1
|
Huang Q, Liu JW, Dong HB, Wei ZJ, Liu JZ, Ren YT, Jiang X, Jiang B. Mesenteric adipose tissue B lymphocytes promote intestinal injury in severe acute pancreatitis by mediating enteric pyroptosis. Hepatobiliary Pancreat Dis Int 2024; 23:300-309. [PMID: 38057185 DOI: 10.1016/j.hbpd.2023.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 11/17/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Visceral adipose tissue (VAT) has been linked to the severe acute pancreatitis (SAP) prognosis, although the underlying mechanism remains unclear. It has been reported that pyroptosis worsens SAP. The present study aimed to verify whether mesenteric adipose tissue (MAT, a component of VAT) can cause secondary intestinal injury through the pyroptotic pathway. METHODS Thirty-six male Sprague Dawley (SD) rats were divided into six different groups. Twelve rats were randomly divided into the SAP and control groups. We monitored the changes of MAT and B lymphocytes infiltration in MAT of SAP rats. Twelve SAP rats were injected with MAT B lymphocytes or phosphate buffer solution (PBS). The remaining twelve SAP rats were first injected with MAT B lymphocytes, and then with MCC950 (NLRP3 inhibitor) or PBS. We collected blood and tissue samples from pancreas, gut and MAT for analysis. RESULTS Compared to the control rats, the SAP group showed inflammation in MAT, including higher expression of tumor necrosis factor (TNF-α) and interleukin-6 (IL-6), lower expression of IL-10, and histological changes. Flow cytometry analysis revealed B lymphocytes infiltration in MAT but not T lymphocytes and macrophages. The SAP rats also exhibited intestinal injury, characterized by lower expression of zonula occludens-1 (ZO-1) and occludin, higher levels of lipopolysaccharide and diamine oxidase, and pathological changes. The expression of NLRP3 and n-GSDMD, which are responsible for pyroptosis, was increased in the intestine of SAP rats. The injection of MAT B lymphocytes into SAP rats exacerbated the inflammation in MAT. The upregulation of pyroptosis reduced tight junction in the intestine, which contributed to the SAP progression, including higher inflammatory indicators and worse histological changes. The administration of MCC950 to SAP + MAT B rats downregulated pyroptosis, which subsequently improved the intestinal barrier and ameliorated inflammatory response of SAP. CONCLUSIONS In SAP, MAT B lymphocytes aggravated local inflammation, and promoted the injury to the intestine through the enteric pyroptotic pathway.
Collapse
Affiliation(s)
- Qing Huang
- Department of Gastroenterology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Jia-Wen Liu
- Department of Gastroenterology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Hai-Bin Dong
- Department of Gastroenterology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Zheng-Jie Wei
- Department of Gastroenterology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Jin-Zhe Liu
- Department of Gastroenterology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Yu-Tang Ren
- Department of Gastroenterology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Xuan Jiang
- Department of Gastroenterology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China.
| | - Bo Jiang
- Department of Gastroenterology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| |
Collapse
|
2
|
Tansi FL, Schrepper A, Schwarzer M, Teichgräber U, Hilger I. Identifying the Morphological and Molecular Features of a Cell-Based Orthotopic Pancreatic Cancer Mouse Model during Growth over Time. Int J Mol Sci 2024; 25:5619. [PMID: 38891809 PMCID: PMC11171605 DOI: 10.3390/ijms25115619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), characterized by hypovascularity, hypoxia, and desmoplastic stroma is one of the deadliest malignancies in humans, with a 5-year survival rate of only 7%. The anatomical location of the pancreas and lack of symptoms in patients with early onset of disease accounts for late diagnosis. Consequently, 85% of patients present with non-resectable, locally advanced, or advanced metastatic disease at diagnosis and rely on alternative therapies such as chemotherapy, immunotherapy, and others. The response to these therapies highly depends on the stage of disease at the start of therapy. It is, therefore, vital to consider the stages of PDAC models in preclinical studies when testing new therapeutics and treatment modalities. We report a standardized induction of cell-based orthotopic pancreatic cancer models in mice and the identification of vital features of their progression by ultrasound imaging and histological analysis of the level of pancreatic stellate cells, mature fibroblasts, and collagen. The results highlight that early-stage primary tumors are secluded in the pancreas and advance towards infiltrating the omentum at week 5-7 post implantation of the BxPC-3 and Panc-1 models investigated. Late stages show extensive growth, the infiltration of the omentum and/or stomach wall, metastases, augmented fibroblasts, and collagen levels. The findings can serve as suggestions for defining growth parameter-based stages of orthotopic pancreatic cancer models for the preclinical testing of drug efficacy in the future.
Collapse
Affiliation(s)
- Felista L. Tansi
- Experimental Radiology, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Andrea Schrepper
- Department of Cardiothoracic Surgery, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany (M.S.)
| | - Michael Schwarzer
- Department of Cardiothoracic Surgery, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany (M.S.)
| | - Ulf Teichgräber
- Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Ingrid Hilger
- Experimental Radiology, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany
| |
Collapse
|
3
|
Gareev I, Beylerli O, Ilyasova T, Ahmad A, Shi H, Chekhonin V. Therapeutic application of adipose-derived stromal vascular fraction in myocardial infarction. iScience 2024; 27:109791. [PMID: 38736548 PMCID: PMC11088339 DOI: 10.1016/j.isci.2024.109791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024] Open
Abstract
The insufficiency of natural regeneration processes in higher organisms, including humans, underlies myocardial infarction (MI), which is one of the main causes of disability and mortality in the population of developed countries. The solution to this problem lies in the field of revealing the mechanisms of regeneration and creating on this basis new technologies for stimulating endogenous regenerative processes or replacing lost parts of tissues and organs with transplanted cells. Of great interest is the use of the so-called stromal vascular fraction (SVF), derived from autologous adipose tissue. It is known that the main functions of SVF are angiogenetic, antiapoptotic, antifibrotic, immune regulation, anti-inflammatory, and trophic. This study presents data on the possibility of using SVF, targeted regulation of its properties and reparative potential, as well as the results of research studies on its use for the restoration of damaged ischemic tissue after MI.
Collapse
Affiliation(s)
- Ilgiz Gareev
- Bashkir State Medical University, Ufa 450008, Russian Federation
| | - Ozal Beylerli
- Bashkir State Medical University, Ufa 450008, Russian Federation
| | - Tatiana Ilyasova
- Bashkir State Medical University, Ufa 450008, Russian Federation
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Huaizhang Shi
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin 1500, China
| | - Vladimir Chekhonin
- Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russian Federation
- Serbsky Federal Medical Research Centre of Psychiatry and Narcology of the Ministry of Healthcare of Russian Federation, Moscow, Russian Federation
- The National Medical Research Center for Endocrinology, Moscow, Russian Federation
| |
Collapse
|
4
|
Cani PD, Van Hul M. Gut microbiota in overweight and obesity: crosstalk with adipose tissue. Nat Rev Gastroenterol Hepatol 2024; 21:164-183. [PMID: 38066102 DOI: 10.1038/s41575-023-00867-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/27/2023] [Indexed: 03/02/2024]
Abstract
Overweight and obesity are characterized by excessive fat mass accumulation produced when energy intake exceeds energy expenditure. One plausible way to control energy expenditure is to modulate thermogenic pathways in white adipose tissue (WAT) and/or brown adipose tissue (BAT). Among the different environmental factors capable of influencing host metabolism and energy balance, the gut microbiota is now considered a key player. Following pioneering studies showing that mice lacking gut microbes (that is, germ-free mice) or depleted of their gut microbiota (that is, using antibiotics) developed less adipose tissue, numerous studies have investigated the complex interactions existing between gut bacteria, some of their membrane components (that is, lipopolysaccharides), and their metabolites (that is, short-chain fatty acids, endocannabinoids, bile acids, aryl hydrocarbon receptor ligands and tryptophan derivatives) as well as their contribution to the browning and/or beiging of WAT and changes in BAT activity. In this Review, we discuss the general physiology of both WAT and BAT. Subsequently, we introduce how gut bacteria and different microbiota-derived metabolites, their receptors and signalling pathways can regulate the development of adipose tissue and its metabolic capacities. Finally, we describe the key challenges in moving from bench to bedside by presenting specific key examples.
Collapse
Affiliation(s)
- Patrice D Cani
- Metabolism and Nutrition Research Group (MNUT), Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium.
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO department, WEL Research Institute, Wavre, Belgium.
- Institute of Experimental and Clinical Research (IREC), UCLouvain, Université catholique de Louvain, Brussels, Belgium.
| | - Matthias Van Hul
- Metabolism and Nutrition Research Group (MNUT), Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO department, WEL Research Institute, Wavre, Belgium
| |
Collapse
|
5
|
Shea AA, Heffron CL, Grieco JP, Roberts PC, Schmelz EM. Obesity modulates the cellular and molecular microenvironment in the peritoneal cavity: implication for ovarian cancer risk. Front Immunol 2024; 14:1323399. [PMID: 38264656 PMCID: PMC10803595 DOI: 10.3389/fimmu.2023.1323399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/12/2023] [Indexed: 01/25/2024] Open
Abstract
Introduction Abdominal obesity increases the risk of developing ovarian cancer but the molecular mechanisms of how obesity supports ovarian cancer development remain unknown. Here we investigated the impact of obesity on the immune cell and gene expression profiles of distinct abdominal tissues, focusing on the peritoneal serous fluid (PSF) and the omental fat band (OFB) as critical determinants for the dissemination of ovarian metastases and early metastatic events within the peritoneal cavity. Methods Female C57BL/6 mice were fed a low-fat (LFD) or a high-fat diet (HFD) for 12 weeks until the body weights in the HFD group were significantly higher and the mice displayed an impaired glucose tolerance. Then the mice were injected with the murine ovarian cancer cells (MOSE-LTICv) while remaining on their diets. After 21 days, the mice were sacrificed, tumor burden was evaluated and tissues were harvested. The immune cell composition of abdominal tissues and changes in gene expression in the PSF and OFB were evaluated by flow cytometry and qPCR RT2-profiler PCR arrays and confirmed by qRT-PCR, respectively. Other peritoneal adipose tissues including parametrial and retroperitoneal white adipose tissues as well as blood were also investigated. Results While limited effects were observed in the other peritoneal adipose tissues, feeding mice the HFD led to distinct changes in the immune cell composition in the PSF and the OFB: a depletion of B cells but an increase in myeloid-derived suppressor cells (MDSC) and mono/granulocytes, generating pro-inflammatory environments with increased expression of cyto- and chemokines, and genes supporting adhesion, survival, and growth, as well as suppression of apoptosis. This was associated with a higher peritoneal tumor burden compared to mice fed a LFD. Changes in cellular and genetic profiles were often exacerbated by the HFD. There was a large overlap in genes that were modulated by both the HFD and the cancer cells, suggesting that this 'genetic fingerprint' is important for ovarian metastases to the OFB. Discussion In accordance with the 'seed and soil' theory, our studies show that obesity contributes to the generation of a pro-inflammatory peritoneal environment that supports the survival of disseminating ovarian cancer cells in the PSF and the OFB and enhances the early metastatic adhesion events in the OFB through an increase in extracellular matrix proteins and modulators such as fibronectin 1 and collagen I expression as well as in genes supporting growth and invasion such as Tenacin C. The identified genes could potentially be used as targets for prevention strategies to lower the ovarian cancer risk in women with obesity.
