1
|
Lee HS, Han JS, Park JH, Lee MH, Seo YJ, Jeon SY, Hong HR, Kim M, Do SG, Hwang BY, Park CS. Evaluation of Efficacy of Water-Soluble Fraction of Rhus semialata Gall Extract and Penta-O-Galloyl-β-D-Glucose on Mitigation of Hair Loss: An In Vitro and Randomized Double-Blind Placebo-Controlled Clinical Study. Antioxidants (Basel) 2025; 14:477. [PMID: 40298844 PMCID: PMC12024042 DOI: 10.3390/antiox14040477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 04/15/2025] [Accepted: 04/15/2025] [Indexed: 04/30/2025] Open
Abstract
Hair loss, a prevalent condition affecting individuals across various demographics, is associated with hormonal imbalances, oxidative stress, inflammation, and environmental factors. This study evaluated the anti-hair loss potential of the water-soluble fraction of Rhus semialata gall extract (WRGE) and its primary component, Penta-O-Galloyl-β-D-Glucose (PGG), through both in vitro and clinical studies. WRGE was obtained using a standardized extraction process, and PGG was identified via HPLC-DAD and HRESIMS/MS techniques. Human dermal papilla cells (HDPCs) are specialized fibroblasts that can regulate the hair growth cycle and hair follicle growth. HDPCs are widely used in research focused on anti-hair loss. In this study, the anti-hair loss effects of WRGE and PGG on HDPCs were confirmed. WRGE and PGG enhance cell proliferation in HDPCs. These results are associated with the activation of the Wnt/β-catenin signaling pathway and the upregulation of hair growth factors such as vascular endothelial growth factor (VEGF), insulin-like growth factor-1 (IGF-1), and fibroblast growth factor (FGF). Furthermore, WRGE and PGG significantly inhibited dihydrotestosterone (DHT)-mediated DKK-1 secretion and H2O2-medicated cytotoxicity. Clinical trials further validated these results, demonstrating significant improvements in hair density and visual hair appearance scores in participants treated with WRGE compared to a placebo group. These results collectively suggest that WRGE and PGG may serve as promising natural agents for the prevention and treatment of hair loss by targeting multiple biological pathways, including the regulation of hair growth factors, oxidative stress, and hormonal imbalances.
Collapse
Affiliation(s)
- Hee-Sung Lee
- Department of Manufacturing Pharmacy, College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea; (H.-S.L.)
| | - Jae Sang Han
- Department of Manufacturing Pharmacy, College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea; (H.-S.L.)
| | - Ji-Hyun Park
- Department of Manufacturing Pharmacy, College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea; (H.-S.L.)
| | - Min-Hyeok Lee
- Department of Manufacturing Pharmacy, College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea; (H.-S.L.)
| | - Yu-Jin Seo
- Department of Manufacturing Pharmacy, College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea; (H.-S.L.)
| | - Se Yeong Jeon
- Naturetech Co., Ltd., Cheonan 31257, Republic of Korea
| | | | - Miran Kim
- Unigen Inc., Cheonan 31257, Republic of Korea
| | - Seon Gil Do
- Naturetech Co., Ltd., Cheonan 31257, Republic of Korea
| | - Bang Yeon Hwang
- Department of Manufacturing Pharmacy, College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea; (H.-S.L.)
| | - Chan-Su Park
- Department of Manufacturing Pharmacy, College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea; (H.-S.L.)
| |
Collapse
|
2
|
Wang X, Lin Y, Yan L, Wu B, Zhu K, Wang X, Liu Z. Intensive stress impedes hair follicle growth through triggering cell cycle arrest of hair follicle stem cells. FASEB J 2025; 39:e70460. [PMID: 40059814 DOI: 10.1096/fj.202403343r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/08/2025] [Accepted: 03/03/2025] [Indexed: 05/13/2025]
Abstract
The detrimental effects of stress on hair growth are supported by empirical and experimental evidence, but the specific impact and mechanisms remain poorly understood. Here we utilized two intensive stress paradigms, repeated resiniferatoxin (RTX) injections and physical restraint in mice, to assess the effects of intensive stress on hair follicle growth after depilation. Initially, macroscopic pictures of the mice dorsal skin and HE staining showed a substantial inhibition of depilation-induced hair growth in both telogen and anagen hair follicle growth under intensive stress induced by RTX and restraint. Mechanistically, single-cell RNA sequencing analysis of mice skin under intensive stress highlighted a significant downregulation of cell-cycle genes and upregulation of the cAMP signaling pathway in Lgr5+ hair follicle stem cells (HFSCs). Notably, the sympathetic nervous system was activated under intensive stress. Then, the neurotransmitter noradrenaline (NA), a secretion of the sympathetic nervous system, and 8-bromo-cAMP, a cAMP analog, were used to manifest the inhibitory effect of the sympathetic nervous system on HaCaT cell proliferation, as evidenced by the results of decreased cell activity and colony formation, downregulated expression of cyclin D1/2 and CDK4, the increased percentage of G0/G1, and decreased percentage of the S phase. Importantly, hair follicle regeneration was significantly inhibited by NA and 8-bromo-cAMP in mice. Collectively, our study suggests that intensive stress inhibits the cell cycle of hair follicle growth through the sympathetic nervous system/NA/cAMP pathway, thus providing a mechanistic insight into intensive stress-induced inhibition in hair follicle growth.
Collapse
Affiliation(s)
- Xinhui Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yumiao Lin
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Lingchen Yan
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Binqi Wu
- Lafang China Co., Ltd, Shantou, Guangdong, China
- DeAge Biotechnology Co., LTD, Guangzhou, Guangdong, China
| | - Kechen Zhu
- Sipimo Biotechnology Co. LTD, Lianyungang, Jiangsu, China
| | - Xusheng Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zhongjie Liu
- Department of Anesthesiology, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
3
|
Shi Y, Wan S, Song X. Role of neurogenic inflammation in the pathogenesis of alopecia areata. J Dermatol 2024; 51:621-631. [PMID: 38605467 DOI: 10.1111/1346-8138.17227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/04/2024] [Accepted: 03/28/2024] [Indexed: 04/13/2024]
Abstract
Alopecia areata refers to an autoimmune illness indicated by persistent inflammation. The key requirement for alopecia areata occurrence is the disruption of immune-privileged regions within the hair follicles. Recent research has indicated that neuropeptides play a role in the damage to hair follicles by triggering neurogenic inflammation, stimulating mast cells ambient the follicles, and promoting apoptotic processes in keratinocytes. However, the exact pathogenesis of alopecia areata requires further investigation. Recently, there has been an increasing focus on understanding the mechanisms of immune diseases resulting from the interplay between the nervous and the immune system. Neurogenic inflammation due to neuroimmune disorders of the skin system may disrupt the inflammatory microenvironment of the hair follicle, which plays a crucial part in the progression of alopecia areata.
Collapse
Affiliation(s)
- Yetan Shi
- The Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Sheng Wan
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou, Zhejiang, China
| | - Xiuzu Song
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Dong J, Peng Z, Chen M, Lai Y, Zhang X, Yu M, Zhong H, Liu J, Yue Y, Shang J. Long Non-Coding RNA Mir17hg Positively Regulates Melanogenesis by Inhibiting TGFβ Receptor 2 under Psychological Stress. J Invest Dermatol 2024; 144:358-368.e10. [PMID: 37709007 DOI: 10.1016/j.jid.2023.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 09/16/2023]
Abstract
Vitiligo is a common skin depigmentation disorder characterized by the patchy loss of skin color. Nowadays, it is recognized as being correlated with multiple genetic factors as well as the psychological conditions of individuals. Long noncoding RNAs have been reported to underlie the pathogenesis of vitiligo; however, the role of long noncoding RNAs in the stress-related depigmentation process remains largely unknown. In this study, the inhibition of melanocyte function was observed in C57BL/6J mice modeled through chronic restraint stress. Furthermore, downregulation of the expression of the long noncoding RNAs Mir17hg was identified using RNA sequencing. The regulatory role of Mir17hg in melanogenesis was also investigated in melanocytes and zebrafish embryos through overexpression or knockdown. Finally, TGFβ receptor 2 was shown to be a downstream target in Mir17hg-mediated melanogenesis regulation, in which the classical TGFβ/SMAD signaling cascade and the PI3K/AKT/mTOR signaling cascade play important roles. In conclusion, our results revealed an important regulatory role of Mir17hg in melanogenesis through inhibition of TGFβR2, which can provide a potential therapeutic target for treating skin depigmentation disorders.
Collapse
Affiliation(s)
- Jing Dong
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zan Peng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Minghan Chen
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yifan Lai
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiaofeng Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Meng Yu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hui Zhong
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jun Liu
- New Drug Screening Center, Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, China
| | - Yunyun Yue
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Jing Shang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, China; NMPA Key Laboratory for Research and Evaluation of Cosmetics, National Institutes for Food and Drug Control, Beijing, China.
| |
Collapse
|
5
|
Zhang H, Wang M, Zhao X, Wang Y, Chen X, Su J. Role of stress in skin diseases: A neuroendocrine-immune interaction view. Brain Behav Immun 2024; 116:286-302. [PMID: 38128623 DOI: 10.1016/j.bbi.2023.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/16/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Psychological stress is a crucial factor in the development of many skin diseases, and the stigma caused by skin disorders may further increase the psychological burden, forming a vicious cycle of psychological stress leading to skin diseases. Therefore, understanding the relationship between stress and skin diseases is necessary. The skin, as the vital interface with the external environment, possesses its own complex immune system, and the neuroendocrine system plays a central role in the stress response of the body. Stress-induced alterations in the immune system can also disrupt the delicate balance of immune cells and inflammatory mediators in the skin, leading to immune dysregulation and increased susceptibility to various skin diseases. Stress can also affect the skin barrier function, impair wound healing, and promote the release of pro-inflammatory cytokines, thereby exacerbating existing skin diseases such as psoriasis, atopic dermatitis, acne, and urticaria. In the present review, we explored the intricate relationship between stress and skin diseases from a neuroendocrine-immune interaction perspective. We explored the occurrence and development of skin diseases in the context of stress, the stress models for skin diseases, the impact of stress on skin function and diseases, and relevant epidemiological studies and clinical trials. Understanding the relationship between stress and skin diseases from a neuroendocrine-immune interaction perspective provides a comprehensive framework for targeted interventions and new insights into the diagnosis and treatment of skin diseases.
Collapse
Affiliation(s)
- Hanyi Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China
| | - Mi Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China; Department of Mental Health Center, Xiangya Hospital, Central South University, Changsha, China
| | - Xue Zhao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China
| | - Yujie Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China.
| | - Juan Su
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China.
| |
Collapse
|
6
|
Liang A, Fang Y, Ye L, Meng J, Wang X, Chen J, Xu X. Signaling pathways in hair aging. Front Cell Dev Biol 2023; 11:1278278. [PMID: 38033857 PMCID: PMC10687558 DOI: 10.3389/fcell.2023.1278278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023] Open
Abstract
Hair follicle (HF) homeostasis is regulated by various signaling pathways. Disruption of such homeostasis leads to HF disorders, such as alopecia, pigment loss, and hair aging, which is causing severe health problems and aesthetic concerns. Among these disorders, hair aging is characterized by hair graying, hair loss, hair follicle miniaturization (HFM), and structural changes to the hair shaft. Hair aging occurs under physiological conditions, while premature hair aging is often associated with certain pathological conditions. Numerous investigations have been made to determine the mechanisms and explore treatments to prevent hair aging. The most well-known hypotheses about hair aging include oxidative stress, hormonal disorders, inflammation, as well as DNA damage and repair defects. Ultimately, these factors pose threats to HF cells, especially stem cells such as hair follicle stem cells, melanocyte stem cells, and mesenchymal stem cells, which hamper hair regeneration and pigmentation. Here, we summarize previous studies investigating the above mechanisms and the existing therapeutic methods for hair aging. We also provide insights into hair aging research and discuss the limitations and outlook.
