L Rothman
- Magnetic Resonance Research Center and Departments of Radiology and Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
28
|
Wang A, Zou Y, Liu S, Zhang X, Li T, Zhang L, Wang R, Xia Y, Li X, Zhang Z, Liu T, Ju Z, Wang R, Loscalzo J, Yang Y, Zhao Y. Comprehensive multiscale analysis of lactate metabolic dynamics in vitro and in vivo using highly responsive biosensors. Nat Protoc 2024; 19:1311-1347. [PMID: 38307980 DOI: 10.1038/s41596-023-00948-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 11/15/2023] [Indexed: 02/04/2024]
Abstract
As a key glycolytic metabolite, lactate has a central role in diverse physiological and pathological processes. However, comprehensive multiscale analysis of lactate metabolic dynamics in vitro and in vivo has remained an unsolved problem until now owing to the lack of a high-performance tool. We recently developed a series of genetically encoded fluorescent sensors for lactate, named FiLa, which illuminate lactate metabolism in cells, subcellular organelles, animals, and human serum and urine. In this protocol, we first describe the FiLa sensor-based strategies for real-time subcellular bioenergetic flux analysis by profiling the lactate metabolic response to different nutritional and pharmacological conditions, which provides a systematic-level view of cellular metabolic function at the subcellular scale for the first time. We also report detailed procedures for imaging lactate dynamics in live mice through a cell microcapsule system or recombinant adeno-associated virus and for the rapid and simple assay of lactate in human body fluids. This comprehensive multiscale metabolic analysis strategy may also be applied to other metabolite biosensors using various analytic platforms, further expanding its usability. The protocol is suited for users with expertise in biochemistry, molecular biology and cell biology. Typically, the preparation of FiLa-expressing cells or mice takes 2 days to 4 weeks, and live-cell and in vivo imaging can be performed within 1-2 hours. For the FiLa-based assay of body fluids, the whole measuring procedure generally takes ~1 min for one sample in a manual assay or ~3 min for 96 samples in an automatic microplate assay.
Collapse
Affiliation(s)
- Aoxue Wang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, China
| | - Yejun Zou
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, China
| | - Shuning Liu
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xiuze Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Ting Li
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, China.
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, China.
| | - Lijuan Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Ruwen Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Yale Xia
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xie Li
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhuo Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, China
| | - Tiemin Liu
- State Key Laboratory of Genetic Engineering, Department of Endocrinology and Metabolism, Institute of Metabolism and Integrative Biology, Human Phenome Institute, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, China
| | - Ru Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China.
| | - Joseph Loscalzo
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yi Yang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, China.
| | - Yuzheng Zhao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, China.
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
29
|
Kostyuk AI, Rapota DD, Morozova KI, Fedotova AA, Jappy D, Semyanov AV, Belousov VV, Brazhe NA, Bilan DS. Modern optical approaches in redox biology: Genetically encoded sensors and Raman spectroscopy. Free Radic Biol Med 2024; 217:68-115. [PMID: 38508405 DOI: 10.1016/j.freeradbiomed.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/10/2024] [Accepted: 03/13/2024] [Indexed: 03/22/2024]
Abstract
The objective of the current review is to summarize the current state of optical methods in redox biology. It consists of two parts, the first is dedicated to genetically encoded fluorescent indicators and the second to Raman spectroscopy. In the first part, we provide a detailed classification of the currently available redox biosensors based on their target analytes. We thoroughly discuss the main architecture types of these proteins, the underlying engineering strategies for their development, the biochemical properties of existing tools and their advantages and disadvantages from a practical point of view. Particular attention is paid to fluorescence lifetime imaging microscopy as a possible readout technique, since it is less prone to certain artifacts than traditional intensiometric measurements. In the second part, the characteristic Raman peaks of the most important redox intermediates are listed, and examples of how this knowledge can be implemented in biological studies are given. This part covers such fields as estimation of the redox states and concentrations of Fe-S clusters, cytochromes, other heme-containing proteins, oxidative derivatives of thiols, lipids, and nucleotides. Finally, we touch on the issue of multiparameter imaging, in which biosensors are combined with other visualization methods for simultaneous assessment of several cellular parameters.
Collapse
Affiliation(s)
- Alexander I Kostyuk
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia; Pirogov Russian National Research Medical University, 117997, Moscow, Russia
| | - Diana D Rapota
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Kseniia I Morozova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Anna A Fedotova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia; Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, 119234, Russia
| | - David Jappy
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow, 117997, Russia
| | - Alexey V Semyanov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia; Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, 119234, Russia; Sechenov First Moscow State Medical University, Moscow, 119435, Russia; College of Medicine, Jiaxing University, Jiaxing, Zhejiang Province, 314001, China
| | - Vsevolod V Belousov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia; Pirogov Russian National Research Medical University, 117997, Moscow, Russia; Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow, 117997, Russia; Life Improvement by Future Technologies (LIFT) Center, Skolkovo, Moscow, 143025, Russia
| | - Nadezda A Brazhe
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia; Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, 119234, Russia.
| | - Dmitry S Bilan
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia; Pirogov Russian National Research Medical University, 117997, Moscow, Russia.
| |
Collapse
|
30
|
Koveal D. Functional principles of genetically encoded fluorescent biosensors for metabolism and their quantitative use. J Neurochem 2024; 168:496-505. [PMID: 37314388 DOI: 10.1111/jnc.15878] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/15/2023]
Abstract
Genetically encoded fluorescent biosensors provide an attractive means of measuring chemical changes in single cells on fast timescales (milliseconds to seconds). While their most prominent application has been in tracking neural activity and neurotransmitter release, there has been growing interest in developing and deploying new versions of these tools to study brain metabolism. However, the careful use of these tools and the interpretation of the data they provide remain challenging. Many biosensors are subject to interferences that can alter sensor responses within a single cell or between cells, producing ambiguous results. This presents a challenge for quantitation and for our ability to accurately interpret sensor responses. This review describes current methods of sensor quantitation, with a focus on cellular interferences that commonly affect sensor performance, ways to avoid false inferences, and recent advances in sensor optimization to make them more robust.