Collapse
Affiliation(s)
- Amanda A. Shea
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA, United States
| | - Connie Lynn Heffron
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, United States
| | - Joseph P. Grieco
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, United States
| | - Paul C. Roberts
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, United States
| | - Eva M. Schmelz
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
6
|
Grieco JP, Compton SLE, Davis GN, Guinan J, Schmelz EM. Genetic and Functional Modifications Associated with Ovarian Cancer Cell Aggregation and Limited Culture Conditions. Int J Mol Sci 2023; 24:14867. [PMID: 37834315 PMCID: PMC10573375 DOI: 10.3390/ijms241914867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
The aggregation of cancer cells provides a survival signal for disseminating cancer cells; however, the underlying molecular mechanisms have yet to be elucidated. Using qPCR gene arrays, this study investigated the changes in cancer-specific genes as well as genes regulating mitochondrial quality control, metabolism, and oxidative stress in response to aggregation and hypoxia in our progressive ovarian cancer models representing slow- and fast-developing ovarian cancer. Aggregation increased the expression of anti-apoptotic, stemness, epithelial-mesenchymal transition (EMT), angiogenic, mitophagic, and reactive oxygen species (ROS) scavenging genes and functions, and decreased proliferation, apoptosis, metabolism, and mitochondrial content genes and functions. The incorporation of stromal vascular cells (SVF) from obese mice into the spheroids increased DNA repair and telomere regulatory genes that may represent a link between obesity and ovarian cancer risk. While glucose had no effect, glutamine was essential for aggregation and supported proliferation of the spheroid. In contrast, low glucose and hypoxic culture conditions delayed adhesion and outgrowth capacity of the spheroids independent of their phenotype, decreased mitochondrial mass and polarity, and induced a shift of mitochondrial dynamics towards mitophagy. However, these conditions did not reduce the appearance of polarized mitochondria at adhesion sites, suggesting that adhesion signals that either reversed mitochondrial fragmentation or induced mitobiogenesis can override the impact of low glucose and oxygen levels. Thus, the plasticity of the spheroids' phenotype supports viability during dissemination, allows for the adaptation to changing conditions such as oxygen and nutrient availability. This may be critical for the development of an aggressive cancer phenotype and, therefore, could represent druggable targets for clinical interventions.
Collapse
Affiliation(s)
- Joseph P. Grieco
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24061, USA;
| | - Stephanie L. E. Compton
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA 24061, USA; (S.L.E.C.); (G.D.N.)
| | - Grace N. Davis
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA 24061, USA; (S.L.E.C.); (G.D.N.)
| | - Jack Guinan
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA 24061, USA; (S.L.E.C.); (G.D.N.)
| | - Eva M. Schmelz
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA 24061, USA; (S.L.E.C.); (G.D.N.)
| |
Collapse
|
7
|
Helwa-Shalom O, Saba F, Spitzer E, Hanhan S, Goren K, Markowitz SI, Shilo D, Khaimov N, Gellman YN, Deutsch D, Blumenfeld A, Nevo H, Haze A. Regeneration of injured articular cartilage using the recombinant human amelogenin protein. Bone Joint Res 2023; 12:615-623. [PMID: 37783468 PMCID: PMC10545453 DOI: 10.1302/2046-3758.1210.bjr-2023-0019.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/04/2023] Open
Abstract
Aims Cartilage injuries rarely heal spontaneously and often require surgical intervention, leading to the formation of biomechanically inferior fibrous tissue. This study aimed to evaluate the possible effect of amelogenin on the healing process of a large osteochondral injury (OCI) in a rat model. Methods A reproducible large OCI was created in the right leg femoral trochlea of 93 rats. The OCIs were treated with 0.1, 0.5, 1.0, 2.5, or 5.0 μg/μl recombinant human amelogenin protein (rHAM+) dissolved in propylene glycol alginate (PGA) carrier, or with PGA carrier alone. The degree of healing was evaluated 12 weeks after treatment by morphometric analysis and histological evaluation. Cell recruitment to the site of injury as well as the origin of the migrating cells were assessed four days after treatment with 0.5 μg/μl rHAM+ using immunohistochemistry and immunofluorescence. Results A total of 12 weeks after treatment, 0.5 μg/μl rHAM+ brought about significant repair of the subchondral bone and cartilage. Increased expression of proteoglycan and type II collagen and decreased expression of type I collagen were revealed at the surface of the defect, and an elevated level of type X collagen at the newly developed tide mark region. Conversely, the control group showed osteoarthritic alterations. Recruitment of cells expressing the mesenchymal stem cell (MSC) markers CD105 and STRO-1, from adjacent bone marrow toward the OCI, was noted four days after treatment. Conclusion We found that 0.5 μg/μl rHAM+ induced in vivo healing of injured articular cartilage and subchondral bone in a rat model, preventing the destructive post-traumatic osteoarthritic changes seen in control OCIs, through paracrine recruitment of cells a few days after treatment.
Collapse
Affiliation(s)
- Omer Helwa-Shalom
- The inter-faculty Biotechnology Program, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Faris Saba
- Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Elad Spitzer
- Orthopedic Surgery Department, Hadassah University Medical Center, Jerusalem, Israel
| | - Salem Hanhan
- Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Koby Goren
- Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shany I. Markowitz
- The inter-faculty Biotechnology Program, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dekel Shilo
- Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nissim Khaimov
- Orthopedic Surgery Department, Hadassah University Medical Center, Jerusalem, Israel
| | - Yechiel N. Gellman
- Orthopedic Surgery Department, Hadassah University Medical Center, Jerusalem, Israel
| | - Dan Deutsch
- Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Anat Blumenfeld
- Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Wohl Institute for Translational Medicine, Hadassah University Medical Center, Jerusalem, Israel
| | - Hani Nevo
- Orthopedic Surgery Department, Hadassah University Medical Center, Jerusalem, Israel
- The Wohl Institute for Translational Medicine, Hadassah University Medical Center, Jerusalem, Israel
| | - Amir Haze
- Orthopedic Surgery Department, Hadassah University Medical Center, Jerusalem, Israel
- The Wohl Institute for Translational Medicine, Hadassah University Medical Center, Jerusalem, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
8
|
Huang Q, Liu J, Zhou Z, Zhang M, Ren Y, Jiang X, Jiang B. Inflammation of Mesenteric Adipose Tissue Correlates with Intestinal Injury and Disease Severity in Rats with Severe Acute Pancreatitis. Dig Dis Sci 2023; 68:2474-2481. [PMID: 36881197 DOI: 10.1007/s10620-023-07846-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/22/2023] [Indexed: 03/08/2023]
Abstract
BACKGROUND Visceral adipose tissue (VAT) is related to SAP prognosis. As a depot of VAT, mesenteric adipose tissue (MAT) resides between pancreas and gut, which might affect SAP and the secondary intestinal injury. AIMS To investigate the changes of MAT in SAP. METHODS 24 SD rats were randomly divided into four groups. 18 rats in SAP group were euthanized in time gradients (6 h, 24 h, and 48 h after modeling) and the others in control group. Blood samples and tissues of pancreas, gut, and MAT were taken for analysis. RESULTS Compared to the control group, SAP rats appeared MAT inflammation, presenting higher mRNA expression of TNF-α and IL-6 and lower IL-10, and histological changes after 6 h of modeling, which became worse over time. Flow cytometry showed that B lymphocytes increased in MAT after 24 h of SAP modeling and lasted up to 48 h, earlier than the changes of T lymphocytes and macrophages. The intestinal barrier integrity was damaged after 6 h of modeling, presenting lower mRNA and protein expression of ZO-1 and occludin, higher serum levels of LPS and DAO, with pathological changes, which gradually aggravated after 24 h and 48 h. SAP rats had higher serum levels of inflammatory indicators and revealed histological inflammation of pancreas, the severity of which increased with the passage of modeling time. CONCLUSION MAT appeared inflammation in early-stage SAP, and became worse over time, with the same trend as the intestinal barrier injury and the severity of pancreatitis. B lymphocytes infiltrated early in MAT, which might promote the MAT inflammation.
