1
|
Zheng Y, Li Y, Yu B, Luo Y, Huang Z, Zheng P, Mao X, Dai Z, Yu J, Yan H, Luo J, He J. Dietary supplementation of grape seed proanthocyanidins improves growth performance, carcass traits, and meat quality in growing-finishing pigs. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2025; 20:200-210. [PMID: 39967699 PMCID: PMC11833782 DOI: 10.1016/j.aninu.2024.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/01/2024] [Accepted: 10/21/2024] [Indexed: 02/20/2025]
Abstract
Grape seed proanthocyanidin (GSP) is a type of plant polyphenol with a wide variety of biological activities, such as antioxidant properties. This study investigated the effects of GSP supplementation on growth performance and meat quality in growing-finishing pigs. A total of 180 pigs (with an initial average body weight of 30.37 ± 0.66 kg) were randomly assigned to five treatments: a control diet or a control diet supplemented with GSP at 15, 30, 60, and 120 mg/kg. Each treatment group comprised six replicate pens (6 pigs per pen). Results showed that GSP supplementation linearly increased the average daily gain (P = 0.048) and quadratically decreased the feed intake to gain ratio (P = 0.049) with the lowest values at 30 and 60 mg/kg GSP. Serum concentrations of immunoglobulins (Ig) (IgA, IgG, IgM), total antioxidative capacity, catalase, and total superoxide dismutase were elevated with the peak levels at 30 mg/kg GSP (P < 0.05). Serum glutathione peroxidase increased and malondialdehyde decreased quadratically (P < 0.05), with peak and trough levels at 120 and 60 mg/kg GSP, respectively. The GSP also improved dressing percentage and muscle redness (a∗45 min) with optimal levels at 30 and 60 mg/kg (P < 0.05). Additionally, GSP supplementation quadratically reduced the muscle yellowness (b∗24 h) and shear force (P < 0.05), with the lowest values at 120 mg/kg. The expression level of myosin heavy chain I in muscle was quadratically increased with maximum expression at 30 and 60 mg/kg (P = 0.015). Furthermore, the expression levels of fatty acid synthase, phosphoenolpyruvate carboxykinase (PEPCK), and glucokinase in the muscle were decreased quadratically (P < 0.05) with the lowest values at 120 mg/kg. Additionally, GSP supplementation at 60 mg/kg upregulated the expression of hepatic hormone-sensitive triglyceride lipase and PEPCK (P < 0.05). These results suggest that GSP enhances carcass characteristics and meat quality in growing-finishing pigs, potentially through improved antioxidative capacity, modified muscle fiber type distribution, and altered glucose-lipid metabolism in muscle and liver.
Collapse
Affiliation(s)
- Yuyang Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| | - Yan Li
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| | - Zhingqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| |
Collapse
|
2
|
Adepu KK, Anishkin A, Adams SH, Chintapalli SV. A versatile delivery vehicle for cellular oxygen and fuels or metabolic sensor? A review and perspective on the functions of myoglobin. Physiol Rev 2024; 104:1611-1642. [PMID: 38696337 PMCID: PMC11495214 DOI: 10.1152/physrev.00031.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/04/2024] Open
Abstract
A canonical view of the primary physiological function of myoglobin (Mb) is that it is an oxygen (O2) storage protein supporting mitochondrial oxidative phosphorylation, especially as the tissue O2 partial pressure (Po2) drops and Mb off-loads O2. Besides O2 storage/transport, recent findings support functions for Mb in lipid trafficking and sequestration, interacting with cellular glycolytic metabolites such as lactate (LAC) and pyruvate (PYR), and "ectopic" expression in some types of cancer cells and in brown adipose tissue (BAT). Data from Mb knockout (Mb-/-) mice and biochemical models suggest additional metabolic roles for Mb, especially regulation of nitric oxide (NO) pools, modulation of BAT bioenergetics, thermogenesis, and lipid storage phenotypes. From these and other findings in the literature over many decades, Mb's function is not confined to delivering O2 in support of oxidative phosphorylation but may serve as an O2 sensor that modulates intracellular Po2- and NO-responsive molecular signaling pathways. This paradigm reflects a fundamental change in how oxidative metabolism and cell regulation are viewed in Mb-expressing cells such as skeletal muscle, heart, brown adipocytes, and select cancer cells. Here, we review historic and emerging views related to the physiological roles for Mb and present working models illustrating the possible importance of interactions between Mb, gases, and small-molecule metabolites in regulation of cell signaling and bioenergetics.
Collapse
Affiliation(s)
- Kiran Kumar Adepu
- Arkansas Children's Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
| | - Andriy Anishkin
- Department of Biology, University of Maryland, College Park, Maryland, United States
| | - Sean H Adams
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, California, United States
- Center for Alimentary and Metabolic Science, School of Medicine, University of California Davis, Sacramento, California, United States
| | - Sree V Chintapalli
- Arkansas Children's Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
| |
Collapse
|
3
|
Zhao Z, Wu J, Yao X, Sun H, Wu Y, Zhou H, Wang X, Guo K, Deng B, Tang J. Influence of Fermented Broccoli Residues on Fattening Performance, Nutrient Utilization, and Meat Properties of Finishing Pigs. Animals (Basel) 2024; 14:1987. [PMID: 38998099 PMCID: PMC11240572 DOI: 10.3390/ani14131987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024] Open
Abstract
The study determined the impacts of dietary fermented residues' (FBR) inclusion on growth, nutrient utilization, carcass characteristics, and meat properties in fattening pigs. Seventy-two robust pigs were randomly assigned to two experimental groups (Duroc × Landrace × Yorkshire, thirty-six pigs each). Each group was subjected to a 52-day trial, during which they received either a corn-soybean meal-based diet or diet enhanced with a 10% addition of FBR. Consequently, adding 10% FBR caused a significant decrease in the digestive utilization of crude dietary components in fattening pigs (p < 0.05) but showed no significant impact on the growth performance. Additionally, FBR inclusion increased the marbling scores (p < 0.05) and total antioxidant functions (p < 0.05) of muscle tissues, indicating improved meat quality. Gender affected backfat depth, with barrows showing thicker backfat depth. In conclusion, dietary supplementation with 10% FBR in finishing pigs influenced the meat quality by improving the marbling score and antioxidant performance while reducing digestibility without compromising growth performance.
Collapse
Affiliation(s)
- Zhiwei Zhao
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jie Wu
- Institute of Zootechnics and Veterinary Sciences, Hangzhou 310021, China
| | - Xiaohong Yao
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hong Sun
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yifei Wu
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hanghai Zhou
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xin Wang
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Kai Guo
- Institute of Zootechnics and Veterinary Sciences, Hangzhou 310021, China
| | - Bo Deng
- Institute of Zootechnics and Veterinary Sciences, Hangzhou 310021, China
| | - Jiangwu Tang
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
4
|
Komiya Y, Sakazaki Y, Goto T, Kawabata F, Suzuki T, Sato Y, Sawano S, Nakamura M, Tatsumi R, Ikeuchi Y, Arihara K, Mizunoya W. Eicosapentaenoic acid increases proportion of type 1 muscle fibers through PPARδ and AMPK pathways in rats. iScience 2024; 27:109816. [PMID: 38779480 PMCID: PMC11108975 DOI: 10.1016/j.isci.2024.109816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/07/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
Muscle fiber type composition (% slow-twitch and % fast-twitch fibers) is associated with metabolism, with increased slow-twitch fibers alleviating metabolic disorders. Previously, we reported that dietary fish oil intake induced a muscle fiber-type transition in a slower direction in rats. The aim of this study was to determine the functionality of eicosapentaenoic acid (EPA), a unique fatty acid in fish oil, to skeletal muscle fiber type and metabolism in rats. Here, we showed that dietary EPA promotes whole-body oxidative metabolism and improves muscle function by increasing proportion of slow-twitch type 1 fibers in rats. Transcriptomic and metabolomic analyses revealed that EPA supplementation activated the peroxisome proliferator-activated receptor δ (PPARδ) and AMP-activated protein kinase (AMPK) pathways in L6 myotube cultures, which potentially increasing slow-twitch fiber share. This highlights the role of EPA as an exercise-mimetic dietary component that improves metabolism and muscle function, with potential benefits for health and athletic performance.
Collapse
Affiliation(s)
- Yusuke Komiya
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Yuka Sakazaki
- Department of Animal and Marine Bioresource Sciences, Faculty of Agriculture, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Tsuyoshi Goto
- Division of Food Science & Biotechnology, Kyoto University, Kyoto, Japan
| | - Fuminori Kawabata
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| | - Takahiro Suzuki
- Department of Animal and Marine Bioresource Sciences, Faculty of Agriculture, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Yusuke Sato
- Department of Animal Science, School of Agriculture, Tokai University, Kumamoto, Japan
| | - Shoko Sawano
- Department of Food and Life Science, School of Life and Environmental Science, Azabu University, Sagamihara, Japan
| | - Mako Nakamura
- Department of Animal and Marine Bioresource Sciences, Faculty of Agriculture, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Ryuichi Tatsumi
- Department of Animal and Marine Bioresource Sciences, Faculty of Agriculture, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Yoshihide Ikeuchi
- Department of Animal and Marine Bioresource Sciences, Faculty of Agriculture, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Keizo Arihara
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Wataru Mizunoya
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| |
Collapse
|
5
|
Castrica M, Menchetti L, Agradi S, Curone G, Vigo D, Pastorelli G, Pallaoro M, Di Giancamillo A, Modina SC, Riva F, Serra V, Andoni E, Brecchia G, Balzaretti CM, Miraglia D. Meat quality and sensory traits in rabbits fed with two different percentages of bovine colostrum. Meat Sci 2024; 213:109512. [PMID: 38636339 DOI: 10.1016/j.meatsci.2024.109512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/15/2024] [Accepted: 04/06/2024] [Indexed: 04/20/2024]
Abstract
The nutritional, antimicrobial, and antioxidant properties of bovine colostrum (BC) have encouraged its use in animal nutrition as a functional food in recent years. Nonetheless, the potential implications of BC supplementation on meat quality remain to be thoroughly assessed. To address this, thirty-nine New Zealand White rabbits (n = 13/group) were fed different dietary regimens until slaughter.: commercial standard diet for the control group (C) and C with 2.5% and 5% w/w of BC for BC-2.5 and BC-5 groups, respectively. Rabbits were slaughtered at 91 days of age and meat quality, and sensory characteristics were evaluated at days 2 (48 h after slaughter), 5, and 10 of refrigerated storage at 4 °C. The addition of colostrum in the diet resulted in a reduction of the total viable count, albeit only at the highest concentration and at the final detection, whereas for Lactobacillus spp. and Pseudomonas spp., there was little or no effect. The colour coordinates showed no differences between the groups, but they varied over time according to diet. Some differences between groups emerged in the definition of sensory attributes but did not affect the overall liking and overall scores of individual descriptors. These results indicate that the use of colostrum in rabbit feeding does not significantly impart meat quality and sensory attributes, but the potential of this valuable by-product for the food industry needs further investigation.
Collapse
Affiliation(s)
- Marta Castrica
- Department of Comparative Biomedicine and Food Science, University of Padova, Agripolis, Viale dell'Università 16, 35020 Legnaro, Italy.
| | - Laura Menchetti
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Italy
| | - Stella Agradi
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Giulio Curone
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Daniele Vigo
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Grazia Pastorelli
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Margherita Pallaoro
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Alessia Di Giancamillo
- Department of Biomedical Sciences for Health, University of Milan, Via Luigi Mangiagalli 31, 20133 Milan, Italy
| | - Silvia Clotilde Modina
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Federica Riva
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Valentina Serra
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Egon Andoni
- Veterinary Faculty of Tirana, Department of Public Health, Agricultural University of Tirana, Rr Pajsi Vodica, Koder-Kamez, 1029 Tirana, Albania
| | - Gabriele Brecchia
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Claudia Maria Balzaretti
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Dino Miraglia
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy
| |
Collapse
|
6
|
Komiya Y, Iseki S, Ochiai M, Takahashi Y, Yokoyama I, Suzuki T, Tatsumi R, Sawano S, Mizunoya W, Arihara K. Dietary oleic acid intake increases the proportion of type 1 and 2X muscle fibers in mice. Sci Rep 2024; 14:755. [PMID: 38191891 PMCID: PMC10774392 DOI: 10.1038/s41598-023-50464-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/20/2023] [Indexed: 01/10/2024] Open
Abstract
Skeletal muscle is one of the largest metabolic tissues in mammals and is composed of four different types of muscle fibers (types 1, 2A, 2X, and 2B); however, type 2B is absent in humans. Given that slow-twitch fibers are superior to fast-twitch fibers in terms of oxidative metabolism and are rich in mitochondria, shift of muscle fiber types in direction towards slower fiber types improves metabolic disorders and endurance capacity. We previously had reported that oleic acid supplementation increases type 1 fiber formation in C2C12 myotubes; however, its function still remains unclear. This study aimed to determine the effect of oleic acid on the muscle fiber types and endurance capacity. An in vivo mouse model was used, and mice were fed a 10% oleic acid diet for 4 weeks. Two different skeletal muscles, slow soleus muscle with the predominance of slow-twitch fibers and fast extensor digitorum longus (EDL) muscle with the predominance of fast-twitch fibers, were used. We found that dietary oleic acid intake improved running endurance and altered fiber type composition of muscles, the proportion of type 1 and 2X fibers increased in the soleus muscle and type 2X increased in the EDL muscle. The fiber type shift in the EDL muscle was accompanied by an increased muscle TAG content. In addition, blood triacylglycerol (TAG) and non-esterified fatty acid levels decreased during exercise. These changes suggested that lipid utilization as an energy substrate was enhanced by oleic acid. Increased proliferator-activated receptor γ coactivator-1β protein levels were observed in the EDL muscle, which potentially enhanced the fiber type transitions towards type 2X and muscle TAG content. In conclusion, dietary oleic acid intake improved running endurance with the changes of muscle fiber type shares in mice. This study elucidated a novel functionality of oleic acid in skeletal muscle fiber types. Further studies are required to elucidate the underlying mechanisms. Our findings have the potential to contribute to the field of health and sports science through nutritional approaches, such as the development of supplements aimed at improving muscle function.