Collapse
Affiliation(s)
- Aishi Liang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Yingshan Fang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Lan Ye
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Jianda Meng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Xusheng Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Jinsong Chen
- Endocrinology Department, First People’s Hospital of Foshan, Foshan, China
| | - Xuejuan Xu
- Endocrinology Department, First People’s Hospital of Foshan, Foshan, China
| |
Collapse
|
7
|
Abstract
Noninflammatory alopecia is common in dogs and is a frequent cause to consult a veterinarian. It is also a common reason to take biopsies. Noninflammatory alopecia can be attributed to a decreased formation or cytodifferentiation of the hair follicle or the hair shaft in utero, resulting in congenital alopecia. Congenital alopecia often has a hereditary cause, and examples of such disorders are ectodermal dysplasias associated with gene variants of the ectodysplasin A gene. Noninflammatory alopecia may also be caused by impaired postnatal regeneration of hair follicles or shafts. Such disorders may have a clear breed predilection, and alopecia starts early in life. A hereditary background is suspected in those cases but has not been proven. They are referred to as follicular dysplasia although some of these disorders present histologically like a hair cycle disturbance. Late-onset alopecia is usually acquired and may be associated with endocrinopathies. Other possible causes are impaired vascular perfusion or stress. As the hair follicle has limited possible responses to altered regulation, and histopathology may change during the course of a disease, a detailed clinical history, thorough clinical examination including blood work, appropriate biopsy site selection, and detailed histological findings need to be combined to achieve a final diagnosis. This review aims to provide an overview about the known noninflammatory alopecic disorders in dogs. As the pathogenesis of most disorders is unknown, some statements are based on comparative aspects or reflect the authors' opinion.
Collapse
|
8
|
Hwang SB, Park HJ, Lee BH. Collagen Hydrolysate from the Scales of Mozambique Tilapia ( Oreochromis mossambicus) Improve Hair and Skin Health by Alleviating Oxidative Stress and Inflammation and Promoting Hair Growth and Extracellular Matrix Factors. Mar Drugs 2023; 21:475. [PMID: 37755088 PMCID: PMC10533131 DOI: 10.3390/md21090475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023] Open
Abstract
Fish-derived collagen hydrolysate (CH) has shown promise in improving hair and skin health. Therefore, this study sought to comprehensively assess the effects of CH extracted from Mozambique tilapia (Oreochromis mossambicus) scales on hair and skin using in vitro and in vivo models. Human dermal papilla cells (hDPCs) were used for antioxidant and gene expression analyses, while C57BL/6 mice were orally administered CH for six weeks to assess hair growth patterns. The mice were divided into four groups: negative control (NC; distilled water), positive control (PC; 1 mg/kg finasteride), CH500 (500 mg/kg BW CH), and CH1000 (1000 mg/kg BW CH). CH mitigated catalase activity reduction in hDPCs, increased IGF-1 and VEGF levels, and decreased TGF-β1, TNF-α, and IL-1β expression. In vivo, CH treatment improved hair growth index, length, diameter, weight, and density. Scanning electron microscopy revealed reduced hair damage. Moreover, CH up-regulated IGF-1, VEGF, Elastin, and HAS2 mRNA expression while down-regulating TNF-α and IL-1β. CH enhanced hair shine, growth, and skin health while alleviating inflammation. These findings demonstrate the potential of CH in alleviating oxidative stress, promoting hair growth, and enhancing skin health, both in vitro and in vivo. Fish-derived CH offers a cost-effective and bioavailable option for improving hair and skin health.
Collapse
Affiliation(s)
| | | | - Bog-Hieu Lee
- Department of Food and Nutrition, Chung-Ang University, Anseong 17546, Republic of Korea; (S.B.H.); (H.J.P.)
| |
Collapse
|
9
|
Feng Z, Qin Y, Jiang G. Reversing Gray Hair: Inspiring the Development of New Therapies Through Research on Hair Pigmentation and Repigmentation Progress. Int J Biol Sci 2023; 19:4588-4607. [PMID: 37781032 PMCID: PMC10535703 DOI: 10.7150/ijbs.86911] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/19/2023] [Indexed: 10/03/2023] Open
Abstract
Hair graying is a common and visible sign of aging resulting from decreased or absence of melanogenesis. Although it has been established that gray hair greatly impacts people's mental health and social life, there is no effective countermeasure other than hair dyes. It has long been thought that reversal of gray hair on a large scale is rare. However, a recent study reported that individual gray hair darkening is a common phenomenon, suggesting the possibility of large-scale reversal of gray hair. In this article, we summarize the regulation mechanism of melanogenesis and review existing cases of hair repigmentation caused by several factors, including monoclonal antibodies drugs, tyrosine kinase inhibitors (TKIs), immunomodulators, other drugs, micro-injury, and tumors, and speculate on the mechanisms behind them. This review offers some insights for further research into the modulation of melanogenesis and presents a novel perspective on the development of clinical therapies, with emphasis on topical treatments.
Collapse
Affiliation(s)
- Zhaorui Feng
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Department of Dermatology, Xuzhou Medical University, Xuzhou, China
| | - Yi Qin
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Department of Dermatology, Xuzhou Medical University, Xuzhou, China
| | - Guan Jiang
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Department of Dermatology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
10
|
Dong L, Chen Y, Gu L, Gan M, Carrier A, Oakes K, Zhang X, Dong Z. Oral delivery of a highly stable superoxide dismutase as a skin aging inhibitor. Biomed Pharmacother 2023; 164:114878. [PMID: 37209626 DOI: 10.1016/j.biopha.2023.114878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/25/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023] Open
Abstract
As an effective antioxidant enzyme, superoxide dismutase (SOD) has been widely used as a food supplement, cosmetic additive, and therapeutic agent. However, oral delivery of SOD is challenging due to its relative instability, limited bioavailability, and low absorption efficiency in the gastrointestinal (GI) tract. We addressed these issues using a highly stable superoxide dismutase (hsSOD) generated from a hot spring microbial sample. This SOD exhibited a specific activity of 5000 IU/mg while retaining its enzymatic activity under low pH environments of an artificial GI system and in the presence of surfactants and various proteolytic enzymes. The inhibitory effects of hsSOD against skin-aging was evaluated under both in vitro and in vivo experiments using fibroblast cell and D-galactose induced aging-mouse models, respectively. Effective oral delivery of hsSOD promises wide applicability in pharmaceutical and food industries.
Collapse
Affiliation(s)
- Liang Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, P.O. Box 2714, Beijing 100080, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongli Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, P.O. Box 2714, Beijing 100080, China; Shenzhen Siyomicro BIO-TECH CO., Ltd., Shenzhen 518116, China
| | - Lihong Gu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, P.O. Box 2714, Beijing 100080, China; Shenzhen Siyomicro BIO-TECH CO., Ltd., Shenzhen 518116, China
| | - Miao Gan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, P.O. Box 2714, Beijing 100080, China; Shenzhen Siyomicro BIO-TECH CO., Ltd., Shenzhen 518116, China
| | - Andrew Carrier
- Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada
| | - Ken Oakes
- Department of Biology, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada
| | - Xu Zhang
- Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada.
| | - Zhiyang Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, P.O. Box 2714, Beijing 100080, China.
| |
Collapse
|
11
|
Park S, Han N, Lee JM, Lee JH, Bae S. Effects of Allium hookeri Extracts on Hair-Inductive and Anti-Oxidative Properties in Human Dermal Papilla Cells. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091919. [PMID: 37176977 PMCID: PMC10181221 DOI: 10.3390/plants12091919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Oxidative stress and cellular senescence in dermal papilla cells (DPCs) are major etiological factors causing hair loss. In this study, the effect of the Allium hookeri extract (AHE) on hair-inductive and anti-oxidative properties was investigated in human DPCs. As a result, it was found that a non-cytotoxic concentration of the extracts increased the viability and size of the human DPC spheroid, which was associated with the increased expression of hair-growth-related genes in cells. To determine whether or not these effects could be attributed to intracellular anti-oxidative effects, liquid chromatography-mass spectrometry alongside various biochemical analyses are conducted herein. An ingredient called alliin was identified as one of the main components. Furthermore, AHE treatment induced a significant decrease in H2O2-mediated cytotoxicities, cell death, and cellular senescence in human DPCs. Upon analyzing these results with a molecular mechanism approach, it was shown that AHE treatment increased β-Catenin and NRF2 translocation into the nucleus while inhibiting the translocation of NF-κB (p50) through p38 and PKA-mediated phosphorylations of GSK3β, an upstream regulator of those proteins. These results overall indicate the possibility that AHE can regulate GSK3β-mediated β-Catenin, NRF2, and NF-κB signaling to enhance hair-inductive properties and ultimately protect against oxidative stress-induced cellular damage in human DPCs.
Collapse
Affiliation(s)
- Seokmuk Park
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Nayeon Han
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
- Derma Bio Medical Research Center, Dermato Bio, Inc., 174-1 Songdo-dong, Yeonsu-gu, Incheon 21984, Republic of Korea
| | - Jung-Min Lee
- Derma Bio Medical Research Center, Dermato Bio, Inc., 174-1 Songdo-dong, Yeonsu-gu, Incheon 21984, Republic of Korea
| | - Jae-Ho Lee
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Seunghee Bae
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
12
|
Plaut S. “Long COVID-19” and viral “fibromyalgia-ness”: Suggesting a mechanistic role for fascial myofibroblasts (Nineveh, the shadow is in the fascia). Front Med (Lausanne) 2023; 10:952278. [PMID: 37089610 PMCID: PMC10117846 DOI: 10.3389/fmed.2023.952278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 02/27/2023] [Indexed: 04/08/2023] Open
Abstract
The coronavirus pandemic has led to a wave of chronic disease cases; “Long COVID-19” is recognized as a new medical entity and resembles “fibromyalgia” which, likewise, lacks a clear mechanism. Observational studies indicate that up to 30%–40% of convalescent COVID-19 patients develop chronic widespread pain and fatigue and fulfill the 2016 diagnostic criteria for “fibromyalgia.” A recent study suggested a theoretical neuro-biomechanical model (coined “Fascial Armoring”) to help explain the pathogenesis and cellular pathway of fibromyalgia, pointing toward mechanical abnormalities in connective tissue and fascia, driven by contractile myo/fibroblasts and altered extracellular matrix remodeling with downstream corresponding neurophysiological aberrations. This may help explain several of fibromyalgia’s manifestations such as pain, distribution of pain, trigger points/tender spots, hyperalgesia, chronic fatigue, cardiovascular abnormalities, metabolic abnormalities, autonomic abnormalities, small fiber neuropathy, various psychosomatic symptoms, lack of obvious inflammation, and silent imaging investigations. Pro-inflammatory and pro-fibrotic pathways provide input into this mechanism via stimulation of proto/myofibroblasts. In this hypothesis and theory paper the theoretical model of Fascial Armoring is presented to help explain the pathogenesis and manifestations of “long COVID-19” as a disease of immuno-rheumo-psycho-neurology. The model is also used to make testable experimental predictions on investigations and predict risk and relieving factors.
