1
|
Jaramillo-Garcés P, Pampalona J, Carretero A, Cunilleras EJ, Ramos D, Ruberte J. Vitreous Fibrillar Structure and Interfibrillar Composition in Adult Mice. Invest Ophthalmol Vis Sci 2025; 66:60. [PMID: 40162951 PMCID: PMC11956745 DOI: 10.1167/iovs.66.3.60] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/26/2025] [Indexed: 04/02/2025] Open
Abstract
Purpose Although mice are widely used models for human eye diseases, knowledge of their vitreous is scarce and fragmentary. This study characterizes the structure and composition of vitreous fibrils and their interfibrillar space. Given the role of this fibrillar network in maintaining the vitreous' biomechanical properties, the impact of intravitreal injections on vitreous architecture was also explored. Methods Healthy adult C57/BL6J mice were studied. Classical histological techniques, picrosirius red-polarization, immunofluorescence, lectin histochemistry, and hyaluronic acid binding protein assays were used to examine vitreous fibrils and interfibrillar space. For the analysis of distribution of components along the fibrils, the Airyscan microscopy was used to achieve higher resolution. Results Vitreous fibrils consist of fibrillar collagen, glycoproteins (fibrillin 1, fibronectin, laminin, and collagen IV), N-acetyl galactosamine, and hyaluronan, all absent in the interfibrillar space. A single sterile intravitreal saline injection induced an inflammatory insult, characterized by increased fibril density and macrophage/hyalocyte invasion. Lysosome-associated membrane protein 1 (Lamp1) immunohistochemistry suggests these cells may remove fibrils via phagocytosis and activate a remodeling process in the vitreous. Conclusions This study enhances understanding of the mouse vitreous structure, suggesting fibrils are composed of glycoprotein-wrapped collagen cores. Furthermore, the absence of hyaluronan and glycoproteins between fibrils may explain lower viscosity in mice compared with humans. Intravitreal injections as an inflammatory insult disrupt fibril networks and activate macrophages/hyalocytes.
Collapse
Affiliation(s)
- Patricia Jaramillo-Garcés
- Centre for Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain
- CIBER for Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain
- Department of Animal Health and Anatomy, Faculty of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Judit Pampalona
- Department of Morphological Sciences, Faculty of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Ana Carretero
- Centre for Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain
- CIBER for Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain
- Department of Animal Health and Anatomy, Faculty of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Eduard José Cunilleras
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - David Ramos
- Centre for Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain
- Department of Morphological Sciences, Faculty of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Jesús Ruberte
- Centre for Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain
- CIBER for Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain
- Department of Animal Health and Anatomy, Faculty of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
2
|
Cheung JKW, Li KK, Zhou L, To CH, Lam TC. Identification of Potential Growth-Related Proteins in Chick Vitreous during Emmetropization Using SWATH-MS and Targeted-Based Proteomics (MRMHR). Int J Mol Sci 2024; 25:10644. [PMID: 39408973 PMCID: PMC11476992 DOI: 10.3390/ijms251910644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
The vitreous humor (VH) is a transparent gelatin-like substance that occupies two-thirds of the eyeball and undergoes the most significant changes during eye elongation. Quantitative proteomics on the normal growth period in the VH could provide new insights into understanding its progression mechanism in the early stages of myopia. In this study, a data-independent acquisition (SWATH-MS) was combined with targeted LC-ESI-MS/MS to identify and quantify the relative protein changes in the vitreous during the normal growth period (4, 7, 14, 21 and 28 days old) in the chick model. Chicks were raised under normal growing conditions (12/12 h Dark/light cycle) for 28 days, where ocular measurements, including refractive and biometric measurements, were performed on days 4 (baseline), 7, 14, 21 and 28 (n = 6 chicks at each time point). Extracted vitreous proteins from individual animals were digested and pooled into a left eye pool and a right pool at each time point for protein analysis. The vitreous proteome for chicks was generated using an information-dependent acquisition (IDA) method by combining injections from individual time points. Using individual pool samples, SWATH-MS was employed to quantify proteins between each time point. DEPs were subsequently confirmed in separate batches of animals individually on random eyes (n = 4) using MRMHR between day 7 and day 14. Refraction and vitreous chamber depth (VCD) were found to be significantly changed (p < 0.05, n = 6 at each time point) during the period. A comprehensive vitreous protein ion library was built with 1576 non-redundant proteins (22987 distinct peptides) identified at a 1% false discovery rate (FDR). A total of 12 up-regulated and 26 down-regulated proteins were found across all time points compared to day 7 using SWATH-MS. Several DEPs, such as alpha-fetoprotein, the cadherin family group, neurocan, and reelin, involved in structural and growth-related pathways, were validated for the first time using MRMHR under this experimental condition. This study provided the first comprehensive spectral library of the vitreous for chicks during normal growth as well as a list of potential growth-related protein biomarker candidates using SWATH-MS and MRMHR during the emmetropization period.
Collapse
Affiliation(s)
- Jimmy Ka-Wai Cheung
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong; (J.K.-W.C.); (K.-K.L.); (L.Z.); (C.-H.T.)
- Centre for Eye and Vision Research (CEVR), 17W, Hong Kong Science Park, Hong Kong
| | - King-Kit Li
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong; (J.K.-W.C.); (K.-K.L.); (L.Z.); (C.-H.T.)
| | - Lei Zhou
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong; (J.K.-W.C.); (K.-K.L.); (L.Z.); (C.-H.T.)
- Centre for Eye and Vision Research (CEVR), 17W, Hong Kong Science Park, Hong Kong
| | - Chi-Ho To
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong; (J.K.-W.C.); (K.-K.L.); (L.Z.); (C.-H.T.)
- Centre for Eye and Vision Research (CEVR), 17W, Hong Kong Science Park, Hong Kong
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong
| | - Thomas Chuen Lam
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong; (J.K.-W.C.); (K.-K.L.); (L.Z.); (C.-H.T.)
- Centre for Eye and Vision Research (CEVR), 17W, Hong Kong Science Park, Hong Kong
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong
| |
Collapse
|
3
|
Lamas M. Epigenetic mechanisms of non-retinal components of the aging eye and novel therapeutic strategies. Exp Eye Res 2023; 236:109673. [PMID: 37802281 DOI: 10.1016/j.exer.2023.109673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/25/2023] [Accepted: 10/02/2023] [Indexed: 10/08/2023]
Abstract
The eye is a complex organ composed of various cell types, each serving a unique purpose. However, aging brings about structural and functional changes in these cells, leading to discomfort and potential pathology. Alterations in gene expression, influenced by aging and environmental factors, significantly affect cell structure and function. Epigenetics, a field focused on understanding the correlation between changes in gene expression, cell function, and environmental factors, plays a crucial role in unraveling the molecular events responsible for age-related eye changes. This prompts the possibility of developing epigenetic strategies to intervene in these changes or reinstate proper molecular activities. Indeed, research has demonstrated that epigenetic modifications, including DNA methylation, histone modification, and non-coding RNAs, are closely associated with age-related alterations in gene expression and cell function. This review aims to compile and synthesize the most recent body of evidence supporting the role of epigenetics in age-related alterations observed in various components of the eye. Specifically, it focuses on the impact of epigenetic changes in the ocular surface, tear film, aqueous humor, vitreous humor, and lens. Furthermore, it highlights the significant advancements that have been made in the field of epigenetic-based experimental therapies, specifically focusing on their potential for treating pathological conditions in the aging eye.
Collapse
Affiliation(s)
- Monica Lamas
- Departamento de Farmacobiología, CINVESTAV-Sede Sur, Centro de Investigación sobre el Envejecimiento, CINVESTAV Sede Sur, Calzada de los Tenorios 235, CDMX, Mexico.
| |
Collapse
|
4
|
Sen S, Udaya P, Jeya Maheshwari J, Kohli P, Parida H, Kannan NB, Ramasamy K, Dharmalingam K. Comparative proteomics of proliferative diabetic retinopathy in people with Type 2 diabetes highlights the role of inflammation, visual transduction, and extracellular matrix pathways. Indian J Ophthalmol 2023; 71:3069-3079. [PMID: 37530283 PMCID: PMC10538831 DOI: 10.4103/ijo.ijo_276_23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/22/2023] [Accepted: 06/09/2023] [Indexed: 08/03/2023] Open
Abstract
Purpose To explore the vitreous humor proteome from type 2 diabetes subjects with proliferative diabetic retinopathy (PDR) in the Indian population. Methods We performed mass spectrometry-based label-free quantitative analysis of vitreous proteome of PDR (n = 13) and idiopathic macular hole (IMH; control) subjects (n = 14). Nine samples of PDR and 10 samples of IMH were pooled as case and control, respectively, and compared. Four samples each of PDR and IMH were analyzed individually without pooling to validate the results of the pooled analysis. Comparative quantification was performed using Scaffold software which calculated the fold changes of differential expression. Bioinformatics analysis was performed using DAVID and STRING software. Results We identified 469 proteins in PDR and 517 proteins in IMH vitreous, with an overlap of 172 proteins. Also, 297 unique proteins were identified in PDR and 345 in IMH. In PDR vitreous, 37 proteins were upregulated (P < 0.05) and 19 proteins were downregulated compared to IMH. Protein distribution analysis clearly demonstrated a separation of protein expression in PDR and IMH. Significantly upregulated proteins included fibrinogen gamma chain, fibrinogen beta chain, and carbonic anhydrase 1 and downregulated proteins included alpha-1-antitrypsin, retinol-binding protein 3, neuroserpin, cystatin C, carboxypeptidase E and cathepsin-D. Conclusion Diabetic retinopathy pathogenesis involves proteins which belong to inflammation, visual transduction, and extracellular matrix pathways. Validation-based experiments using enzyme-linked immunosorbent assay (ELISA) or western blotting are needed to establish cause and effect relationships of these proteins to the disease state, to develop them as biomarkers or drug molecules.
Collapse
Affiliation(s)
- Sagnik Sen
- Department of Retina and Vitreous Services, Aravind Eye Hospital, Madurai, Tamil Nadu, India
- Department of Proteomics, Aravind Medical Research Foundation, Madurai, Tamil Nadu, India
| | - Prithviraj Udaya
- Department of Retina and Vitreous Services, Aravind Eye Hospital, Madurai, Tamil Nadu, India
- Department of Proteomics, Aravind Medical Research Foundation, Madurai, Tamil Nadu, India
| | | | - Piyush Kohli
- Department of Retina and Vitreous Services, Aravind Eye Hospital, Madurai, Tamil Nadu, India
| | - Haemoglobin Parida
- Department of Retina and Vitreous Services, Aravind Eye Hospital, Madurai, Tamil Nadu, India
| | - Naresh Babu Kannan
- Department of Retina and Vitreous Services, Aravind Eye Hospital, Madurai, Tamil Nadu, India
| | - Kim Ramasamy
- Department of Retina and Vitreous Services, Aravind Eye Hospital, Madurai, Tamil Nadu, India
| | | |
Collapse
|
5
|
Louie HH, Mugisho OO, Chamley LW, Rupenthal ID. Extracellular Vesicles as Biomarkers and Therapeutics for Inflammatory Eye Diseases. Mol Pharm 2023; 20:23-40. [PMID: 36332193 DOI: 10.1021/acs.molpharmaceut.2c00414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Extracellular vesicles (EVs) are a group of cell-derived membrane vesicles of varying sizes that can be secreted by most cells. Depending on the type of cell they are derived from, EVs may contain a variety of cargo including proteins, lipids, miRNA, and DNA. Functionally, EVs play important roles in physiological and pathological processes through intercellular communication. While there has already been significant literature on the involvement of EVs in neurological and cardiovascular disease as well as cancer, recent evidence suggests that EVs may also play a role in mediating inflammatory eye diseases. This paper summarizes current advancements in ocular EV research as well as new ways by which EVs may be utilized as novel biomarkers of or therapeutics for inflammatory eye diseases.
Collapse
Affiliation(s)
- Henry H Louie
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.,Hub for Extracellular Vesicle Investigations, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Odunayo O Mugisho
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Lawrence W Chamley
- Hub for Extracellular Vesicle Investigations, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.,Department of Obstetrics & Gynaecology, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Ilva D Rupenthal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
6
|
Nath M, Fort PE. αA-Crystallin Mediated Neuroprotection in the Retinal Neurons Is Independent of Protein Kinase B. Front Neurosci 2022; 16:912757. [PMID: 35669493 PMCID: PMC9163390 DOI: 10.3389/fnins.2022.912757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Phosphatidylinositol 3-kinase (PI3K)/Akt signal pathway mediates pro-survival function in neurons. In the retina, PI3K/AKT/mTOR signaling pathway is related to the early pathogenesis of diabetic retinopathy. Signaling molecules in the membrane-initiated signaling pathway exhibiting neuroprotective function interacts with the PI3K/Akt pathway as an important survival pathway. Molecular chaperone α-crystallins are known to potentially interact and/or regulate various pro-survival and pro-apoptotic proteins to regulate cell survival. Among these demonstrated mechanisms, they are well-reported to regulate and inhibit apoptosis by interacting and sequestrating the proapoptotic proteins such as Bax and Bcl-Xs. We studied the importance of metabolic stress-induced enhanced Akt signaling and αA-crystallin interdependence for exhibiting neuroprotection in metabolically challenged retinal neurons. For the first time, this study has revealed that αA-crystallin and activated Akt are significantly neuroprotective in the stressed retinal neurons, independent of each other. Furthermore, the study also highlighted that significant inhibition of the PI3K-Akt pathway does not alter the neuroprotective ability of αA-crystallin in stressed retinal neurons. Interestingly, our study also demonstrated that in the absence of Akt activation, αA-crystallin inhibits the translocation of Bax in the mitochondria during metabolic stress, and this function is regulated by the phosphorylation of αA-crystallin on residue 148.
Collapse
Affiliation(s)
- Madhu Nath
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Patrice Elie Fort
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, United States
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
7
|
Vieira M, Fernandes R, Ambrósio AF, Cardoso V, Carvalho M, Weng Kung P, Neves MAD, Mendes Pinto I. Lab-on-a-chip technologies for minimally invasive molecular sensing of diabetic retinopathy. LAB ON A CHIP 2022; 22:1876-1889. [PMID: 35485913 DOI: 10.1039/d1lc01138c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Diabetic retinopathy (DR) is the most common diabetic eye disease and the worldwide leading cause of vision loss in working-age adults. It progresses from mild to severe non-proliferative or proliferative DR based on several pathological features including the magnitude of blood-retinal barrier breakdown and neovascularization. Available pharmacological and retinal laser photocoagulation interventions are mostly applied in the advanced stages of DR and are inefficient in halting disease progression in a significantly high percentage of patients. Yet, recent evidence has shown that some therapies could potentially limit DR progression if applied at early stages, highlighting the importance of early disease diagnostics. In the past few decades, different imaging modalities have proved their utility for examining retinal and optic nerve changes in patients with retinal diseases. However, imaging based-methodologies solely rely on morphological examination of the retinal vascularization and are not suitable for recurrent and personalized patient evaluation. This raises the need for new technologies to enable accurate and early diagnosis of DR. In this review, we critically discuss the potential clinical benefit of minimally-invasive molecular biomarker identification and profiling of diabetic patients who are at risk of developing DR. We provide a comparative overview of conventional and recently developed lab-on-a-chip technologies for quantitative assessment of potential DR molecular biomarkers and discuss their advantages, current limitations and challenges for future practical implementation and continuous patient monitoring at the point-of-care.