Collapse
Affiliation(s)
- Yusuke Komiya
- Laboratory of Food Function and Safety, Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan.
| | - Shugo Iseki
- Laboratory of Food Function and Safety, Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Masaru Ochiai
- Laboratory of Animal and Human Nutritional Physiology, Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Yume Takahashi
- Laboratory of Food Function and Safety, Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Issei Yokoyama
- Laboratory of Food Function and Safety, Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Takahiro Suzuki
- Laboratory of Muscle and Meat Science, Department of Animal and Marine Bioresource Sciences, Faculty of Agriculture, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Ryuichi Tatsumi
- Laboratory of Muscle and Meat Science, Department of Animal and Marine Bioresource Sciences, Faculty of Agriculture, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Shoko Sawano
- Laboratory of Food Health Science, Department of Food and Life Science, School of Life and Environmental Science, Azabu University, Sagamihara, Japan
| | - Wataru Mizunoya
- Laboratory of Food Science, Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Keizo Arihara
- Laboratory of Food Function and Safety, Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan
| |
Collapse
|
7
|
Xie K, Sun Y, Deng L, Yu B, Luo Y, Huang Z, Mao X, Yu J, Zheng P, Yan H, Li Y, Li H, He J. Effects of Dietary Chlorogenic Acid Supplementation on Growth Performance, Meat Quality, and Muscle Flavor Substances in Finishing Pigs. Foods 2023; 12:3047. [PMID: 37628046 PMCID: PMC10453883 DOI: 10.3390/foods12163047] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/07/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
With the prohibition of antibiotics in feed, certain phytocompounds have been widely studied as feed additives. Chlorogenic acid (CGA), a natural polyphenol found in plants, possesses anti-inflammatory, antioxidant, and metabolic regulatory features. The objective of this study was to investigate the effects of dietary chlorogenic acid supplementation on growth performance and carcass traits, as well as meat quality, nutrient value and flavor substances of Duroc × Landrace × Yorkshire (DLY) pigs. Forty healthy DLY pigs (initial body weight (BW): 26.69 ± 0.37) were allotted to four treatment groups and were fed with the control diet, which was supplemented with 25 mg kg-1, 50 mg kg-1, and 100 mg kg-1 CGA, respectively. The trial lasted 100 days. The results suggested that dietary CGA supplementation had no effect (p < 0.05) on the average daily gain (ADG) and feed conversion ratio (FC). Herein, it was found that 50 mg kg-1 CGA-containing diet not only increased the dressing percentage and perirenal fat, but also reduced the rate of muscular pH decline (p < 0.05). In the longissimus thoracis (LT) muscle, the myofiber-type-related genes such as the MyHC IIa and MyHC IIX mRNA levels were increased by 100 mg kg-1 CGA. The results also indicated that the 100 mg kg-1 CGA-containing diet increased the content of crude fat, glycogen, total amino acids, and flavor amino acids, but decreased the inosine and hypoxanthine concentration in LT (p < 0.05). Meanwhile, the lipogenic gene ACC1 mRNA level was elevated by 50 mg kg-1 CGA. Instead, 100 mg kg-1 CGA downregulated the expression level of NT5C2, an enzyme responsible for inosine-5'-monophosphate (IMP) degradation. Additionally, 100 mg kg-1 CGA decreased the malondialdehyde (MDA) content, but increased the glutathione peroxidase (GSH-Px) content as well as antioxidant gene (HO-1, NQO-1, NRF2) mRNA levels in LT muscle. These findings showed that dietary CGA could partly improve carcass traits and muscle flavor without negatively affecting growth performance, and the underlying mechanism may be due to the antioxidant properties induced by CGA.
Collapse
Affiliation(s)
- Kunhong Xie
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 625014, China; (K.X.); (Y.S.); (B.Y.); (Y.L.); (Z.H.); (X.M.); (J.Y.); (P.Z.); (H.Y.); (Y.L.); (H.L.)
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 625014, China
| | - Yaxin Sun
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 625014, China; (K.X.); (Y.S.); (B.Y.); (Y.L.); (Z.H.); (X.M.); (J.Y.); (P.Z.); (H.Y.); (Y.L.); (H.L.)
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 625014, China
| | - Lili Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 625014, China;
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 625014, China; (K.X.); (Y.S.); (B.Y.); (Y.L.); (Z.H.); (X.M.); (J.Y.); (P.Z.); (H.Y.); (Y.L.); (H.L.)
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 625014, China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 625014, China; (K.X.); (Y.S.); (B.Y.); (Y.L.); (Z.H.); (X.M.); (J.Y.); (P.Z.); (H.Y.); (Y.L.); (H.L.)
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 625014, China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 625014, China; (K.X.); (Y.S.); (B.Y.); (Y.L.); (Z.H.); (X.M.); (J.Y.); (P.Z.); (H.Y.); (Y.L.); (H.L.)
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 625014, China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 625014, China; (K.X.); (Y.S.); (B.Y.); (Y.L.); (Z.H.); (X.M.); (J.Y.); (P.Z.); (H.Y.); (Y.L.); (H.L.)
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 625014, China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 625014, China; (K.X.); (Y.S.); (B.Y.); (Y.L.); (Z.H.); (X.M.); (J.Y.); (P.Z.); (H.Y.); (Y.L.); (H.L.)
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 625014, China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 625014, China; (K.X.); (Y.S.); (B.Y.); (Y.L.); (Z.H.); (X.M.); (J.Y.); (P.Z.); (H.Y.); (Y.L.); (H.L.)
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 625014, China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 625014, China; (K.X.); (Y.S.); (B.Y.); (Y.L.); (Z.H.); (X.M.); (J.Y.); (P.Z.); (H.Y.); (Y.L.); (H.L.)
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 625014, China
| | - Yan Li
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 625014, China; (K.X.); (Y.S.); (B.Y.); (Y.L.); (Z.H.); (X.M.); (J.Y.); (P.Z.); (H.Y.); (Y.L.); (H.L.)
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 625014, China
| | - Hua Li
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 625014, China; (K.X.); (Y.S.); (B.Y.); (Y.L.); (Z.H.); (X.M.); (J.Y.); (P.Z.); (H.Y.); (Y.L.); (H.L.)
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 625014, China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 625014, China; (K.X.); (Y.S.); (B.Y.); (Y.L.); (Z.H.); (X.M.); (J.Y.); (P.Z.); (H.Y.); (Y.L.); (H.L.)
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 625014, China
| |
Collapse
|
8
|
Kim YA, Lee SH, Koh JM, Kwon SH, Lee Y, Cho HJ, Kim H, Kim SJ, Lee JH, Yoo HJ, Seo JH. Fatty acid amides as potential circulating biomarkers for sarcopenia. J Cachexia Sarcopenia Muscle 2023. [PMID: 37127296 DOI: 10.1002/jcsm.13244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/14/2023] [Accepted: 04/03/2023] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND Sarcopenia is characterized by a progressive decrease in skeletal muscle mass and function with age. Given that sarcopenia is associated with various metabolic disorders, effective metabolic biomarkers for its early detection are required. We aimed to investigate the metabolic biomarkers related to sarcopenia in elderly men and perform experimental studies using metabolomics. METHODS Plasma metabolites from 142 elderly men, comprising a sarcopenia group and an age-matched control group, were measured using global metabolome profiling. Muscle and plasma samples from an aging mouse model of sarcopenia, as well as cell media and cell lysates during myoblast differentiation, were analysed based on targeted metabolome profiling. Based on these experimental results, fatty acid amides were quantified from human plasma as well as human muscle tissues. The association of fatty acid amide levels with sarcopenia parameters was evaluated. RESULTS Global metabolome profiling showed that fatty acid amide levels were significantly different in the plasma of elderly men with sarcopenia (all Ps < 0.01). Consistent with these results in human plasma, targeted metabolome profiling in an aging mouse model of sarcopenia showed decreased levels of fatty acid amides in plasma but not in muscle tissue. In addition, the levels of fatty acid amides increased in cell lysates during muscle cell differentiation. Targeted metabolome profiling in men showed decreased docosahexaenoic acid ethanolamide (DHA EA) levels in the plasma (P = 0.016) but not in the muscle of men with sarcopenia. DHA EA level was positively correlated with sarcopenia parameters such as skeletal muscle mass index (SMI) and handgrip strength (HGS) (P = 0.001, P = 0.001, respectively). The area under the receiver-operating characteristic curve (AUC) for DHA EA level ≤ 4.60 fmol/μL for sarcopenia was 0.618 (95% confidence interval [CI]: 0.532-0.698). DHA EA level ≤ 4.60 fmol/μL was associated with a significantly greater likelihood of sarcopenia (odds ratio [OR]: 2.11, 95% CI: 1.03-4.30), independent of HGS. The addition of DHA EA level to age and HGS significantly improved the AUC from 0.620 to 0.691 (P = 0.0497). CONCLUSIONS Our study demonstrated that fatty acid amides are potential circulating biomarkers in elderly men with sarcopenia. DHA EA, in particular, strongly related to muscle mass and strength, can be a key metabolite to become a reliable metabolic biomarker for sarcopenia. Further research on fatty acid amides will provide insights into the metabolomic changes relevant to sarcopenia from an aging perspective.
Collapse
Affiliation(s)
- Ye An Kim
- Division of Endocrinology, Department of Internal Medicine, Veterans Health Service Medical Center, Seoul, South Korea
| | - Seung Hun Lee
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jung-Min Koh
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Seung-Hyun Kwon
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul, South Korea
| | - Young Lee
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul, South Korea
| | - Han Jin Cho
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
| | - Hanjun Kim
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
| | - Su Jung Kim
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Ji Hyun Lee
- Division of Endocrinology, Department of Internal Medicine, Veterans Health Service Medical Center, Seoul, South Korea
| | - Hyun Ju Yoo
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Je Hyun Seo
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul, South Korea
| |
Collapse
|
9
|
Methenitis S, Nomikos T, Kontou E, Kiourelli KM, Papadimas G, Papadopoulos C, Terzis G. Skeletal muscle fiber composition may modify the effect of nutrition on body composition in young females. Nutr Metab Cardiovasc Dis 2023; 33:817-825. [PMID: 36725423 DOI: 10.1016/j.numecd.2022.12.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND AIM The aim of this study was to investigate the hypothesis that healthy, normal-weight females with greater proportions and sizes of the oxidative muscle fibers would also be characterized by a healthier body composition compared with individuals with increased glycolytic fibers, even if both follow similar nutritional plans. METHODS AND RESULTS Vastus lateralis muscle fiber-type composition, body composition through dual-energy X-ray absorptiometry, and dietary intakes through questionnaire were evaluated in twenty-two young, healthy, non-obese females (age: 21.3±1.8yrs, body mass: 67.5±6.2 kg, body height: 1.66±0.05m, body mass index (BMI): 24.2±2.6 kg m-2). The participants were allocated into two groups according to their type I muscle fibers percentage [high (HI) and low (LI)]. The participants of the LI group were characterized by significantly higher body mass, fat mass, BMI, and cross-sectional and percentage cross-sectional area (%CSA) of type IIx muscle fibers compared with participants of the HI group (p < 0.021). In contrast, the HI group was characterized by higher cross-sectional and %CSA of type I muscle fibers compared with the LI group (p < 0.038). Significant correlations were observed between body fat mass, lean body mass, total energy intake, fat energy intake, and %CSAs of type I and IIx muscle fibers (r: -0.505 to 0.685; p < 0.05). CONCLUSION In conclusion, this study suggests that muscle fiber composition is an important factor that at least partly could explain the observed differential inter-individual responses of the body composition to nutrition in female individuals. Increased %CSAs of type I muscle fibers seem to act as a protective mechanism against obesity and favor a healthier body composition, neutralizing the negative effect of increased caloric fats intake on body composition, probably because of their greater oxidative metabolic properties and fat utilization capacities. In contrast, female individuals with low type I and high type IIx %CSAs of type I seem to be more metabolically inflexible and dietinduced obesity prone, even if they consume fewer total daily calories and fats.