Collapse
|
13
|
The impact of perceived stress on the hair follicle: Towards solving a psychoneuroendocrine and neuroimmunological puzzle. Front Neuroendocrinol 2022; 66:101008. [PMID: 35660551 DOI: 10.1016/j.yfrne.2022.101008] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/03/2022] [Accepted: 05/24/2022] [Indexed: 12/24/2022]
Abstract
While popular belief harbors little doubt that perceived stress can cause hair loss and premature graying, the scientific evidence for this is arguably much thinner. Here, we investigate whether these phenomena are real, and show that the cyclic growth and pigmentation of the hair follicle (HF) provides a tractable model system for dissecting how perceived stress modulates aspects of human physiology. Local production of stress-associated neurohormones and neurotrophins coalesces with neurotransmitters and neuropeptides released from HF-associated sensory and autonomic nerve endings, forming a complex local stress-response system that regulates perifollicular neurogenic inflammation, interacts with the HF microbiome and controls mitochondrial function. This local system integrates into the central stress response systems, allowing the study of systemic stress responses affecting organ function by quantifying stress mediator content of hair. Focusing on selected mediators in this "brain-HF axis" under stress conditions, we distill general principles of HF dysfunction induced by perceived stress.
Collapse
|
14
|
The Emerging Role of Neurokinin-1 Receptor Blockade Using Aprepitant in the Redox System of Esophageal Squamous Cell Carcinoma. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10399-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Wang X, Cai C, Liang Q, Xia M, Lai L, Wu X, Jiang X, Cheng H, Song Y, Zhou Q. Integrated Transcriptomics and Metabolomics Analyses of Stress-Induced Murine Hair Follicle Growth Inhibition. Front Mol Biosci 2022; 9:781619. [PMID: 35198601 PMCID: PMC8859263 DOI: 10.3389/fmolb.2022.781619] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/13/2022] [Indexed: 12/11/2022] Open
Abstract
Psychological stress plays an important role in hair loss, but the underlying mechanisms are not well-understood, and the effective therapies available to regrow hair are rare. In this study, we established a chronic restraint stress (CRS)-induced hair growth inhibition mouse model and performed a comprehensive analysis of metabolomics and transcriptomics. Metabolomics data analysis showed that the primary and secondary metabolic pathways, such as carbohydrate metabolism, amino acid metabolism, and lipid metabolism were significantly altered in skin tissue of CRS group. Transcriptomics analysis also showed significant changes of genes expression profiles involved in regulation of metabolic processes including arachidonic acid metabolism, glutathione metabolism, glycolysis gluconeogenesis, nicotinate and nicotinamide metabolism, purine metabolism, retinol metabolism and cholesterol metabolism. Furthermore, RNA-Seq analyses also found that numerous genes associated with metabolism were significantly changed, such as Hk-1, in CRS-induced hair growth inhibition. Overall, our study supplied new insights into the hair growth inhibition induced by CRS from the perspective of integrated metabolomics and transcriptomics analyses.
Collapse
Affiliation(s)
- Xuewen Wang
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Hair Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | - Qichang Liang
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Hair Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Meng Xia
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Lihua Lai
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xia Wu
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Hair Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyun Jiang
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Hair Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Cheng
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Hair Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Hao Cheng, ; Yinjing Song, ; Qiang Zhou,
| | - Yinjing Song
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Hair Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Hao Cheng, ; Yinjing Song, ; Qiang Zhou,
| | - Qiang Zhou
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Hair Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Hao Cheng, ; Yinjing Song, ; Qiang Zhou,
| |
Collapse
|
16
|
Jung BH, Song SH, Yoon SJ, Koo JH, Yoo KY. The Effect of Botulinum Toxin on Hair Follicle Cell Regeneration Under Continuous Stress Conditions: a Pilot Animal Study. Neurotox Res 2022; 40:103-110. [PMID: 34997456 DOI: 10.1007/s12640-021-00453-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/18/2021] [Accepted: 11/28/2021] [Indexed: 11/28/2022]
Abstract
We analyzed the effect of botulinum toxin (BTX) type A on the regeneration of hair follicle cells under continuous stress conditions. Thirty 6-week-old C57BL/6 mice were used, and hair loss was induced on their backs (10 control (CTL) mice, reared under normal conditions without stress; 10 mice, exposed to continuous stress (STRESS) by fixing in an enclosed space; 10 BTX + STRESS mice, injected subcutaneously with 1 IU of BTX (0.1 cc) where the hair follicles were removed under the same stress conditions). There was less hair growth in the STRESS and BTX + STRESS groups compared to that in the CTL group at 2 weeks. At 3 weeks, the telogen stage was mainly observed in the STRESS group whereas the anagen stage was observed in the CTL and BTX + STRESS groups. A substantial increase in terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells was observed in the STRESS group compared to that in the CTL and BTX + STRESS groups. Substance P (SP) immunoreactivity cell levels increased in the STRESS group at 2 and 3 weeks compared to those in the BTX + STRESS group. SP expression increased at 2 and 3 weeks in the STRESS group compared to that in the CTL and BTX + STRESS groups. A delay in the regeneration cycle of the hair follicle cells occurred when stress was applied, and an almost normal regeneration cycle occurred when BTX was injected subcutaneously. Therefore, BTX may be a positive indicator for hair loss treatment.
Collapse
Affiliation(s)
- Bo Hyun Jung
- Department of Oral Anatomy, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Sun Hong Song
- Department of Rehabilitation Medicine, College of Medicine, Gangneung Asan Hospital, University of Ulsan, Gangneung, Republic of Korea.
| | - Se Jin Yoon
- Danam Rehabilitation Clinics, Seoul, Republic of Korea
| | - Jung Hoi Koo
- Department of Rehabilitation Medicine, College of Medicine, Gangneung Asan Hospital, University of Ulsan, Gangneung, Republic of Korea
| | - Ki Yeon Yoo
- Department of Oral Anatomy, Gangneung-Wonju National University, Gangneung, Republic of Korea
| |
Collapse
|
17
|
The SP/NK1R System-Mediated ROS Generation in GBM Cells through Inhibiting Glutaredoxin Protein. Neurol Res Int 2021; 2021:9966000. [PMID: 34917417 PMCID: PMC8670971 DOI: 10.1155/2021/9966000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/06/2021] [Accepted: 11/10/2021] [Indexed: 02/07/2023] Open
Abstract
Altered redox balance is among the main contributing factors developing glioblastoma multiforme (GBM), a highly aggressive grade IV brain tumor. Neuropeptide substance P (SP) plays a key role in modifying the cellular redox environment by activating the neurokinin-1 receptor (NK1R). In this study, we aimed to investigate the redox-modulating properties of both SP and a commercially available NK1R antagonist, aprepitant in GBM cells. To detect the effect of aprepitant on the viability of U87 glioblastoma cells, resazurin assay was applied. The level of intracellular ROS was assessed using 2′,7′-dichlorodihydrofluorescein diacetate (H2DCFDA) assay. The expression of glutaredoxin, a well-known redox-active protein, was measured by quantitative real-time polymerase chain reaction (qRT-PCR). Concurrently, the activity of glutaredoxin was also analyzed by a commercial kit (ZellBio GmbH). We found that SP increased the intracellular levels of reactive oxygen species (ROS) in U87 GBM cells, and aprepitant remarkably decreased this effect. We also explored the effects of SP/NK1R signaling on the glutaredoxin system as a major cellular redox buffer in GBM cells. SP reduced both expression and enzymatic activity of glutaredoxin, and these effects were significantly decreased by aprepitant. In conclusion, our results suggest a possible involvement of SP/NK1R signaling in GBM pathogenesis through oxidative stress and offering new insight for the application of aprepitant as a redox-modulating strategy in GBM patients.
Collapse
|
18
|
Suzuki T, Ito T, Gilhar A, Tokura Y, Reich K, Paus R. The hair follicle-psoriasis axis: Shared regulatory mechanisms and therapeutic targets. Exp Dermatol 2021; 31:266-279. [PMID: 34587317 DOI: 10.1111/exd.14462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/09/2021] [Accepted: 09/24/2021] [Indexed: 12/17/2022]
Abstract
It has long been known that there is a special affinity of psoriasis for the scalp: Here, it occurs most frequently, lesions terminate sharply in frontal skin beyond the hair line and are difficult to treat. Yet, surprisingly, scalp psoriasis only rarely causes alopecia, even though the pilosebaceous unit clearly is affected. Here, we systematically explore the peculiar, insufficiently investigated connection between psoriasis and growing (anagen) terminal scalp hair follicles (HFs), with emphasis on shared regulatory mechanism and therapeutic targets. Interestingly, several drugs and stressors that can trigger/aggravate psoriasis can inhibit hair growth (e.g. beta-blockers, chloroquine, carbamazepine, interferon-alpha, perceived stress). Instead, several anti-psoriatic agents can stimulate hair growth (e.g. cyclosporine, glucocorticoids, dithranol, UV irradiation), while skin/HF trauma (Köbner phenomenon/depilation) favours the development of psoriatic lesions and induces anagen in "quiescent" (telogen) HFs. On this basis, we propose two interconnected working models: (a) the existence of a bidirectional "hair follicle-psoriasis axis," along which keratinocytes of anagen scalp HFs secrete signals that favour the development and maintenance of psoriatic scalp lesions and respond to signals from these lesions, and (b) that anagen induction and psoriatic lesions share molecular "switch-on" mechanisms, which invite pharmacological targeting, once identified. Therefore, we advocate a novel, cross-fertilizing and integrative approach to psoriasis and hair research that systematically characterizes the "HF-psoriasis axis," focused on identification and therapeutic targeting of selected, shared signalling pathways in the future management of both, psoriasis and hair growth disorders.
Collapse
Affiliation(s)
- Takahiro Suzuki
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Taisuke Ito
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Amos Gilhar
- Skin Research Laboratory, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yoshiki Tokura
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Allergic Disease Research Center, Chutoen General Medical Center, Kakegawa, Japan
| | - Kristian Reich
- Institute for Health Services Research in Dermatology and Nursing, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Monasterium Laboratory, Münster, Germany
| | - Ralf Paus
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA.,Monasterium Laboratory, Münster, Germany.,Centre for Dermatology Research, University of Manchester, Manchester, UK.,NIHR Manchester Biomedical Research Center, Manchester, UK
| |
Collapse
|
19
|
Stöckl S, Eitner A, Bauer RJ, König M, Johnstone B, Grässel S. Substance P and Alpha-Calcitonin Gene-Related Peptide Differentially Affect Human Osteoarthritic and Healthy Chondrocytes. Front Immunol 2021; 12:722884. [PMID: 34512650 PMCID: PMC8430215 DOI: 10.3389/fimmu.2021.722884] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/09/2021] [Indexed: 12/13/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease that not only causes cartilage loss but also structural damage in all joint tissues. Joints are innervated by alpha-calcitonin gene-related peptide (αCGRP) and substance P (SP)-positive sensory nerve fibers. Alteration of sensory joint innervation could be partly responsible for degenerative changes in joints that contribute to the development of OA. Therefore, our aim was to analyze and compare the molecular effects of SP and αCGRP on the metabolism of articular chondrocytes from OA patients and non-OA cartilage donors. We treated the cells with SP or αCGRP and analysed the influence of these neuropeptides on chondrocyte metabolism and modulation of signaling pathways. In chondrocytes from healthy cartilage, SP had minimal effects compared with its effects on OA chondrocytes, where it induced inflammatory mediators, inhibited chondrogenic markers and promoted apoptosis and senescence. Treatment with αCGRP also increased apoptosis and senescence and reduced chondrogenic marker expression in OA chondrocytes, but stimulated an anabolic and protective response in healthy chondrocytes. The catabolic influence of SP and αCGRP might be due to activation of ERK signaling that could be counteracted by an increased cAMP response. We suggest that a switch between the G-subunits of the corresponding receptors after binding their ligands SP or αCGRP plays a central role in mediating the observed effects of sensory neuropeptides on chondrocytes.
