1
|
Sierra-López F, Iglesias-Vazquez V, Baylon-Pacheco L, Ríos-Castro E, Osorio-Trujillo JC, Lagunes-Guillén A, Chávez-Munguía B, Hernández SB, Acosta-Altamirano G, Talamás-Rohana P, Rosales-Encina JL, Sierra-Martínez M. A Fraction of Escherichia coli Bacteria Induces an Increase in the Secretion of Extracellular Vesicle Polydispersity in Macrophages: Possible Involvement of Secreted EVs in the Diagnosis of COVID-19 with Bacterial Coinfections. Int J Mol Sci 2025; 26:3741. [PMID: 40332365 PMCID: PMC12027499 DOI: 10.3390/ijms26083741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 04/04/2025] [Accepted: 04/04/2025] [Indexed: 05/08/2025] Open
Abstract
Extracellular vesicles (EVs) can transport molecules that combat viruses, such as RNA against SARS-CoV-2. Bacterial coinfections can help establish certain viruses and worsen diseases. Thus, we designed a model to induce the secretion of polydisperse EVs shown with SARS-CoV-2 and bacterial coinfection using macrophages and E. coli fractions as in vitro inducers. We obtained short and large macrophage EVs. The E. coli fraction was designated as SDS-soluble bacterial membrane fraction and its associated proteins (SDS-SBMF). The proteins were identified using a mass spectrometer. SDS-SBMF contained mainly OmpF, OmpA, OmpC, OmpX, and lpp. The SDS-SBMF macrophages induced the secretion of polydisperse EVs at 30 min, reaching optimal secretion at 120 min, as observed via scanning electron microscopy and confocal microscopy. Macrophage EVs contained mainly HSP7C, actin, apolipoprotein, GAPDH, annexin A5, PKM, moesin, and cofilin. We observed an increase in EVs in the bloodstream of patients with SARS-CoV-2 and bacterial coinfection, in addition to the presence of SARS-CoV-2 genes (E, ORF) in EVs. This in vitro method for inducing EVs has the potential to be used to obtain larger samples for study and for the detection of diagnostic and prognostic biomarkers of different diseases.
Collapse
Affiliation(s)
- Francisco Sierra-López
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies, Av. IPN 2508, Zacatenco, Mexico City 07360, Mexico; (F.S.-L.); (L.B.-P.); (J.C.O.-T.); (A.L.-G.); (B.C.-M.); (P.T.-R.)
| | - Vanessa Iglesias-Vazquez
- Unidad de Investigación en Salud, Hospital Regional de Alta Especialidad de Ixtapaluca, Servicios de Salud del Instituto Mexicano del Seguro Social para el Bienestar (IMSS-BIENESTAR), Mexico, Carr Mex-Puebla Km 34.5 col., Zoquiapan, Mexico City 56530, Mexico; (V.I.-V.); (S.B.H.)
| | - Lidia Baylon-Pacheco
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies, Av. IPN 2508, Zacatenco, Mexico City 07360, Mexico; (F.S.-L.); (L.B.-P.); (J.C.O.-T.); (A.L.-G.); (B.C.-M.); (P.T.-R.)
| | - Emmanuel Ríos-Castro
- Genomics, Proteomics and Metabolomics Core Facility (UGPM) LaNSE, Center for Research and Advanced Studies, Av. IPN 2508, Zacatenco, Mexico City 07360, Mexico
| | - Juan Carlos Osorio-Trujillo
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies, Av. IPN 2508, Zacatenco, Mexico City 07360, Mexico; (F.S.-L.); (L.B.-P.); (J.C.O.-T.); (A.L.-G.); (B.C.-M.); (P.T.-R.)
| | - Anel Lagunes-Guillén
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies, Av. IPN 2508, Zacatenco, Mexico City 07360, Mexico; (F.S.-L.); (L.B.-P.); (J.C.O.-T.); (A.L.-G.); (B.C.-M.); (P.T.-R.)
| | - Bibiana Chávez-Munguía
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies, Av. IPN 2508, Zacatenco, Mexico City 07360, Mexico; (F.S.-L.); (L.B.-P.); (J.C.O.-T.); (A.L.-G.); (B.C.-M.); (P.T.-R.)
| | - Susana Bernardo Hernández
- Unidad de Investigación en Salud, Hospital Regional de Alta Especialidad de Ixtapaluca, Servicios de Salud del Instituto Mexicano del Seguro Social para el Bienestar (IMSS-BIENESTAR), Mexico, Carr Mex-Puebla Km 34.5 col., Zoquiapan, Mexico City 56530, Mexico; (V.I.-V.); (S.B.H.)
| | - Gustavo Acosta-Altamirano
- Hospital General de México, Eje 2A Sur (Dr. Balmis) No. 148, Cuauhtémoc, Doctores, CDMX, Mexico City 06726, Mexico;
| | - Patricia Talamás-Rohana
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies, Av. IPN 2508, Zacatenco, Mexico City 07360, Mexico; (F.S.-L.); (L.B.-P.); (J.C.O.-T.); (A.L.-G.); (B.C.-M.); (P.T.-R.)
| | - José Luis Rosales-Encina
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies, Av. IPN 2508, Zacatenco, Mexico City 07360, Mexico; (F.S.-L.); (L.B.-P.); (J.C.O.-T.); (A.L.-G.); (B.C.-M.); (P.T.-R.)
| | - Mónica Sierra-Martínez
- Unidad de Investigación en Salud, Hospital Regional de Alta Especialidad de Ixtapaluca, Servicios de Salud del Instituto Mexicano del Seguro Social para el Bienestar (IMSS-BIENESTAR), Mexico, Carr Mex-Puebla Km 34.5 col., Zoquiapan, Mexico City 56530, Mexico; (V.I.-V.); (S.B.H.)
| |
Collapse
|
2
|
Zhang H, Luan S, Wang F, Yang L, Chen S, Li Z, Wang X, Wang WP, Chen LQ, Wang Y. The Role of Exosomes in Central Immune Tolerance and Myasthenia Gravis. Immunol Invest 2025; 54:412-434. [PMID: 39680429 DOI: 10.1080/08820139.2024.2440772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
BACKGROUND Immune homeostasis plays a crucial role in immunology andis dependent on both central and peripheral tolerance. Centraltolerance and peripheral tolerance occur in the thymus and thesecondary lymphoid tissues, respectively. Tolerance breakdown andimmune regulation defects can lead to autoimmune disorders. In thisreview article, we aimed to describe the role of exosomes inregulating central tolerance and provide a summary of their effectson the pathogenesis, diagnosis, and therapeutic potential inmyasthenia gravis (MG). METHODS Articles for this review wereidentified using the PubMed database. RESULTS As the primarylymphoid organ, the thymus is responsible for building an immunecompetent, yet self-tolerant of T-cell population. Thymic statesinclude thymoma, thymic hyperplasia, and thymic atrophy, which canexert a significant influence on the central immune tolerance andrepresent specific characteristics of MG. Previous studies have foundthat exosomes derived from human thymic epithelial cells carryantigen-presenting molecules and a wide range of tissue restrictedantigens, which may indicate a vital role of thymic exosomes in MG.Besides, exosomal miRNAs and lncRNAs may also play a critical role inthe pathophysiology of MG. CONCLUSION This review provides thetherapeutic and diagnostic potential of exosomes in MG patients.
Collapse
Affiliation(s)
- Hanlu Zhang
- Department of thoracic surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Siyuan Luan
- Department of thoracic surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Fuqiang Wang
- Department of thoracic surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Lin Yang
- Department of thoracic surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Sicheng Chen
- Department of thoracic surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Zhiyang Li
- Department of thoracic surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Xuyang Wang
- Department of thoracic surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Wen-Ping Wang
- Department of thoracic surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Long-Qi Chen
- Department of thoracic surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Yun Wang
- Department of thoracic surgery, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
3
|
René CA, Parks RJ. Extracellular vesicles efficiently deliver survival motor neuron protein to cells in culture. Sci Rep 2025; 15:5674. [PMID: 39955442 PMCID: PMC11830090 DOI: 10.1038/s41598-025-90083-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/10/2025] [Indexed: 02/17/2025] Open
Abstract
Spinal Muscular Atrophy (SMA) is a genetic neuromuscular disorder caused by homozygous mutation or deletion of the survival motor neuron 1 (SMN1) gene, leading to a low quantity of SMN protein in cells. This depletion of SMN protein preferentially leads to death of motor neurons and, consequently, muscle atrophy, in addition to defects in many other peripheral tissues. SMN protein is naturally loaded into extracellular vesicles (EVs), which are sub-micron-sized, membrane-bound particles released from all cell types. The innate ability of EVs to deliver cargo to recipient cells has caused these vesicles to gain interest as therapeutic delivery vehicles. In this study, we show that adenovirus-mediated overexpression of SMN protein in HepG2 cells leads to the release of EVs loaded with high levels of SMN protein into conditioned medium. Application of this medium to recipient cells in tissue culture led to uptake of the SMN protein, which subsequently transited to the nucleus and co-localized with Gemin2 protein, forming nuclear gem-like structures similar to the native SMN protein. Overall, this work demonstrates that SMN protein can be delivered to cells through EVs, which holds promise as a potential therapy for patients with SMA.
Collapse
Affiliation(s)
- Charlotte A René
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8L1, Canada
- Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON, K1Y 4E9, Canada
| | - Robin J Parks
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada.
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8L1, Canada.
- Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON, K1Y 4E9, Canada.
- Department of Medicine, The Ottawa Hospital and University of Ottawa, Ottawa, ON, K1H 8L6, Canada.
| |
Collapse
|
4
|
Ahmad S, Zhang XL, Ahmad A. Epigenetic regulation of pulmonary inflammation. Semin Cell Dev Biol 2024; 154:346-354. [PMID: 37230854 PMCID: PMC10592630 DOI: 10.1016/j.semcdb.2023.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023]
Abstract
Pulmonary disease such as chronic obstructive pulmonary disease (COPD), asthma, pulmonary fibrosis and pulmonary hypertension are the leading cause of deaths. More importantly, lung diseases are on the rise and environmental factors induced epigenetic modifications are major players on this increased prevalence. It has been reported that dysregulation of genes involved in epigenetic regulation such as the histone deacetylase (HDACs) and histone acetyltransferase (HATs) play important role in lung health and pulmonary disease pathogenesis. Inflammation is an essential component of respiratory diseases. Injury and inflammation trigger release of extracellular vesicles that can act as epigenetic modifiers through transfer of epigenetic regulators such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), proteins and lipids, from one cell to another. The immune dysregulations caused by the cargo contents are important contributors of respiratory disease pathogenesis. N6 methylation of RNA is also emerging to be a critical mechanism of epigenetic alteration and upregulation of immune responses to environmental stressors. Epigenetic changes such as DNA methylation are stable and often long term and cause onset of chronic lung conditions. These epigenetic pathways are also being utilized for therapeutic intervention in several lung conditions.
Collapse
Affiliation(s)
- Shama Ahmad
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Xiao Lu Zhang
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Aftab Ahmad
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
5
|
Ono K, Sato J, Suzuki H, Sawada M. Distribution of Signal Peptides in Microvesicles from Activated Macrophage Cells. Int J Mol Sci 2023; 24:12131. [PMID: 37569508 PMCID: PMC10418841 DOI: 10.3390/ijms241512131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Extracellular vesicles, such as microvesicles (LEV) and exosomes (SEV), play an important role in intercellular signaling by encapsulating functional molecules and delivering them to specific cells. Recent studies showed that signal peptides (SPs), which are derived from sequences at the N-terminal of newly synthesized proteins, exhibited biological activity in the extracellular fluid. We previously reported that SPs were secreted into the extracellular fluid via SEV; however, it remains unclear whether the release of SPs occurs via LEV. In the present study, we demonstrated that SP fragments from human placental secreted alkaline phosphatase (SEAP) were present in LEV as well as SEV released from RAW-Blue cells, which stably express an NF-κB-inducible SEAP reporter. When RAW-Blue cells were treated with LPS at 0-10,000 ng/mL, SEAP SP fragments per particle were more abundant in LEV than in SEV, with fragments in LEV and SEV reaching a maximum at 1000 and 100 ng/mL, respectively. The content of SEAP SP fragments in LEV from IFNγ-stimulated RAW-Blue cells was higher than those from TNFα-stimulated cells, whereas that in SEV from TNFα-stimulated RAW-Blue cells was higher than those from IFNγ-stimulated cells. Moreover, the content of SEAP SP fragments in LEV and SEV decreased in the presence of W13, a calmodulin inhibitor. Collectively, these results indicate that the transportation of SP fragments to extracellular vesicles was changed by cellular activation, and calmodulin was involved in their transportation to LEV and SEV.
Collapse
Affiliation(s)
- Kenji Ono
- Department of Brain Function, Division of Stress Adaptation and Protection, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Aichi, Japan (H.S.); (M.S.)
- Department of Molecular Pharmacokinetics, Nagoya University Graduate School of Medicine, Nagoya 464-8601, Aichi, Japan
| | - Junpei Sato
- Department of Brain Function, Division of Stress Adaptation and Protection, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Aichi, Japan (H.S.); (M.S.)
- Department of Molecular Pharmacokinetics, Nagoya University Graduate School of Medicine, Nagoya 464-8601, Aichi, Japan
| | - Hiromi Suzuki
- Department of Brain Function, Division of Stress Adaptation and Protection, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Aichi, Japan (H.S.); (M.S.)
- Department of Molecular Pharmacokinetics, Nagoya University Graduate School of Medicine, Nagoya 464-8601, Aichi, Japan
| | - Makoto Sawada
- Department of Brain Function, Division of Stress Adaptation and Protection, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Aichi, Japan (H.S.); (M.S.)
- Department of Molecular Pharmacokinetics, Nagoya University Graduate School of Medicine, Nagoya 464-8601, Aichi, Japan
| |
Collapse
|
6
|
Ono K, Niwa M, Suzuki H, Kobayashi NB, Yoshida T, Sawada M. Calmodulin as a Key Regulator of Exosomal Signal Peptides. Cells 2022; 12:cells12010158. [PMID: 36611951 PMCID: PMC9818429 DOI: 10.3390/cells12010158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/16/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Signal peptides (SPs) and their fragments play important roles as biomarkers and substances with physiological functions in extracellular fluid. We previously reported that SP fragments were released into extracellular fluid via exosomes and bound to calmodulin (CaM), an exosomal component, in a cell-free system. However, it currently remains unclear whether CaM intracellularly interacts with SP fragments or is involved in the trafficking of these fragments to exosomes. Therefore, the present study examined the binding of CaM to SP fragments in T-REx AspALP cells, transformed HEK293 cells expressing amyloid precursor protein (APP) SP flanking a reporter protein, and their exosomes. APP SP fragments were detected in exosomes from T-REx AspALP cells in the absence of W13, a CaM inhibitor, but were present in lower amounts in exosomes from W13-treated cells. Cargo proteins, such as Alix, CD63, and CD81, were increased in W13-treated T-REx AspALP cells but were decreased in their exosomes. Furthermore, CaM interacted with heat shock protein 70 and CD81 in T-REx AspALP cells and this increased in the presence of W13. APP SP fragments were detected in intracellular CaM complexes in the absence of W13, but not in its presence. These results indicate that CaM functions as a key regulator of the transport of SP fragments into exosomes and plays novel roles in the sorting of contents during exosomal biogenesis.