Collapse
Affiliation(s)
- Qing Huang
- Department of Gastroenterology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Jiawen Liu
- Department of Gastroenterology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Zhiyong Zhou
- Department of Gastroenterology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Mingjun Zhang
- Department of Gastroenterology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Yutang Ren
- Department of Gastroenterology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Xuan Jiang
- Department of Gastroenterology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China.
| | - Bo Jiang
- Department of Gastroenterology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| |
Collapse
|
9
|
Metabolic Reprogramming of Ovarian Cancer Spheroids during Adhesion. Cancers (Basel) 2022; 14:cancers14061399. [PMID: 35326551 PMCID: PMC8946790 DOI: 10.3390/cancers14061399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/10/2022] [Accepted: 02/24/2022] [Indexed: 02/04/2023] Open
Abstract
Ovarian cancer remains a deadly disease and its recurrence disease is due in part to the presence of disseminating ovarian cancer aggregates not removed by debulking surgery. During dissemination in a dynamic ascitic environment, the spheroid cells' metabolism is characterized by low respiration and fragmented mitochondria, a metabolic phenotype that may not support secondary outgrowth after adhesion. Here, we investigated how adhesion affects cellular respiration and substrate utilization of spheroids mimicking early stages of secondary metastasis. Using different glucose and oxygen levels, we investigated cellular metabolism at early time points of adherence (24 h and less) comparing slow and fast-developing disease models. We found that adhesion over time showed changes in cellular energy metabolism and substrate utilization, with a switch in the utilization of mostly glutamine to glucose but no changes in fatty acid oxidation. Interestingly, low glucose levels had less of an impact on cellular metabolism than hypoxia. A resilience to culture conditions and the capacity to utilize a broader spectrum of substrates more efficiently distinguished the highly aggressive cells from the cells representing slow-developing disease, suggesting a flexible metabolism contributes to the stem-like properties. These results indicate that adhesion to secondary sites initiates a metabolic switch in the oxidation of substrates that could support outgrowth and successful metastasis.
Collapse
|
10
|
Chun KH. Mouse model of the adipose organ: the heterogeneous anatomical characteristics. Arch Pharm Res 2021; 44:857-875. [PMID: 34606058 DOI: 10.1007/s12272-021-01350-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/20/2021] [Indexed: 12/24/2022]
Abstract
Adipose tissue plays a pivotal role in energy storage, hormone secretion, and temperature control. Mammalian adipose tissue is largely divided into white adipose tissue and brown adipose tissue, although recent studies have discovered the existence of beige adipocytes. Adipose tissues are widespread over the whole body and each location shows distinctive metabolic features. Mice are used as a representative experimental model system in metabolic studies due to their numerous advantages. Importantly, the adipose tissues of experimental animals and humans are not perfectly matched, and each adipose tissue exhibits both similar and specific characteristics. Nevertheless, the diversity and characteristics of mouse adipose tissue have not yet been comprehensively summarized. This review summarizes diverse information about the different types of adipose tissue being studied in mouse models. The types and characteristics of adipocytes were described, and each adipose tissue was classified by type, and features such as its distribution, origin, differences from humans, and metabolic characteristics were described. In particular, the distribution of widely studied adipose tissues was illustrated so that researchers can comprehensively grasp its location. Also, the adipose tissues misused or confusingly used among researchers were described. This review will provide researchers with comprehensive information and cautions needed to study adipose tissues in mouse models.
Collapse
Affiliation(s)
- Kwang-Hoon Chun
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Inchon, 21936, Republic of Korea.
| |
Collapse
|
11
|
Adaptation of metabolism to multicellular aggregation, hypoxia and obese stromal cell incorporation as potential measure of survival of ovarian metastases. Exp Cell Res 2020; 399:112397. [PMID: 33338477 DOI: 10.1016/j.yexcr.2020.112397] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 12/18/2022]
Abstract
Ovarian metastases exfoliate from the primary tumor and it is thought that aggregation supports their survival in the peritoneal cavity during dissemination but the underlying mechanisms are not clearly identified. We have previously shown that ovarian cancer cells acquire an increasingly glycolytic and metabolic flexible phenotype during progression. In the present study, we investigated how hypoxia, aggregation, and the incorporation of the obese stromal vascular fraction (SVF) affect cellular metabolism and the response to common anti-cancer and anti-diabetic drugs. Our results show a reduction of glucose uptake, lactate secretion, cellular respiration and ATP synthesis in response to hypoxia and aggregation, suggesting that the observed reduced proliferation of cells aggregated into spheroids is the result of a down-regulation of respiration. Recruitment of SVF to spheroids increased the spheroids invasive capacity but reduced respiration only in the most aggressive cells. Further, aggregation and hypoxia reduced the response to the metabolic drugs AICAR and metformin, and the chemotherapeutic agents cisplatin and paclitaxel. Our results suggest that the adaptation of cellular metabolism may contribute to enhanced survival under non-permissive conditions, and that these metabolic alterations may provide targets for future interventions that aim to enhance the survival of women with metastatic ovarian cancer.
Collapse
|
12
|
Liu M, Silva-Sanchez A, Randall TD, Meza-Perez S. Specialized immune responses in the peritoneal cavity and omentum. J Leukoc Biol 2020; 109:717-729. [PMID: 32881077 DOI: 10.1002/jlb.5mir0720-271rr] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/13/2020] [Accepted: 07/24/2020] [Indexed: 12/15/2022] Open
Abstract
The peritoneal cavity is a fluid filled space that holds most of the abdominal organs, including the omentum, a visceral adipose tissue that contains milky spots or clusters of leukocytes that are organized similar to those in conventional lymphoid tissues. A unique assortment of leukocytes patrol the peritoneal cavity and migrate in and out of the milky spots, where they encounter Ags or pathogens from the peritoneal fluid and respond accordingly. The principal role of leukocytes in the peritoneal cavity is to preserve tissue homeostasis and secure tissue repair. However, when peritoneal homeostasis is disturbed by inflammation, infection, obesity, or tumor metastasis, specialized fibroblastic stromal cells and mesothelial cells in the omentum regulate the recruitment of peritoneal leukocytes and steer their activation in unique ways. In this review, the types of cells that reside in the peritoneal cavity, the role of the omentum in their maintenance and activation, and how these processes function in response to pathogens and malignancy will be discussed.
Collapse
Affiliation(s)
- Mingyong Liu
- Department of Medicine, Division of Clinical Immunology and Rheumatology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Aaron Silva-Sanchez
- Department of Medicine, Division of Clinical Immunology and Rheumatology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Troy D Randall
- Department of Medicine, Division of Clinical Immunology and Rheumatology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Selene Meza-Perez
- Department of Medicine, Division of Clinical Immunology and Rheumatology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
13
|
Abstract
The immune system plays an important role in obesity-induced adipose tissue inflammation and the resultant metabolic dysfunction, which can lead to hypertension, dyslipidemia, and insulin resistance and their downstream sequelae of type 2 diabetes mellitus and cardiovascular disease. While macrophages are the most abundant immune cell type in adipose tissue, other immune cells are also present, such as B cells, which play important roles in regulating adipose tissue inflammation. This brief review will overview B-cell subsets, describe their localization in various adipose depots and summarize our knowledge about the function of these B-cell subsets in regulating adipose tissue inflammation, obesity-induced metabolic dysfunction and atherosclerosis.
Collapse
Affiliation(s)
- Prasad Srikakulapu
- From the Cardiovascular Research Center, Cardiovascular Division, Department of Medicine, University of Virginia, Charlottesville
| | - Coleen A McNamara
- From the Cardiovascular Research Center, Cardiovascular Division, Department of Medicine, University of Virginia, Charlottesville
| |
Collapse
|
14
|
Crowe J, Lumb FE, Doonan J, Broussard M, Tarafdar A, Pineda MA, Landabaso C, Mulvey L, Hoskisson PA, Babayan SA, Selman C, Harnett W, Harnett MM. The parasitic worm product ES-62 promotes health- and life-span in a high calorie diet-accelerated mouse model of ageing. PLoS Pathog 2020; 16:e1008391. [PMID: 32163524 PMCID: PMC7108737 DOI: 10.1371/journal.ppat.1008391] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 03/31/2020] [Accepted: 02/07/2020] [Indexed: 12/15/2022] Open
Abstract
Improvements in hygiene and health management have driven significant increases in human lifespan over the last 50 years. Frustratingly however, this extension of lifespan has not been matched by equivalent improvements in late-life health, not least due to the global pandemic in type-2 diabetes, obesity and cardiovascular disease, all ageing-associated conditions exacerbated and accelerated by widespread adoption of the high calorie Western diet (HCD). Recently, evidence has begun to emerge that parasitic worm infection might protect against such ageing-associated co-morbidities, as a serendipitous side-effect of their evolution of pro-survival, anti-inflammatory mechanisms. As a novel therapeutic strategy, we have therefore investigated the potential of ES-62, an anti-inflammatory secreted product of the filarial nematode Acanthocheilonema viteae, to improve healthspan (the period of life before diseases of ageing appear) by targeting the chronic inflammation that drives metabolic dysregulation underpinning ageing-induced ill-health. We administered ES-62 subcutaneously (at a dose of 1 μg/week) to C57BL/6J mice undergoing HCD-accelerated ageing throughout their lifespan, while subjecting the animals to analysis of 120 immunometabolic responses at various time-points. ES-62 improved a number of inflammatory parameters, but markedly, a range of pathophysiological, metabolic and microbiome parameters of ageing were also successfully targeted. Notably, ES-62-mediated promotion of healthspan in male and female HCD-mice was associated with different mechanisms and reflecting this, machine learning modelling identified sex-specific signatures predictive of ES-62 action against HCD-accelerated ageing. Remarkably, ES-62 substantially increased the median survival of male HCD-mice. This was not the case with female animals and unexpectedly, this difference between the two sexes could not be explained in terms of suppression of the chronic inflammation driving ageing, as ES-62 tended to be more effective in reducing this in female mice. Rather, the difference appeared to be associated with ES-62's additional ability to preferentially promote a healthier gut-metabolic tissue axis in male animals.