Collapse
Affiliation(s)
- Dorothy Koveal
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
31
|
Cuozzo F, Viloria K, Shilleh AH, Nasteska D, Frazer-Morris C, Tong J, Jiao Z, Boufersaoui A, Marzullo B, Rosoff DB, Smith HR, Bonner C, Kerr-Conte J, Pattou F, Nano R, Piemonti L, Johnson PRV, Spiers R, Roberts J, Lavery GG, Clark A, Ceresa CDL, Ray DW, Hodson L, Davies AP, Rutter GA, Oshima M, Scharfmann R, Merrins MJ, Akerman I, Tennant DA, Ludwig C, Hodson DJ. LDHB contributes to the regulation of lactate levels and basal insulin secretion in human pancreatic β cells. Cell Rep 2024; 43:114047. [PMID: 38607916 PMCID: PMC11164428 DOI: 10.1016/j.celrep.2024.114047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 02/19/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Using 13C6 glucose labeling coupled to gas chromatography-mass spectrometry and 2D 1H-13C heteronuclear single quantum coherence NMR spectroscopy, we have obtained a comparative high-resolution map of glucose fate underpinning β cell function. In both mouse and human islets, the contribution of glucose to the tricarboxylic acid (TCA) cycle is similar. Pyruvate fueling of the TCA cycle is primarily mediated by the activity of pyruvate dehydrogenase, with lower flux through pyruvate carboxylase. While the conversion of pyruvate to lactate by lactate dehydrogenase (LDH) can be detected in islets of both species, lactate accumulation is 6-fold higher in human islets. Human islets express LDH, with low-moderate LDHA expression and β cell-specific LDHB expression. LDHB inhibition amplifies LDHA-dependent lactate generation in mouse and human β cells and increases basal insulin release. Lastly, cis-instrument Mendelian randomization shows that low LDHB expression levels correlate with elevated fasting insulin in humans. Thus, LDHB limits lactate generation in β cells to maintain appropriate insulin release.
Collapse
Affiliation(s)
- Federica Cuozzo
- Institute of Metabolism and Systems Research (IMSR) and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK
| | - Katrina Viloria
- Institute of Metabolism and Systems Research (IMSR) and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK; Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Ali H Shilleh
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Daniela Nasteska
- Institute of Metabolism and Systems Research (IMSR) and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK; Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Charlotte Frazer-Morris
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Jason Tong
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Zicong Jiao
- Institute of Metabolism and Systems Research (IMSR) and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK; Geneplus-Beijing, Changping District, Beijing 102206, China
| | - Adam Boufersaoui
- Institute of Metabolism and Systems Research (IMSR) and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK
| | - Bryan Marzullo
- Institute of Metabolism and Systems Research (IMSR) and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK
| | - Daniel B Rosoff
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK; Oxford Kavli Centre for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Hannah R Smith
- Institute of Metabolism and Systems Research (IMSR) and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK
| | - Caroline Bonner
- University of Lille, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire de Lille (CHU Lille), Institute Pasteur Lille, U1190 -European Genomic Institute for Diabetes (EGID), F59000 Lille, France
| | - Julie Kerr-Conte
- University of Lille, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire de Lille (CHU Lille), Institute Pasteur Lille, U1190 -European Genomic Institute for Diabetes (EGID), F59000 Lille, France
| | - Francois Pattou
- University of Lille, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire de Lille (CHU Lille), Institute Pasteur Lille, U1190 -European Genomic Institute for Diabetes (EGID), F59000 Lille, France
| | - Rita Nano
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Lorenzo Piemonti
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Paul R V Johnson
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Rebecca Spiers
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Jennie Roberts
- Institute of Metabolism and Systems Research (IMSR) and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK
| | - Gareth G Lavery
- Institute of Metabolism and Systems Research (IMSR) and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK; Centre for Systems Health and Integrated Metabolic Research (SHiMR), Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Anne Clark
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Carlo D L Ceresa
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - David W Ray
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK; Oxford Kavli Centre for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Amy P Davies
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK; CHUM Research Centre and Faculty of Medicine, University of Montreal, Montreal, QC, Canada; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Masaya Oshima
- Université Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR 8104, 75014 Paris, France
| | - Raphaël Scharfmann
- Université Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR 8104, 75014 Paris, France
| | - Matthew J Merrins
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Ildem Akerman
- Institute of Metabolism and Systems Research (IMSR) and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK
| | - Daniel A Tennant
- Institute of Metabolism and Systems Research (IMSR) and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK.
| | - Christian Ludwig
- Institute of Metabolism and Systems Research (IMSR) and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK.
| | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR) and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK; Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
32
|
Calbiague-Garcia V, Chen Y, Cádiz B, Tapia F, Paquet-Durand F, Schmachtenberg O. Extracellular lactate as an alternative energy source for retinal bipolar cells. J Biol Chem 2024; 300:106794. [PMID: 38403245 PMCID: PMC10966802 DOI: 10.1016/j.jbc.2024.106794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/11/2024] [Accepted: 02/16/2024] [Indexed: 02/27/2024] Open
Abstract
Retinal bipolar and amacrine cells receive visual information from photoreceptors and participate in the first steps of image processing in the retina. Several studies have suggested the operation of aerobic glycolysis and a lactate shuttle system in the retina due to the high production of this metabolite under aerobic conditions. However, whether bipolar cells form part of this metabolic circuit remains unclear. Here, we show that the monocarboxylate transporter 2 is expressed and functional in inner retinal neurons. Additionally, we used genetically encoded FRET nanosensors to demonstrate the ability of inner retinal neurons to consume extracellular lactate as an alternative to glucose. In rod bipolar cells, lactate consumption allowed cells to maintain the homeostasis of ions and electrical responses. We also found that lactate synthesis and transporter inhibition caused functional alterations and an increased rate of cell death. Overall, our data shed light on a notable but still poorly understood aspect of retinal metabolism.
Collapse
Affiliation(s)
- Victor Calbiague-Garcia
- PhD Program in Neuroscience, Universidad de Valparaíso, Valparaíso, Chile; CINV, Instituto de Biología, Universidad de Valparaíso, Valparaíso, Chile.
| | - Yiyi Chen
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Bárbara Cádiz
- CINV, Instituto de Biología, Universidad de Valparaíso, Valparaíso, Chile
| | - Felipe Tapia
- CINV, Instituto de Biología, Universidad de Valparaíso, Valparaíso, Chile
| | | | | |
Collapse
|
33
|
John S, Calmettes G, Xu S, Ribalet B. Real-time resolution studies of the regulation of lactate production by hexokinases binding to mitochondria in single cells. PLoS One 2024; 19:e0300150. [PMID: 38457438 PMCID: PMC10923494 DOI: 10.1371/journal.pone.0300150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/21/2024] [Indexed: 03/10/2024] Open
Abstract
During hypoxia accumulation of lactate may be a key factor in acidosis-induced tissue damage. Binding of hexokinase (HK) to the outer membrane of mitochondria may have a protective effect under these conditions. We have investigated the regulation of lactate metabolism by hexokinases (HKs), using HEK293 cells in which the endogenous hexokinases have been knocked down to enable overexpression of wild type and mutant HKs. To assess the real-time changes in intracellular lactate levels the cells were also transfected with a lactate specific FRET probe. In the HKI/HKII double knockdown HEK cells, addition of extracellular pyruvate caused a large and sustained decrease in lactate. Upon inhibition of the mitochondrial electron transfer chain by NaCN this effect was reversed as a rapid increase in lactate developed which was followed by a slow and sustained increase in the continued presence of the inhibitor. Incubation of the HKI/HKII double knockdown HEK cells with the inhibitor of the malic enzyme, ME1*, blocked the delayed accumulation of lactate evoked by NaCN. With replacement by overexpression of HKI or HKII the accumulation of intracellular lactate evoked by NaCN was prevented. Blockage of the pentose phosphate pathway with the inhibitor 6-aminonicotinamide (6-AN) abolished the protective effect of HK expression, with NaCN causing again a sustained increase in lactate. The effect of HK was dependent on HK's catalytic activity and interaction with the mitochondrial outer membrane (MOM). Based on these data we propose that transformation of glucose into G6P by HK activates the pentose phosphate pathway which increases the production of NADPH, which then blocks the activity of the malic enzyme to transform malate into pyruvate and lactate.