Collapse
Affiliation(s)
- Kenji Ono
- Department of Brain Function, Division of Stress Adaptation and Protection, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Aichi, Japan
- Department of Molecular Pharmacokinetics, Graduate School of Medicine, Nagoya University, Nagoya 464-8601, Aichi, Japan
- Correspondence: ; Tel.: +81-52-789-5002; Fax: +81-52-789-3994
| | - Mikio Niwa
- Institute for Advanced Sciences, Toagosei Co., Ltd., Tsukuba 300-2611, Ibaraki, Japan
| | - Hiromi Suzuki
- Department of Brain Function, Division of Stress Adaptation and Protection, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Aichi, Japan
- Department of Molecular Pharmacokinetics, Graduate School of Medicine, Nagoya University, Nagoya 464-8601, Aichi, Japan
| | | | - Tetsuhiko Yoshida
- Institute for Advanced Sciences, Toagosei Co., Ltd., Tsukuba 300-2611, Ibaraki, Japan
| | - Makoto Sawada
- Department of Brain Function, Division of Stress Adaptation and Protection, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Aichi, Japan
- Department of Molecular Pharmacokinetics, Graduate School of Medicine, Nagoya University, Nagoya 464-8601, Aichi, Japan
| |
Collapse
|
7
|
Hallal S, Tűzesi Á, Grau GE, Buckland ME, Alexander KL. Understanding the extracellular vesicle surface for clinical molecular biology. J Extracell Vesicles 2022; 11:e12260. [PMID: 36239734 PMCID: PMC9563386 DOI: 10.1002/jev2.12260] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 12/17/2022] Open
Abstract
Extracellular vesicles (EVs) are lipid-membrane enclosed nanoparticles that play significant roles in health and disease. EVs are abundant in body fluids and carry an array of molecules (proteins, lipids, nucleic acids and glycans) that reflect the identity and activity of their cell-of-origin. While the advent of high throughput omics technologies has allowed in-depth characterisation of EV compositions, how these molecular species are spatially distributed within EV structures is not well appreciated. This is particularly true of the EV surface where a plethora of molecules are reported to be both integral and peripherally associated to the EV membrane. This coronal layer or 'atmosphere' that surrounds the EV membrane contributes to a large, highly interactive and dynamic surface area that is responsible for facilitating EV interactions with the extracellular environment. The EV coronal layer harbours surface molecules that reflect the identity of parent cells, which is likely a highly valuable property in the context of diagnostic liquid biopsies. In this review, we describe the current understanding of the mechanical, electrostatic and molecular properties of the EV surface that offer significant biomarker potential and contribute to a highly dynamic interactome.
Collapse
Affiliation(s)
- Susannah Hallal
- Neurosurgery DepartmentChris O'Brien LifehouseCamperdownNSWAustralia,Brainstorm Brain Cancer Research, Brain and Mind CentreThe University of SydneyNSWAustralia,Neuropathology DepartmentRoyal Prince Alfred HospitalCamperdownNSWAustralia
| | - Ágota Tűzesi
- Brainstorm Brain Cancer Research, Brain and Mind CentreThe University of SydneyNSWAustralia,Neuropathology DepartmentRoyal Prince Alfred HospitalCamperdownNSWAustralia,School of Medical SciencesFaculty of Medicine & HealthThe University of SydneyCamperdownNSWAustralia
| | - Georges E. Grau
- School of Medical SciencesFaculty of Medicine & HealthThe University of SydneyCamperdownNSWAustralia
| | - Michael E. Buckland
- Brainstorm Brain Cancer Research, Brain and Mind CentreThe University of SydneyNSWAustralia,Neuropathology DepartmentRoyal Prince Alfred HospitalCamperdownNSWAustralia,School of Medical SciencesFaculty of Medicine & HealthThe University of SydneyCamperdownNSWAustralia
| | - Kimberley L. Alexander
- Neurosurgery DepartmentChris O'Brien LifehouseCamperdownNSWAustralia,Brainstorm Brain Cancer Research, Brain and Mind CentreThe University of SydneyNSWAustralia,Neuropathology DepartmentRoyal Prince Alfred HospitalCamperdownNSWAustralia,School of Medical SciencesFaculty of Medicine & HealthThe University of SydneyCamperdownNSWAustralia
| |
Collapse
|
8
|
Whitley JA, Kim S, Lou L, Ye C, Alsaidan OA, Sulejmani E, Cai J, Desrochers EG, Beharry Z, Rickman CB, Klingeborn M, Liu Y, Xie Z, Cai H. Encapsulating Cas9 into extracellular vesicles by protein myristoylation. J Extracell Vesicles 2022; 11:e12196. [PMID: 35384352 PMCID: PMC8982324 DOI: 10.1002/jev2.12196] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 01/20/2022] [Accepted: 02/02/2022] [Indexed: 01/29/2023] Open
Abstract
CRISPR/Cas9 genome editing is a very promising avenue for the treatment of a variety of genetic diseases. However, it is still very challenging to encapsulate CRISPR/Cas9 machinery for delivery. Protein N-myristoylation is an irreversible co/post-translational modification that results in the covalent attachment of the myristoyl-group to the N-terminus of a target protein. It serves as an anchor for a protein to associate with the cell membrane and determines its intracellular trafficking and activity. Extracellular vesicles (EVs) are secreted vesicles that mediate cell-cell communication. In this study, we demonstrate that myristoylated proteins were preferentially encapsulated into EVs. The octapeptide derived from the leading sequence of the N-terminus of Src kinase was a favourable substrate for N-myristoyltransferase 1, the enzyme that catalyzes myristoylation. The fusion of the octapeptide onto the N-terminus of Cas9 promoted the myristoylation and encapsulation of Cas9 into EVs. Encapsulation of Cas9 and sgRNA-eGFP inside EVs was confirmed using protease digestion assays. Additionally, to increase the transfection potential, VSV-G was introduced into the EVs. The encapsulated Cas9 in EVs accounted for 0.7% of total EV protein. Importantly, the EVs coated with VSV-G encapsulating Cas9/sgRNA-eGFP showed up to 42% eGFP knock out efficiency with limited off-target effects in recipient cells. Our study provides a novel approach to encapsulate CRISPR/Cas9 protein and sgRNA into EVs. This strategy may open an effective avenue to utilize EVs as vehicles to deliver CRISPR/Cas9 for genome-editing-based gene therapy.
Collapse
Affiliation(s)
- Joseph Andrew Whitley
- Department of Pharmaceutical and Biomedical SciencesCollege of PharmacyUniversity of GeorgiaAthensGeorgiaUSA
| | - Sungjin Kim
- Department of Pharmaceutical and Biomedical SciencesCollege of PharmacyUniversity of GeorgiaAthensGeorgiaUSA
| | - Lei Lou
- School of Electrical and Computer EngineeringCollege of EngineeringUniversity of GeorgiaAthensGeorgiaUSA
| | - Chenming Ye
- Department of Pharmaceutical and Biomedical SciencesCollege of PharmacyUniversity of GeorgiaAthensGeorgiaUSA
| | - Omar Awad Alsaidan
- Department of Pharmaceutical and Biomedical SciencesCollege of PharmacyUniversity of GeorgiaAthensGeorgiaUSA
| | - Essilvo Sulejmani
- Department of Pharmaceutical and Biomedical SciencesCollege of PharmacyUniversity of GeorgiaAthensGeorgiaUSA
| | - Jingwen Cai
- Department of Cellular Biology and AnatomyAugusta UniversityAugustaGeorgiaUSA
| | - Ellison Gerona Desrochers
- School of Electrical and Computer EngineeringCollege of EngineeringUniversity of GeorgiaAthensGeorgiaUSA
| | - Zanna Beharry
- Department of Chemical and Physical SciencesUniversity of Virgin IslandsSt. ThomasVirgin Islands
| | - Catherine Bowes Rickman
- Department of OphthalmologyDuke UniversityDurhamNorth CarolinaUSA
- Department of Cell BiologyDuke UniversityDurhamNorth CarolinaUSA
| | | | - Yutao Liu
- Department of Cellular Biology and AnatomyAugusta UniversityAugustaGeorgiaUSA
| | - Zhong‐Ru Xie
- School of Electrical and Computer EngineeringCollege of EngineeringUniversity of GeorgiaAthensGeorgiaUSA
| | - Houjian Cai
- Department of Pharmaceutical and Biomedical SciencesCollege of PharmacyUniversity of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
9
|
Early-stage multi-cancer detection using an extracellular vesicle protein-based blood test. COMMUNICATIONS MEDICINE 2022; 2:29. [PMID: 35603292 PMCID: PMC9053211 DOI: 10.1038/s43856-022-00088-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 02/11/2022] [Indexed: 12/24/2022] Open
Abstract
Background Detecting cancer at early stages significantly increases patient survival rates. Because lethal solid tumors often produce few symptoms before progressing to advanced, metastatic disease, diagnosis frequently occurs when surgical resection is no longer curative. One promising approach to detect early-stage, curable cancers uses biomarkers present in circulating extracellular vesicles (EVs). To explore the feasibility of this approach, we developed an EV-based blood biomarker classifier from EV protein profiles to detect stages I and II pancreatic, ovarian, and bladder cancer. Methods Utilizing an alternating current electrokinetics (ACE) platform to purify EVs from plasma, we use multi-marker EV-protein measurements to develop a machine learning algorithm that can discriminate cancer cases from controls. The ACE isolation method requires small sample volumes, and the streamlined process permits integration into high-throughput workflows. Results In this case-control pilot study, comparison of 139 pathologically confirmed stage I and II cancer cases representing pancreatic, ovarian, or bladder patients against 184 control subjects yields an area under the curve (AUC) of 0.95 (95% CI: 0.92 to 0.97), with sensitivity of 71.2% (95% CI: 63.2 to 78.1) at 99.5% (97.0 to 99.9) specificity. Sensitivity is similar at both early stages [stage I: 70.5% (60.2 to 79.0) and stage II: 72.5% (59.1 to 82.9)]. Detection of stage I cancer reaches 95.5% in pancreatic, 74.4% in ovarian (73.1% in Stage IA) and 43.8% in bladder cancer. Conclusions This work demonstrates that an EV-based, multi-cancer test has potential clinical value for early cancer detection and warrants future expanded studies involving prospective cohorts with multi-year follow-up. Finding cancer early can make treatment easier and improve odds of survival. However, many tumors go unnoticed until they have grown large enough to cause symptoms. While scans can detect tumors earlier, routine full-body imaging is impractical for population screening. New cancer detection methods being explored are based on observations that tumors release tiny particles called extracellular vesicles (EVs) into the bloodstream, containing proteins from the tumor. Here, we used a method to purify EVs from patients’ blood followed by a method to detect tumor proteins in the EVs. Our method quickly and accurately detected early-stage pancreatic, ovarian, or bladder cancer. With further testing, this method may provide a useful screening tool for clinicians to detect cancers at an earlier stage. Hinestrosa et al. describe the early-stage detection of cancer using biomarkers present in circulating extracellular vesicles purified via an alternating current electrokinetics platform. They show, in a case-control study, that 95.7% of pancreatic, 75.0% of ovarian and 43.8% of bladder stage I and II cancers can be detected.
Collapse
|
10
|
Avci E, Sarvari P, Savai R, Seeger W, Pullamsetti SS. Epigenetic Mechanisms in Parenchymal Lung Diseases: Bystanders or Therapeutic Targets? Int J Mol Sci 2022; 23:ijms23010546. [PMID: 35008971 PMCID: PMC8745712 DOI: 10.3390/ijms23010546] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 12/17/2022] Open
Abstract
Epigenetic responses due to environmental changes alter chromatin structure, which in turn modifies the phenotype, gene expression profile, and activity of each cell type that has a role in the pathophysiology of a disease. Pulmonary diseases are one of the major causes of death in the world, including lung cancer, idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD), pulmonary hypertension (PH), lung tuberculosis, pulmonary embolism, and asthma. Several lines of evidence indicate that epigenetic modifications may be one of the main factors to explain the increasing incidence and prevalence of lung diseases including IPF and COPD. Interestingly, isolated fibroblasts and smooth muscle cells from patients with pulmonary diseases such as IPF and PH that were cultured ex vivo maintained the disease phenotype. The cells often show a hyper-proliferative, apoptosis-resistant phenotype with increased expression of extracellular matrix (ECM) and activated focal adhesions suggesting the presence of an epigenetically imprinted phenotype. Moreover, many abnormalities observed in molecular processes in IPF patients are shown to be epigenetically regulated, such as innate immunity, cellular senescence, and apoptotic cell death. DNA methylation, histone modification, and microRNA regulation constitute the most common epigenetic modification mechanisms.
Collapse
MESH Headings
- Animals
- Biomarkers
- Combined Modality Therapy
- DNA Methylation
- Diagnosis, Differential
- Disease Management
- Disease Susceptibility
- Epigenesis, Genetic
- Gene Expression Regulation
- Histones/metabolism
- Humans
- Idiopathic Pulmonary Fibrosis/diagnosis
- Idiopathic Pulmonary Fibrosis/etiology
- Idiopathic Pulmonary Fibrosis/metabolism
- Idiopathic Pulmonary Fibrosis/therapy
- Lung Diseases, Interstitial/diagnosis
- Lung Diseases, Interstitial/etiology
- Lung Diseases, Interstitial/metabolism
- Lung Diseases, Interstitial/therapy
- Pulmonary Disease, Chronic Obstructive/diagnosis
- Pulmonary Disease, Chronic Obstructive/etiology
- Pulmonary Disease, Chronic Obstructive/metabolism
- Pulmonary Disease, Chronic Obstructive/therapy
- Treatment Outcome
Collapse
Affiliation(s)
- Edibe Avci
- Department of Lung Development and Remodeling, Max-Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231 Bad Nauheim, Germany; (E.A.); (P.S.); (R.S.); (W.S.)
| | - Pouya Sarvari
- Department of Lung Development and Remodeling, Max-Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231 Bad Nauheim, Germany; (E.A.); (P.S.); (R.S.); (W.S.)
| | - Rajkumar Savai
- Department of Lung Development and Remodeling, Max-Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231 Bad Nauheim, Germany; (E.A.); (P.S.); (R.S.); (W.S.)