Collapse
Affiliation(s)
- Maria Vieira
- International Iberian Nanotechnology Laboratory (INL), Braga, Portugal
| | - Rosa Fernandes
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image, Coimbra, Portugal
| | - António F Ambrósio
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image, Coimbra, Portugal
| | - Vanessa Cardoso
- CMEMS-UMinho, University of Minho, Campus of Azurém, Guimarães, Portugal
- LABBELS - Associate Laboratory, Guimarães, Braga, Portugal
| | - Mariana Carvalho
- International Iberian Nanotechnology Laboratory (INL), Braga, Portugal
| | - Peng Weng Kung
- Spin Dynamics in Health Engineering Group, Songshan Lake Materials Laboratory, Dongguan, China
| | | | - Inês Mendes Pinto
- International Iberian Nanotechnology Laboratory (INL), Braga, Portugal
- Institute for Research and Innovation in Health (i3S), Porto, Portugal.
| |
Collapse
|
8
|
Radhakrishnan R, Dronamraju VR, Leung M, Gruesen A, Solanki AK, Walterhouse S, Roehrich H, Song G, da Costa Monsanto R, Cureoglu S, Martin R, Kondkar AA, van Kuijk FJ, Montezuma SR, Knöelker HJ, Hufnagel RB, Lobo GP. The role of motor proteins in photoreceptor protein transport and visual function. Ophthalmic Genet 2022; 43:285-300. [PMID: 35470760 DOI: 10.1080/13816810.2022.2062391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Rods and cones are photoreceptor neurons in the retina that are required for visual sensation in vertebrates, wherein the perception of vision is initiated when these neurons respond to photons in the light stimuli. The photoreceptor cell is structurally studied as outer segments (OS) and inner segments (IS) where proper protein sorting, localization, and compartmentalization are critical for phototransduction, visual function, and survival. In human retinal diseases, improper protein transport to the OS or mislocalization of proteins to the IS and other cellular compartments could lead to impaired visual responses and photoreceptor cell degeneration that ultimately cause loss of visual function. RESULTS Therefore, studying and identifying mechanisms involved in facilitating and maintaining proper protein transport in photoreceptor cells would help our understanding of pathologies involving retinal cell degeneration in inherited retinal dystrophies, age-related macular degeneration, and Usher Syndrome. CONCLUSIONS Our mini-review will discuss mechanisms of protein transport within photoreceptors and introduce a novel role for an unconventional motor protein, MYO1C, in actin-based motor transport of the visual chromophore Rhodopsin to the OS, in support of phototransduction and visual function.
Collapse
Affiliation(s)
- Rakesh Radhakrishnan
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Venkateshwara R Dronamraju
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Matthias Leung
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Andrew Gruesen
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ashish K Solanki
- Department of Medicine, Drug Discovery Building, Medical University of South Carolina, South Carolina, USA
| | - Stephen Walterhouse
- Department of Medicine, Drug Discovery Building, Medical University of South Carolina, South Carolina, USA
| | - Heidi Roehrich
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Grace Song
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Rafael da Costa Monsanto
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sebahattin Cureoglu
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - René Martin
- Faculty of Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Altaf A Kondkar
- Department of Ophthalmology.,Glaucoma Research Chair in Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Frederik J van Kuijk
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sandra R Montezuma
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Robert B Hufnagel
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Glenn P Lobo
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA.,Department of Medicine, Drug Discovery Building, Medical University of South Carolina, South Carolina, USA.,Department of Ophthalmology, Medical University of South Carolina, South Carolina, USA
| |
Collapse
|
9
|
Zhu Y, Bian JF, Lu DQ, To CH, Lam CSY, Li KK, Yu FJ, Gong BT, Wang Q, Ji XW, Zhang HM, Nian H, Lam TC, Wei RH. Alteration of EIF2 Signaling, Glycolysis, and Dopamine Secretion in Form-Deprived Myopia in Response to 1% Atropine Treatment: Evidence From Interactive iTRAQ-MS and SWATH-MS Proteomics Using a Guinea Pig Model. Front Pharmacol 2022; 13:814814. [PMID: 35153787 PMCID: PMC8832150 DOI: 10.3389/fphar.2022.814814] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/07/2022] [Indexed: 12/13/2022] Open
Abstract
Purpose: Atropine, a non-selective muscarinic antagonist, effectively slows down myopia progression in human adolescents and several animal models. However, the underlying molecular mechanism is unclear. The current study investigated retinal protein changes of form-deprived myopic (FDM) guinea pigs in response to topical administration of 1% atropine gel (10 g/L). Methods: At the first stage, the differentially expressed proteins were screened using fractionated isobaric tags for a relative and absolute quantification (iTRAQ) approach, coupled with nano-liquid chromatography-tandem mass spectrometry (nano-LC-MS/MS) (n = 24, 48 eyes) using a sample pooling technique. At the second stage, retinal tissues from another cohort with the same treatment (n = 12, 24 eyes) with significant ocular changes were subjected to label-free sequential window acquisition of all theoretical mass spectra (SWATH-MS) proteomics for orthogonal protein target confirmation. The localization of Alpha-synuclein was verified using immunohistochemistry and confocal imaging. Results: A total of 1,695 proteins (8,875 peptides) were identified with 479 regulated proteins (FC ≥ 1.5 or ≤0.67) found from FDM eyes and atropine-treated eyes receiving 4-weeks drug treatment using iTRAQ-MS proteomics. Combining the iTRAQ-MS and SWATH-MS datasets, a total of 29 confident proteins at 1% FDR were consistently quantified and matched, comprising 12 up-regulated and 17 down-regulated proteins which differed between FDM eyes and atropine treated eyes (iTRAQ: FC ≥ 1.5 or ≤0.67, SWATH: FC ≥ 1.4 or ≤0.71, p-value of ≤0.05). Bioinformatics analysis using IPA and STRING databases of these commonly regulated proteins revealed the involvement of the three commonly significant pathways: EIF2 signaling; glycolysis; and dopamine secretion. Additionally, the most significantly regulated proteins were closely connected to Alpha-synuclein (SNCA). Using immunostaining (n = 3), SNCA was further confirmed in the inner margin of the inner nuclear layer (INL) and spread throughout the inner plexiform layer (IPL) of the retina of guinea pigs. Conclusion: The molecular evidence using next-generation proteomics (NGP) revealed that retinal EIF2 signaling, glycolysis, and dopamine secretion through SNCA are implicated in atropine treatment of myopia in the FDM-induced guinea pig model.
Collapse
Affiliation(s)
- Ying Zhu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Jing Fang Bian
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Da Qian Lu
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Chi Ho To
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Centre for Eye and Vision Research (CEVR), Hong Kong SAR, China
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Carly Siu-Yin Lam
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Centre for Eye and Vision Research (CEVR), Hong Kong SAR, China
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - King Kit Li
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Feng Juan Yu
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Bo Teng Gong
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiong Wang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Xiao Wen Ji
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Hong Mei Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Hong Nian
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Thomas Chuen Lam
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Centre for Eye and Vision Research (CEVR), Hong Kong SAR, China
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong SAR, China
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen, China
- *Correspondence: Rui Hua Wei, ; Thomas Chuen Lam,
| | - Rui Hua Wei
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
- *Correspondence: Rui Hua Wei, ; Thomas Chuen Lam,
| |
Collapse
|
10
|
Solanki AK, Biswal MR, Walterhouse S, Martin R, Kondkar AA, Knölker HJ, Rahman B, Arif E, Husain S, Montezuma SR, Nihalani D, Lobo GP. Loss of Motor Protein MYO1C Causes Rhodopsin Mislocalization and Results in Impaired Visual Function. Cells 2021; 10:cells10061322. [PMID: 34073294 PMCID: PMC8229726 DOI: 10.3390/cells10061322] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022] Open
Abstract
Unconventional myosins, linked to deafness, are also proposed to play a role in retinal cell physiology. However, their direct role in photoreceptor function remains unclear. We demonstrate that systemic loss of the unconventional myosin MYO1C in mice, specifically causes rhodopsin mislocalization, leading to impaired visual function. Electroretinogram analysis of Myo1c knockout (Myo1c-KO) mice showed a progressive loss of photoreceptor function. Immunohistochemistry and binding assays demonstrated MYO1C localization to photoreceptor inner and outer segments (OS) and identified a direct interaction of rhodopsin with MYO1C. In Myo1c-KO retinas, rhodopsin mislocalized to rod inner segments (IS) and cell bodies, while cone opsins in OS showed punctate staining. In aged mice, the histological and ultrastructural examination of the phenotype of Myo1c-KO retinas showed progressively shorter photoreceptor OS. These results demonstrate that MYO1C is important for rhodopsin localization to the photoreceptor OS, and for normal visual function.
Collapse
Affiliation(s)
- Ashish K. Solanki
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; (A.K.S.); (S.W.); (B.R.); (E.A.)
| | - Manas R. Biswal
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA;
| | - Stephen Walterhouse
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; (A.K.S.); (S.W.); (B.R.); (E.A.)
| | - René Martin
- Faculty of Chemistry, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany; (R.M.); (H.-J.K.)
| | - Altaf A. Kondkar
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia;
| | - Hans-Joachim Knölker
- Faculty of Chemistry, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany; (R.M.); (H.-J.K.)
| | - Bushra Rahman
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; (A.K.S.); (S.W.); (B.R.); (E.A.)
| | - Ehtesham Arif
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; (A.K.S.); (S.W.); (B.R.); (E.A.)
| | - Shahid Husain
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Sandra R. Montezuma
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, 516 Delaware Street S.E., 9th Floor, Minneapolis, MN 55455, USA;
| | - Deepak Nihalani
- National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bldg. 2DEM, Room 6085, 6707 Democracy Blvd., Bethesda, MD 20817, USA
- Correspondence: (D.N.); (G.P.L.)
| | - Glenn Prazere Lobo
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; (A.K.S.); (S.W.); (B.R.); (E.A.)
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425, USA;
- Department of Ophthalmology and Visual Neurosciences, Lions Research Building, University of Minnesota, 2001 6th Street S.E., Room 225, Minneapolis, MN 55455, USA
- Correspondence: (D.N.); (G.P.L.)
| |
Collapse
|
11
|
Robinson R, Youngblood H, Iyer H, Bloom J, Lee TJ, Chang L, Lukowski Z, Zhi W, Sharma A, Sharma S. Diabetes Induced Alterations in Murine Vitreous Proteome Are Mitigated by IL-6 Trans-Signaling Inhibition. Invest Ophthalmol Vis Sci 2021; 61:2. [PMID: 32870245 PMCID: PMC7476668 DOI: 10.1167/iovs.61.11.2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose Diabetic retinopathy (DR) is a microvascular complication caused by prolonged hyperglycemia and characterized by leaky retinal vasculature and ischemia-induced angiogenesis. Vitreous humor is a gel-like biofluid in the posterior segment of the eye between the lens and the retina. Disease-related changes are observed in the biochemical constituents of the vitreous, including proteins and macromolecules. Recently, we found that IL-6 trans-signaling plays a significant role in the vascular leakage and retinal pathology associated with DR. Therefore, in this study, comprehensive proteomic profiling of the murine vitreous was performed to identify diabetes-induced alterations and to determine effects of IL-6 trans-signaling inhibition on these changes. Methods Vitreous samples from mice were collected by evisceration, and proteomic analyses were performed using liquid chromatography–tandem mass spectrometry (LC-MS/MS). Results A total of 154 proteins were identified with high confidence in control mice and were considered to be characteristic of healthy murine vitreous fluid. The levels of 72 vitreous proteins were significantly altered in diabetic mice, including several members of heat shock proteins, 14-3-3 proteins, and tubulins. Alterations in 52 out of 72 proteins in diabetic mice were mitigated by IL-6 trans-signaling inhibition. Conclusions Proteomic analysis of murine vitreous fluid performed in this study provides important information about the changes caused by diabetes in the ocular microenvironment. These diabetes-induced alterations in the murine vitreous proteome were mitigated by IL-6 trans-signaling inhibition. These findings further support that IL-6 trans-signaling may be an important therapeutic target for the treatment of DR.
Collapse
Affiliation(s)
- Rebekah Robinson
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, Georgia, United States
| | - Hannah Youngblood
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, Georgia, United States
| | - Hersha Iyer
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, Georgia, United States
| | - Justin Bloom
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, Georgia, United States
| | - Tae Jin Lee
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, Georgia, United States
| | - Luke Chang
- Department of Ophthalmology, Augusta University, Augusta, Georgia, United States
| | - Zachary Lukowski
- Department of Ophthalmology, Augusta University, Augusta, Georgia, United States
| | - Wenbo Zhi
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, Georgia, United States
| | - Ashok Sharma
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, Georgia, United States.,Department of Ophthalmology, Augusta University, Augusta, Georgia, United States.,Department of Population Health Sciences, Augusta University, Augusta, Georgia, United States.,Culver Vision Discovery Institute, Augusta University, Augusta, Georgia, United States
| | - Shruti Sharma
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, Georgia, United States.,Department of Ophthalmology, Augusta University, Augusta, Georgia, United States.,Culver Vision Discovery Institute, Augusta University, Augusta, Georgia, United States
| |
Collapse
|
12
|
Latina V, Giacovazzo G, Cordella F, Balzamino BO, Micera A, Varano M, Marchetti C, Malerba F, Florio R, Ercole BB, La Regina F, Atlante A, Coccurello R, Di Angelantonio S, Calissano P, Amadoro G. Systemic delivery of a specific antibody targeting the pathological N-terminal truncated tau peptide reduces retinal degeneration in a mouse model of Alzheimer's Disease. Acta Neuropathol Commun 2021; 9:38. [PMID: 33750467 PMCID: PMC7942014 DOI: 10.1186/s40478-021-01138-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/26/2021] [Indexed: 12/28/2022] Open
Abstract
Retina and optic nerve are sites of extra-cerebral manifestations of Alzheimer's Disease (AD). Amyloid-β (Aβ) plaques and neurofibrillary tangles of hyperphosphorylated tau protein are detected in eyes from AD patients and transgenic animals in correlation with inflammation, reduction of synapses, visual deficits, loss of retinal cells and nerve fiber. However, neither the pathological relevance of other post-translational tau modifications-such as truncation with generation of toxic fragments-nor the potential neuroprotective action induced by their in vivo clearance have been investigated in the context of AD retinal degeneration. We have recently developed a monoclonal tau antibody (12A12mAb) which selectively targets the neurotoxic 20-22 kDa NH2-derived peptide generated from pathological truncation at the N-terminal domain of tau without cross-reacting with its full-length normal protein. Previous studies have shown that 12A12mAb, when intravenously (i.v.)-injected into 6-month-old Tg2576 animals, markedly improves their AD-like, behavioural and neuropathological syndrome. By taking advantage of this well-established tau-directed immunization regimen, we found that 12A12mAb administration also exerts a beneficial action on biochemical, morphological and metabolic parameters (i.e. APP/Aβ processing, tau hyperphosphorylation, neuroinflammation, synaptic proteins, microtubule stability, mitochondria-based energy production, neuronal death) associated with ocular injury in the AD phenotype. These findings prospect translational implications in the AD field by: (1) showing for the first time that cleavage of tau takes part in several pathological changes occurring in vivo in affected retinas and vitreous bodies and that its deleterious effects are successfully antagonized by administration of the specific 12A12mAb; (2) shedding further insights on the tight connections between neurosensory retina and brain, in particular following tau-based immunotherapy. In our view, the parallel response we detected in this preclinical animal model, both in the eye and in the hippocampus, following i.v. 12A12mAb injection opens novel diagnostic and therapeutic avenues for the clinical management of cerebral and extracerebral AD signs in human beings.