Collapse
Affiliation(s)
- Scott John
- Department of Medicine (Division of Cardiology), David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Guillaume Calmettes
- Department of Medicine (Division of Cardiology), David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Shili Xu
- California NanoSystems Institute (CNSI) 2151, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Bernard Ribalet
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| |
Collapse
|
34
|
Looser ZJ, Faik Z, Ravotto L, Zanker HS, Jung RB, Werner HB, Ruhwedel T, Möbius W, Bergles DE, Barros LF, Nave KA, Weber B, Saab AS. Oligodendrocyte-axon metabolic coupling is mediated by extracellular K + and maintains axonal health. Nat Neurosci 2024; 27:433-448. [PMID: 38267524 PMCID: PMC10917689 DOI: 10.1038/s41593-023-01558-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/13/2023] [Indexed: 01/26/2024]
Abstract
The integrity of myelinated axons relies on homeostatic support from oligodendrocytes (OLs). To determine how OLs detect axonal spiking and how rapid axon-OL metabolic coupling is regulated in the white matter, we studied activity-dependent calcium (Ca2+) and metabolite fluxes in the mouse optic nerve. We show that fast axonal spiking triggers Ca2+ signaling and glycolysis in OLs. OLs detect axonal activity through increases in extracellular potassium (K+) concentrations and activation of Kir4.1 channels, thereby regulating metabolite supply to axons. Both pharmacological inhibition and OL-specific inactivation of Kir4.1 reduce the activity-induced axonal lactate surge. Mice lacking oligodendroglial Kir4.1 exhibit lower resting lactate levels and altered glucose metabolism in axons. These early deficits in axonal energy metabolism are associated with late-onset axonopathy. Our findings reveal that OLs detect fast axonal spiking through K+ signaling, making acute metabolic coupling possible and adjusting the axon-OL metabolic unit to promote axonal health.
Collapse
Affiliation(s)
- Zoe J Looser
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Zainab Faik
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Luca Ravotto
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Henri S Zanker
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Ramona B Jung
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Torben Ruhwedel
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Dwight E Bergles
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - L Felipe Barros
- Centro de Estudios Científicos (CECs), Valdivia, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Aiman S Saab
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
35
|
Hario S, Le GNT, Sugimoto H, Takahashi-Yamashiro K, Nishinami S, Toda H, Li S, Marvin JS, Kuroda S, Drobizhev M, Terai T, Nasu Y, Campbell RE. High-Performance Genetically Encoded Green Fluorescent Biosensors for Intracellular l-Lactate. ACS CENTRAL SCIENCE 2024; 10:402-416. [PMID: 38435524 PMCID: PMC10906044 DOI: 10.1021/acscentsci.3c01250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/31/2023] [Accepted: 01/04/2024] [Indexed: 03/05/2024]
Abstract
l-Lactate is a monocarboxylate produced during the process of cellular glycolysis and has long generally been considered a waste product. However, studies in recent decades have provided new perspectives on the physiological roles of l-lactate as a major energy substrate and a signaling molecule. To enable further investigations of the physiological roles of l-lactate, we have developed a series of high-performance (ΔF/F = 15 to 30 in vitro), intensiometric, genetically encoded green fluorescent protein (GFP)-based intracellular l-lactate biosensors with a range of affinities. We evaluated these biosensors in cultured cells and demonstrated their application in an ex vivo preparation of Drosophila brain tissue. Using these biosensors, we were able to detect glycolytic oscillations, which we analyzed and mathematically modeled.
Collapse
Affiliation(s)
- Saaya Hario
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Giang N. T. Le
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Hikaru Sugimoto
- Department
of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kei Takahashi-Yamashiro
- Department
of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department
of Chemistry, Faculty of Science, University
of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Suguru Nishinami
- International
Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Hirofumi Toda
- International
Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Selene Li
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Jonathan S. Marvin
- Howard
Hughes Medical Institute, Janelia Research Campus, Ashburn, Virginia 20147, United States
| | - Shinya Kuroda
- Department
of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mikhail Drobizhev
- Department
of Microbiology and Cell Biology, Montana
State University, Bozeman, Montana 59717, United States
| | - Takuya Terai
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yusuke Nasu
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- PRESTO,
Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Robert E. Campbell
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department
of Chemistry, Faculty of Science, University
of Alberta, Edmonton, Alberta T6G 2G2, Canada
- CERVO
Brain Research Center and Department of Biochemistry, Microbiology,
and Bioinformatics, Université Laval, Québec, Québec G1 V 0A6, Canada
| |
Collapse
|
36
|
Blaszczak W, White B, Monterisi S, Swietach P. Dynamic IL-6R/STAT3 signaling leads to heterogeneity of metabolic phenotype in pancreatic ductal adenocarcinoma cells. Cell Rep 2024; 43:113612. [PMID: 38141171 PMCID: PMC11149489 DOI: 10.1016/j.celrep.2023.113612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/29/2023] [Accepted: 12/07/2023] [Indexed: 12/25/2023] Open
Abstract
Malignancy is enabled by pro-growth mutations and adequate energy provision. However, global metabolic activation would be self-terminating if it depleted tumor resources. Cancer cells could avoid this by rationing resources, e.g., dynamically switching between "baseline" and "activated" metabolic states. Using single-cell metabolic phenotyping of pancreatic ductal adenocarcinoma cells, we identify MIA-PaCa-2 as having broad heterogeneity of fermentative metabolism. Sorting by a readout of lactic acid permeability separates cells by fermentative and respiratory rates. Contrasting phenotypes persist for 4 days and are unrelated to cell cycling or glycolytic/respiratory gene expression; however, transcriptomics links metabolically active cells with interleukin-6 receptor (IL-6R)-STAT3 signaling. We verify this by IL-6R/STAT3 knockdowns and sorting by IL-6R status. IL-6R/STAT3 activates fermentation and transcription of its inhibitor, SOCS3, resulting in delayed negative feedback that underpins transitions between metabolic states. Among cells manifesting wide metabolic heterogeneity, dynamic IL-6R/STAT3 signaling may allow cell cohorts to take turns in progressing energy-intense processes without depleting shared resources.