Collapse
Affiliation(s)
- Spyridon Methenitis
- Sports Performance Laboratory, School of Physical Education & Sports Science, National and Kapodistrian University of Athens, Greece.
| | - Tzortzis Nomikos
- Department of Nutrition and Dietetics, School of Health Sciences & Education, Harokopio University, Greece.
| | - Eleni Kontou
- Sports Performance Laboratory, School of Physical Education & Sports Science, National and Kapodistrian University of Athens, Greece; Theseus, Physical Medicine and Rehabilitation Center, Athens, Greece.
| | - Kleio-Maria Kiourelli
- Department of Nutrition and Dietetics, School of Health Sciences & Education, Harokopio University, Greece.
| | - George Papadimas
- A' Neurology Clinic, Aiginition Hospital, Medical School, National and Kapodistrian University of Athens, Greece.
| | - Constantinos Papadopoulos
- A' Neurology Clinic, Aiginition Hospital, Medical School, National and Kapodistrian University of Athens, Greece.
| | - Gerasimos Terzis
- Sports Performance Laboratory, School of Physical Education & Sports Science, National and Kapodistrian University of Athens, Greece.
| |
Collapse
|
10
|
Effects of fermented soybean meal on growth performance, meat quality, and antioxidant capacity in finishing pigs. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
11
|
Sleight AG, Crowder SL, Skarbinski J, Coen P, Parker NH, Hoogland AI, Gonzalez BD, Playdon MC, Cole S, Ose J, Murayama Y, Siegel EM, Figueiredo JC, Jim HSL. A New Approach to Understanding Cancer-Related Fatigue: Leveraging the 3P Model to Facilitate Risk Prediction and Clinical Care. Cancers (Basel) 2022; 14:cancers14081982. [PMID: 35454890 PMCID: PMC9027717 DOI: 10.3390/cancers14081982] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 01/02/2023] Open
Abstract
Simple Summary For the growing number of cancer survivors worldwide, fatigue presents a major hurdle to function and quality of life. Treatment options for cancer-related fatigue are still emerging, and our current understanding of its etiology is limited. In this paper, we describe a new application of a comprehensive model for cancer-related fatigue: the predisposing, precipitating, and perpetuating (3P) factors model. We propose that the 3P model may be leveraged—particularly using metabolomics, the microbiome, and inflammation in conjunction with behavioral science—to better understand the pathophysiology of cancer-related fatigue. Abstract A major gap impeding development of new treatments for cancer-related fatigue is an inadequate understanding of the complex biological, clinical, demographic, and lifestyle mechanisms underlying fatigue. In this paper, we describe a new application of a comprehensive model for cancer-related fatigue: the predisposing, precipitating, and perpetuating (3P) factors model. This model framework outlined herein, which incorporates the emerging field of metabolomics, may help to frame a more in-depth analysis of the etiology of cancer-related fatigue as well as a broader and more personalized set of approaches to the clinical treatment of fatigue in oncology care. Included within this review paper is an in-depth description of the proposed biological mechanisms of cancer-related fatigue, as well as a presentation of the 3P model’s application to this phenomenon. We conclude that a clinical focus on organization risk stratification and treatment around the 3P model may be warranted, and future research may benefit from expanding the 3P model to understand fatigue not only in oncology, but also across a variety of chronic conditions.
Collapse
Affiliation(s)
- Alix G. Sleight
- Department of Physical Medicine & Rehabilitation, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
- Center for Integrated Research in Cancer and Lifestyle, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Sylvia L. Crowder
- Department of Health Outcomes and Behavior, Moffitt Cancer Center, Tampa, FL 33601, USA; (S.L.C.); (N.H.P.); (A.I.H.); (B.D.G.)
| | - Jacek Skarbinski
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94501, USA;
- Department of Infectious Diseases, Oakland Medical Center, Kaiser Permanente Northern California, Oakland, CA 94501, USA
- Physician Researcher Program, Kaiser Permanente Northern California, Oakland, CA 94501, USA
- The Permanente Medical Group, Kaiser Permanente Northern California, Oakland, CA 94501, USA
| | - Paul Coen
- AdventHealth Orlando, Translational Research Institute, Orlando, FL 32804, USA;
| | - Nathan H. Parker
- Department of Health Outcomes and Behavior, Moffitt Cancer Center, Tampa, FL 33601, USA; (S.L.C.); (N.H.P.); (A.I.H.); (B.D.G.)
| | - Aasha I. Hoogland
- Department of Health Outcomes and Behavior, Moffitt Cancer Center, Tampa, FL 33601, USA; (S.L.C.); (N.H.P.); (A.I.H.); (B.D.G.)
| | - Brian D. Gonzalez
- Department of Health Outcomes and Behavior, Moffitt Cancer Center, Tampa, FL 33601, USA; (S.L.C.); (N.H.P.); (A.I.H.); (B.D.G.)
| | - Mary C. Playdon
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84044, USA;
- Department of Cancer Control and Population Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84044, USA
| | - Steven Cole
- Department of Psychiatry & Biobehavioral Sciences and Medicine, University of California, Los Angeles, CA 90001, USA;
| | - Jennifer Ose
- Department of Population Sciences, University of Utah, Salt Lake City, UT 84044, USA;
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84044, USA
| | - Yuichi Murayama
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (Y.M.); (J.C.F.)
| | - Erin M. Siegel
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL 33601, USA;
| | - Jane C. Figueiredo
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (Y.M.); (J.C.F.)
| | - Heather S. L. Jim
- Department of Health Outcomes and Behavior, Moffitt Cancer Center, Tampa, FL 33601, USA; (S.L.C.); (N.H.P.); (A.I.H.); (B.D.G.)
- Correspondence:
| |
Collapse
|
12
|
Liu SH, Chen YC, Tzeng HP, Chiang MT. Fish oil enriched ω-3 fatty acids ameliorates protein synthesis/degradation imbalance, inflammation, and wasting in muscles of diet-induced obese rats. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
13
|
Penner AL, Waytt V, Winter T, Leng S, Duhamel TA, Aukema HM. Oxylipin profiles and levels vary by skeletal muscle type, dietary fat and sex in young rats. Appl Physiol Nutr Metab 2021; 46:1378-1388. [PMID: 34115947 DOI: 10.1139/apnm-2021-0161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Polyunsaturated fatty acids (PUFA)-derived bioactive lipid mediators called oxylipins have been shown to influence muscle growth, inflammation and repair in select muscles. Since individual oxylipins have varying effects and potencies, broad profiling in differing muscle types is required to further understand their overall effects. In addition, diet and sex are key determinants of oxylipin levels. Therefore, to provide comprehensive data on oxylipin profiles in rat soleus (SO), red gastrocnemius (RG), and white gastrocnemius (WG) muscles, female and male weanling Sprague-Dawley rats were provided control or experimental diets enriched in n-3 (ω-3) or n-6 (ω-6) PUFA for 6 weeks. Free oxylipin analysis by HPLC/MS/MS revealed that SO muscle had 25% more oxylipins and 4-13 times greater oxylipin mass than WG muscle. Dietary n-3 PUFA (α-linolenic acid, eicosapentaenoic acid, and docosahexaenoic acid) each increased n-3 oxylipins derived directly from their precursors and several that were not direct precursors, while reducing arachidonic acid derived oxylipins. Dietary linoleic acid had few effects on oxylipins. Oxylipins with a sex effect were higher in females in SO and RG. Oxylipins generally reflected the effects of diet and sex on PUFA, but there were exceptions. These fundamental oxylipin profile data provide groundwork knowledge and context for future research on muscle oxylipin functions. Novelty: Rat SO compared with RG and WG muscles have a higher number and greater mass of oxylipins. Oxylipins generally reflect diet effects on PUFA in all muscles, but there are notable exceptions. Oxylipins in SO and RG are higher in females.
Collapse
Affiliation(s)
- Avery L Penner
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, Manitoba, Canada
| | - Victoria Waytt
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, Manitoba, Canada
| | - Tanja Winter
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, Manitoba, Canada
| | - Shan Leng
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, Manitoba, Canada
| | - Todd A Duhamel
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Winnipeg, Manitoba, Canada
- Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Harold M Aukema
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, Manitoba, Canada
| |
Collapse
|
14
|
Dietary Olive Oil Intake Improves Running Endurance with Intramuscular Triacylglycerol Accumulation in Mice. Nutrients 2021; 13:nu13041164. [PMID: 33916004 PMCID: PMC8067126 DOI: 10.3390/nu13041164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 11/16/2022] Open
Abstract
Olive oil is a functional food shown to have a variety of bioactive effects. Therefore, we expect it to be a novel functional food with an exercise-mimetic effect on skeletal muscles. This study aimed to investigate the effect of olive oil on the endurance capacity and muscle metabolism in mice. Mice fed a 7% (w/w) olive oil diet for eight weeks showed improved treadmill running endurance and increased intramuscular triacylglycerol (IMTG) accumulation in the gastrocnemius muscle compared to soybean oil diet-fed controls. The increase in running endurance with olive oil intake was independent of the muscle fiber type. To elucidate underlying the mechanism of elevated IMTG levels, we examined the expression levels of the genes related to lipid metabolism. We found that the expression of diacylglycerol O-acyltransferase1 (DGAT1) was significantly upregulated in the muscle of olive oil diet-fed mice. In addition, the olive oil diet-fed mice showed no metabolic impairment or differences in growth profiles compared to the controls. These results suggest that dietary olive oil intake affects muscle metabolism and muscle endurance by increasing energy accumulation.
Collapse
|
15
|
Dahdah N, Gonzalez-Franquesa A, Samino S, Gama-Perez P, Herrero L, Perales JC, Yanes O, Malagón MDM, Garcia-Roves PM. Effects of Lifestyle Intervention in Tissue-Specific Lipidomic Profile of Formerly Obese Mice. Int J Mol Sci 2021; 22:3694. [PMID: 33916315 PMCID: PMC8037078 DOI: 10.3390/ijms22073694] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 01/06/2023] Open
Abstract
Lipids are highly diverse in their composition, properties and distribution in different biological entities. We aim to establish the lipidomes of several insulin-sensitive tissues and to test their plasticity when divergent feeding regimens and lifestyles are imposed. Here, we report a proton nuclear magnetic resonance (1H-NMR) study of lipid abundance across 4 tissues of C57Bl6J male mice that includes the changes in the lipid profile after every lifestyle intervention. Every tissue analysed presented a specific lipid profile irrespective of interventions. Glycerolipids and fatty acids were most abundant in epididymal white adipose tissue (eWAT) followed by liver, whereas sterol lipids and phosphoglycerolipids were highly enriched in hypothalamus, and gastrocnemius had the lowest content in all lipid species compared to the other tissues. Both when subjected to a high-fat diet (HFD) and after a subsequent lifestyle intervention (INT), the lipidome of hypothalamus showed no changes. Gastrocnemius and liver revealed a pattern of increase in content in many lipid species after HFD followed by a regression to basal levels after INT, while eWAT lipidome was affected mainly by the fat composition of the administered diets and not their caloric density. Thus, the present study demonstrates a unique lipidome for each tissue modulated by caloric intake and dietary composition.
Collapse
MESH Headings
- Adipose Tissue, White/metabolism
- Animals
- Caloric Restriction
- Diabetes Mellitus, Experimental/etiology
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Type 2/etiology
- Diabetes Mellitus, Type 2/metabolism
- Diet, High-Fat/adverse effects
- Disease Models, Animal
- Healthy Lifestyle
- Hypothalamus/metabolism
- Lipidomics
- Liver/metabolism
- Male
- Mice, Inbred C57BL
- Muscle, Skeletal/metabolism
- Obesity/complications
- Obesity/diet therapy
- Obesity/metabolism
- Physical Conditioning, Animal
- Mice
Collapse
Affiliation(s)
- Norma Dahdah
- Department of Physiological Sciences, Universitat de Barcelona, 08907 Barcelona, Spain; (A.G.-F.); (P.G.-P.); (J.C.P.)
| | - Alba Gonzalez-Franquesa
- Department of Physiological Sciences, Universitat de Barcelona, 08907 Barcelona, Spain; (A.G.-F.); (P.G.-P.); (J.C.P.)
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Sara Samino
- Universitat Rovira i Virgili, Department of Electronic Engineering & IISPV, 43004 Tarragona, Spain; (S.S.); (O.Y.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Pau Gama-Perez
- Department of Physiological Sciences, Universitat de Barcelona, 08907 Barcelona, Spain; (A.G.-F.); (P.G.-P.); (J.C.P.)
| | - Laura Herrero
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain;
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - José Carlos Perales
- Department of Physiological Sciences, Universitat de Barcelona, 08907 Barcelona, Spain; (A.G.-F.); (P.G.-P.); (J.C.P.)
- Nutrition, Metabolism and Gene Therapy Group, Diabetes and Metabolism Program, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), 08908 Barcelona, Spain
| | - Oscar Yanes
- Universitat Rovira i Virgili, Department of Electronic Engineering & IISPV, 43004 Tarragona, Spain; (S.S.); (O.Y.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Maria Del Mar Malagón
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Department of Cell Biology, Physiology and Immunology, IMIBIC, Reina Sofía University Hospital, University of Córdoba, 14004 Cordoba, Spain
| | - Pablo Miguel Garcia-Roves
- Department of Physiological Sciences, Universitat de Barcelona, 08907 Barcelona, Spain; (A.G.-F.); (P.G.-P.); (J.C.P.)