Collapse
Affiliation(s)
- Valentina Latina
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Giacomo Giacovazzo
- IRCSS Santa Lucia Foundation, Via Fosso del Fiorano 64-65, 00143 Rome, Italy
| | - Federica Cordella
- Department of Physiology and Pharmacology, University of Rome La Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Center for Life Nanoscience, Istituto Italiano Di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | - Bijorn Omar Balzamino
- Research Laboratories in Ophthalmology, IRCCS - Fondazione Bietti, Via Santo Stefano Rotondo, 6, 00184 Rome, Italy
| | - Alessandra Micera
- Research Laboratories in Ophthalmology, IRCCS - Fondazione Bietti, Via Santo Stefano Rotondo, 6, 00184 Rome, Italy
| | - Monica Varano
- Research Laboratories in Ophthalmology, IRCCS - Fondazione Bietti, Via Santo Stefano Rotondo, 6, 00184 Rome, Italy
| | - Cristina Marchetti
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Francesca Malerba
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Rita Florio
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Bruno Bruni Ercole
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Federico La Regina
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Anna Atlante
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM)-CNR, Via Amendola 122/O, 70126 Bari, Italy
| | - Roberto Coccurello
- IRCSS Santa Lucia Foundation, Via Fosso del Fiorano 64-65, 00143 Rome, Italy
- Institute for Complex System (ISC)-CNR, Via dei Taurini 19, 00185 Rome, Italy
| | - Silvia Di Angelantonio
- Department of Physiology and Pharmacology, University of Rome La Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Center for Life Nanoscience, Istituto Italiano Di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | - Pietro Calissano
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Giuseppina Amadoro
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy
| |
Collapse
|
13
|
Murenu E, Kostidis S, Lahiri S, Geserich AS, Imhof A, Giera M, Michalakis S. Metabolic Analysis of Vitreous/Lens and Retina in Wild Type and Retinal Degeneration Mice. Int J Mol Sci 2021; 22:ijms22052345. [PMID: 33652907 PMCID: PMC7956175 DOI: 10.3390/ijms22052345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 02/06/2023] Open
Abstract
Photoreceptors are the light-sensing cells of the retina and the major cell type affected in most inherited retinal degenerations. Different metabolic pathways sustain their high energetic demand in physiological conditions, particularly aerobic glycolysis. The principal metabolome of the mature retina has been studied, but only limited information is available on metabolic adaptations in response to key developmental events, such as eye opening. Moreover, dynamic metabolic changes due to retinal degeneration are not well understood. Here, we aimed to explore and map the ocular metabolic dynamics induced by eye opening in healthy (wild type) or Pde6b-mutant (retinal degeneration 1, Rd1) mice, in which photoreceptors degenerate shortly after eye opening. To unravel metabolic differences emerging before and after eye opening under physiological and pathophysiological conditions, we performed nuclear magnetic resonance (NMR) spectroscopy-based metabolome analysis of wild type and Rd1 retina and vitreous/lens. We show that eye opening is accompanied by changes in the concentration of selected metabolites in the retina and by alterations in the vitreous/lens composition only in the retinal degeneration context. As such, we identify NAcetylaspartate as a potential novel vitreous/lens marker reflecting progressive retinal degeneration. Thus, our data can help elucidating mechanisms underlying key events in retinal physiology and reveal changes occurring in pathology, while highlighting the importance of the vitreous/lens in the characterization of retinal diseases.
Collapse
Affiliation(s)
- Elisa Murenu
- Department of Ophthalmology, Ludwig-Maximilians-Universität München, Mathildenstraße 8, 80336 Munich, Germany;
- Department of Pharmacy, Ludwig-Maximilians Universität München, Butenandtstr. 7, 81377 Munich, Germany;
| | - Sarantos Kostidis
- Leiden University Medical Center, Center for Proteomics & Metabolomics, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (S.K.); (M.G.)
| | - Shibojyoti Lahiri
- Biomedical Center Munich-Molecular Biology, Ludwig-Maximilians-Universität München, Großhaderner Strasse 9, 82152 Planegg-Martinsried, Germany; (S.L.); (A.I.)
| | - Anna S. Geserich
- Department of Pharmacy, Ludwig-Maximilians Universität München, Butenandtstr. 7, 81377 Munich, Germany;
| | - Axel Imhof
- Biomedical Center Munich-Molecular Biology, Ludwig-Maximilians-Universität München, Großhaderner Strasse 9, 82152 Planegg-Martinsried, Germany; (S.L.); (A.I.)
| | - Martin Giera
- Leiden University Medical Center, Center for Proteomics & Metabolomics, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (S.K.); (M.G.)
| | - Stylianos Michalakis
- Department of Ophthalmology, Ludwig-Maximilians-Universität München, Mathildenstraße 8, 80336 Munich, Germany;
- Department of Pharmacy, Ludwig-Maximilians Universität München, Butenandtstr. 7, 81377 Munich, Germany;
- Correspondence: ; Tel.: +49-89-2180-77325
| |
Collapse
|
14
|
Tavakoli S, Kari OK, Turunen T, Lajunen T, Schmitt M, Lehtinen J, Tasaka F, Parkkila P, Ndika J, Viitala T, Alenius H, Urtti A, Subrizi A. Diffusion and Protein Corona Formation of Lipid-Based Nanoparticles in the Vitreous Humor: Profiling and Pharmacokinetic Considerations. Mol Pharm 2021; 18:699-713. [PMID: 32584047 PMCID: PMC7856631 DOI: 10.1021/acs.molpharmaceut.0c00411] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/18/2020] [Accepted: 06/25/2020] [Indexed: 12/30/2022]
Abstract
The vitreous humor is the first barrier encountered by intravitreally injected nanoparticles. Lipid-based nanoparticles in the vitreous are studied by evaluating their diffusion with single-particle tracking technology and by characterizing their protein coronae with surface plasmon resonance and high-resolution proteomics. Single-particle tracking results indicate that the vitreal mobility of the formulations is dependent on their charge. Anionic and neutral formulations are mobile, whereas larger (>200 nm) neutral particles have restricted diffusion, and cationic particles are immobilized in the vitreous. PEGylation increases the mobility of cationic and larger neutral formulations but does not affect anionic and smaller neutral particles. Convection has a significant role in the pharmacokinetics of nanoparticles, whereas diffusion drives the transport of antibodies. Surface plasmon resonance studies determine that the vitreal corona of anionic formulations is sparse. Proteomics data reveals 76 differentially abundant proteins, whose enrichment is specific to either the hard or the soft corona. PEGylation does not affect protein enrichment. This suggests that protein-specific rather than formulation-specific factors are drivers of protein adsorption on nanoparticles in the vitreous. In summary, our findings contribute to understanding the pharmacokinetics of nanoparticles in the vitreous and help advance the development of nanoparticle-based treatments for eye diseases.
Collapse
Affiliation(s)
- Shirin Tavakoli
- Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, Viikinkaari 5 E, 00014, Helsinki, Finland
| | - Otto Kalevi Kari
- Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, Viikinkaari 5 E, 00014, Helsinki, Finland
| | - Tiina Turunen
- Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, Viikinkaari 5 E, 00014, Helsinki, Finland
| | - Tatu Lajunen
- Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, Viikinkaari 5 E, 00014, Helsinki, Finland
| | - Mechthild Schmitt
- Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, Viikinkaari 5 E, 00014, Helsinki, Finland
| | - Julia Lehtinen
- Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, Viikinkaari 5 E, 00014, Helsinki, Finland
| | - Fumitaka Tasaka
- Pharmaceutics
& Pharmacology Department, Global R&D, Santen Pharmaceutical
Co., Ltd., 8916-16 Takayama-cho, Ikoma, Nara 630-0101, Japan
| | - Petteri Parkkila
- Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, Viikinkaari 5 E, 00014, Helsinki, Finland
| | - Joseph Ndika
- Human
Microbiome Research, Faculty of Medicine, University of Helsinki, P.O. Box 21, 00290 Helsinki, Finland
| | - Tapani Viitala
- Division
of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, 00014, Helsinki, Finland
| | - Harri Alenius
- Human
Microbiome Research, Faculty of Medicine, University of Helsinki, P.O. Box 21, 00290 Helsinki, Finland
- Institute
of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Arto Urtti
- Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, Viikinkaari 5 E, 00014, Helsinki, Finland
- Institute
of Chemistry, St. Petersburg State University, Petergof, Universitetskii pr. 26, 198504 St. Petersburg, Russia
- School
of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1, 70210 Kuopio, Finland
| | - Astrid Subrizi
- School
of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1, 70210 Kuopio, Finland
| |
Collapse
|
15
|
Age-related increase of let-7 family microRNA in rat retina and vitreous. Exp Eye Res 2021; 204:108434. [PMID: 33412132 DOI: 10.1016/j.exer.2020.108434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/01/2020] [Accepted: 12/28/2020] [Indexed: 11/21/2022]
Abstract
Vitreous alterations occur from early stages and continue through the normal aging, with gradual lamellae formation and the appearance of liquefied spaces, which eventually leads to complications, such as retinal tear, retinal detachment, and intravitreal hemorrhage. The aim of the present study was to investigate the expression of let-7 miRNA family in the vitreous and retina in newborn (1-3- day-old), young adult (2-month-old), and aging (12-month-old) rats, as well as their role as regulators of vitreous components. MicroRNAs are small, non-coding RNAs that post-transcriptionally regulate gene expression. Our results showed detection of all investigated let-7 isoforms (let-7a, let-7b, let-7c, let-7d, let-7e, let-7f and let-7i) in the retina and vitreous. Although most let-7 members were significantly upregulated in the vitreous during development, only let-7b, let-7c, and let-7e followed this same expression pattern in the retina. Let-7b and -7c increased in aging vitreous as well, and were expressed in vitro by Müller glial cells and their extracellular vesicles. Moreover, let-7 targeted hyaluronan synthase 2 (Has2) mRNA, a synthesizing enzyme of hyaluronan. These observations indicate that let-7 function is important during retina and vitreous development, and that isoforms of let-7 increased with aging, potentially modulating hyaluronan content.
Collapse
|
16
|
Grotegut P, Perumal N, Kuehn S, Smit A, Dick HB, Grus FH, Joachim SC. Minocycline reduces inflammatory response and cell death in a S100B retina degeneration model. J Neuroinflammation 2020; 17:375. [PMID: 33317557 PMCID: PMC7737388 DOI: 10.1186/s12974-020-02012-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/28/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Previous studies noted that intravitreal injection of S100B triggered a glaucoma-like degeneration of retina and optic nerve as well as microglia activation after 14 days. The precise role of microglia in our intravitreal S100B model is still unclear. Hence, microglia were inhibited through minocycline. The aim is to investigate whether microglia have a significant influence on the degeneration process or whether they are only a side effect in the model studied here. METHODS Minocycline was applied daily in rats by intraperitoneal injection using two different concentrations (13.5 mg/kg body weight, 25 mg/kg body weight). One day after treatment start, S100B or PBS was intravitreally injected in one eye per rat. The naïve groups received no injections. This resulted in a total of five groups (naïve n = 14, PBS n = 14, S100B n = 13, 13.5 mg/kg mino n = 15, 25 mg/kg mino n = 15). At day 14, electroretinogram measurements were performed, followed by immunofluorescence and label-free quantitative proteomics analysis. The focus of these investigations was on the survival of RGCs as well as their axons, the response of the microglia, and the identification of further pathological modes of action of S100B. RESULTS The best signal transmission was detected via ERG in the 13.5 mg/kg mino group. The inhibition of the microglia protected optic nerve neurofilaments and decreased the negative impact of S100B on RGCs. However, the minocycline treatment could not trigger complete protection of RGCs. Furthermore, in retina and optic nerve, the minocycline treatment reduced the number and activity of S100B-triggered microglia in a concentration-dependent manner. Proteomics analysis showed that S100B application led to numerous metabolic functions and cellular stress, mainly an increased inflammatory response, glycolysis, and mitochondrial dysfunction, which caused oxidative stress in the retina. Importantly, the protective capability of lower dose of minocycline was unraveled by suppressing the apoptotic, inflammatory, and the altered metabolic processes caused by S100B insult in the retina. CONCLUSION Intravitreally injected S100B not only led to a pro-inflammatory microglial reaction, but also a mitochondrial and metabolic dysfunction. Also, these results suggest that an excessive microglial response may be a significant degenerative factor, but not the only trigger for increased cell death.
Collapse
Affiliation(s)
- Pia Grotegut
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892, Bochum, Germany
| | - Natarajan Perumal
- Experimental and Translational Ophthalmology, Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sandra Kuehn
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892, Bochum, Germany
| | - Andreas Smit
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892, Bochum, Germany
| | - H Burkhard Dick
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892, Bochum, Germany
| | - Franz H Grus
- Experimental and Translational Ophthalmology, Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stephanie C Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892, Bochum, Germany.
| |
Collapse
|
17
|
Heffer A, Wang V, Sridhar J, Feldon SE, Libby RT, Woeller CF, Kuriyan AE. A Mouse Model of Proliferative Vitreoretinopathy Induced by Intravitreal Injection of Gas and RPE Cells. Transl Vis Sci Technol 2020; 9:9. [PMID: 32832216 PMCID: PMC7414640 DOI: 10.1167/tvst.9.7.9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/04/2020] [Indexed: 12/28/2022] Open
Abstract
Purpose Develop a reproducible proliferative vitreoretinopathy (PVR) mouse model that mimics human PVR pathology. Methods Mice received intravitreal injections of SF6 gas, followed by retinal pigment epithelial cells 1 week later. PVR progression was monitored using fundus photography and optical coherence tomography imaging, and histologic analysis of the retina as an endpoint. We developed a PVR grading scheme tailored for this model. Results We report that mice that received gas before retinal pigment epithelial injection developed more severe PVR. In the 1 × 104 retinal pigment epithelial cell group, after 1 week, 0 of 11 mice in the no gas group developed grade 4 or greater PVR compared with 5 of 13 mice in the SF6 gas group (P = 0.02); after 4 weeks, 3 of 11 mice in the no gas group developed grade 5 or greater PVR compared with 11 of 14 mice in the SF6 gas group (P = 0.01). We were able to visualize contractile membranes both on the retinal surface as well as within the vitreous of PVR eyes, and demonstrated through immunohistochemical staining that these membranes expressed fibrotic markers alpha smooth muscle actin, vimentin, and fibronectin, as well as other markers known to be found in human PVR membranes. Conclusions This mouse PVR model is reproducible and mimics aspects of PVR pathology reported in the rabbit PVR model and human PVR. The major advantage is the ability to study PVR development in different genetic backgrounds to further elucidate aspects of PVR pathogenesis. Additionally, large-scale experiments for testing pharmacologic agents to treat and prevent PVR progression is more feasible compared with other animal models. Translational Relevance This model will provide a platform for screening potential drug therapies to treat and prevent PVR, as well as elucidate different molecular pathways involved in PVR pathogenesis.
