1
|
Zhang N, Sun Q, Zhang J, Zhang R, Liu S, Zhao X, Ma J, Li X. Intrapancreatic adipocytes and beta cell dedifferentiation in human type 2 diabetes. Diabetologia 2025; 68:1242-1260. [PMID: 40072535 DOI: 10.1007/s00125-025-06392-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/20/2025] [Indexed: 03/14/2025]
Abstract
AIMS/HYPOTHESIS Fat deposition in the pancreas is implicated in beta cell dysfunction and the progress of type 2 diabetes. However, there is limited evidence to confirm the correlation and explore how pancreatic fat links with beta cell dysfunction in human type 2 diabetes. This study aimed to examine the spatial relationship between pancreatic fat and islets in human pancreases. METHODS Histological analysis of pancreatic specimens from 50 organ donors (15 with type 2 diabetes, 35 without) assessed pancreatic fat content variation among individuals with diabetes and its correlation with estimated beta cell mass and cell distribution within islets. Bioinformatic analysis of single-cell RNA-seq of 11 type 2 diabetic donors (from the Human Pancreatic Analysis Project database) explored the impact of high pancreatic fat content on beta cell gene expression and cell fate. Validation of bioinformatic results was performed with the above diabetic pancreases. RESULTS Pancreatic fat content was higher in individuals with type 2 diabetes (10.24% [3.29-13.89%] vs 0.74% [0.34-5.11%], p<0.001), negatively correlated with estimated beta cell mass (r=-0.675, p=0.006) and positively with alpha-to-beta cell ratio (r=0.608, p=0.016). Enrichment analysis indicated that in diabetic donors with higher pancreatic fat content, the expression of ALDH1A3, beta cell dedifferentiation marker, in both alpha and beta cells was significantly increased, and in beta cells, the expression of NPY decreased. Pseudotime analysis revealed beta cell dedifferentiation and transdifferentiation towards alpha cells in diabetic donors with higher pancreatic fat content, with decreased expression of genes related to beta cell maturation and function, including INSM1, MafA and NPY. Concurrently, pathways related to inflammation and immune response were activated. Histologically, pancreatic fat content correlated positively with the percentage of beta cells positive for aldehyde dehydrogenase 1 family member A3 (ALDH1A3) within the islets (r=0.594, p=0.020) and the ALDH1A3 positivity rate in beta cells (r=0.615, p=0.015). And the number of T cells adjacent to adipocytes was related to the distribution pattern of adipocytes and the dedifferentiation phenotype in islets. CONCLUSIONS/INTERPRETATION Higher pancreatic fat content was accompanied by increased beta cell dedifferentiation in the individuals with diabetes. Clusters of adipocytes significantly contribute to higher pancreatic fat content and immune cell recruitment. Overall, the interactions among adipocytes, immune cells and beta cells in the pancreas microenvironment might contribute to beta cell failure and dedifferentiation in type 2 diabetes.
Collapse
Affiliation(s)
- Na Zhang
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiman Sun
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiaxin Zhang
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ruonan Zhang
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Siyi Liu
- Fudan University, Shanghai, China
| | - Xuelian Zhao
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Ma
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaomu Li
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Luo J, Chen K, Nong X. Potential regulation of artesunate on bone metabolism through suppressing inflammatory infiltration in type 2 diabetes mellitus. Immunopharmacol Immunotoxicol 2025; 47:147-158. [PMID: 39762719 DOI: 10.1080/08923973.2024.2444953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 12/15/2024] [Indexed: 03/29/2025]
Abstract
OBJECTIVE Osteoimmunology is an emerging field that explores the interplay between bone and the immune system. The immune system plays a critical role in the pathogenesis of diabetes and significantly affects bone homeostasis. Artesunate, a first-line treatment for malaria, is known for its low toxicity and multifunctional properties. Increasing evidence suggests that artesunate possesses anti-inflammatory, immunoregulatory, and osteogenic effects. This review aims to explore the relationship between immune regulation and bone metabolism in type 2 diabetes (T2DM) and to investigate the potential therapeutic application of artesunate. METHODS This review systematically examines literature from PubMed/Medline, Elsevier, Web of Science, Embase, the International Diabetes Federation, and other relevant databases. RESULTS This review synthesizes evidence from multiple sources to delineate the relationship between T lymphocytes and T2DM, the regulation of T lymphocyte subsets in bone metabolism, and the effects of artesunate on both T lymphocytes and bone metabolism. Recent studies suggest a bidirectional regulatory relationship between T2DM and T lymphocytes (CD4+ T and CD8+ T) during the onset and progression of the disease, with inflammatory and anti-inflammatory cytokines serving as key mediators. T lymphocyte subsets and their cytokines play a pivotal role in regulating osteogenesis and osteoclastogenesis in pathological conditions. Furthermore, artesunate has shown promise in modulating inflammatory infiltration and bone metabolism. CONCLUSION The accumulated evidence indicates that artesunate exerts regulatory effects on bone metabolism in T2DM by influencing T lymphocyte differentiation.
Collapse
Affiliation(s)
- Jinghong Luo
- Department of Oral & Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Kun Chen
- Department of Oral & Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaolin Nong
- Department of Oral & Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
3
|
Saadh MJ, Allela OQB, Kareem RA, Kyada A, Malathi H, Nathiya D, Bhanot D, Sameer HN, Hamad AK, Athab ZH, Adil M. Immune cell dysfunction: A critical player in development of diabetes complications. Curr Res Transl Med 2025; 73:103510. [PMID: 40339429 DOI: 10.1016/j.retram.2025.103510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/08/2025] [Accepted: 03/28/2025] [Indexed: 05/10/2025]
Abstract
Diabetes mellitus, a global health challenge, influences millions worldwide by leading to severe complications and premature death. A key factor in its pathogenesis is immune cell dysfunction, which aggravates both type 1 and type 2 diabetes. The important role that immune cell dysregulation plays in the emergence of diabetes complications is investigated in this research. It highlights the manner in which diabetes compromises the immune system's adaptive as well as innate responses. Key defects in innate immunity include impaired pathogen recognition, and dysfunctional behavior of macrophages, neutrophils, and natural killer (NK) cells. Additionally, the complement system is dysregulated, and cytokine production is altered, affecting overall immune signaling. The study investigates the dysfunction of several T and B cell subsets, such as CD4+ T cells, CD8+ T cells, regulatory T cells, and B cells, in relation to adaptive immunity. These dysfunctions collectively contribute to chronic inflammation, reduced pathogen clearance, and increased susceptibility to infections, ultimately exacerbating diabetes complications. Developing targeted therapies to reduce diabetes complications and enhance patient outcomes requires an understanding of these mechanisms.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | | | | | - Ashishkumar Kyada
- Marwadi University Research Center, Department of Pharmacy, Faculty of Health Sciences, Marwadi University, Rajkot 360003, Gujarat, India
| | - H Malathi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Deepak Nathiya
- Department of Pharmacy Practice, Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Deepak Bhanot
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - Hayder Naji Sameer
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | | | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | | |
Collapse
|
4
|
Gao Q, Liang B, Li H, Xie R, Xu Y, Tong Y, Jiang S. Metabolically healthy overweight/obesity with no metabolic abnormalities and incident hyperglycaemia in Chinese adults: analysis of a retrospective cohort study. BMJ Open 2025; 15:e087307. [PMID: 39880427 PMCID: PMC11781143 DOI: 10.1136/bmjopen-2024-087307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 12/16/2024] [Indexed: 01/31/2025] Open
Abstract
OBJECTIVES To explore whether metabolically healthy overweight (MHOW) and/or metabolically healthy obesity (MHO) increase hyperglycaemia risk in a Chinese population with a broad age range. DESIGN Retrospective cohort study. SETTING Secondary analysis of data from the DATADRYAD database, comprising health check records of participants from 32 regions and 11 cities in China between 2010 and 2016. PARTICIPANTS A total of 47 391 metabolically healthy participants with none of the metabolic abnormalities were selected. OUTCOME MEASURES Hyperglycaemia includes incident diabetes and impaired fasting glucose (IFG). Diabetes was diagnosed with fasting blood glucose ≥7.0 mmol/L and typical clinical symptoms and/or on self-report during follow-up. The fasting plasma glucose level of IFG was from 5.6 to 6.9 mmol/L. RESULTS With an average follow-up of 3.06 years, 5274 participants (11.13%) developed hyperglycaemia over 144 804 person-years, with an incidence rate of 36.42 per 1000 person-years. Adjusted model revealed a higher risk of incident hyperglycaemia in the MHOW group (HR=1.23, 95% CIs 1.16 to 1.30) and the MHO group (HR=1.49, 95% CI 1.33 to 1.67) compared with the metabolically healthy normal weight group. With 1 unit increase of body mass index, the risk of hyperglycaemia increased by 6% (HR=1.06, 95% CI 1.04 to 1.07). The stratified analyses and interaction tests showed the robustness of the association, and there was a stronger association in women (p for interaction<0.001). CONCLUSIONS The MHOW and MHO phenotypes were positively associated with a higher risk of hyperglycaemia in this population, and the association was particularly stronger in women.
Collapse
Affiliation(s)
- Qin Gao
- Public Health School, Jining Medical University, Jining, China
| | - Boya Liang
- Public Health School, Jining Medical University, Jining, China
- Public Health School, Binzhou Medical University, Yantai, China
| | - Hongmin Li
- Public Health School, Jining Medical University, Jining, China
| | - Ruining Xie
- Public Health School, Jining Medical University, Jining, China
| | - Yaru Xu
- Jining Center for Disease Control and Prevention, Jining, China
| | - Yeqing Tong
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Shunli Jiang
- Public Health School, Jining Medical University, Jining, China
| |
Collapse
|
5
|
Knott-Torcal C, de la Blanca NS, Serrano-Somavilla A, Hernández RM, Sampedro-Núñez M, Ruiz-Rosso B, Jiménez-Blanco S, González-Amaro R, González-Baranda L, Garcimartin A, Marazuela M. Quantitative analysis of Tr1 lymphocytes in patients with type 2 diabetes mellitus. J Endocrinol Invest 2024; 47:1447-1455. [PMID: 38183564 PMCID: PMC11142976 DOI: 10.1007/s40618-023-02250-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/13/2023] [Indexed: 01/08/2024]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is usually accompanied by a low-grade inflammatory phenomenon, which participates in the pathogenesis of different complications of this condition. The inflammatory response is under the regulation of different mechanisms, including T regulatory (Treg) lymphocytes. However, the possible role of type 1 T regulatory (Tr1) cells in T2DM has not been explored so far. AIM To carry out a quantitative analysis of Tr1 lymphocytes and other immune cell subsets in patients with T2DM and correlate these results with clinical findings and treatments. MATERIALS AND METHODS Sixty patients with T2DM and twenty-three healthy controls were included in the study. Biochemical and anthropometric variables were evaluated, and Tr1 lymphocytes (CD4+CD49+LAG-3+IL-10+) and other cell subsets (Th17, Th22 and Foxp3 + Treg cells) were analyzed in peripheral blood samples by multiparametric flow cytometry. RESULTS Significant increased levels of Tr1 cells were detected in patients with severe and mild disease, compared to healthy controls. In addition, CD4+IL-10+ lymphocytes were also increased in patients with T2DM. In contrast, similar levels of Foxp3+ Treg cells, Th17 and Th22 lymphocytes were observed in patients and controls. Likewise, no significant associations were detected between Tr1 cell levels and different clinical and laboratory parameters. However, those patients receiving glucagon-like peptide-1 receptor agonists (GLP-1-RA) showed similar levels of Tr1 cells than healthy controls, and significant lower numbers than untreated patients. CONCLUSION We observed an increase in Tr1 and CD4+IL10+ lymphocyte levels in T2DM. Moreover, GLP1-RA treatment was significantly associated with normalization of the Tr1 levels. This highlights another potential immune dysfunction in patients with T2DM, which could participate in the pathogenesis of this condition.
Collapse
Affiliation(s)
- C Knott-Torcal
- Department of Endocrinology and Nutrition, Health Research Institute, Hospital Universitario de La Princesa, Universidad Autónoma de Madrid, C/Diego de León 62, 28006, Madrid, Spain
- Faculty of Pharmacy, Universidad Complutense de Madrid, Av. Séneca, 2, 28040, Madrid, Spain
| | - N S de la Blanca
- Department of Endocrinology and Nutrition, Health Research Institute, Hospital Universitario de La Princesa, Universidad Autónoma de Madrid, C/Diego de León 62, 28006, Madrid, Spain
| | - A Serrano-Somavilla
- Department of Endocrinology and Nutrition, Health Research Institute, Hospital Universitario de La Princesa, Universidad Autónoma de Madrid, C/Diego de León 62, 28006, Madrid, Spain
| | - R M Hernández
- Department of Endocrinology and Nutrition, Health Research Institute, Hospital Universitario de La Princesa, Universidad Autónoma de Madrid, C/Diego de León 62, 28006, Madrid, Spain
| | - M Sampedro-Núñez
- Department of Endocrinology and Nutrition, Health Research Institute, Hospital Universitario de La Princesa, Universidad Autónoma de Madrid, C/Diego de León 62, 28006, Madrid, Spain
| | - B Ruiz-Rosso
- Faculty of Pharmacy, Universidad Complutense de Madrid, Av. Séneca, 2, 28040, Madrid, Spain
| | - S Jiménez-Blanco
- Department of Endocrinology and Nutrition, Health Research Institute, Hospital Universitario de La Princesa, Universidad Autónoma de Madrid, C/Diego de León 62, 28006, Madrid, Spain
| | - R González-Amaro
- Research Center of Health Sciences and Biomedicine (CICSaB), Universidad Autónoma de San Luis Potosí, SLP, México
| | - L González-Baranda
- Research Center of Health Sciences and Biomedicine (CICSaB), Universidad Autónoma de San Luis Potosí, SLP, México
| | - A Garcimartin
- Faculty of Pharmacy, Universidad Complutense de Madrid, Av. Séneca, 2, 28040, Madrid, Spain.
| | - M Marazuela
- Department of Endocrinology and Nutrition, Health Research Institute, Hospital Universitario de La Princesa, Universidad Autónoma de Madrid, C/Diego de León 62, 28006, Madrid, Spain.
| |
Collapse
|
6
|
Glassman I, Le N, Asif A, Goulding A, Alcantara CA, Vu A, Chorbajian A, Mirhosseini M, Singh M, Venketaraman V. The Role of Obesity in Breast Cancer Pathogenesis. Cells 2023; 12:2061. [PMID: 37626871 PMCID: PMC10453206 DOI: 10.3390/cells12162061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/03/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Research has shown that obesity increases the risk for type 2 diabetes mellitus (Type 2 DM) by promoting insulin resistance, increases serum estrogen levels by the upregulation of aromatase, and promotes the release of reactive oxygen species (ROS) by macrophages. Increased circulating glucose has been shown to activate mammalian target of rapamycin (mTOR), a significant signaling pathway in breast cancer pathogenesis. Estrogen plays an instrumental role in estrogen-receptor-positive breast cancers. The role of ROS in breast cancer warrants continued investigation, in relation to both pathogenesis and treatment of breast cancer. We aim to review the role of obesity in breast cancer pathogenesis and novel therapies mediating obesity-associated breast cancer development. We explore the association between body mass index (BMI) and breast cancer incidence and the mechanisms by which oxidative stress modulates breast cancer pathogenesis. We discuss the role of glutathione, a ubiquitous antioxidant, in breast cancer therapy. Lastly, we review breast cancer therapies targeting mTOR signaling, leptin signaling, blood sugar reduction, and novel immunotherapy targets.