Collapse
Affiliation(s)
- Sabine Stöckl
- Department of Orthopaedic Surgery, Experimental Orthopaedics, Center for Medical Biotechnology, University of Regensburg, Regensburg, Germany
| | - Annett Eitner
- Department of Trauma, Hand and Reconstructive Surgery, Experimental Trauma Surgery, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany.,Department of Physiology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Richard J Bauer
- Department of Oral and Maxillofacial Surgery, Center for Medical Biotechnology, University Hospital Regensburg, Regensburg, Germany
| | - Matthias König
- Department of Orthopedics, University Medical Center Regensburg, Asklepios Klinikum Bad Abbach, Bad Abbach, Germany
| | - Brian Johnstone
- Department of Orthopaedics and Rehabilitation, Oregon Health & Science University, Portland, OR, United States
| | - Susanne Grässel
- Department of Orthopaedic Surgery, Experimental Orthopaedics, Center for Medical Biotechnology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
20
|
Rossiter H, Copic D, Direder M, Gruber F, Zoratto S, Marchetti-Deschmann M, Kremslehner C, Sochorová M, Nagelreiter IM, Mlitz V, Buchberger M, Lengauer B, Golabi B, Sukseree S, Mildner M, Eckhart L, Tschachler E. Autophagy protects murine preputial glands against premature aging, and controls their sebum phospholipid and pheromone profile. Autophagy 2021; 18:1005-1019. [PMID: 34491140 DOI: 10.1080/15548627.2021.1966716] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Preputial glands are large lipid and hormone secreting sebaceous organs of mice, and present a convenient model for the investigation of biological processes in sebocytes. Suppression of ATG7-dependent macroautophagy/autophagy in epithelial cells of murine skin causes enlargement of hair follicle-associated sebaceous glands and alters the lipid profile of sebum. We have now extended these studies to the preputial glands and find that autophagy significantly delays the onset of age-related ductal ectasia, influences lipid droplet morphology and contributes to the complete dissolution of the mature sebocytes during holocrine secretion. Single cell RNA sequencing showed that many genes involved in lipid metabolism and oxidative stress response were downregulated in immature and mature epithelial cells of ATG7-deficient glands. When analyzing the lipid composition of control and mutant glands, we found that levels of all phospholipid classes, except choline plasmalogen, were decreased in the mutant glands, with a concomitant accumulation of diacyl glycerides. Mass spectrometric imaging (MSI) demonstrated that phospholipid species, specifically the dominant phosphatidylcholine (PC 34:1), were decreased in immature and mature sebocytes. In addition, we found a strong reduction in the amounts of the pheromone, palmityl acetate. Thus, autophagy in the preputial gland is not only important for homeostasis of the gland as a whole and an orderly breakdown of cells during holocrine secretion, but also regulates phospholipid and fatty acid metabolism, as well as pheromone production.AbbreviationsATG7: autophagy related 7; BODIPY: boron dipyrromethene; DAG: diacyl glycerides; DBI: diazepam binding inhibitor; GFP: green fluorescent protein; KRT14: keratin 14; HPLC-MS: high performance liquid chromatography-mass spectrometry; LD: lipid droplet; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MSI: mass spectrometric imaging; ORO: Oil Red O; PC: phosphatidylcholine; PE: phosphatidylethanolamine; PG: preputial gland; PLIN2: perilipin 2; PtdIns: phosphatidylinositol; PL: phospholipids; POPC: 1-palmitoyl-2-oleoyl-PC; PS: phosphatidylserine; qRT-PCR: quantitative reverse transcribed PCR; SG: sebaceous gland; scRNAseq: single-cell RNA sequencing; TAG: triacylglycerides; TLC: thin layer chromatography.
Collapse
Affiliation(s)
| | - Dragan Copic
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Martin Direder
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Florian Gruber
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Samuele Zoratto
- Institute of Chemical Technologies and Analytics, Technical University of Vienna, Vienna, Austria
| | | | | | - Michaela Sochorová
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Ionela-Mariana Nagelreiter
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.,Center for Brain Research, Department of Molecular Neurosciences, Medical University of Vienna, Vienna, Austria
| | - Veronika Mlitz
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Maria Buchberger
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Barbara Lengauer
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Bahar Golabi
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Supawadee Sukseree
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Michael Mildner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Erwin Tschachler
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
21
|
Ren SY, Zhang YN, Wang MJC, Wen BR, Xia CY, Li X, Wang HQ, Zhang RP, Zhang Y, Wang ZZ, Chen NH. Hair growth predicts a depression-like phenotype in rats as a mirror of stress traceability. Neurochem Int 2021; 148:105110. [PMID: 34166749 DOI: 10.1016/j.neuint.2021.105110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 05/09/2021] [Accepted: 06/20/2021] [Indexed: 10/21/2022]
Abstract
As a subjective mood-related disorder with an unclear mechanism, depression has many problems in its diagnosis, which offers great space and value for research. At present, the methods commonly used to judge whether an animal model of depression has been established are mainly by biochemical index detection and behavioral tests, both of which inevitably cause stress in animals. Stress-induced hair growth inhibition has been widely reported in humans and animals. The simplicity of collecting hair samples and the observable state of hair growth has significant advantages; we tried to explore whether the parameters related to hair growth could be used as auxiliary indicators to evaluate a depression model in animals. The length and weight of the hair were calculated. Correlation analysis was conducted between the depressive behavioral results and the glucocorticoid levels in hair and serum. Learned helplessness combined with chronic restraint stress, and chronic unpredictable stress in the animal were detectable by superficial observation, weight ratio, and length of hair, and follicular development scores were significantly reduced compared to the control. The hair growth parameters of rats with depression, the rise in corticosterone, and the corresponding changes in behavioral parameters were significantly correlated. The neurotrophic factors, glucocorticoid-receptor (GR), brain-derived neurotrophic factor (BDNF), fibroblast growth factor 2 (FGF2), and fibroblast growth factor 5 (FGF5), are associated with depression and hair growth. Significant differences were detected between the stress and control groups, suggesting that the mechanism underlying the stress-phenomenon inhibition of hair growth may be related to growth factor mediation.
Collapse
Affiliation(s)
- Si-Yu Ren
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Hunan University of Chinese Medicine, Changsha Hunan, 410208, China.
| | - Ya-Ni Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Man-Jiang-Cuo Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Bi-Rui Wen
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Hunan University of Chinese Medicine, Changsha Hunan, 410208, China.
| | - Cong-Yuan Xia
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Xun Li
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Hunan University of Chinese Medicine, Changsha Hunan, 410208, China.
| | - Hui-Qin Wang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Hunan University of Chinese Medicine, Changsha Hunan, 410208, China.
| | - Rui-Ping Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Nai-Hong Chen
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Hunan University of Chinese Medicine, Changsha Hunan, 410208, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
22
|
Sachdeva S, Khurana A, Goyal P, Sardana K. Does oxidative stress correlate with disease activity and severity in alopecia areata? An analytical study. J Cosmet Dermatol 2021; 21:1629-1634. [PMID: 34037317 DOI: 10.1111/jocd.14253] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/13/2021] [Accepted: 05/18/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Oxidative stress (OS) has been implicated as a contributory factor in the multifactorial etiopathogenesis of alopecia areata (AA). But with the existing data, it is unclear whether OS is a cause or effect of the disease state in Alopecia areata. AIMS To compare the OS parameters viz.malon-di-aldehyde (MDA), superoxide dismutase (SOD), total antioxidant status (TAS) in serum of patients with alopecia areata versus age and sex matched controls, and assess their correlation with the severity of the disease. PATIENTS/METHODS Forty clinically diagnosed patients of alopecia areata and forty (n = 40) age and sex-matched healthy controls were recruited. ELISA was used for the evaluation of MDA, and spectrophotometric method was used to evaluate serum TAS and whole blood SOD. RESULTS Mean serum TAS and whole blood SOD levels of cases were significantly lower than controls (p = 0.005 and p = 0.002, respectively). Mean serum MDA level of patients was significantly higher compared to controls (p = 0.001). While levels of serum TAS and whole blood SOD were found to decrease from mild to severe grades of disease (p = 0.003, p < 0.001 respectively), levels of MDA increased with increasing disease severity (p < 0.001). CONCLUSION The OS parameters were deranged in all subsets of AA, with the greatest derangement seen with whole blood SOD levels.
Collapse
Affiliation(s)
- Soumya Sachdeva
- Department of Dermatology, Venereology and Leprosy, Dr Ram Manohar Lohia Hospital and Atal Bihari Vaypayee Institute of Medical Sciences, New Delhi, India
| | - Ananta Khurana
- Department of Dermatology, Venereology and Leprosy, Dr Ram Manohar Lohia Hospital and Atal Bihari Vaypayee Institute of Medical Sciences, New Delhi, India
| | - Parul Goyal
- Department of Biochemistry, Dr Ram Manohar Lohia Hospital and Atal Bihari Vaypayee Institute of Medical Sciences, New Delhi, India
| | - Kabir Sardana
- Department of Dermatology, Venereology and Leprosy, Dr Ram Manohar Lohia Hospital and Atal Bihari Vaypayee Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
23
|
Chandraiah SB, Ghosh S, Saha I, More SS, Annappa GS, Maiti AK. Substance P failed to reverse dextran sulfate sodium-induced murine colitis mediated by mitochondrial dysfunction: implications in ulcerative colitis. 3 Biotech 2021; 11:199. [PMID: 33927989 PMCID: PMC8006204 DOI: 10.1007/s13205-021-02755-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 03/20/2021] [Indexed: 12/31/2022] Open
Abstract
As controversy exists about the efficacy of substance P (SP) in treating ulcerative colitis (UC) with no previous study highlighting the impact of SP on mitochondrial dysfunction in this diseased condition, it became logical to perform the present study. C57BL/6 J mice were administered with DSS @ 3.5%/gm body weight for 3 cycles of 5 days each followed by i.v. dose of SP @ 5nmole per kg for consecutive 7 days. Histopathological features were noticed in the affected colon along with colonic mitochondrial dysfunction, alterations in mitochondrial stress variables and enhanced colonic cell death. Interestingly, SP failed to reverse colitic features and proved ineffective in inhibiting mitochondrial dysfunction. Unexpectedly SP alone seemed to impart detrimental effects on some of the mitochondrial functions, enhanced lipid peroxidation and increased staining intensities for caspases 3 and 9 in the normal colon. To substantiate in vivo findings and to assess free radical scavenging property of SP, Caco-2 cells were exposed to DSS with or without SP in the presence and absence of specific free radical scavengers and antioxidants. Interestingly, in vitro treatment with SP failed to restore mitochondrial functions and its efficacy proved below par compared to SOD and DMSO indicating involvement of O2 •- and •OH in the progression of UC. Besides, catalase, L-NAME and MEG proved ineffective indicating non-involvement of H2O2, NO and ONOO- in UC. Thus, SP may not be a potent anti-colitogenic agent targeting colonic mitochondrial dysfunction for maintenance of colon epithelial tract as it lacks free radical scavenging property.