- Department of Internal Medicine, Justus Liebig University, 35392 Giessen, Germany
- Institute for Lung Health (ILH), Justus Liebig University, 35392 Giessen, Germany
| | - Werner Seeger
- Department of Lung Development and Remodeling, Max-Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231 Bad Nauheim, Germany; (E.A.); (P.S.); (R.S.); (W.S.)
- Department of Internal Medicine, Justus Liebig University, 35392 Giessen, Germany
- Institute for Lung Health (ILH), Justus Liebig University, 35392 Giessen, Germany
| | - Soni S. Pullamsetti
- Department of Lung Development and Remodeling, Max-Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231 Bad Nauheim, Germany; (E.A.); (P.S.); (R.S.); (W.S.)
- Department of Internal Medicine, Justus Liebig University, 35392 Giessen, Germany
- Correspondence: ; Tel.: +49-603-270-5380; Fax: +49-603-270-5385
| |
Collapse
|
11
|
Chuang HC, Chen MH, Chen YM, Yang HY, Ciou YR, Hsueh CH, Tsai CY, Tan TH. BPI overexpression suppresses Treg differentiation and induces exosome-mediated inflammation in systemic lupus erythematosus. Theranostics 2021; 11:9953-9966. [PMID: 34815797 PMCID: PMC8581436 DOI: 10.7150/thno.63743] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/13/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Serum-derived exosomes are correlated with disease severity of human systemic lupus erythematosus (SLE). The proteins in the T-cell-derived exosomes from SLE patients could contribute to inflammation. Methods: We characterized proteins of T cell-derived exosomes from SLE patients and healthy controls by proteomics. To study the potential pathogenic role of the identified exosomal protein, we generated and characterized T-cell-specific transgenic mice that overexpressed the identified protein in T cells using immunohistochemistry, immunoblotting, and single-cell RNA sequencing. Results: We identified an overexpressed protein, bactericidal/permeability-increasing protein (BPI), in SLE T cells and T-cell-derived exosomes. T-cell-specific BPI transgenic (Lck-BPI Tg) mice showed multi-tissue inflammation with early induction of serum IL-1β levels, as well as serum triglyceride and creatinine levels. Interestingly, exosomes of Lck-BPI Tg T cells stimulated IL-1β expression of wild-type recipient macrophages. Remarkably, adoptive transfer of BPI-containing exosomes increased serum IL-1β and autoantibody levels in recipient mice. The transferred exosomes infiltrated into multiple tissues of recipient mice, resulting in hepatitis, nephritis, and arthritis. ScRNA-seq showed that Lck-BPI Tg T cells displayed a decrease of Treg population, which was concomitant with ZFP36L2 upregulation and Helios downregulation. Furthermore, in vitro Treg differentiation was reduced by BPI transgene and enhanced by BPI knockout. Conclusions: BPI is a negative regulator of Treg differentiation. BPI overexpression in T-cell-derived exosomes or peripheral blood T cells may be a biomarker and pathogenic factor for human SLE nephritis, hepatitis, and arthritis.
Collapse
Affiliation(s)
- Huai-Chia Chuang
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Ming-Han Chen
- Division of Allergy, Immunology, and Rheumatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Ming Chen
- Division of Allergy, Immunology, and Rheumatology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Huang-Yu Yang
- Department of Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yi-Ru Ciou
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Chia-Hsin Hsueh
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Ching-Yi Tsai
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Tse-Hua Tan
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
12
|
Pandya NJ, Wang C, Costa V, Lopatta P, Meier S, Zampeta FI, Punt AM, Mientjes E, Grossen P, Distler T, Tzouros M, Martí Y, Banfai B, Patsch C, Rasmussen S, Hoener M, Berrera M, Kremer T, Dunkley T, Ebeling M, Distel B, Elgersma Y, Jagasia R. Secreted retrovirus-like GAG-domain-containing protein PEG10 is regulated by UBE3A and is involved in Angelman syndrome pathophysiology. Cell Rep Med 2021; 2:100360. [PMID: 34467244 PMCID: PMC8385294 DOI: 10.1016/j.xcrm.2021.100360] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 03/11/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022]
Abstract
Angelman syndrome (AS) is a neurodevelopmental disorder caused by the loss of maternal UBE3A, a ubiquitin protein ligase E3A. Here, we study neurons derived from patients with AS and neurotypical individuals, and reciprocally modulate UBE3A using antisense oligonucleotides. Unbiased proteomics reveal proteins that are regulated by UBE3A in a disease-specific manner, including PEG10, a retrotransposon-derived GAG protein. PEG10 protein increase, but not RNA, is dependent on UBE3A and proteasome function. PEG10 binds to both RNA and ataxia-associated proteins (ATXN2 and ATXN10), localizes to stress granules, and is secreted in extracellular vesicles, modulating vesicle content. Rescue of AS patient-derived neurons by UBE3A reinstatement or PEG10 reduction reveals similarity in transcriptome changes. Overexpression of PEG10 during mouse brain development alters neuronal migration, suggesting that it can affect brain development. These findings imply that PEG10 is a secreted human UBE3A target involved in AS pathophysiology.
Collapse
Affiliation(s)
- Nikhil J. Pandya
- Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
- Neuroscience and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Congwei Wang
- Neuroscience and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Veronica Costa
- Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Paul Lopatta
- Neuroscience and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Sonja Meier
- Neuroscience and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - F. Isabella Zampeta
- Departments of Neuroscience and Clinical Genetics, The ENCORE Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - A. Mattijs Punt
- Departments of Neuroscience and Clinical Genetics, The ENCORE Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Edwin Mientjes
- Departments of Neuroscience and Clinical Genetics, The ENCORE Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Philip Grossen
- Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Tania Distler
- Neuroscience and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Manuel Tzouros
- Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Yasmina Martí
- Neuroscience and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Balazs Banfai
- Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Christoph Patsch
- Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Soren Rasmussen
- Therapeutic Modalities, Roche Innovation Center Copenhagen, F. Hoffmann-La Roche, Copenhagen, Denmark
| | - Marius Hoener
- Neuroscience and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Marco Berrera
- Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Thomas Kremer
- Neuroscience and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Tom Dunkley
- Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Martin Ebeling
- Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Ben Distel
- Departments of Neuroscience and Clinical Genetics, The ENCORE Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, the Netherlands
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Ype Elgersma
- Departments of Neuroscience and Clinical Genetics, The ENCORE Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Ravi Jagasia
- Neuroscience and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| |
Collapse
|
13
|
Zhao LJ, Li YY, Zhang YT, Fan QQ, Ren HM, Zhang C, Mardinoglu A, Chen WC, Pang JR, Shen DD, Wang JW, Zhao LF, Zhang JY, Wang ZY, Zheng YC, Liu HM. Lysine demethylase LSD1 delivered via small extracellular vesicles promotes gastric cancer cell stemness. EMBO Rep 2021; 22:e50922. [PMID: 34060205 DOI: 10.15252/embr.202050922] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 01/08/2023] Open
Abstract
Several studies have examined the functions of nucleic acids in small extracellular vesicles (sEVs). However, much less is known about the protein cargos of sEVs and their functions in recipient cells. This study demonstrates the presence of lysine-specific demethylase 1 (LSD1), which is the first identified histone demethylase, in the culture medium of gastric cancer cells. We show that sEVs derived from gastric cancer cells and the plasma of patients with gastric cancer harbor LSD1. The shuttling of LSD1-containing sEVs from donor cells to recipient gastric cancer cells promotes cancer cell stemness by positively regulating the expression of Nanog, OCT4, SOX2, and CD44. Additionally, sEV-delivered LSD1 suppresses oxaliplatin response of recipient cells in vitro and in vivo, whereas LSD1-depleted sEVs do not. Taken together, we demonstrate that LSD1-loaded sEVs can promote stemness and chemoresistance to oxaliplatin. These findings suggest that the LSD1 content of sEV could serve as a biomarker to predict oxaliplatin response in gastric cancer patients.
Collapse
Affiliation(s)
- Li-Juan Zhao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Ying-Ying Li
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Yu-Tong Zhang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Qi-Qi Fan
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Hong-Mei Ren
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Cheng Zhang
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden.,Faculty of Dentistry, Oral & Craniofacial Sciences, Centre for Host-Microbiome Interactions, King's College London, London, UK
| | - Wen-Chao Chen
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing-Ru Pang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Dan-Dan Shen
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Jun-Wei Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Long-Fei Zhao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Jian-Ying Zhang
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhen-Ya Wang
- Key Laboratory of "Runliang" Antiviral Medicines Research and Development, Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou, China
| | - Yi-Chao Zheng
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Hong-Min Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
14
|
Guarnieri AR, Anthony SR, Gozdiff A, Green LC, Fleifil SM, Slone S, Nieman ML, Alam P, Benoit JB, Owens AP, Kanisicak O, Tranter M. Adipocyte-specific deletion of HuR induces spontaneous cardiac hypertrophy and fibrosis. Am J Physiol Heart Circ Physiol 2021; 321:H228-H241. [PMID: 34018851 DOI: 10.1152/ajpheart.00957.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Adipose tissue homeostasis plays a central role in cardiovascular physiology, and the presence of thermogenically active brown adipose tissue (BAT) has recently been associated with cardiometabolic health. We have previously shown that adipose tissue-specific deletion of HuR (Adipo-HuR-/-) reduces BAT-mediated adaptive thermogenesis, and the goal of this work was to identify the cardiovascular impacts of Adipo-HuR-/-. We found that Adipo-HuR-/- mice exhibit a hypercontractile phenotype that is accompanied by increased left ventricle wall thickness and hypertrophic gene expression. Furthermore, hearts from Adipo-HuR-/- mice display increased fibrosis via picrosirius red staining and periostin expression. To identify underlying mechanisms, we applied both RNA-seq and weighted gene coexpression network analysis (WGCNA) across both cardiac and adipose tissue to define HuR-dependent changes in gene expression as well as significant relationships between adipose tissue gene expression and cardiac fibrosis. RNA-seq results demonstrated a significant increase in proinflammatory gene expression in both cardiac and subcutaneous white adipose tissue (scWAT) from Adipo-HuR-/- mice that is accompanied by an increase in serum levels of both TNF-α and IL-6. In addition to inflammation-related genes, WGCNA identified a significant enrichment in extracellular vesicle-mediated transport and exosome-associated genes in scWAT, whose expression most significantly associated with the degree of cardiac fibrosis observed in Adipo-HuR-/- mice, implicating these processes as a likely adipose-to-cardiac paracrine mechanism. These results are significant in that they demonstrate the spontaneous onset of cardiovascular pathology in an adipose tissue-specific gene deletion model and contribute to our understanding of how disruptions in adipose tissue homeostasis may mediate cardiovascular disease.NEW & NOTEWORTHY The presence of functional brown adipose tissue in humans is known to be associated with cardiovascular health. Here, we show that adipocyte-specific deletion of the RNA binding protein HuR, which we have previously shown to reduce BAT-mediated thermogenesis, is sufficient to mediate a spontaneous development of cardiac hypertrophy and fibrosis. These results may have implications on the mechanisms by which BAT function and adipose tissue homeostasis directly mediate cardiovascular disease.
Collapse
Affiliation(s)
- Adrienne R Guarnieri
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Sarah R Anthony
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Anamarie Gozdiff
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Lisa C Green
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Salma M Fleifil
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Sam Slone
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Michelle L Nieman
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Perwez Alam
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio
| | - A Phillip Owens
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Onur Kanisicak
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Michael Tranter
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
15
|
Alteration of payload in extracellular vesicles by crosstalk with mesenchymal stem cells from different origin. J Nanobiotechnology 2021; 19:148. [PMID: 34016123 PMCID: PMC8139033 DOI: 10.1186/s12951-021-00890-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/08/2021] [Indexed: 02/07/2023] Open
Abstract
Background The application of extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) requires customized materials to target disease or cell damage. We hypothesized that EVs exert different inflammatory effects on one recipient cell, although stem cells of different origins in humans have similar payloads. Results Here, the payload of EVs released by crosstalk between MSCs and human middle ear epithelial cells (HMEECs) extracted from adipose tissue, bone marrow and tonsils significantly increased the level of anti-inflammatory factors. EVs derived from the co-culture medium decreased TNF-, COX-2, IL-1, and IL-6 levels to approximately zero within 3h in HMEECs. Expression of miR-638 and amyloid- A4 precursor protein-binding family A member 2 was analyzed using microarrays and gene ontology analysis, respectively. Conclusions In conclusion, stem cells of different origins have different payloads through crosstalk with recipient-specific cells. Inducing specific factors in EVs by co-culture with MSCs could be valuable in regenerative medicine. Graphical abstract ![]()
Collapse
|
16
|
Sung BH, Parent CA, Weaver AM. Extracellular vesicles: Critical players during cell migration. Dev Cell 2021; 56:1861-1874. [PMID: 33811804 DOI: 10.1016/j.devcel.2021.03.020] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 02/09/2021] [Accepted: 03/12/2021] [Indexed: 12/13/2022]
Abstract
Cell migration is essential for the development and maintenance of multicellular organisms, contributing to embryogenesis, wound healing, immune response, and other critical processes. It is also involved in the pathogenesis of many diseases, including immune deficiency disorders and cancer metastasis. Recently, extracellular vesicles (EVs) have been shown to play important roles in cell migration. Here, we review recent studies describing the functions of EVs in multiple aspects of cell motility, including directional sensing, cell adhesion, extracellular matrix (ECM) degradation, and leader-follower behavior. We also discuss the role of EVs in migration during development and disease and the utility of imaging tools for studying the role of EVs in cell migration.