Collapse
Affiliation(s)
- Ira Glassman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (N.L.); (A.A.); (C.A.A.); (M.M.)
| | - Nghia Le
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (N.L.); (A.A.); (C.A.A.); (M.M.)
| | - Aamna Asif
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (N.L.); (A.A.); (C.A.A.); (M.M.)
| | - Anabel Goulding
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (N.L.); (A.A.); (C.A.A.); (M.M.)
| | - Cheldon Ann Alcantara
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (N.L.); (A.A.); (C.A.A.); (M.M.)
| | - Annie Vu
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (N.L.); (A.A.); (C.A.A.); (M.M.)
| | - Abraham Chorbajian
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (N.L.); (A.A.); (C.A.A.); (M.M.)
| | - Mercedeh Mirhosseini
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (N.L.); (A.A.); (C.A.A.); (M.M.)
| | - Manpreet Singh
- Corona Regional Medical Center, Department of Emergency Medicine, Corona, CA 92882, USA
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (N.L.); (A.A.); (C.A.A.); (M.M.)
| |
Collapse
|
7
|
Geng Y, Liu Z, Hu R, Ma W, Wu X, Dong H, Song K, Xu X, Huang Y, Li F, Song Y, Zhang M. Opportunities and challenges: interleukin-22 comprehensively regulates polycystic ovary syndrome from metabolic and immune aspects. J Ovarian Res 2023; 16:149. [PMID: 37525285 PMCID: PMC10388558 DOI: 10.1186/s13048-023-01236-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/13/2023] [Indexed: 08/02/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is known as a prevalent but complicated gynecologic disease throughout the reproductive period. Typically, it is characterized by phenotypic manifestations of hyperandrogenism, polycystic ovary morphology, and persistent anovulation. For now, the therapeutic modality of PCOS is still a formidable challenge. Metabolic aberrations and immune challenge of chronic low-grade inflammatory state are significant in PCOS individuals. Recently, interleukin-22 (IL-22) has been shown to be therapeutically effective in immunological dysfunction and metabolic diseases, which suggests a role in the treatment of PCOS. In this review, we outline the potential mechanisms and limitations of IL-22 therapy in PCOS-related metabolic disorders including its regulation of insulin resistance, gut barrier, systemic inflammation, and hepatic steatosis to generate insights into developing novel strategies in clinical practice.
Collapse
Affiliation(s)
- Yuli Geng
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Zhuo Liu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Runan Hu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Wenwen Ma
- Department of Traditional Chinese Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Xiao Wu
- Department of Traditional Chinese Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Haoxu Dong
- Department of Traditional Chinese Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Kunkun Song
- Department of Traditional Chinese Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Xiaohu Xu
- Department of Traditional Chinese Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Yanjing Huang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Fan Li
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Yufan Song
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China.
- Department of Traditional Chinese Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China.
| | - Mingmin Zhang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China.
- Department of Traditional Chinese Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China.
| |
Collapse
|
8
|
Messer EK, Meyer AL, Klaeske K, Sieg F, Eifert S, Schmiedel D, Haunschild J, Jawad K, Saeed D, Hildebrandt L, Borger MA, Dieterlen MT. The Impact of Obesity on T and NK Cells after LVAD Implantation. Obes Facts 2023; 16:364-373. [PMID: 37232004 PMCID: PMC10427956 DOI: 10.1159/000530174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 03/06/2023] [Indexed: 05/27/2023] Open
Abstract
INTRODUCTION Infections are a major problem after left ventricular assist device (LVAD) implantation that affects morbidity, mortality, and the quality of life. Obesity often increases the risk for infection. In the cohort of LVAD patients, it is unknown if obesity affects the immunological parameters involved in viral defense. Therefore, this study investigated whether overweight or obesity affects immunological parameters such as CD8+ T cells and natural killer (NK) cells. METHODS Immune cell subsets of CD8+ T cells and NK cells were compared between normal-weight (BMI 18.5-24.9 kg/m2, n = 17), pre-obese (BMI 25.0-29.9 kg/m2, n = 24), and obese (BMI ≥30 kg/m2, n = 27) patients. Cell subsets and cytokine serum levels were quantified prior to LVAD implantation and at 3, 6, and 12 months after LVAD implantation. RESULTS At the end of the first postoperative year, obese patients (31.8% ± 2.1%) had a lower proportion of CD8+ T cells than normal-weight patients (42.4% ± 4.1%; p = 0.04), and the percentage of CD8+ T cells was negatively correlated with BMI (p = 0.03; r = -0.329). The proportion of circulating NK cells increased after LVAD implantation patients in normal-weight (p = 0.01) and obese patients (p < 0.01). Patients with pre-obesity showed a delayed increase (p < 0.01) 12 months after LVAD implantation. Further, obese patients showed an increase in the percentage of CD57+ NK cells after 6 and 12 months (p = 0.01) of treatment, higher proportions of CD56bright NK cells (p = 0.01), and lower proportions of CD56dim/neg NK cells (p = 0.03) 3 months after LVAD implantation than normal-weight patients. The proportion of CD56bright NK cells positively correlated with BMI (p < 0.01, r = 0.403) 1 year after LVAD implantation. CONCLUSIONS This study documented that obesity affects CD8+ T cells and subsets of NK cells in patients with LVAD in the first year after LVAD implantation. Lower proportions of CD8+ T cells and CD56dim/neg NK cells and higher proportion of CD56bright NK cells were detected in obese but not in pre-obese and normal-weight LVAD patients during the first year after LVAD implantation. The induced immunological imbalance and phenotypic changes of T and NK cells may influence viral and bacterial immunoreactivity.
Collapse
Affiliation(s)
- Eva Katharina Messer
- Heart Center, Department of Cardiac Surgery, HELIOS Clinic, University Hospital Leipzig, Leipzig, Germany
| | - Anna Lassia Meyer
- Heart Center, Department of Cardiac Surgery, HELIOS Clinic, University Hospital Leipzig, Leipzig, Germany
| | - Kristin Klaeske
- Heart Center, Department of Cardiac Surgery, HELIOS Clinic, University Hospital Leipzig, Leipzig, Germany
| | - Franz Sieg
- Heart Center, Department of Cardiac Surgery, HELIOS Clinic, University Hospital Leipzig, Leipzig, Germany
| | - Sandra Eifert
- Heart Center, Department of Cardiac Surgery, HELIOS Clinic, University Hospital Leipzig, Leipzig, Germany
| | - Dominik Schmiedel
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Josephina Haunschild
- Heart Center, Department of Cardiac Surgery, HELIOS Clinic, University Hospital Leipzig, Leipzig, Germany
| | - Khalil Jawad
- Heart Center, Department of Cardiac Surgery, HELIOS Clinic, University Hospital Leipzig, Leipzig, Germany
| | - Diyar Saeed
- Heart Center, Department of Cardiac Surgery, HELIOS Clinic, University Hospital Leipzig, Leipzig, Germany
| | - Lea Hildebrandt
- Heart Center, Department of Cardiac Surgery, HELIOS Clinic, University Hospital Leipzig, Leipzig, Germany
| | - Michael Andrew Borger
- Heart Center, Department of Cardiac Surgery, HELIOS Clinic, University Hospital Leipzig, Leipzig, Germany
| | - Maja-Theresa Dieterlen
- Heart Center, Department of Cardiac Surgery, HELIOS Clinic, University Hospital Leipzig, Leipzig, Germany
| |
Collapse
|
9
|
Wang Y, Yu H, Li J, Liu W, Yu S, Lv P, Zhao L, Wang X, Zuo Z, Liu X. Th22 cells induce Müller cell activation via the Act1/TRAF6 pathway in diabetic retinopathy. Cell Tissue Res 2022; 390:367-383. [PMID: 36201050 DOI: 10.1007/s00441-022-03689-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/14/2022] [Indexed: 11/02/2022]
Abstract
T helper 22 (Th22) cells have been implicated in diabetic retinopathy (DR), but it remains unclear whether Th22 cells involve in the pathogenesis of DR. To investigate the role of Th22 cells in DR mice, the animal models were established by intraperitoneal injection of STZ and confirmed by fundus fluorescein angiography and retinal haematoxylin-eosin staining. IL-22BP was administered by intravitreal injection. IL-22 level was measured by ELISA in vivo and in vitro. The expression of IL-22Rα1 in the retina was assessed by immunofluorescence. We assessed GFAP, VEGF, ICAM-1, inflammatory-associated factors and the integrity of blood-retinal barrier in control, DR, IL-22BP, and sham group. Müller cells were co-cultured with Th22 cells, and the expression of the above proteins was measured by immunoblotting. Plasmid transfection technique was used to silence Act1 gene in Müller cells. Results in vivo and in vitro indicated that Th22 cells infiltrated into the DR retinal and IL-22Rα1 expressed in Müller cells. Th22 cells promoted Müller cells activation and inflammatory factor secretion by secreting IL-22 compared with high-glucose stimulation alone. In addition, IL-22BP ameliorated the pathological alterations of the retina in DR. Inhibition of the inflammatory signalling cascade through Act1 knockdown alleviated DR-like pathology. All in all, the results suggested that Th22 cells infiltrated into the retina and secreted IL-22 in DR, and then IL-22 binding with IL-22Rα1 activated the Act1/TRAF6 signal pathway, and promoted the inflammatory of Müller cells and involved the pathogenesis of DR.
Collapse
Affiliation(s)
- Yufei Wang
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China.,Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Hongdan Yu
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China.,Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Jing Li
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China
| | - Wenqiang Liu
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China.,Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Shengxue Yu
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China.,Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Pan Lv
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China.,Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Lipan Zhao
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China.,Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Xiaobai Wang
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China.,Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Zhongfu Zuo
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China. .,Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China. .,Department of Anatomy, Histology and Embryology, Postdoctoral Research Station, Guangxi Medical University, Nanning, China.
| | - Xuezheng Liu
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China. .,Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China.
| |
Collapse
|
10
|
Phang RJ, Ritchie RH, Hausenloy DJ, Lees JG, Lim SY. Cellular interplay between cardiomyocytes and non-myocytes in diabetic cardiomyopathy. Cardiovasc Res 2022; 119:668-690. [PMID: 35388880 PMCID: PMC10153440 DOI: 10.1093/cvr/cvac049] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/16/2022] [Accepted: 03/05/2022] [Indexed: 11/13/2022] Open
Abstract
Patients with Type 2 diabetes mellitus (T2DM) frequently exhibit a distinctive cardiac phenotype known as diabetic cardiomyopathy. Cardiac complications associated with T2DM include cardiac inflammation, hypertrophy, fibrosis and diastolic dysfunction in the early stages of the disease, which can progress to systolic dysfunction and heart failure. Effective therapeutic options for diabetic cardiomyopathy are limited and often have conflicting results. The lack of effective treatments for diabetic cardiomyopathy is due in part, to our poor understanding of the disease development and progression, as well as a lack of robust and valid preclinical human models that can accurately recapitulate the pathophysiology of the human heart. In addition to cardiomyocytes, the heart contains a heterogeneous population of non-myocytes including fibroblasts, vascular cells, autonomic neurons and immune cells. These cardiac non-myocytes play important roles in cardiac homeostasis and disease, yet the effect of hyperglycaemia and hyperlipidaemia on these cell types are often overlooked in preclinical models of diabetic cardiomyopathy. The advent of human induced pluripotent stem cells provides a new paradigm in which to model diabetic cardiomyopathy as they can be differentiated into all cell types in the human heart. This review will discuss the roles of cardiac non-myocytes and their dynamic intercellular interactions in the pathogenesis of diabetic cardiomyopathy. We will also discuss the use of sodium-glucose cotransporter 2 inhibitors as a therapy for diabetic cardiomyopathy and their known impacts on non-myocytes. These developments will no doubt facilitate the discovery of novel treatment targets for preventing the onset and progression of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Ren Jie Phang
- O'Brien Institute Department, St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia.,Departments of Surgery and Medicine, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Rebecca H Ritchie
- School of Biosciences, Parkville, Victoria 3010, Australia.,Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria 3052, Australia.,Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| | - Derek J Hausenloy
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore.,Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore.,The Hatter Cardiovascular Institute, University College London, London, UK.,Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taichung City, Taiwan
| | - Jarmon G Lees
- O'Brien Institute Department, St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia.,Departments of Surgery and Medicine, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Shiang Y Lim
- O'Brien Institute Department, St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia.,Departments of Surgery and Medicine, University of Melbourne, Parkville, Victoria 3010, Australia.,National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| |
Collapse
|
11
|
Wu Q, Xia MF, Gao X. Metabolically healthy obesity: Is it really healthy for type 2 diabetes mellitus? World J Diabetes 2022; 13:70-84. [PMID: 35211245 PMCID: PMC8855137 DOI: 10.4239/wjd.v13.i2.70] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/27/2021] [Accepted: 01/20/2022] [Indexed: 02/06/2023] Open
Abstract
Metabolically healthy obese (MHO) individuals are reported to have a lower risk of developing cardiovascular diseases in comparison with individuals with metabolic syndrome. However, the association between MHO and type 2 diabetes (T2DM) is still controversial. Some studies indicated that MHO is a favorable phenotype for T2DM, but more studies showed that MHO individuals have an increased risk of developing T2DM compared with metabolically healthy normal-weight individuals, especially among those who would acquire metabolically unhealthy obesity. This has been supported by finding insulin resistance and low-grade inflammatory responses in MHO individuals with a tendency for impaired beta-cell dysfunction. Studies also showed that liver fat accumulation increased the risk of incidence of T2DM in MHO. Here, we reviewed current literature on the relationship between MHO and T2DM, discussed the determinants for the development of diabetes in MHO, and summarized the measures for the prevention of T2DM in MHO.