Collapse
Affiliation(s)
- Spoorthi B. Chandraiah
- School of Basic and Applied Sciences, Dayananda Sagar University, SM Hills, Kumaraswamy Layout Campus, Bengaluru, Karnataka 560078 India
| | - Shashwati Ghosh
- Mitochondrial Biology and Experimental Therapeutics Laboratory, Department of Zoology, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal 734013 India
| | - Ishita Saha
- Department of Physiology, Medical College Kolkata, 88, College Street, College Square, Kolkata, West Bengal 700073 India
| | - Sunil S. More
- School of Basic and Applied Sciences, Dayananda Sagar University, SM Hills, Kumaraswamy Layout Campus, Bengaluru, Karnataka 560078 India
| | - Gautham S. Annappa
- School of Basic and Applied Sciences, Dayananda Sagar University, SM Hills, Kumaraswamy Layout Campus, Bengaluru, Karnataka 560078 India
| | - Arpan K. Maiti
- School of Basic and Applied Sciences, Dayananda Sagar University, SM Hills, Kumaraswamy Layout Campus, Bengaluru, Karnataka 560078 India
- Mitochondrial Biology and Experimental Therapeutics Laboratory, Department of Zoology, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal 734013 India
| |
Collapse
|
24
|
O'Sullivan JDB, Nicu C, Picard M, Chéret J, Bedogni B, Tobin DJ, Paus R. The biology of human hair greying. Biol Rev Camb Philos Soc 2020; 96:107-128. [PMID: 32965076 DOI: 10.1111/brv.12648] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022]
Abstract
Hair greying (canities) is one of the earliest, most visible ageing-associated phenomena, whose modulation by genetic, psychoemotional, oxidative, senescence-associated, metabolic and nutritional factors has long attracted skin biologists, dermatologists, and industry. Greying is of profound psychological and commercial relevance in increasingly ageing populations. In addition, the onset and perpetuation of defective melanin production in the human anagen hair follicle pigmentary unit (HFPU) provides a superb model for interrogating the molecular mechanisms of ageing in a complex human mini-organ, and greying-associated defects in bulge melanocyte stem cells (MSCs) represent an intriguing system of neural crest-derived stem cell senescence. Here, we emphasize that human greying invariably begins with the gradual decline in melanogenesis, including reduced tyrosinase activity, defective melanosome transfer and apoptosis of HFPU melanocytes, and is thus a primary event of the anagen hair bulb, not the bulge. Eventually, the bulge MSC pool becomes depleted as well, at which stage greying becomes largely irreversible. There is still no universally accepted model of human hair greying, and the extent of genetic contributions to greying remains unclear. However, oxidative damage likely is a crucial driver of greying via its disruption of HFPU melanocyte survival, MSC maintenance, and of the enzymatic apparatus of melanogenesis itself. While neuroendocrine factors [e.g. alpha melanocyte-stimulating hormone (α-MSH), adrenocorticotropic hormone (ACTH), ß-endorphin, corticotropin-releasing hormone (CRH), thyrotropin-releasing hormone (TRH)], and micropthalmia-associated transcription factor (MITF) are well-known regulators of human hair follicle melanocytes and melanogenesis, how exactly these and other factors [e.g. thyroid hormones, hepatocyte growth factor (HGF), P-cadherin, peripheral clock activity] modulate greying requires more detailed study. Other important open questions include how HFPU melanocytes age intrinsically, how psychoemotional stress impacts this process, and how current insights into the gerontobiology of the human HFPU can best be translated into retardation or reversal of greying.
Collapse
Affiliation(s)
- James D B O'Sullivan
- Dr. Philip Frost Department for Dermatology and Cutaneous Surgery, University of Miami, Miami, Florida, 33136, U.S.A
| | - Carina Nicu
- Dr. Philip Frost Department for Dermatology and Cutaneous Surgery, University of Miami, Miami, Florida, 33136, U.S.A
| | - Martin Picard
- Departments of Psychiatry and Neurology, Columbia University Irving Medical Center, 622 W 168th Street, PH1540N, New York, 10032, U.S.A
| | - Jérémy Chéret
- Dr. Philip Frost Department for Dermatology and Cutaneous Surgery, University of Miami, Miami, Florida, 33136, U.S.A
| | - Barbara Bedogni
- Dr. Philip Frost Department for Dermatology and Cutaneous Surgery, University of Miami, Miami, Florida, 33136, U.S.A
| | - Desmond J Tobin
- Charles Institute of Dermatology, University College Dublin, Dublin 4, Ireland
| | - Ralf Paus
- Dr. Philip Frost Department for Dermatology and Cutaneous Surgery, University of Miami, Miami, Florida, 33136, U.S.A.,Monasterium Laboratory, Skin & Hair Research Solutions GmbH, Münster, D-48149, Germany.,Centre for Dermatology Research, NIHR Manchester Biomedical Research Centre, University of Manchester, Manchester, M13 9PT, U.K
| |
Collapse
|
25
|
Muthuvel A, Princess Sulekha SM, Reddy GD. Effect of poly herbal formulation “Karisalai chooranam ” against detrimental effects of psychological stress. Pharmacogn Mag 2020. [DOI: 10.4103/pm.pm_517_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
26
|
Wang Z, Li M, Zhou Q, Shang Y. Protective effects of a neurokinin 1 receptor antagonist on airway epithelial mitochondria dysfunction in asthmatic mice via Nrf2/HO-1 activation. Int Immunopharmacol 2019; 77:105952. [PMID: 31677499 DOI: 10.1016/j.intimp.2019.105952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/11/2019] [Accepted: 09/30/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Zhijia Wang
- Department of Paediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Miao Li
- Department of Paediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Qianlan Zhou
- Department of Paediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Yunxiao Shang
- Department of Paediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China.
| |
Collapse
|
27
|
Zheng M, Jang Y, Choi N, Kim DY, Han TW, Yeo JH, Lee J, Sung JH. Hypoxia improves hair inductivity of dermal papilla cells via nuclear NADPH oxidase 4-mediated reactive oxygen species generation'. Br J Dermatol 2019; 181:523-534. [PMID: 30703252 DOI: 10.1111/bjd.17706] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Dermal papilla cells (DPCs) play a key role in hair regeneration and morphogenesis. Therefore, tremendous efforts have been made to promote DPC hair inductivity. OBJECTIVES The aim of this study was to investigate the mitogenic and hair inductive effects of hypoxia on DPCs and examine the underlying mechanism of hypoxia-induced stimulation of DPCs. METHODS DPCs' hair inductivity was examined under normoxia (20% O2 ) and hypoxia (2% O2 ). RESULTS Hypoxia significantly increased the proliferation and delayed senescence of DPCs via Akt phosphorylation and downstream pathways. Hypoxia upregulated growth factor secretion of DPCs through the mitogen-activated protein kinase pathway. Hypoxia-preconditioned DPCs induced the telogen-to-anagen transition in C3 H mice, and also enhanced hair neogenesis in a hair reconstitution assay. Injected green fluorescent protein-labelled DPCs migrated to the outer root sheath of the hair follicle, and hypoxia-preconditioning increased survival and migration of DPCs in vivo. Conditioned medium obtained from hypoxia increased the hair length of mouse vibrissa follicles via upregulation of alkaline phosphatase, vascular endothelial growth factor, and glial cell line-derived neurotrophic factor. We examined the mechanism of this hypoxia-induced stimulation, and found that reactive oxygen species (ROS) play a key role. For example, inhibition of ROS generation by N-acetylcysteine or diphenyleneiodonium treatment attenuated DPCs' hypoxia-induced stimulation, but treatment with ROS donors induced mitogenic effects and anagen transition. NADPH oxidase 4 is highly expressed in the DPC nuclear region, and NOX4 knockout by CRISPR-Cas9 attenuated the hypoxia-induced stimulation of DPCs. CONCLUSIONS Our results suggest that DPC culture under hypoxia has great advantages over normoxia, and is a novel solution for producing DPCs for cell therapy. What's already known about this topic? Dermal papilla cells (DPCs) play a key role in hair regeneration and morphogenesis, but they are difficult to isolate and expand for use in cell therapy. Tremendous efforts have been made to increase proliferation of DPCs and promote their hair formation ability. What does this study add? Hypoxia (2% O2 ) culture of DPCs increases proliferation, delays senescence and enhances hair inductivity of DPCs. Reactive oxygen species play a key role in hypoxia-induced stimulation of DPC. What is the translational message? Preconditioning DPCs under hypoxia improves their hair regenerative potential, and is a novel solution for producing DPCs for cell therapy to treat hair loss.
Collapse
Affiliation(s)
- M Zheng
- STEMORE Co. Ltd, Incheon, South Korea
| | - Y Jang
- STEMORE Co. Ltd, Incheon, South Korea
| | - N Choi
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea
| | - D Y Kim
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea
| | - T W Han
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea
| | - J H Yeo
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea
| | - J Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea
| | - J-H Sung
- STEMORE Co. Ltd, Incheon, South Korea.,College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea
| |
Collapse
|
28
|
Alonso MR, Damonte SP, Anesini C. Jarilla-Coffea extract: a natural cosmetic product that improves eyelash and eyebrow growth in women. Clin Cosmet Investig Dermatol 2019; 12:47-55. [PMID: 30666142 PMCID: PMC6330964 DOI: 10.2147/ccid.s182497] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Purpose A combination of extracts, from two plant species, ie, Coffea arabica and Larrea divaricata (Jarilla) (ECOHAIR®), is being successfully used in Argentina as a cosmetic for hair recovery in androgenic and areata alopecia, and for eyelash and eyebrow growth. The objectives of this prospective study were to evaluate the capacity of Jarilla–Coffea extract gel of improving hair growth in relation to thickness, appearance of new hair, and hair length in comparison with a placebo in premenopausal and postmenopausal volunteers and to identify possible signs of ocular adverse local reactions related to the application of the gel. Volunteers and methods An open-label, placebo-controlled, prospective study was performed in healthy premenopausal and postmenopausal women during a daily administration period of 2 months (eyebrow growth) and 3 months (eyelash growth). The thickness of hair was determined using a video microscope MedicalScope®. The appearance of new hairs and total area with hair in eyebrow and eyelash length were quantified using a photographic record with Fotofinder® (Germany). The number of volunteers presenting variation in growth of new hair and length were also recorded. Results The product significantly increased the thickness of eyebrows (20% in 80% women) and eyelashes (19.44% in 100% of women). The gel also increased the appearance of new hairs, total area with hair, and length but there was no statistical difference between treatment and placebo. Conclusion The gel was capable of improving growth of eyelashes and eyebrows by inducing principally hair thickening without causing local adverse effects in a high percentage of volunteers.