Collapse
Affiliation(s)
- Bong Hwan Sung
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, 1161 Medical Center Dr, Nashville, TN 37232, USA
| | - Carole A Parent
- Department of Pharmacology, University of Michigan, 500 S. State Street, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan, 500 S. State Street, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, 500 S. State Street, Ann Arbor, MI 48109, USA; Life Sciences Institute, University of Michigan, 500 S. State Street, Ann Arbor, MI 48109, USA
| | - Alissa M Weaver
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, 1161 Medical Center Dr, Nashville, TN 37232, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, 1211 Medical Center Dr, Nashville, TN 37232, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2220 Pierce Ave, Nashville, TN 37232, USA.
| |
Collapse
|
17
|
Wang X, HuangFu C, Zhu X, Liu J, Gong X, Pan Q, Ma X. Exosomes and Exosomal MicroRNAs in Age-Associated Stroke. Curr Vasc Pharmacol 2021; 19:587-600. [PMID: 33563154 DOI: 10.2174/1570161119666210208202621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/04/2021] [Accepted: 01/18/2021] [Indexed: 11/22/2022]
Abstract
Aging has been considered to be the most important non-modifiable risk factor for stroke and death. Changes in circulation factors in the systemic environment, cellular senescence and artery hypertension during human ageing have been investigated. Exosomes are nanosize membrane vesicles that can regulate target cell functions via delivering their carried bioactive molecules (e.g. protein, mRNA, and microRNAs). In the central nervous system, exosomes and exosomal microRNAs play a critical role in regulating neurovascular function, and are implicated in the initiation and progression of stroke. MicroRNAs are small non-coding RNAs that have been reported to play critical roles in various biological processes. Recently, evidence has shown that microRNAs are packaged into exosomes and can be secreted into the systemic and tissue environment. Circulating microRNAs participate in cellular senescence and contribute to age-associated stroke. Here, we provide an overview of current knowledge on exosomes and their carried microRNAs in the regulation of cellular and organismal ageing processes, demonstrating the potential role of exosomes and their carried microRNAs in age-associated stroke.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, . China
| | - Changmei HuangFu
- Department of Geriatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, . China
| | - Xiudeng Zhu
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, . China
| | - Jiehong Liu
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, . China
| | - Xinqin Gong
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, . China
| | - Qunwen Pan
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, . China
| | - Xiaotang Ma
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, . China
| |
Collapse
|
18
|
Fabbiano F, Corsi J, Gurrieri E, Trevisan C, Notarangelo M, D'Agostino VG. RNA packaging into extracellular vesicles: An orchestra of RNA-binding proteins? J Extracell Vesicles 2020; 10:e12043. [PMID: 33391635 PMCID: PMC7769857 DOI: 10.1002/jev2.12043] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/17/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are heterogeneous membranous particles released from the cells through different biogenetic and secretory mechanisms. We now conceive EVs as shuttles mediating cellular communication, carrying a variety of molecules resulting from intracellular homeostatic mechanisms. The RNA is a widely detected cargo and, impressively, a recognized functional intermediate that elects EVs as modulators of cancer cell phenotypes, determinants of disease spreading, cell surrogates in regenerative medicine, and a source for non-invasive molecular diagnostics. The mechanistic elucidation of the intracellular events responsible for the engagement of RNA into EVs will significantly improve the comprehension and possibly the prediction of EV "quality" in association with cell physiology. Interestingly, the application of multidisciplinary approaches, including biochemical as well as cell-based and computational strategies, is increasingly revealing an active RNA-packaging process implicating RNA-binding proteins (RBPs) in the sorting of coding and non-coding RNAs. In this review, we provide a comprehensive view of RBPs recently emerging as part of the EV biology, considering the scenarios where: (i) individual RBPs were detected in EVs along with their RNA substrates, (ii) RBPs were detected in EVs with inferred RNA targets, and (iii) EV-transcripts were found to harbour sequence motifs mirroring the activity of RBPs. Proteins so far identified are members of the hnRNP family (hnRNPA2B1, hnRNPC1, hnRNPG, hnRNPH1, hnRNPK, and hnRNPQ), as well as YBX1, HuR, AGO2, IGF2BP1, MEX3C, ANXA2, ALIX, NCL, FUS, TDP-43, MVP, LIN28, SRP9/14, QKI, and TERT. We describe the RBPs based on protein domain features, current knowledge on the association with human diseases, recognition of RNA consensus motifs, and the need to clarify the functional significance in different cellular contexts. We also summarize data on previously identified RBP inhibitor small molecules that could also be introduced in EV research as potential modulators of vesicular RNA sorting.
Collapse
Affiliation(s)
- Fabrizio Fabbiano
- Department of CellularComputational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Jessica Corsi
- Department of CellularComputational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Elena Gurrieri
- Department of CellularComputational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Caterina Trevisan
- Department of CellularComputational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Michela Notarangelo
- Department of CellularComputational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Vito G. D'Agostino
- Department of CellularComputational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| |
Collapse
|
19
|
Topuzoğlu A, Ilgın C. Mentalexo approach for diagnosis of psychiatric disorders. Med Hypotheses 2020; 143:109823. [PMID: 32460206 DOI: 10.1016/j.mehy.2020.109823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/12/2020] [Accepted: 05/06/2020] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Psychiatric disorders cause a high burden of disease and disability for the society. Liquid biopsies provide potent opportunities for screening programs, diagnosis, prognostic stratification and treatment monitorization. Previously, the liquid biopsy studies were mainly focused on the several malignancies without proper screen methods, but this approach has also a strong potential for decreasing disease burden in CNS pathologies. The main restriction for the diagnosis of CNS diseases is the lack of the methods to receive biochemical/functional information form a tightly enveloped compartment. THE HYPOTHESIS/THEORY In this proposal, we aim to develop a fast and cheap diagnostic platform based on the detection of exosomes originating from the central nervous system (CNS) cells. We intended to develop a sensor device with minimum maintenance costs, which is highly specific and sensitive for psychiatric diseases. EVALUATION OF THE HYPOTHESIS/IDEA In order to give background information for our proposal; we began with reviewing the concept of liquid biopsies and adaptation of this concept for psychiatric disorders. Then we discussed the conventional and novel methods for the detection of extracellular vesicles (EV). Furthermore, we discussed the detection of exosomes originating from central nervous system and methods analyzing the content of the EVs. Additionally, we reviewed the imaging techniques for detection and visualization of EVs. EMPIRICAL DATA We used in silico research tools (MetaCore™ version 6.37, Clarivate Analytics, and ExoCarta database) to detect appropriate disease specific exosomal markers. We proposed our design for the detection of EVs based on the immune-capture of EVs and detection of surface antigens via the antibody conjugated fluorophores. We also proposed a design to increase the channels for detection of exosomal antigens by using bioinformatics methods, including pathway networks, RDOC matrices and exosome databases which we called "Mentalexo" approach. We applied this approach on depression and addiction disorders in order to find appropriate exosomal markers. CONSEQUENCES OF THE HYPOTHESIS AND DISCUSSION We believe that our proposal may contribute to the conception of new diagnostic devices focusing on the detection of exosomes in psychiatric conditions.
Collapse
Affiliation(s)
- Ahmet Topuzoğlu
- Marmara University School of Medicine, Department of Public Health, Turkey.
| | - Can Ilgın
- Histology and Embriology, Public Health Residency, Marmara University School of Medicine Department of Public Health, Turkey
| |
Collapse
|
20
|
Moertl S, Buschmann D, Azimzadeh O, Schneider M, Kell R, Winkler K, Tapio S, Hornhardt S, Merl-Pham J, Pfaffl MW, Atkinson MJ. Radiation Exposure of Peripheral Mononuclear Blood Cells Alters the Composition and Function of Secreted Extracellular Vesicles. Int J Mol Sci 2020; 21:ijms21072336. [PMID: 32230970 PMCID: PMC7178185 DOI: 10.3390/ijms21072336] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/20/2020] [Accepted: 03/24/2020] [Indexed: 12/24/2022] Open
Abstract
Normal tissue toxicity is a dose-limiting factor in radiation therapy. Therefore, a detailed understanding of the normal tissue response to radiation is necessary to predict the risk of normal tissue toxicity and to development strategies for tissue protection. One component of normal tissue that is continuously exposed during therapeutic irradiation is the circulating population of peripheral blood mononuclear cells (PBMC). PBMCs are highly sensitive to ionizing radiation (IR); however, little is known about how IR affects the PBMC response on a systemic level. It was the aim of this study to investigate whether IR was capable to induce changes in the composition and function of extracellular vesicles (EVs) secreted from PBMCs after radiation exposure to different doses. Therefore, whole blood samples from healthy donors were exposed to X-ray radiation in the clinically relevant doses of 0, 0.1, 2 or 6 Gy and PBMC-secreted EVs were isolated 72 h later. Proteome and miRNome analysis of EVs as well as functional studies were performed. Secreted EVs showed a dose-dependent increase in the number of significantly deregulated proteins and microRNAs. For both, proteome and microRNA data, principal component analysis showed a dose-dependent separation of control and exposed groups. Integrated pathway analysis of the radiation-regulated EV proteins and microRNAs consistently predicted an association of deregulated molecules with apoptosis, cell death and survival. Functional studies identified endothelial cells as an efficient EV recipient system, in which irradiation of recipient cells further increased the uptake. Furthermore an apoptosis suppressive effect of EVs from irradiated PBMCs in endothelial recipient cells was detected. In summary, this study demonstrates that IR modifies the communication between PBMCs and endothelial cells. EVs from irradiated PBMC donors were identified as transmitters of protective signals to irradiated endothelial cells. Thus, these data may lead to the discovery of biomarker candidates for radiation dosimetry and even more importantly, they suggest EVs as a novel systemic communication pathway between irradiated normal, non-cancer tissues.
Collapse
Affiliation(s)
- Simone Moertl
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Radiation Biology, 85764 Neuherberg, Germany; (O.A.); (M.S.); (R.K.); (K.W.); (S.T.); (M.J.A.)
- Federal Office for Radiation Protection, 85764 Oberschleißheim, Germany; (S.H.); (M.W.P.)
- Correspondence:
| | - Dominik Buschmann
- Division of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany;
| | - Omid Azimzadeh
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Radiation Biology, 85764 Neuherberg, Germany; (O.A.); (M.S.); (R.K.); (K.W.); (S.T.); (M.J.A.)
| | - Michael Schneider
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Radiation Biology, 85764 Neuherberg, Germany; (O.A.); (M.S.); (R.K.); (K.W.); (S.T.); (M.J.A.)
| | - Rosemarie Kell
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Radiation Biology, 85764 Neuherberg, Germany; (O.A.); (M.S.); (R.K.); (K.W.); (S.T.); (M.J.A.)
| | - Klaudia Winkler
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Radiation Biology, 85764 Neuherberg, Germany; (O.A.); (M.S.); (R.K.); (K.W.); (S.T.); (M.J.A.)
| | - Soile Tapio
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Radiation Biology, 85764 Neuherberg, Germany; (O.A.); (M.S.); (R.K.); (K.W.); (S.T.); (M.J.A.)
| | - Sabine Hornhardt
- Federal Office for Radiation Protection, 85764 Oberschleißheim, Germany; (S.H.); (M.W.P.)
| | - Juliane Merl-Pham
- Helmholtz Zentrum München, German Research Center for Environmental Health, Research Unit Protein Science, 80939 München, Germany;
| | - Michael W. Pfaffl
- Federal Office for Radiation Protection, 85764 Oberschleißheim, Germany; (S.H.); (M.W.P.)
| | - Michael J. Atkinson
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Radiation Biology, 85764 Neuherberg, Germany; (O.A.); (M.S.); (R.K.); (K.W.); (S.T.); (M.J.A.)
- Chair of Radiation Biology, Technical University of Munich, 80333 Munich, Germany
| |
Collapse
|
21
|
Shelke GV, Yin Y, Jang SC, Lässer C, Wennmalm S, Hoffmann HJ, Li L, Gho YS, Nilsson JA, Lötvall J. Endosomal signalling via exosome surface TGFβ-1. J Extracell Vesicles 2019; 8:1650458. [PMID: 31595182 PMCID: PMC6764367 DOI: 10.1080/20013078.2019.1650458] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 06/24/2019] [Accepted: 07/25/2019] [Indexed: 12/24/2022] Open
Abstract
Extracellular vesicles such as exosomes convey biological messages between cells, either by surface-to-surface interaction or by shuttling of bioactive molecules to a recipient cell's cytoplasm. Here we show that exosomes released by mast cells harbour both active and latent transforming growth factor β-1 (TGFβ-1) on their surfaces. The latent form of TGFβ-1 is associated with the exosomes via heparinase-II and pH-sensitive elements. These vesicles traffic to the endocytic compartment of recipient human mesenchymal stem cells (MSCs) within 60 min of exposure. Further, the exosomes-associated TGFβ-1 is retained within the endosomal compartments at the time of signalling, which results in prolonged cellular signalling compared to free-TGFβ-1. These exosomes induce a migratory phenotype in primary MSCs involving SMAD-dependent pathways. Our results show that mast cell-derived exosomes are decorated with latent TGFβ-1 and are retained in recipient MSC endosomes, influencing recipient cell migratory phenotype. We conclude that exosomes can convey signalling within endosomes by delivering bioactive surface ligands to this intracellular compartment.
Collapse
Affiliation(s)
- Ganesh Vilas Shelke
- Krefting Research Centre, Institute of Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Surgery, Institute of Clinical Sciences, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Yanan Yin
- Krefting Research Centre, Institute of Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Su Chul Jang
- Krefting Research Centre, Institute of Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Cecilia Lässer
- Krefting Research Centre, Institute of Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Stefan Wennmalm
- Royal Institute of Technology-KTH, Department of Applied Physics, Experimental Biomolecular Physics Group, SciLife Laboratory, Solna, Sweden
| | - Hans Jürgen Hoffmann
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of respiratory and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | - Li Li
- Department of Laboratory Medicine, Shanghai First People's Hospital, Shanghai JiaoTong University, Shanghai, China
| | - Yong Song Gho
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jonas Andreas Nilsson
- Department of Surgery, Institute of Clinical Sciences, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jan Lötvall
- Krefting Research Centre, Institute of Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
22
|
Losada-Barragán M, Umaña-Pérez A, Durães J, Cuervo-Escobar S, Rodríguez-Vega A, Ribeiro-Gomes FL, Berbert LR, Morgado F, Porrozzi R, Mendes-da-Cruz DA, Aquino P, Carvalho PC, Savino W, Sánchez-Gómez M, Padrón G, Cuervo P. Thymic Microenvironment Is Modified by Malnutrition and Leishmania infantum Infection. Front Cell Infect Microbiol 2019; 9:252. [PMID: 31355153 PMCID: PMC6639785 DOI: 10.3389/fcimb.2019.00252] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/28/2019] [Indexed: 01/23/2023] Open
Abstract
Detrimental effects of malnutrition on immune responses to pathogens have long been recognized and it is considered a main risk factor for various infectious diseases, including visceral leishmaniasis (VL). Thymus is a target of both malnutrition and infection, but its role in the immune response to Leishmania infantum in malnourished individuals is barely studied. Because we previously observed thymic atrophy and significant reduction in cellularity and chemokine levels in malnourished mice infected with L. infantum, we postulated that the thymic microenvironment is severely compromised in those animals. To test this, we analyzed the microarchitecture of the organ and measured the protein abundance in its interstitial space in malnourished BALB/c mice infected or not with L. infantum. Malnourished-infected animals exhibited a significant reduction of the thymic cortex:medulla ratio and altered abundance of proteins secreted in the thymic interstitial fluid. Eighty-one percent of identified proteins are secreted by exosomes and malnourished-infected mice showed significant decrease in exosomal proteins, suggesting that exosomal carrier system, and therefore intrathymic communication, is dysregulated in those animals. Malnourished-infected mice also exhibited a significant increase in the abundance of proteins involved in lipid metabolism and tricarboxylic acid cycle, suggestive of a non-proliferative microenvironment. Accordingly, flow cytometry analysis revealed decreased proliferation of single positive and double positive T cells in those animals. Together, the reduced cortical area, decreased proliferation, and altered protein abundance suggest a dysfunctional thymic microenvironment where T cell migration, proliferation, and maturation are compromised, contributing for the thymic atrophy observed in malnourished animals. All these alterations could affect the control of the local and systemic infection, resulting in an impaired response to L. infantum infection.