Collapse
Affiliation(s)
- Wiktoria Blaszczak
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, OX1 3PT Oxford, UK
| | - Bobby White
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, OX1 3PT Oxford, UK
| | - Stefania Monterisi
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, OX1 3PT Oxford, UK
| | - Pawel Swietach
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, OX1 3PT Oxford, UK.
| |
Collapse
|
37
|
Huang WH, Kajal K, Wibowo RH, Amartuvshin O, Kao SH, Rastegari E, Lin CH, Chiou KL, Pi HW, Ting CT, Hsu HJ. Excess dietary sugar impairs Drosophila adult stem cells via elevated reactive oxygen species-induced JNK signaling. Development 2024; 151:dev201772. [PMID: 38063853 DOI: 10.1242/dev.201772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 11/24/2023] [Indexed: 01/03/2024]
Abstract
High-sugar diets (HSDs) often lead to obesity and type 2 diabetes, both metabolic syndromes associated with stem cell dysfunction. However, it is unclear whether excess dietary sugar affects stem cells. Here, we report that HSD impairs stem cell function in the intestine and ovaries of female Drosophila prior to the onset of insulin resistance, a hallmark of type 2 diabetes. Although 1 week of HSD leads to obesity, impaired oogenesis and altered lipid metabolism, insulin resistance does not occur. HSD increases glucose uptake by germline stem cells (GSCs) and triggers reactive oxygen species-induced JNK signaling, which reduces GSC proliferation. Removal of excess sugar from the diet reverses these HSD-induced phenomena. A similar phenomenon is found in intestinal stem cells (ISCs), except that HSD disrupts ISC maintenance and differentiation. Interestingly, tumor-like GSCs and ISCs are less responsive to HSD, which may be because of their dependence on glycolytic metabolism and high energy demand, respectively. This study suggests that excess dietary sugar induces oxidative stress and damages stem cells before insulin resistance develops, a mechanism that may also occur in higher organisms.
Collapse
Affiliation(s)
- Wei-Hao Huang
- Institute of Cellular and Organismic Biology, Sinica, Taipei 11529
- Department of Life Science, National Taiwan University, Taipei 10917
| | - Kreeti Kajal
- Institute of Cellular and Organismic Biology, Sinica, Taipei 11529
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei 11529
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227
| | | | - Oyundari Amartuvshin
- Institute of Cellular and Organismic Biology, Sinica, Taipei 11529
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica, Taipei 11529
- Graduate Institute of Life Science, National Defense Medical Center, Taipei 11490
| | - Shih-Han Kao
- Institute of Cellular and Organismic Biology, Sinica, Taipei 11529
| | - Elham Rastegari
- Institute of Cellular and Organismic Biology, Sinica, Taipei 11529
| | - Chi-Hung Lin
- Institute of Cellular and Organismic Biology, Sinica, Taipei 11529
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica, Taipei 11529
- Graduate Institute of Life Science, National Defense Medical Center, Taipei 11490
| | - Kuan-Lin Chiou
- Department of Biomedical Science, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan
| | - Hai-Wei Pi
- Department of Biomedical Science, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan
| | - Chau-Ti Ting
- Department of Life Science, National Taiwan University, Taipei 10917
| | - Hwei-Jan Hsu
- Institute of Cellular and Organismic Biology, Sinica, Taipei 11529
| |
Collapse
|
38
|
Zhou W, Yang X, Wang H, Yao W, Chu D, Wu F. Neuronal aerobic glycolysis exacerbates synapse loss in aging mice. Exp Neurol 2024; 371:114590. [PMID: 37907123 DOI: 10.1016/j.expneurol.2023.114590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/20/2023] [Accepted: 10/25/2023] [Indexed: 11/02/2023]
Abstract
Brain consumes nearly 20% supply of energy from glucose metabolism by oxidative phosphorylation and aerobic glycolysis. Less active state of glycolytic enzymes results in a limited capacity of glycolysis in the neurons of adult brain. Here we identified that Warburg effect is enhanced in hippocampal neurons during aging. As hippocampal neurons age, lactate levels progressively increase. Notably, we observed upregulated protein levels of PFKFB3 in the hippocampus of 20-month-old mice compared to young mice, and this higher PFKFB3 expression correlated with declining memory performance in aging mice. Remarkably, in aging mice, knocking down Pfkfb3 in hippocampal neurons rescued cognitive decline and synapse loss. Conversely, Pfkfb3 overexpression in hippocampal neurons led to cognitive impairment and synapse elimination, associated with heightened glycolysis. In vitro experiments with cultured primary neurons confirmed that Pfkfb3 overexpression increased glycolysis and that glycolytic inhibition could prevent apoptotic competency in neurons. These findings underscore that glycolysis in hippocampal neurons could potentially be targeted as a therapeutic avenue to mitigate cognitive decline and preserve synaptic integrity during aging.
Collapse
Affiliation(s)
- Wenhui Zhou
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Xingyue Yang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Huixia Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Wenjuan Yao
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Dandan Chu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China.
| | - Feng Wu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|
39
|
Wei Y, Miao Q, Zhang Q, Mao S, Li M, Xu X, Xia X, Wei K, Fan Y, Zheng X, Fang Y, Mei M, Zhang Q, Ding J, Fan Y, Lu M, Hu G. Aerobic glycolysis is the predominant means of glucose metabolism in neuronal somata, which protects against oxidative damage. Nat Neurosci 2023; 26:2081-2089. [PMID: 37996529 DOI: 10.1038/s41593-023-01476-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 09/29/2023] [Indexed: 11/25/2023]
Abstract
It is generally thought that under basal conditions, neurons produce ATP mainly through mitochondrial oxidative phosphorylation (OXPHOS), and glycolytic activity only predominates when neurons are activated and need to meet higher energy demands. However, it remains unknown whether there are differences in glucose metabolism between neuronal somata and axon terminals. Here, we demonstrated that neuronal somata perform higher levels of aerobic glycolysis and lower levels of OXPHOS than terminals, both during basal and activated states. We found that the glycolytic enzyme pyruvate kinase 2 (PKM2) is localized predominantly in the somata rather than in the terminals. Deletion of Pkm2 in mice results in a switch from aerobic glycolysis to OXPHOS in neuronal somata, leading to oxidative damage and progressive loss of dopaminergic neurons. Our findings update the conventional view that neurons uniformly use OXPHOS under basal conditions and highlight the important role of somatic aerobic glycolysis in maintaining antioxidant capacity.