Collapse
Affiliation(s)
- Qi Wu
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Fudan Institute for Metabolic Disease, Fudan University, Shanghai 200032, China
| | - Ming-Feng Xia
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Fudan Institute for Metabolic Disease, Fudan University, Shanghai 200032, China
| | - Xin Gao
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Fudan Institute for Metabolic Disease, Fudan University, Shanghai 200032, China
| |
Collapse
|
12
|
Matia-Garcia I, Vadillo E, Pelayo R, Muñoz-Valle JF, García-Chagollán M, Loaeza-Loaeza J, Vences-Velázquez A, Salgado-Goytia L, García-Arellano S, Parra-Rojas I. Th1/Th2 Balance in Young Subjects: Relationship with Cytokine Levels and Metabolic Profile. J Inflamm Res 2021; 14:6587-6600. [PMID: 34908860 PMCID: PMC8664383 DOI: 10.2147/jir.s342545] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/22/2021] [Indexed: 12/22/2022] Open
Abstract
Purpose We aim to identify Th1 and Th2 cell clusters in young subjects, including their clinical and metabolic characteristics and the Th1/Th2 balance. Patients and Methods A total of 100 participants were included. The frequencies of Th1 and Th2 cells in peripheral blood were determined by flow cytometry. Serum C-reactive protein was measured using a turbidimetric assay, and insulin levels were quantified with an enzyme-linked immunosorbent assay. Circulating cytokine levels were analyzed using a multiplex system. Results A cluster analysis was performed to determine the Th1/Th2 balance in a group of young people, and 3 clusters were formed with the following characteristics: 1) subjects with a higher prevalence of hyperglycemia (38%), dyslipidemia (38–75%), and insulin resistance (50%), as well as a higher percentage of Th1 cells and Th1/Th2 ratio, including elevated IFN-ɣ levels; 2) subjects with a lower prevalence of hyperglycemia (23%) and insulin resistance (15.4%), but a higher prevalence of dyslipidemia (8–85%) with a predominance of Th2 cells, and lower Th1/Th2 ratio; 3) subjects with a lower prevalence of hyperglycemia (6%), insulin resistance (41%), and dyslipidemia (10–63%), as well as a balance of Th1 and Th2 cells and lower Th1/Th2 ratio, including low IFN-ɣ levels. Positive correlations between Th1 cells with IFN-γ, IL-12, and IL-1β and between Th2 cells with IFN-γ, IL-2, and IL-4 were found (p < 0.05). A significant increase in Th1 cells was observed in the presence of hyperglycemia and high LDL-C levels, as well as increased Th2 cells in the absence of abdominal obesity and high blood pressure, including low HDL-C levels. The Th1/Th2 ratio was higher in the group with high cardiometabolic risk (p = 0.03). Conclusion Th1/Th2 balance is related to metabolic abnormalities that may occur in young population, and thus the timely identification of different phenotypes may help predict an increased cardiometabolic risk.
Collapse
Affiliation(s)
- Ines Matia-Garcia
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México
| | - Eduardo Vadillo
- Unidad de Investigación Médica en Enfermedades Oncológicas, Hospital de Oncología, Centro Médico Nacional, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Rosana Pelayo
- Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Atlixco, Puebla, México
| | - José F Muñoz-Valle
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Mariel García-Chagollán
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Jaqueline Loaeza-Loaeza
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México
| | - Amalia Vences-Velázquez
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México
| | - Lorenzo Salgado-Goytia
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México
| | - Samuel García-Arellano
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Isela Parra-Rojas
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México
| |
Collapse
|
13
|
Effects of Vitamin D Supplementation on CD4 + T Cell Subsets and mTOR Signaling Pathway in High-Fat-Diet-Induced Obese Mice. Nutrients 2021; 13:nu13030796. [PMID: 33670988 PMCID: PMC7997284 DOI: 10.3390/nu13030796] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 12/18/2022] Open
Abstract
Obesity is associated with an impaired balance of CD4+ T cell subsets. Both vitamin D and obesity have been reported to affect the mTOR pathway. In this study, we investigated the effects of vitamin D on CD4+ T cell subsets and the mTOR pathway. Ten-week-old male C57BL/6 mice were divided into four groups and fed diets with different fat (control or high-fat diets: CON or HFD) and vitamin D contents (vitamin D control or supplemented diets: vDC or vDS) for 12 weeks. T cells purified by negative selection were stimulated with anti-CD3/anti-CD28 mAbs and cultured for 48 h. The percentage of CD4+IL-17+ T cells was higher in the vDS than vDC groups. The CD4+CD25+Foxp3+ T cells percentage was higher in HFD than CON groups. The phospho-p70S6K/total-p70S6K ratio was lower in vDS than vDC, but the phospho-AKT/total-AKT ratio was higher in vDS than vDC groups. Hif1α mRNA levels were lower in vDS than vDC groups. These findings suggest HIF1α plays an important role in vitamin-D-mediated regulation of glucose metabolism in T cells, and dietary vitamin D supplementation may contribute to the maintenance of immune homeostasis by regulating the mTOR pathway in T cells.
Collapse
|
14
|
Sbierski-Kind J, Goldeck D, Buchmann N, Spranger J, Volk HD, Steinhagen-Thiessen E, Pawelec G, Demuth I, Spira D. T cell phenotypes associated with insulin resistance: results from the Berlin Aging Study II. IMMUNITY & AGEING 2020; 17:40. [PMID: 33349270 PMCID: PMC7751110 DOI: 10.1186/s12979-020-00211-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022]
Abstract
Background Obesity is associated with chronic low-grade inflammation leading to metabolic and cardiovascular diseases, but a subset of obese individuals is considered insulin sensitive (IS). The underlying pathophysiologic mechanisms remain elusive and clinical studies on the relationship between inflammatory markers and metabolically healthy obesity (MHO) are scarce. Methods In this cross-sectional analysis, we included a sample of 437 older participants (60–84 years) from the Berlin Aging Study II (BASE-II). Peripheral blood mononuclear cells were isolated, immune cell subsets were analyzed with multiparameter flow cytometry and systemic cytokine levels were measured. Immune cell parameters were correlated with metabolic measures and multiple linear regression analysis was conducted and adjusted for various demographic and clinical factors. Results We found that frequencies of naïve and memory CD4+ and CD8+ T cells inversely correlated with measures for insulin sensitivity in the older population. Moreover, the percentages of naïve CD4+ and CD8+ T cells were significantly higher, whereas activated T cells and IL-6 levels were lower in IS compared to insulin resistant (IR) obese individuals. The percentages of naïve CD4+ and CD8+ T cells were predictive for impaired insulin sensitivity (ß = 0.16, p = 0.01 and ß = 0.11, p = 0.04), and the association of naïve CD4+ T cells with insulin sensitivity persisted after multivariate adjustment (ß = 0.14, p = 0.02). Conclusions These findings support the hypothesis that parameters of systemic inflammation can differentiate IS from IR obese individuals that are at higher risk for cardiometabolic diseases and may have clinical implications with regard to obesity treatment stratification. Trial registration DRKS00009277. Registered 31 August 2015 - Retrospectively registered. Supplementary Information The online version contains supplementary material available at 10.1186/s12979-020-00211-y.
Collapse
Affiliation(s)
- Julia Sbierski-Kind
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Department of Endocrinology and Metabolism, Berlin Institute of Health, Chariteplatz 1, 10117, Berlin, Germany. .,Present Address: Dept. of Laboratory Medicine, University of California, San Francisco, HSW1201U, Box 0451, 513 Parnassus Ave, San Francisco, CA, 94143-0451, USA.
| | | | - Nikolaus Buchmann
- Clinic for Cardiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Joachim Spranger
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Department of Endocrinology and Metabolism, Berlin Institute of Health, Chariteplatz 1, 10117, Berlin, Germany.,Center for Cardiovascular Research (CCR), Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
| | - Hans-Dieter Volk
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Berlin, Germany.,Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Elisabeth Steinhagen-Thiessen
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Department of Endocrinology and Metabolism, Berlin Institute of Health, Chariteplatz 1, 10117, Berlin, Germany
| | - Graham Pawelec
- Department of Immunology, University of Tübingen, Tübingen, Germany.,Health Sciences North Research Institute, Sudbury, ON, Canada
| | - Ilja Demuth
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Department of Endocrinology and Metabolism, Berlin Institute of Health, Chariteplatz 1, 10117, Berlin, Germany.,Berlin Institute of Health (BIH) Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Berlin, Germany.,Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Dominik Spira
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Department of Endocrinology and Metabolism, Berlin Institute of Health, Chariteplatz 1, 10117, Berlin, Germany
| |
Collapse
|
15
|
Distinguishable Immunologic Characteristics of COVID-19 Patients with Comorbid Type 2 Diabetes Compared with Nondiabetic Individuals. Mediators Inflamm 2020; 2020:6914878. [PMID: 33061829 PMCID: PMC7542493 DOI: 10.1155/2020/6914878] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/09/2020] [Accepted: 09/07/2020] [Indexed: 01/08/2023] Open
Abstract
Background COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has threatened every civilian as a global pandemic. The immune system poses the critical interactive chain between the human body and the virus. Here, we make efforts to examine whether comorbidity with type 2 diabetes (T2D) affects the immunological response in COVID-19 patients. Methods We conducted a retrospective pilot study investigating immunological characteristics of confirmed cases of COVID-19 with or without comorbid T2D. Two subcohorts of sex- and age-matched participants were eligible for data analysis, of which 33 participants were with T2D and the remaining 37 were nondiabetic (NDM). Cellular immunity was assessed by flow cytometric determination of surface markers including CD3, CD4, CD8, CD19, CD16, and CD56 in peripheral blood. Levels of C reactive protein, immunoglobulin (IgG, IgM, IgA, and IgE), and complements (C3, C4) were detected by rate nephelometry immunoassay. And Th1/Th2 cytokines (IL-2, IL-4, IL-6, IL-10, TNF-α, and IFN-γ) were detected by Cytometric Bead Array. Results Neutrophil counts were found to be significantly higher in the T2D group than in the NDM group and had a significant relevance with clinical severity. Lymphocyte frequencies showed no significant differences in the two groups. However, the proportions and absolute counts of T, Tc, Th, and NK cells decreased in both groups to different degrees. An abnormal increase in neutrophil count and a decrease in lymphocyte subpopulations may represent risk factors of COVID-19 severity. The level of IgG, IgM, IgA, C3, and C4 showed no significant difference between the two groups, while the IgE levels were higher in the T2D group than in the NDM group (p < 0.05). Th1 cytokines including IFN-γ, TNF-α, and IL-6, as well as CRP, appeared significantly higher in the T2D group. Conclusions The COVID-19 patients comorbid with T2D demonstrated distinguishable immunological parameters, which represented clinical relevancies with the predisposed disease severity in T2D.
Collapse
|
16
|
Zhao RX, He Q, Sha S, Song J, Qin J, Liu P, Sun YJ, Sun L, Hou XG, Chen L. Increased AHR Transcripts Correlate With Pro-inflammatory T-Helper Lymphocytes Polarization in Both Metabolically Healthy Obesity and Type 2 Diabetic Patients. Front Immunol 2020; 11:1644. [PMID: 32849564 PMCID: PMC7406643 DOI: 10.3389/fimmu.2020.01644] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/19/2020] [Indexed: 12/25/2022] Open
Abstract
Aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor whose transcription activity is regulated by small compounds provided by diet, xenobiotics, and metabolism. It has been proven to be involved in energy homeostasis and inflammation in most recent years. Epidemiologically, exposure to xenobiotic AHR ligands contributes to obesity and type 2 diabetes (T2D). AHR is also the critical transcription factor determining the lineage commitment of pro-inflammatory Th17 and Th22 cells from naïve CD4+ T lymphocytes. It has been well-illustrated in animal models that IL-22, the major effector cytokine of Th17 and Th22 cells, played a major role in the interaction of metabolism and gut microbiota. But there were still missing links between gut microbiota, IL-22, and metabolism in humans. Our previous findings indicated that elevated circulating levels of IL-22 and frequencies of Th22 cells were associated with insulin resistance in both patients with obesity and T2D. Additionally, the hyperactive Th17 and Th22 cells phenotype also correlate with islets β-cell dysfunction in T2D. In this study, we made efforts to determine AHR expressions in peripheral blood mononuclear cells (PBMCs) from patients with T2D and metabolically healthy obesity (MHO). Correlation analyses were conducted to assess the possible link between AHR and the metabolic and inflammatory context. We revealed that mRNA expression of AHR was up-regulated and correlated with the percentage of Th17, Th22 as well as Th1 cells. Elevated plasma levels of IL-22 and IL-17 also correlated with increased AHR transcripts in PBMCs from both MHO and T2D patients. The transcription factor AHR may thus have a plausible role in the interaction between metabolism and pro-inflammatory status of patients in the development of obesity and T2D.
Collapse
MESH Headings
- Adult
- Basic Helix-Loop-Helix Transcription Factors/blood
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Case-Control Studies
- Cell-Free Nucleic Acids/blood
- Cell-Free Nucleic Acids/genetics
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/immunology
- Female
- Humans
- Inflammation Mediators/blood
- Insulin-Secreting Cells/immunology
- Insulin-Secreting Cells/metabolism
- Interleukin-17/blood
- Interleukins/blood
- Male
- Middle Aged
- Obesity, Metabolically Benign/blood
- Obesity, Metabolically Benign/genetics
- Obesity, Metabolically Benign/immunology
- Phenotype
- RNA, Messenger/blood
- RNA, Messenger/genetics
- Receptors, Aryl Hydrocarbon/blood
- Receptors, Aryl Hydrocarbon/genetics
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/metabolism
- Th1 Cells/immunology
- Th1 Cells/metabolism
- Th17 Cells/immunology
- Th17 Cells/metabolism
- Up-Regulation
- Interleukin-22
Collapse
Affiliation(s)
- Ru-xing Zhao
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, China
| | - Qin He
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China
| | - Sha Sha
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China
| | - Jia Song
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China
| | - Jun Qin
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China
| | - Peng Liu
- Department of Internal Medicine, Affiliated Hospital of Shandong Huayuan Mining Co. Ltd, Taian, China
| | - Yu-jing Sun
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, China
| | - Lei Sun
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, China
| | - Xin-guo Hou
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, China
| | - Li Chen
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, China
| |
Collapse
|
17
|
Bailin SS, McGinnis KA, McDonnell WJ, So-Armah K, Wellons M, Tracy RP, Doyle MF, Mallal S, Justice AC, Freiberg MS, Landay AL, Wanjalla C, Koethe JR. T Lymphocyte Subsets Associated With Prevalent Diabetes in Veterans With and Without Human Immunodeficiency Virus. J Infect Dis 2020; 222:252-262. [PMID: 32052044 PMCID: PMC7323499 DOI: 10.1093/infdis/jiaa069] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/07/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND A higher proportion of circulating memory CD4+ T cells is associated with prevalent diabetes mellitus in the general population. Given the broad changes in adaptive immunity, including memory T-cell expansion, and rising prevalence of diabetes in the human immunodeficiency virus (HIV) population, we assessed whether similar relationships were present in persons with HIV (PWH). METHODS Multiple CD4+ and CD8+ T-cell subsets were measured by flow cytometry, and prevalent diabetes cases were adjudicated by 2 physicians for PWH and HIV-negative participants in the Veterans Aging Cohort Study. Multivariable logistic regression models evaluated the association of T-cell subsets and diabetes stratified by HIV status, adjusted for cytomegalovirus serostatus and traditional risk factors. RESULTS Among 2385 participants (65% PWH, 95% male, 68% African American), higher CD45RO+ memory CD4+ T cells and lower CD38+ CD4+ T cells were associated with prevalent diabetes, and had a similar effect size, in both the PWH and HIV-negative (P ≤ .05 for all). Lower CD38+CD8+ T cells were also associated with diabetes in both groups. CONCLUSIONS The CD4+ and CD8+ T-cell subsets associated with diabetes are similar in PWH and HIV-negative individuals, suggesting that diabetes in PWH may be related to chronic immune activation.