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Nutrition, Metabolism and Gene Therapy Group, Diabetes and Metabolism Program, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), 08908 Barcelona, Spain
| |
Collapse
|
16
|
Richter-Stretton GL, Fenning AS, Vella RK. Skeletal muscle - A bystander or influencer of metabolic syndrome? Diabetes Metab Syndr 2020; 14:867-875. [PMID: 32562864 DOI: 10.1016/j.dsx.2020.06.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND AIMS Metabolic syndrome is the concurrent presentation of multiple cardiovascular risk factors, including obesity, insulin resistance, hyperglycemia, dyslipidemia and hypertension. It has been suggested that some of these risk factors can have detrimental effects on the skeletal muscle while others can be a direct result of skeletal muscle abnormalities, showing a two-way directionality in the pathogenesis of the condition. This review aims to explore this bidirectional correlation by discussing the impact of metabolic syndrome on skeletal muscle tissue in general and will also discuss ways in which skeletal muscle alterations may contribute to the pathogenesis of metabolic syndrome. METHODS Literature searches were conducted with key words (e.g. metabolic syndrome, skeletal muscle, hyperglycemia) using PubMed, EBSCOhost, Science Direct and Google Scholar. All article types were included in the search. RESULTS The pathological mechanisms associated with metabolic syndrome, such as hyperglycemia and inflammation, have been associated with changes in skeletal muscle fiber composition, metabolism, insulin sensitivity, mitochondrial function, and strength. Additionally, some skeletal muscle alterations, particularly mitochondrial dysfunction and insulin resistance, are suggested to contribute to the development of metabolic syndrome. For example, the suggested underlying mechanisms of sarcopenia development are also contributors to metabolic syndrome pathogenesis. CONCLUSION Whilst numerous studies have identified a relationship between metabolic syndrome and skeletal muscle abnormalities, further investigation into the underlying mechanisms is needed to elucidate the best prevention and management strategies for these conditions.
Collapse
Affiliation(s)
- Gina L Richter-Stretton
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Queensland, Australia, 4702; Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, University of Queensland St Lucia, Brisbane, Queensland, Australia, 4072.
| | - Andrew S Fenning
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Queensland, Australia, 4702
| | - Rebecca K Vella
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Queensland, Australia, 4702; School of Medicine, Griffith University, Sunshine Coast, Queensland, Australia, 4572
| |
Collapse
|
17
|
Sohel MMH. Macronutrient modulation of mRNA and microRNA function in animals: A review. ACTA ACUST UNITED AC 2020; 6:258-268. [PMID: 33005759 PMCID: PMC7503081 DOI: 10.1016/j.aninu.2020.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 06/01/2020] [Accepted: 06/15/2020] [Indexed: 12/15/2022]
Abstract
Dietary macronutrients have been regarded as a basic source of energy and amino acids that are necessary for the maintenance of cellular homeostasis, metabolic programming as well as protein synthesis. Due to the emergence of “nutrigenomics”, a unique discipline that combines nutritional and omics technologies to study the impacts of nutrition on genomics, it is increasingly evident that macronutrients also have a significant role in the gene expression regulation. Gene expression is a complex phenomenon controlled by several signaling pathways and could be influenced by a wide variety of environmental and physiological factors. Dietary macronutrients are the most important environmental factor influencing the expression of both genes and microRNAs (miRNA). miRNA are tiny molecules of 18 to 22 nucleotides long that regulate the expression of genes. Therefore, dietary macronutrients can influence the expression of genes in both direct and indirect manners. Recent advancements in the state-of-the-art technologies regarding molecular genetics, such as next-generation sequencing, quantitative PCR array, and microarray, allowed us to investigate the occurrence of genome-wide changes in the expression of genes in relation to augmented or reduced dietary macronutrient intake. The purpose of this review is to accumulate the current knowledge focusing on macronutrient mediated changes in the gene function. This review will discuss the impact of altered dietary carbohydrate, protein, and fat intake on the expression of coding genes and their functions. In addition, it will also summarize the regulation of miRNA, both cellular and extracellular miRNA, expression modulated by dietary macronutrients.
Collapse
Affiliation(s)
- Md Mahmodul Hasan Sohel
- Department of Genetics, Faculty of Veterinary Medicine, Erciyes University, Kayseri, 38039, Turkey.,Genome and Stem Cell Centre, Erciyes University, Kayseri, 38039, Turkey
| |
Collapse
|
18
|
Elashry MI, Eldaey A, Glenske K, Matsakas A, Wenisch S, Arnhold S, Patel K. The effect of high-fat diet on the morphological properties of the forelimb musculature in hypertrophic myostatin null mice. J Anat 2019; 235:825-835. [PMID: 31198988 DOI: 10.1111/joa.13025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2019] [Indexed: 12/20/2022] Open
Abstract
Obesity is a worldwide nutritional disorder affecting body performance, including skeletal muscle. Inhibition of myostatin not only increases the muscle mass but also it reduces body fat accumulation. We examined the effect of high-fat diet on the phenotypic properties of forelimb muscles from myostatin null mice. Male wild-type and myostatin null mice were fed on either a normal diet or a high-fat diet (45% fat) for 10 weeks. Musculus triceps brachii Caput longum; M. triceps brachii Caput laterale; M. triceps brachii Caput mediale; M. extensor carpi ulnaris and M. flexor carpi ulnaris were processed for fiber type composition using immunohistochemistry and morphometric analysis. Although the muscle mass revealed no change under a high-fat diet, there were morphometric alterations in the absence of myostatin. We show that high-fat diet reduces the cross-sectional area of the fast (IIB and IIX) fibers in M. triceps brachii Caput longum and M. triceps brachii Caput laterale of both genotypes. In contrast, increases of fast fiber areas were observed in both M. extensor carpi ulnaris of wild-type and M. flexor carpi ulnaris of myostatin null mice. Meanwhile, a high-fat diet increased the area of the fast IIA fibers in wild-type mice; myostatin null mice display a muscle-dependent alteration in the area of the same fiber type. The combined high-fat diet and myostatin deletion shows no effect on the area of slow type I fibers. Although a high-fat diet causes a reduction in the area of the peripheral IIB fibers in both genotypes, only myostatin null mice show an increase in the area of the central IIB fibers. We provide evidence that a high-fat diet induces a muscle-dependent fast to slow myofiber shift in the absence of myostatin. The data suggest that the morphological alterations of muscle fibers under a combined high-fat diet and myostatin deletion reflect a functional adaptation of the muscle to utilize the high energy intake.
Collapse
Affiliation(s)
- Mohamed I Elashry
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, University of Mansoura, Mansoura, Egypt.,Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University of Giessen, Giessen, Germany
| | - Asmaa Eldaey
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, University of Mansoura, Mansoura, Egypt.,Clinic of Small Animals, c/o Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University of Giessen, Giessen, Germany
| | - Kristina Glenske
- Clinic of Small Animals, c/o Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University of Giessen, Giessen, Germany
| | - Antonios Matsakas
- Molecular Physiology Laboratory, Centre for Atherothrombotic and Metabolic Disease, Hull York Medical School, University of Hull, Hull, UK
| | - Sabine Wenisch
- Clinic of Small Animals, c/o Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University of Giessen, Giessen, Germany
| | - Stefan Arnhold
- Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University of Giessen, Giessen, Germany
| | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading, UK
| |
Collapse
|
19
|
Komiya Y, Nakamura T, Ishii M, Shimizu K, Hiraki E, Kawabata F, Nakamura M, Tatsumi R, Ikeuchi Y, Mizunoya W. Increase in muscle endurance in mice by dietary Yamabushitake mushroom (Hericium erinaceus) possibly via activation of PPARδ. Anim Sci J 2019; 90:781-789. [PMID: 30938015 PMCID: PMC6594082 DOI: 10.1111/asj.13199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/18/2019] [Accepted: 02/28/2019] [Indexed: 12/18/2022]
Abstract
Skeletal muscle fiber is largely classified into two types: type 1 (slow‐twitch) and type 2 (fast‐twitch) fibers. Meat quality and composition of fiber types are thought to be closely related. Previous research showed that overexpression of constitutively active peroxisome proliferator‐activated receptor (PPAR)δ, a nuclear receptor present in skeletal muscle, increased type 1 fibers in mice. In this study, we found that hexane extracts of Yamabushitake mushroom (Hericium erinaceus) showed PPARδ agonistic activity in vitro. Eight‐week‐old C57BL/6J mice were fed a diet supplemented with 5% (w/w) freeze‐dried Yamabushitake mushroom for 24 hr. After the treatment period, the extensor digitorum longus (EDL) muscles were excised. The Yamabushitake‐supplemented diet up‐regulated the PPARδ target genes Pdk4 and Ucp3 in mouse skeletal muscles in vivo. Furthermore, feeding the Yamabushitake‐supplemented diet to mice for 8 weeks resulted in a significant increase in muscle endurance. These results indicate that Yamabushitake mushroom contains PPARδ agonistic ligands and that dietary intake of Yamabushitake mushroom could activate PPARδ in skeletal muscle of mice. Unexpectedly, we observed no significant alterations in composition of muscle fiber types between the mice fed control and Yamabushitake‐supplemented diets.
Collapse
Affiliation(s)
- Yusuke Komiya
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan.,Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Toshiya Nakamura
- Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Momoko Ishii
- Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Kuniyoshi Shimizu
- Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Eri Hiraki
- Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Fuminori Kawabata
- Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan.,Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| | - Mako Nakamura
- Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Ryuichi Tatsumi
- Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Yoshihide Ikeuchi
- Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Wataru Mizunoya
- Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|
20
|
Morisasa M, Goto-Inoue N, Sato T, Machida K, Fujitani M, Kishida T, Uchida K, Mori T. Investigation of the Lipid Changes That Occur in Hypertrophic Muscle due to Fish Protein-feeding Using Mass Spectrometry Imaging. J Oleo Sci 2019; 68:141-148. [PMID: 30713267 DOI: 10.5650/jos.ess18193] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Alaska pollack protein (APP) was previously shown to reduce serum triacylglycerol and the atherogenic index and significantly increase gastrocnemius muscle mass in rats. To determine which myofibers are involved in this observed hypertrophy, we stained the gastrocnemius muscle with fast and slow fiber-specific antibodies and measured the muscle fiber diameter. We observed muscle hypertrophy in both the fast and slow fibers of APP-fed rats. Although muscle hypertrophy leads to drastic lipid changes, the amount of lipids did not differ significantly between casein-fed and APP-fed rats. To determine the lipid changes at the molecular species level and their localization, we performed matrix-assisted laser desorption/ionization mass spectrometry imaging to visualize lipids in the gastrocnemius muscles. We determined that lipid molecules were significantly changed due to APP feeding. Thus, APP feeding changes muscle lipid metabolism, and these metabolic changes might be related to hypertrophy.
Collapse
Affiliation(s)
- Mizuki Morisasa
- Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University
| | - Naoko Goto-Inoue
- Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University
| | - Tomohiko Sato
- Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University
| | - Kazumasa Machida
- Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University
| | - Mina Fujitani
- Laboratory of Nutrition Science, Division of Applied Bioscience, Graduate School of Agriculture, Ehime University
| | - Taro Kishida
- Laboratory of Nutrition Science, Division of Applied Bioscience, Graduate School of Agriculture, Ehime University
| | - Kenji Uchida
- Functional Ingredient Research Section, Food Function R&D Center, Nippon Suisan Kaisha, Ltd
| | - Tsukasa Mori
- Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University
| |
Collapse
|
21
|
Alonso-Caraballo Y, Hodgson KJ, Morgan SA, Ferrario CR, Vollbrecht PJ. Enhanced anxiety-like behavior emerges with weight gain in male and female obesity-susceptible rats. Behav Brain Res 2019; 360:81-93. [PMID: 30521928 PMCID: PMC6462400 DOI: 10.1016/j.bbr.2018.12.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/29/2018] [Accepted: 12/01/2018] [Indexed: 12/29/2022]
Abstract
Epidemiological data suggest that body mass index and obesity are strong risk factors for depression and anxiety. However, it is difficult to separate cause from effect, as predisposition to obesity may enhance susceptibility to anxiety, or vice versa. Here, we examined the effect of diet and obesity on anxiety-like behaviors in male and female selectively bred obesity-prone and obesity-resistant rats, and outbred Sprague-Dawley rats. We found that when obesity-prone and obesity-resistant rats do not differ in weight or fat mass, measures of anxiety-like behavior in the elevated plus maze and open field are similar between the two groups. However, once weight and fat mass diverge, group differences emerge, with greater anxiety in obesity-prone relative to obesity-resistant rats. This same pattern was observed for males and females. Interestingly, even when obesity-resistant rats were "forced" to gain fat mass comparable to obesity-prone rats (via prolonged access to 60% high-fat diet), anxiety-like behaviors did not differ from lean chow fed controls. In addition, a positive correlation between anxiety-like behaviors and adiposity were observed in male but not in female obesity-prone rats. Finally, diet-induced weight gain in and of itself was not sufficient to increase measures of anxiety in outbred male rats. Together, these data suggest that interactions between susceptibility to obesity and physiological alterations accompanying weight gain may contribute to the development of enhanced anxiety.