Collapse
Affiliation(s)
- Jenny Crowe
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Felicity E. Lumb
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - James Doonan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Margaux Broussard
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Anuradha Tarafdar
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Miguel A. Pineda
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Carmen Landabaso
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Lorna Mulvey
- Glasgow Ageing Research Network (GARNER), Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Paul A. Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Simon A. Babayan
- Glasgow Ageing Research Network (GARNER), Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Colin Selman
- Glasgow Ageing Research Network (GARNER), Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - William Harnett
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Margaret M. Harnett
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
15
|
Georgiopoulos G, Kontogiannis C, Stakos D, Bakogiannis C, Koliviras A, Kyrkou A, Karapanou L, Benekos K, Augoulea A, Armeni E, Laina A, Stellos K, Lambrinoudaki I, Stamatelopoulos K. Abdominal Fat Tissue Echogenicity: A Marker of Morbid Obesity. J Clin Endocrinol Metab 2019; 104:301-311. [PMID: 30358874 DOI: 10.1210/jc.2018-01301] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/19/2018] [Indexed: 02/09/2023]
Abstract
PURPOSE Menopause-related changes may affect regional but also morphological characteristics of adipose tissue. We sought to assess the clinical value of echogenicity of subcutaneous adipose tissue (SAT) and preperitoneal adipose tissue (pPAT) in postmenopausal women without cardiovascular disease. METHODS In 244 consecutively recruited postmenopausal women, subclinical atherosclerosis was assessed in the femoral and carotid arteries by intima-media thickness (IMT) and atheromatous plaques using high-resolution ultrasonography. In 41 women with a second visit (median follow-up 41.5 months), carotid atherosclerosis was re-evaluated. Images of SAT and pPAT were ultrasonographically acquired, and their echogenicity was evaluated by grayscale mean (GSMn) using a dedicated software. A control group of 20 healthy premenopausal women was used for comparisons in fat echogenicity. RESULTS SAT GSMn but not pPAT was higher in postmenopausal as compared with healthy premenopausal women and was independently associated with metabolic markers of adiposity including body mass index (BMI) and waist circumference (WC). SAT GSMn was associated with carotid IMT and the presence and number of atheromatous plaques [adjusted OR 2.44 and 2.32 per 1-SD increase in GSMn (95% CIs 1.55 to 3.93 and 1.55 to 3.45), respectively]. SAT GSMn conferred incremental value over traditional risk factors, insulin resistance, BMI, and WC for the detection of subclinical atherosclerosis. Increased baseline SAT GSMn was associated with increased rate of progression in carotid IMT. CONCLUSIONS SAT echogenicity may serve as a qualitative marker of adiposity, conferring incremental clinical value over BMI and WC in postmenopausal women. Further investigation is warranted to assess the utility of ultrasonography-derived fat echogenicity as a screening method for morbid obesity.
Collapse
Affiliation(s)
- Georgios Georgiopoulos
- Vascular Laboratory, Department of Clinical Therapeutics, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos Kontogiannis
- Vascular Laboratory, Department of Clinical Therapeutics, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Stakos
- Cardiology Department, Democritus University of Thrace, Alexandroupolis, Greece
| | - Constantinos Bakogiannis
- 3rd Department of Cardiology, Ippokrateio Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athanasios Koliviras
- Vascular Laboratory, Department of Clinical Therapeutics, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Aikaterini Kyrkou
- Vascular Laboratory, Department of Clinical Therapeutics, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Labrini Karapanou
- Vascular Laboratory, Department of Clinical Therapeutics, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Kosmas Benekos
- Vascular Laboratory, Department of Clinical Therapeutics, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Areti Augoulea
- 2nd Department of Obstetrics and Gynecology, Aretaieio Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleni Armeni
- 2nd Department of Obstetrics and Gynecology, Aretaieio Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Ageliki Laina
- Vascular Laboratory, Department of Clinical Therapeutics, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Stellos
- Cardiovascular Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Irene Lambrinoudaki
- 2nd Department of Obstetrics and Gynecology, Aretaieio Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Kimon Stamatelopoulos
- Vascular Laboratory, Department of Clinical Therapeutics, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
16
|
Wu Z, Tan J, Chi Y, Zhang F, Xu J, Song Y, Cong X, Wu N, Liu Y. Mesenteric adipose tissue contributes to intestinal barrier integrity and protects against nonalcoholic fatty liver disease in mice. Am J Physiol Gastrointest Liver Physiol 2018; 315:G659-G670. [PMID: 29902065 DOI: 10.1152/ajpgi.00079.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Visceral adipose tissue (VAT) is related to nonalcoholic fatty liver disease (NAFLD). However, the role of mesenteric adipose tissue (MAT), part of the VAT, in NAFLD is unclear. In the present study, we monitored the liver and four depots of the VAT in high-fat diet (HFD)-feeding mice at multiple time points (4, 8, and 12 wk). The MAT had become inflamed by the eighth week of HFD feeding, earlier than other depots of VAT. Furthermore, MAT removal after 8 wk of HFD resulted in more severe steatosis and more foci of inflammation infiltration, as well as higher NAFLD activity scores. Consistent with these findings, the mRNA expression of proinflammatory cytokines and lipid anabolism genes was increased in the livers of inflamed MAT-removal mice. MAT removal also injured the intestinal barrier and promoted intestinal inflammation. The bacterial load translocated to the liver and circulating levels of lipopolysaccharide were also evaluated in inflamed MAT-removal mice. In a coculture experiment involving adipocytes and intestinal epithelial cells, mRNA expression of zonula occludens-1 (ZO-1), and occludin in CT-26 cells was upregulated and permeability of monolayer Caco-2 cells was elevated under stimulation from adipocytes or inflamed adipocytes. Taken together, these results demonstrated that MAT removal damaged the intestinal barrier and aggravated NAFLD and that MAT inflammation may be a compensatory response to protect the liver by maintaining the intestinal barrier. NEW & NOTEWORTHY The mesenteric adipose tissue (MAT) lies between the gut and liver and plays a critical role in hepatic metabolic diseases. In the present study, we found that the MAT was prone to inflammation in high-fat diet-fed mice. Removal of the inflamed MAT resulted in more hepatic inflammation, lipid accumulation, and decreased glucose tolerance. Furthermore, we showed that the MAT contributed to intestinal barrier integrity, thus clarifying why MAT removal aggravated nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Zhe Wu
- Department of Gastroenterology, Peking University People's Hospital , Beijing , People's Republic of China.,Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital , Beijing , People's Republic of China
| | - Jiang Tan
- Department of Gastroenterology, Peking University People's Hospital , Beijing , People's Republic of China.,Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital , Beijing , People's Republic of China
| | - Yujing Chi
- Central Laboratory & Institute of Clinical Molecular Biology Peking University People's Hospital , Beijing , People's Republic of China
| | - Feng Zhang
- Department of Gastroenterology, Peking University People's Hospital , Beijing , People's Republic of China.,Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital , Beijing , People's Republic of China
| | - Jun Xu
- Department of Gastroenterology, Peking University People's Hospital , Beijing , People's Republic of China.,Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital , Beijing , People's Republic of China
| | - Yang Song
- Department of Gastroenterology, Peking University People's Hospital , Beijing , People's Republic of China.,Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital , Beijing , People's Republic of China
| | - Xu Cong
- Hepatology Institute, Peking University People's Hospital, Beijing, People's Republic of China
| | - Na Wu
- Central Laboratory & Institute of Clinical Molecular Biology Peking University People's Hospital , Beijing , People's Republic of China
| | - Yulan Liu
- Department of Gastroenterology, Peking University People's Hospital , Beijing , People's Republic of China.,Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital , Beijing , People's Republic of China
| |
Collapse
|
17
|
Al-Anazi A, Parhar R, Saleh S, Al-Hijailan R, Inglis A, Al-Jufan M, Bazzi M, Hashmi S, Conca W, Collison K, Al-Mohanna F. Intracellular calcium and NF- kB regulate hypoxia-induced leptin, VEGF, IL-6 and adiponectin secretion in human adipocytes. Life Sci 2018; 212:275-284. [PMID: 30308181 DOI: 10.1016/j.lfs.2018.10.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/19/2018] [Accepted: 10/06/2018] [Indexed: 11/26/2022]
Abstract
AIMS Hypoxia-induced adipokine release has been attributed mainly to HIF-1α. Here we investigate the role of intracellular calcium and NF-kB in the hypoxia-dependent release of leptin, VEGF, IL-6 and the hypoxia-induced inhibition of adiponectin release in human adipocytes. MAIN METHODS We used intracellular calcium imaging to compare calcium status in preadipocytes and in adipocytes. We subjected both cell types to hypoxic conditions and measured the release of adipokines induced by hypoxia in the presence and absence of HIF-1α inhibitor YC-1, NF-κB inhibitor SN50 and intracellular calcium chelator BAPTA-AM. KEY FINDINGS We demonstrate reduced intracellular calcium oscillations and increased oxidative stress as the cells transitioned from preadipocytes to adipocytes. We show that differentiation of preadipocytes to adipocytes is associated with distinct morphological changes in the mitochondria. We also show that hypoxia-induced secretion of leptin, VEGF, IL-6 and hypoxia-induced inhibition of adiponectin secretion are independent of HIF-1α expression. The hypoxia-induced leptin, VEGF and IL-6 release are [Ca++]i dependent whereas adiponectin is NF-kB dependent. SIGNIFICANCE Our work suggests a major role for [Ca++]i in preadipocyte differentiation to adipocytes and that changes in mitochondrial morphology in the adipocytes might underlie the reduced calcium oscillations observed in the adipocytes. It also demonstrates that multiple signaling pathways are associated with the hypoxia-induced adipokine secretion.