Collapse
Affiliation(s)
- Yao Wei
- Department of Pharmacology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - QianQian Miao
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Qian Zhang
- Department of Pharmacology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shiyu Mao
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Mengke Li
- Department of Pharmacology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xing Xu
- Department of Pharmacology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xian Xia
- Department of Pharmacology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ke Wei
- Department of Pharmacology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Fan
- Department of Pharmacology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinlei Zheng
- Department of Pharmacology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yinquan Fang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Meng Mei
- Department of Pharmacology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qingyu Zhang
- Department of Pharmacology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianhua Ding
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Yi Fan
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Ming Lu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Gang Hu
- Department of Pharmacology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
40
|
Justs KA, Sempertegui S, Riboul DV, Oliva CD, Durbin RJ, Crill S, Stawarski M, Su C, Renden RB, Fily Y, Macleod GT. Mitochondrial phosphagen kinases support the volatile power demands of motor nerve terminals. J Physiol 2023; 601:5705-5732. [PMID: 37942946 PMCID: PMC10841428 DOI: 10.1113/jp284872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/17/2023] [Indexed: 11/10/2023] Open
Abstract
Motor neurons are the longest neurons in the body, with axon terminals separated from the soma by as much as a meter. These terminals are largely autonomous with regard to their bioenergetic metabolism and must burn energy at a high rate to sustain muscle contraction. Here, through computer simulation and drawing on previously published empirical data, we determined that motor neuron terminals in Drosophila larvae experience highly volatile power demands. It might not be surprising then, that we discovered the mitochondria in the motor neuron terminals of both Drosophila and mice to be heavily decorated with phosphagen kinases - a key element in an energy storage and buffering system well-characterized in fast-twitch muscle fibres. Knockdown of arginine kinase 1 (ArgK1) in Drosophila larval motor neurons led to several bioenergetic deficits, including mitochondrial matrix acidification and a faster decline in the cytosol ATP to ADP ratio during axon burst firing. KEY POINTS: Neurons commonly fire in bursts imposing highly volatile demands on the bioenergetic machinery that generates ATP. Using a computational approach, we built profiles of presynaptic power demand at the level of single action potentials, as well as the transition from rest to sustained activity. Phosphagen systems are known to buffer ATP levels in muscles and we demonstrate that phosphagen kinases, which support such phosphagen systems, also localize to mitochondria in motor nerve terminals of fruit flies and mice. By knocking down phosphagen kinases in fruit fly motor nerve terminals, and using fluorescent reporters of the ATP:ADP ratio, lactate, pH and Ca2+ , we demonstrate a role for phosphagen kinases in stabilizing presynaptic ATP levels. These data indicate that the maintenance of phosphagen systems in motor neurons, and not just muscle, could be a beneficial initiative in sustaining musculoskeletal health and performance.
Collapse
Affiliation(s)
- Karlis A. Justs
- Integrative Biology and Neuroscience Graduate Program, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Sergio Sempertegui
- Department of Physics, College of Science, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Danielle V. Riboul
- Integrative Biology and Neuroscience Graduate Program, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Carlos D. Oliva
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Ryan J. Durbin
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557
| | - Sarah Crill
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Michal Stawarski
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Chenchen Su
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Robert B. Renden
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557
| | - Yaouen Fily
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Gregory T. Macleod
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
- Institute for Human Health & Disease Intervention, Florida Atlantic University, Jupiter, FL 33458, USA
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL 33458, USA
| |
Collapse
|
41
|
John S, Calmettes G, Xu S, Ribalet B. Real-time resolution studies of the regulation of pyruvate-dependent lactate metabolism by hexokinases in single cells. PLoS One 2023; 18:e0286660. [PMID: 37917627 PMCID: PMC10621844 DOI: 10.1371/journal.pone.0286660] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 05/21/2023] [Indexed: 11/04/2023] Open
Abstract
Lactate is a mitochondrial substrate for many tissues including neuron, muscle, skeletal and cardiac, as well as many cancer cells, however little is known about the processes that regulate its utilization in mitochondria. Based on the close association of Hexokinases (HK) with mitochondria, and the known cardio-protective role of HK in cardiac muscle, we have investigated the regulation of lactate and pyruvate metabolism by hexokinases (HKs), utilizing wild-type HEK293 cells and HEK293 cells in which the endogenous HKI and/or HKII have been knocked down to enable overexpression of wild type and mutant HKs. To assess the real-time changes in intracellular lactate levels the cells were transfected with a lactate specific FRET probe. In the HKI/HKII double knockdown cells, addition of extracellular pyruvate caused a large and sustained decrease in lactate. This decrease was rapidly reversed upon inhibition of the malate aspartate shuttle by aminooxyacetate, or inhibition of mitochondrial oxidative respiration by NaCN. These results suggest that in the absence of HKs, pyruvate-dependent activation of the TCA cycle together with the malate aspartate shuttle facilitates lactate transformation into pyruvate and its utilization by mitochondria. With replacement by overexpression of HKI or HKII the cellular response to pyruvate and NaCN was modified. With either hexokinase present, both the decrease in lactate due to the addition of pyruvate and the increase following addition of NaCN were either transient or suppressed altogether. Blockage of the pentose phosphate pathway with the inhibitor 6-aminonicotinamide (6-AN), abolished the effects of HK replacement. These results suggest that blocking of the malate aspartate shuttle by HK may involve activation of the pentose phosphate pathway and increased NADPH production.
Collapse
Affiliation(s)
- Scott John
- Department of Medicine (Division of Cardiology), David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America
| | - Guillaume Calmettes
- Department of Medicine (Division of Cardiology), David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America
| | - Shili Xu
- California NanoSystems Institute (CNSI) 2151, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America
| | - Bernard Ribalet
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America
| |
Collapse
|
42
|
Geng Z, Guan S, Wang S, Yu Z, Liu T, Du S, Zhu C. Intercellular mitochondrial transfer in the brain, a new perspective for targeted treatment of central nervous system diseases. CNS Neurosci Ther 2023; 29:3121-3135. [PMID: 37424172 PMCID: PMC10580346 DOI: 10.1111/cns.14344] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/08/2023] [Accepted: 06/24/2023] [Indexed: 07/11/2023] Open
Abstract
AIM Mitochondria is one of the important organelles involved in cell energy metabolism and regulation and also play a key regulatory role in abnormal cell processes such as cell stress, cell damage, and cell canceration. Recent studies have shown that mitochondria can be transferred between cells in different ways and participate in the occurrence and development of many central nervous system diseases. We aim to review the mechanism of mitochondrial transfer in the progress of central nervous system diseases and the possibility of targeted therapy. METHODS The PubMed databank, the China National Knowledge Infrastructure databank, and Wanfang Data were searched to identify the experiments of intracellular mitochondrial transferrin central nervous system. The focus is on the donors, receptors, transfer pathways, and targeted drugs of mitochondrial transfer. RESULTS In the central nervous system, neurons, glial cells, immune cells, and tumor cells can transfer mitochondria to each other. Meanwhile, there are many types of mitochondrial transfer, including tunneling nanotubes, extracellular vesicles, receptor cell endocytosis, gap junction channels, and intercellular contact. A variety of stress signals, such as the release of damaged mitochondria, mitochondrial DNA, or other mitochondrial products and the elevation of reactive oxygen species, can trigger the transfer of mitochondria from donor cells to recipient cells. Concurrently, a variety of molecular pathways and related inhibitors can affect mitochondrial intercellular transfer. CONCLUSION This study reviews the phenomenon of intercellular mitochondrial transfer in the central nervous system and summarizes the corresponding transfer pathways. Finally, we propose targeted pathways and treatment methods that may be used to regulate mitochondrial transfer for the treatment of related diseases.