Collapse
Affiliation(s)
- María Rosario Alonso
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Department of Pharmacology, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina,
| | - Silvia Pérez Damonte
- CLAIM, José Bonifacio 717 (C1424 CHO) Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Claudia Anesini
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Department of Pharmacology, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina,
| |
Collapse
|
29
|
Jadkauskaite L, Bahri R, Farjo N, Farjo B, Jenkins G, Bhogal R, Haslam I, Bulfone-Paus S, Paus R. Nuclear factor (erythroid-derived 2)-like-2 pathway modulates substance P-induced human mast cell activation and degranulation in the hair follicle. J Allergy Clin Immunol 2018; 142:1331-1333.e8. [PMID: 29859202 DOI: 10.1016/j.jaci.2018.04.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 03/31/2018] [Accepted: 04/30/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Laura Jadkauskaite
- Centre for Dermatology Research, University of Manchester, MAHSC and NIHR Manchester Biomedical Research Centre, Manchester, United Kingdom
| | - Rajia Bahri
- Centre for Dermatology Research, University of Manchester, MAHSC and NIHR Manchester Biomedical Research Centre, Manchester, United Kingdom; Manchester Collaborative Centre for Inflammation Research (MCCIR), University of Manchester, Manchester, United Kingdom
| | | | - Bessam Farjo
- Farjo Medical Centre, Manchester, United Kingdom
| | - Gail Jenkins
- Unilever R&D Colworth, Colworth Science Park, Bedfordshire, United Kingdom
| | - Ranjit Bhogal
- Unilever R&D Colworth, Colworth Science Park, Bedfordshire, United Kingdom
| | - Iain Haslam
- Centre for Dermatology Research, University of Manchester, MAHSC and NIHR Manchester Biomedical Research Centre, Manchester, United Kingdom; Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom
| | - Silvia Bulfone-Paus
- Centre for Dermatology Research, University of Manchester, MAHSC and NIHR Manchester Biomedical Research Centre, Manchester, United Kingdom; Manchester Collaborative Centre for Inflammation Research (MCCIR), University of Manchester, Manchester, United Kingdom
| | - Ralf Paus
- Centre for Dermatology Research, University of Manchester, MAHSC and NIHR Manchester Biomedical Research Centre, Manchester, United Kingdom; Department of Dermatology, University of Miami, Miller School of Medicine, Miami, Fla.
| |
Collapse
|
30
|
Comparing the Effects of Chlorogenic Acid and Ilex paraguariensis Extracts on Different Markers of Brain Alterations in Rats Subjected to Chronic Restraint Stress. Neurotox Res 2018; 35:373-386. [PMID: 30267269 DOI: 10.1007/s12640-018-9963-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/28/2018] [Accepted: 09/17/2018] [Indexed: 01/08/2023]
|
31
|
Conti P, Caraffa A, Ronconi G, Conti CM, Kritas SK, Mastrangelo F, Tettamanti L, Theoharides TC. Impact of mast cells in depression disorder: inhibitory effect of IL-37 (new frontiers). Immunol Res 2018; 66:323-331. [PMID: 29907890 DOI: 10.1007/s12026-018-9004-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
The purpose of this article is to study the involvement of inflammatory mast cells (MCs) in depression which may be inhibited by IL-37. We evaluate mast cells in depression on the basis of our previous experimental data, and using the most relevant studies reported in the literature. Dysfunction of mood, feelings, and thoughts is a major risk factor for several metabolic diseases and may influence the physiology of the body leading to depression. Depression, present in mastocytosis, is an important endogenous process that promotes the activation of meningeal cell receptors through a low-grade neurogenic chronic inflammation, and MCs. Mast cells are localized along meningeal blood vessels and connective tissues, as well as between the ganglion cells and nerve fibers. They are present in the hypothalamus of mammalian brains capable of communication with nerves. MCs are classically activated by binding to IgE cross-link FcεRI high-affinity receptor leading to release a plethora of mediators responsible for the generation of inflammatory cytokines. Corticotropin-releasing hormone (CRH), produced by MCs, has been found in microglial cells where it regulates immune cells and contributes to the pathogenesis of neurodegenerative diseases including depression. Inflammatory cytokines released by MCs aggravate depression and could be partially inhibited by IL-37. A detailed understanding of the interaction between the immune system, including MCs and depression, is necessary in order to address an effective therapy which could include IL-37. As a consequence, the concepts reviewed here have treatment implications.
Collapse
Affiliation(s)
- Pio Conti
- Postgraduate Medical School, University of Chieti-Pescara, Viale Unità d'Italia 73, Chieti, 66013, Italy.
| | | | - Gianpaolo Ronconi
- Clinica dei Pazienti del Territorio, Policlinico Gemelli, Rome, Italy
| | - Chiara M Conti
- Department of Clinical Psychology, University of Chieti, Chieti, Italy
| | - Spiros K Kritas
- Department of Microbiology and Infectious Diseases, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Filiberto Mastrangelo
- Department of Medical Science and Biotechnology, University of Foggia, Foggia, Italy
| | - Lucia Tettamanti
- Department of Medical and Morphological Science, University of Insubria, Varese, Italy
| | - Theoharis C Theoharides
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
32
|
Xu M, Sun J, Wang Q, Zhang Q, Wei C, Lai D. Chronic restraint stress induces excessive activation of primordial follicles in mice ovaries. PLoS One 2018; 13:e0194894. [PMID: 29601583 PMCID: PMC5877864 DOI: 10.1371/journal.pone.0194894] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/12/2018] [Indexed: 11/18/2022] Open
Abstract
Chronic stress is an important factor influencing people's health. It usually causes endocrinal disorders and a decline in reproduction in females. Although studies of both human and animals suggest a detrimental effect of stress on reproduction, the influence of chronic stress on the ovarian reservation and follicular development is still not clear. In this study, a chronic restraint stress (CRS) mouse model was used to investigate the effect of stress on ovarian reservation and follicular development and explore the underlying mechanism. In this study, after 8 weeks of CRS, primordial follicles were excessively activated in the ovaries of the CRS group compared with the control group. Further results showed that the activation of primordial follicles induced by CRS was involved in the increasing expression level of Kit ligand and its receptor Kit and the activation of phosphatidylinositol 3-kinase (PI3K)/phosphatase and tensin homolog deleted on chromosome 10 (PTEN)/protein kinase B (Akt) pathway. The corticotropin-releasing hormone (CRH) is a neuropeptide released due to stress, which plays an important role in regulating follicle development. A high level of serum CRH was detected in the CRS mouse model, and the real-time polymerase chain reaction assay showed that the mRNA level of its main receptor CRHR1increased in the ovaries of the CRS mouse group. Moreover, 100nM CRH significantly improved the activation of primordial follicles in newborn mouse ovaries in vitro. These results demonstrated that CRS could induce immoderate activation of primordial follicles accompanied by the activation of Kit-PI3K signaling, in which CRH might be an important endocrine factor.
Collapse
Affiliation(s)
- Minhua Xu
- The International Peace Maternity and Child Health Hospital, School of medicine, Shanghai Jiaotong University, Shanghai, China
| | - Junyan Sun
- The International Peace Maternity and Child Health Hospital, School of medicine, Shanghai Jiaotong University, Shanghai, China
| | - Qian Wang
- The International Peace Maternity and Child Health Hospital, School of medicine, Shanghai Jiaotong University, Shanghai, China
| | - Qiuwan Zhang
- The International Peace Maternity and Child Health Hospital, School of medicine, Shanghai Jiaotong University, Shanghai, China
| | - Chunsheng Wei
- Eye and ENT Hospital, Fudan University, Shanghai, China
- * E-mail: (DL); (CW)
| | - Dongmei Lai
- The International Peace Maternity and Child Health Hospital, School of medicine, Shanghai Jiaotong University, Shanghai, China
- * E-mail: (DL); (CW)
| |
Collapse
|
33
|
Mediating Role of TRPV1 Ion Channels in the Co-exposure to PM2.5 and Formaldehyde of Balb/c Mice Asthma Model. Sci Rep 2017; 7:11926. [PMID: 28931832 PMCID: PMC5607312 DOI: 10.1038/s41598-017-11833-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/24/2017] [Indexed: 01/31/2023] Open
Abstract
Asthma is a complex pulmonary inflammatory disease that can be promoted by air pollutants such as PM2.5 and formaldehyde (FA). However, existent experimental evidence principally focuses on the negative influence of a single air pollutant, neglecting the possible synergistic effect in biological responses to mixture of these pollutants, a more common situation in our daily life. In this study, allergic Balb/c mice were exposed to a mixture of PM2.5 and FA, and their toxicological effects and mechanisms were explored. It is demonstrated that the combined exposure to PM2.5 and FA can greatly aggravate allergic asthma in mice. When compared with exposure to PM2.5 or FA alone, the co-exposure showed a certain synergistic effect. Increased levels of ROS, inflammatory factors and total serum immunoglobulin E were concomitant with this deterioration. Furthermore, results suggested that co-exposure exacerbated the activation of TRPV1 signal pathways, with an enhancement in substance P and calcitonin gene-related peptide production, which contributed to inflammation in asthma by neurogenic inflammation. The study also proved that capsazepine treatment could reduce the levels of not only pro-inflammatory neuropeptides, but also oxidative stress. It is concluded that co-exposure to PM2.5 and FA exacerbated allergic asthma through oxidative stress and enhanced TRPV1 activation.
Collapse
|
34
|
Preliminary behavioral assessment of cagemates living with conspecifics submitted to chronic restraint stress in mice. Neurosci Lett 2017; 657:204-210. [DOI: 10.1016/j.neulet.2017.07.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/24/2017] [Accepted: 07/05/2017] [Indexed: 12/20/2022]
|
35
|
Liao S, Lv J, Zhou J, Kalavagunta PK, Shang J. Effects of two chronic stresses on mental state and hair follicle melanogenesis in mice. Exp Dermatol 2017; 26:1083-1090. [DOI: 10.1111/exd.13380] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2017] [Indexed: 02/04/2023]
Affiliation(s)
- Sha Liao
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of TCM Evaluation and Translational Research; China Pharmaceutical University; Nanjing China
- Key Laboratory of Resource Biology and Biotechnology in Western China; Ministry of Education; Northwest University; Xi'an China
| | - Jinpeng Lv
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of TCM Evaluation and Translational Research; China Pharmaceutical University; Nanjing China
| | - Jia Zhou
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of TCM Evaluation and Translational Research; China Pharmaceutical University; Nanjing China
| | - Praveen Kumar Kalavagunta
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of TCM Evaluation and Translational Research; China Pharmaceutical University; Nanjing China
| | - Jing Shang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of TCM Evaluation and Translational Research; China Pharmaceutical University; Nanjing China
| |
Collapse
|
36
|
Protective effects of S-allyl cysteine on behavioral, morphological and biochemical alterations in rats subjected to chronic restraint stress: Antioxidant and anxiolytic effects. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.05.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
37
|
Jadkauskaite L, Coulombe PA, Schäfer M, Dinkova-Kostova AT, Paus R, Haslam IS. Oxidative stress management in the hair follicle: Could targeting NRF2 counter age-related hair disorders and beyond? Bioessays 2017; 39. [PMID: 28685843 DOI: 10.1002/bies.201700029] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Widespread expression of the transcription factor, nuclear factor (erythroid-derived 2)-like 2 (NRF2), which maintains redox homeostasis, has recently been identified in the hair follicle (HF). Small molecule activators of NRF2 may therefore be useful in the management of HF pathologies associated with redox imbalance, ranging from HF greying and HF ageing via androgenetic alopecia and alopecia areata to chemotherapy-induced hair loss. Indeed, NRF2 activation has been shown to prevent peroxide-induced hair growth inhibition. Multiple parameters can increase the levels of reactive oxygen species in the HF, for example melanogenesis, depilation-induced trauma, neurogenic and autoimmune inflammation, toxic drugs, environmental stressors such as UV irradiation, genetic defects and aging-associated mitochondrial dysfunction. In this review, the potential mechanisms whereby NRF2 activation could prove beneficial in treatment of redox-associated HF disorders are therefore discussed.