Collapse
Affiliation(s)
- Azizah Al-Anazi
- Department of Cell Biology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Ranjit Parhar
- Department of Cell Biology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Soad Saleh
- Department of Cell Biology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Reem Al-Hijailan
- Department of Cell Biology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Angela Inglis
- Department of Cell Biology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Mansour Al-Jufan
- Heart Centre, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Mohammed Bazzi
- Department of Biochemistry, College of Science, King Saud University, Riyadh 12372, Saudi Arabia
| | - Sarwar Hashmi
- Developmental Biology, Center for Vector Biology, Rutgers University, New Brunswick, NJ 08901, United States
| | - Walter Conca
- Department of Cell Biology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; Department of Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia
| | - Kate Collison
- Department of Cell Biology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Futwan Al-Mohanna
- Department of Cell Biology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia.
| |
Collapse
|
18
|
Ramakrishnan VM, Boyd NL. The Adipose Stromal Vascular Fraction as a Complex Cellular Source for Tissue Engineering Applications. TISSUE ENGINEERING. PART B, REVIEWS 2018; 24:289-299. [PMID: 28316259 PMCID: PMC6080106 DOI: 10.1089/ten.teb.2017.0061] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/17/2017] [Indexed: 12/27/2022]
Abstract
A major challenge in tissue engineering is the generation of sufficient volumes of viable tissue for organ transplant. The development of a stable, mature vasculature is required to sustain the metabolic and functional activities of engineered tissues. Adipose stromal vascular fraction (SVF) cells are an easily accessible, heterogeneous cell system comprised of endothelial cells, macrophages, pericytes, and various stem cell populations. Collectively, SVF has been shown to spontaneously form vessel-like networks in vitro and robust, patent, and functional vasculatures in vivo. Capitalizing on this ability, we and others have demonstrated adipose SVF's utility in generating and augmenting engineered liver, cardiac, and vascular tissues, to name a few. This review highlights the scientific origins of SVF, the use of SVF as a clinically relevant vascular source, various SVF constituents and their roles, and practical considerations associated with isolating SVF for various tissue engineering applications.
Collapse
Affiliation(s)
- Venkat M. Ramakrishnan
- Cardiovascular Innovation Institute, Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Nolan L. Boyd
- Cardiovascular Innovation Institute, Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky
| |
Collapse
|
19
|
Meza-Perez S, Randall TD. Immunological Functions of the Omentum. Trends Immunol 2017; 38:526-536. [PMID: 28579319 PMCID: PMC5812451 DOI: 10.1016/j.it.2017.03.002] [Citation(s) in RCA: 226] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 02/28/2017] [Accepted: 03/10/2017] [Indexed: 12/25/2022]
Abstract
The omentum is a visceral adipose tissue with unique immune functions. Although it is primarily an adipose tissue, the omentum also contains lymphoid aggregates, called milky spots (MSs), that contribute to peritoneal immunity by collecting antigens, particulates, and pathogens from the peritoneal cavity and, depending on the stimuli, promoting a variety of immune responses, including inflammation, tolerance, or even fibrosis. Reciprocal interactions between cells in the MS and adipocytes regulate their immune and metabolic functions. Importantly, the omentum collects metastasizing tumor cells and supports tumor growth by immunological and metabolic mechanisms. Here we summarize our current knowledge about the development, organization, and function of the omentum in peritoneal immunity.
Collapse
Affiliation(s)
- Selene Meza-Perez
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Troy D Randall
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
20
|
Douglas TA, Cemazar J, Balani N, Sweeney DC, Schmelz EM, Davalos RV. A feasibility study for enrichment of highly aggressive cancer subpopulations by their biophysical properties via dielectrophoresis enhanced with synergistic fluid flow. Electrophoresis 2017; 38:1507-1514. [PMID: 28342274 DOI: 10.1002/elps.201600530] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 03/15/2017] [Accepted: 03/15/2017] [Indexed: 02/01/2023]
Abstract
A common problem with cancer treatment is the development of treatment resistance and tumor recurrence that result from treatments that kill most tumor cells yet leave behind aggressive cells to repopulate. Presented here is a microfluidic device that can be used to isolate tumor subpopulations to optimize treatment selection. Dielectrophoresis (DEP) is a phenomenon where particles are polarized by an electric field and move along the electric field gradient. Different cell subpopulations have different DEP responses depending on their bioelectrical phenotype, which, we hypothesize, correlate with aggressiveness. We have designed a microfluidic device in which a region containing posts locally distorts the electric field created by an AC voltage and forces cells toward the posts through DEP. This force is balanced with a simultaneous drag force from fluid motion that pulls cells away from the posts. We have shown that by adjusting the drag force, cells with aggressive phenotypes are influenced more by the DEP force and trap on posts while others flow through the chip unaffected. Utilizing single-cell trapping via cell-sized posts coupled with a drag-DEP force balance, we show that separation of similar cell subpopulations may be achieved, a result that was previously impossible with DEP alone. Separated subpopulations maintain high viability downstream, and remain in a native state, without fluorescent labeling. These cells can then be cultured to help select a therapy that kills aggressive subpopulations equally or better than the bulk of the tumor, mitigating resistance and recurrence.
Collapse
Affiliation(s)
- Temple Anne Douglas
- Bioelectromechanical Systems Laboratory, Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Blacksburg, VA, USA
| | - Jaka Cemazar
- Bioelectromechanical Systems Laboratory, Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Blacksburg, VA, USA
| | - Nikita Balani
- Bioelectromechanical Systems Laboratory, Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Blacksburg, VA, USA
| | - Daniel C Sweeney
- Bioelectromechanical Systems Laboratory, Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Blacksburg, VA, USA
| | - Eva M Schmelz
- Virginia Tech Department of Human Nutrition, Food and Exercise, Blacksburg, VA, USA
| | - Rafael V Davalos
- Bioelectromechanical Systems Laboratory, Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Blacksburg, VA, USA
| |
Collapse
|
21
|
Morrison PK, Harris PA, Maltin CA, Grove-White D, Argo CM. EQUIFAT: A novel scoring system for the semi-quantitative evaluation of regional adipose tissues in Equidae. PLoS One 2017; 12:e0173753. [PMID: 28296956 PMCID: PMC5351866 DOI: 10.1371/journal.pone.0173753] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 02/25/2017] [Indexed: 02/08/2023] Open
Abstract
Anatomically distinct adipose tissues represent variable risks to metabolic health in man and some other mammals. Quantitative-imaging of internal adipose depots is problematic in large animals and associations between regional adiposity and health are poorly understood. This study aimed to develop and test a semi-quantitative system (EQUIFAT) which could be applied to regional adipose tissues. Anatomically-defined, photographic images of adipose depots (omental, mesenteric, epicardial, rump) were collected from 38 animals immediately post-mortem. Images were ranked and depot-specific descriptors were developed (1 = no fat visible; 5 = excessive fat present). Nuchal-crest and ventro-abdominal-retroperitoneal adipose depot depths (cm) were transformed to categorical 5 point scores. The repeatability and reliability of EQUIFAT was independently tested by 24 observers. When half scores were permitted, inter-observer agreement was substantial (average κw: mesenteric, 0.79; omental, 0.79; rump 0.61) or moderate (average κw; epicardial, 0.60). Intra-observer repeatability was tested by 8 observers on 2 occasions. Kappa analysis indicated perfect (omental and mesenteric) and substantial agreement (epicardial and rump) between attempts. A further 207 animals were evaluated ante-mortem (age, height, breed-type, gender, body condition score [BCS]) and again immediately post-mortem (EQUIFAT scores, carcass weight). Multivariable, random effect linear regression models were fitted (breed as random effect; BCS as outcome variable). Only height, carcass weight, omental and retroperitoneal EQUIFAT scores remained as explanatory variables in the final model. The EQUIFAT scores developed here demonstrate clear functional differences between regional adipose depots and future studies could be directed towards describing associations between adiposity and disease risk in surgical and post-mortem situations.
Collapse
Affiliation(s)
- Philippa K. Morrison
- University of Surrey, School of Veterinary Medicine, Faculty of Health and Medical Sciences, Guilford, United Kingdom
| | - Patricia A. Harris
- Equine Studies Group, WALTHAM Centre for Pet Nutrition, Freeby Lane, Waltham-on-the-Wolds, Melton Mowbray, Leicestershire, United Kingdom
| | - Charlotte A. Maltin
- University of Liverpool, Department of Obesity and Endocrinology, Faculty of Health and Life Sciences, Leahurst Campus, Chester High Road, Neston, Wirral, United Kingdom
- Biomics Ltd, Inverurie, Aberdeenshire, United Kingdom
| | - Dai Grove-White
- University of Liverpool, Department of Obesity and Endocrinology, Faculty of Health and Life Sciences, Leahurst Campus, Chester High Road, Neston, Wirral, United Kingdom
| | - Caroline McG. Argo
- University of Surrey, School of Veterinary Medicine, Faculty of Health and Medical Sciences, Guilford, United Kingdom
- * E-mail:
| |
Collapse
|
22
|
Sex differences in the risk factors for Staphylococcus aureus throat carriage. Am J Infect Control 2017; 45:29-33. [PMID: 27671360 DOI: 10.1016/j.ajic.2016.07.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/24/2016] [Accepted: 07/25/2016] [Indexed: 01/04/2023]
Abstract
BACKGROUND Male gender and adiposity are considered to be risk factors for Staphylococcus aureus carriage. We tested whether colonization is related to free testosterone (fT) level and adiposity, measured with body mass index (BMI) and body fat percentage (BFP), in healthy adults. METHODS Blood sample and throat swabs were taken twice (at 4-week intervals) from healthy men and women aged 18-36 years. fT level, height, weight, and BFP were measured. Participants were classified as persistent carriers, intermittent carriers (excluded from the analyses), and noncarriers. The final sample was 152 participants: 85 men and 67 women. RESULTS BFP, but not BMI, correlated positively with S aureus colonization (P = .02) in men. BMI became a significant predictor of carriage only when comparing groups within and above norms (P = .04). There was no relationship for BMI nor BFP in women. Higher fT level was related to persistent carriage (P = .02) in women, there was no relationship for fT level in men. CONCLUSION Risk factors for S aureus carriage are sex dependent. Within-sex variation in colonization is related to fT level in women, whereas in men it is related to the amount of body fat.