Collapse
Affiliation(s)
- Alison Heffer
- Flaum Eye Institute, University of Rochester, Rochester, NY, USA
| | - Victor Wang
- Flaum Eye Institute, University of Rochester, Rochester, NY, USA
| | - Jayanth Sridhar
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Steven E. Feldon
- Flaum Eye Institute, University of Rochester, Rochester, NY, USA
- Center for Visual Sciences, University of Rochester, Rochester, NY, USA
| | - Richard T. Libby
- Flaum Eye Institute, University of Rochester, Rochester, NY, USA
- Center for Visual Sciences, University of Rochester, Rochester, NY, USA
| | | | - Ajay E. Kuriyan
- Retina Service, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, PA, USA
- Flaum Eye Institute, University of Rochester, Rochester, NY, USA
- Center for Visual Sciences, University of Rochester, Rochester, NY, USA
| |
Collapse
|
18
|
Gharbiya M, Albanese GM, Plateroti AM, Marcelli M, Marenco M, Lambiase A. Macular Ganglion Cell Layer Thickness after Macula-Off Rhegmatogenous Retinal Detachment Repair: Scleral Buckling versus Pars Plana Vitrectomy. J Clin Med 2020; 9:jcm9051411. [PMID: 32397630 PMCID: PMC7290697 DOI: 10.3390/jcm9051411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 04/26/2020] [Accepted: 05/05/2020] [Indexed: 12/18/2022] Open
Abstract
(1) Background: We evaluated macular ganglion cell layer–inner plexiform layer (GCL-IPL) thickness in patients with primary macula-off rhegmatogenous retinal detachment (RRD) treated with scleral buckling (SB) or pars plana vitrectomy (PPV) using spectral domain optical coherence tomography (SD-OCT). (2) Methods: In this retrospective, observational study, we reviewed the medical records of patients undergoing SB or PPV surgery for macula-off RRD. SD-OCT was performed at three and 12 months after surgery. The central and parafoveal GCL-IPL thicknesses in treated eyes were compared with those of healthy fellow eyes. OCT measurements between the SB and PPV group were also compared using the analysis of covariance. (3) Results: Seventy-one eyes of 71 patients with a mean age of 61.2 ± 11.7 years were included. The parafoveal GCL-IPL thickness of the PPV group was significantly reduced, with respect to fellow eyes, at three and 12 months (p < 0.01). After adjusting for age, axial length, spherical equivalent, RD extent, preoperative intraretinal cysts, duration of symptoms and postoperative IOP, the parafoveal GCL-IPL thickness in the PPV group was significantly reduced with respect to the SB group, both at three and 12 months (F = 11.45, p = 0.001 and F = 12.37, p = 0.001, respectively). (4) Conclusions: In conclusion, the GCL-IPL is reduced in thickness in eyes with macula-off RRD treated with vitrectomy and is significantly thinner compared to eyes undergoing scleral buckling surgery.
Collapse
|
19
|
Yu FJ, Lam TC, Sze AYH, Li KK, Chun RKM, Shan SW, To CH. Alteration of retinal metabolism and oxidative stress may implicate myopic eye growth: Evidence from discovery and targeted proteomics in an animal model. J Proteomics 2020; 221:103684. [PMID: 32061809 DOI: 10.1016/j.jprot.2020.103684] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/01/2020] [Accepted: 02/08/2020] [Indexed: 12/15/2022]
Abstract
Myopia, the most common cause of impaired vision, may induce sight- threatening diseases or ocular complications due to axial elongation. The exact mechanisms underlying myopia development have received much attention and understanding of these is necessary for clinical prevention or therapeutics. In this study, quantitative proteomics using Isotope Coded Protein Label (ICPL) was applied to identify differentially regulated proteins in the retinas of myopic chicks and, from their presence, infer the possible pathogenesis of excessive ocular elongation. Newly hatched white leghorn chicks (n = 15) wore -10D and + 10D lenses bilaterally for 3 and 7 days, respectively, to develop progressive lens-induced myopia (LIM) and hyperopia (LIH). Retinal proteins were quantified with nano-liquid chromatography electrospray ionization coupled with tandem mass spectrometry (nanoLC-ESI-MS/MS). Bioinformatics analysis of differentially regulated proteins revealed that the majority originated from the cytoplasmic region and were related to various metabolic, glycolytic, or oxidative processes. The fold changes of four proteins of interest (vimentin, apolipoprotein A1, interphotoreceptor retinoid binding protein, and glutathione S-transferase) were further confirmed by a novel high-resolution multiple reaction monitoring mass spectrometry (MRM-HR) using a label-free approach. SIGNIFICANCE: Discovery of effective protein biomarkers of myopia has been extensively studied to inhibit myopia progression. This study first applied lens-induced hyperopia and myopia in the same chick to maximize the inter-ocular differences, aiming to discover more protein biomarker candidates. The findings provided new evidence that myopia was metabolism related, accompanied by altered energy generation and oxidative stress at retinal protein levels. The results in the retina were also compared to our previous study in vitreous using ICPL quantitative technology. We have now presented the protein changes in these two adjacent tissues, which may provide extra information of protein changes during ocular growth in myopia.
Collapse
Affiliation(s)
- Feng-Juan Yu
- Laboratory of Experimental Optometry, Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Thomas Chuen Lam
- Laboratory of Experimental Optometry, Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| | - Andes Ying-Hon Sze
- Laboratory of Experimental Optometry, Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - King-Kit Li
- Laboratory of Experimental Optometry, Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Rachel Ka-Man Chun
- Laboratory of Experimental Optometry, Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Sze-Wan Shan
- Laboratory of Experimental Optometry, Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Chi-Ho To
- Laboratory of Experimental Optometry, Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| |
Collapse
|
20
|
Ankamah E, Sebag J, Ng E, Nolan JM. Vitreous Antioxidants, Degeneration, and Vitreo-Retinopathy: Exploring the Links. Antioxidants (Basel) 2019; 9:antiox9010007. [PMID: 31861871 PMCID: PMC7022282 DOI: 10.3390/antiox9010007] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/05/2019] [Accepted: 12/16/2019] [Indexed: 02/06/2023] Open
Abstract
The transparent vitreous body, which occupies about 80% of the eye’s volume, is laden with numerous enzymatic and non-enzymatic antioxidants that could protect the eye from oxidative stress and disease. Aging is associated with degeneration of vitreous structure as well as a reduction in its antioxidant capacity. A growing body of evidence suggests these age-related changes may be the precursor of numerous oxidative stress-induced vitreo-retinopathies, including vision degrading myodesopsia, the clinically significant entoptic phenomena that can result from advanced vitreous degeneration. Adequate intravitreal antioxidant levels may be protective against vitreous degeneration, possibly preventing and even improving vision degrading myodesopsia as well as mitigating various other vitreo-retinopathies. The present article is, therefore, a review of the different antioxidant molecules within vitreous and the inter-relationships between vitreous antioxidant capacity and degeneration.
Collapse
Affiliation(s)
- Emmanuel Ankamah
- Nutrition Research Centre Ireland, School of Health Science, Carriganore House, Waterford Institute of Technology, West Campus, Co., X91 K236 Waterford, Ireland;
- Institute of Eye Surgery, UPMC Whitfield, Buttlerstown, Co., X91 DH9W Waterford, Ireland
- Correspondence: (E.A.); (J.M.N.)
| | - J. Sebag
- VMR Consulting Inc., Huntington Beach, CA 92647, USA;
| | - Eugene Ng
- Nutrition Research Centre Ireland, School of Health Science, Carriganore House, Waterford Institute of Technology, West Campus, Co., X91 K236 Waterford, Ireland;
- Institute of Eye Surgery, UPMC Whitfield, Buttlerstown, Co., X91 DH9W Waterford, Ireland
| | - John M. Nolan
- Nutrition Research Centre Ireland, School of Health Science, Carriganore House, Waterford Institute of Technology, West Campus, Co., X91 K236 Waterford, Ireland;
- Correspondence: (E.A.); (J.M.N.)
| |
Collapse
|
21
|
Proteomic Biomarkers of Retinal Inflammation in Diabetic Retinopathy. Int J Mol Sci 2019; 20:ijms20194755. [PMID: 31557880 PMCID: PMC6801709 DOI: 10.3390/ijms20194755] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 02/07/2023] Open
Abstract
Diabetic retinopathy (DR), a sight-threatening neurovasculopathy, is the leading cause of irreversible blindness in the developed world. DR arises as the result of prolonged hyperglycemia and is characterized by leaky retinal vasculature, retinal ischemia, retinal inflammation, angiogenesis, and neovascularization. The number of DR patients is growing with an increase in the elderly population, and therapeutic approaches are limited, therefore, new therapies to prevent retinal injury and enhance repair are a critical unmet need. Besides vascular endothelial growth factor (VEGF)-induced vascular proliferation, several other mechanisms are important in the pathogenesis of diabetic retinopathy, including vascular inflammation. Thus, combining anti-VEGF therapy with other new therapies targeting these pathophysiological pathways of DR may further optimize treatment outcomes. Technological advancements have allowed for high-throughput proteomic studies examining biofluids such as aqueous humor, vitreous humor, tear, and serum. Many DR biomarkers have been identified, especially proteins involved in retinal inflammatory processes. This review attempts to summarize the proteomic biomarkers of DR-associated retinal inflammation identified over the last several years.
Collapse
|
22
|
Oncoproteomic and gene expression analyses identify prognostic biomarkers for second primary malignancy in patients with head and neck squamous cell carcinoma. Mod Pathol 2019; 32:943-956. [PMID: 30737471 DOI: 10.1038/s41379-019-0211-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 12/21/2018] [Accepted: 01/06/2019] [Indexed: 12/15/2022]
Abstract
Patients with head and neck squamous cell carcinoma are at increased risk of developing a second primary malignancy, which is associated with poor prognosis and early death. To help improve clinical outcome, we aimed to identify biomarkers for second primary malignancy risk prediction using the routinely obtained formalin-fixed paraffin-embedded tissues of the index head and neck cancer. Liquid chromatography-tandem mass spectrometry was initially performed for candidate biomarker discovery in 16 pairs of primary cancer tissues and their matched normal mucosal epithelia from head and neck squamous cell carcinoma patients with or without second primary malignancy. The 32 candidate proteins differentially expressed between head and neck cancers with and without second primary malignancy were identified. Among these, 30 selected candidates and seven more from literature review were further studied using NanoString nCounter gene expression assay in an independent cohort of 49 head and neck cancer patients. Focusing on the p16-negative cases, we showed that a multivariate logistic regression model comprising the expression levels of ITPR3, KMT2D, EMILIN1, and the patient's age can accurately predict second primary malignancy occurrence with 88% sensitivity and 75% specificity. Furthermore, using Cox proportional hazards regression analysis and survival analysis, high expression levels of ITPR3 and DSG3 were found to be significantly associated with shorter time to second primary malignancy development (log-rank test P = 0.017). In summary, we identified a set of genes whose expressions may serve as the prognostic biomarkers for second primary malignancy occurrence in head and neck squamous cell carcinomas. In combination with the histopathologic examination of index tumor, these biomarkers can be used to guide the optimum frequency of second primary malignancy surveillance, which may lead to early diagnosis and better survival outcome.
Collapse
|
23
|
Tang PH, Velez G, Tsang SH, Bassuk AG, Mahajan VB. VCAN Canonical Splice Site Mutation is Associated With Vitreoretinal Degeneration and Disrupts an MMP Proteolytic Site. Invest Ophthalmol Vis Sci 2019; 60:282-293. [PMID: 30657523 PMCID: PMC6735613 DOI: 10.1167/iovs.18-25624] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Purpose To gain insight into the pathophysiology of vitreoretinal degeneration, the clinical course of three family members with Versican Vitreoretinopathy (VVR) is described, and a canonical splice site mutation in the gene encoding for versican (VCAN) protein was biochemically analyzed. Methods A retrospective chart review, human eye histopathology, Sanger DNA sequencing, protein structural modeling, and in vitro proteolysis assays were performed. Results The proband (II:1), mother (I:2), and younger sibling (II:2) suffered retinal degeneration with foveal sparing and retinal detachments with proliferative vitreoretinopathy, features that were confirmed on histopathologic analysis. All affected members carried a heterozygous adenine to guanine variant (c.4004-2A>G) predicted to result in exon 8 skipping or the deletion of 13 amino acids at the beginning of the GAGβ chain (VCAN p.1335-1347). This deleted region corresponded to a putative MMP cleavage site, validated using fluorescence resonance energy transfer (FRET)-based proteolysis assays. Proteomic network analysis identified 10 interacting partners in the human vitreous and retina linked to retinal detachment and degeneration. Conclusions VVR causes significant ocular disease, including retinal detachment and retinal dystrophy. The intronic VCAN mutation removes an MMP cleavage site, which alters versican structure and results in abnormal vitreous modeling. Disruption of a versican protein network may underlie clinicopathologic disease features and point to targeted therapies.
Collapse
Affiliation(s)
- Peter H Tang
- Byers Eye Institute, Omics Laboratory, Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California, United States.,Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States
| | - Gabriel Velez
- Byers Eye Institute, Omics Laboratory, Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California, United States.,Medical Scientist Training Program, University of Iowa, Iowa City, Iowa, United States
| | - Stephen H Tsang
- Bernard and Shirlee Brown Glaucoma Laboratory, Department of Pathology and Cell Biology, Department of Ophthalmology, College of Physicians and Surgeons, Columbia University, New York, New York, United States
| | - Alexander G Bassuk
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, United States
| | - Vinit B Mahajan
- Byers Eye Institute, Omics Laboratory, Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California, United States.,Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States
| |
Collapse
|
24
|
Schori C, Trachsel C, Grossmann J, Barben M, Klee K, Storti F, Samardzija M, Grimm C. A chronic hypoxic response in photoreceptors alters the vitreous proteome in mice. Exp Eye Res 2019; 185:107690. [PMID: 31181196 DOI: 10.1016/j.exer.2019.107690] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 05/20/2019] [Accepted: 06/06/2019] [Indexed: 02/08/2023]
Abstract
Reduced oxygenation of the outer retina in the aging eye may activate a chronic hypoxic response in RPE and photoreceptor cells and is considered as a risk factor for the development of age-related macular degeneration (AMD). In mice, a chronically active hypoxic response in the retinal pigment epithelium (RPE) or photoreceptors leads to age-dependent retinal degeneration. To identify proteins that may serve as accessible markers for a chronic hypoxic insult to photoreceptors, we used proteomics to determine the protein composition of the vitreous humor in genetically engineered mice that lack the von Hippel-Lindau tumor suppressor (Vhl) specifically in rods (rodΔVhl) or cones (all-coneΔVhl). Absence of VHL leads to constitutively active hypoxia-inducible transcription factors (HIFs) and thus to a molecular response to hypoxia even in normal room air. To discriminate between the consequences of a local response in photoreceptors and systemic hypoxic effects, we also evaluated the vitreous proteome of wild type mice after exposure to acute hypoxia. 1'043 of the identified proteins were common to all three hypoxia models. 257, 258 and 356 proteins were significantly regulated after systemic hypoxia, in rodΔVhl and in all-coneΔVhl mice, respectively, at least at one of the analyzed time points. Only few of the regulated proteins were shared by the models indicating that the vitreous proteome is differentially affected by systemic hypoxia and the rod or cone-specific hypoxic response. Similarly, the distinct protein compositions in the individual genetic models at early and late time points suggest regulated, cell-specific and time-dependent processes. Among the proteins commonly regulated in the genetic models, guanylate binding protein 2 (GBP2) showed elevated levels in the vitreous that were accompanied by increased mRNA expression in the retina of both rodΔVhl and all-coneΔVhl mice. We hypothesize that some of the differentially regulated proteins at early time points may potentially be used as markers for the detection of a chronic hypoxic response of photoreceptors.