Collapse
Affiliation(s)
- Samuel S Bailin
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kathleen A McGinnis
- Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Wyatt J McDonnell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kaku So-Armah
- Boston University School of Medicine, Boston, Massachusetts, USA
| | - Melissa Wellons
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Russell P Tracy
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| | - Margaret F Doyle
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| | - Simon Mallal
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Amy C Justice
- Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA
- Department of Internal Medicine, Yale School of Medicine, West Haven, Connecticut, USA
| | - Matthew S Freiberg
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Alan L Landay
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Celestine Wanjalla
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - John R Koethe
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
18
|
Sbierski-Kind J, Mai K, Kath J, Jurisch A, Streitz M, Kuchenbecker L, Babel N, Nienen M, Jürchott K, Spranger L, Jumpertz von Schwartzenberg R, Decker AM, Krüger U, Volk HD, Spranger J. Association between Subcutaneous Adipose Tissue Inflammation, Insulin Resistance, and Calorie Restriction in Obese Females. THE JOURNAL OF IMMUNOLOGY 2020; 205:45-55. [PMID: 32482712 DOI: 10.4049/jimmunol.2000108] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/21/2020] [Indexed: 01/30/2023]
Abstract
The worldwide epidemic of overweight and obesity has led to an increase in associated metabolic comorbidities. Obesity induces chronic low-grade inflammation in white adipose tissue (WAT). However, the function and regulation of both innate and adaptive immune cells in human WAT under conditions of obesity and calorie restriction (CR) is not fully understood yet. Using a randomized interventional design, we investigated postmenopausal overweight or obese female subjects who either underwent CR for 3 mo followed by a 4-wk phase of weight maintenance or had to maintain a stable weight over the whole study period. A comprehensive immune phenotyping protocol was conducted using validated multiparameter flow cytometry analysis in blood and s.c. WAT (SAT). The TCR repertoire was analyzed by next-generation sequencing and cytokine levels were determined in SAT. Metabolic parameters were determined by hyperinsulinemic-euglycemic clamp. We found that insulin resistance correlates significantly with a shift toward the memory T cell compartment in SAT. TCR analysis revealed a diverse repertoire in SAT of overweight or obese individuals. Additionally, whereas weight loss improved systemic insulin sensitivity in the intervention group, SAT displayed no significant improvement of inflammatory parameters (cytokine levels and leukocyte subpopulations) compared with the control group. Our data demonstrate the accumulation of effector memory T cells in obese SAT and an association between systemic glucose homeostasis and inflammatory parameters in obese females. The long-standing effect of obesity-induced changes in SAT was demonstrated by preserved immune cell composition after short-term CR-induced weight loss.
Collapse
Affiliation(s)
- Julia Sbierski-Kind
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Department of Endocrinology and Metabolism, Berlin Institute of Health, 10178 Berlin, Germany; .,Berlin Institute of Health, 10178 Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies, Charité University Medicine Berlin, 10117 Berlin, Germany.,Institute for Medical Immunology, Charité University Medicine Berlin, 10117 Berlin, Germany
| | - Knut Mai
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Department of Endocrinology and Metabolism, Berlin Institute of Health, 10178 Berlin, Germany.,Berlin Institute of Health, 10178 Berlin, Germany.,Charité - Center for Cardiovascular Research, 10117 Berlin, Germany
| | - Jonas Kath
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Department of Endocrinology and Metabolism, Berlin Institute of Health, 10178 Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies, Charité University Medicine Berlin, 10117 Berlin, Germany
| | - Anke Jurisch
- Berlin Institute of Health Center for Regenerative Therapies, Charité University Medicine Berlin, 10117 Berlin, Germany.,Institute for Medical Immunology, Charité University Medicine Berlin, 10117 Berlin, Germany
| | - Mathias Streitz
- Berlin Institute of Health Center for Regenerative Therapies, Charité University Medicine Berlin, 10117 Berlin, Germany.,Institute for Medical Immunology, Charité University Medicine Berlin, 10117 Berlin, Germany
| | - Leon Kuchenbecker
- Berlin Institute of Health Center for Regenerative Therapies, Charité University Medicine Berlin, 10117 Berlin, Germany.,Institute for Medical Immunology, Charité University Medicine Berlin, 10117 Berlin, Germany
| | - Nina Babel
- Berlin Institute of Health Center for Regenerative Therapies, Charité University Medicine Berlin, 10117 Berlin, Germany.,Center for Translational Medicine, Department of Internal Medicine I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, 44625 Bochum, Germany
| | - Mikalai Nienen
- Berlin Institute of Health, 10178 Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies, Charité University Medicine Berlin, 10117 Berlin, Germany.,Center for Translational Medicine, Department of Internal Medicine I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, 44625 Bochum, Germany
| | - Karsten Jürchott
- Berlin Institute of Health Center for Regenerative Therapies, Charité University Medicine Berlin, 10117 Berlin, Germany.,Institute for Medical Immunology, Charité University Medicine Berlin, 10117 Berlin, Germany
| | - Leonard Spranger
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Department of Endocrinology and Metabolism, Berlin Institute of Health, 10178 Berlin, Germany.,Charité - Center for Cardiovascular Research, 10117 Berlin, Germany
| | - Reiner Jumpertz von Schwartzenberg
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Department of Endocrinology and Metabolism, Berlin Institute of Health, 10178 Berlin, Germany.,Berlin Institute of Health, 10178 Berlin, Germany.,Charité - Center for Cardiovascular Research, 10117 Berlin, Germany.,German Center for Cardiovascular Research, partner site Berlin, 13353 Berlin, Germany; and
| | - Anne-Marie Decker
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Department of Endocrinology and Metabolism, Berlin Institute of Health, 10178 Berlin, Germany.,Berlin Institute of Health, 10178 Berlin, Germany
| | - Ulrike Krüger
- Berlin Institute of Health Center for Regenerative Therapies, Charité University Medicine Berlin, 10117 Berlin, Germany.,Institute for Medical Immunology, Charité University Medicine Berlin, 10117 Berlin, Germany
| | - Hans-Dieter Volk
- Berlin Institute of Health Center for Regenerative Therapies, Charité University Medicine Berlin, 10117 Berlin, Germany.,Institute for Medical Immunology, Charité University Medicine Berlin, 10117 Berlin, Germany.,Berlin Center for Advanced Therapies, Charité University Medicine Berlin, 10117 Berlin, Germany
| | - Joachim Spranger
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Department of Endocrinology and Metabolism, Berlin Institute of Health, 10178 Berlin, Germany.,Berlin Institute of Health, 10178 Berlin, Germany.,Charité - Center for Cardiovascular Research, 10117 Berlin, Germany.,German Center for Cardiovascular Research, partner site Berlin, 13353 Berlin, Germany; and
| |
Collapse
|
19
|
Olson NC, Doyle MF, Sitlani CM, de Boer IH, Rich SS, Huber SA, Landay AL, Tracy RP, Psaty BM, Delaney JA. Associations of Innate and Adaptive Immune Cell Subsets With Incident Type 2 Diabetes Risk: The MESA Study. J Clin Endocrinol Metab 2020; 105:5716851. [PMID: 31990975 PMCID: PMC7049263 DOI: 10.1210/clinem/dgaa036] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/24/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Cell-mediated immunity is implicated in glucose homeostasis and insulin resistance. Whether the levels of innate and adaptive immune cells in peripheral blood are risk factors for incident type 2 diabetes (T2D) remains unknown. We hypothesized that the proportions of naive, memory, CD28-, Th17, and T regulatory CD4+ cells would be associated with incident T2D. In secondary analyses, we evaluated the relationships of 28 additional immune cell phenotypes with T2D. DESIGN Immune cell phenotypes (n = 33) were measured by flow cytometry using cryopreserved cells collected from 1113 participants of the Multi-Ethnic Study of Atherosclerosis (MESA) at the baseline examination (2000-2002). Cox proportional hazards models were used to evaluate associations of immune cell phenotypes with incident T2D over a median follow-up of 9.1 years, adjusted for age, sex, race/ethnicity, educational status, and body mass index. RESULTS Incident T2D was observed for 120 participants. None of the cell phenotypes included in the primary hypotheses were significantly associated with T2D (all P > 0.05). Among the secondary immune cells studied, a higher proportion of CD19+CD27+ B cells was associated with a reduced risk of T2D (hazard ratio: 0.72 (95% confidence interval: 0.56, 0.93), per 1-standard deviation (16%) increase). This association was no longer significant after correction for the multiple cell phenotypes tested (P > 0.0015). CONCLUSIONS Our results suggest that the frequencies of several subsets of monocytes, innate lymphocytes, and CD4+ and CD8+ T cells in circulating blood are not related to the future onset of T2D. Higher levels of CD19+CD27+ B cells may be associated with decreased T2D risk.
Collapse
Affiliation(s)
- Nels C Olson
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT
| | - Margaret F Doyle
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT
| | - Colleen M Sitlani
- Department of Medicine, University of Washington, Seattle, Washington
| | - Ian H de Boer
- Division of Nephrology and Kidney Research Institute, Department of Medicine, University of Washington, Seattle, Washington
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | - Sally A Huber
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT
| | - Alan L Landay
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
| | - Russell P Tracy
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, VT
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health Services, University of Washington, Kaiser Permanente Washington Health Research Institute, Seattle, Washington
| | - Joseph A Delaney
- Cardiovascular Health Research Unit, University of Washington, Seattle, Washington
- College of Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
20
|
de Frel DL, Atsma DE, Pijl H, Seidell JC, Leenen PJM, Dik WA, van Rossum EFC. The Impact of Obesity and Lifestyle on the Immune System and Susceptibility to Infections Such as COVID-19. Front Nutr 2020; 7:597600. [PMID: 33330597 PMCID: PMC7711810 DOI: 10.3389/fnut.2020.597600] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
Background: COVID-19 is a global challenge to healthcare. Obesity is common in patients with COVID-19 and seems to aggravate disease prognosis. In this review we explore the link between obesity, chronic disease, lifestyle factors and the immune system, and propose societal interventions to enhance global immunity. Search Strategy and Selection Criteria: We performed three literature searches using the keywords (1) coronavirus AND comorbidities, (2) comorbidities AND immune system, and (3) lifestyle factors AND immune system. Results were screened for relevance by the main author and a total of 215 articles were thoroughly analyzed. Results: The relationship between obesity and unfavorable COVID-19 prognosis is discussed in light of the impact of chronic disease and lifestyle on the immune system. Several modifiable lifestyle factors render us susceptible to viral infections. In this context, we make a case for fostering a healthy lifestyle on a global scale. Conclusions: Obesity, additional chronic disease and an unhealthy lifestyle interactively impair immune function and increase the risk of severe infectious disease. In adverse metabolic and endocrine conditions, the immune system is geared toward inflammation. Collective effort is needed to ameliorate modifiable risk factors for obesity and chronic disease on a global scale and increase resistance to viruses like SARS-CoV-2.
Collapse
Affiliation(s)
- Daan L. de Frel
- Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Douwe E. Atsma
- Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
- *Correspondence: Douwe E. Atsma
| | - Hanno Pijl
- Department of Endocrinology, Leiden University Medical Center, Leiden, Netherlands
| | - Jacob C. Seidell
- Department of Health Sciences, VU Medical Center, Amsterdam, Netherlands
| | - Pieter J. M. Leenen
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Willem A. Dik
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Division of Clinical Immunology, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Elisabeth F. C. van Rossum
- Division of Endocrinology, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Obesity Center CGG, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
21
|
Th17 and regulatory T cells in patients with different time of progression of type 2 diabetes mellitus. Cent Eur J Immunol 2020; 45:29-36. [PMID: 32425677 PMCID: PMC7226552 DOI: 10.5114/ceji.2020.94670] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/26/2018] [Indexed: 12/15/2022] Open
Abstract
Introduction Type 2 diabetes mellitus (T2DM) is characterized by chronic inflammation, in which different types of immune cells participate, such as TH17 cells and Treg cells. The aim of this study was to determine the relationship between Treg and Th17 in patients with different times of T2DM progression. Material and methods Nineteen control subjects and 40 patients with T2DM were included. T2DM patients were classified into two groups: the first group consisted of twenty patients with less than10 years of disease progression (T2DM < 10), and the second group included 20 patients with a disease progression of 10 years or more (T2DM ≥ 10). Additionally, an analysis was performed according to the metabolic control, depending on HbA1c levels. The peripheral blood ratio of both Th17 and Treg cells was measured by standard flow cytometry protocols. Results No significant difference was found in Th17 cells of patients with T2DM < 10 or T2DM ≥ 10 and controls. With respect to CD4+CD25+FoxP3+ and CD4+CD25h Treg cells, a significant decrease was observed in patients with T2DM ≥ 10, mainly in patients with poor or moderate metabolic control. Statistical analysis performed in all patients with T2DM revealed a decrease in three cell subsets as well a negative correlation between Th17 cells and total cholesterol, CD4+CD25h cells with glucose and HbA1c levels, while a positive correlation was observed between CD4+CD25h cells and BMI. Conclusions A decrease on both Treg and Th17 cell subsets in T2DM patients was observed suggesting that the metabolic decontrol and the progression time of T2DM could modify the proportions of Th17 and Treg cells.