Collapse
|
23
|
Rolong A, Schmelz EM, Davalos RV. High-frequency irreversible electroporation targets resilient tumor-initiating cells in ovarian cancer. Integr Biol (Camb) 2017; 9:979-987. [DOI: 10.1039/c7ib00116a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Targeting resilient tumor-initiating cells with high-frequency irreversible electroporation could be driven by the bioelectromechanical properties of malignant cells.
Collapse
Affiliation(s)
- A. Rolong
- Virginia Tech – Wake Forest University School of Biomedical Engineering and Sciences
- Blacksburg
- USA
| | - E. M. Schmelz
- Virginia Tech
- Department of Human Nutrition
- Foods
- and Exercise
- Virginia Tech
| | - R. V. Davalos
- Virginia Tech – Wake Forest University School of Biomedical Engineering and Sciences
- Blacksburg
- USA
| |
Collapse
|
24
|
DeClercq VC, Goldsby JS, McMurray DN, Chapkin RS. Distinct Adipose Depots from Mice Differentially Respond to a High-Fat, High-Salt Diet. J Nutr 2016; 146:1189-96. [PMID: 27146921 PMCID: PMC4877629 DOI: 10.3945/jn.115.227496] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/22/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Dietary factors such as high-sodium or high-fat (HF) diets have been shown to induce a proinflammatory phenotype. However, there is limited information with respect to how microenvironments of distinct intra-abdominal adipose depots respond to the combination of a high-salt, HF diet. OBJECTIVE We tested the hypothesis that HF feeding would cause changes in distinct adipose depots, which would be further amplified by the addition of high salt to the diet. METHODS Twenty-seven male C57BL6 mice were fed an HF diet (60% of kcal from fat), an HF + high-salt diet (4% wt:wt), a control diet [low-fat (LF);10% of kcal from fat], or an LF + high-salt diet for 12 wk. The main sources of fat in the diets were corn oil and lard. Adipokines in serum and released from adipose tissue organ cultures were measured by immunoassays. QIAGEN's Ingenuity Pathway Analysis was used to perform functional analysis of the RNA-sequencing data from distinct adipose depots. RESULTS Diet-induced obesity resulted in a classical inflammatory phenotype characterized by increased concentrations of circulating inflammatory mediators (38-56%) and reduced adiponectin concentrations (27%). However, high-salt feeding did not exacerbate the HF diet-induced changes in adipokines and cytokines. Leptin and interleukin-6 were differentially released from adipose depots and HF feeding impaired adiponectin and resistin secretion across all 3 depots (34-48% and 45-83%, respectively). The addition of high salt to the HF diet did not further modulate secretion in cultured adipose tissue experiments. Although gene expression data from RNA sequencing indicated a >4.3-fold upregulation of integrin αX (Itgax) with HF feeding in all 3 depots, markers of cellular function were differentially expressed in response to diet across depots. CONCLUSION Collectively, these findings highlight the role of distinct adipose depots in mice in the development of obesity and emphasize the importance of selecting specific depots to study the effects of therapeutic interventions on adipose tissue function.
Collapse
Affiliation(s)
| | | | - David N McMurray
- Program in Integrative Nutrition and Complex Diseases,,Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University Health Science Center, College Station, TX
| | - Robert S Chapkin
- Program in Integrative Nutrition and Complex Diseases, Department of Nutrition and Food Science, and Center for Translational Environmental Health Research, Texas A&M University, College Station, TX; and Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University Health Science Center, College Station, TX
| |
Collapse
|
25
|
Martinez B, Soñanez-Organis JG, Viscarra JA, Jaques JT, MacKenzie DS, Crocker DE, Ortiz RM. Glucose delays the insulin-induced increase in thyroid hormone-mediated signaling in adipose of prolong-fasted elephant seal pups. Am J Physiol Regul Integr Comp Physiol 2016; 310:R502-12. [PMID: 26739649 DOI: 10.1152/ajpregu.00054.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 01/04/2016] [Indexed: 12/14/2022]
Abstract
Prolonged food deprivation in mammals typically reduces glucose, insulin, and thyroid hormone (TH) concentrations, as well as tissue deiodinase (DI) content and activity, which, collectively, suppress metabolism. However, in elephant seal pups, prolonged fasting does not suppress TH levels; it is associated with upregulation of adipose TH-mediated cellular mechanisms and adipose-specific insulin resistance. The functional relevance of this apparent paradox and the effects of glucose and insulin on TH-mediated signaling in an insulin-resistant tissue are not well defined. To address our hypothesis that insulin increases adipose TH signaling in pups during extended fasting, we assessed the changes in TH-associated genes in response to an insulin infusion in early- and late-fasted pups. In late fasting, insulin increased DI1, DI2, and THrβ-1 mRNA expression by 566%, 44%, and 267% at 60 min postinfusion, respectively, with levels decreasing by 120 min. Additionally, we performed a glucose challenge in late-fasted pups to differentiate between insulin- and glucose-mediated effects on TH signaling. In contrast to the insulin-induced effects, glucose infusion did not increase the expressions of DI1, DI2, and THrβ-1 until 120 min, suggesting that glucose delays the onset of the insulin-induced effects. The data also suggest that fasting duration increases the sensitivity of adipose TH-mediated mechanisms to insulin, some of which may be mediated by increased glucose. These responses appear to be unique among mammals and to have evolved in elephant seals to facilitate their adaptation to tolerate an extreme physiological condition.
Collapse
Affiliation(s)
- Bridget Martinez
- Department of Molecular & Cellular Biology, University of California, Merced, California;
| | - José G Soñanez-Organis
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora, Navojoa, Sonora, México
| | - Jose A Viscarra
- Department of Molecular & Cellular Biology, University of California, Merced, California
| | - John T Jaques
- Veterinary Medical Diagnostic Laboratory, Texas A&M University, College Station, Texas
| | - Duncan S MacKenzie
- Department of Biology, Texas A&M University, College Station, Texas; and
| | - Daniel E Crocker
- Department of Biology, Sonoma State University, Rohnert Park, California
| | - Rudy M Ortiz
- Department of Molecular & Cellular Biology, University of California, Merced, California
| |
Collapse
|
26
|
Čemažar J, Douglas TA, Schmelz EM, Davalos RV. Enhanced contactless dielectrophoresis enrichment and isolation platform via cell-scale microstructures. BIOMICROFLUIDICS 2016; 10:014109. [PMID: 26858821 PMCID: PMC4723398 DOI: 10.1063/1.4939947] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 01/04/2016] [Indexed: 05/12/2023]
Abstract
We designed a new microfluidic device that uses pillars on the same order as the diameter of a cell (20 μm) to isolate and enrich rare cell samples from background. These cell-scale microstructures improve viability, trapping efficiency, and throughput while reducing pearl chaining. The area where cells trap on each pillar is small, such that only one or two cells trap while fluid flow carries away excess cells. We employed contactless dielectrophoresis in which a thin PDMS membrane separates the cell suspension from the electrodes, improving cell viability for off-chip collection and analysis. We compared viability and trapping efficiency of a highly aggressive Mouse Ovarian Surface Epithelial (MOSE) cell line in this 20 μm pillar device to measurements in an earlier device with the same layout but pillars of 100 μm diameter. We found that MOSE cells in the new device with 20 μm pillars had higher viability at 350 VRMS, 30 kHz, and 1.2 ml/h (control 77%, untrapped 71%, trapped 81%) than in the previous generation device (untrapped 47%, trapped 42%). The new device can trap up to 6 times more cells under the same conditions. Our new device can sort cells with a high flow rate of 2.2 ml/h and throughput of a few million cells per hour while maintaining a viable population of cells for off-chip analysis. By using the device to separate subpopulations of tumor cells while maintaining their viability at large sample sizes, this technology can be used in developing personalized treatments that target the most aggressive cancerous cells.
Collapse
Affiliation(s)
- Jaka Čemažar
- School of Biomedical Engineering and Sciences, Virginia Tech - Wake Forest University , Blacksburg, Virginia 24061, USA
| | - Temple A Douglas
- School of Biomedical Engineering and Sciences, Virginia Tech - Wake Forest University , Blacksburg, Virginia 24061, USA
| | - Eva M Schmelz
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech , Blacksburg, Virginia 24061, USA
| | - Rafael V Davalos
- School of Biomedical Engineering and Sciences, Virginia Tech - Wake Forest University , Blacksburg, Virginia 24061, USA
| |
Collapse
|
27
|
Dam V, Sikder T, Santosa S. From neutrophils to macrophages: differences in regional adipose tissue depots. Obes Rev 2016; 17:1-17. [PMID: 26667065 DOI: 10.1111/obr.12335] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 09/01/2015] [Accepted: 09/23/2015] [Indexed: 12/27/2022]
Abstract
Currently, we do not fully understand the underlying mechanisms of how regional adiposity promotes metabolic dysregulation. As adipose tissue expands, there is an increase in chronic systemic low-grade inflammation due to greater infiltration of immune cells and production of cytokines. This chronic inflammation is thought to play a major role in the development of metabolic complications and disease such as insulin resistance and diabetes. We know that different adipose tissue depots contribute differently to the risk of metabolic disease. People who have an upper body fat distribution around the abdomen are at greater risk of disease than those who tend to store fat in their lower body around the hips and thighs. Thus, it is conceivable that adipose tissue depots contribute differently to the inflammatory milieu as a result of varied infiltration of immune cell types. In this review, we describe the role and function of major resident immune cells in the development of adipose tissue inflammation and discuss their regional differences in the context of metabolic disease risk. We find that although initial studies have found regional differences, a more comprehensive understanding of how immune cells interrupt adipose tissue homeostasis is needed.