Collapse
Affiliation(s)
- Monica Losada-Barragán
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil.,Grupo de Investigación en Biología Celular y Funcional e Ingeniería de Biomoléculas, Departamento de Biologia, Universidad Antonio Nariño, Bogotá, Colombia
| | - Adriana Umaña-Pérez
- Grupo de Investigación en Hormonas, Departamento de Química, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Jonathan Durães
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Sergio Cuervo-Escobar
- Facultad de Ciencias, Universidad de Ciencias Aplicadas y Ambientales, Bogotá, Colombia
| | - Andrés Rodríguez-Vega
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Flávia L Ribeiro-Gomes
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Luiz R Berbert
- Laboratório de Pesquisas sobre o Timo, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Fernanda Morgado
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Renato Porrozzi
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Daniella Arêas Mendes-da-Cruz
- Laboratório de Pesquisas sobre o Timo, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Neuroimunomodulação, Fiocruz, Rio de Janeiro, Brazil
| | | | - Paulo C Carvalho
- Computational Mass Spectrometry and Proteomics Group, Fiocruz, Rio de Janeiro, Brazil
| | - Wilson Savino
- Laboratório de Pesquisas sobre o Timo, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Neuroimunomodulação, Fiocruz, Rio de Janeiro, Brazil
| | - Myriam Sánchez-Gómez
- Grupo de Investigación en Hormonas, Departamento de Química, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Gabriel Padrón
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Patricia Cuervo
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
23
|
Banfai K, Garai K, Ernszt D, Pongracz JE, Kvell K. Transgenic Exosomes for Thymus Regeneration. Front Immunol 2019; 10:862. [PMID: 31110503 PMCID: PMC6499203 DOI: 10.3389/fimmu.2019.00862] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 04/04/2019] [Indexed: 01/02/2023] Open
Abstract
During senescence, Wnt4 expression is down-regulated (unlike their Frizzled receptors), while PPARgamma expression increases in the thymus. Together, these changes allow for thymic degeneration to occur, observed as adipose involution. However, when restored, Wnt4 can efficiently counteract PPARgamma and prevent thymic senescence from developing. The Wnt-pathway activator miR27b has also been reported to inhibit PPARgamma. Our goal was to evaluate the Wnt4 and miR27b levels of Wnt4-transgenic thymic epithelial cell (TEC)-derived exosomes, show their regenerative potential against age-related thymic degeneration, and visualize their binding and distribution both in vitro and in vivo. First, transgenic exosomes were harvested from Wnt4 over-expressing TECs and analyzed by transmission electron microscopy. This unveiled exosomes ranging from 50 to 100 nm in size. Exosomal Wnt4 protein content was assayed by ELISA, while miR27b levels were measured by TaqMan qPCR, both showing elevated levels in transgenic exosomes relative to controls. Of note, kit-purified TEI (total exosome isolate) outperformed UC (ultracentrifugation)-purified exosomes in these parameters. In addition, a significant portion of exosomal Wnt4 proved to be displayed on exosomal surfaces. For functional studies, steroid (Dexamethasone or DX)-induced TECs were used as cellular aging models in which DX-triggered cellular aging was efficiently prevented by transgenic exosomes. Finally, DiI lipid-stained exosomes were applied on the mouse thymus sections and also iv-injected into mice, for in vitro binding and in vivo tracking, respectively. We have observed distinct staining patterns using DiI lipid-stained transgenic exosomes on sections of young and aging murine thymus samples. Moreover, in vivo injected DiI lipid-stained transgenic exosomes showed detectable homing to the thymus. Of note, Wnt4-transgenic exosome homing outperformed control (Wnt5a-transgenic) exosome homing. In summary, our findings indicate that exosomal Wnt4 and miR27b can efficiently counteract thymic adipose involution. Although extrapolation of mouse results to the human setting needs caution, our results appoint transgenic TEC exosomes as promising tools of immune rejuvenation and contribute to the characterization of the immune-modulatory effects of extracellular vesicles in the context of regenerative medicine.
Collapse
Affiliation(s)
- Krisztina Banfai
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pécs, Pécs, Hungary.,Szentagothai Research Center, University of Pécs, Pécs, Hungary
| | - Kitti Garai
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pécs, Pécs, Hungary.,Szentagothai Research Center, University of Pécs, Pécs, Hungary
| | - David Ernszt
- Szentagothai Research Center, University of Pécs, Pécs, Hungary.,Faculty of Medicine, Institute of Physiology, University of Pécs, Pécs, Hungary
| | - Judit E Pongracz
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pécs, Pécs, Hungary.,Szentagothai Research Center, University of Pécs, Pécs, Hungary
| | - Krisztian Kvell
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pécs, Pécs, Hungary.,Szentagothai Research Center, University of Pécs, Pécs, Hungary
| |
Collapse
|
24
|
Jan AT, Rahman S, Khan S, Tasduq SA, Choi I. Biology, Pathophysiological Role, and Clinical Implications of Exosomes: A Critical Appraisal. Cells 2019; 8:99. [PMID: 30699987 PMCID: PMC6406279 DOI: 10.3390/cells8020099] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/17/2019] [Accepted: 01/28/2019] [Indexed: 02/07/2023] Open
Abstract
Exosomes are membrane-enclosed entities of endocytic origin, which are generated during the fusion of multivesicular bodies (MVBs) and plasma membranes. Exosomes are released into the extracellular milieu or body fluids; this process was reported for mesenchymal, epithelial, endothelial, and different immune cells (B-cells and dendritic cells), and was reported to be correlated with normal physiological processes. The compositions and abundances of exosomes depend on their tissue origins and cell types. Exosomes range in size between 30 and 100 nm, and shuttle nucleic acids (DNA, messenger RNAs (mRNAs), microRNAs), proteins, and lipids between donor and target cells. Pathogenic microorganisms also secrete exosomes that modulate the host immune system and influence the fate of infections. Such immune-modulatory effect of exosomes can serve as a diagnostic biomarker of disease. On the other hand, the antigen-presenting and immune-stimulatory properties of exosomes enable them to trigger anti-tumor responses, and exosome release from cancerous cells suggests they contribute to the recruitment and reconstitution of components of tumor microenvironments. Furthermore, their modulation of physiological and pathological processes suggests they contribute to the developmental program, infections, and human diseases. Despite significant advances, our understanding of exosomes is far from complete, particularly regarding our understanding of the molecular mechanisms that subserve exosome formation, cargo packaging, and exosome release in different cellular backgrounds. The present study presents diverse biological aspects of exosomes, and highlights their diagnostic and therapeutic potentials.
Collapse
Affiliation(s)
- Arif Tasleem Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185236, India.
| | - Safikur Rahman
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea.
| | - Shahanavaj Khan
- Department of Bioscience, Shri Ram Group of College (SRGC), Muzaffarnagar 251001, India.
| | | | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea.
| |
Collapse
|
25
|
Furini G, Verderio EAM. Spotlight on the Transglutaminase 2-Heparan Sulfate Interaction. Med Sci (Basel) 2019; 7:E5. [PMID: 30621228 PMCID: PMC6359630 DOI: 10.3390/medsci7010005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 02/07/2023] Open
Abstract
Heparan sulfate proteoglycans (HSPGs), syndecan-4 (Sdc4) especially, have been suggested as potential partners of transglutaminase-2 (TG2) in kidney and cardiac fibrosis, metastatic cancer, neurodegeneration and coeliac disease. The proposed role for HSPGs in the trafficking of TG2 at the cell surface and in the extracellular matrix (ECM) has been linked to the fibrogenic action of TG2 in experimental models of kidney fibrosis. As the TG2-HSPG interaction is largely mediated by the heparan sulfate (HS) chains of proteoglycans, in the past few years a number of studies have investigated the affinity of TG2 for HS, and the TG2 heparin binding site has been mapped with alternative outlooks. In this review, we aim to provide a compendium of the main literature available on the interaction of TG2 with HS, with reference to the pathological processes in which extracellular TG2 plays a role.
Collapse
Affiliation(s)
- Giulia Furini
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK.
| | - Elisabetta A M Verderio
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK.
- BiGeA, University of Bologna, 40126 Bologna, Italy.
| |
Collapse
|
26
|
Rowland A, Ruanglertboon W, van Dyk M, Wijayakumara D, Wood LS, Meech R, Mackenzie PI, Rodrigues AD, Marshall JC, Sorich MJ. Plasma extracellular nanovesicle (exosome)-derived biomarkers for drug metabolism pathways: a novel approach to characterize variability in drug exposure. Br J Clin Pharmacol 2018; 85:216-226. [PMID: 30340248 DOI: 10.1111/bcp.13793] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/30/2018] [Accepted: 10/13/2018] [Indexed: 01/08/2023] Open
Abstract
AIMS Demonstrate the presence of cytochrome P450 (CYP) and UDP-glucuronosyltransferase (UGT) proteins and mRNAs in isolated human plasma exosomes and evaluate the capacity for exosome-derived biomarkers to characterize variability in CYP3A4 activity. METHODS The presence of CYP and UGT protein and mRNA in exosomes isolated from human plasma and HepaRG cell culture medium was determined by mass spectrometry and reverse transcription-polymerase chain reaction, respectively. The concordance between exosome-derived CYP3A4 biomarkers and midazolam apparent oral clearance (CL/F) was evaluated in a small proof-of-concept study involving six genotyped (CYP3A4 *1/*1 and CYP3A5 *3/*3) Caucasian males. RESULTS Exosomes isolated from human plasma contained peptides and mRNA originating from CYP 1A2, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, 2 J2, 3A4 and 3A5, UGT 1A1, 1A3, 1A4, 1A6, 1A9, 2B4, 2B7, 2B10 and 2B15, and NADPH-cytochrome P450 reductase. Mean (95% confidence interval) exosome-derived CYP3A4 protein expression pre- and post-rifampicin dosing was 0.24 (0.2-0.28) and 0.42 (0.21-0.65) ng ml-1 exosome concentrate. Mean (95% confidence interval) exosome CYP3A4 mRNA expression pre- and post-rifampicin dosing was 6.0 (1.1-32.7) and 48.3 (11.3-104) × 10-11 2-ΔΔCt , respectively. R2 values for correlations of exosome-derived CYP3A4 protein expression, CYP3A4 mRNA expression, and ex vivo CYP3A4 activity with midazolam CL/F were 0.905, 0.787 and 0.832, respectively. CONCLUSIONS Consistent strong concordance was observed between exosome-derived CYP3A4 biomarkers and midazolam CL/F. The significance of these results is that CYP3A4 is the drug-metabolizing enzyme of greatest clinical importance and variability in CYP3A4 activity is poorly described by existing precision dosing strategies.
Collapse
Affiliation(s)
- Andrew Rowland
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Warit Ruanglertboon
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Madelé van Dyk
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | | | - Linda S Wood
- Pfizer Worldwide Research and Development, Groton, USA
| | - Robyn Meech
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Peter I Mackenzie
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | | | | | - Michael J Sorich
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| |
Collapse
|
27
|
Sun B, Peng J, Wang S, Liu X, Zhang K, Zhang Z, Wang C, Jing X, Zhou C, Wang Y. Applications of stem cell-derived exosomes in tissue engineering and neurological diseases. Rev Neurosci 2018; 29:531-546. [PMID: 29267178 DOI: 10.1515/revneuro-2017-0059] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/12/2017] [Indexed: 12/13/2022]
Abstract
Exosomes are extracellular vesicles with diameters of 30-100 nm that are key for intercellular communication. Almost all types of cell, including dendritic cells, T cells, mast cells, epithelial cells, neuronal cells, adipocytes, mesenchymal stem cells, and platelets, can release exosomes. Exosomes are present in human body fluids, such as urine, amniotic fluid, malignant ascites, synovial fluid, breast milk, cerebrospinal fluid, semen, saliva, and blood. Exosomes have biological functions in immune response, antigen presentation, intercellular communication, and RNA and protein transfer. This review provides a brief overview of the origin, morphological characteristics, enrichment and identification methods, biological functions, and applications in tissue engineering and neurological diseases of exosomes.
Collapse
Affiliation(s)
- Baichuan Sun
- First Department of Orthopedics, First Affiliated Hospital of Jiamusi University, Jiamusi 154000, China.,Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Jiang Peng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226000, China.,Beijing Key Laboratory of Regenerative Medicine in Orthopaedics, Beijing 100853, China
| | - Shoufeng Wang
- First Department of Orthopedics, First Affiliated Hospital of Jiamusi University, Jiamusi 154000, China
| | - Xuejian Liu
- First Department of Orthopedics, First Affiliated Hospital of Jiamusi University, Jiamusi 154000, China
| | - Kaihong Zhang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Zengzeng Zhang
- First Department of Orthopedics, First Affiliated Hospital of Jiamusi University, Jiamusi 154000, China
| | - Chong Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiaoguang Jing
- First Department of Orthopedics, First Affiliated Hospital of Jiamusi University, Jiamusi 154000, China
| | - Chengfu Zhou
- First Department of Orthopedics, First Affiliated Hospital of Jiamusi University, Jiamusi 154000, China
| | - Yu Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226000, China.,Beijing Key Laboratory of Regenerative Medicine in Orthopaedics, Beijing 100853, China
| |
Collapse
|
28
|
Oushy S, Hellwinkel JE, Wang M, Nguyen GJ, Gunaydin D, Harland TA, Anchordoquy TJ, Graner MW. Glioblastoma multiforme-derived extracellular vesicles drive normal astrocytes towards a tumour-enhancing phenotype. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2016.0477. [PMID: 29158308 DOI: 10.1098/rstb.2016.0477] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2017] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a devastating tumour with abysmal prognoses. We desperately need novel approaches to understand GBM biology and therapeutic vulnerabilities. Extracellular vesicles (EVs) are membrane-enclosed nanospheres released locally and systemically by all cells, including tumours, with tremendous potential for intercellular communication. Tumour EVs manipulate their local environments as well as distal targets; EVs may be a mechanism for tumourigenesis in the recurrent GBM setting. We hypothesized that GBM EVs drive molecular changes in normal human astrocytes (NHAs), yielding phenotypically tumour-promoting, or even tumourigenic, entities. We incubated NHAs with GBM EVs and examined the astrocytes for changes in cell migration, cytokine release and tumour cell growth promotion via the conditioned media. We measured alterations in intracellular signalling and transformation capacity (astrocyte growth in soft agar). GBM EV-treated NHAs displayed increased migratory capacity, along with enhanced cytokine production which promoted tumour cell growth. GBM EV-treated NHAs developed tumour-like signalling patterns and exhibited colony formation in soft agar, reminiscent of tumour cells themselves. GBM EVs modify the local environment to benefit the tumour itself, co-opting neighbouring astrocytes to promote tumour growth, and perhaps even driving astrocytes to a tumourigenic phenotype. Such biological activities could have profound impacts in the recurrent GBM setting.This article is part of the discussion meeting issue 'Extracellular vesicles and the tumour microenvironment'.