Collapse
Affiliation(s)
- Laura Jadkauskaite
- Centre for Dermatology Research, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Pierre A Coulombe
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Matthias Schäfer
- Department of Biology, Institute of Molecular Health Sciences, Swiss Institute of Technology (ETH), Zürich, Switzerland
| | - Albena T Dinkova-Kostova
- Division of Cancer Research, School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Ralf Paus
- Centre for Dermatology Research, School of Biological Sciences, University of Manchester, Manchester, UK.,Department of Dermatology, University of Münster, Münster, Germany
| | - Iain S Haslam
- Centre for Dermatology Research, School of Biological Sciences, University of Manchester, Manchester, UK.,Department of Biological Sciences, School of Applied Science, University of Huddersfield, Huddersfield, UK
| |
Collapse
|
38
|
Wu J, Liu C, Zhang L, Qu CH, Sui XL, Zhu H, Huang L, Xu YF, Han YL, Qin C. Histone deacetylase-2 is involved in stress-induced cognitive impairment via histone deacetylation and PI3K/AKT signaling pathway modification. Mol Med Rep 2017; 16:1846-1854. [PMID: 28656275 PMCID: PMC5561802 DOI: 10.3892/mmr.2017.6840] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 03/07/2017] [Indexed: 12/24/2022] Open
Abstract
Exposure to chronic stress upregulates blood glucocorticoid levels and impairs cognition via diverse epigenetic mechanisms, such as histone deacetylation. Histone deacetylation can lead to transcriptional silencing of many proteins involved in cognition and may also cause learning and memory dysfunction. Histone deacetylase-2 (HDAC2) has been demonstrated to epigenetically block cognition via a reduction in the histone acetylation level; however, it is unknown whether HDAC2 is involved in the cognitive decline induced by chronic stress. To the best of authors' knowledge, this is the first study to demonstrate that the stress hormone corticosteroid upregulate HDAC2 protein levels in neuro-2a cells and cause cell injuries. HDAC2 knockdown resulted in a significant amelioration of the pathological changes in N2a cells via the upregulation of histone acetylation and modifications in the phosphoinositide 3-kinase/protein kinase B signaling pathway. In addition, the HDAC2 protein levels were upregulated in 12-month-old female C57BL/6J mice under chronic stress in vivo. Taken together, these findings suggested that HDAC2 may be an important negative regulator involved in chronic stress-induced cognitive impairment.
Collapse
Affiliation(s)
- Jie Wu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing 100021, P.R. China
| | - Cui Liu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing 100021, P.R. China
| | - Ling Zhang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing 100021, P.R. China
| | - Chun-Hui Qu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing 100021, P.R. China
| | - Xiao-Long Sui
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing 100021, P.R. China
| | - Hua Zhu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing 100021, P.R. China
| | - Lan Huang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing 100021, P.R. China
| | - Yan-Feng Xu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing 100021, P.R. China
| | - Yun-Lin Han
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing 100021, P.R. China
| | - Chuan Qin
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing 100021, P.R. China
| |
Collapse
|
39
|
Khandpur S, Porter R, Boulton S, Anstey A. Drug-induced photosensitivity: new insights into pathomechanisms and clinical variation through basic and applied science. Br J Dermatol 2017; 176:902-909. [DOI: 10.1111/bjd.14935] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2016] [Indexed: 12/21/2022]
Affiliation(s)
- S. Khandpur
- Department of Dermatology and Venereology; All India Institute of Medical Sciences; New Delhi India
| | - R.M. Porter
- Academic Dermatology; Aneurin Bevan Health Board, Stow Hill; St Woolos Hospital; Newport NP20 4SZ U.K
| | - S.J. Boulton
- School of Biomedical Sciences; Faculty of Medical Sciences; Newcastle University Medical School, Framlington Place; Newcastle upon Tyne NE2 4HH U.K
| | - A. Anstey
- Betsi Cadwaladr University Health Board; Ysbyty Gwynedd, Penrhosgarnedd; Bangor Gwynedd LL57 2PY U.K
| |
Collapse
|
40
|
The Hair Growth-Promoting Effect of Rumex japonicus Houtt. Extract. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:1873746. [PMID: 27974900 PMCID: PMC5128716 DOI: 10.1155/2016/1873746] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/04/2016] [Accepted: 10/25/2016] [Indexed: 01/09/2023]
Abstract
Rumex japonicus Houtt. is traditionally used as a medicinal plant to treat patients suffering from skin disease in Korea. However, the beneficial effect of Rumex japonicus Houtt. on hair growth has not been thoroughly examined. Therefore, the present study aims to investigate the hair growth-promoting effect of Rumex japonicus (RJ) Houtt. root extract using human dermal papilla cells (DPCs), HaCaT cells, and C57BL/6 mice model. RJ induced antiapoptotic and proliferative effects on DPCs and HaCaT cells by increasing Bcl-2/Bax ratio and activating cellular proliferation-related proteins, ERK and Akt. RJ also increased β-catenin via the inhibition of GSK-3β. In C57BL/6 mice model, RJ promoted the anagen induction and maintained its period. Immunohistochemistry analysis demonstrated that RJ upregulated Ki-67 and β-catenin expressions, suggesting that the hair growth effect of RJ may be mediated through the reinforcement of hair cell proliferation. These results provided important insights for the possible mechanism of action of RJ and its potential as therapeutic agent to promote hair growth.
Collapse
|
41
|
Shin H, Choi SJ, Cho AR, Kim DY, Kim KH, Kwon O. Acute Stress-Induced Changes in Follicular Dermal Papilla Cells and Mobilization of Mast Cells: Implications for Hair Growth. Ann Dermatol 2016; 28:600-606. [PMID: 27746640 PMCID: PMC5064190 DOI: 10.5021/ad.2016.28.5.600] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 01/12/2016] [Accepted: 02/15/2016] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Stress is a known cause of hair loss in many species. OBJECTIVE In this study, we investigated the role of acute stress on hair growth using a rat model. METHODS Rats were immobilized for 24 hours and blood samples, and skin biopsies were taken. The effect of stress-serum on the in vitro proliferation of rat and human dermal papilla cells (hDPCs), as well as serum cortisol and corticotropin-releasing hormone levels, were measured. Mast cell staining was performed on the biopsied tissue. In addition, Western blot and quantitative real time polymerase chain reaction were used to assess mast cell tryptase and cytokine expression, respectively in rat skin biopsies. RESULTS Stress-serum treatment reduced significantly the number of viable hDPCs and arrested the cell cycle in the G1 phase, compared to serum from unrestrained rats (p<0.05, respectively). Moreover, restrained rats had significantly higher levels of cortisol in serum than unrestrained rats (p<0.01). Acute stress serum increased mast cell numbers and mast cell tryptase expression, as well as inducing interleukin (IL)-6 and IL-1β up-regulation. CONCLUSION These results suggest that acute stress also has an inhibitory effect on hair growth via cortisol release in addition to substance P-mast cell pathway.
Collapse
Affiliation(s)
- Hyoseung Shin
- Department of Dermatology, Dongguk University Ilsan Hospital, Goyang, Korea
| | - Soon-Jin Choi
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea.; Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea.; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
| | - A-Ri Cho
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea.; Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea.; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
| | - Dong Young Kim
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea.; Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea.; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
| | - Kyu Han Kim
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea.; Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea.; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
| | - Ohsang Kwon
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea.; Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea.; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
42
|
Reduced stress and inflammatory responsiveness in experienced meditators compared to a matched healthy control group. Psychoneuroendocrinology 2016; 68:117-25. [PMID: 26970711 PMCID: PMC4851883 DOI: 10.1016/j.psyneuen.2016.02.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/28/2016] [Accepted: 02/16/2016] [Indexed: 12/17/2022]
Abstract
Psychological stress is a major contributor to symptom exacerbation across many chronic inflammatory conditions and can acutely provoke increases in inflammation in healthy individuals. With the rise in rates of inflammation-related medical conditions, evidence for behavioral approaches that reduce stress reactivity is of value. Here, we compare 31 experienced meditators, with an average of approximately 9000 lifetime hours of meditation practice (M age=51years) to an age- and sex-matched control group (n=37; M age=48years) on measures of stress- and inflammatory responsivity, and measures of psychological health. The Trier Social Stress Test (TSST) was used to induce psychological stress and a neurogenic inflammatory response was produced using topical application of capsaicin cream to forearm skin. Size of the capsaicin-induced flare response and increase in salivary cortisol and alpha amylase were used to quantify the magnitude of inflammatory and stress responses, respectively. Results show that experienced meditators have lower TSST-evoked cortisol (62.62±2.52 vs. 70.38±2.33; p<.05) and perceived stress (4.18±.41 vs. 5.56±.30; p<.01), as well as a smaller neurogenic inflammatory response (81.55±4.6 vs. 96.76±4.26; p<.05), compared to the control group. Moreover, experienced meditators reported higher levels of psychological factors associated with wellbeing and resilience. These results suggest that the long-term practice of meditation may reduce stress reactivity and could be of therapeutic benefit in chronic inflammatory conditions characterized by neurogenic inflammation.
Collapse
|
43
|
Lee-Rueckert M, Kovanen PT. The mast cell as a pluripotent HDL-modifying effector in atherogenesis: from in vitro to in vivo significance. Curr Opin Lipidol 2015; 26:362-8. [PMID: 26339766 DOI: 10.1097/mol.0000000000000224] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize evidence about the effects that mast cell mediators can exert on the cholesterol efflux-inducing function of high density lipoproteins (HDL). RECENT FINDINGS Subendothelially located activated mast cells are present in inflamed tissue sites, in which macrophage foam cells are also present. Upon activation, mast cells degranulate and expel 2 major neutral proteases, chymase and tryptase, and the vasoactive compound histamine, all of which are bound to the heparin-proteoglycan matrix of the granules. In the extracellular fluid, the proteases remain heparin-bound and retain their activities, whereas histamine dissociates and diffuses away to reach the endothelium. The heparin-bound mast cell proteases avidly degrade lipid-poor HDL particles so preventing their ability to induce cholesterol efflux from macrophage foam cells. In contrast, histamine enhances the passage of circulating HDL through the vascular endothelium into interstitial fluids, so favoring HDL interaction with peripheral macrophage foam cells and accelerating initiation of macrophage-specific reverse cholesterol transport. SUMMARY Mast cells exert various modulatory effects on HDL function. In this novel tissue cholesterol-regulating function, the functional balance of histamine and proteases, and the relative quantities of HDL particles in the affected microenvironment ultimately dictate the outcome of the multiple mast cell effects on tissue cholesterol content.