Collapse
Affiliation(s)
- V Dam
- Department of Exercise Science, Concordia University, Montreal, QC, Canada.,Nutrition, Obesity, and Metabolism Lab, PERFORM Centre, Concordia University, Montreal, QC, Canada
| | - T Sikder
- Department of Exercise Science, Concordia University, Montreal, QC, Canada.,Nutrition, Obesity, and Metabolism Lab, PERFORM Centre, Concordia University, Montreal, QC, Canada
| | - S Santosa
- Department of Exercise Science, Concordia University, Montreal, QC, Canada.,Nutrition, Obesity, and Metabolism Lab, PERFORM Centre, Concordia University, Montreal, QC, Canada
| |
Collapse
|
28
|
Cohen CA, Shea AA, Heffron CL, Schmelz EM, Roberts PC. Interleukin-12 Immunomodulation Delays the Onset of Lethal Peritoneal Disease of Ovarian Cancer. J Interferon Cytokine Res 2015; 36:62-73. [PMID: 26430781 DOI: 10.1089/jir.2015.0049] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The omental fat band (OFB) is the predominant site for metastatic seeding of ovarian cancer. Previously, we highlighted the influx and accumulation of neutrophils and macrophages in the OFB following syngeneic ovarian cancer cell seeding as an important factor in the development of a protumorigenic cascade. Here we investigated localized immunomodulation as a means of promoting a successful protective response. As an important TH1-type immunomodulator, interleukin (IL)-12 has previously been investigated clinically as an anticancer therapeutic. However, systemic IL-12 administration was associated with serious side effects, galvanizing the development of immune or accessory cells engineered to express secreted or membrane-bound IL-12 (mbIL-12). Using an mbIL-12-expressing cell variant, we demonstrate that localized IL-12 in the tumor microenvironment significantly delays disease development. The mbIL-12-mediated decrease in tumor burden was associated with a significant reduction in neutrophil and macrophage infiltration in the OFB, and correlated with a reduced expression of neutrophil and macrophage chemoattractants (CXCL1, -2, -3 and CCL2, -7). Vaccination with mitotically impaired tumor cells did not confer protection against subsequent tumor challenge, indicating that IL-12 did not impact the immunogenicity of the cancer cells. Our findings are in agreement with previous reports suggesting that IL-12 may hold promise when delivered in a targeted and sustained manner to the omental microenvironment. Furthermore, resident cells within the omental microenvironment may provide a reservoir that can be activated and mobilized to prevent metastatic seeding within the peritoneum and, therefore, may be targets for chemotherapeutics.
Collapse
Affiliation(s)
- Courtney A Cohen
- 1 Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University , Blacksburg, Virginia
| | - Amanda A Shea
- 2 Department of Human Nutrition, Foods, and Exercise, Virginia Polytechnic Institute and State University , Blacksburg, Virginia
| | - C Lynn Heffron
- 1 Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University , Blacksburg, Virginia
| | - Eva M Schmelz
- 2 Department of Human Nutrition, Foods, and Exercise, Virginia Polytechnic Institute and State University , Blacksburg, Virginia
| | - Paul C Roberts
- 1 Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University , Blacksburg, Virginia
| |
Collapse
|
29
|
Ait-Lounis A, Laraba-Djebari F. TNF-alpha modulates adipose macrophage polarization to M1 phenotype in response to scorpion venom. Inflamm Res 2015; 64:929-36. [PMID: 26403661 DOI: 10.1007/s00011-015-0876-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 09/07/2015] [Accepted: 09/09/2015] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE We previously reported that Androctonus australis hector (Aah) venom and its toxic fraction affect adipose tissue metabolism. However, the contribution of immune system and the role of adipose tissue macrophages (ATMs) in the progression of inflammation induced by scorpion venom remain largely unknown. METHODS Here we evaluate the capacity of the toxic fraction of Aah venom (FTox-G50) to induce the expression of M1 and M2 markers genes on adipose tissue and isolated stromal vascular cells (SVC). Quantitative real-time PCR was performed on the SVC 24 h after FTox-G50 venom injection to assess the gene expressions of IL12p40, IL23, and other macrophages-associated markers. RESULTS We found that ATM from FTox-G50-venom-injected mice markedly increased the expressions of IL-12p40 and IL-23. Furthermore, the expression of nitric oxide synthase 2 (an M1 marker) was up-regulated, but the expression of Arginase1 (an M2 marker) was not. Systemic injection of a chemical inhibitor directed against TNF-α binding reduced the expression of inflammatory M1 macrophage markers and the MAPKpk2 gene, a key mediator of inflammatory signaling. CONCLUSION These results indicate that TNF-α is a physiological regulator of inflammation and macrophage activation induced by scorpion venom.
Collapse
Affiliation(s)
- Aouatef Ait-Lounis
- USTHB, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, BP 32 El-Alia, Bab Ezzouar, Algiers, Algeria
| | - Fatima Laraba-Djebari
- USTHB, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, BP 32 El-Alia, Bab Ezzouar, Algiers, Algeria.
| |
Collapse
|
30
|
Teixeira L, Moreira J, Melo J, Bezerra F, Marques RM, Ferreirinha P, Correia A, Monteiro MP, Ferreira PG, Vilanova M. Immune response in the adipose tissue of lean mice infected with the protozoan parasite Neospora caninum. Immunology 2015; 145:242-57. [PMID: 25581844 DOI: 10.1111/imm.12440] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 12/29/2014] [Accepted: 01/04/2015] [Indexed: 12/17/2022] Open
Abstract
The adipose tissue can make important contributions to immune function. Nevertheless, only a limited number of reports have investigated in lean hosts the immune response elicited in this tissue upon infection. Previous studies suggested that the intracellular protozoan Neospora caninum might affect adipose tissue physiology. Therefore, we investigated in mice challenged with this protozoan if immune cell populations within adipose tissue of different anatomical locations could be differently affected. Early in infection, parasites were detected in the adipose tissue and by 7 days of infection increased numbers of macrophages, regulatory T (Treg) cells and T-bet(+) cells were observed in gonadal, mesenteric, omental and subcutaneous adipose tissue. Increased expression of interferon-γ was also detected in gonadal adipose tissue of infected mice. Two months after infection, parasite DNA was no longer detected in these tissues, but T helper type 1 (Th1) cell numbers remained above control levels in the infected mice. Moreover, the Th1/Treg cell ratio was higher than that of controls in the mesenteric and subcutaneous adipose tissue. Interestingly, chronically infected mice presented a marked increase of serum leptin, a molecule that plays a role in energy balance regulation as well as in promoting Th1-type immune responses. Altogether, we show that an apicomplexa parasitic infection influences immune cellular composition of adipose tissue throughout the body as well as adipokine production, still noticed at a chronic phase of infection when parasites were already cleared from that particular tissue. This strengthens the emerging view that infections can have long-term consequences for the physiology of adipose tissue.
Collapse
Affiliation(s)
- Luzia Teixeira
- UMIB - Unidade Multidisciplinar de Investigação Biomédica, Departamento de Anatomia, ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Benencia F, Harshman S, Duran-Ortiz S, Lubbers ER, List EO, Householder L, Al-Naeeli M, Liang X, Welch L, Kopchick JJ, Berryman DE. Male bovine GH transgenic mice have decreased adiposity with an adipose depot-specific increase in immune cell populations. Endocrinology 2015; 156:1794-803. [PMID: 25521584 PMCID: PMC4398765 DOI: 10.1210/en.2014-1794] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
White adipose tissue (WAT) is composed of mature adipocytes and a stromal vascular fraction (SVF), which contains a variety of cells, including immune cells that vary among the different WAT depots. Growth hormone (GH) impacts immune function and adiposity in an adipose depot-specific manner. However, its effects on WAT immune cell populations remain unstudied. Bovine GH transgenic (bGH) mice are commonly used to study the in vivo effects of GH. These giant mice have an excess of GH action, impaired glucose metabolism, decreased adiposity, increased lean mass, and a shortened lifespan. Therefore, the purpose of this study was to characterize the WAT depot-specific differences in immune cell populations in the presence of excess GH in vivo. Three WAT depots were assessed: inguinal (sc), epididymal (EPI), and mesenteric (MES). Subcutaneous and MES bGH WAT depots showed a significantly higher number of total SVF cells, yet only MES bGH WAT had higher leukocyte counts compared with control samples. By means of flow cytometry analysis of the SVF, we detected greater macrophage and regulatory T-cell infiltration in sc and MES bGH WAT depots compared with controls. However, no differences were observed in the EPI WAT depot. RNA-sequencing confirmed significant alterations in pathways related to T-cell infiltration and activation in the sc depot with fewer significant changes in the EPI bGH WAT depot. These findings collectively point to a previously unrecognized role for GH in influencing the distribution of WAT immune cell populations in a depot-specific manner.
Collapse
Affiliation(s)
- Fabian Benencia
- Department of Biomedical Sciences (F.B., J.J.K., D.E.B.), Heritage College of Osteopathic Medicine; Russ College of Engineering and Technology (F.B.); Diabetes Institute (F.B., E.O.L., M.A.-N., J.J.K., D.E.B.); Edison Biotechnology Institute (S.H., S.D.-O., E.R.L., E.O.L., L.H., J.J.K., D.E.B.); School of Applied Health Sciences and Wellness (S.H., S.D.-O., D.E.B.), College of Health Sciences and Professions; Department of Biological Sciences (M.A.-N.), Ohio University Zanesville; School of Electrical Engineering and Computer Science (X.L., L.W.); and Biomedical Engineering Program (L.W.), Ohio University, Athens, Ohio 45701
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Hung CS, Lee JK, Yang CY, Hsieh HR, Ma WY, Lin MS, Liu PH, Shih SR, Liou JM, Chuang LM, Chen MF, Lin JW, Wei JN, Li HY. Measurement of visceral fat: should we include retroperitoneal fat? PLoS One 2014; 9:e112355. [PMID: 25401949 PMCID: PMC4234414 DOI: 10.1371/journal.pone.0112355] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/18/2014] [Indexed: 12/21/2022] Open
Abstract
Objective Whether retroperitoneal fat should be included in the measurement of visceral fat remains controversial. We compared the relationships of fat areas in peritoneal, retroperitoneal, and subcutaneous compartments to metabolic syndrome, adipokines, and incident hypertension and diabetes. Methods We enrolled 432 adult participants (153 men and 279 women) in a community-based cohort study. Computed tomography at the umbilicus level was used to measure the fat areas. Results Retroperitoneal fat correlated significantly with metabolic syndrome (adjusted odds ratio (OR), 5.651, p<0.05) and the number of metabolic abnormalities (p<0.05). Retroperitoneal fat area was significantly associated with blood pressure, plasma glycemic indices, lipid profile, C-reactive protein, adiponectin (r = −0.244, P<0.05), and leptin (r = 0.323, p<0.05), but not plasma renin or aldosterone concentrations. During the 2.94±0.84 years of follow-up, 32 participants developed incident hypertension. Retroperitoneal fat area (hazard ration (HR) 1.62, p = 0.003) and peritoneal fat area (HR 1.62, p = 0.009), but not subcutaneous fat area (p = 0.14) were associated with incident hypertension. Neither retroperitoneal fat area, peritoneal fat area, nor subcutaneous fat areas was associated with incident diabetes after adjustment. Conclusions Retroperitoneal fat is similar to peritoneal fat, but differs from subcutaneous fat, in terms of its relationship with metabolic syndrome and incident hypertension. Retroperitoneal fat area should be included in the measurement of visceral fat for cardio-metabolic studies in human.