Collapse
Affiliation(s)
- Christian Schori
- Lab for Retinal Cell Biology, Dept. Ophthalmology, University of Zurich, Zurich, Switzerland; Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Christian Trachsel
- Functional Genomics Center Zurich (FGCZ), ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Jonas Grossmann
- Functional Genomics Center Zurich (FGCZ), ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Maya Barben
- Lab for Retinal Cell Biology, Dept. Ophthalmology, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland
| | - Katrin Klee
- Lab for Retinal Cell Biology, Dept. Ophthalmology, University of Zurich, Zurich, Switzerland; Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Federica Storti
- Lab for Retinal Cell Biology, Dept. Ophthalmology, University of Zurich, Zurich, Switzerland
| | - Marijana Samardzija
- Lab for Retinal Cell Biology, Dept. Ophthalmology, University of Zurich, Zurich, Switzerland
| | - Christian Grimm
- Lab for Retinal Cell Biology, Dept. Ophthalmology, University of Zurich, Zurich, Switzerland; Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland.
| |
Collapse
|
25
|
Age-related distribution and potential role of SNCB in topographically different retinal areas of the common marmoset Callithrix jacchus, including the macula. Exp Eye Res 2019; 185:107676. [PMID: 31128101 DOI: 10.1016/j.exer.2019.05.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/08/2019] [Accepted: 05/21/2019] [Indexed: 01/24/2023]
Abstract
Evidence of an age-related increase of β-synuclein (SNCB) in several parts of the visual system including the retina has been reported. SNCB is thought to function as an antagonist of α-synuclein in neurodegenerative diseases, but the exact role of SNCB remains unclear. The presented work studies two different aspects of the onset and role of SNCB in the retinal pigment epithelium (RPE). First, the topographical and intracellular distributions of SNCB in the RPE of non-human marmoset monkey (Callithrix jacchus) were evaluated in paraffin-embedded eyes and RPE whole mounts from different developmental stages (neonatal, adolescent, and adult). Thus, revealed distinct lifetime-related alterations of the topographical and intracellular distributions of SNCB in the primate macula compared to the retinal periphery. Furthermore, the function and influences of SNCB on ARPE-19 cells and primary porcine RPE (ppRPE) cells were characterized by exposing these cells with recombinant SNCB (rSNCB) at different concentrations. Moreover, apoptosis, protein- and mRNA-expression levels of factors of the p53/MDM2 signaling cascade and inflammation- and oxidation-related genes were investigated. The observed dose-depended decreased apoptosis rates together with the PLD2 mediated activation of the p53 pathway promotes senescence-related processes in SNCB exposed common ARPE-19 cells from human origin. Further, increased HMOX1 and NOX4 levels indicate increased oxidative stress and inflammatory responses triggered by SNCB. The obtained differences in the distribution of SNCB in primate RPE together with alterations of cellular functions in rSNCB-exposed RPE cells (e.g., ARPE-19, ppRPE) support SNCB-related effects like inflammatory response and stress-related properties on RPE over lifetime. The possible functional relevance of SNCB in physiological aging converting into a pathophysiological condition should be investigated in further studies.
Collapse
|
26
|
Elmi A, Ventrella D, Laghi L, Carnevali G, Zhu C, Pertile G, Barone F, Benfenati F, Bacci ML. 1H NMR Spectroscopy Characterization of Porcine Vitreous Humor in Physiological and Photoreceptor Degeneration Conditions. ACTA ACUST UNITED AC 2019; 60:741-747. [DOI: 10.1167/iovs.18-25675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Alberto Elmi
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Domenico Ventrella
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Luca Laghi
- Centre of Foodomics, Department of Agro-Food Science and Technology, University of Bologna, Bologna, Italy
| | - Giacomo Carnevali
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Chenglin Zhu
- Centre of Foodomics, Department of Agro-Food Science and Technology, University of Bologna, Bologna, Italy
| | - Grazia Pertile
- Ophthalmology Department, Sacro Cuore Hospital - Don Calabria, Negrar, Italy
| | - Francesca Barone
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
- Ophthalmology Department, Sacro Cuore Hospital - Don Calabria, Negrar, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Italian Institute of Technology, Genoa, Italy
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Maria Laura Bacci
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
27
|
Harman JC, Guidry JJ, Gidday JM. Comprehensive characterization of the adult ND4 Swiss Webster mouse retina: Using discovery-based mass spectrometry to decipher the total proteome and phosphoproteome. Mol Vis 2018; 24:875-889. [PMID: 30713425 PMCID: PMC6334985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 12/31/2018] [Indexed: 11/05/2022] Open
Abstract
Purpose Diverse groups of proteins play integral roles in both the physiology and pathophysiology of the retina. However, thorough proteomic analyses of retinas of experimental species are currently unavailable. The purpose of the present paper is providing the field with a comprehensive proteomic characterization of the retina of a commonly used laboratory mouse using a discovery-based mass spectrometry (MS) approach. Methods Retinas from eight male and eight female 30-week-old outbred ND4 Swiss Webster mice were harvested and immediately processed for MS analysis on a Thermo Fisher (TF) Fusion Orbitrap MS. The retinal proteome and phosphoproteome were identified and subsequently analyzed using Proteome Discoverer 2.2 and Panther-GeneGo. SEQUEST-HT scoring was used for analysis, and the reference protein FASTA database was from Mus musculus. Specifically, three technical repeats were performed for each biological sample. For characterization, only high-scoring peptides were considered, with a false discovery rate (FDR) of <1%. Downstream bioinformatic analysis used Ingenuity Pathway Analysis (IPA; Qiagen). Results Using Proteome Discoverer 2.2, 4,767 different proteins were identified and segregated into 26 major protein classes, 9 functional molecular classes, and 12 categories of biological processes. The five largest protein classes included the following: nucleic acid binding (17%), hydrolases (13%), enzyme modulators (10%), transferases (9%), and oxidoreductases (6%). "Binding" and "catalytic" proteins contributed to 81% of the molecular function class at 37% and 42%, respectively. "Cellular processing" and "metabolic processes" contributed the most to biologic activity, at 31% and 26%, respectively. Phosphopeptide enrichment yielded the identification of 610 additional unique proteins that were not originally identified. The two datasets combined produced an adult mouse retinal proteome consisting of 5,377 unique proteins. Overall, 41% of the retinal proteome was phosphorylated. The overwhelming diversity of retinal protein functionality was reflected through further analyses revealing 2,086 unique pathway hits across 241 different pathways (TF). A core analysis summary report was performed in IPA (Qiagen) to analyze the top signaling networks, protein-protein interaction (PPI) enrichments, and canonical pathways. Conclusions Using this high-throughput technique, we have further deciphered and updated the diverse proteome of the mouse retina, including the phosphoproteome, thereby providing the most comprehensive proteomic profile for this tissue known to date. These findings, and the bioinformatic analyses we also provided, establish a platform for future studies, facilitating the elucidation of the relevance of these proteins to the molecular and cellular pathologies that underlie retinal function and disease.
Collapse
Affiliation(s)
- Jarrod C. Harman
- Department of Ophthalmology, Louisiana State University Health Science Center (LSUHSC), New Orleans, LA,Department of Physiology, LSUHSC, New Orleans, LA,Neuroscience Center of Excellence, LSUHSC, New Orleans, LA
| | - Jessie J. Guidry
- Department of Biochemistry and Molecular Biology, LSUHSC, New Orleans, LA,Proteomics Core Facility, LSUHSC, New Orleans, LA
| | - Jeffrey M. Gidday
- Department of Ophthalmology, Louisiana State University Health Science Center (LSUHSC), New Orleans, LA,Department of Physiology, LSUHSC, New Orleans, LA,Neuroscience Center of Excellence, LSUHSC, New Orleans, LA
| |
Collapse
|
28
|
Machlab DA, Velez G, Bassuk AG, Mahajan VB. ProSave: an application for restoring quantitative data to manipulated subsets of protein lists. SOURCE CODE FOR BIOLOGY AND MEDICINE 2018; 13:3. [PMID: 30459825 PMCID: PMC6233572 DOI: 10.1186/s13029-018-0070-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 11/01/2018] [Indexed: 12/21/2022]
Abstract
Background In proteomics studies, liquid chromatography tandem mass spectrometry data (LC-MS/MS) is quantified by spectral counts or by some measure of ion abundance. Downstream comparative analysis of protein content (e.g. Venn diagrams and network analysis) typically does not include this quantitative data and critical information is often lost. To avoid loss of spectral count data in comparative proteomic analyses, it is critical to implement a tool that can rapidly retrieve this information. Results We developed ProSave, a free and user-friendly Java-based program that retrieves spectral count data from a curated list of proteins in a large proteomics dataset. ProSave allows for the management of LC-MS/MS datasets and rapidly retrieves spectral count information for a desired list of proteins. Conclusions ProSave is open source and freely available at https://github.com/MahajanLab/ProSave. The user manual, implementation notes, and description of methodology and examples are available on the site.
Collapse
Affiliation(s)
| | - Gabriel Velez
- 1Omics Laboratory, Stanford University, Palo Alto, CA USA.,2Department of Ophthalmology, Byers Eye Institute, Stanford University, 1651 Page Mill Road, Palo Alto, CA 94304 USA.,3Medical Scientist Training Program, University of Iowa, Iowa City, IA USA
| | | | - Vinit B Mahajan
- 1Omics Laboratory, Stanford University, Palo Alto, CA USA.,2Department of Ophthalmology, Byers Eye Institute, Stanford University, 1651 Page Mill Road, Palo Alto, CA 94304 USA.,Palo Alto Veterans Administration, Palo Alto, CA USA
| |
Collapse
|
29
|
Velez G, Tang PH, Cabral T, Cho GY, Machlab DA, Tsang SH, Bassuk AG, Mahajan VB. Personalized Proteomics for Precision Health: Identifying Biomarkers of Vitreoretinal Disease. Transl Vis Sci Technol 2018; 7:12. [PMID: 30271679 PMCID: PMC6159735 DOI: 10.1167/tvst.7.5.12] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/30/2018] [Indexed: 12/14/2022] Open
Abstract
Proteomic analysis is an attractive and powerful tool for characterizing the molecular profiles of diseased tissues, such as the vitreous. The complexity of data available for analysis ranges from single (e.g., enzyme-linked immunosorbent assay [ELISA]) to thousands (e.g., mass spectrometry) of proteins, and unlike genomic analysis, which is limited to denoting risk, proteomic methods take snapshots of a diseased vitreous to evaluate ongoing molecular processes in real time. The proteome of diseased ocular tissues was recently characterized, uncovering numerous biomarkers for vitreoretinal diseases and identifying protein targets for approved drugs, allowing for drug repositioning. These biomarkers merit more attention regarding their therapeutic potential and prospective validation, as well as their value as reproducible, sensitive, and specific diagnostic markers. TRANSLATIONAL RELEVANCE Personalized proteomics offers many advantages over alternative precision-health platforms for the diagnosis and treatment of vitreoretinal diseases, including identification of molecular constituents in the diseased tissue that can be targeted by available drugs.
Collapse
Affiliation(s)
- Gabriel Velez
- Omics Laboratory, Stanford University, Palo Alto, CA, USA
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
- Medical Scientist Training Program, University of Iowa, Iowa City, IA, USA
| | - Peter H. Tang
- Omics Laboratory, Stanford University, Palo Alto, CA, USA
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Thiago Cabral
- Department of Specialized Medicine, CCS, Federal University of Espírito Santo (UFES), Vitória, Brazil
- Vision Center Unit, Ophthalmology, EBSERH, HUCAM-UFES, Vitória, Brazil
- Department of Ophthalmology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Galaxy Y. Cho
- Frank H. Netter MD School of Medicine, Quinnipiac University, North Haven, CT, USA
- Barbara and Donald Jonas Laboratory of Stem Cells and Regenerative Medicine and Bernard & Shirlee Brown Glaucoma Laboratory, Columbia University, New York, NY, USA
- Department of Ophthalmology, Columbia University, New York, NY, USA
| | - Daniel A. Machlab
- Omics Laboratory, Stanford University, Palo Alto, CA, USA
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Stephen H. Tsang
- Barbara and Donald Jonas Laboratory of Stem Cells and Regenerative Medicine and Bernard & Shirlee Brown Glaucoma Laboratory, Columbia University, New York, NY, USA
- Department of Ophthalmology, Columbia University, New York, NY, USA
- Department of Pathology & Cell Biology, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | | | - Vinit B. Mahajan
- Omics Laboratory, Stanford University, Palo Alto, CA, USA
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| |
Collapse
|
30
|
Wert KJ, Velez G, Cross MR, Wagner BA, Teoh-Fitzgerald ML, Buettner GR, McAnany JJ, Olivier A, Tsang SH, Harper MM, Domann FE, Bassuk AG, Mahajan VB. Extracellular superoxide dismutase (SOD3) regulates oxidative stress at the vitreoretinal interface. Free Radic Biol Med 2018; 124:408-419. [PMID: 29940351 PMCID: PMC6233711 DOI: 10.1016/j.freeradbiomed.2018.06.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/21/2018] [Indexed: 02/07/2023]
Abstract
Oxidative stress is a pathogenic feature in vitreoretinal disease. However, the ability of the inner retina to manage metabolic waste and oxidative stress is unknown. Proteomic analysis of antioxidants in the human vitreous, the extracellular matrix opposing the inner retina, identified superoxide dismutase-3 (SOD3) that localized to a unique matrix structure in the vitreous base and cortex. To determine the role of SOD3, Sod3-/- mice underwent histological and clinical phenotyping. Although the eyes were structurally normal, at the vitreoretinal interface Sod3-/- mice demonstrated higher levels of 3-nitrotyrosine, a key marker of oxidative stress. Pattern electroretinography also showed physiological signaling abnormalities within the inner retina. Vitreous biopsies and epiretinal membranes collected from patients with diabetic vitreoretinopathy (DVR) and a mouse model of DVR showed significantly higher levels of nitrates and/or 3-nitrotyrosine oxidative stress biomarkers suggestive of SOD3 dysfunction. This study analyzes the molecular pathways that regulate oxidative stress in human vitreous substructures. The absence or dysregulation of the SOD3 antioxidant at the vitreous base and cortex results in increased oxidative stress and tissue damage to the inner retina, which may underlie DVR pathogenesis and other vitreoretinal diseases.
Collapse
Affiliation(s)
- Katherine J Wert
- Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA, United States; Omics Laboratory, Stanford University, Palo Alto, CA, United States
| | - Gabriel Velez
- Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA, United States; Omics Laboratory, Stanford University, Palo Alto, CA, United States
| | - Madeline R Cross
- Department of Pediatrics, University of Iowa, Iowa City, IA, United States
| | - Brett A Wagner
- Department of Radiation Oncology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Melissa L Teoh-Fitzgerald
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Garry R Buettner
- Department of Radiation Oncology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - J Jason McAnany
- Department of Ophthalmology, University of Illinois at Chicago, Chicago, IL, United States
| | - Alicia Olivier
- Division of Comparative Pathology, Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Stephen H Tsang
- Bernard and Shirlee Brown Glaucoma Laboratory and Barbara & Donald Jonas Laboratory of Regenerative Medicine, Columbia University, New York, NY, United States; Edward S. Harkness Eye Institute, Columbia University, New York, NY, United States; Departments of Ophthalmology, Pathology & Cell Biology, and Institute of Human Nutrition, Columbia University, New York, NY, United States
| | - Matthew M Harper
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, United States; Department of Veterans Affairs Iowa City Health Care System, Iowa City, IA, United States; Veterans Affairs Center for the Prevention and Treatment of Visual Loss, Iowa City, IA, United States
| | - Frederick E Domann
- Department of Radiation Oncology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Alexander G Bassuk
- Department of Pediatrics, University of Iowa, Iowa City, IA, United States
| | - Vinit B Mahajan
- Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA, United States; Omics Laboratory, Stanford University, Palo Alto, CA, United States; Palo Alto Veterans Administration, Palo Alto, CA, United States.
| |
Collapse
|
31
|
Evans LP, Newell EA, Mahajan M, Tsang SH, Ferguson PJ, Mahoney J, Hue CD, Vogel EW, Morrison B, Arancio O, Nichols R, Bassuk AG, Mahajan VB. Acute vitreoretinal trauma and inflammation after traumatic brain injury in mice. Ann Clin Transl Neurol 2018; 5:240-251. [PMID: 29560370 PMCID: PMC5846452 DOI: 10.1002/acn3.523] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/30/2017] [Accepted: 12/01/2017] [Indexed: 12/16/2022] Open
Abstract
Objective Limited attention has been given to ocular injuries associated with traumatic brain injury (TBI). The retina is an extension of the central nervous system and evaluation of ocular damage may offer a less‐invasive approach to gauge TBI severity and response to treatment. We aim to characterize acute changes in the mouse eye after exposure to two different models of TBI to assess the utility of eye damage as a surrogate to brain injury. Methods A model of blast TBI (bTBI) using a shock tube was compared to a lateral fluid percussion injury model (LFPI) using fluid pressure applied directly to the brain. Whole eyes were collected from mice 3 days post LFPI and 24 days post bTBI and were evaluated histologically using a hematoxylin and eosin stain. Results bTBI mice showed evidence of vitreous detachment in the posterior chamber in addition to vitreous hemorrhage with inflammatory cells. Subretinal hemorrhage, photoreceptor degeneration, and decreased cellularity in the retinal ganglion cell layer was also seen in bTBI mice. In contrast, eyes of LFPI mice showed evidence of anterior uveitis and subcapsular cataracts. Interpretation We demonstrated that variations in the type of TBI can result in drastically different phenotypic changes within the eye. As such, molecular and phenotypic changes in the eye following TBI may provide valuable information regarding the mechanism, severity, and ongoing pathophysiology of brain injury. Because vitreous samples are easily obtained, molecular changes within the eye could be utilized as biomarkers of TBI in human patients.