Collapse
|
22
|
Torquati L, Coombes JS, Murray L, Hasnain SZ, Mallard AR, McGuckin MA, Fassett RG, Croci I, Ramos JS. Fibre Intake Is Independently Associated with Increased Circulating Interleukin-22 in Individuals with Metabolic Syndrome. Nutrients 2019; 11:E815. [PMID: 30978932 PMCID: PMC6520738 DOI: 10.3390/nu11040815] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/02/2019] [Accepted: 04/06/2019] [Indexed: 12/23/2022] Open
Abstract
The positive effects of dietary fibre on gut barrier function and inflammation have not been completely elucidated. Mice studies show gut barrier disruption and diet-induced insulin resistance can be alleviated by cytokine interleukin-22 (IL-22). However, little is known about IL-22 in humans and its association with gut-beneficial nutrients like fibre. We investigated whether fibre intake was associated with circulating levels of IL-22 in 48 participants with metabolic syndrome (MetS). Bivariate analysis was used to explore associations between circulating IL-22, fibre intake, MetS factors, body composition, and cardiorespiratory fitness (peak oxygen uptake, V ˙ O2peak). Hierarchical multiple regression (HMR) was used to test the independent association of fibre intake with circulating IL-22, adjusting for variables correlated with IL-22. Circulating IL-22 was positively associated with fibre intake (rs = 0.393, p < 0.006). The HMR-adjusted model explained 40% of circulating IL-22 variability, and fibre intake significantly improved the prediction model by 8.4% (p < 0.022). Participants with fibre intake above median intake of 21.5 g/day had a significantly higher circulating IL-22 than the lower intake group (308.3 ± 454.4 vs. 69.0 ± 106.4 pg/mL, p < 0.019). Fibre intake is independently associated with increased circulating IL-22 in individuals with MetS. Findings warrant further investigations to evaluate whether changes in dietary fibre intake alter circulating IL-22, and its effects on health outcomes.
Collapse
Affiliation(s)
- Luciana Torquati
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia.
- School of Sport and Health Sciences, University of Exeter, Exeter EX4 4PY, UK.
| | - Jeff S Coombes
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Lydia Murray
- Inflammatory Disease Biology and Therapeutics Group/Immunopathology Group, Translational Research Institute, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Sumaira Z Hasnain
- Inflammatory Disease Biology and Therapeutics Group/Immunopathology Group, Translational Research Institute, The University of Queensland, Brisbane, Queensland 4072, Australia.
- Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Alistair R Mallard
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Michael A McGuckin
- Inflammatory Disease Biology and Therapeutics Group/Immunopathology Group, Translational Research Institute, The University of Queensland, Brisbane, Queensland 4072, Australia.
- Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Robert G Fassett
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Ilaria Croci
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia.
- K.G. Jebsen Center of Exercise in Medicine, Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway.
| | - Joyce S Ramos
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia.
- SHAPE Research Centre, Exercise Science and Clinical Exercise Physiology, College of Nursing and Health Sciences, Flinders University, Bedford Park, South Australia 5042, Australia.
| |
Collapse
|
23
|
Chiricozzi A, Gisondi P, Girolomoni G. The pharmacological management of patients with comorbid psoriasis and obesity. Expert Opin Pharmacother 2019; 20:863-872. [DOI: 10.1080/14656566.2019.1583207] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Andrea Chiricozzi
- Institute of Dermatology, Catholic University - Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Paolo Gisondi
- Section of Dermatology and Venereology, Department of Medicine, University of Verona, Verona, Italy
| | - Giampiero Girolomoni
- Section of Dermatology and Venereology, Department of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
24
|
Van Herck MA, Weyler J, Kwanten WJ, Dirinck EL, De Winter BY, Francque SM, Vonghia L. The Differential Roles of T Cells in Non-alcoholic Fatty Liver Disease and Obesity. Front Immunol 2019; 10:82. [PMID: 30787925 PMCID: PMC6372559 DOI: 10.3389/fimmu.2019.00082] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/11/2019] [Indexed: 12/15/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) constitutes a spectrum of disease states characterized by hepatic steatosis and is closely associated to obesity and the metabolic syndrome. In non-alcoholic steatohepatitis (NASH), additionally, inflammatory changes and hepatocellular damage are present, representing a more severe condition, for which the treatment is an unmet medical need. Pathophysiologically, the immune system is one of the main drivers of NAFLD progression and other obesity-related comorbidities, and both the innate and adaptive immune system are involved. T cells form the cellular component of the adaptive immune system and consist of multiple differentially active subsets, i.e., T helper (Th) cells, regulatory T (Treg) cells, and cytotoxic T (Tc) cells, as well as several innate T-cell subsets. This review focuses on the role of these T-cell subsets in the pathogenesis of NAFLD, as well as the association with obesity and type 2 diabetes mellitus, reviewing the available evidence from both animal and human studies. Briefly, Th1, Th2, Th17, and Th22 cells seem to have an attenuating effect on adiposity. Th2, Th22, and Treg cells seem to decrease insulin resistance, whereas Th1, Th17, and Tc cells have an aggravating effect. Concerning NAFLD, both Th22 and Treg cells appear to have an overall tempering effect, whereas Th17 and Tc cells seem to induce more liver damage and fibrosis progression. The evidence regarding the role of the innate T-cell subsets is more controversial and warrants further exploration.
Collapse
Affiliation(s)
- Mikhaïl A Van Herck
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology and Hepatology, University of Antwerp, Antwerp, Belgium.,Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium
| | - Jonas Weyler
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology and Hepatology, University of Antwerp, Antwerp, Belgium.,Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium
| | - Wilhelmus J Kwanten
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology and Hepatology, University of Antwerp, Antwerp, Belgium.,Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium
| | - Eveline L Dirinck
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology and Hepatology, University of Antwerp, Antwerp, Belgium.,Department of Endocrinology, Diabetology and Metabolism, Antwerp University Hospital, Antwerp, Belgium
| | - Benedicte Y De Winter
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology and Hepatology, University of Antwerp, Antwerp, Belgium
| | - Sven M Francque
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology and Hepatology, University of Antwerp, Antwerp, Belgium.,Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium
| | - Luisa Vonghia
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology and Hepatology, University of Antwerp, Antwerp, Belgium.,Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium
| |
Collapse
|
25
|
Bajpai A, Tilley DG. The Role of Leukocytes in Diabetic Cardiomyopathy. Front Physiol 2018; 9:1547. [PMID: 30443223 PMCID: PMC6221939 DOI: 10.3389/fphys.2018.01547] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/16/2018] [Indexed: 12/16/2022] Open
Abstract
Diabetes is predominant risk factor for cardiovascular diseases such as myocardial infarction and heart failure. Recently, leukocytes, particularly neutrophils, macrophages, and lymphocytes, have become targets of investigation for their potential role in a number of chronic inflammatory diseases such as diabetes and heart failure. While leukocytes contribute significantly to the progression of diabetes and heart failure individually, understanding their participation in the pathogenesis of diabetic heart failure is much less understood. The present review summarizes the role of leukocytes in the complex interplay between diabetes and heart failure, which is critical to the discovery of new targeted therapies for diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Anamika Bajpai
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Douglas G Tilley
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
26
|
Sheu A, Chan Y, Ferguson A, Bakhtyari MB, Hawke W, White C, Chan YF, Bertolino PJ, Woon HG, Palendira U, Sierro F, Lau SM. A proinflammatory CD4 + T cell phenotype in gestational diabetes mellitus. Diabetologia 2018; 61:1633-1643. [PMID: 29691600 DOI: 10.1007/s00125-018-4615-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 03/15/2018] [Indexed: 12/30/2022]
Abstract
AIMS/HYPOTHESIS Numerous adaptations of the maternal immune system are necessary during pregnancy to maintain immunological tolerance to the semi-allogeneic fetus. Several complications of pregnancy have been associated with dysregulation of these adaptive mechanisms. While gestational diabetes mellitus (GDM) has been associated with upregulation of circulating inflammatory factors linked to innate immunity, polarisation of the adaptive immune system has not been extensively characterised in this condition. We aimed to characterise pro- and anti-inflammatory CD4+ (T helper [Th]) T cell subsets in women with GDM vs women without GDM (of similar BMI), during and after pregnancy, and examine the relationship between CD4+ subsets and severity of GDM. METHODS This is a prospective longitudinal case-control study of 55 women with GDM (cases) and 65 women without GDM (controls) at a tertiary maternity hospital. Quantification of proinflammatory (Th17, Th17.1, Th1) and anti-inflammatory (regulatory T cell [Treg]) CD4+ T cell subsets was performed on peripheral blood at 37 weeks gestation and 7 weeks postpartum, and correlated with clinical characteristics and measures of blood glucose. RESULTS Women with GDM had a significantly greater percentage of Th17 (median 2.49% [interquartile range 1.62-4.60] vs 1.85% [1.13-2.98], p = 0.012) and Th17.1 (3.06% [1.30-4.33] vs 1.55% [0.65-3.13], p = 0.006) cells compared with the control group of women without GDM. Women with GDM also had higher proinflammatory cell ratios (Th17:Treg, Th17.1:Treg and Th1:Treg) in pregnancy compared with the control group of women without GDM. In the control group, there was a statistically significant independent association between 1 h glucose levels in the GTT and Th17 cell percentages, and also between 2 h glucose levels and percentage of Th17 cells. The percentage of Th17 cells and the Th17:Treg ratio declined significantly after delivery in women with GDM, whereas this was not the case with the control group of women. Nevertheless, a milder inflammatory phenotype persisted after delivery (higher Th17:Treg ratio) in women with GDM vs women without. CONCLUSIONS/INTERPRETATION Dysregulation of adaptive immunity supports a novel paradigm of GDM that extends beyond hyperglycaemia and altered innate immunity.
Collapse
Affiliation(s)
- Angela Sheu
- Department of Diabetes and Endocrinology, Prince of Wales Hospital, Barker Street, Randwick, NSW, 2031, Australia
| | - Yixian Chan
- Department of Diabetes and Endocrinology, Prince of Wales Hospital, Barker Street, Randwick, NSW, 2031, Australia
| | - Angela Ferguson
- Human Viral and Cancer Immunology, Centenary Institute, Camperdown, NSW, Australia
| | - Mohammad B Bakhtyari
- Department of Diabetes and Endocrinology, Prince of Wales Hospital, Barker Street, Randwick, NSW, 2031, Australia
| | - Wendy Hawke
- The Royal Hospital for Women, Randwick, NSW, Australia
| | - Chris White
- Department of Diabetes and Endocrinology, Prince of Wales Hospital, Barker Street, Randwick, NSW, 2031, Australia
- The Royal Hospital for Women, Randwick, NSW, Australia
- Prince of Wales Clinical School, UNSW, Randwick, NSW, Australia
| | - Yuk Fun Chan
- Department of Diabetes and Endocrinology, Prince of Wales Hospital, Barker Street, Randwick, NSW, 2031, Australia
| | - Patrick J Bertolino
- Liver Immunology, Centenary Institute, Camperdown, NSW, Australia
- Immunology, Central Clinical School, University of Sydney, Sydney, NSW, Australia
| | - Heng G Woon
- Human Viral and Cancer Immunology, Centenary Institute, Camperdown, NSW, Australia
| | - Umaimainthan Palendira
- Human Viral and Cancer Immunology, Centenary Institute, Camperdown, NSW, Australia
- Immunology, Central Clinical School, University of Sydney, Sydney, NSW, Australia
| | - Frederic Sierro
- Vascular Immunology, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
- Human Health, Nuclear Science & Technology and Landmark Infrastructure (NSTLI), Australian Nuclear Science and Technology Organisation, Sydney, NSW, Australia
| | - Sue Mei Lau
- Department of Diabetes and Endocrinology, Prince of Wales Hospital, Barker Street, Randwick, NSW, 2031, Australia.
- The Royal Hospital for Women, Randwick, NSW, Australia.
- Prince of Wales Clinical School, UNSW, Randwick, NSW, Australia.
| |
Collapse
|
27
|
Balato A, Raimondo A. Novel interactions among ultraviolet B, skin and adipose tissue. Br J Dermatol 2018; 178:327-328. [PMID: 29441532 DOI: 10.1111/bjd.16149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- A Balato
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via S. Pansini, 5, 80131, Naples, Italy
| | - A Raimondo
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Via S. Pansini, 5, 80131, Naples, Italy
| |
Collapse
|
28
|
Shen J, Fang Y, Zhu H, Ge W. Plasma interleukin-22 levels are associated with prediabetes and type 2 diabetes in the Han Chinese population. J Diabetes Investig 2018; 9:33-38. [PMID: 28170163 PMCID: PMC5754531 DOI: 10.1111/jdi.12640] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/19/2017] [Accepted: 02/01/2017] [Indexed: 12/18/2022] Open
Abstract
AIMS/INTRODUCTION The objective of the present study was to investigate the relationship between plasma interleukin-22 (IL-22) levels and prediabetes or type 2 diabetes, and search the relevance between plasma concentrations of IL-22 and selected diabetes risk factors in Chinese people. MATERIALS AND METHODS The Han Chinese origin men and women participants were recruited in our study during a conventional medical checkup. Fasting plasma IL-22 levels were detected by enzyme-linked immunosorbent assay, and their relevance with selected diabetes risk factors was explored. Multiple logistic regression analysis was carried out to assess the odds ratio of impaired fasting glucose (IFG) and type 2 diabetes according to plasma IL-22 level. RESULTS Compared with normal glucose participants (250 pg/mL [interquartile range 154-901]), the plasma IL-22 levels in IFG participants (185 pg/mL [interquartile range 145-414]) and type 2 diabetes participants (162 pg/mL [interquartile range 128-266]) were significantly lower (P < 0.05, P < 0.001, respectively). Correlation analysis showed that plasma concentrations of IL-22 were negatively associated with some diabetes risk factors, including body mass index, glucose, systolic blood pressure, diastolic blood pressure and triglyceride. Furthermore, the plasma concentrations of IL-22 showed a highly significant association with IFG and type 2 diabetes. CONCLUSIONS In Chinese subjects, the plasma concentration of IL-22 is profoundly associated with susceptibility to IFG and type 2 diabetes, and decreased plasma IL-22 level is a potential trigger of IFG and type 2 diabetes.