Collapse
Affiliation(s)
- Chi-Sheng Hung
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jen-Kuang Lee
- Department of Clinical Pathology, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Chung-Yi Yang
- Department of Medical Imaging, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hung-Ren Hsieh
- Department of Radiology, National Taiwan University Hospital Yun-Lin Branch, Yun-Lin, Taiwan
| | - Wen-Ya Ma
- Division of Endocrinology, Department of Internal Medicine, Cardinal Tien Hospital, Xindian, Taiwan
| | - Mao-Shin Lin
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Pi-Hua Liu
- Clinical Informatics and Medical Statistics Research Center, Chang Gung University, Gueishan, Taiwan
| | - Shyang-Rong Shih
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jyh-Ming Liou
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Lee-Ming Chuang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Ming-Fong Chen
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jou-Wei Lin
- Department of Internal Medicine, National Taiwan University Hospital Yun-Lin Branch, Yun-Lin, Taiwan
| | - Jung-Nan Wei
- Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Hung-Yuan Li
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
33
|
Anderson AS, Roberts PC, Frisard MI, Hulver MW, Schmelz EM. Ovarian tumor-initiating cells display a flexible metabolism. Exp Cell Res 2014; 328:44-57. [PMID: 25172556 DOI: 10.1016/j.yexcr.2014.08.028] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 08/14/2014] [Accepted: 08/17/2014] [Indexed: 01/06/2023]
Abstract
An altered metabolism during ovarian cancer progression allows for increased macromolecular synthesis and unrestrained growth. However, the metabolic phenotype of cancer stem or tumor-initiating cells, small tumor cell populations that are able to recapitulate the original tumor, has not been well characterized. In the present study, we compared the metabolic phenotype of the stem cell enriched cell variant, MOSE-LFFLv (TIC), derived from mouse ovarian surface epithelial (MOSE) cells, to their parental (MOSE-L) and benign precursor (MOSE-E) cells. TICs exhibit a decrease in glucose and fatty acid oxidation with a concomitant increase in lactate secretion. In contrast to MOSE-L cells, TICs can increase their rate of glycolysis to overcome the inhibition of ATP synthase by oligomycin and can increase their oxygen consumption rate to maintain proton motive force when uncoupled, similar to the benign MOSE-E cells. TICs have an increased survival rate under limiting conditions as well as an increased survival rate when treated with AICAR, but exhibit a higher sensitivity to metformin than MOSE-E and MOSE-L cells. Together, our data show that TICs have a distinct metabolic profile that may render them flexible to adapt to the specific conditions of their microenvironment. By better understanding their metabolic phenotype and external environmental conditions that support their survival, treatment interventions can be designed to extend current therapy regimens to eradicate TICs.
Collapse
Affiliation(s)
- Angela S Anderson
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA
| | - Paul C Roberts
- Biomedical Science and Pathobiology, Virginia Tech, Blacksburg, VA, USA
| | - Madlyn I Frisard
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA
| | - Matthew W Hulver
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA.
| | - Eva M Schmelz
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
34
|
Eyre HA, Baune BT. Assessing for unique immunomodulatory and neuroplastic profiles of physical activity subtypes: a focus on psychiatric disorders. Brain Behav Immun 2014; 39:42-55. [PMID: 24269526 DOI: 10.1016/j.bbi.2013.10.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/09/2013] [Accepted: 10/25/2013] [Indexed: 12/13/2022] Open
Abstract
Physical activity (PA) is emerging as a safe and effective tool in the prevention and treatment of psychiatric disorders. PA subtypes include aerobic, resistance, flexibility, neuromotor (involving balance, agility and co-ordination), mind-body (e.g. tai chi, qi gong and yoga) and mixed type trainings. Evidence from clinical trials suggests that PA subtypes can have positive clinical effects, however the effects on the symptomatology may vary according to the PA subtype. It therefore stands to reason that various PA subtypes may modulate the immune system and neuroplastic processes differently. This systematic review aims to assess the immunomodulatory and neuroplastic profiles of various PA subtypes, particularly in unipolar depression and age-related cognitive decline (ARCD). The literature suggests several unique immunomodulatory and neuroplastic profiles for PA subtypes (i.e. resistance, aerobic and mind-body) in depression and ARCD. In depression, levels of various cytokines at baseline may predict treatment response to subtypes of PA and pharmacological agents. The pro-neuroplastic effects of resistance and aerobic PA in ARCD may differ due to variances in neurotrophin profiles. At this stage of literature in the field, it is difficult to draw firm conclusions on the specific immunomodulatory and neuroplastic pathways involved in these PA subtypes given of the small number of comparative studies and methodological heterogeneity between studies (e.g. study population age and illness severity, as well as duration and intensity of PA intervention). This important field requires well-designed, high-quality comparative studies to better describe unique immunomodulatory and neuroplastic profiles.
Collapse
Affiliation(s)
- Harris A Eyre
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, Australia; School of Medicine and Dentistry, James Cook University, Townsville, Australia
| | - Bernhard T Baune
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, Australia.
| |
Collapse
|
35
|
Biomechanical profile of cancer stem-like/tumor-initiating cells derived from a progressive ovarian cancer model. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 10:1013-9. [PMID: 24407147 DOI: 10.1016/j.nano.2013.12.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 12/11/2013] [Accepted: 12/21/2013] [Indexed: 11/22/2022]
Abstract
UNLABELLED We herein report, for the first time, the mechanical properties of ovarian cancer stem-like/tumor-initiating cells (CSC/TICs). The represented model is a spontaneously transformed murine ovarian surface epithelial (MOSE) cell line that mimics the progression of ovarian cancer from early/non-tumorigenic to late/highly aggressive cancer stages. Elastic modulus measurements via atomic force microscopy (AFM) illustrate that the enriched CSC/TICs population (0.32±0.12kPa) are 46%, 61%, and 72% softer (P<0.0001) than their aggressive late-stage, intermediate, and non-malignant early-stage cancer cells, respectively. Exposure to sphingosine, an anti-cancer agent, induced an increase in the elastic moduli of CSC/TICs by more than 46% (0.47±0.14kPa, P<0.0001). Altogether, our data demonstrate that the elastic modulus profile of CSC/TICs is unique and responsive to anti-cancer treatment strategies that impact the cytoskeleton architecture of cells. These findings increase the chance for obtaining distinctive cell biomechanical profiles with the intent of providing a means for effective cancer detection and treatment control. FROM THE CLINICAL EDITOR This novel study utilized atomic force microscopy to demonstrate that the elastic modulus profile of cancer stem cell-like tumor initiating cells is unique and responsive to anti-cancer treatment strategies that impact the cytoskeleton of these cells. These findings pave the way to the development of unique means for effective cancer detection and treatment control.
Collapse
|
36
|
Cohen CA, Shea AA, Heffron CL, Schmelz EM, Roberts PC. The parity-associated microenvironmental niche in the omental fat band is refractory to ovarian cancer metastasis. Cancer Prev Res (Phila) 2013; 6:1182-93. [PMID: 24022590 DOI: 10.1158/1940-6207.capr-13-0227] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Ovarian cancer is an insidious and aggressive disease of older women, typically undiscovered before peritoneal metastasis due to its asymptomatic nature and lack of early detection tools. Epidemiologic studies suggest that child-bearing (parity) is associated with decreased ovarian cancer risk, although the molecular mechanisms responsible for this phenomenon have not been delineated. Ovarian cancer preferentially metastasizes to the omental fat band (OFB), a secondary lymphoid organ that aids in filtration of the peritoneal serous fluid (PSF) and helps combat peritoneal infections. In the present study, we assessed how parity and age impact the immune compositional profile in the OFB of mice, both in the homeostatic state and as a consequence of peritoneal implantation of ovarian cancer. Using fluorescence-activated cell sorting analysis and quantitative real-time PCR, we found that parity was associated with a significant reduction in omental monocytic subsets and B1-B lymphocytes, correlating with reduced homeostatic expression levels of key chemoattractants and polarization factors (Ccl1, Ccl2, Arg1, and Cxcl13). Of note, parous animals exhibited significantly reduced tumor burden following intraperitoneal implantation compared with nulliparous animals. This was associated with a reduction in tumor-associated neutrophils and macrophages, as well as in the expression levels of their chemoattractants (Cxcl1 and Cxcl5) in the OFB and PSF. These findings define a preexisting "parity-associated microenvironmental niche" in the OFB that is refractory to metastatic tumor seeding and outgrowth. Future studies designed to manipulate this niche may provide a novel means to mitigate peritoneal dissemination of ovarian cancer.
Collapse
Affiliation(s)
- Courtney A Cohen
- Virginia Polytechnic Institute and State University, Integrated Life Sciences Building, 1981 Kraft Drive (0913), Blacksburg, VA 24061. ; and Eva M. Schmelz,
| | | | | | | | | |
Collapse
|