Collapse
Affiliation(s)
- Ziang Geng
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangChina
| | - Shu Guan
- Department of Surgical Oncology and Breast SurgeryThe First Hospital of China Medical UniversityShenyangChina
| | - Siqi Wang
- Department of Radiation OncologyThe First Hospital of China Medical UniversityShenyangChina
| | - Zhongxue Yu
- Department of Cardiovascular UltrasoundThe First Hospital of China Medical UniversityShenyangChina
| | - Tiancong Liu
- Department of OtolaryngologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Shaonan Du
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangChina
| | - Chen Zhu
- Department of NeurosurgeryThe First Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
43
|
Lee H, Cho S, Kim MJ, Park YJ, Cho E, Jo YS, Kim YS, Lee JY, Thoudam T, Woo SH, Lee SI, Jeon J, Lee YS, Suh BC, Yoon JH, Go Y, Lee IK, Seo J. ApoE4-dependent lysosomal cholesterol accumulation impairs mitochondrial homeostasis and oxidative phosphorylation in human astrocytes. Cell Rep 2023; 42:113183. [PMID: 37777962 DOI: 10.1016/j.celrep.2023.113183] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 08/07/2023] [Accepted: 09/13/2023] [Indexed: 10/03/2023] Open
Abstract
Recent developments in genome sequencing have expanded the knowledge of genetic factors associated with late-onset Alzheimer's disease (AD). Among them, genetic variant ε4 of the APOE gene (APOE4) confers the greatest disease risk. Dysregulated glucose metabolism is an early pathological feature of AD. Using isogenic ApoE3 and ApoE4 astrocytes derived from human induced pluripotent stem cells, we find that ApoE4 increases glycolytic activity but impairs mitochondrial respiration in astrocytes. Ultrastructural and autophagy flux analyses show that ApoE4-induced cholesterol accumulation impairs lysosome-dependent removal of damaged mitochondria. Acute treatment with cholesterol-depleting agents restores autophagic activity, mitochondrial dynamics, and associated proteomes, and extended treatment rescues mitochondrial respiration in ApoE4 astrocytes. Taken together, our study provides a direct link between ApoE4-induced lysosomal cholesterol accumulation and abnormal oxidative phosphorylation.
Collapse
Affiliation(s)
- Hyein Lee
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu 42988, South Korea
| | - Sukhee Cho
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu 42988, South Korea
| | - Mi-Jin Kim
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu 41944, South Korea
| | - Yeo Jin Park
- Korean Medicine Life Science, University of Science and Technology, Daejeon 34054, South Korea; Korean Medicine-Application Center, Korea Institute of Oriental Medicine, Daegu 41062, South Korea
| | - Eunji Cho
- Neurodegenerative Disease Research Group, Korea Brain Research Institute, Daegu 41062, South Korea
| | - Yeon Suk Jo
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu 42988, South Korea; Neurodegenerative Disease Research Group, Korea Brain Research Institute, Daegu 41062, South Korea
| | - Yong-Seok Kim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu 42988, South Korea
| | - Jung Yi Lee
- Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University School of Medicine, Daegu 41944, South Korea
| | - Themis Thoudam
- Research Institute of Aging and Metabolism, Kyungpook National University School of Medicine, Daegu 41944, South Korea
| | - Seung-Hwa Woo
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology, Daegu 42988, South Korea
| | - Se-In Lee
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu 42988, South Korea
| | - Juyeong Jeon
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu 42988, South Korea
| | - Young-Sam Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology, Daegu 42988, South Korea
| | - Byung-Chang Suh
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu 42988, South Korea
| | - Jong Hyuk Yoon
- Neurodegenerative Disease Research Group, Korea Brain Research Institute, Daegu 41062, South Korea
| | - Younghoon Go
- Korean Medicine-Application Center, Korea Institute of Oriental Medicine, Daegu 41062, South Korea.
| | - In-Kyu Lee
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu 41944, South Korea; Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University School of Medicine, Daegu 41944, South Korea; Research Institute of Aging and Metabolism, Kyungpook National University School of Medicine, Daegu 41944, South Korea.
| | - Jinsoo Seo
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu 42988, South Korea.
| |
Collapse
|
44
|
Nasu Y, Aggarwal A, Le GNT, Vo CT, Kambe Y, Wang X, Beinlich FRM, Lee AB, Ram TR, Wang F, Gorzo KA, Kamijo Y, Boisvert M, Nishinami S, Kawamura G, Ozawa T, Toda H, Gordon GR, Ge S, Hirase H, Nedergaard M, Paquet ME, Drobizhev M, Podgorski K, Campbell RE. Lactate biosensors for spectrally and spatially multiplexed fluorescence imaging. Nat Commun 2023; 14:6598. [PMID: 37891202 PMCID: PMC10611801 DOI: 10.1038/s41467-023-42230-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
L-Lactate is increasingly appreciated as a key metabolite and signaling molecule in mammals. However, investigations of the inter- and intra-cellular dynamics of L-lactate are currently hampered by the limited selection and performance of L-lactate-specific genetically encoded biosensors. Here we now report a spectrally and functionally orthogonal pair of high-performance genetically encoded biosensors: a green fluorescent extracellular L-lactate biosensor, designated eLACCO2.1, and a red fluorescent intracellular L-lactate biosensor, designated R-iLACCO1. eLACCO2.1 exhibits excellent membrane localization and robust fluorescence response. To the best of our knowledge, R-iLACCO1 and its affinity variants exhibit larger fluorescence responses than any previously reported intracellular L-lactate biosensor. We demonstrate spectrally and spatially multiplexed imaging of L-lactate dynamics by coexpression of eLACCO2.1 and R-iLACCO1 in cultured cells, and in vivo imaging of extracellular and intracellular L-lactate dynamics in mice.