Collapse
|
44
|
Dong T, Chen JW, Tian LL, Wang LH, Jiang RD, Zhang Z, Xu JB, Zhao XD, Zhu W, Wang GQ, Sun WP, Zhang GX. Role of the renin-angiotensin system, renal sympathetic nerve system, and oxidative stress in chronic foot shock-induced hypertension in rats. Int J Biol Sci 2015; 11:652-63. [PMID: 25999788 PMCID: PMC4440255 DOI: 10.7150/ijbs.10250] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 03/14/2015] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE The renin-angiotensin system (RAS) and renal sympathetic nerve system (RSNS) are involved in the development of hypertension. The present study is designed to explore the possible roles of the RAS and the RSNS in foot shock-induced hypertension. METHODS Male Sprague-Dawley rats were divided into six groups: control, foot shock, RSNS denervation, denervation plus foot shock, Captopril (angiotensin I converting enzyme inhibitor, ACE inhibitor) plus foot shock, and Tempol (superoxide dismutase mimetic) plus foot shock. Rats received foot shock for 14 days. We measured the quantity of thiobarbituric acid reactive substances (TBARS), corticosterone, renin, and angiotensin II (Ang II) in plasma, the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), and renal noradrenaline content. RAS component mRNA and protein levels were quantified in the cerebral cortex and hypothalamus. RESULTS The two week foot shock treatment significantly increased systolic blood pressure, which was accompanied by an increase in angiotensinogen, renin, ACE1, and AT1a mRNA and protein expression in the cerebral cortex and hypothalamus, an increase of the plasma concentrations of renin, Ang II, corticosterone, and TBARS, as well as a decrease in plasma SOD and GSH-Px activities. Systolic blood pressure increase was suppressed by denervation of the RSNS or treatment with Captopril or Tempol. Interestingly, denervation or Tempol treatment both decreased main RAS components not only in the circulatory system, but also in the central nervous system. In addition, decreased antioxidant levels and increased TBARS and corticosterone levels were also partially restored by denervation or treatment with Tempol or Captopril. CONCLUSIONS RAS, RSNS and oxidative stress reciprocally potentiate to play important roles in the development of foot shock-induced hypertension.
Collapse
Affiliation(s)
- Tao Dong
- 1. Department of Physiology and Neuroscience, Medical College of Soochow University, Suzhou 215123, P.R. China
| | - Jing-Wei Chen
- 2. Department of Internal Medicine, the Affiliated Suzhou Chinese Traditional Medicine Hospital, Nanjing University of Chinese Medicine, Suzhou 215003, P.R. China
| | - Li-Li Tian
- 1. Department of Physiology and Neuroscience, Medical College of Soochow University, Suzhou 215123, P.R. China
| | - Lin-Hui Wang
- 1. Department of Physiology and Neuroscience, Medical College of Soochow University, Suzhou 215123, P.R. China
| | - Ren-Di Jiang
- 1. Department of Physiology and Neuroscience, Medical College of Soochow University, Suzhou 215123, P.R. China
| | - Zhe Zhang
- 1. Department of Physiology and Neuroscience, Medical College of Soochow University, Suzhou 215123, P.R. China
| | - Jian-Bing Xu
- 1. Department of Physiology and Neuroscience, Medical College of Soochow University, Suzhou 215123, P.R. China
| | - Xiao-Dong Zhao
- 2. Department of Internal Medicine, the Affiliated Suzhou Chinese Traditional Medicine Hospital, Nanjing University of Chinese Medicine, Suzhou 215003, P.R. China
| | - Wei Zhu
- 3. Department of Internal Medicine, the Second Affiliated Hospital, High-tech zone hospital, Soochow University, Suzhou 215151, P.R. China
| | - Guo-Qing Wang
- 1. Department of Physiology and Neuroscience, Medical College of Soochow University, Suzhou 215123, P.R. China
| | - Wan-Ping Sun
- 4. Laboratory of Molecular Diagnostics, Medical College of Soochow University, Suzhou 215123, P.R. China
| | - Guo-Xing Zhang
- 1. Department of Physiology and Neuroscience, Medical College of Soochow University, Suzhou 215123, P.R. China
| |
Collapse
|
45
|
Chen Y, Lyga J. Brain-skin connection: stress, inflammation and skin aging. ACTA ACUST UNITED AC 2015; 13:177-90. [PMID: 24853682 PMCID: PMC4082169 DOI: 10.2174/1871528113666140522104422] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 05/07/2014] [Accepted: 05/20/2014] [Indexed: 02/06/2023]
Abstract
The intricate relationship between stress and skin conditions has been documented since ancient times. Recent clinical observations also link psychological stress to the onset or aggravation of multiple skin diseases. However, the exact underlying mechanisms have only been studied and partially revealed in the past 20 years or so. In this review, the authors will discuss the recent discoveries in the field of “Brain-Skin Connection”, summarizing findings from the overlapping fields of psychology, endocrinology, skin neurobiology, skin inflammation, immunology, and pharmacology.
Collapse
Affiliation(s)
| | - John Lyga
- Global R&D, Avon Products. 1 Avon Place, Suffern, NY 10901, USA.
| |
Collapse
|
46
|
Prie BE, Voiculescu VM, Ionescu-Bozdog OB, Petrutescu B, Iosif L, Gaman LE, Clatici VG, Stoian I, Giurcaneanu C. Oxidative stress and alopecia areata. J Med Life 2015; 8 Spec Issue:43-6. [PMID: 26361510 PMCID: PMC4564047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 06/10/2015] [Indexed: 11/07/2022] Open
Abstract
Alopecia areata (AA) is an inflammatory and autoimmune disease presenting with non-scarring hair loss. The aethiopathogenesis of alopecia areata is unclear and many factors including autoimmunity, genetic predisposition, emotional and environmental stress are thought to play important roles in its development. Antioxidant/ oxidant balance perturbation is a common feature in autoimmune, emotional and environmental stress. Therefore, our paper discusses the implications of oxidative stress in alopecia areata.
Collapse
Affiliation(s)
- BE Prie
- ”Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | - VM Voiculescu
- ”Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania,“Elias” University Emergency Hospital, Bucharest, Romania
| | | | | | - L Iosif
- ”Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania,R&D Irist Labmed, Bucharest, Romania
| | - LE Gaman
- ”Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania,R&D Irist Labmed, Bucharest, Romania
| | - VG Clatici
- ”Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania,“Elias” University Emergency Hospital, Bucharest, Romania
| | - I Stoian
- ”Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania,R&D Irist Labmed, Bucharest, Romania
| | - C Giurcaneanu
- ”Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania,“Elias” University Emergency Hospital, Bucharest, Romania
| |
Collapse
|
47
|
Wang L, Guo LL, Wang LH, Zhang GX, Shang J, Murao K, Chen DF, Fan XH, Fu WQ. Oxidative stress and substance P mediate psychological stress-induced autophagy and delay of hair growth in mice. Arch Dermatol Res 2014; 307:171-81. [DOI: 10.1007/s00403-014-1521-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 10/02/2014] [Accepted: 10/30/2014] [Indexed: 01/28/2023]
|
48
|
Contribution of the renin-angiotensin system in chronic foot-shock induced hypertension in rats. Life Sci 2014; 121:135-44. [PMID: 25498894 DOI: 10.1016/j.lfs.2014.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/30/2014] [Accepted: 12/02/2014] [Indexed: 11/24/2022]
Abstract
AIMS Chronic foot shock has been demonstrated to induce hypertension. The present study was designed to explore whether the renin-angiotensin system (RAS) plays a role in this process and the possible mechanisms involved in chronic-foot-shock-induced hypertension. MAIN METHODS Male Sprague-Dawley rats were subjected to a two-week foot shock with or without an angiotensin II (Ang II) type 1 receptor blocker (ARB, candesartan) or an angiotensin I converting enzyme inhibitor (ACEI, captopril). The expression of RAS components in the central nervous and circulatory systems was examined. Antioxidant levels in the plasma were monitored. KEY FINDINGS Two-week foot shock significantly increased systolic blood pressure (SBP). Angiotensinogen, angiotensin I converting enzyme (ACE)-1, ACE-2, angiotensin type 1a and type 1b receptors, and vasopressin (VAP) mRNA expression in the cerebral cortex and hypothalamus were increased along with the concentration of renin and Ang II in the plasma; these changes were accompanied by decreased glutathione peroxidase activity and increased lipid peroxidation levels and plasma corticosterone concentrations. Both candesartan and captopril suppressed not only the increases in SBP but also the increases in VAP expression in the hypothalamus and RAS components in the central nervous system and the circulatory system. The decreases in antioxidant levels and the increases in lipid peroxidation and corticosterone levels were also partially reversed by candesartan or captopril treatment. SIGNIFICANCE Chronic foot shock increases expression of the main RAS components, which play an important role in the development of high blood pressure through increased VAP levels, oxidative stress levels and stress hormone levels.
Collapse
|
49
|
Paus R, Langan EA, Vidali S, Ramot Y, Andersen B. Neuroendocrinology of the hair follicle: principles and clinical perspectives. Trends Mol Med 2014; 20:559-70. [DOI: 10.1016/j.molmed.2014.06.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 06/09/2014] [Accepted: 06/12/2014] [Indexed: 12/16/2022]
|
50
|
Substance P stimulates endothelin 1 secretion via endothelin-converting enzyme 1 and promotes melanogenesis in human melanocytes. J Invest Dermatol 2014; 135:551-559. [PMID: 25268585 DOI: 10.1038/jid.2014.423] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 09/04/2014] [Accepted: 09/17/2014] [Indexed: 02/02/2023]
Abstract
Substance P (SP) is a well-known neuropeptide implicated in the wound-healing process. The wound occasionally causes a pigmented scar. In the present study, we examined whether increased levels of SP affected melanogenesis. When human melanocytes were treated with SP, the melanin content increased and the pigmentation process accelerated in a dose-dependent manner. In addition to melanogenesis-related genes, the expression of neurokinin 1 receptor, endothelin 1 (EDN1), and EDN receptor type B (EDNRB) also increased at both the messenger RNA and protein levels. Interestingly, secreted EDN1 was observed in the melanocyte culture medium, and this phenomenon was significantly enhanced by SP treatment. Through knockdown experiments using small interfering RNAs (siRNAs), we confirmed that endothelin-converting enzyme 1 (ECE1), EDN1, and EDNRB were involved in SP-induced pigmentation and found that EDN1 secretion was affected by ECE1 and EDN1 siRNAs, but not by EDNRB siRNA. These findings indicate that ECE1 is essential for EDN1 secretion in melanocytes and that EDNRB functions downstream of secreted EDN1 to increase the cAMP levels and activate the melanogenesis-related phosphorylation cascade. This study provides in vitro evidence for a melanogenic function of SP in the skin and suggests that the SP-related signal is a potent target for regulating stress- or wound-induced pigmentation.
Collapse
|