Collapse
Affiliation(s)
- Y Alonso-Caraballo
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - K J Hodgson
- Department of Biology, Hope College, Holland, MI, USA
| | - S A Morgan
- Department of Biology, Hope College, Holland, MI, USA
| | - C R Ferrario
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - P J Vollbrecht
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA; Department of Biology, Hope College, Holland, MI, USA; Department of Biomedical Sciences, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA.
| |
Collapse
|
22
|
Goto-Inoue N, Morisasa M, Machida K, Furuichi Y, Fujii NL, Miura S, Mori T. Characterization of myofiber-type-specific molecules using mass spectrometry imaging. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:185-192. [PMID: 30367536 DOI: 10.1002/rcm.8319] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/10/2018] [Accepted: 10/19/2018] [Indexed: 05/18/2023]
Abstract
RATIONALE In skeletal muscles, there are four myofiber types, Types I, IIa, IIx, and IIb, which show different contraction characteristics and have different metabolic statuses. To understand muscle function, it is necessary to analyze myofiber-specific metabolic changes. However, these fibers are heterogeneous and are hard to discriminate by conventional analyses using tissue extracts. In this study, we found myofiber-specific molecules and molecular markers of other cells such as smooth muscle cells, fat cells, and motor neurons, and visualized them within muscle sections. METHODS We used three different muscle tissues, namely extensor digitorum longus, soleus, and gastrocnemius tissues, from ICR mice. After the muscles had been harvested, cross-sections were prepared using a cryostat and analyzed using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI), and conventional immunofluorescence imaging. RESULTS By comparing the MALDI MSI results with the immunofluorescence imaging results, we were able to identify each fiber and cell-specific ion. It was especially important that we could find Type IIa and IIb specific ions, because these were difficult to distinguish. CONCLUSIONS Through MSI analyses, we performed a comprehensive survey to identify cell- and myofiber-specific molecular markers. In conclusion, we assigned muscle fiber Type I, IIa, and IIb-specific molecular ions at m/z 856.6, 872.6, and 683.8, respectively. These molecular markers might be useful for verifying changes that occur due to exercise and/or disease.
Collapse
MESH Headings
- Animals
- Biomarkers/analysis
- Biomarkers/metabolism
- Chromatography, Thin Layer
- Diglycerides/analysis
- Diglycerides/metabolism
- Image Processing, Computer-Assisted
- Lipids/analysis
- Male
- Mice, Inbred ICR
- Muscle Fibers, Skeletal/chemistry
- Muscle Fibers, Skeletal/metabolism
- Muscle, Skeletal/chemistry
- Muscle, Skeletal/metabolism
- Muscle, Smooth/chemistry
- Muscle, Smooth/metabolism
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
- Tandem Mass Spectrometry
Collapse
Affiliation(s)
- Naoko Goto-Inoue
- Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Mizuki Morisasa
- Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Kazumasa Machida
- Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Yasuro Furuichi
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 1-1, Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Nobuharu L Fujii
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 1-1, Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Shinji Miura
- Laboratories of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Tsukasa Mori
- Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| |
Collapse
|
23
|
Kalbe C, Priepke A, Nürnberg G, Dannenberger D. Effects of long-term microalgae supplementation on muscle microstructure, meat quality and fatty acid composition in growing pigs. J Anim Physiol Anim Nutr (Berl) 2018; 103:574-582. [PMID: 30511431 DOI: 10.1111/jpn.13037] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 12/25/2022]
Abstract
We investigated the effects of long-term microalgae supplementation (7% in a piglet diet and 5% in a fattening diet) on muscle microstructure and meat quality, including fatty acid composition in female Landrace pigs (n = 31). The major effects were muscle-specific increases in n-3 and n-6 polyunsaturated fatty acids (PUFA) concentrations, resulting in increased accumulation of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). Carcass traits and meat quality of longissimus thoracis muscle were not affected by the microalgae diet with the exception of reduced drip loss (p = 0.01) and increased protein proportion (p = 0.04). In addition, the microalgae diet resulted in a shift to a more oxidative myofibre type composition in semitendinosus but not longissimus thoracis muscle. In conclusion, microalgae supplementation offers a unique opportunity to enhance essential n-3 PUFA contents in pig meat. The results support small but coordinated changes in skeletal muscle phenotypic appearance and functionality.
Collapse
Affiliation(s)
- Claudia Kalbe
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Antje Priepke
- Institute of Livestock Farming, State Research Center of Agriculture and Fisheries Mecklenburg-Vorpommern, Dummerstorf, Germany
| | - Gerd Nürnberg
- Institute of Genetics and Biometry, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Dirk Dannenberger
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
24
|
Raz V, Raz Y, Vijver D, Bindellini D, Putten M, Ben Akker E. High‐throughput data‐driven analysis of myofiber composition reveals muscle‐specific disease and age‐associated patterns. FASEB J 2018; 33:4046-4053. [DOI: 10.1096/fj.201801714r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Vered Raz
- Department of Human GeneticsLeiden University Medical Centre Leiden The Netherlands
| | - Yotam Raz
- Molecular EpidemiologyLeiden University Medical Centre Leiden The Netherlands
| | - Davy Vijver
- Department of Human GeneticsLeiden University Medical Centre Leiden The Netherlands
| | - Davide Bindellini
- Department of Human GeneticsLeiden University Medical Centre Leiden The Netherlands
| | - Maaike Putten
- Department of Human GeneticsLeiden University Medical Centre Leiden The Netherlands
| | - Erik Ben Akker
- Molecular EpidemiologyLeiden University Medical Centre Leiden The Netherlands
- Leiden Computational Biology CenterLeiden University Medical Centre Leiden The Netherlands
- Delft Bioinformatics LabDelft University Delft The Netherlands
| |
Collapse
|
25
|
Effects of dietary ramie powder at various levels on carcass traits and meat quality in finishing pigs. Meat Sci 2018; 143:52-59. [DOI: 10.1016/j.meatsci.2018.04.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 04/19/2018] [Accepted: 04/19/2018] [Indexed: 11/23/2022]
|
26
|
Smerdu V, Perše M. Effect of high-fat mixed lipid diet and swimming on fibre types in skeletal muscles of rats with colon tumours. Eur J Histochem 2018; 62:2945. [PMID: 30043597 PMCID: PMC6065050 DOI: 10.4081/ejh.2018.2945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/11/2018] [Indexed: 11/23/2022] Open
Abstract
Skeletal muscle fibre types, whose characteristics are determined by myosin heavy chain (MyHC) isoforms, can adapt to changed physiological demands with changed MyHC isoform expression resulting in the fibre type transitions. The endurance training is known to induce fast-to-slow transitions and has beneficial effect in carcinogenesis, whereas the effect of an excessive fat intake and its interaction with the effect of swimming are less conclusive. Therefore, we studied the effect of high-fat mixed lipid (HFML) diet and long-term (21-week) swimming on fibre type transitions and their average diameters by immunohistochemical demonstration of MyHC isoforms in slow soleus (SOL), fast extensor digitorum longus (EDL), and mixed gastrocnemius medialis and lateralis (GM, GL) muscles, divided to deep and superficial portions (GMd, GMs, GLd, GLs), of sedentary and swimming Wistar rats with experimentally (dimethylhydrazine) induced colon tumours and fed either with HFML or low-fat corn oil (LFCO) diet. HFML diet induced only a trend for fast-to-slow transitions in SOL and in the opposite direction in GMd. Swimming triggered significant transitions in unexpected slow-to-fast direction in SOL, whereas in GMs the transitions had tendency to proceed in the expected fast-to-slow direction. The average diameters of fibre types were mostly unaffected. Hence, it can be concluded that if present, the effects of HFML diet and swimming on fibre type transitions were counteractive and muscle-specific implying that each muscle possesses its own adaptive range of response to changed physiological conditions.
Collapse
Affiliation(s)
- Vika Smerdu
- University of Ljubljana, Faculty of Medicine, Institute of Anatomy.
| | | |
Collapse
|
27
|
Tallis J, James RS, Seebacher F. The effects of obesity on skeletal muscle contractile function. ACTA ACUST UNITED AC 2018; 221:221/13/jeb163840. [PMID: 29980597 DOI: 10.1242/jeb.163840] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Obesity can cause a decline in contractile function of skeletal muscle, thereby reducing mobility and promoting obesity-associated health risks. We reviewed the literature to establish the current state-of-knowledge of how obesity affects skeletal muscle contraction and relaxation. At a cellular level, the dominant effects of obesity are disrupted calcium signalling and 5'-adenosine monophosphate-activated protein kinase (AMPK) activity. As a result, there is a shift from slow to fast muscle fibre types. Decreased AMPK activity promotes the class II histone deacetylase (HDAC)-mediated inhibition of the myocyte enhancer factor 2 (MEF2). MEF2 promotes slow fibre type expression, and its activity is stimulated by the calcium-dependent phosphatase calcineurin. Obesity-induced attenuation of calcium signalling via its effects on calcineurin, as well as on adiponectin and actinin affects excitation-contraction coupling and excitation-transcription coupling in the myocyte. These molecular changes affect muscle contractile function and phenotype, and thereby in vivo and in vitro muscle performance. In vivo, obesity can increase the absolute force and power produced by increasing the demand on weight-supporting muscle. However, when normalised to body mass, muscle performance of obese individuals is reduced. Isolated muscle preparations show that obesity often leads to a decrease in force produced per muscle cross-sectional area, and power produced per muscle mass. Obesity and ageing have similar physiological consequences. The synergistic effects of obesity and ageing on muscle function may exacerbate morbidity and mortality. Important future research directions include determining: the relationship between time course of weight gain and changes in muscle function; the relative effects of weight gain and high-fat diet feeding per se; the effects of obesity on muscle function during ageing; and if the effects of obesity on muscle function are reversible.
Collapse
Affiliation(s)
- Jason Tallis
- Center for Sport, Exercise and Life Sciences, Science and Health Building, Coventry University, Priory Street, Coventry CV1 5FB, UK
| | - Rob S James
- Center for Sport, Exercise and Life Sciences, Science and Health Building, Coventry University, Priory Street, Coventry CV1 5FB, UK
| | - Frank Seebacher
- School of Life and Environmental Sciences, Heydon Laurence Building A08, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
28
|
Yang B, Sun J, Yuan Y, Sun Z. Effects of atorvastatin on autophagy in skeletal muscles of diabetic rats. J Diabetes Investig 2018; 9:753-761. [PMID: 29245171 PMCID: PMC6031525 DOI: 10.1111/jdi.12789] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/20/2017] [Accepted: 12/10/2017] [Indexed: 12/15/2022] Open
Abstract
AIMS/INTRODUCTION Atorvastatin is usually used to decrease the amount of fatty substances in individuals with type 2 diabetes mellitus. However, it can cause side-effects, such as breakdown of skeletal muscle tissue. The present study focused on the effects of atorvastatin on autophagy of the skeletal muscles in diabetic rats. MATERIALS AND METHODS Diabetes in rats in the diabetic (D) and atorvastatin (T) groups was induced using streptozotocin (65 mg/kg, intraperitoneal injection). Next, rats in the T group were treated with atorvastatin (10 mg/kg/day, intragastric administration), whereas rats in the control and D groups were given water. Additionally, the rats in T and D groups were fed a high-fat and high-sugar diet for 10 weeks. Subsequently, the histopathological changes, and expression levels of microtubule-associated protein 1 light chain 3 (LC3)-I/-II and p62 in the skeletal muscle specimens in the three groups were analyzed. RESULTS Rats in the T group had reduced lipid droplets, cholesterol and low-density lipoprotein (P < 0.05) levels than those in the D group. Disordered atrophic myocytes, incrassated vascular walls and decreased cross-sectional area of type I fibers were found using hematoxylin-eosin and adenosine triphosphatase staining in the D and T groups. The messenger ribonucleic acid and protein levels of LC3-II and the LC3-II/LC3-I ratio were increased in the T group compared with those in the other groups (P < 0.05), whereas the protein level of p62 showed the opposite trend. CONCLUSIONS Atorvastatin enhanced the autophagy level of skeletal muscles to decrease lipid deposition, which possibly exacerbated myopathy.