Collapse
Affiliation(s)
- Jizhong Shen
- Department of PharmacyDrum Tower Hospital Affiliated to Medical School of Nanjing UniversityNanjingJiangsuChina
| | - Yun Fang
- Department of PharmacyDrum Tower Hospital Affiliated to Medical School of Nanjing UniversityNanjingJiangsuChina
| | - Huaijun Zhu
- Department of PharmacyDrum Tower Hospital Affiliated to Medical School of Nanjing UniversityNanjingJiangsuChina
| | - Weihong Ge
- Department of PharmacyDrum Tower Hospital Affiliated to Medical School of Nanjing UniversityNanjingJiangsuChina
| |
Collapse
|
29
|
Abstract
PURPOSE OF THE REVIEW Obesity and type 2 diabetes (T2D) are considered chronic inflammatory diseases. While early publications have reported the implication of innate immune cells such as macrophages to promote systemic inflammation and metabolic dysfunctions, recent publications underline the alterations of the T cell compartment in human obesity and type 2 diabetes. These recent findings are the focus of this review. RECENT FINDINGS In humans, obesity and T2D induce the expansion of proinflammatory T cells such as CD4 Th1, Th17, and CD8 populations, whereas innate T cells such as MAIT and iNKT cells are decreased. These alterations reflect a loss of total T cell homeostasis that may contribute to tissue and systemic inflammation. Whether these changes are adaptive to nutritional variations and/or contribute to the progression of metabolic diseases remains to be clarified. T cell phenotyping may improve obese and/or T2D patient stratification with therapeutic and prognostic implications.
Collapse
Affiliation(s)
- Sothea Touch
- INSERM, UMR_S 1166, Team 6 Nutriomics, 75013, Paris, France
- Sorbonne Universités, UPMC University Paris 06, UMR_S 1166, 75005, Paris, France
- ICAN, Pitié-Salpêtrière Hospital, Assistance Publique Hôpitaux de Paris, Institute of Cardiometabolism and Nutrition, 75013, Paris, France
| | - Karine Clément
- INSERM, UMR_S 1166, Team 6 Nutriomics, 75013, Paris, France
- Sorbonne Universités, UPMC University Paris 06, UMR_S 1166, 75005, Paris, France
- ICAN, Pitié-Salpêtrière Hospital, Assistance Publique Hôpitaux de Paris, Institute of Cardiometabolism and Nutrition, 75013, Paris, France
- Nutrition, Endocrinology and Cardiology Departments, Assistance Publique Hôpitaux de Paris, Pitié-Salpêtrière Hospital, 75013, Paris, France
| | - Sébastien André
- INSERM, UMR_S 1166, Team 6 Nutriomics, 75013, Paris, France.
- Sorbonne Universités, UPMC University Paris 06, UMR_S 1166, 75005, Paris, France.
- ICAN, Pitié-Salpêtrière Hospital, Assistance Publique Hôpitaux de Paris, Institute of Cardiometabolism and Nutrition, 75013, Paris, France.
| |
Collapse
|
30
|
Fatima N, Faisal SM, Zubair S, Siddiqui SS, Moin S, Owais M. Emerging role of Interleukins IL-23/IL-17 axis and biochemical markers in the pathogenesis of Type 2 Diabetes: Association with age and gender in human subjects. Int J Biol Macromol 2017; 105:1279-1288. [PMID: 28757426 DOI: 10.1016/j.ijbiomac.2017.07.155] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 01/10/2023]
Abstract
Chronic hyperglycaemia in type 2 diabetes (T2D) is associated with increased oxidative stress and inflammation. Keeping the above fact into consideration we analyse the effect of age and gender on oxidative stress biomarkers and pro-inflammatory cytokines in T2D patients. The study included 148 diabetic and 110 healthy subjects, grouped on the basis of age and gender. Plasma malondialdehyde, protein carbonyl content and nitric oxide levels were elevated significantly in diabetic patients, with significant decrease in Ferric reducing ability of plasma, vitamin C, reduced glutathione, erythrocyte thiol groups and erythrocyte antioxidant enzyme activity and these changes were even more pronounced as age progressed. Serum IL-1β, IL-6, IL-17A, IL-22 levels and TNF-α mRNA expression was significantly upregulated in all the age groups whereas IL-23 mRNA was upregulated only in the higher age group. Female diabetic patients experienced higher oxidative stress and greater serum IL-6 levels and TNF-α mRNA expression as compared to their male counterparts. This study suggested that diabetes onset is accompanied with increased oxidative stress and elevated levels of inflammatory mediators. The effect was more prominent in aged patients. Female patients experienced greater oxidative stress as compared to males of those age groups with slightly higher levels of inflammatory cytokines.
Collapse
Affiliation(s)
- Naureen Fatima
- Department of Biochemistry, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Syed Mohd Faisal
- Molecular Immunology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Swaleha Zubair
- Women's College, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Sheelu Shafiq Siddiqui
- Rajiv Gandhi Centre for Diabetes and Endocrinology, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Shagufta Moin
- Department of Biochemistry, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Mohammad Owais
- Molecular Immunology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India.
| |
Collapse
|
31
|
Herder C, Kannenberg JM, Carstensen-Kirberg M, Huth C, Meisinger C, Koenig W, Peters A, Rathmann W, Roden M, Thorand B. Serum levels of interleukin-22, cardiometabolic risk factors and incident type 2 diabetes: KORA F4/FF4 study. Cardiovasc Diabetol 2017; 16:17. [PMID: 28143481 PMCID: PMC5282888 DOI: 10.1186/s12933-017-0498-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 01/13/2017] [Indexed: 02/07/2023] Open
Abstract
AIMS Interleukin-22 (IL-22) has beneficial effects on body weight, insulin resistance and inflammation in different mouse models, but its relevance for the development of type 2 diabetes in humans is unknown. We aimed to identify correlates of serum IL-22 levels and to test the hypothesis that higher IL-22 levels are associated with lower diabetes incidence. METHODS Cross-sectional associations between serum IL-22, cardiometabolic risk factors and glucose tolerance status were investigated in 1107 persons of the population-based KORA F4 study. The prospective association between serum IL-22 and incident type 2 diabetes was assessed in 504 initially non-diabetic study participants in both the KORA F4 study and its 7-year follow-up examination KORA FF4, 76 of whom developed diabetes. RESULTS Male sex, current smoking, lower HDL cholesterol, lower estimated glomerular filtration rate and higher serum interleukin-1 receptor antagonist were associated with higher IL-22 levels after adjustment for confounders (all P < 0.05). Serum IL-22 showed no associations with glucose tolerance status, prediabetes or type 2 diabetes. Baseline serum IL-22 levels (median, 25th/75th percentiles) for incident type 2 diabetes cases and non-cases were 6.28 (1.95; 12.35) and 6.45 (1.95; 11.80) pg/ml, respectively (age and sex-adjusted P = 0.744). The age and sex-adjusted OR (95% CI) per doubling of IL-22 for incident type 2 diabetes of 1.02 (0.85; 1.23) was almost unchanged after consideration of further confounders. CONCLUSIONS High serum levels of IL-22 were positively rather than inversely associated with several cardiometabolic risk factors. However, these associations did not translate into an increased risk for type 2 diabetes. Thus, our data argue against the utility of IL-22 as biomarker for prevalent or incident type 2 diabetes in humans, but identify potential determinants of IL-22 levels which merits further research in the context of cardiovascular diseases.
Collapse
Affiliation(s)
- Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Auf’m Hennekamp 65, 40225 Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Julia M. Kannenberg
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Auf’m Hennekamp 65, 40225 Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Maren Carstensen-Kirberg
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Auf’m Hennekamp 65, 40225 Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Cornelia Huth
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Christa Meisinger
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Wolfgang Koenig
- Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Annette Peters
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Wolfgang Rathmann
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Auf’m Hennekamp 65, 40225 Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Department of Endocrinology and Diabetology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Barbara Thorand
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|
32
|
Xia C, Rao X, Zhong J. Role of T Lymphocytes in Type 2 Diabetes and Diabetes-Associated Inflammation. J Diabetes Res 2017; 2017:6494795. [PMID: 28251163 PMCID: PMC5307004 DOI: 10.1155/2017/6494795] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 12/30/2016] [Accepted: 01/12/2017] [Indexed: 12/20/2022] Open
Abstract
Although a critical role of adaptive immune system has been confirmed in driving local and systemic inflammation in type 2 diabetes and promoting insulin resistance, the underlying mechanism is not completely understood. Inflammatory regulation has been focused on innate immunity especially macrophage for a long time, while increasing evidence suggests T cells are crucial for the development of metabolic inflammation and insulin resistance since 2009. There was growing evidence supporting the critical implication of T cells in the pathogenesis of type 2 diabetes. We will discuss the available effect of T cells subsets in adaptive immune system associated with the procession of T2DM, which may unveil several potential strategies that could provide successful therapies in the future.
Collapse
Affiliation(s)
- Chang Xia
- College of Health Science & Nursing, Wuhan Polytechnic University, Wuhan, Hubei, China
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH, USA
| | - Xiaoquan Rao
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH, USA
| | - Jixin Zhong
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
33
|
Gong F, Wu J, Zhou P, Zhang M, Liu J, Liu Y, Lu X, Liu Z. Interleukin-22 Might Act as a Double-Edged Sword in Type 2 Diabetes and Coronary Artery Disease. Mediators Inflamm 2016; 2016:8254797. [PMID: 27829708 PMCID: PMC5088317 DOI: 10.1155/2016/8254797] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/19/2016] [Indexed: 02/08/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) and coronary artery disease (CAD) are both characterized by chronic low-grade inflammation. The role of Th17 and its related cytokines in T2DM and CAD is unclear. Here we investigated the serum levels of five Th17-related cytokines (IL-17, IL-22, MIP-3α, IL-9, and IL-27) in T2DM, CAD, and T2DM-CAD comorbidity patients. IL-22 was found to be elevated in all three conditions. Elevated serum IL-22 was independently associated with the incidence of T2DM and CAD. Conversely, IL-22 was found to protect endothelial cells from glucose- and lysophosphatidylcholine- (LPC-) induced injury, and IL-22R1 expression on endothelial cells was increased upon treatment with high glucose and LPC. Blocking of IL-22R1 with IL-22R1 antibody diminished the protective role of IL-22. Our results suggest that IL-22 functions as a double-edged sword in T2DM and CAD and that IL-22 may be used in the treatment of chronic inflammatory diseases such as T2DM and CAD.
Collapse
Affiliation(s)
- Fangchen Gong
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Jiangsu 210029, China
| | - Jin Wu
- Department of Neurology, The Second Affiliated Hospital, Nanjing Medical University, Jiangsu 210029, China
| | - Ping Zhou
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Jiangsu 210029, China
| | - Mengyao Zhang
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Jiangsu 210029, China
| | - Jingning Liu
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Jiangsu 210029, China
| | - Ying Liu
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Jiangsu 210029, China
| | - Xiang Lu
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Jiangsu 210029, China
| | - Zhengxia Liu
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Jiangsu 210029, China
| |
Collapse
|
34
|
Zhang Y, Kolonin MG. Cytokine signaling regulating adipose stromal cell trafficking. Adipocyte 2016; 5:369-374. [PMID: 27994950 DOI: 10.1080/21623945.2016.1220452] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 01/31/2023] Open
Abstract
Adipocyte progenitors, known as adipose stromal cells (ASC), can become mobilized, recruited by tumors, and contribute to cancer progression. Mechanisms underlying ASC trafficking have remained obscure. We recently reported that CXCL1 expressed by cancer cells chemoattracts ASC expressing CXCR1 in obesity. As a candidate mechanism of CXCL1 activation, we identified interleukin (IL)-22, systemic circulation of which is increased in obesity. It has been reported that IL-22 signaling through IL-22R is upstream of CXCL1. Here, we provide evidence that IL-22 expression by leukocytes infiltrating WAT and IL-22R expression by tumors is obesity-dependent. We propose that obesity-associated adipocyte death and the resulting recruitment of leukocytes triggers the IL-22 signaling cascade that induces CXCL1 secretion by cancer cells responsible for ASC trafficking to tumors.
Collapse
|
35
|
Chiricozzi A, Raimondo A, Lembo S, Fausti F, Dini V, Costanzo A, Monfrecola G, Balato N, Ayala F, Romanelli M, Balato A. Crosstalk between skin inflammation and adipose tissue-derived products: pathogenic evidence linking psoriasis to increased adiposity. Expert Rev Clin Immunol 2016; 12:1299-1308. [PMID: 27322922 DOI: 10.1080/1744666x.2016.1201423] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Psoriasis is a chronic skin disorder associated with several comorbid conditions. In psoriasis pathogenesis, the role of some cytokines, including TNF-α and IL-17, has been elucidated. Beside their pro-inflammatory activity, they may also affect glucose and lipid metabolism, possibly promoting insulin resistance and obesity. On the other hand, adipose tissue, secreting adipokines such as chemerin, visfatin, leptin, and adiponectin, not only regulates glucose and lipid metabolism, and endothelial cell function regulation, but it may contribute to inflammation. Areas covered: This review provides an updated 'state-of-the-art' about the reciprocal contribution of a small subset of conventional cytokines and adipokines involved in chronic inflammatory pathways, upregulated in both psoriasis and increased adiposity. A systematic search was conducted using the PubMed Medline database for primary articles. Expert commentary: Because psoriasis is associated with increased adiposity, it would be important to define the contribution of chronic skin inflammation to the onset of obesity and vice versa. Clarifying the pathogenic mechanism underlying this association, a therapeutic strategy having favorable effects on both psoriasis and increased adiposity could be identified.
Collapse
Affiliation(s)
| | - Annunziata Raimondo
- b Department of Clinical Medicine and Surgery, Section of Dermatology , University of Naples Federico II , Naples , Italy
| | - Serena Lembo
- c Department of Medicine and Surgery , University of Salerno , Salerno , Italy
| | - Francesca Fausti
- d Skin Biology Laboratory , University of Rome Tor Vergata , Rome , Italy
| | - Valentina Dini
- a Department of Dermatology , University of Pisa , Pisa , Italy
| | - Antonio Costanzo
- e Dermatology Unit, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS) , Sapienza University of Rome , Rome , Italy
| | - Giuseppe Monfrecola
- b Department of Clinical Medicine and Surgery, Section of Dermatology , University of Naples Federico II , Naples , Italy
| | - Nicola Balato
- b Department of Clinical Medicine and Surgery, Section of Dermatology , University of Naples Federico II , Naples , Italy
| | - Fabio Ayala
- b Department of Clinical Medicine and Surgery, Section of Dermatology , University of Naples Federico II , Naples , Italy
| | - Marco Romanelli
- a Department of Dermatology , University of Pisa , Pisa , Italy
| | - Anna Balato
- f Department of Advanced Biomedical Sciences , University of Naples Federico II , Naples , Italy
| |
Collapse
|
36
|
Perusina Lanfranca M, Lin Y, Fang J, Zou W, Frankel T. Biological and pathological activities of interleukin-22. J Mol Med (Berl) 2016; 94:523-34. [PMID: 26923718 PMCID: PMC4860114 DOI: 10.1007/s00109-016-1391-6] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/17/2015] [Accepted: 01/21/2016] [Indexed: 12/16/2022]
Abstract
Interleukin (IL)-22, a member of the IL-10 family, is a cytokine secreted by several types of immune cells including IL-22(+)CD4(+) T cells (Th22) and IL-22 expressing innate leukocytes (ILC22). Recent studies have demonstrated that IL-22 is a key component in mucosal barrier defense, tissue repair, epithelial cell survival, and proliferation. Furthermore, accumulating evidence has defined both protective and pathogenic properties of IL-22 in a number of conditions including autoimmune disease, infection, and malignancy. In this review, we summarize the expression and signaling pathway and functional characteristics of the IL-22 and IL-22 receptor axis in physiological and pathological scenarios and discuss the potential to target IL-22 signaling to treat human diseases.