Collapse
Affiliation(s)
- Soliman Oushy
- University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA.,Department of Neurosurgery, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Justin E Hellwinkel
- University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA.,Department of Neurosurgery, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mary Wang
- Department of Neurosurgery, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ger J Nguyen
- Department of Neurosurgery, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Dicle Gunaydin
- Department of Neurosurgery, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Tessa A Harland
- University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA.,Department of Neurosurgery, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Thomas J Anchordoquy
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michael W Graner
- Department of Neurosurgery, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
29
|
Extracellular vesicle–mediated transfer of constitutively active MyD88L265P engages MyD88wt and activates signaling. Blood 2018; 131:1720-1729. [DOI: 10.1182/blood-2017-09-805499] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 01/13/2018] [Indexed: 01/19/2023] Open
Abstract
Key Points
MyD88L265P is present in the EVs secreted by WM cancer cells and triggers signaling in the recipient cells. MyD88-containing EVs shape the proinflammatory microenvironment in the bone marrow.
Collapse
|
30
|
Pérez-Boza J, Lion M, Struman I. Exploring the RNA landscape of endothelial exosomes. RNA (NEW YORK, N.Y.) 2018; 24:423-435. [PMID: 29282313 PMCID: PMC5824360 DOI: 10.1261/rna.064352.117] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/21/2017] [Indexed: 05/05/2023]
Abstract
Exosomes are small extracellular vesicles of around 100 nm of diameter produced by most cell types. These vesicles carry nucleic acids, proteins, lipids, and other biomolecules and function as carriers of biological information in processes of extracellular communication. The content of exosomes is regulated by the external and internal microenvironment of the parent cell, but the intrinsic mechanisms of loading of molecules into exosomes are still not completely elucidated. In this study, by the use of next-generation sequencing we have characterized in depth the RNA composition of healthy endothelial cells and exosomes and provided an accurate profile of the different coding and noncoding RNA species found per compartment. We have also discovered a set of unique genes preferentially included (or excluded) into vesicles. Moreover, after studying the enrichment of RNA motifs in the genes unequally distributed between cells and exosomes, we have detected a set of enriched sequences for several classes of RNA. In conclusion, our results provide the basis for studying the involvement of RNA-binding proteins capable of recognizing RNA sequences and their role in the export of RNAs into exosomes.
Collapse
Affiliation(s)
- Jennifer Pérez-Boza
- Laboratory of Molecular Angiogenesis, GIGA-R, University of Liège, 4000 Liège, Belgium
| | - Michelle Lion
- Laboratory of Molecular Angiogenesis, GIGA-R, University of Liège, 4000 Liège, Belgium
| | - Ingrid Struman
- Laboratory of Molecular Angiogenesis, GIGA-R, University of Liège, 4000 Liège, Belgium
| |
Collapse
|
31
|
Wu DD, Song J, Bartel S, Krauss-Etschmann S, Rots MG, Hylkema MN. The potential for targeted rewriting of epigenetic marks in COPD as a new therapeutic approach. Pharmacol Ther 2018; 182:1-14. [PMID: 28830839 DOI: 10.1016/j.pharmthera.2017.08.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is an age and smoking related progressive, pulmonary disorder presenting with poorly reversible airflow limitation as a result of chronic bronchitis and emphysema. The prevalence, disease burden for the individual, and mortality of COPD continues to increase, whereas no effective treatment strategies are available. For many years now, a combination of bronchodilators and anti-inflammatory corticosteroids has been most widely used for therapeutic management of patients with persistent COPD. However, this approach has had disappointing results as a large number of COPD patients are corticosteroid resistant. In patients with COPD, there is emerging evidence showing aberrant expression of epigenetic marks such as DNA methylation, histone modifications and microRNAs in blood, sputum and lung tissue. Therefore, novel therapeutic approaches may exist using epigenetic therapy. This review aims to describe and summarize current knowledge of aberrant expression of epigenetic marks in COPD. In addition, tools available for restoration of epigenetic marks are described, as well as delivery mechanisms of epigenetic editors to cells. Targeting epigenetic marks might be a very promising tool for treatment and lung regeneration in COPD in the future.
Collapse
Affiliation(s)
- Dan-Dan Wu
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands; University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands; Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, P.R. China
| | - Juan Song
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands; University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands; Tianjin Medical University, School of Basic Medical Sciences, Department of Biochemistry and Molecular Biology, Department of Immunology, Tianjin, China
| | - Sabine Bartel
- Early Life Origins of Chronic Lung Disease, Priority Area Asthma & Allergy, Leibnitz Center for Medicine and Biosciences, Research Center Borstel and Christian Albrechts University Kiel; Airway Research Center North, member of the German Center for Lung Research (DZL), Germany
| | - Susanne Krauss-Etschmann
- Early Life Origins of Chronic Lung Disease, Priority Area Asthma & Allergy, Leibnitz Center for Medicine and Biosciences, Research Center Borstel and Christian Albrechts University Kiel; Airway Research Center North, member of the German Center for Lung Research (DZL), Germany
| | - Marianne G Rots
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
| | - Machteld N Hylkema
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands; University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands.
| |
Collapse
|
32
|
Wen C, Seeger RC, Fabbri M, Wang L, Wayne AS, Jong AY. Biological roles and potential applications of immune cell-derived extracellular vesicles. J Extracell Vesicles 2017; 6:1400370. [PMID: 29209467 PMCID: PMC5706476 DOI: 10.1080/20013078.2017.1400370] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/22/2017] [Indexed: 12/15/2022] Open
Abstract
Extracellular vesicles (EVs) deliver bioactive macromolecules (i.e. proteins, lipids and nucleic acids) for intercellular communication in multicellular organisms. EVs are secreted by all cell types including immune cells. Immune cell-derived EVs modulate diverse aspects of the immune system to either enhance or suppress immune activities. The extensive effects of immune cell-derived EVs have become the focus of great interest for various nano-biomedical applications, ranging from the medical use of nanoplatform-based diagnostic agents to the development of therapeutic interventions as well as vaccine applications, and thus may be ideal for ‘immune-theranostic’. Here, we review the latest advances concerning the biological roles of immune cell-derived EVs in innate and acquired immunity. The intercellular communication amongst immune cells through their EVs is highlighted, showing that all immune cell-derived EVs have their unique function(s) in immunity through intricate interaction(s). Natural-killer (NK) cell-derived EVs, for example, contain potent cytotoxic proteins and induce apoptosis to targeted cancer cells. On the other hand, cancer cell-derived EVs bearing NK ligands may evade immune surveillance and responses. Finally, we discuss possible medical uses for the immune cell-derived EVs as a tool for immune-theranostic: as diagnostic biomarkers, for use in therapeutic interventions and for vaccination.
Collapse
Affiliation(s)
- Chuan Wen
- Department of Pediatrics, Children's Center for Cancer and Blood Diseases and Divisions of Hematology, Oncology, Blood and Marrow Transplantation.,Division of Hematology, Children's Medical Center, The Second Xiangya Hospital, Central South University/Institute of Pediatrics, Central South University, Changsha, Hunan, PR China
| | - Robert C Seeger
- Department of Pediatrics, Children's Center for Cancer and Blood Diseases and Divisions of Hematology, Oncology, Blood and Marrow Transplantation
| | - Muller Fabbri
- Department of Pediatrics, Children's Center for Cancer and Blood Diseases and Divisions of Hematology, Oncology, Blood and Marrow Transplantation
| | - Larry Wang
- Department of Pathology, The Saban Research Institute, Children's Hospital Los Angeles, USC-Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Alan S Wayne
- Department of Pediatrics, Children's Center for Cancer and Blood Diseases and Divisions of Hematology, Oncology, Blood and Marrow Transplantation
| | - Ambrose Y Jong
- Department of Pediatrics, Children's Center for Cancer and Blood Diseases and Divisions of Hematology, Oncology, Blood and Marrow Transplantation
| |
Collapse
|
33
|
Cron MA, Maillard S, Villegas J, Truffault F, Sudres M, Dragin N, Berrih-Aknin S, Le Panse R. Thymus involvement in early-onset myasthenia gravis. Ann N Y Acad Sci 2017; 1412:137-145. [DOI: 10.1111/nyas.13519] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/05/2017] [Accepted: 09/12/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Mélanie A. Cron
- INSERM U974; Paris France
- UPMC Sorbonne Universités; Paris France
- AIM; Institut de myologie; Paris France
| | - Solène Maillard
- INSERM U974; Paris France
- UPMC Sorbonne Universités; Paris France
- AIM; Institut de myologie; Paris France
| | - José Villegas
- INSERM U974; Paris France
- UPMC Sorbonne Universités; Paris France
- AIM; Institut de myologie; Paris France
| | - Frédérique Truffault
- INSERM U974; Paris France
- UPMC Sorbonne Universités; Paris France
- AIM; Institut de myologie; Paris France
| | - Muriel Sudres
- INSERM U974; Paris France
- UPMC Sorbonne Universités; Paris France
- AIM; Institut de myologie; Paris France
| | - Nadine Dragin
- INSERM U974; Paris France
- UPMC Sorbonne Universités; Paris France
- AIM; Institut de myologie; Paris France
| | - Sonia Berrih-Aknin
- INSERM U974; Paris France
- UPMC Sorbonne Universités; Paris France
- AIM; Institut de myologie; Paris France
| | - Rozen Le Panse
- INSERM U974; Paris France
- UPMC Sorbonne Universités; Paris France
- AIM; Institut de myologie; Paris France
| |
Collapse
|
34
|
Isothiocyanates are detected in human synovial fluid following broccoli consumption and can affect the tissues of the knee joint. Sci Rep 2017; 7:3398. [PMID: 28611391 PMCID: PMC5469854 DOI: 10.1038/s41598-017-03629-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 05/02/2017] [Indexed: 12/28/2022] Open
Abstract
Osteoarthritis is a major cause of disability and there is no current pharmaceutical treatment which can prevent the disease or slow its progression. Dietary advice or supplementation is clearly an attractive option since it has low toxicity and ease of implementation on a population level. We have previously demonstrated that sulforaphane, a dietary isothiocyanate derived from its glucosinolate precursor which is found in broccoli, can prevent cartilage destruction in cells, in in vitro and in vivo models of osteoarthritis. As the next phase of this research, we enrolled 40 patients with knee osteoarthritis undergoing total knee replacement into a proof-of-principle trial. Patients were randomised to either a low or high glucosinolate diet for 14 days prior to surgery. We detected ITCs in the synovial fluid of the high glucosinolate group, but not the low glucosinolate group. This was mirrored by an increase in ITCs and specifically sulforaphane in the plasma. Proteomic analysis of synovial fluid showed significantly distinct profiles between groups with 125 differentially expressed proteins. The functional consequence of this diet will now be tested in a clinical trial.
Collapse
|
35
|
Sun Z, Hao T, Tian J. Identification of exosomes and its signature miRNAs of male and female Cynoglossus semilaevis. Sci Rep 2017; 7:860. [PMID: 28408738 PMCID: PMC5429842 DOI: 10.1038/s41598-017-00884-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/16/2017] [Indexed: 12/20/2022] Open
Abstract
Exosomes are small membrane particles which are widely found in various cell lines and physiological fluids in mammalian. MicroRNAs (miRNAs) enclosed in exosomes have been identified as proper signatures for many diseases and response to therapies. However, the composition of exosomes and enclosed miRNAs in fishes has not been investigated. Cynoglossus semilaevis is an important commercial flatfish with ambiguous distinction between males and females before sex maturation, which leads to screening difficulty in reproduction and cultivation. An effective detection method was required for sex differentiation of C. semilaevis. In this work, we successfully identified exosomes in C. semilaevis serum. The analysis of nucleotide composition showed that miRNA dominated in exosomes. Thereafter the miRNA profiles in exosomes from males and females were sequenced and compared to identify the signature miRNAs corresponding to sex differentiation. The functions of signature miRNAs were analyzed by target matching and annotation. Furthermore, 7 miRNAs with high expression in males were selected from signature miRNAs as the markers for sex identification with their expression profiles verified by real time quantitative PCR. Exosomes were first found in fish serum in this work. Investigation of marker miRNAs supplies an effective index for the filtration of male and female C. semilaevis in cultivation.
Collapse
Affiliation(s)
- Zhanpeng Sun
- College of Life Sciences, Zhejiang University, Zhejiang, 310058, P.R. China
| | - Tong Hao
- Tianjin Key Laboratory of Animal and Plant Resistance/College of Life Sciences, Tianjin Normal University, Tianjin, 300387, P.R. China.