Collapse
Affiliation(s)
- Lucy P Evans
- Medical Scientist Training Program University of Iowa Iowa City Iowa.,Department of Pediatrics University of Iowa Iowa City Iowa
| | | | - MaryAnn Mahajan
- Omics Laboratory Department of Ophthalmology Stanford University Palo Alto California
| | - Stephen H Tsang
- Bernard and Shirlee Brown Glaucoma Laboratory and Barbara Donald Jonas Laboratory of Regenerative Medicine Columbia University New York New York.,Edward S. Harkness Eye Institute Columbia University New York New York.,Departments of Ophthalmology, Pathology & Cell Biology Institute of Human Nutrition Columbia University New York New York
| | | | | | - Christopher D Hue
- Department of Biomedical Engineering Columbia University New York New York
| | - Edward W Vogel
- Department of Biomedical Engineering Columbia University New York New York
| | - Barclay Morrison
- Department of Biomedical Engineering Columbia University New York New York
| | - Ottavio Arancio
- Department of Pathology & Cell Biology Taub Institute Columbia University New York New York
| | - Russell Nichols
- Department of Pathology & Cell Biology Taub Institute Columbia University New York New York
| | | | - Vinit B Mahajan
- Omics Laboratory Department of Ophthalmology Stanford University Palo Alto California.,Palo Alto Veterans Administration Palo Alto California
| |
Collapse
|
32
|
Velez G, Machlab DA, Tang PH, Sun Y, Tsang SH, Bassuk AG, Mahajan VB. Proteomic analysis of the human retina reveals region-specific susceptibilities to metabolic- and oxidative stress-related diseases. PLoS One 2018; 13:e0193250. [PMID: 29466423 PMCID: PMC5821407 DOI: 10.1371/journal.pone.0193250] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 02/07/2018] [Indexed: 12/14/2022] Open
Abstract
Differences in regional protein expression within the human retina may explain molecular predisposition of specific regions to ophthalmic diseases like age-related macular degeneration, cystoid macular edema, retinitis pigmentosa, and diabetic retinopathy. To quantify protein levels in the human retina and identify patterns of differentially-expressed proteins, we collected foveomacular, juxta-macular, and peripheral retina punch biopsies from healthy donor eyes and analyzed protein content by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Protein expression was analyzed with 1-way ANOVA, gene ontology, pathway representation, and network analysis. We identified a mean of 1,974 proteins in the foveomacular retina, 1,999 in the juxta-macular retina, and 1,779 in the peripheral retina. Six hundred ninety-seven differentially-expressed proteins included those unique to and abundant in each anatomic region. Proteins with higher expression in each region include: heat-shock protein 90-alpha (HSP90AA1), and pyruvate kinase (PKM) in the foveomacular retina; vimentin (VIM) and fructose-bisphosphate aldolase C (ALDOC); and guanine nucleotide-binding protein subunit beta-1 (GNB1) and guanine nucleotide-binding protein subunit alpha-1 (GNAT1) in the peripheral retina. Pathway analysis identified downstream mediators of the integrin signaling pathway to be highly represented in the foveomacular region (P = 6.48 e-06). Metabolic pathways were differentially expressed among all retinal regions. Gene ontology analysis showed that proteins related to antioxidant activity were higher in the juxta-macular and the peripheral retina, but present in lower amounts in the foveomacular retina. Our proteomic analysis suggests that certain retinal regions are susceptible to different forms of metabolic and oxidative stress. The findings give mechanistic insight into retina function, reveal important molecular processes, and prioritize new pathways for therapeutic targeting.
Collapse
Affiliation(s)
- Gabriel Velez
- Omics Laboratory, Stanford University, Palo Alto, California, United States of America
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, California, United States of America
- Medical Scientist Training Program, University of Iowa, Iowa City, Iowa, United States of America
| | - Daniel A. Machlab
- Omics Laboratory, Stanford University, Palo Alto, California, United States of America
| | - Peter H. Tang
- Omics Laboratory, Stanford University, Palo Alto, California, United States of America
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, California, United States of America
- Palo Alto Veterans Administration, Palo Alto, California, United States of America
| | - Yang Sun
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, California, United States of America
- Palo Alto Veterans Administration, Palo Alto, California, United States of America
| | - Stephen H. Tsang
- Jonas Children’s Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Departments of Ophthalmology, Pathology & Cell Biology, Institute of Human Nutrition, Columbia University, New York, New York, United States of America
- Department of Pathology & Cell Biology, College of Physicians & Surgeons, Columbia University, New York, New York, United States of America
| | - Alexander G. Bassuk
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, United States of America
| | - Vinit B. Mahajan
- Omics Laboratory, Stanford University, Palo Alto, California, United States of America
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, California, United States of America
- Palo Alto Veterans Administration, Palo Alto, California, United States of America
- * E-mail:
| |
Collapse
|
33
|
Velez G, Bassuk AG, Colgan D, Tsang SH, Mahajan VB. Therapeutic drug repositioning using personalized proteomics of liquid biopsies. JCI Insight 2017; 2:97818. [PMID: 29263305 DOI: 10.1172/jci.insight.97818] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/08/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND In patients with limited response to conventional therapeutics, repositioning of already approved drugs can bring new, more effective options. Current drug repositioning methods, however, frequently rely on retrospective computational analyses and genetic testing - time consuming methods that delay application of repositioned drugs. Here, we show how proteomic analysis of liquid biopsies successfully guided treatment of neovascular inflammatory vitreoretinopathy (NIV), an inherited autoinflammatory disease with otherwise poor clinical outcomes. METHODS Vitreous biopsies from NIV patients were profiled by an antibody array for expression of 200 cytokine-signaling proteins. Non-NIV controls were compared with NIV samples from various stages of disease progression. Patterns were identified by 1-way ANOVA, hierarchical clustering, and pathway analysis. Subjects treated with repositioned therapies were followed longitudinally. RESULTS Proteomic profiles revealed molecular pathways in NIV pathologies and implicated superior and inferior targets for therapy. Anti-VEGF injections resolved vitreous hemorrhages without the need for vitrectomy surgery. Methotrexate injections reversed inflammatory cell reactions without the side effects of corticosteroids. Anti-IL-6 therapy prevented recurrent fibrosis and retinal detachment where all prior antiinflammatory interventions had failed. The cytokine array also showed that TNF-α levels were normal and that corticosteroid-sensitive pathways were absent in fibrotic NIV, helping explain prior failure of these conventional therapeutic approaches. CONCLUSIONS Personalized proteomics can uncover highly personalized therapies for autoinflammatory disease that can be timed with specific pathologic activities. This precision medicine strategy can also help prevent delivery of ineffective drugs. Importantly, proteomic profiling of liquid biopsies offers an endpoint analysis that can directly guide treatment using available drugs.
Collapse
Affiliation(s)
- Gabriel Velez
- Omics Laboratory, Stanford University, Palo Alto, California, USA.,Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, California, USA.,Medical Scientist Training Program, and
| | | | - Diana Colgan
- Omics Laboratory, Stanford University, Palo Alto, California, USA.,Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, California, USA
| | - Stephen H Tsang
- Barbara and Donald Jonas Laboratory of Stem Cells and Regenerative Medicine and Bernard & Shirlee Brown Glaucoma Laboratory, Edward S. Harkness Eye Institute, and.,Department of Pathology & Cell Biology, College of Physicians & Surgeons, Columbia University, New York, New York, USA
| | - Vinit B Mahajan
- Omics Laboratory, Stanford University, Palo Alto, California, USA.,Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, California, USA.,Palo Alto Veterans Administration, Palo Alto, California, USA
| |
Collapse
|
34
|
Kohmoto R, Kobayashi T, Sato T, Kimura D, Fukumoto M, Tajiri K, Kida T, Ikeda T. A case of proliferative diabetic retinopathy in which scintillating particles appeared in the intravitreal cavity after laser photocoagulation. BMC Ophthalmol 2017; 17:254. [PMID: 29258460 PMCID: PMC5735882 DOI: 10.1186/s12886-017-0654-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 12/11/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To report a case of proliferative diabetic retinopathy (PDR) exhibiting the appearance of scintillating particles presumed to be crystallin inside the intravitreal cavity after laser photocoagulation. CASE PRESENTATION A 56-year-old male patient presented at our outpatient clinic after becoming aware of decreased vision in his right eye. Ocular examination performed at the patient's initial visit revealed a massive preretinal macular hemorrhage due to PDR in his right eye. Fundus fluorescein angiography revealed extensive retinal non-perfusion areas and neovascularization in both eyes. However, no opacity was observed in the intravitreal cavity of his left eye. Vitreous surgery was performed on the patient's right eye after ultrasonic phacoemulsification aspiration and intraocular lens implantation. Post surgery, the corrected VA in that eye improved from 0.1 to 1.0. In correlation with the treatment performed on the patient's right eye, we began panretinal photocoagulation on his left eye. Examination performed prior to the patient's third session of panretinal photocoagulation revealed a large number of scintillating particles in the posterior vitreous gel in front of the retina. Examination via slit-lamp microscopy revealed that the particles were of varied hues, and closely resembled a 'Christmas tree' cataract. No posterior vitreous detachment was observed, and since these particles were situated as if captured in the posterior vitreous gel, no eye-movement-associated mobility of the particles was observed. Since the cloudiness was not severe enough to interfere with photocoagulation, additional photocoagulation was performed, and the patient is currently under observation. Six months have now passed since the fourth photocoagulation procedure was performed, and there has been no change in the state of the particles. Optical coherence tomography imaging revealed no change before and after the panretinal photocoagulation. The corrected VA in his left eye has remained at 1.0 during the postoperative follow-up period. CONCLUSIONS We speculate that the production of crystallin in the retina in this case was triggered by the photocoagulation procedure performed for diabetic retinopathy.
Collapse
Affiliation(s)
- Ryohsuke Kohmoto
- Department of Ophthalmology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki City, Osaka, 569-8686, Japan
| | - Takatoshi Kobayashi
- Department of Ophthalmology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki City, Osaka, 569-8686, Japan
| | - Takaki Sato
- Department of Ophthalmology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki City, Osaka, 569-8686, Japan
| | - Daisaku Kimura
- Department of Ophthalmology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki City, Osaka, 569-8686, Japan.,Department of Ophthalmology, Takatsuki Red Cross Hospital, Takatsuki-City, Osaka, Japan
| | - Masanori Fukumoto
- Department of Ophthalmology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki City, Osaka, 569-8686, Japan
| | - Kensuke Tajiri
- Department of Ophthalmology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki City, Osaka, 569-8686, Japan
| | - Teruyo Kida
- Department of Ophthalmology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki City, Osaka, 569-8686, Japan
| | - Tsunehiko Ikeda
- Department of Ophthalmology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki City, Osaka, 569-8686, Japan.
| |
Collapse
|
35
|
Velez G, Tsang SH, Tsai YT, Hsu CW, Gore A, Abdelhakim AH, Mahajan M, Silverman RH, Sparrow JR, Bassuk AG, Mahajan VB. Gene Therapy Restores Mfrp and Corrects Axial Eye Length. Sci Rep 2017; 7:16151. [PMID: 29170418 PMCID: PMC5701072 DOI: 10.1038/s41598-017-16275-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 11/09/2017] [Indexed: 01/07/2023] Open
Abstract
Hyperopia (farsightedness) is a common and significant cause of visual impairment, and extreme hyperopia (nanophthalmos) is a consequence of loss-of-function MFRP mutations. MFRP deficiency causes abnormal eye growth along the visual axis and significant visual comorbidities, such as angle closure glaucoma, cystic macular edema, and exudative retinal detachment. The Mfrp rd6 /Mfrp rd6 mouse is used as a pre-clinical animal model of retinal degeneration, and we found it was also hyperopic. To test the effect of restoring Mfrp expression, we delivered a wild-type Mfrp to the retinal pigmented epithelium (RPE) of Mfrp rd6 /Mfrp rd6 mice via adeno-associated viral (AAV) gene therapy. Phenotypic rescue was evaluated using non-invasive, human clinical testing, including fundus auto-fluorescence, optical coherence tomography, electroretinography, and ultrasound. These analyses showed gene therapy restored retinal function and normalized axial length. Proteomic analysis of RPE tissue revealed rescue of specific proteins associated with eye growth and normal retinal and RPE function. The favorable response to gene therapy in Mfrp rd6 /Mfrp rd6 mice suggests hyperopia and associated refractive errors may be amenable to AAV gene therapy.
Collapse
Affiliation(s)
- Gabriel Velez
- Omics Laboratory, Stanford University, Palo Alto, CA, USA
- Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA, USA
- Medical Scientist Training Program, University of Iowa, Iowa City, IA, USA
| | - Stephen H Tsang
- Bernard & Shirlee Brown Glaucoma Laboratory, Departments of Ophthalmology, Pathology and Cell Biology, Institute of Human Nutrition, Columbia University, New York, NY, USA.
- Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA.
| | - Yi-Ting Tsai
- Bernard & Shirlee Brown Glaucoma Laboratory, Departments of Ophthalmology, Pathology and Cell Biology, Institute of Human Nutrition, Columbia University, New York, NY, USA
- Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA
| | - Chun-Wei Hsu
- Bernard & Shirlee Brown Glaucoma Laboratory, Departments of Ophthalmology, Pathology and Cell Biology, Institute of Human Nutrition, Columbia University, New York, NY, USA
- Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA
| | - Anuradha Gore
- Omics Laboratory, Stanford University, Palo Alto, CA, USA
| | - Aliaa H Abdelhakim
- Bernard & Shirlee Brown Glaucoma Laboratory, Departments of Ophthalmology, Pathology and Cell Biology, Institute of Human Nutrition, Columbia University, New York, NY, USA
- Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA
| | | | - Ronald H Silverman
- Bernard & Shirlee Brown Glaucoma Laboratory, Departments of Ophthalmology, Pathology and Cell Biology, Institute of Human Nutrition, Columbia University, New York, NY, USA
- Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA
| | - Janet R Sparrow
- Bernard & Shirlee Brown Glaucoma Laboratory, Departments of Ophthalmology, Pathology and Cell Biology, Institute of Human Nutrition, Columbia University, New York, NY, USA
- Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA
| | - Alexander G Bassuk
- Department of Pediatrics, University of Iowa, Iowa City, IA, USA.