Collapse
Affiliation(s)
- Bingquan Yang
- Department of EndocrinologyZhongda HospitalInstitute of DiabetesSchool of MedicineSoutheast UniversityNanjingJiangsuChina
| | - Jie Sun
- Department of EndocrinologyZhongda HospitalInstitute of DiabetesSchool of MedicineSoutheast UniversityNanjingJiangsuChina
| | - Yang Yuan
- Department of EndocrinologyZhongda HospitalInstitute of DiabetesSchool of MedicineSoutheast UniversityNanjingJiangsuChina
| | - Zilin Sun
- Department of EndocrinologyZhongda HospitalInstitute of DiabetesSchool of MedicineSoutheast UniversityNanjingJiangsuChina
| |
Collapse
|
29
|
Manio MC, Matsumura S, Inoue K. Low-fat diet, and medium-fat diets containing coconut oil and soybean oil exert different metabolic effects in untrained and treadmill-trained mice. J Int Soc Sports Nutr 2018; 15:29. [PMID: 29914522 PMCID: PMC6006686 DOI: 10.1186/s12970-018-0234-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 06/07/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Diets containing fats of different proportions and types have been demonstrated to influence metabolism. These fats differ in long chain fatty acids (LCFAs) or medium chain fatty acids (MCFAs) content. In our laboratory using swimming as the training modality, MCFAs increased endurance attributed to increased activities of oxidative enzymes. How it affects whole-body metabolism remains unexplored. The present study investigated the metabolic, biochemical and genetic adaptations with treadmill running as the training modality. METHODS C57BL/6N mice were divided into untrained and trained groups and provided with low-fat (10% kcal from soybean oil), coconut oil (10% kcal from soybean oil, 20% kcal from coconut oil) or soybean oil (30% kcal from soybean oil) diet. Training was performed on a treadmill for 30 days. After recovery, whole-body metabolism at rest and during exercise, endurance, substrate metabolism, mitochondrial enzyme activities, and gene expression of training-adaptive genes in the muscle and liver were measured. RESULTS At rest, medium-fat diets decreased respiratory exchange ratio (RER) (p < 0.05). Training increased RER in all diet groups without affecting oxygen consumption (p < 0.05). During exercise, diets had no overt effects on metabolism while training decreased oxygen consumption indicating decreased energy expenditure (p < 0.05). Coconut oil without training improved endurance based on work (p < 0.05). Training improved all endurance parameters without overt effects of diet (p < 0.05). Moreover, training increased the activities of mitochondrial enzymes likely related to the increased expression of estrogen related receptor (ERR) α and ERRβ (p < 0.05). Coconut oil inhibited peroxisome proliferator-activated receptor (PPAR) β/δ activation and glycogen accumulation in the muscle but activated PPARα in the liver in the trained state (p < 0.05). Substrate utilization data suggested that coconut oil and/or resulting ketone bodies spared glycogen utilization in the trained muscle during exercise thereby preserving endurance. CONCLUSION Our data demonstrated the various roles of diet and fat types in training adaptation. Diets exerted different roles in PPAR activation and substrate handling in the context of endurance exercise training. However, the role of fat types in training adaptations is limited as training overwhelms and normalizes the effects of diet in the untrained state particularly on endurance performance, mitochondrial biogenesis, and ERR expression.
Collapse
Affiliation(s)
- Mark Christian Manio
- Department of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Shigenobu Matsumura
- Department of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kazuo Inoue
- Department of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
30
|
Potential Roles of n-3 PUFAs during Skeletal Muscle Growth and Regeneration. Nutrients 2018; 10:nu10030309. [PMID: 29510597 PMCID: PMC5872727 DOI: 10.3390/nu10030309] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 03/01/2018] [Accepted: 03/02/2018] [Indexed: 01/06/2023] Open
Abstract
Omega-3 polyunsaturated fatty acids (n-3 PUFAs), which are commonly found in fish oil supplements, are known to possess anti-inflammatory properties and more recently alter skeletal muscle function. In this review, we discuss novel findings related to how n-3 PUFAs modulate molecular signaling responsible for growth and hypertrophy as well as the activity of muscle stem cells. Muscle stem cells commonly known as satellite cells, are primarily responsible for driving the skeletal muscle repair process to potentially damaging stimuli, such as mechanical stress elicited by exercise contraction. To date, there is a paucity of human investigations related to the effects of n-3 PUFAs on satellite cell content and activity. Based on current in vitro investigations, this review focuses on novel mechanisms linking n-3 PUFA’s to satellite cell activity and how they may improve muscle repair. Understanding the role of n-3 PUFAs during muscle growth and regeneration in association with exercise could lead to the development of novel supplementation strategies that increase muscle mass and strength, therefore possibly reducing the burden of muscle wasting with age.
Collapse
|
31
|
Saneyasu T, Shindo H, Honda K, Kamisoyama H. The Extract of Soybean Protein Increases Slow-Myosin Heavy Chain Expression in C2C12 Myotubes. J Nutr Sci Vitaminol (Tokyo) 2018; 64:296-300. [PMID: 30175795 DOI: 10.3177/jnsv.64.296] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Skeletal muscle is composed of four types of fibers in mammals; oxidative slow-twitch type I, oxidative fast-twitch IIA, and glycolytic fast-twitch IIB and IIX/D. In this study using C2C12 myotubes, an extract of soybean protein significantly upregulated mRNA level of myosin heavy chain 7 (Myh7), the predominant isoform expressed in oxidative slow-twitch type I and downregulated mRNA levels of Myh4, the predominant isoform expressed in glycolytic fast-twitch IIB. Similarly, its hydrolysate prepared using digestive enzyme also significantly increased Myh7 expression. In contrast, no significant change was observed in Myh4 mRNA level after the hydrolysate treatment. These findings suggest that dietary intake of the soybean protein extract may increase oxidative slow-twitch fiber in skeletal muscle.
Collapse
Affiliation(s)
| | - Haruka Shindo
- Graduate School of Agricultural Science, Kobe University
| | - Kazuhisa Honda
- Graduate School of Agricultural Science, Kobe University
| | | |
Collapse
|
32
|
Black AJ, Ravi S, Jefferson LS, Kimball SR, Schilder RJ. Dietary Fat Quantity and Type Induce Transcriptome-Wide Effects on Alternative Splicing of Pre-mRNA in Rat Skeletal Muscle. J Nutr 2017; 147:1648-1657. [PMID: 28768832 PMCID: PMC5572497 DOI: 10.3945/jn.117.254482] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/07/2017] [Accepted: 06/28/2017] [Indexed: 12/18/2022] Open
Abstract
Background: Fat-enriched diets produce metabolic changes in skeletal muscle, which in turn can mediate changes in gene regulation.Objective: We examined the high-fat-diet-induced changes in skeletal muscle gene expression by characterizing variations in pre-mRNA alternative splicing.Methods: Affymetrix Exon Array analysis was performed on the transcriptome of the gastrocnemius/plantaris complex of male obesity-prone Sprague-Dawley rats fed a 10% or 60% fat (lard) diet for 2 or 8 wk. The validation of exon array results was focused on troponin T (Tnnt3). Tnnt3 splice form analyses were extended in studies of rats fed 10% or 30% fat diets across 1- to 8-wk treatment periods and rats fed 10% or 45% fat diets with fat sources from lard or mono- or polyunsaturated fats for 2 wk. Nuclear magnetic resonance (NMR) was used to measure body composition.Results: Consumption of a 60% fat diet for 2 or 8 wk resulted in alternative splicing of 668 and 726 pre-mRNAs, respectively, compared with rats fed a 10% fat diet. Tnnt3 transcripts were alternatively spliced in rats fed a 60% fat diet for either 2 or 8 wk. The high-fat-diet-induced changes in Tnnt3 alternative splicing were observed in rats fed a 30% fat diet across 1- to 8-wk treatment periods. Moreover, this effect depended on fat type, because Tnnt3 alternative splicing occurred in response to 45% fat diets enriched with lard but not in response to diets enriched with mono- or polyunsaturated fatty acids. Fat mass (a proxy for obesity as measured by NMR) did not differ between groups in any study.Conclusions: Rat skeletal muscle responds to overconsumption of dietary fat by modifying gene expression through pre-mRNA alternative splicing. Variations in Tnnt3 alternative splicing occur independently of obesity and are dependent on dietary fat quantity and suggest a role for saturated fatty acids in the high-fat-diet-induced modifications in Tnnt3 alternative splicing.
Collapse
Affiliation(s)
- Adam J Black
- Intercollege Graduate Degree Program in Physiology and,Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA; and
| | - Suhana Ravi
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA; and
| | - Leonard S Jefferson
- Intercollege Graduate Degree Program in Physiology and,Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA; and
| | - Scot R Kimball
- Intercollege Graduate Degree Program in Physiology and,Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA; and
| | - Rudolf J Schilder
- Departments of Entomology and Biology, Penn State University, University Park, State College, PA
| |
Collapse
|
33
|
Elashry MI, Matsakas A, Wenisch S, Arnhold S, Patel K. The effect of caloric restriction on the forelimb skeletal muscle fibers of the hypertrophic myostatin null mice. Acta Histochem 2017. [PMID: 28622884 DOI: 10.1016/j.acthis.2017.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Skeletal muscle mass loss has a broad impact on body performance and physical activity. Muscle wasting occurs due to genetic mutation as in muscular dystrophy, age-related muscle loss (sarcopenia) as well as in chronic wasting disorders as in cancer cachexia. Food restriction reduces muscle mass underpinned by increased muscle protein break down. However the influence of dietary restriction on the morphometry and phenotype of forelimb muscles in a genetically modified myostatin null mice are not fully characterized. The effect of a five week dietary limitation on five anatomically and structurally different forelimb muscles was examined. C57/BL6 wild type (Mstn+/+) and myostatin null (Mstn-/-) mice were either given a standard rodent normal daily diet ad libitum (ND) or 60% food restriction (FR) for a 5 week period. M. triceps brachii Caput laterale (T.lateral), M. triceps brachii Caput longum (T.long), M. triceps brachii Caput mediale (T.medial), M. extensor carpi ulnaris (ECU) and M. flexor carpi ulnaris (FCU) were dissected, weighted and processed for immunohistochemistry. Muscle mass, fibers cross sectional areas (CSA) and myosin heavy chain types IIB, IIX, IIA and type I were analyzed. We provide evidence that caloric restriction results in muscle specific weight reduction with the fast myofibers being more prone to atrophy. We show that slow fibers are less liable to dietary restriction induced muscle atrophy. The effect of dietary restriction was more pronounced in Mstn-/- muscles to implicate the oxidative fibers compared to Mstn+/+. Furthermore, peripherally located myofibers are more susceptible to dietary induced reduction compared to deep fibers. We additionally report that dietary restriction alters the glycolytic phenotype of the Mstn-/- into the oxidative form in a muscle dependent manner. In summary our study shows that calorie restriction alters muscle fiber profile of forelimb muscles of Myostatin null mice.
Collapse
Affiliation(s)
- Mohamed I Elashry
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, University of Mansoura, 35516, Egypt; Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University of Giessen, 35392, Germany.
| | | | - Sabine Wenisch
- Clinic of Small Animals, c/o Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University of Giessen, 35392, Germany
| | - Stefan Arnhold
- Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University of Giessen, 35392, Germany
| | - Ketan Patel
- School of Biological Sciences, Hopkins Building, Whiteknights, University of Reading, RG6 6UB, United Kingdom
| |
Collapse
|
34
|
Lipina C, Hundal HS. Lipid modulation of skeletal muscle mass and function. J Cachexia Sarcopenia Muscle 2017; 8:190-201. [PMID: 27897400 PMCID: PMC5377414 DOI: 10.1002/jcsm.12144] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 07/15/2016] [Accepted: 07/25/2016] [Indexed: 12/22/2022] Open
Abstract
Loss of skeletal muscle mass is a characteristic feature of various pathologies including cancer, diabetes, and obesity, as well as being a general feature of ageing. However, the processes underlying its pathogenesis are not fully understood and may involve multiple factors. Importantly, there is growing evidence which supports a role for fatty acids and their derived lipid intermediates in the regulation of skeletal muscle mass and function. In this review, we discuss evidence pertaining to those pathways which are involved in the reduction, increase and/or preservation of skeletal muscle mass by such lipids under various pathological conditions, and highlight studies investigating how these processes may be influenced by dietary supplementation as well as genetic and/or pharmacological intervention.
Collapse
Affiliation(s)
- Christopher Lipina
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Harinder S Hundal
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| |
Collapse
|
35
|
Sawano S, Komiya Y, Ichitsubo R, Ohkawa Y, Nakamura M, Tatsumi R, Ikeuchi Y, Mizunoya W. A One-Step Immunostaining Method to Visualize Rodent Muscle Fiber Type within a Single Specimen. PLoS One 2016; 11:e0166080. [PMID: 27814384 PMCID: PMC5096669 DOI: 10.1371/journal.pone.0166080] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 10/21/2016] [Indexed: 11/18/2022] Open
Abstract
In this study, we present a quadruple immunostaining method for rapid muscle fiber typing of mice and rats using antibodies specific to the adult myosin heavy chain (MyHC) isoforms MyHC1, 2A, 2X, and 2B, which are common marker proteins of distinct muscle fiber types. We developed rat monoclonal antibodies specific to each MyHC isoform and conjugated these four antibodies to fluorophores with distinct excitation and emission wavelengths. By mixing the four types of conjugated antibodies, MyHC1, 2A, 2X, and 2B could be distinguished within a single specimen allowing for facile delineation of skeletal muscle fiber types. Furthermore, we could observe hybrid fibers expressing MyHC2X and MyHC2B together in single longitudinal muscle sections from mice and rats, that was not attained in previous techniques. This staining method is expected to be applied to study muscle fiber type transition in response to environmental factors, and to ultimately develop techniques to regulate animal muscle fiber types.