| | - Jinze Tian
- Tianjin Key Laboratory of Animal and Plant Resistance/College of Life Sciences, Tianjin Normal University, Tianjin, 300387, P.R. China
| |
Collapse
|
36
|
Wang JKT, Langfelder P, Horvath S, Palazzolo MJ. Exosomes and Homeostatic Synaptic Plasticity Are Linked to Each other and to Huntington's, Parkinson's, and Other Neurodegenerative Diseases by Database-Enabled Analyses of Comprehensively Curated Datasets. Front Neurosci 2017; 11:149. [PMID: 28611571 PMCID: PMC5374209 DOI: 10.3389/fnins.2017.00149] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/09/2017] [Indexed: 12/15/2022] Open
Abstract
Huntington's disease (HD) is a progressive and autosomal dominant neurodegeneration caused by CAG expansion in the huntingtin gene (HTT), but the pathophysiological mechanism of mutant HTT (mHTT) remains unclear. To study HD using systems biological methodologies on all published data, we undertook the first comprehensive curation of two key PubMed HD datasets: perturbation genes that impact mHTT-driven endpoints and therefore are putatively linked causally to pathogenic mechanisms, and the protein interactome of HTT that reflects its biology. We perused PubMed articles containing co-citation of gene IDs and MeSH terms of interest to generate mechanistic gene sets for iterative enrichment analyses and rank ordering. The HD Perturbation database of 1,218 genes highly overlaps the HTT Interactome of 1,619 genes, suggesting links between normal HTT biology and mHTT pathology. These two HD datasets are enriched for protein networks of key genes underlying two mechanisms not previously implicated in HD nor in each other: exosome synaptic functions and homeostatic synaptic plasticity. Moreover, proteins, possibly including HTT, and miRNA detected in exosomes from a wide variety of sources also highly overlap the HD datasets, suggesting both mechanistic and biomarker links. Finally, the HTT Interactome highly intersects protein networks of pathogenic genes underlying Parkinson's, Alzheimer's and eight non-HD polyglutamine diseases, ALS, and spinal muscular atrophy. These protein networks in turn highly overlap the exosome and homeostatic synaptic plasticity gene sets. Thus, we hypothesize that HTT and other neurodegeneration pathogenic genes form a large interlocking protein network involved in exosome and homeostatic synaptic functions, particularly where the two mechanisms intersect. Mutant pathogenic proteins cause dysfunctions at distinct points in this network, each altering the two mechanisms in specific fashion that contributes to distinct disease pathologies, depending on the gene mutation and the cellular and biological context. This protein network is rich with drug targets, and exosomes may provide disease biomarkers, thus enabling drug discovery. All the curated datasets are made available for other investigators. Elucidating the roles of pathogenic neurodegeneration genes in exosome and homeostatic synaptic functions may provide a unifying framework for the age-dependent, progressive and tissue selective nature of multiple neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Peter Langfelder
- Department of Human Genetics, David Geffen School of Medicine, University of CaliforniaLos Angeles, CA, USA
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of CaliforniaLos Angeles, CA, USA
| | - Michael J Palazzolo
- Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of CaliforniaLos Angeles, CA, USA
| |
Collapse
|
37
|
Lundberg V, Berglund M, Skogberg G, Lindgren S, Lundqvist C, Gudmundsdottir J, Thörn K, Telemo E, Ekwall O. Thymic exosomes promote the final maturation of thymocytes. Sci Rep 2016; 6:36479. [PMID: 27824109 PMCID: PMC5099897 DOI: 10.1038/srep36479] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 10/10/2016] [Indexed: 01/01/2023] Open
Abstract
Extensive knowledge has been gained the last years concerning mechanisms underlying the selection of single positive thymocytes in the thymic medulla. Less is known regarding other important processes in the thymic medulla such as the regulation of late stage thymocyte maturation. We have previously reported that exosomes are abundant in the thymus with a phenotype that indicates an epithelial cell origin and immunoregulatory properties. In this study we use an in vitro system to investigate the effects of thymic exosomes on the maturation of single positive thymocytes as well as effects on nTreg formation. We show that thymic exosomes promote the maturation of single positive CD4+CD25- cells into mature thymocytes with S1P1+Qa2+ and CCR7+Qa2+ phenotypes. Furthermore, we show that thymic exosomes reduce the formation of CD4+CD25+FoxP3+ thymocytes and that these exosome effects are independent of dendritic cell co-stimulation but require intact exosomal RNA content and surface proteins. An efficient direct uptake of exosomes by both thymocytes and thymic DC's is also demonstrated. In conclusion, this study demonstrates that exosomes may represent a new route of communication within the thymus.
Collapse
Affiliation(s)
- Vanja Lundberg
- Dept of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden.,Dept of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Martin Berglund
- Dept of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Gabriel Skogberg
- Dept of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Susanne Lindgren
- Dept of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden.,Dept of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Christina Lundqvist
- Dept of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Judith Gudmundsdottir
- Dept of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden.,Dept of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Karolina Thörn
- Dept of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Esbjörn Telemo
- Dept of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Olov Ekwall
- Dept of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden.,Dept of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden
| |
Collapse
|
38
|
Li Y, Kobayashi K, Mona MM, Satomi C, Okano S, Inoue H, Tani K, Takahashi A. Immunogenic FEAT protein circulates in the bloodstream of cancer patients. J Transl Med 2016; 14:275. [PMID: 27659353 PMCID: PMC5034574 DOI: 10.1186/s12967-016-1034-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 09/12/2016] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND FEAT is an intracellular protein that potently drives tumorigenesis in vivo. It is only weakly expressed in normal human tissues, including the testis. In contrast, FEAT is aberrantly upregulated in most human cancers. The present study was designed to investigate whether FEAT is applicable to tumor immunotherapy and whether FEAT is discernible in the bloodstream as a molecular biomarker of human cancers. METHODS Two mouse FEAT peptides with predicted affinities for major histocompatibility complex H-2Kb and H-2Db were injected subcutaneously into C57BL/6 mice before subcutaneous transplantation of isogenic B16-F10 melanoma cells. Intracellular localization of FEAT was determined by immunogold electron microscopy. Immunoprecipitation was performed to determine whether FEAT was present in blood from cancer patients. A sandwich enzyme-linked immunosorbent assay was used to measure FEAT concentrations in plasma from 30 cancer patients and eight healthy volunteers. RESULTS The vaccination experiments demonstrated that FEAT was immunogenic, and that immune responses against FEAT were induced without deleterious side effects in mice. Electron microscopy revealed localization of FEAT in the cytoplasm, mitochondria, and nucleus. Immunoprecipitation identified FEAT in the blood plasma from cancer patients, while FEAT was not detected in plasma exosomes. Plasma FEAT levels were significantly higher in the presence of cancers. CONCLUSIONS These findings suggest that FEAT is a candidate for applications in early diagnosis and prevention of some cancers.
Collapse
Affiliation(s)
- Yan Li
- Division of Molecular and Clinical Genetics, Kyushu University, Fukuoka, Japan
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Kyosuke Kobayashi
- Division of Molecular and Clinical Genetics, Kyushu University, Fukuoka, Japan
| | - Marwa M. Mona
- Division of Molecular and Clinical Genetics, Kyushu University, Fukuoka, Japan
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Chikako Satomi
- Division of Translational Cancer Research, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Shinji Okano
- Department of Innovative Applied Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Inoue
- Division of Molecular and Clinical Genetics, Kyushu University, Fukuoka, Japan
| | - Kenzaburo Tani
- Division of Molecular and Clinical Genetics, Kyushu University, Fukuoka, Japan
- Division of ALA Advanced Medical Research, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Atsushi Takahashi
- Division of Molecular and Clinical Genetics, Kyushu University, Fukuoka, Japan
- Division of Translational Cancer Research, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507 Japan
| |
Collapse
|
39
|
Khatun Z, Bhat A, Sharma S, Sharma A. Elucidating diversity of exosomes: biophysical and molecular characterization methods. Nanomedicine (Lond) 2016; 11:2359-77. [PMID: 27488053 DOI: 10.2217/nnm-2016-0192] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Exosomes are cell-secreted nanovesicles present in biological fluids in normal and diseased conditions. Owing to their seminal role in cell-cell communication, emerging evidences suggest that exosomes are fundamental regulators of various diseases. Due to their potential usefulness in disease diagnosis, robust isolation and characterization of exosomes is critical in developing exosome-based assays. In the last few years, different exosome characterization methods, both biophysical and molecular, have been developed to characterize these tiny vesicles. Here, in this review we summarize: first, biophysical techniques based on spectroscopy (e.g., Raman spectroscopy, dynamic light scattering) and other principles, for example, scanning electron microscopy, atomic force microscopy; second, antibody-based molecular techniques including flow cytometry, transmission electron microscopy and third, nanotechnology-dependent exosome characterization methodologies.
Collapse
Affiliation(s)
- Zamila Khatun
- ExoCan Healthcare Technologies Ltd, L4, 400 NCL Innovation Park, Pashan, Pune 411008, India
| | - Anjali Bhat
- ExoCan Healthcare Technologies Ltd, L4, 400 NCL Innovation Park, Pashan, Pune 411008, India
| | - Shivani Sharma
- California Nanosystems, University of California, Los Angeles, CA, USA
| | - Aman Sharma
- ExoCan Healthcare Technologies Ltd, L4, 400 NCL Innovation Park, Pashan, Pune 411008, India
| |
Collapse
|
40
|
DeRita RM, Zerlanko B, Singh A, Lu H, Iozzo RV, Benovic JL, Languino LR. c-Src, Insulin-Like Growth Factor I Receptor, G-Protein-Coupled Receptor Kinases and Focal Adhesion Kinase are Enriched Into Prostate Cancer Cell Exosomes. J Cell Biochem 2016; 118:66-73. [PMID: 27232975 DOI: 10.1002/jcb.25611] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 05/25/2016] [Indexed: 12/21/2022]
Abstract
It is well known that Src tyrosine kinase, insulin-like growth factor 1 receptor (IGF-IR), and focal adhesion kinase (FAK) play important roles in prostate cancer (PrCa) development and progression. Src, which signals through FAK in response to integrin activation, has been implicated in many aspects of tumor biology, such as cell proliferation, metastasis, and angiogenesis. Furthermore, Src signaling is known to crosstalk with IGF-IR, which also promotes angiogenesis. In this study, we demonstrate that c-Src, IGF-IR, and FAK are packaged into exosomes (Exo), c-Src in particular being highly enriched in Exo from the androgen receptor (AR)-positive cell line C4-2B and AR-negative cell lines PC3 and DU145. Furthermore, we show that the active phosphorylated form of Src (SrcpY416 ) is co-expressed in Exo with phosphorylated FAK (FAKpY861 ), a known target site of Src, which enhances proliferation and migration. We further demonstrate for the first time exosomal enrichment of G-protein-coupled receptor kinase (GRK) 5 and GRK6, both of which regulate Src and IGF-IR signaling and have been implicated in cancer. Finally, SrcpY416 and c-Src are both expressed in Exo isolated from the plasma of prostate tumor-bearing TRAMP mice, and those same mice have higher levels of exosomal c-Src than their wild-type counterparts. In summary, we provide new evidence that active signaling molecules relevant to PrCa are enriched in Exo, and this suggests that the Src signaling network may provide useful biomarkers detectable by liquid biopsy, and may contribute to PrCa progression via Exo. J. Cell. Biochem. 118: 66-73, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rachel M DeRita
- Prostate Cancer Discovery and Development Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania.,Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Brad Zerlanko
- Prostate Cancer Discovery and Development Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania.,Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Amrita Singh
- Prostate Cancer Discovery and Development Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania.,Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Huimin Lu
- Prostate Cancer Discovery and Development Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania.,Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jeffrey L Benovic
- Departments of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Lucia R Languino
- Prostate Cancer Discovery and Development Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania.,Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
41
|
Hoefer IE. Beware of the content!-exosomes as benefactors and agitators. Cardiovasc Res 2016; 110:293-4. [PMID: 27102217 DOI: 10.1093/cvr/cvw088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Imo E Hoefer
- Laboratory of Clinical Chemistry and Hematology, UMC Utrecht, G03.550, Heidelberglaan 100, Utrecht 3584CX, The Netherlands
| |
Collapse
|
42
|
Wahlgren J, Statello L, Skogberg G, Telemo E, Valadi H. Delivery of Small Interfering RNAs to Cells via Exosomes. Methods Mol Biol 2016; 1364:105-25. [PMID: 26472446 DOI: 10.1007/978-1-4939-3112-5_10] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Exosomes are small membrane bound vesicles between 30 and 100 nm in diameter of endocytic origin that are secreted into the extracellular environment by many different cell types. Exosomes play a role in intercellular communication by transferring proteins, lipids, and RNAs to recipient cells.Exosomes from human cells could be used as vectors to provide cells with therapeutic RNAs. Here we describe how exogenous small interfering RNAs may successfully be introduced into various kinds of human exosomes using electroporation and subsequently delivered to recipient cells. Methods used to confirm the presence of siRNA inside exosomes and cells are presented, such as flow cytometry, confocal microscopy, and Northern blot.
Collapse
Affiliation(s)
- Jessica Wahlgren
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy, University of Gothenburg, Guldhedsgatan 10A, 413 46, Gothenburg, Sweden
| | - Luisa Statello
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy, University of Gothenburg, Guldhedsgatan 10A, 413 46, Gothenburg, Sweden
| | - Gabriel Skogberg
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy, University of Gothenburg, Guldhedsgatan 10A, 413 46, Gothenburg, Sweden
| | - Esbjörn Telemo
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy, University of Gothenburg, Guldhedsgatan 10A, 413 46, Gothenburg, Sweden
| | - Hadi Valadi
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy, University of Gothenburg, Guldhedsgatan 10A, 413 46, Gothenburg, Sweden.
| |
Collapse
|
43
|
Kim D, Kim TH, Wu G, Park BK, Ha JH, Kim YS, Lee K, Lee Y, Kwon HJ. Extracellular Release of CD11b by TLR9 Stimulation in Macrophages. PLoS One 2016; 11:e0150677. [PMID: 26954233 PMCID: PMC4783063 DOI: 10.1371/journal.pone.0150677] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/16/2016] [Indexed: 12/24/2022] Open
Abstract
CpG-DNA upregulates the expression of pro-inflammatory cytokines, chemokines and cell surface markers. Investigators have shown that CD11b (integrin αM) regulates TLR-triggered inflammatory responses in the macrophages and dendritic cells. Therefore, we aimed to identify the effects of CpG-DNA on the expression of CD11b in macrophages. There was no significant change in surface expression of CD11b after CpG-DNA stimulation. However, CD11b was released into culture supernatants after stimulation with phosphorothioate-backbone modified CpG-DNA such as PS-ODN CpG-DNA 1826(S). In contrast, MB-ODN 4531 and non-CpG-DNA control (regardless of backbone type and liposome-encapsulation) failed to induce release of CD11b. Therefore, the context of the CpG-DNA sequence and phosphorothioate backbone modification may regulate the effects of CpG-DNA on CD11b release. Based on inhibitor studies, CD11b release is mediated by p38 MAP kinase activation, but not by the PI3K and NF-κB activation. CD11b release is mediated by lysosomal degradation and by vacuolar acidification in response to CpG-DNA stimulation. The amount of CD11b in the exosome precipitant was significantly increased by CpG-DNA stimulation in vivo and in vitro depending on TLR9. Our observations perhaps give more insight into understanding of the mechanisms involved in CpG-DNA-induced immunomodulation in the innate immunity.
Collapse
Affiliation(s)
- Dongbum Kim
- Center for Medical Science Research, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Te Ha Kim
- Department of Microbiology, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Guang Wu
- Center for Medical Science Research, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Byoung Kwon Park
- Center for Medical Science Research, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Ji-Hee Ha
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Yong-Sung Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Keunwook Lee
- Department of Biomedical Science, College of Natural Science, Hallym University, Chuncheon, Republic of Korea
| | - Younghee Lee
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Hyung-Joo Kwon
- Center for Medical Science Research, Hallym University College of Medicine, Chuncheon, Republic of Korea
- Department of Microbiology, Hallym University College of Medicine, Chuncheon, Republic of Korea
- * E-mail:
| |
Collapse
|
44
|
Mahauad-Fernandez WD, Okeoma CM. BST-2: at the crossroads of viral pathogenesis and oncogenesis. Future Virol 2016. [DOI: 10.2217/fvl.15.113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BST-2 is a moonlight protein with several protective and deleterious functions. Regulation of virus restriction and tumor aggressiveness are the most studied aspects of BST-2 function and thus, the main focus of this perspective. Virus inhibition roles of BST-2 have therapeutic potential that, if properly harnessed, could result in near broad spectrum antiviral. However, the involvement of BST-2 in cancer calls for additional studies on BST-2 biology and re-evaluation of the overall role of BST-2 in host protection, as it appears that BST-2 has pleiotropic effects in the host. Here, we analyze the antiviral and protumor roles of BST-2. We also discuss potential therapeutic options for BST-2 against viral infection and cancer.