- Department of Neurology, University of Iowa, Iowa City, IA, USA.
- Palo Alto Veterans Administration, Palo Alto, CA, USA.
| | - Vinit B Mahajan
- Omics Laboratory, Stanford University, Palo Alto, CA, USA.
- Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA, USA.
- Department of Neurology, University of Iowa, Iowa City, IA, USA.
- Palo Alto Veterans Administration, Palo Alto, CA, USA.
| |
Collapse
|
36
|
Cabral T, Toral MA, Velez G, DiCarlo JE, Gore AM, Mahajan M, Tsang SH, Bassuk AG, Mahajan VB. Dissection of Human Retina and RPE-Choroid for Proteomic Analysis. J Vis Exp 2017. [PMID: 29155757 DOI: 10.3791/56203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The human retina is composed of the sensory neuroretina and the underlying retinal pigmented epithelium (RPE), which is firmly complexed to the vascular choroid layer. Different regions of the retina are anatomically and molecularly distinct, facilitating unique functions and demonstrating differential susceptibility to disease. Proteomic analysis of each of these regions and layers can provide vital insights into the molecular process of many diseases, including Age-Related Macular Degeneration (AMD), diabetes mellitus, and glaucoma. However, separation of retinal regions and layers is essential before quantitative proteomic analysis can be accomplished. Here, we describe a method for dissection and collection of the foveal, macular, and peripheral retinal regions and underlying RPE-choroid complex, involving regional punch biopsies and manual removal of tissue layers from a human eye.One-dimensional SDS-PAGE as well as downstream proteomic analysis, such as liquid chromatography-tandem mass spectrometry (LC-MS/MS), can be used to identify proteins in each dissected retinal layer, revealing molecular biomarkers for retinal disease.
Collapse
Affiliation(s)
- Thiago Cabral
- Barbara & Donald Jonas Stem Cell Laboratory, and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Pathology & Cell Biology, Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University; Edward S. Harkness Eye Institute, New York-Presbyterian Hospital; Department of Ophthalmology, Federal University of Sao Paulo (UNIFESP); Department of Ophthalmology, Federal University of EspÍrito Santo (UFES)
| | - Marcus A Toral
- Omics Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University; Medical Scientist Training Program, University of Iowa
| | - Gabriel Velez
- Omics Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University; Medical Scientist Training Program, University of Iowa
| | - James E DiCarlo
- Barbara & Donald Jonas Stem Cell Laboratory, and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Pathology & Cell Biology, Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University; Edward S. Harkness Eye Institute, New York-Presbyterian Hospital
| | - Anuradha M Gore
- Omics Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University
| | - MaryAnn Mahajan
- Omics Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University
| | - Stephen H Tsang
- Barbara & Donald Jonas Stem Cell Laboratory, and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Pathology & Cell Biology, Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University; Edward S. Harkness Eye Institute, New York-Presbyterian Hospital
| | - Alexander G Bassuk
- Department of Pediatrics, University of Iowa; Department of Neurology, University of Iowa
| | - Vinit B Mahajan
- Omics Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University; Palo Alto Veterans Administration, Palo Alto, CA;
| |
Collapse
|
37
|
Peynshaert K, Devoldere J, Forster V, Picaud S, Vanhove C, De Smedt SC, Remaut K. Toward smart design of retinal drug carriers: a novel bovine retinal explant model to study the barrier role of the vitreoretinal interface. Drug Deliv 2017; 24:1384-1394. [PMID: 28925755 PMCID: PMC8241179 DOI: 10.1080/10717544.2017.1375578] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 08/31/2017] [Indexed: 12/15/2022] Open
Abstract
Retinal gene delivery via intravitreal injection is hampered by various physiological barriers present in the eye of which the vitreoretinal (VR) interface represents the most serious hurdle. In this study, we present a retinal explant model especially designed to study the role of this interface as a barrier for the penetration of vectors into the retina. In contrast to all existing explant models, the developed model is bovine-derived and more importantly, keeps the vitreous attached to the retina at all times to guarantee an intact VR interface. After ex vivo intravitreal injection into the living retinal explant, the route of fluorescent carriers across the VR interface can be tracked. By applying two different imaging methods on this model, we discovered that the transfer through the VR barrier is size-dependent since 40 nm polystyrene particles are more easily taken up in the retina than 100 and 200 nm sized particles. In addition, we found that removing the vitreous, as commonly done for culture of conventional explants, leads to an overestimation of particle uptake, and conclude that the ultimate barrier to overcome for retinal uptake is undoubtedly the inner limiting membrane. Damaging this matrix resulted in a massive increase in particle transfer into the retina. In conclusion, we have developed a highly relevant ex vivo model that maximally mimics the human in vivo physiology which can be applied as a representative test set-up to assess the potential of promising drug delivery carriers to cross the VR interface.
Collapse
Affiliation(s)
- Karen Peynshaert
- Lab of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
- Ghent Research Group on Nanomedicines, Ghent University, Ghent, Belgium
| | - Joke Devoldere
- Lab of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
- Ghent Research Group on Nanomedicines, Ghent University, Ghent, Belgium
| | - Valérie Forster
- Institut de la Vision, INSERM, Université Paris 6, Paris, France
| | - Serge Picaud
- Institut de la Vision, INSERM, Université Paris 6, Paris, France
| | - Christian Vanhove
- Department of Respiratory Medicine, Ghent University, Ghent, Belgium
| | - Stefaan C. De Smedt
- Lab of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
- Ghent Research Group on Nanomedicines, Ghent University, Ghent, Belgium
| | - Katrien Remaut
- Lab of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
- Ghent Research Group on Nanomedicines, Ghent University, Ghent, Belgium
| |
Collapse
|
38
|
Cases O, Obry A, Ben-Yacoub S, Augustin S, Joseph A, Toutirais G, Simonutti M, Christ A, Cosette P, Kozyraki R. Impaired vitreous composition and retinal pigment epithelium function in the FoxG1::LRP2 myopic mice. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1242-1254. [DOI: 10.1016/j.bbadis.2017.03.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/09/2017] [Accepted: 03/29/2017] [Indexed: 01/12/2023]
|
39
|
Funke S, Perumal N, Bell K, Pfeiffer N, Grus FH. The potential impact of recent insights into proteomic changes associated with glaucoma. Expert Rev Proteomics 2017; 14:311-334. [PMID: 28271721 DOI: 10.1080/14789450.2017.1298448] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Glaucoma, a major ocular neuropathy, is still far from being understood on a molecular scale. Proteomic workflows revealed glaucoma associated alterations in different eye components. By using state-of-the-art mass spectrometric (MS) based discovery approaches large proteome datasets providing important information about glaucoma related proteins and pathways could be generated. Corresponding proteomic information could be retrieved from various ocular sample species derived from glaucoma experimental models or from original human material (e.g. optic nerve head or aqueous humor). However, particular eye tissues with the potential for understanding the disease's molecular pathomechanism remains underrepresented. Areas covered: The present review provides an overview of the analysis depth achieved for the glaucomatous eye proteome. With respect to different eye regions and biofluids, proteomics related literature was found using PubMed, Scholar and UniProtKB. Thereby, the review explores the potential of clinical proteomics for glaucoma research. Expert commentary: Proteomics will provide important contributions to understanding the molecular processes associated with glaucoma. Sensitive discovery and targeted MS approaches will assist understanding of the molecular interplay of different eye components and biofluids in glaucoma. Proteomic results will drive the comprehension of glaucoma, allowing a more stringent disease hypothesis within the coming years.
Collapse
Affiliation(s)
- Sebastian Funke
- a Experimental Ophthalmology , University Medical Center , Mainz , Germany
| | - Natarajan Perumal
- a Experimental Ophthalmology , University Medical Center , Mainz , Germany
| | - Katharina Bell
- a Experimental Ophthalmology , University Medical Center , Mainz , Germany
| | - Norbert Pfeiffer
- a Experimental Ophthalmology , University Medical Center , Mainz , Germany
| | - Franz H Grus
- a Experimental Ophthalmology , University Medical Center , Mainz , Germany
| |
Collapse
|
40
|
Velez G, Roybal CN, Binkley E, Bassuk AG, Tsang SH, Mahajan VB. Proteomic Analysis of Elevated Intraocular Pressure with Retinal Detachment. Am J Ophthalmol Case Rep 2017; 5:107-110. [PMID: 28825049 PMCID: PMC5560621 DOI: 10.1016/j.ajoc.2016.12.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To report a case of elevated intraocular pressure with retinal detachment. Observations Liquid chromatography and tandem mass spectrometry was performed on the patient aqueous biopsy. Protein levels were analyzed with 1-way analysis of variance (ANOVA) and unbiased clustering. High levels of rod outer segment proteins were not detected, suggesting that this was not a case of Schwartz-Matsuo syndrome. Instead, elevated levels of Hepcidin (HEPC) and Cystatin C (CYTC; candidate biomarkers for primary open angle glaucoma) were detected, suggesting a different, unknown etiology. Conclusions and importance Molecular diagnoses can differentiate between clinical diagnoses and point to common biomarkers or disease mechanisms.
Collapse
Affiliation(s)
- Gabriel Velez
- Omics Laboratory, University of Iowa, Iowa City, IA.,Departments of Ophthalmology, University of Iowa, Iowa City, IA.,Medical Scientist Training Program, University of Iowa, Iowa City, IA
| | - C Nathaniel Roybal
- Omics Laboratory, University of Iowa, Iowa City, IA.,Departments of Ophthalmology, University of Iowa, Iowa City, IA
| | - Elaine Binkley
- Departments of Ophthalmology, University of Iowa, Iowa City, IA
| | - Alexander G Bassuk
- Department of Pediatrics, University of Iowa, Iowa City, IA.,Department of Neurology, University of Iowa, Iowa City, IA
| | - Stephen H Tsang
- Barbara & Donald Jonas Stem Cell Laboratory, and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Pathology & Cell Biology, Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY 10032.,Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY 10032
| | - Vinit B Mahajan
- Omics Laboratory, University of Iowa, Iowa City, IA.,Departments of Ophthalmology, University of Iowa, Iowa City, IA
| |
Collapse
|
41
|
Wert KJ, Mahajan VB, Zhang L, Yan Y, Li Y, Tosi J, Hsu CW, Nagasaki T, Janisch KM, Grant MB, Mahajan M, Bassuk AG, Tsang SH. Neuroretinal hypoxic signaling in a new preclinical murine model for proliferative diabetic retinopathy. Signal Transduct Target Ther 2016; 1. [PMID: 27195131 PMCID: PMC4868361 DOI: 10.1038/sigtrans.2016.5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Diabetic retinopathy (DR) affects approximately one-third of diabetic patients and, if left untreated, progresses to proliferative DR (PDR) with associated vitreous hemorrhage, retinal detachment, iris neovascularization, glaucoma and irreversible blindness. In vitreous samples of human patients with PDR, we found elevated levels of hypoxia inducible factor 1 alpha (HIF1α). HIFs are transcription factors that promote hypoxia adaptation and have important functional roles in a wide range of ischemic and inflammatory diseases. To recreate the human PDR phenotype for a preclinical animal model, we generated a mouse with neuroretinal-specific loss of the von Hippel Lindau tumor suppressor protein, a protein that targets HIF1α for ubiquitination. We found that the neuroretinal cells in these mice overexpressed HIF1α and developed severe, irreversible ischemic retinopathy that has features of human PDR. Rapid progression of retinopathy in these mutant mice should facilitate the evaluation of therapeutic agents for ischemic and inflammatory blinding disorders. In addition, this model system can be used to manipulate the modulation of the hypoxia signaling pathways, for the treatment of non-ocular ischemic and inflammatory disorders.
Collapse
Affiliation(s)
- Katherine J Wert
- Bernard and Shirlee Brown Glaucoma Laboratory and Barbara & Donald Jonas Laboratory of Regenerative Medicine, Columbia University, New York, NY, USA; Edward S. Harkness Eye Institute, Columbia University, New York, NY, USA; Institute of Human Nutrition, Columbia University, New York, NY, USA
| | - Vinit B Mahajan
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA; Omics Laboratory, University of Iowa, Iowa City, IA, USA
| | - Lijuan Zhang
- Bernard and Shirlee Brown Glaucoma Laboratory and Barbara & Donald Jonas Laboratory of Regenerative Medicine, Columbia University, New York, NY, USA; Edward S. Harkness Eye Institute, Columbia University, New York, NY, USA
| | - Yuanqing Yan
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Yao Li
- Bernard and Shirlee Brown Glaucoma Laboratory and Barbara & Donald Jonas Laboratory of Regenerative Medicine, Columbia University, New York, NY, USA; Edward S. Harkness Eye Institute, Columbia University, New York, NY, USA
| | - Joaquin Tosi
- Bernard and Shirlee Brown Glaucoma Laboratory and Barbara & Donald Jonas Laboratory of Regenerative Medicine, Columbia University, New York, NY, USA; Edward S. Harkness Eye Institute, Columbia University, New York, NY, USA
| | - Chun Wei Hsu
- Bernard and Shirlee Brown Glaucoma Laboratory and Barbara & Donald Jonas Laboratory of Regenerative Medicine, Columbia University, New York, NY, USA; Edward S. Harkness Eye Institute, Columbia University, New York, NY, USA
| | - Takayuki Nagasaki
- Edward S. Harkness Eye Institute, Columbia University, New York, NY, USA
| | - Kerstin M Janisch
- Bernard and Shirlee Brown Glaucoma Laboratory and Barbara & Donald Jonas Laboratory of Regenerative Medicine, Columbia University, New York, NY, USA; Edward S. Harkness Eye Institute, Columbia University, New York, NY, USA
| | - Maria B Grant
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - MaryAnn Mahajan
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA; Omics Laboratory, University of Iowa, Iowa City, IA, USA
| | | | - Stephen H Tsang
- Bernard and Shirlee Brown Glaucoma Laboratory and Barbara & Donald Jonas Laboratory of Regenerative Medicine, Columbia University, New York, NY, USA; Edward S. Harkness Eye Institute, Columbia University, New York, NY, USA; Institute of Human Nutrition, Columbia University, New York, NY, USA; New York Presbyterian Hospital/Columbia University Medical Center, New York, NY, USA; Department of Pathology and Cellular Biology, Columbia University, New York, NY, USA
| |
Collapse
|
42
|
Liu Y, Bouhenni RA, Dufresne CP, Semba RD, Edward DP. Differential Expression of Vitreous Proteins in Young and Mature New Zealand White Rabbits. PLoS One 2016; 11:e0153560. [PMID: 27089221 PMCID: PMC4835093 DOI: 10.1371/journal.pone.0153560] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 03/31/2016] [Indexed: 02/06/2023] Open
Abstract
Different anatomical regions have been defined in the vitreous humor including central vitreous, basal vitreous, vitreous cortex, vitreoretinal interface and zonule. In this study we sought to characterize changes in the proteome of vitreous humor (VH) related to compartments or age in New Zealand white rabbits (NZW). Vitreous humor was cryo-collected from young and mature New Zealand white rabbit eyes, and dissected into anterior and posterior compartments. All samples were divided into 4 groups: Young Anterior (YA), Young Posterior (YP), Mature Anterior (MA) and Mature Posterior (MP) vitreous. Tryptic digests of total proteins were analyzed by liquid chromatography followed by tandem mass spectrometry. Spectral count was used to determine the relative protein abundances and identify proteins with statistical differences between compartment and age groups. Western blotting was performed to validate some of the differentially expressed proteins. Our results showed that 231, 375, 273 and 353 proteins were identified in the YA, YP, MA and MP respectively. Fifteen proteins were significantly differentially expressed between YA and YP, and 11 between MA and MP. Carbonic anhydrase III, lambda crystallin, alpha crystallin A and B, beta crystallin B1 and B2 were more abundant in the anterior region, whereas vimentin was less abundant in the anterior region. For comparisons between age groups, 4 proteins were differentially expressed in both YA relative to MA and YP relative to MP. Western blotting confirmed the differential expression of carbonic anhydrase III, alpha crystallin B and beta crystallin B2. The protein profiles of the vitreous humor showed age- and compartment-related differences. This differential protein profile provides a baseline for understanding the vitreous compartmentalization in the rabbit and suggests that further studies profiling proteins in different compartments of the vitreous in other species may be warranted.