Collapse
Affiliation(s)
- Shoko Sawano
- Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
- Department of Food Nutrition, Fukuoka Women's Junior College, Dazaifu, Japan
| | - Yusuke Komiya
- Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Riho Ichitsubo
- Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- CREST, JST, Saitama, Japan
| | - Mako Nakamura
- Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Ryuichi Tatsumi
- Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Yoshihide Ikeuchi
- Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Wataru Mizunoya
- Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
- * E-mail:
| |
Collapse
|
36
|
Yoshino J, Smith GI, Kelly SC, Julliand S, Reeds DN, Mittendorfer B. Effect of dietary n-3 PUFA supplementation on the muscle transcriptome in older adults. Physiol Rep 2016; 4:4/11/e12785. [PMID: 27252251 PMCID: PMC4908485 DOI: 10.14814/phy2.12785] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/11/2016] [Indexed: 01/20/2023] Open
Abstract
Dietary fish oil-derived n-3 PUFA supplementation can increase muscle mass, reduce oxygen demand during physical activity, and improve physical function (muscle strength and power, and endurance) in people. The results from several studies conducted in animals suggest that the anabolic and performance-enhancing effects of n-3 PUFA are at least in part transcriptionally regulated. The effect of n-3 PUFA therapy on the muscle transcriptome in people is unknown. In this study, we used muscle biopsy samples collected during a recently completed randomized controlled trial that found that n-3 PUFA therapy increased muscle mass and function in older adults to provide a comprehensive assessment of the effect of n-3 PUFA therapy on the skeletal muscle gene expression profile in these people. Using the microarray technique, we found that several pathways involved in regulating mitochondrial function and extracellular matrix organization were increased and pathways related to calpain- and ubiquitin-mediated proteolysis and inhibition of the key anabolic regulator mTOR were decreased by n-3 PUFA therapy. However, the effect of n-3 PUFA therapy on the expression of individual genes involved in regulating mitochondrial function and muscle growth, assessed by quantitative RT-PCR, was very small. These data suggest that n-3 PUFA therapy results in small but coordinated changes in the muscle transcriptome that may help explain the n-3 PUFA-induced improvements in muscle mass and function.
Collapse
Affiliation(s)
- Jun Yoshino
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri
| | - Gordon I Smith
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri
| | - Shannon C Kelly
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri
| | - Sophie Julliand
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri
| | - Dominic N Reeds
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri
| | - Bettina Mittendorfer
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
37
|
Li Y, Li F, Wu L, Wei H, Liu Y, Li T, Tan B, Kong X, Yao K, Chen S, Wu F, Duan Y, Yin Y. Effects of dietary protein restriction on muscle fiber characteristics and mTORC1 pathway in the skeletal muscle of growing-finishing pigs. J Anim Sci Biotechnol 2016; 7:47. [PMID: 27555912 PMCID: PMC4994323 DOI: 10.1186/s40104-016-0106-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 08/05/2016] [Indexed: 01/21/2023] Open
Abstract
Background To investigate the effects of dietary crude protein (CP) restriction on muscle fiber characteristics and key regulators related to protein deposition in skeletal muscle, a total of 18 growing-finishing pigs (62.30 ± 0.88 kg) were allotted to 3 groups and fed with the recommended adequate protein (AP, 16 % CP) diet, moderately restricted protein (MP, 13 % CP) diet and low protein (LP, 10 % CP) diet, respectively. The skeletal muscle of different locations in pigs, including longissimus dorsi muscle (LDM), psoas major muscle (PMM) and biceps femoris muscle (BFM) were collected and analyzed. Results Results showed that growing-finishing pigs fed the MP or AP diet improved (P < 0.01) the average daily gain and feed: gain ratio compared with those fed the LP diet, and the MP diet tended to increase (P = 0.09) the weight of LDM. Moreover, the ATP content and energy charge value were varied among muscle samples from different locations of pigs fed the reduced protein diets. We also observed that pigs fed the MP diet up-regulated (P < 0.05) muscular mRNA expression of all the selected key genes, except that myosin heavy chain (MyHC) IIb, MyHC IIx, while mRNA expression of ubiquitin ligases genes was not affected by dietary CP level. Additionally, the activation of mammalian target of rapamycin complex 1 (mTORC1) pathway was stimulated (P < 0.05) in skeletal muscle of the pigs fed the MP or AP diet compared with those fed the LP diet. Conclusion The results suggest that the pigs fed the MP diet could catch up to the growth performance and the LDM weight of the pigs fed the AP diet, and the underlying mechanism may be partly due to the alteration in energy status, modulation of muscle fiber characteristics and mTORC1 activation as well as its downstream effectors in skeletal muscle of different locations in growing-finishing pigs. Electronic supplementary material The online version of this article (doi:10.1186/s40104-016-0106-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yinghui Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, No. 644 Yuanda Road, Furong District, Changsha, Hunan 410125 China ; University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Fengna Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, No. 644 Yuanda Road, Furong District, Changsha, Hunan 410125 China ; Hunan Co-Innovation Center of Animal Production Safety, CICAPS; Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, Changsha, 410128 China
| | - Li Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, No. 644 Yuanda Road, Furong District, Changsha, Hunan 410125 China
| | - Hongkui Wei
- College of Animal Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070 China
| | - Yingying Liu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, No. 644 Yuanda Road, Furong District, Changsha, Hunan 410125 China
| | - Tiejun Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, No. 644 Yuanda Road, Furong District, Changsha, Hunan 410125 China
| | - Bie Tan
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, No. 644 Yuanda Road, Furong District, Changsha, Hunan 410125 China ; Hunan Co-Innovation Center of Animal Production Safety, CICAPS; Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, Changsha, 410128 China
| | - Xiangfeng Kong
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, No. 644 Yuanda Road, Furong District, Changsha, Hunan 410125 China
| | - Kang Yao
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, No. 644 Yuanda Road, Furong District, Changsha, Hunan 410125 China ; Hunan Co-Innovation Center of Animal Production Safety, CICAPS; Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, Changsha, 410128 China
| | - Shuai Chen
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, No. 644 Yuanda Road, Furong District, Changsha, Hunan 410125 China
| | - Fei Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, No. 644 Yuanda Road, Furong District, Changsha, Hunan 410125 China
| | - Yehui Duan
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, No. 644 Yuanda Road, Furong District, Changsha, Hunan 410125 China
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, No. 644 Yuanda Road, Furong District, Changsha, Hunan 410125 China ; School of Biology, Hunan Normal University, Changsha, Hunan 410018 China
| |
Collapse
|
38
|
Zhao H, Pflug BR, Lai X, Wang M. Pyruvate dehydrogenase alpha 1 as a target of omega-3 polyunsaturated fatty acids in human prostate cancer through a global phosphoproteomic analysis. Proteomics 2016; 16:2419-31. [PMID: 27357730 DOI: 10.1002/pmic.201600166] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/23/2016] [Accepted: 06/27/2016] [Indexed: 01/26/2023]
Abstract
Prostate cancer is one of the leading cancers in men. Taking dietary supplements, such as fish oil (FO), which is rich in n-3 polyunsaturated fatty acids (PUFAs), has been employed as a strategy to lower prostate cancer risk and control disease progression. In this study, we investigated the global phosphoproteomic changes induced by FO using a combination of phosphoprotein-enrichment strategy and high-resolution tandem mass spectrometry. We found that FO induces many more phosphorylation changes than oleic acid when they both are compared to control group. Quantitative comparison between untreated group and FO- or oleic acid-treated groups uncovered a number of important protein phosphorylation changes induced by n-3PUFAs. This phosphoproteomic discovery study and the follow-up Western Blot validation study elucidate that phosphorylation levels of the two regulatory serine residues in pyruvate dehydrogenase alpha 1 (PDHA1), serine-232 and serine-300, are significantly decreased upon FO treatment. As expected, increased pyruvate dehydrogenase activity was also observed. This study suggests that FO-induced phosphorylation changes in PDHA1 is more likely related to the glucose metabolism pathway, and n-3 PUFAs may have a role in controlling the balance between lipid and glucose oxidation.
Collapse
Affiliation(s)
- Heng Zhao
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Beth R Pflug
- Department of Medicine, Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xianyin Lai
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mu Wang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
39
|
Hussain MA, Abogresha NM, Hassan R, Tamany DA, Lotfy M. Effect of feeding a high-fat diet independently of caloric intake on reproductive function in diet-induced obese female rats. Arch Med Sci 2016; 12:906-14. [PMID: 27478474 PMCID: PMC4947615 DOI: 10.5114/aoms.2016.59790] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 12/04/2014] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Globally, the prevalence of overweight and obesity is increasing, predisposing females to health hazards including compromised reproductive capacity. Our objective was to investigate the effect of ad libitum, isocalorically and hypocalorically restricted high-fat diet (HFD) feeding on reproductive function in diet-induced obese female rats. MATERIAL AND METHODS Twenty female albino Sprague Dawley rats were used; 5 rats were kept on a standard pellet animal diet to serve as a control group (A) and 15 rats were fed a HFD for 9 weeks to induce obesity. The HFD fed animals were equally divided into three groups: an ad libitum HFD group (B), an isocalorically restricted HFD group (C), and a hypocalorically restricted HFD group (D). Estrous cyclicity, hormonal levels, ovarian histopathology and caspase-3 immunoreactivity were evaluated. RESULTS The HFD-fed rats in groups B, C and D had significant irregularity in estrous cyclicity Vs group A (p = 0.001, 0.003 and 0.034 respectively). Groups C and D had significant reduction in serum progesterone level (p = 0.006 and 0.018 Vs A). Isocaloric restriction of HFD feeding significantly increased serum LH. Groups B and C had a significant increase in caspase-3 expression in the ovary (p < 0.001). CONCLUSIONS Ad libitum HFD interfered with the normal estrous cycle and enhanced apoptosis of luteal cells in obese female rats. The HFD restriction interfered with the normal estrous cycle and caused functional insufficiency of the corpus luteum in obese female rats. These results suggest that HFD feeding determinately affects female reproductive function independently of caloric intake.
Collapse
Affiliation(s)
- Mona A. Hussain
- Department of Physiology, Faculty of Medicine, Port Said University, Port Said, Egypt
| | - Noha M. Abogresha
- Department of Physiology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Ranya Hassan
- Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Dalia A. Tamany
- Department of Home Economics, Faculty of Education, Suez Canal University, Ismailia, Egypt
| | - Mariam Lotfy
- Department of Obstetrics and Gynecology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
40
|
Li YH, Li FN, Wu L, Liu YY, Wei HK, Li TJ, Tan BE, Kong XF, Wu F, Duan YH, Oladele OA, Yin YL. Reduced dietary protein level influences the free amino acid and gene expression profiles of selected amino acid transceptors in skeletal muscle of growing pigs. J Anim Physiol Anim Nutr (Berl) 2016; 101:96-104. [PMID: 27045856 DOI: 10.1111/jpn.12514] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 03/12/2016] [Indexed: 12/22/2022]
Abstract
This study was conducted to evaluate the effect of reduced dietary protein level on growth performance, muscle mass weight, free amino acids (FAA) and gene expression profile of selected amino acid transceptors in different fibre type of skeletal muscle tissues (longissimus dorsi, psoas major, biceps femoris) of growing pigs. A total of 18 cross-bred growing pigs (Large White × Landrace × Duroc) with initial body weight (9.57 ± 0.67 kg) were assigned into three dietary treatments: 20% crude protein (CP) diet (normal recommended, NP), 17% CP diet (low protein, LP) and 14% CP diet (very low protein, VLP). The results indicated improved feed-to-gain ratio was obtained for pigs fed LP and NP diets (p < 0.01), while the pigs fed VLP diet showed the worst growth performance (p < 0.01). There was no significant difference in the weights of longissimus dorsi and psoas major muscle between LP and NP groups (p > 0.05). Majority of the determined FAA concentration of LP group were greater than or equal to those of NP group in both longissimus dorsi and psoas major muscle (p < 0.01). Further, the mRNA expression levels of sodium-coupled neutral amino acid transceptor 2, L-type amino acid transceptor 1 and proton-assisted amino acid transceptors 2 were higher in skeletal muscle tissue in LP group compared to those of the pigs fed NP or VLP diet. These results suggested that reduced dietary protein level (3 points of percentage less than recommended level) would upregulate the mRNA expression of amino acid transceptors to enhance the absorption of FAA in skeletal muscle of growing pigs. There seems to be a relationship between response of AA transceptors to the dietary protein level in skeletal muscle tissue of different fibre type. To illustrate the underlying mechanisms will be beneficial to animal nutrition.
Collapse
Affiliation(s)
- Y H Li
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - F N Li
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,Hunan Co-Innovation Center of Animal Production Safety (CICAPS), Changsha, China
| | - L Wu
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Y Y Liu
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - H K Wei
- College of Animal Sciences, Huazhong Agricultural University, Wuhan, Hubei, China
| | - T J Li
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - B E Tan
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - X F Kong
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - F Wu
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Y H Duan
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - O A Oladele
- Animal Nutrition Department, College of Animal Science and Livestock Production, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Y L Yin
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| |
Collapse
|
41
|
Differential effects of docoosahexaenoic and arachidonic acid on fatty acid composition and myosin heavy chain-related genes of slow- and fast-twitch skeletal muscle tissues. Mol Cell Biochem 2016; 415:169-81. [DOI: 10.1007/s11010-016-2689-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/12/2016] [Indexed: 11/27/2022]
|
42
|
Mastrocola R, Nigro D, Chiazza F, Medana C, Dal Bello F, Boccuzzi G, Collino M, Aragno M. Fructose-derived advanced glycation end-products drive lipogenesis and skeletal muscle reprogramming via SREBP-1c dysregulation in mice. Free Radic Biol Med 2016; 91:224-35. [PMID: 26721591 DOI: 10.1016/j.freeradbiomed.2015.12.022] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/07/2015] [Accepted: 12/19/2015] [Indexed: 12/21/2022]
Abstract
Advanced Glycation End-Products (AGEs) have been recently related to the onset of metabolic diseases and related complications. Moreover, recent findings indicate that AGEs can endogenously be formed by high dietary sugars, in particular by fructose which is widely used as added sweetener in foods and drinks. The aim of the present study was to investigate the impact of a high-fructose diet and the causal role of fructose-derived AGEs in mice skeletal muscle morphology and metabolism. C57Bl/6J mice were fed a standard diet (SD) or a 60% fructose diet (HFRT) for 12 weeks. Two subgroups of SD and HFRT mice received the anti-glycative compound pyridoxamine (150 mg/kg/day) in the drinking water. At the end of protocol high levels of AGEs were detected in both plasma and gastrocnemius muscle of HFRT mice associated to impaired expression of AGE-detoxifying AGE-receptor 1. In gastrocnemius, AGEs upregulated the lipogenesis by multiple interference on SREBP-1c through downregulation of the SREBP-inhibiting enzyme SIRT-1 and increased glycation of the SREBP-activating protein SCAP. The AGEs-induced SREBP-1c activation affected the expression of myogenic regulatory factors leading to alterations in fiber type composition, associated with reduced mitochondrial efficiency and muscular strength. Interestingly, pyridoxamine inhibited AGEs generation, thus counteracting all the fructose-induced alterations. The unsuspected involvement of diet-derived AGEs in muscle metabolic derangements and proteins reprogramming opens new perspectives in pathogenic mechanisms of metabolic diseases.