Collapse
Affiliation(s)
- Mirna Perusina Lanfranca
- Department of Surgery, University of Michigan School of Medicine, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
| | - Yanwei Lin
- Department of Surgery, University of Michigan School of Medicine, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao-Tong University, Shanghai, 200001, China
| | - Jingyuan Fang
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao-Tong University, Shanghai, 200001, China
| | - Weiping Zou
- Department of Surgery, University of Michigan School of Medicine, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA.
- The University of Michigan Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA.
- Graduate Programs in Immunology and Tumor Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Timothy Frankel
- Department of Surgery, University of Michigan School of Medicine, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA.
- The University of Michigan Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
37
|
Francisco CO, Catai AM, Moura-Tonello SCG, Arruda LCM, Lopes SLB, Benze BG, Del Vale AM, Malmegrim KCR, Leal AMO. Cytokine profile and lymphocyte subsets in type 2 diabetes. Braz J Med Biol Res 2016; 49:e5062. [PMID: 27007651 PMCID: PMC4819407 DOI: 10.1590/1414-431x20155062] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 12/17/2015] [Indexed: 01/09/2023] Open
Abstract
Type 2 diabetes mellitus (T2D) is a metabolic disease with inflammation as an important pathogenic background. However, the pattern of immune cell subsets and the cytokine profile associated with development of T2D are unclear. The objective of this study was to evaluate different components of the immune system in T2D patients' peripheral blood by quantifying the frequency of lymphocyte subsets and intracellular pro- and anti-inflammatory cytokine production by T cells. Clinical data and blood samples were collected from 22 men (51.6±6.3 years old) with T2D and 20 nonsmoking men (49.4±7.6 years old) who were matched for age and sex as control subjects. Glycated hemoglobin, high-sensitivity C-reactive protein concentrations, and the lipid profile were measured by a commercially available automated system. Frequencies of lymphocyte subsets in peripheral blood and intracellular production of interleukin (IL)-4, IL-10, IL-17, tumor necrosis factor-α, and interferon-γ cytokines by CD3+ T cells were assessed by flow cytometry. No differences were observed in the frequency of CD19+ B cells, CD3+CD8+ and CD3+CD4+ T cells, CD16+56+ NK cells, and CD4+CD25+Foxp3+ T regulatory cells in patients with T2D compared with controls. The numbers of IL-10- and IL-17-producing CD3+ T cells were significantly higher in patients with T2D than in controls (P<0.05). The frequency of interferon-γ-producing CD3+ T cells was positively correlated with body mass index (r=0.59; P=0.01). In conclusion, this study shows increased numbers of circulating IL-10- and IL-17-producing CD3+ T cells in patients with T2D, suggesting that these cytokines are involved in the immune pathology of this disease.
Collapse
Affiliation(s)
- C O Francisco
- Departamento de Fisioterapia, Universidade Federal de São Carlos, São Carlos, SP, Brasil
| | - A M Catai
- Departamento de Fisioterapia, Universidade Federal de São Carlos, São Carlos, SP, Brasil
| | - S C G Moura-Tonello
- Departamento de Fisioterapia, Universidade Federal de São Carlos, São Carlos, SP, Brasil
| | - L C M Arruda
- Centro de Terapia Celular, Fundação de Amparo è Pesquisa do Estado de São Paulo, Ribeirão Preto, SP, Brasil
| | - S L B Lopes
- Departamento de Medicina, Universidade Federal de São Carlos, São Carlos, SP, Brasil
| | - B G Benze
- Departamento de Estatística, Universidade Federal de São Carlos, São Carlos, SP, Brasil
| | - A M Del Vale
- Departamento de Medicina, Universidade Federal de São Carlos, São Carlos, SP, Brasil
| | - K C R Malmegrim
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - A M O Leal
- Departamento de Medicina, Universidade Federal de São Carlos, São Carlos, SP, Brasil
| |
Collapse
|
38
|
Guo H, Xu B, Yang X, Peng D, Wang Y, Liu X, Cui C, Jiang Y. A High Frequency of Peripheral Blood IL-22(+) CD4(+) T Cells in Patients With New Onset Type 2 Diabetes Mellitus. J Clin Lab Anal 2016; 30:95-102. [PMID: 25425169 PMCID: PMC6806726 DOI: 10.1002/jcla.21821] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 10/22/2014] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND This study is aimed at investigating the frequency of different functional IL-22(+) CD4(+) T cells in Chinese patients with type 2 diabetes mellitus (T2DM). METHODS The frequency of circulating IFN-γ+IL-17-IL-22-CD4(+) (Th1), IFN-γ-IL-17A+IL-22-CD4(+) (Th17), and IFN-γ-IL-17A-IL-22(+) CD4(+) (Th22), and other subsets of IL-22(+) CD4(+) T cells in 31 patients with new onset T2DM and 16 healthy controls was characterized by flow cytometry. The levels of serum IL-22, IL-17, IFN-γ, insulin C-peptide, hemoglobin A1c (HbA1c), fasting plasma glucose, and insulin were examined. RESULTS The frequency of Th1, Th17, Th22, IFN-γ(+) IL-17(-) IL-22(+) , and IFN-γ(-) IL-17(+) IL-22(+) CD4(+) T cells and the concentrations of IL-22, but not IL-17 and IFNγ, in the patients were significantly higher than controls. The percentages of Th22 cells were correlated positively with the frequency of IFN-γ(-) IL-17(+) IL-22(+) CD4(+) T cells, the values of body mass index (BMI) and homeostatic model assessment insulin resistance (HOMA-IR), and the levels of serum IL-22 in those patients. CONCLUSION Our data suggest that IL-22(+) CD4(+) T cells may contribute to the early process of T2DM.
Collapse
Affiliation(s)
- Hui Guo
- Key Laboratory of Zoonosis ResearchMinistry of EducationThe First HospitalJilin UniversityChangchunChina
| | - Bing‐Chuan Xu
- Key Laboratory of Zoonosis ResearchMinistry of EducationThe First HospitalJilin UniversityChangchunChina
| | - Xi‐Ge Yang
- Department of Anesthesiology, The First HospitalJilin UniversityChangchunChina
| | - Di Peng
- Department of Endocrinology, The Tonghua Center HospitalTonghuaChina
| | - Ye Wang
- Key Laboratory of Zoonosis ResearchMinistry of EducationThe First HospitalJilin UniversityChangchunChina
| | - Xiao‐Bo Liu
- Department of Anesthesiology, The First HospitalJilin UniversityChangchunChina
| | - Cheng‐Ri Cui
- Department of Anesthesiology, The First HospitalJilin UniversityChangchunChina
| | - Yan‐Fang Jiang
- Key Laboratory of Zoonosis ResearchMinistry of EducationThe First HospitalJilin UniversityChangchunChina
| |
Collapse
|
39
|
Bosevski M, Stojanovska L, Apostolopoulos V. Inflammatory biomarkers: impact for diabetes and diabetic vascular disease. Acta Biochim Biophys Sin (Shanghai) 2015; 47:1029-31. [PMID: 26511092 DOI: 10.1093/abbs/gmv109] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 09/28/2015] [Indexed: 12/28/2022] Open
Affiliation(s)
| | - Lily Stojanovska
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia
| | - Vasso Apostolopoulos
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia
| |
Collapse
|
40
|
Cavalcante-Silva LHA, Galvão JGFM, da Silva JSDF, de Sales-Neto JM, Rodrigues-Mascarenhas S. Obesity-Driven Gut Microbiota Inflammatory Pathways to Metabolic Syndrome. Front Physiol 2015; 6:341. [PMID: 26635627 PMCID: PMC4652019 DOI: 10.3389/fphys.2015.00341] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 11/03/2015] [Indexed: 12/28/2022] Open
Abstract
The intimate interplay between immune system, metabolism, and gut microbiota plays an important role in controlling metabolic homeostasis and possible obesity development. Obesity involves impairment of immune response affecting both innate and adaptive immunity. The main factors involved in the relationship of obesity with inflammation have not been completely elucidated. On the other hand, gut microbiota, via innate immune receptors, has emerged as one of the key factors regulating events triggering acute inflammation associated with obesity and metabolic syndrome. Inflammatory disorders lead to several signaling transduction pathways activation, inflammatory cytokine, chemokine production and cell migration, which in turn cause metabolic dysfunction. Inflamed adipose tissue, with increased macrophages infiltration, is associated with impaired preadipocyte development and differentiation to mature adipose cells, leading to ectopic lipid accumulation and insulin resistance. This review focuses on the relationship between obesity and inflammation, which is essential to understand the pathological mechanisms governing metabolic syndrome.
Collapse
Affiliation(s)
- Luiz H A Cavalcante-Silva
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Laboratório de Imunofarmacologia, Centro de Biotecnologia, Universidade Federal da Paraíba João Pessoa, Brasil
| | - José G F M Galvão
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Laboratório de Imunofarmacologia, Centro de Biotecnologia, Universidade Federal da Paraíba João Pessoa, Brasil
| | - Juliane Santos de França da Silva
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Laboratório de Imunofarmacologia, Centro de Ciências da Saúde, Universidade Federal da Paraíba João Pessoa, Brasil
| | - José M de Sales-Neto
- Programa de Pós-Graduação em Biotecnologia, Laboratório de Imunofarmacologia, Centro de Biotecnologia, Universidade Federal da Paraíba João Pessoa, Brasil
| | - Sandra Rodrigues-Mascarenhas
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Laboratório de Imunofarmacologia, Centro de Biotecnologia, Universidade Federal da Paraíba João Pessoa, Brasil ; Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Laboratório de Imunofarmacologia, Centro de Ciências da Saúde, Universidade Federal da Paraíba João Pessoa, Brasil ; Programa de Pós-Graduação em Biotecnologia, Laboratório de Imunofarmacologia, Centro de Biotecnologia, Universidade Federal da Paraíba João Pessoa, Brasil
| |
Collapse
|
41
|
Avitabile S, Odorisio T, Madonna S, Eyerich S, Guerra L, Eyerich K, Zambruno G, Cavani A, Cianfarani F. Interleukin-22 Promotes Wound Repair in Diabetes by Improving Keratinocyte Pro-Healing Functions. J Invest Dermatol 2015; 135:2862-2870. [PMID: 26168231 DOI: 10.1038/jid.2015.278] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/08/2015] [Accepted: 06/18/2015] [Indexed: 11/09/2022]
Abstract
Impaired re-epithelialization, imbalanced expression of cytokines and growth factors, and vascular disease contribute to healing impairment in diabetes. IL-22, a pro-inflammatory cytokine mediating a cross-talk between immune system and epithelial cells, has been shown to have a role in repair processes. In this study we aimed to investigate IL-22 regenerative potential in the poor healing context of diabetic wounds. By using streptozotocin-induced diabetic mice, we demonstrated that IL-22 wound treatment significantly accelerated the healing process, by promoting re-epithelialization, granulation tissue formation, and vascularization. Improved re-epithelialization was associated with increased keratinocyte proliferation and signal transducer and activator of transcription 3 (STAT3) activation. We showed that endogenous IL-22 content was reduced at both mRNA and protein level during the inflammatory phase of diabetic wounds, with fewer IL-22-positive cells infiltrating the granulation tissue. We demonstrated that IL-22 treatment promoted proliferation and injury repair of hyperglycemic keratinocytes and induced activation of STAT3 and extracellular signal-regulated kinase transduction pathways in keratinocytes grown in hyperglycemic condition or isolated from diabetic patients. Finally, we demonstrated that IL-22 treatment was able to inhibit diabetic keratinocyte differentiation while promoting vascular endothelial growth factor release. Our data indicate a pro-healing role of IL-22 in diabetic wounds, suggesting a therapeutic potential for this cytokine in diabetic ulcer management.
Collapse
Affiliation(s)
- Simona Avitabile
- Laboratory of Experimental Immunology, Istituto Dermopatico dell'Immacolata IRCCS, Rome, Italy
| | - Teresa Odorisio
- Laboratory of Biochemistry, Istituto Dermopatico dell'Immacolata IRCCS, Rome, Italy
| | - Stefania Madonna
- Laboratory of Experimental Immunology, Istituto Dermopatico dell'Immacolata IRCCS, Rome, Italy
| | - Stefanie Eyerich
- ZAUM - Center of Allergy and Environment, Technische Universität and Helmholtz Center, Munich, Germany
| | - Liliana Guerra
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata IRCCS, Rome, Italy
| | - Kilian Eyerich
- Department of Dermatology and Allergy, Technische Universität, Munich, Germany
| | - Giovanna Zambruno
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata IRCCS, Rome, Italy
| | - Andrea Cavani
- Laboratory of Experimental Immunology, Istituto Dermopatico dell'Immacolata IRCCS, Rome, Italy.
| | - Francesca Cianfarani
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata IRCCS, Rome, Italy.
| |
Collapse
|
42
|
Olson NC, Doyle MF, de Boer IH, Huber SA, Jenny NS, Kronmal RA, Psaty BM, Tracy RP. Associations of Circulating Lymphocyte Subpopulations with Type 2 Diabetes: Cross-Sectional Results from the Multi-Ethnic Study of Atherosclerosis (MESA). PLoS One 2015; 10:e0139962. [PMID: 26458065 PMCID: PMC4601795 DOI: 10.1371/journal.pone.0139962] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/18/2015] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE Distinct lymphocyte subpopulations have been implicated in the regulation of glucose homeostasis and obesity-associated inflammation in mouse models of insulin resistance. Information on the relationships of lymphocyte subpopulations with type 2 diabetes remain limited in human population-based cohort studies. METHODS Circulating levels of innate (γδ T, natural killer (NK)) and adaptive immune (CD4+ naive, CD4+ memory, Th1, and Th2) lymphocyte subpopulations were measured by flow cytometry in the peripheral blood of 929 free-living participants of the Multi-Ethnic Study of Atherosclerosis (MESA). Cross-sectional relationships of lymphocyte subpopulations with type 2 diabetes (n = 154) and fasting glucose and insulin concentrations were evaluated by generalized linear models. RESULTS Each standard deviation (SD) higher CD4+ memory cells was associated with a 21% higher odds of type 2 diabetes (95% CI: 1-47%) and each SD higher naive cells was associated with a 22% lower odds (95% CI: 4-36%) (adjusted for age, gender, race/ethnicity, and BMI). Among participants not using diabetes medication, higher memory and lower naive CD4+ cells were associated with higher fasting glucose concentrations (p<0.05, adjusted for age, sex, and race/ethnicity). There were no associations of γδ T, NK, Th1, or Th2 cells with type 2 diabetes, glucose, or insulin. CONCLUSIONS A higher degree of chronic adaptive immune activation, reflected by higher memory and lower naive CD4+ cells, was positively associated with type 2 diabetes. These results are consistent with a role of chronic immune activation and exhaustion augmenting chronic inflammatory diseases, and support the importance of prospective studies evaluating adaptive immune activation and type 2 diabetes.