Collapse
Affiliation(s)
- Ying Liu
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, United States of America
- Changsha Aier Eye Hospital, Changsha, China
| | | | - Craig P. Dufresne
- Thermo Fisher Scientific, West Palm Beach, Florida, United States of America
| | - Richard D. Semba
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Deepak P. Edward
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, United States of America
- King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
- * E-mail:
| |
Collapse
|
43
|
Jo DH, Bae J, Chae S, Kim JH, Han JH, Hwang D, Lee SW, Kim JH. Quantitative Proteomics Reveals β2 Integrin-mediated Cytoskeletal Rearrangement in Vascular Endothelial Growth Factor (VEGF)-induced Retinal Vascular Hyperpermeability. Mol Cell Proteomics 2016; 15:1681-91. [PMID: 26969716 DOI: 10.1074/mcp.m115.053249] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Indexed: 12/24/2022] Open
Abstract
Retinal vascular hyperpermeability causes macular edema, leading to visual deterioration in retinal diseases such as diabetic retinopathy and retinal vascular occlusion. Dysregulation of junction integrity between endothelial cells by vascular endothelial growth factor (VEGF) was shown to cause retinal vascular hyperpermeability. Accordingly, anti-VEGF agents have been used to treat retinal vascular hyperpermeability. However, they can confer potential toxicity through their deleterious effects on maintenance and survival of neuronal and endothelial cells in the retina. Thus, it is important to identify novel therapeutic targets for retinal vascular hyperpermeability other than VEGF. Here, we prepared murine retinas showing VEGF-induced vascular leakage from superficial retinal vascular plexus and prevention of VEGF-induced leakage by anti-VEGF antibody treatment. We then performed comprehensive proteome profiling of these samples and identified retinal proteins for which abundances were differentially expressed by VEGF, but such alterations were inhibited by anti-VEGF antibody. Functional enrichment and network analyses of these proteins revealed the β2 integrin pathway, which can prevent dysregulation of junction integrity between endothelial cells through cytoskeletal rearrangement, as a potential therapeutic target for retinal vascular hyperpermeability. Finally, we experimentally demonstrated that inhibition of the β2 integrin pathway salvaged VEGF-induced retinal vascular hyperpermeability, supporting its validity as an alternative therapeutic target to anti-VEGF agents.
Collapse
Affiliation(s)
- Dong Hyun Jo
- From the ‡Fight Against Angiogenesis-related Blindness Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul 03080, Korea; §Department of Biomedical Sciences and Protein Metabolism Medical Research Center, College of Medicine, Seoul National University, Seoul 03080, Korea
| | - Jingi Bae
- ‖Department of Chemistry, Research Institute for Natural Sciences, Korea University, Seoul 02841, Korea
| | - Sehyun Chae
- **Department of New Biology and Center for Plant Aging Research, Institute for Basic Science, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea; and
| | - Jin Hyoung Kim
- From the ‡Fight Against Angiogenesis-related Blindness Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul 03080, Korea
| | - Jong-Hee Han
- ‖Department of Chemistry, Research Institute for Natural Sciences, Korea University, Seoul 02841, Korea
| | - Daehee Hwang
- **Department of New Biology and Center for Plant Aging Research, Institute for Basic Science, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea; and
| | - Sang-Won Lee
- ‖Department of Chemistry, Research Institute for Natural Sciences, Korea University, Seoul 02841, Korea;
| | - Jeong Hun Kim
- From the ‡Fight Against Angiogenesis-related Blindness Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul 03080, Korea; §Department of Biomedical Sciences and Protein Metabolism Medical Research Center, College of Medicine, Seoul National University, Seoul 03080, Korea; §§Department of Ophthalmology, College of Medicine, Seoul National University, Seoul 03080, Korea
| |
Collapse
|
44
|
Lactate Transport and Receptor Actions in Retina: Potential Roles in Retinal Function and Disease. Neurochem Res 2015; 41:1229-36. [PMID: 26677077 DOI: 10.1007/s11064-015-1792-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 11/06/2015] [Accepted: 11/08/2015] [Indexed: 01/01/2023]
Abstract
In retina, like in brain, lactate equilibrates across cell membranes via monocarboxylate transporters and in the extracellular space by diffusion, forming a basis for the action of lactate as a transmitter of metabolic signals. In the present paper, we argue that the lactate receptor GPR81, also known as HCAR1, may contribute importantly to the control of retinal cell functions in health and disease. GPR81, a G-protein coupled receptor, is known to downregulate cAMP both in adipose and nervous tissue. The receptor also acts through other down-stream mechanisms to control functions, such as excitability, metabolism and inflammation. Recent publications predict effects of the lactate receptor on neurodegeneration. Neurodegenerative diseases in retina, where the retinal ganglion cells die, notably glaucoma and diabetic retinopathy, may be linked to disturbed lactate homeostasis. Pilot studies reveal high GPR81 mRNA in retina and indicate GPR81 localization in Müller cells and retinal ganglion cells. Moreover, monocarboxylate transporters are expressed in retinal cells. We envision that lactate receptors and transporters could be useful future targets of novel therapeutic strategies to protect neurons and prevent or counteract glaucoma as well as other retinal diseases.
Collapse
|
45
|
Abstract
Current proteomic technologies can effectively be used to study the proteins of the vitreous body and retina in health and disease. The use of appropriate samples, analytical platform and bioinformatic method are essential factors to consider when undertaking such studies. Certain proteins may hinder the detection and evaluation of more relevant proteins associated with pathological processes if not carefully considered, particularly in the sample preparation and data analysis stages. The utilization of more than one quantification technique and database search program to expand the level of proteome coverage and analysis will help to generate more robust and worthwhile results. This review discusses important aspects of sample processing and the use of label and label-free quantitative proteomics strategies applied to the vitreous and retina.
Collapse
|
46
|
Arul AB, Byambadorj M, Han NY, Park JM, Lee H. Development of an Automated, High-throughput Sample Preparation Protocol for Proteomics Analysis. B KOREAN CHEM SOC 2015. [DOI: 10.1002/bkcs.10338] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Albert-Baskar Arul
- Lee Gil Ya Cancer and Diabetes Institute; Gachon University; Incheon Republic of Korea
| | | | - Na-Young Han
- Lee Gil Ya Cancer and Diabetes Institute; Gachon University; Incheon Republic of Korea
| | - Jong Moon Park
- Lee Gil Ya Cancer and Diabetes Institute; Gachon University; Incheon Republic of Korea
| | - Hookeun Lee
- Lee Gil Ya Cancer and Diabetes Institute; Gachon University; Incheon Republic of Korea
- Gachon Institute of Pharmaceutical Sciences, Gachon College of Pharmacy; Gachon University; Incheon 406-799 Republic of Korea
- Gachon Medical Research Institute; Gil Medical Center; Incheon 405-760 Republic of Korea
| |
Collapse
|
47
|
Brzović-Šarić V, Landeka I, Šarić B, Barberić M, Andrijašević L, Cerovski B, Oršolić N, Đikić D. Levels of selected oxidative stress markers in the vitreous and serum of diabetic retinopathy patients. Mol Vis 2015; 21:649-64. [PMID: 26120270 PMCID: PMC4462954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 06/10/2015] [Indexed: 10/30/2022] Open
Abstract
PURPOSE In diabetes, an impaired antioxidant defense system contributes to the development of diabetic retinopathy. The main objective of this paper was to find correlations of oxidative stress parameters within and between the vitreous and serum in patients with type 2 diabetes who had developed proliferative diabetic retinopathy. METHODS The study included and compared two groups of patients who underwent vitrectomy: 37 patients with type 2 diabetes and proliferative retinopathy (PDR), and 50 patients with non-diabetic eye disorders (NDED). Vascular endothelial growth factor (VEGF), advanced oxidized protein product (AOPP), and oxidative stress markers (direct lipid hydroperoxidation (LPO), malondialdehyde (MDA), total superoxide dismutase (SOD), and glutathione (GSH)) were measured in the vitreous and serum of both groups and correlated with one another, between humoral compartments and with gender, age, and serum glucose levels. RESULTS In the vitreous of PDR patients, VEGF, LPO, and MDA (p<0.05) were increased and SOD values were slightly lowered (p<0.05) than in NDED patients. Vitreous AOPP and GSH showed no differences between the groups. In the serum, AOPP, MDA, and SOD were increased (p<0.05) and VEGF was slightly increased (p<0.05) in the PDR group compared to NDED. With regard to gender, similar changes were recorded for both groups, except for the lower serum MDA in males than females in the NDED group. Advanced age showed no significant effect on changes of measured parameters in the vitreous. In the serum, VEGF was positively correlated (p<0.05) and MDA and SOD negatively correlated (p<0.05) with increasing age. Among measured parameters within and between the vitreous and serum, several correlative links occurred in the PDR group that were not present in the NDED group. The most prominent correlation changes were between serum LPO and vitreal LPO, serum SOD and vitreal LPO, serum LPO and serum SOD, and vitreal VEGF and serum SOD. CONCLUSIONS Among the selected oxidative stress markers, SOD and LPO were highly correlative in both the vitreous and serum in PDR compared to patients without metabolic disorders. Their correlations suggested that monitoring their mutual alterations might be informative during PDR development and should be considered in further research.
Collapse
Affiliation(s)
- Vlatka Brzović-Šarić
- Department of Ophthalmology, Sveti Duh Clinical Hospital, Sveti Duh 64, 10000 Zagreb, Croatia
| | - Irena Landeka
- Laboratory of Food Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Borna Šarić
- Department of Ophthalmology, Sveti Duh Clinical Hospital, Sveti Duh 64, 10000 Zagreb, Croatia
| | - Monika Barberić
- Medical Diagnostics Laboratory, Sveti Duh Clinical Hospital, Zagreb, Croatia
| | - Lidija Andrijašević
- Department of Ophthalmology, Sveti Duh Clinical Hospital, Sveti Duh 64, 10000 Zagreb, Croatia
| | | | - Nada Oršolić
- Department of Animal Physiology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Domagoj Đikić
- Department of Animal Physiology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
48
|
Skeie JM, Roybal CN, Mahajan VB. Proteomic insight into the molecular function of the vitreous. PLoS One 2015; 10:e0127567. [PMID: 26020955 PMCID: PMC4447289 DOI: 10.1371/journal.pone.0127567] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 04/16/2015] [Indexed: 02/06/2023] Open
Abstract
The human vitreous contains primarily water, but also contains proteins which have yet to be fully characterized. To gain insight into the four vitreous substructures and their potential functions, we isolated and analyzed the vitreous protein profiles of three non-diseased human eyes. The four analyzed substructures were the anterior hyaloid, the vitreous cortex, the vitreous core, and the vitreous base. Proteins were separated by multidimensional liquid chromatography and identified by tandem mass spectrometry. Bioinformatics tools then extracted the expression profiles, signaling pathways, and interactomes unique to each tissue. From each substructure, a mean of 2,062 unique proteins were identified, with many being differentially expressed in a specific substructure: 278 proteins were unique to the anterior hyaloid, 322 to the vitreous cortex, 128 to the vitreous base, and 136 to the vitreous core. When the identified proteins were organized according to relevant functional pathways and networks, key patterns appeared. The blood coagulation pathway and extracellular matrix turnover networks were highly represented. Oxidative stress regulation and energy metabolism proteins were distributed throughout the vitreous. Immune functions were represented by high levels of immunoglobulin, the complement pathway, damage-associated molecular patterns (DAMPs), and evolutionarily conserved antimicrobial proteins. The majority of vitreous proteins detected were intracellular proteins, some of which originate from the retina, including rhodopsin (RHO), phosphodiesterase 6 (PDE6), and glial fibrillary acidic protein (GFAP). This comprehensive analysis uncovers a picture of the vitreous as a biologically active tissue, where proteins localize to distinct substructures to protect the intraocular tissues from infection, oxidative stress, and energy disequilibrium. It also reveals the retina as a potential source of inflammatory mediators. The vitreous proteome catalogues the dynamic interactions between the vitreous and surrounding tissues. It therefore could be an indirect and effective method for surveying vitreoretinal disease for specific biomarkers.
Collapse
Affiliation(s)
- Jessica M. Skeie
- Omics Laboratory, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, United States of America
| | - C. Nathaniel Roybal
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, United States of America
| | - Vinit B. Mahajan
- Omics Laboratory, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, United States of America
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, United States of America
- * E-mail:
| |
Collapse
|
49
|
Thanos S, Böhm MR, Meyer zu Hörste M, Prokosch-Willing V, Hennig M, Bauer D, Heiligenhaus A. Role of crystallins in ocular neuroprotection and axonal regeneration. Prog Retin Eye Res 2014; 42:145-61. [DOI: 10.1016/j.preteyeres.2014.06.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 06/06/2014] [Accepted: 06/22/2014] [Indexed: 11/30/2022]
|
50
|
Yu Y, Suh MJ, Sikorski P, Kwon K, Nelson KE, Pieper R. Urine sample preparation in 96-well filter plates for quantitative clinical proteomics. Anal Chem 2014; 86:5470-7. [PMID: 24797144 PMCID: PMC4045327 DOI: 10.1021/ac5008317] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 05/05/2014] [Indexed: 01/03/2023]
Abstract
Urine is an important, noninvasively collected body fluid source for the diagnosis and prognosis of human diseases. Liquid chromatography mass spectrometry (LC-MS) based shotgun proteomics has evolved as a sensitive and informative technique to discover candidate disease biomarkers from urine specimens. Filter-aided sample preparation (FASP) generates peptide samples from protein mixtures of cell lysate or body fluid origin. Here, we describe a FASP method adapted to 96-well filter plates, named 96FASP. Soluble urine concentrates containing ~10 μg of total protein were processed by 96FASP and LC-MS resulting in 700-900 protein identifications at a 1% false discovery rate (FDR). The experimental repeatability, as assessed by label-free quantification and Pearson correlation analysis for shared proteins among replicates, was high (R ≥ 0.97). Application to urinary pellet lysates which is of particular interest in the context of urinary tract infection analysis was also demonstrated. On average, 1700 proteins (±398) were identified in five experiments. In a pilot study using 96FASP for analysis of eight soluble urine samples, we demonstrated that protein profiles of technical replicates invariably clustered; the protein profiles for distinct urine donors were very different from each other. Robust, highly parallel methods to generate peptide mixtures from urine and other body fluids are critical to increase cost-effectiveness in clinical proteomics projects. This 96FASP method has potential to become a gold standard for high-throughput quantitative clinical proteomics.
Collapse
Affiliation(s)
- Yanbao Yu
- The J.
Craig Venter Institute, 9704 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Moo-Jin Suh
- The J.
Craig Venter Institute, 9704 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Patricia Sikorski
- The J.
Craig Venter Institute, 9704 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Keehwan Kwon
- The J.
Craig Venter Institute, 9704 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Karen E. Nelson
- The J.
Craig Venter Institute, 9704 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Rembert Pieper
- The J.
Craig Venter Institute, 9704 Medical Center Drive, Rockville, Maryland 20850, United States
| |
Collapse
|