Collapse
Affiliation(s)
- R Mastrocola
- Department of Clinical and Biological Sciences, University of Turin, Italy.
| | - D Nigro
- Department of Clinical and Biological Sciences, University of Turin, Italy
| | - F Chiazza
- Department of Drug Science and Technology, University of Turin, Italy
| | - C Medana
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Italy
| | - F Dal Bello
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Italy
| | - G Boccuzzi
- Department of Medical Sciences, University of Turin, Italy
| | - M Collino
- Department of Drug Science and Technology, University of Turin, Italy
| | - M Aragno
- Department of Clinical and Biological Sciences, University of Turin, Italy
| |
Collapse
|
43
|
Liu Y, Li F, Kong X, Tan B, Li Y, Duan Y, Blachier F, Hu CAA, Yin Y. Signaling Pathways Related to Protein Synthesis and Amino Acid Concentration in Pig Skeletal Muscles Depend on the Dietary Protein Level, Genotype and Developmental Stages. PLoS One 2015; 10:e0138277. [PMID: 26394157 PMCID: PMC4578863 DOI: 10.1371/journal.pone.0138277] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/27/2015] [Indexed: 01/23/2023] Open
Abstract
Muscle growth is regulated by the homeostatic balance of the biosynthesis and degradation of muscle proteins. To elucidate the molecular interactions among diet, pig genotype, and physiological stage, we examined the effect of dietary protein concentration, pig genotype, and physiological stages on amino acid (AA) pools, protein deposition, and related signaling pathways in different types of skeletal muscles. The study used 48 Landrace pigs and 48 pure-bred Bama mini-pigs assigned to each of 2 dietary treatments: lower/GB (Chinese conventional diet)- or higher/NRC (National Research Council)-protein diet. Diets were fed from 5 weeks of age to respective market weights of each genotype. Samples of biceps femoris muscle (BFM, type I) and longissimus dorsi muscle (LDM, type II) were collected at nursery, growing, and finishing phases according to the physiological stage of each genotype, to determine the AA concentrations, mRNA levels for growth-related genes in muscles, and protein abundances of mechanistic target of rapamycin (mTOR) signaling pathway. Our data showed that the concentrations of most AAs in LDM and BFM of pigs increased (P<0.05) gradually with increasing age. Bama mini-pigs had generally higher (P<0.05) muscle concentrations of flavor-related AA, including Met, Phe, Tyr, Pro, and Ser, compared with Landrace pigs. The mRNA levels for myogenic determining factor, myogenin, myocyte-specific enhancer binding factor 2 A, and myostatin of Bama mini-pigs were higher (P<0.05) than those of Landrace pigs, while total and phosphorylated protein levels for protein kinase B, mTOR, and p70 ribosomal protein S6 kinases (p70S6K), and ratios of p-mTOR/mTOR, p-AKT/AKT, and p-p70S6K/p70S6K were lower (P<0.05). There was a significant pig genotype-dependent effect of dietary protein on the levels for mTOR and p70S6K. When compared with the higher protein-NRC diet, the lower protein-GB diet increased (P<0.05) the levels for mTOR and p70S6K in Bama mini-pigs, but repressed (P<0.05) the level for p70S6K in Landrace pigs. The higher protein-NRC diet increased ratio of p-mTOR/mTOR in Landrace pigs. These findings indicated that the dynamic consequences of AA profile and protein deposition in muscle tissues are the concerted effort of distinctive genotype, nutrient status, age, and muscle type. Our results provide valuable information for animal feeding strategy.
Collapse
Affiliation(s)
- Yingying Liu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Chinese Academy of Sciences, Changsha, Hunan, China
- Hunan Animal Science and Veterinary Medicine Research Institute, Changsha, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fengna Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Xiangfeng Kong
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Chinese Academy of Sciences, Changsha, Hunan, China
- * E-mail: (XK); (YY)
| | - Bie Tan
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Yinghui Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Chinese Academy of Sciences, Changsha, Hunan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yehui Duan
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Chinese Academy of Sciences, Changsha, Hunan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - François Blachier
- INRA, CNRH-IdF, AgroParisTech, UMR 914 Nutrition Physiology and Ingestive Behavior, Paris, France
| | - Chien-An A. Hu
- Department of Biochemistry and Molecular Biology, University of New Mexico, Albuquerque, United States of America
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Chinese Academy of Sciences, Changsha, Hunan, China
- School of Biology, Hunan Normal Univesity, Hunan, Changsha City, 410018, China
- Changsha Lvye Biotechnology Limited Company, Guangdong Hinapharm Group and WangDa Academician Workstation, Hunan, Changsha City, 41019, P. R. China
- * E-mail: (XK); (YY)
| |
Collapse
|
44
|
Mizunoya W, Miyahara H, Okamoto S, Akahoshi M, Suzuki T, Do MKQ, Ohtsubo H, Komiya Y, Lan M, Waga T, Iwata A, Nakazato K, Ikeuchi Y, Anderson JE, Tatsumi R. Improvement of Endurance Based on Muscle Fiber-Type Composition by Treatment with Dietary Apple Polyphenols in Rats. PLoS One 2015. [PMID: 26222548 PMCID: PMC4519157 DOI: 10.1371/journal.pone.0134303] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A recent study demonstrated a positive effect of apple polyphenol (APP) intake on muscle endurance of young-adult animals. While an enhancement of lipid metabolism may be responsible, in part, for the improvement, the contributing mechanisms still need clarification. Here we show that an 8-week intake of 5% (w/w) APP in the diet, up-regulates two features related to fiber type: the ratio of myosin heavy chain (MyHC) type IIx/IIb and myoglobin protein expression in plantaris muscle of 9-week-old male Fischer F344 rats compared to pair-fed controls (P < 0.05). Results were demonstrated by our SDS-PAGE system specialized for MyHC isoform separation and western blotting of whole muscles. Animal-growth profiles (food intake, body-weight gain, and internal-organ weights) did not differ between the control and 5% APP-fed animals (n = 9/group). Findings may account for the increase in fatigue resistance of lower hind limb muscles, as evidenced by a slower decline in the maximum isometric planter-flexion torque generated by a 100-s train of electrical stimulation of the tibial nerve. Additionally, the fatigue resistance was lower after 8 weeks of a 0.5% APP diet than after 5% APP, supporting an APP-dose dependency of the shift in fiber-type composition. Therefore, the present study highlights a promising contribution of dietary APP intake to increasing endurance based on fiber-type composition in rat muscle. Results may help in developing a novel strategy for application in animal sciences, and human sports and age-related health sciences.
Collapse
Affiliation(s)
- Wataru Mizunoya
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki, Fukuoka, Japan
| | - Hideo Miyahara
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki, Fukuoka, Japan
| | - Shinpei Okamoto
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki, Fukuoka, Japan
| | - Mariko Akahoshi
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki, Fukuoka, Japan
| | - Takahiro Suzuki
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki, Fukuoka, Japan
| | - Mai-Khoi Q. Do
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki, Fukuoka, Japan
| | - Hideaki Ohtsubo
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki, Fukuoka, Japan
| | - Yusuke Komiya
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki, Fukuoka, Japan
| | - Mu Lan
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki, Fukuoka, Japan
| | - Toshiaki Waga
- Fundamental Research Laboratory, Asahi Breweries, Ltd., Moriya, Ibaraki, Japan
| | - Akira Iwata
- Department of Physical Therapy, Faculty of Comprehensive Rehabilitation, Osaka Prefecture University, Habikino, Osaka, Japan
| | - Koichi Nakazato
- Department of Exercise Physiology, Graduate School of Health and Sport Sciences, Nippon Sport Science University, Fukasawa, Tokyo, Japan
| | - Yoshihide Ikeuchi
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki, Fukuoka, Japan
| | - Judy E. Anderson
- Department of Biological Sciences, Faculty of Science, University of Manitoba, Winnipeg, MB, Canada
| | - Ryuichi Tatsumi
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki, Fukuoka, Japan
- * E-mail:
| |
Collapse
|
45
|
Philp LK, Heilbronn LK, Janovska A, Wittert GA. Dietary enrichment with fish oil prevents high fat-induced metabolic dysfunction in skeletal muscle in mice. PLoS One 2015; 10:e0117494. [PMID: 25658742 PMCID: PMC4320112 DOI: 10.1371/journal.pone.0117494] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 12/24/2014] [Indexed: 11/18/2022] Open
Abstract
High saturated fat (HF-S) diets increase intramyocellular lipid, an effect ameliorated by omega-3 fatty acids in vitro and in vivo, though little is known about sex- and muscle fiber type-specific effects. We compared effects of standard chow, HF-S, and 7.5% HF-S replaced with fish oil (HF-FO) diets on the metabolic profile and lipid metabolism gene and protein content in red (soleus) and white (extensor digitorum longus) muscles of male and female C57BL/6 mice (n = 9-12/group). Weight gain was similar in HF-S- and HF-FO-fed groups. HF-S feeding increased mesenteric fat mass and lipid marker, Oil Red O, in red and mixed muscle; HF-FO increased interscapular brown fat mass. Compared to chow, HF-S and HF-FO increased expression of genes regulating triacylglycerol synthesis and fatty acid transport, HF-S suppressed genes and proteins regulating fatty acid oxidation, whereas HF-FO increased oxidative genes, proteins and enzymes and lipolytic gene content, whilst suppressing lipogenic genes. In comparison to HF-S, HF-FO further increased fat transporters, markers of fatty acid oxidation and mitochondrial content, and reduced lipogenic genes. No diet-by-sex interactions were observed. Neither diet influenced fiber type composition. However, some interactions between muscle type and diet were observed. HF-S induced changes in triacylglycerol synthesis and lipogenic genes in red, but not white, muscle, and mitochondrial biogenesis and oxidative genes were suppressed by HF-S and increased by HF-FO in red muscle only. In conclusion, HF-S feeding promotes lipid storage in red muscle, an effect abrogated by the fish oil, which increases mediators of lipolysis, oxidation and thermogenesis while inhibiting lipogenic genes. Greater storage and synthesis, and lower oxidative genes in red, but not white, muscle likely contribute to lipid accretion encountered in red muscle. Despite several gender-dimorphic genes, both sexes exhibited a similar HF-S-induced metabolic and gene expression profile; likewise fish oil was similarly protective in both sexes.
Collapse
Affiliation(s)
- Lisa K. Philp
- Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia
- * E-mail:
| | - Leonie K. Heilbronn
- Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Alena Janovska
- Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Gary A. Wittert
- Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
46
|
Affiliation(s)
- Wataru Mizunoya
- Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University
| |
Collapse
|
47
|
Kawabata F, Mizushige T, Uozumi K, Hayamizu K, Han L, Tsuji T, Kishida T. Fish protein intake induces fast-muscle hypertrophy and reduces liver lipids and serum glucose levels in rats. Biosci Biotechnol Biochem 2014; 79:109-16. [PMID: 25198797 DOI: 10.1080/09168451.2014.951025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In our previous study, fish protein was proven to reduce serum lipids and body fat accumulation by skeletal muscle hypertrophy and enhancing basal energy expenditure in rats. In the present study, we examined the precise effects of fish protein intake on different skeletal muscle fiber types and metabolic gene expression of the muscle. Fish protein increased fast-twitch muscle weight, reduced liver triglycerides and serum glucose levels, compared with the casein diet after 6 or 8 weeks of feeding. Furthermore, fish protein upregulated the gene expressions of a fast-twitch muscle-type marker and a glucose transporter in the muscle. These results suggest that fish protein induces fast-muscle hypertrophy, and the enhancement of basal energy expenditure by muscle hypertrophy and the increase in muscle glucose uptake reduced liver lipids and serum glucose levels. The present results also imply that fish protein intake causes a slow-to-fast shift in muscle fiber type.
Collapse
Affiliation(s)
- Fuminori Kawabata
- a Human Life Science R&D Center, Nippon Suisan Kaisha, Ltd. , Tokyo , Japan
| | | | | | | | | | | | | |
Collapse
|