Collapse
Affiliation(s)
- Wadie D Mahauad-Fernandez
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Interdisciplinary Program in Molecular & Cellular Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Chioma M Okeoma
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Interdisciplinary Program in Molecular & Cellular Biology, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
45
|
Han C, Sun X, Liu L, Jiang H, Shen Y, Xu X, Li J, Zhang G, Huang J, Lin Z, Xiong N, Wang T. Exosomes and Their Therapeutic Potentials of Stem Cells. Stem Cells Int 2015; 2016:7653489. [PMID: 26770213 PMCID: PMC4684885 DOI: 10.1155/2016/7653489] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/26/2015] [Accepted: 07/28/2015] [Indexed: 12/13/2022] Open
Abstract
Exosomes, a group of vesicles originating from the multivesicular bodies (MVBs), are released into the extracellular space when MVBs fuse with the plasma membrane. Numerous studies indicate that exosomes play important roles in cell-to-cell communication, and exosomes from specific cell types and conditions display multiple functions such as exerting positive effects on regeneration in many tissues. It is widely accepted that the therapeutic potential of stem cells may be mediated largely by the paracrine factors, so harnessing the paracrine effects of stem and progenitor cells without affecting these living, replicating, and potentially pluripotent cell populations is an advantage in terms of safety and complexity. Ascending evidence indicated that exosomes might be the main components of paracrine factors; thus, understanding the role of exosomes in each subtype of stem cells is far-reaching. In this review, we discuss the functions of exosomes from different types of stem cells and emphasize the therapeutic potentials of exosomes, providing an alternative way of developing strategies to cure diseases.
Collapse
Affiliation(s)
- Chao Han
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Xuan Sun
- Department of Interventional Neuroradiology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Ling Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Haiyang Jiang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Yan Shen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Xiaoyun Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Jie Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Guoxin Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Jinsha Huang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Zhicheng Lin
- Department of Psychiatry, Harvard Medical School, Division of Alcohol and Drug Abuse, and Mailman Neuroscience Research Center, McLean Hospital, Belmont, MA 02478, USA
| | - Nian Xiong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| |
Collapse
|
46
|
Krause M, Samoylenko A, Vainio SJ. Exosomes as renal inductive signals in health and disease, and their application as diagnostic markers and therapeutic agents. Front Cell Dev Biol 2015; 3:65. [PMID: 26539435 PMCID: PMC4611857 DOI: 10.3389/fcell.2015.00065] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/05/2015] [Indexed: 12/17/2022] Open
Abstract
Cells secrete around 30–1000 nm membrane-enclosed vesicles, of which members of the subgroup between 30 and 100 nm are termed exosomes (EXs). EXs are released into the extracellular space and are widely present in body fluids and incorporated mRNA, miRNA, proteins, and signaling molecules. Increasing amounts of evidence suggest that EXs play an important role not only in cell-to-cell communication but also in various physiological and disease processes. EXs secreted by kidney cells control nephron function and are involved in kidney diseases and cancers. This makes them potential targets for diagnostic and therapeutic applications such as non-invasive biomarkers and cell-free vaccines and for use as drug delivery vehicles. This review provides an overview on the known roles of EXs in kidney development and diseases, including renal cancer. Additionally, it covers recent findings on their significance as diagnostic markers and on therapeutic applications to renal diseases and cancers. The intention is to promote an awareness of how many questions still remain open but are certainly worth investigating.
Collapse
Affiliation(s)
- Mirja Krause
- Biocenter Oulu, Infotech Oulu, Developmental Biology Lab, Faculty of Biochemistry and Molecular Medicine, Center for Cell Matrix Research, University of Oulu Oulu, Finland
| | - Anatoliy Samoylenko
- Biocenter Oulu, Infotech Oulu, Developmental Biology Lab, Faculty of Biochemistry and Molecular Medicine, Center for Cell Matrix Research, University of Oulu Oulu, Finland
| | - Seppo J Vainio
- Biocenter Oulu, Infotech Oulu, Developmental Biology Lab, Faculty of Biochemistry and Molecular Medicine, Center for Cell Matrix Research, University of Oulu Oulu, Finland
| |
Collapse
|
47
|
Bone Marrow Stromal Antigen 2 Is a Novel Plasma Biomarker and Prognosticator for Colorectal Carcinoma: A Secretome-Based Verification Study. DISEASE MARKERS 2015; 2015:874054. [PMID: 26494939 PMCID: PMC4606116 DOI: 10.1155/2015/874054] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 06/22/2015] [Indexed: 01/21/2023]
Abstract
BACKGROUND The cancer cell secretome has been recognized as a valuable reservoir for identifying novel serum/plasma biomarkers for different cancers, including colorectal cancer (CRC). This study aimed to verify four CRC cell-secreted proteins (tumor-associated calcium signal transducer 2/trophoblast cell surface antigen 2 (TACSTD2/TROP2), tetraspanin-6 (TSPAN6), bone marrow stromal antigen 2 (BST2), and tumor necrosis factor receptor superfamily member 16 (NGFR)) as potential plasma CRC biomarkers. METHODS The study population comprises 152 CRC patients and 152 controls. Target protein levels in plasma and tissue samples were assessed by ELISA and immunohistochemistry, respectively. RESULTS Among the four candidate proteins examined by ELISA in a small sample set, only BST2 showed significantly elevated plasma levels in CRC patients versus controls. Immunohistochemical analysis revealed the overexpression of BST2 in CRC tissues, and higher BST2 expression levels correlated with poorer 5-year survival (46.47% versus 65.57%; p = 0.044). Further verification confirmed the elevated plasma BST2 levels in CRC patients (2.35 ± 0.13 ng/mL) versus controls (1.04 ± 0.03 ng/mL) (p < 0.01), with an area under the ROC curve (AUC) being 0.858 comparable to that of CEA (0.867). CONCLUSION BST2, a membrane protein selectively detected in CRC cell secretome, may be a novel plasma biomarker and prognosticator for CRC.
Collapse
|
48
|
Zhu Y, Chen X, Pan Q, Wang Y, Su S, Jiang C, Li Y, Xu N, Wu L, Lou X, Liu S. A Comprehensive Proteomics Analysis Reveals a Secretory Path- and Status-Dependent Signature of Exosomes Released from Tumor-Associated Macrophages. J Proteome Res 2015; 14:4319-31. [PMID: 26312558 DOI: 10.1021/acs.jproteome.5b00770] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Exosomes are 30-120 nm-sized membrane vesicles of endocytic origin that are released into the extracellular environment and play roles in cell-cell communication. Tumor-associated macrophages (TAMs) are important constituents of the tumor microenvironment; thus, it is critical to study the features and complex biological functions of TAM-derived exosomes. Here, we constructed a TAM cell model from a mouse macrophage cell line, Ana-1, and performed comparative proteomics on exosomes, exosome-free media, and cells between TAMs and Ana-1. Proteomic analysis between exosome and exosome-free fractions indicated that the functions of exosome dominant proteins were mainly enriched in RNA processing and proteolysis. TAM status dramatically affected the abundances of 20S proteasome subunits and ribosomal proteins in their exosomes. The 20S proteasome activity assay strongly indicated that TAM exosomes possessed higher proteolytic activity. In addition, Ana-1- and TAM-derived exosomes have different RNA profiles, which may result from differential RNA processing proteins. Taken together, our comprehensive proteomics study provides novel views for understanding the complicated roles of macrophage-derived exosomes in the tumor microenvironment.
Collapse
Affiliation(s)
- Yinghui Zhu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences , Beijing 100101, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| | - Xianwei Chen
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences , Beijing 100101, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| | - Qingfei Pan
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences , Beijing 100101, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| | - Yang Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences , Beijing 100101, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| | - Siyuan Su
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences , Beijing 100101, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| | - Cuicui Jiang
- Beijing Protein Innovation , Beijing 101318, China
| | - Yang Li
- Beijing Protein Innovation , Beijing 101318, China
| | - Ningzhi Xu
- Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100021, China
| | - Lin Wu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences , Beijing 100101, China
| | - Xiaomin Lou
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences , Beijing 100101, China
| | - Siqi Liu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences , Beijing 100101, China
| |
Collapse
|
49
|
Laurent LC, Abdel-Mageed AB, Adelson PD, Arango J, Balaj L, Breakefield X, Carlson E, Carter BS, Majem B, Chen CC, Cocucci E, Danielson K, Courtright A, Das S, Abd Elmageed ZY, Enderle D, Ezrin A, Ferrer M, Freedman J, Galas D, Gandhi R, Huentelman MJ, Van Keuren-Jensen K, Kalani Y, Kim Y, Krichevsky AM, Lai C, Lal-Nag M, Laurent CD, Leonardo T, Li F, Malenica I, Mondal D, Nejad P, Patel T, Raffai RL, Rubio R, Skog J, Spetzler R, Sun J, Tanriverdi K, Vickers K, Wang L, Wang Y, Wei Z, Weiner HL, Wong D, Yan IK, Yeri A, Gould S. Meeting report: discussions and preliminary findings on extracellular RNA measurement methods from laboratories in the NIH Extracellular RNA Communication Consortium. J Extracell Vesicles 2015; 4:26533. [PMID: 26320937 PMCID: PMC4553263 DOI: 10.3402/jev.v4.26533] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 04/17/2015] [Accepted: 05/03/2015] [Indexed: 01/14/2023] Open
Abstract
Extracellular RNAs (exRNAs) have been identified in all tested biofluids and have been associated with a variety of extracellular vesicles, ribonucleoprotein complexes and lipoprotein complexes. Much of the interest in exRNAs lies in the fact that they may serve as signalling molecules between cells, their potential to serve as biomarkers for prediction and diagnosis of disease and the possibility that exRNAs or the extracellular particles that carry them might be used for therapeutic purposes. Among the most significant bottlenecks to progress in this field is the lack of robust and standardized methods for collection and processing of biofluids, separation of different types of exRNA-containing particles and isolation and analysis of exRNAs. The Sample and Assay Standards Working Group of the Extracellular RNA Communication Consortium is a group of laboratories funded by the U.S. National Institutes of Health to develop such methods. In our first joint endeavour, we held a series of conference calls and in-person meetings to survey the methods used among our members, placed them in the context of the current literature and used our findings to identify areas in which the identification of robust methodologies would promote rapid advancements in the exRNA field.
Collapse
Affiliation(s)
- Louise C Laurent
- Division of Maternal Fetal Medicine, Department of Reproductive Medicine, University of California San Diego, San Diego, CA, USA.,Sanford Consortium for Regenerative Medicine, San Diego, CA, USA;
| | - Asim B Abdel-Mageed
- Department of Urology, Tulane University, School of Medicine, New Orleans, LA, USA
| | | | | | - Leonora Balaj
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA.,Program in Neuroscience, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Xandra Breakefield
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA.,Program in Neuroscience, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA.,Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Elizabeth Carlson
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Bob S Carter
- Center for Theoretical and Applied Neuro-Oncology, Division of Neurosurgery, University of California San Diego, San Diego, CA, USA
| | - Blanca Majem
- School of Dentistry, University of California, Los Angeles, CA, USA
| | - Clark C Chen
- Center for Theoretical and Applied Neuro-Oncology, Division of Neurosurgery, University of California San Diego, San Diego, CA, USA
| | - Emanuele Cocucci
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Kirsty Danielson
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Amanda Courtright
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Saumya Das
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | | | | | - Marc Ferrer
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda, MD, USA
| | - Jane Freedman
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - David Galas
- Pacific Northwest Diabetes Research Institute, Seattle, WA, USA.,Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Roopali Gandhi
- Department of Neurology, Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | - Yong Kim
- School of Dentistry, University of California, Los Angeles, CA, USA
| | - Anna M Krichevsky
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Charles Lai
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA.,Program in Neuroscience, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Madhu Lal-Nag
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda, MD, USA
| | - Clara D Laurent
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Trevor Leonardo
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Feng Li
- School of Dentistry, University of California, Los Angeles, CA, USA
| | - Ivana Malenica
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Debasis Mondal
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Parham Nejad
- Department of Neurology, Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tushar Patel
- Department of Transplantation, Mayo Clinic Florida, Jacksonville, FL, USA.,Department of Cancer Biology, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Robert L Raffai
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA.,Department of Veteran's Affairs, San Francisco, CA, USA
| | - Renee Rubio
- Center for Cancer Computational Biology, Dana Farber Cancer Institute, Boston, MA, USA
| | | | | | - Jie Sun
- School of Dentistry, University of California, Los Angeles, CA, USA
| | - Kahraman Tanriverdi
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Kasey Vickers
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA.,Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Liang Wang
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yaoyu Wang
- Center for Cancer Computational Biology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Zhiyun Wei
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Howard L Weiner
- Department of Neurology, Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - David Wong
- School of Dentistry, University of California, Los Angeles, CA, USA
| | - Irene K Yan
- Department of Cancer Biology, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Ashish Yeri
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Stephen Gould
- Department of Biological Chemistry, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
50
|
Skogberg G, Telemo E, Ekwall O. Exosomes in the Thymus: Antigen Transfer and Vesicles. Front Immunol 2015; 6:366. [PMID: 26257734 PMCID: PMC4507453 DOI: 10.3389/fimmu.2015.00366] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/06/2015] [Indexed: 12/31/2022] Open
Abstract
Thymocytes go through several steps of maturation and selection in the thymus in order to form a functional pool of effector T-cells and regulatory T-cells in the periphery. Close interactions between thymocytes, thymic epithelial cells, and dendritic cells are of vital importance for the maturation, selection, and lineage decision of the thymocytes. One important question that is still unanswered is how a relatively small epithelial cell population can present a vast array of self-antigens to the manifold larger population of developing thymocytes in this selection process. Here, we review and discuss the literature concerning antigen transfer from epithelial cells with a focus on exosomes. Exosomes are nano-sized vesicles released from a cell into the extracellular space. These vesicles can carry proteins, microRNAs, and mRNAs between cells and are thus able to participate in intercellular communication. Exosomes have been shown to be produced by thymic epithelial cells and to carry tissue-restricted antigens and MHC molecules, which may enable them to participate in the thymocyte selection process.
Collapse
Affiliation(s)
- Gabriel Skogberg
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy, Gothenburg University , Gothenburg , Sweden
| | - Esbjörn Telemo
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy, Gothenburg University , Gothenburg , Sweden
| | - Olov Ekwall
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy, Gothenburg University , Gothenburg , Sweden ; Department of Pediatrics, Institute of Clinical Sciences, The Sahlgrenska Academy, Gothenburg University , Gothenburg , Sweden
| |
Collapse
|