Collapse
Affiliation(s)
- Yusuke Nasu
- Department of Chemistry, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
- PRESTO, Japan Science and Technology Agency, Chiyoda-ku, Tokyo, 102-0075, Japan.
| | - Abhi Aggarwal
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147, USA
- Allen Institute for Neural Dynamics, Seattle, WA, 98109, USA
| | - Giang N T Le
- Department of Chemistry, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - Camilla Trang Vo
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Yuki Kambe
- Department of Pharmacology, Graduate School of Medical and Dental Science, Kagoshima University, Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Xinxing Wang
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Felix R M Beinlich
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Ashley Bomin Lee
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Tina R Ram
- Hotchkiss Brain Institute, Cumming School of Medicine, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Fangying Wang
- Hotchkiss Brain Institute, Cumming School of Medicine, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Kelsea A Gorzo
- Hotchkiss Brain Institute, Cumming School of Medicine, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Yuki Kamijo
- Department of Chemistry, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Marc Boisvert
- CERVO Brain Research Centre, Québec, QC, G1J 2G3, Canada
- Department of Biochemistry, Microbiology and Bioinformatics, Laval University, Québec, QC, G1E 1T2, Canada
| | - Suguru Nishinami
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Genki Kawamura
- Department of Chemistry, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takeaki Ozawa
- Department of Chemistry, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hirofumi Toda
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Grant R Gordon
- Hotchkiss Brain Institute, Cumming School of Medicine, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Shaoyu Ge
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Hajime Hirase
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Marie-Eve Paquet
- CERVO Brain Research Centre, Québec, QC, G1J 2G3, Canada
- Department of Biochemistry, Microbiology and Bioinformatics, Laval University, Québec, QC, G1E 1T2, Canada
| | - Mikhail Drobizhev
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Kaspar Podgorski
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147, USA
- Allen Institute for Neural Dynamics, Seattle, WA, 98109, USA
| | - Robert E Campbell
- Department of Chemistry, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
- CERVO Brain Research Centre, Québec, QC, G1J 2G3, Canada.
- Department of Biochemistry, Microbiology and Bioinformatics, Laval University, Québec, QC, G1E 1T2, Canada.
| |
Collapse
|
45
|
Socodato R, Rodrigues-Santos A, Tedim-Moreira J, Almeida TO, Canedo T, Portugal CC, Relvas JB. RhoA balances microglial reactivity and survival during neuroinflammation. Cell Death Dis 2023; 14:690. [PMID: 37863874 PMCID: PMC10589285 DOI: 10.1038/s41419-023-06217-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 09/29/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023]
Abstract
Microglia are the largest myeloid cell population in the brain. During injury, disease, or inflammation, microglia adopt different functional states primarily involved in restoring brain homeostasis. However, sustained or exacerbated microglia inflammatory reactivity can lead to brain damage. Dynamic cytoskeleton reorganization correlates with alterations of microglial reactivity driven by external cues, and proteins controlling cytoskeletal reorganization, such as the Rho GTPase RhoA, are well positioned to refine or adjust the functional state of the microglia during injury, disease, or inflammation. Here, we use multi-biosensor-based live-cell imaging approaches and tissue-specific conditional gene ablation in mice to understand the role of RhoA in microglial response to inflammation. We found that a decrease in RhoA activity is an absolute requirement for microglial metabolic reprogramming and reactivity to inflammation. However, without RhoA, inflammation disrupts Ca2+ and pH homeostasis, dampening mitochondrial function, worsening microglial necrosis, and triggering microglial apoptosis. Our results suggest that a minimum level of RhoA activity is obligatory to concatenate microglia inflammatory reactivity and survival during neuroinflammation.
Collapse
Affiliation(s)
- Renato Socodato
- Institute of Research and Innovation in Health (i3S) and Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal.
| | - Artur Rodrigues-Santos
- Institute of Research and Innovation in Health (i3S) and Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal
| | - Joana Tedim-Moreira
- Institute of Research and Innovation in Health (i3S) and Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
| | - Tiago O Almeida
- Institute of Research and Innovation in Health (i3S) and Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal
- ICBAS - School of Medicine and Biomedical Sciences, Porto, Portugal
| | - Teresa Canedo
- Institute of Research and Innovation in Health (i3S) and Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal
| | - Camila C Portugal
- Institute of Research and Innovation in Health (i3S) and Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal
| | - João B Relvas
- Institute of Research and Innovation in Health (i3S) and Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal.
- Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal.
| |
Collapse
|
46
|
Gándara L, Durrieu L, Wappner P. Metabolic FRET sensors in intact organs: Applying spectral unmixing to acquire reliable signals. Biol Open 2023; 12:bio060030. [PMID: 37671927 PMCID: PMC10562930 DOI: 10.1242/bio.060030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023] Open
Abstract
In multicellular organisms, metabolic coordination across multiple tissues and cell types is essential to satisfy regionalized energetic requirements and respond coherently to changing environmental conditions. However, most metabolic assays require the destruction of the biological sample, with a concomitant loss of spatial information. Fluorescent metabolic sensors and probes are among the most user-friendly techniques for collecting metabolic information with spatial resolution. In a previous work, we have adapted to an animal system, Drosophila melanogaster, genetically encoded metabolic FRET-based sensors that had been previously developed in single-cell systems. These sensors provide semi-quantitative data on the stationary concentrations of key metabolites of the bioenergetic metabolism: lactate, pyruvate, and 2-oxoglutarate. The use of these sensors in intact organs required the development of an image processing method that minimizes the contribution of spatially complex autofluorescence patterns, that would obscure the FRET signals. In this article, we show step by step how to design FRET-based sensor experiments and how to process the fluorescence signal to obtain reliable FRET values.
Collapse
Affiliation(s)
- Lautaro Gándara
- Fundación Instituto Leloir, Patricias Argentinas 435, Buenos Aires 1405, Argentina
| | - Lucía Durrieu
- Fundación Instituto Leloir, Patricias Argentinas 435, Buenos Aires 1405, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales–Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1425 Buenos Aires, Argentina
| | - Pablo Wappner
- Fundación Instituto Leloir, Patricias Argentinas 435, Buenos Aires 1405, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales–Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1425 Buenos Aires, Argentina
| |
Collapse
|
47
|
Kato Y, Iwata S, Nasu Y, Obata A, Nagata K, Campbell RE, Mizuno T. Construction of the lactate-sensing fibremats by confining sensor fluorescent protein of lactate inside nanofibers of the poly(HPMA/DAMA)/ADH-nylon 6 core-shell fibremat. RSC Adv 2023; 13:29584-29593. [PMID: 37822650 PMCID: PMC10562976 DOI: 10.1039/d3ra06108f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023] Open
Abstract
The development of a new materials platform capable of sustaining the functionality of proteinous sensor molecules over an extended period without being affected by biological contaminants in living systems, such as proteases, is highly demanded. In this study, our primary focus was on fabricating new core-shell fibremats using unique polymer materials, capable of functionalizing encapsulated sensor proteins while resisting the effects of proteases. The core-fibre parts of core-shell fibremats were made using a newly developed post-crosslinkable water-soluble copolymer, poly(2-hydroxypropyl methacrylamide)-co-poly(diacetone methacrylamide), and the bifunctional crosslinking agent, adipic dihydrazide, while the shell layer of the nanofibers was made of nylon 6. Upon encapsulating the lactate-sensor protein eLACCO1.1 at the core-fibre part, the fibremat exhibited a distinct concentration-dependent fluorescence response, with a dynamic range of fluorescence alteration exceeding 1000% over the lactate concentration range of 0 to 100 mM. The estimated dissociation constant from the titration data was comparable to that estimated in a buffer solution. The response remained stable even after 5 cycles and in the presence of proteases. These results indicates that our core-shell fibremat platform could serve as effective immobilizing substrates for various sensor proteins, facilitating continuous and quantitative monitoring of various low-molecular-weight metabolites and catabolites in a variety of biological samples.
Collapse
Affiliation(s)
- Yuna Kato
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology Gokiso-cho, Showa-ku Nagoya Aichi 466-8555 Japan
| | - Shuichi Iwata
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology Gokiso-cho, Showa-ku Nagoya Aichi 466-8555 Japan
| | - Yusuke Nasu
- Department of Chemistry, School of Science, The University of Tokyo Bunkyo-ku Tokyo 113-0033 Japan
| | - Akiko Obata
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology Gokiso-cho, Showa-ku Nagoya Aichi 466-8555 Japan
| | - Kenji Nagata
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology Gokiso-cho, Showa-ku Nagoya Aichi 466-8555 Japan
| | - Robert E Campbell
- Department of Chemistry, School of Science, The University of Tokyo Bunkyo-ku Tokyo 113-0033 Japan
| | - Toshihisa Mizuno
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology Gokiso-cho, Showa-ku Nagoya Aichi 466-8555 Japan
- Department of Nanopharmaceutical Sciences, Graduate School of Engineering, Nagoya Institute of Technology Gokiso-cho, Showa-ku Nagoya Aichi 466-8555 Japan
| |
Collapse
|
48
|
Xu D, Vincent A, González-Gutiérrez A, Aleyakpo B, Anoar S, Giblin A, Atilano ML, Adams M, Shen D, Thoeng A, Tsintzas E, Maeland M, Isaacs AM, Sierralta J, Niccoli T. A monocarboxylate transporter rescues frontotemporal dementia and Alzheimer's disease models. PLoS Genet 2023; 19:e1010893. [PMID: 37733679 PMCID: PMC10513295 DOI: 10.1371/journal.pgen.1010893] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 07/29/2023] [Indexed: 09/23/2023] Open
Abstract
Brains are highly metabolically active organs, consuming 20% of a person's energy at resting state. A decline in glucose metabolism is a common feature across a number of neurodegenerative diseases. Another common feature is the progressive accumulation of insoluble protein deposits, it's unclear if the two are linked. Glucose metabolism in the brain is highly coupled between neurons and glia, with glucose taken up by glia and metabolised to lactate, which is then shuttled via transporters to neurons, where it is converted back to pyruvate and fed into the TCA cycle for ATP production. Monocarboxylates are also involved in signalling, and play broad ranging roles in brain homeostasis and metabolic reprogramming. However, the role of monocarboxylates in dementia has not been tested. Here, we find that increasing pyruvate import in Drosophila neurons by over-expression of the transporter bumpel, leads to a rescue of lifespan and behavioural phenotypes in fly models of both frontotemporal dementia and Alzheimer's disease. The rescue is linked to a clearance of late stage autolysosomes, leading to degradation of toxic peptides associated with disease. We propose upregulation of pyruvate import into neurons as potentially a broad-scope therapeutic approach to increase neuronal autophagy, which could be beneficial for multiple dementias.
Collapse
Affiliation(s)
- Dongwei Xu
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, United Kingdom
| | - Alec Vincent
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, United Kingdom
| | - Andrés González-Gutiérrez
- Department of Neuroscience and Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Benjamin Aleyakpo
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, United Kingdom
| | - Sharifah Anoar
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, United Kingdom
| | - Ashling Giblin
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, United Kingdom
- UK Dementia Research Institute at UCL, Cruciform Building, London, United Kingdom
| | - Magda L. Atilano
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, United Kingdom
- UK Dementia Research Institute at UCL, Cruciform Building, London, United Kingdom
| | - Mirjam Adams
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, United Kingdom
| | - Dunxin Shen
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, United Kingdom
| | - Annora Thoeng
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, United Kingdom
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Elli Tsintzas
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, United Kingdom
| | - Marie Maeland
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, United Kingdom
| | - Adrian M. Isaacs
- UK Dementia Research Institute at UCL, Cruciform Building, London, United Kingdom
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Jimena Sierralta
- Department of Neuroscience and Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Teresa Niccoli
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, United Kingdom
| |
Collapse
|
49
|
Debruyne AC, Okkelman IA, Dmitriev RI. Balance between the cell viability and death in 3D. Semin Cell Dev Biol 2023; 144:55-66. [PMID: 36117019 DOI: 10.1016/j.semcdb.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 11/25/2022]
Abstract
Cell death is a phenomenon, frequently perceived as an absolute event for cell, tissue and the organ. However, the rising popularity and complexity of such 3D multicellular 'tissue building blocks' as heterocellular spheroids, organoids, and 'assembloids' prompts to revise the definition and quantification of cell viability and death. It raises several questions on the overall viability of all the cells within 3D volume and on choosing the appropriate, continuous, and non-destructive viability assay enabling for a single-cell analysis. In this review, we look at cell viability and cell death modalities with attention to the intrinsic features of such 3D models as spheroids, organoids, and bioprints. Furthermore, we look at emerging and promising methodologies, which can help define and understand the balance between cell viability and death in dynamic and complex 3D environments. We conclude that the recent innovations in biofabrication, biosensor probe development, and fluorescence microscopy can help answer these questions.
Collapse
Affiliation(s)
- Angela C Debruyne
- Tissue Engineering and Biomaterials Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent 9000, Belgium
| | - Irina A Okkelman
- Tissue Engineering and Biomaterials Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent 9000, Belgium
| | - Ruslan I Dmitriev
- Tissue Engineering and Biomaterials Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent 9000, Belgium.
| |
Collapse
|
50
|
Barros LF, Ruminot I, Sandoval PY, San Martín A. Enlightening brain energy metabolism. Neurobiol Dis 2023:106211. [PMID: 37352985 DOI: 10.1016/j.nbd.2023.106211] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/06/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023] Open
Abstract
Brain tissue metabolism is distributed across several cell types and subcellular compartments, which activate at different times and with different temporal patterns. The introduction of genetically-encoded fluorescent indicators that are imaged using time-lapse microscopy has opened the possibility of studying brain metabolism at cellular and sub-cellular levels. There are indicators for sugars, monocarboxylates, Krebs cycle intermediates, amino acids, cofactors, and energy nucleotides, which inform about relative levels, concentrations and fluxes. This review offers a brief survey of the metabolic indicators that have been validated in brain cells, with some illustrative examples from the literature. Whereas only a small fraction of the metabolome is currently accessible to fluorescent probes, there are grounds to be optimistic about coming developments and the application of these tools to the study of brain disease.
Collapse
Affiliation(s)
- L F Barros
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile.
| | - I Ruminot
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Facultad de Ciencias para el Cuidado de La Salud, Universidad San Sebastián, Valdivia, Chile
| | - P Y Sandoval
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Facultad de Ciencias para el Cuidado de La Salud, Universidad San Sebastián, Valdivia, Chile
| | - A San Martín
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Facultad de Ciencias para el Cuidado de La Salud, Universidad San Sebastián, Valdivia, Chile
| |
Collapse
|