Collapse
Affiliation(s)
- Nels C. Olson
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, Vermont, United States of America
| | - Margaret F. Doyle
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, Vermont, United States of America
| | - Ian H. de Boer
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Kidney Research Institute, University of Washington, Seattle, Washington, United States of America
| | - Sally A. Huber
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, Vermont, United States of America
| | - Nancy Swords Jenny
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, Vermont, United States of America
| | - Richard A. Kronmal
- Collaborative Health Studies Coordinating Center, Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| | - Bruce M. Psaty
- Departments of Medicine, Epidemiology, Health Services, and Cardiovascular Health Research Unit, University of Washington, Seattle, Washington, United States of America
- Group Health Research Institute, Group Health Cooperative, Seattle, Washington, United States of America
| | - Russell P. Tracy
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, Vermont, United States of America
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont, United States of America
- * E-mail:
| |
Collapse
|
43
|
Apostolopoulos V, de Courten MPJ, Stojanovska L, Blatch GL, Tangalakis K, de Courten B. The complex immunological and inflammatory network of adipose tissue in obesity. Mol Nutr Food Res 2015; 60:43-57. [PMID: 26331761 DOI: 10.1002/mnfr.201500272] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 07/22/2015] [Accepted: 08/24/2015] [Indexed: 12/27/2022]
Abstract
A number of approaches have been utilized in the prevention, management, and treatment of obesity, including, surgery, medication, diet, exercise, and overall lifestyle changes. Despite these interventions, the prevalence of obesity and the various disorders related to it is growing. In obesity, there is a constant state of chronic low-grade inflammation which is characterized by activation and infiltration of pro-inflammatory immune cells and a dysregulated production of high levels of pro-inflammatory cytokines. This pro-inflammatory milieu contributes to insulin resistance, type-2 diabetes, cardiovascular disease, and other related co-morbidities. The roles of the innate (macrophages, neutrophils, eosinophils, mast cells, NK cells, MAIT cells) and the adaptive (CD4 T cells, CD8 T cells, regulatory T cells, and B cells) immune responses and the roles of adipokines and cytokines in adipose tissue inflammation and obesity are discussed. An understanding of the crosstalk between the immune system and adipocytes may shed light in better treatment modalities for obesity and obesity-related diseases.
Collapse
Affiliation(s)
- Vasso Apostolopoulos
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, VIC, Australia
| | | | - Lily Stojanovska
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, VIC, Australia
| | - Gregory L Blatch
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, VIC, Australia
| | - Kathy Tangalakis
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, VIC, Australia
| | - Barbora de Courten
- Monash Centre for Health Research and Implementation, School of Public Health and preventative Medicine, Monash University, VIC, Australia.,Diabetes and Vascular Medicine Unit, Monash Health, Clayton, VIC, Australia
| |
Collapse
|
44
|
Łuczyński W, Grubczak K, Moniuszko M, Głowińska-Olszewska B, Bossowski A. Elevated levels of Th17 cells in children with central obesity. Scandinavian Journal of Clinical and Laboratory Investigation 2015. [PMID: 26216210 DOI: 10.3109/00365513.2015.1066845] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND It is believed that the recently discovered interleukin 17-producing Th17 cells play a role in the pathogenesis of chronic inflammation in the course of obesity and diabetes. OBJECTIVES The purpose of our study was to complete data on this subject in children. METHODS We assessed Th17 cell levels in the peripheral blood of children diagnosed with central obesity (n = 14) and compared the results with data obtained in patients with newly diagnosed (n = 11) and long-term type 1 diabetes mellitus (n = 18), and in a control group as well (n = 24). RESULTS (i) Children with central obesity were characterized by higher percentages of Th17 cells as compared to children from the control group; (ii) in the peripheral blood of patients with long-term type 1 diabetes the Th17 cell counts were higher compared to the control group; (iii) total plasma cholesterol concentration correlated positively with Th17/Treg cells ratio; and (iv) among patients with long-term diabetes, disease duration correlated positively with Th17 cell count and Th17/Th1 cell ratio. CONCLUSION The results of our study indicate that Th17 cells may be involved in chronic inflammation accompanying obesity and type 1 diabetes mellitus in children.
Collapse
Affiliation(s)
- Włodzimierz Łuczyński
- a Department of Pediatrics , Endocrinology, Diabetology with Cardiology Division, Medical University of Białystok , Białystok , Poland
| | | | | | | | | |
Collapse
|
45
|
Wang M, Chen P, Jia Y, He N, Li D, Ji C, Ma D. Elevated Th22 as well as Th17 cells associated with therapeutic outcome and clinical stage are potential targets in patients with multiple myeloma. Oncotarget 2015; 6:17958-67. [PMID: 26255628 PMCID: PMC4627228 DOI: 10.18632/oncotarget.4641] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 06/12/2015] [Indexed: 01/05/2023] Open
Abstract
T helper (Th) cell imbalance plays important roles in tumor development and their effects in Multiple myeloma (MM) remain unclear. In the present study, we investigated the levels and clinical significance of Th22, Th17 and Th1 cells in patients with MM. Th subsets were examined by flow cytometry. Plasma IL-22, IL-17A and IFN-γ concentrations were measured by ELISA. AHR and RORC mRNA expression was examined by RT-PCR. Here, we found that the frequency of Th22 cells was significantly elevated in peripheral blood (PB) and bone marrow (BM) of newly-diagnosed MM patients, and recovered in complete remission patients after chemotherapy. The circulating Th17 cells accompanied by IL-17A levels were also up-regulated in MM patients and decreased after remission. We also found that there was a significantly positive correlation between Th22 and Th17 cells in MM patients. Moreover, the frequencies of Th22 and Th17 cells were higher in stage III than in stage I+II of MM. Our data demonstrated that Th22 and Th17 cells might be important therapeutic targets in multiple myeloma and could facilitate the effect of antitumor immunotherapy.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/genetics
- CD4 Lymphocyte Count
- Case-Control Studies
- China
- Enzyme-Linked Immunosorbent Assay
- Female
- Humans
- Interferon-gamma/blood
- Interleukin-17/blood
- Interleukins/blood
- Male
- Middle Aged
- Multiple Myeloma/blood
- Multiple Myeloma/drug therapy
- Multiple Myeloma/genetics
- Multiple Myeloma/immunology
- Multiple Myeloma/pathology
- Neoplasm Staging
- Nuclear Receptor Subfamily 1, Group F, Member 3/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Polymerase Chain Reaction
- RNA, Messenger/metabolism
- Receptors, Aryl Hydrocarbon/genetics
- Receptors, Aryl Hydrocarbon/metabolism
- Remission Induction
- T-Lymphocyte Subsets/drug effects
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Th17 Cells/drug effects
- Th17 Cells/immunology
- Th17 Cells/metabolism
- Treatment Outcome
- Interleukin-22
Collapse
Affiliation(s)
- Min Wang
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
- Department of Hematology, Jinan Central Hospital, Affiliated to Shandong University, Jinan, China
| | - Ping Chen
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
- Department of Hematology, Jinan Central Hospital, Affiliated to Shandong University, Jinan, China
| | - Yan Jia
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Na He
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Daqi Li
- Department of Hematology, Jinan Central Hospital, Affiliated to Shandong University, Jinan, China
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Daoxin Ma
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
46
|
Monteiro-Sepulveda M, Touch S, Mendes-Sá C, André S, Poitou C, Allatif O, Cotillard A, Fohrer-Ting H, Hubert EL, Remark R, Genser L, Tordjman J, Garbin K, Osinski C, Sautès-Fridman C, Leturque A, Clément K, Brot-Laroche E. Jejunal T Cell Inflammation in Human Obesity Correlates with Decreased Enterocyte Insulin Signaling. Cell Metab 2015; 22:113-24. [PMID: 26094890 DOI: 10.1016/j.cmet.2015.05.020] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 03/03/2015] [Accepted: 05/22/2015] [Indexed: 12/27/2022]
Abstract
In obesity, insulin resistance is linked to inflammation in several tissues. Although the gut is a very large lymphoid tissue, inflammation in the absorptive small intestine, the jejunum, where insulin regulates lipid and sugar absorption is unknown. We analyzed jejunal samples of 185 obese subjects stratified in three metabolic groups: without comorbidity, suffering from obesity-related comorbidity, and diabetic, versus 33 lean controls. Obesity increased both mucosa surface due to lower cell apoptosis and innate and adaptive immune cell populations. The preferential CD8αβ T cell location in epithelium over lamina propria appears a hallmark of obesity. Cytokine secretion by T cells from obese, but not lean, subjects blunted insulin signaling in enterocytes relevant to apical GLUT2 mislocation. Statistical links between T cell densities and BMI, NAFLD, or lipid metabolism suggest tissue crosstalk. Obesity triggers T-cell-mediated inflammation and enterocyte insulin resistance in the jejunum with potential broader systemic implications.
Collapse
Affiliation(s)
- Milena Monteiro-Sepulveda
- Sorbonne Universités, UPMC Univ Paris 06, UMRS 1138 and UMRS 1166, F-75005 Paris, France; INSERM, UMRS 1138, Centre de Recherche des Cordeliers, F-75005 Paris, France; Institute of Cardiometabolism and Nutrition, ICAN, Pitié-Salpêtrière Hospital F-75013, Paris, France
| | - Sothea Touch
- Sorbonne Universités, UPMC Univ Paris 06, UMRS 1138 and UMRS 1166, F-75005 Paris, France; INSERM, UMRS 1166, Nutriomics team 6, F-75013 Paris, France; Institute of Cardiometabolism and Nutrition, ICAN, Pitié-Salpêtrière Hospital F-75013, Paris, France
| | - Carla Mendes-Sá
- INSERM, UMRS 1166, Nutriomics team 6, F-75013 Paris, France; Institute of Cardiometabolism and Nutrition, ICAN, Pitié-Salpêtrière Hospital F-75013, Paris, France
| | - Sébastien André
- Sorbonne Universités, UPMC Univ Paris 06, UMRS 1138 and UMRS 1166, F-75005 Paris, France; INSERM, UMRS 1166, Nutriomics team 6, F-75013 Paris, France; Institute of Cardiometabolism and Nutrition, ICAN, Pitié-Salpêtrière Hospital F-75013, Paris, France
| | - Christine Poitou
- Sorbonne Universités, UPMC Univ Paris 06, UMRS 1138 and UMRS 1166, F-75005 Paris, France; INSERM, UMRS 1166, Nutriomics team 6, F-75013 Paris, France; Assistance Publique Hôpitaux de Paris, AP-HP, Pitié Salpêtrière hospital, Nutrition and Endocrinology Department and Hepato-biliary and Digestive Surgery Department, F-75013 Paris, France; Institute of Cardiometabolism and Nutrition, ICAN, Pitié-Salpêtrière Hospital F-75013, Paris, France
| | - Omran Allatif
- Sorbonne Universités, UPMC Univ Paris 06, UMRS 1138 and UMRS 1166, F-75005 Paris, France; INSERM, UMRS 1166, Nutriomics team 6, F-75013 Paris, France; Institute of Cardiometabolism and Nutrition, ICAN, Pitié-Salpêtrière Hospital F-75013, Paris, France
| | - Aurélie Cotillard
- Sorbonne Universités, UPMC Univ Paris 06, UMRS 1138 and UMRS 1166, F-75005 Paris, France; INSERM, UMRS 1166, Nutriomics team 6, F-75013 Paris, France; Institute of Cardiometabolism and Nutrition, ICAN, Pitié-Salpêtrière Hospital F-75013, Paris, France
| | - Hélène Fohrer-Ting
- Sorbonne Universités, UPMC Univ Paris 06, UMRS 1138 and UMRS 1166, F-75005 Paris, France; INSERM, UMRS 1138, Centre de Recherche des Cordeliers, F-75005 Paris, France
| | - Edwige-Ludiwyne Hubert
- Sorbonne Universités, UPMC Univ Paris 06, UMRS 1138 and UMRS 1166, F-75005 Paris, France; INSERM, UMRS 1138, Centre de Recherche des Cordeliers, F-75005 Paris, France; Institute of Cardiometabolism and Nutrition, ICAN, Pitié-Salpêtrière Hospital F-75013, Paris, France
| | - Romain Remark
- INSERM, UMRS 1138, Centre de Recherche des Cordeliers, F-75005 Paris, France; Université Paris Descartes-Paris 5, UMRS 1138, F-75006 Paris, France
| | - Laurent Genser
- Sorbonne Universités, UPMC Univ Paris 06, UMRS 1138 and UMRS 1166, F-75005 Paris, France; INSERM, UMRS 1166, Nutriomics team 6, F-75013 Paris, France; Assistance Publique Hôpitaux de Paris, AP-HP, Pitié Salpêtrière hospital, Nutrition and Endocrinology Department and Hepato-biliary and Digestive Surgery Department, F-75013 Paris, France; Institute of Cardiometabolism and Nutrition, ICAN, Pitié-Salpêtrière Hospital F-75013, Paris, France
| | - Joan Tordjman
- Sorbonne Universités, UPMC Univ Paris 06, UMRS 1138 and UMRS 1166, F-75005 Paris, France; INSERM, UMRS 1166, Nutriomics team 6, F-75013 Paris, France; Institute of Cardiometabolism and Nutrition, ICAN, Pitié-Salpêtrière Hospital F-75013, Paris, France
| | - Kevin Garbin
- Sorbonne Universités, UPMC Univ Paris 06, UMRS 1138 and UMRS 1166, F-75005 Paris, France; INSERM, UMRS 1138, Centre de Recherche des Cordeliers, F-75005 Paris, France
| | - Céline Osinski
- Sorbonne Universités, UPMC Univ Paris 06, UMRS 1138 and UMRS 1166, F-75005 Paris, France; INSERM, UMRS 1138, Centre de Recherche des Cordeliers, F-75005 Paris, France
| | - Catherine Sautès-Fridman
- INSERM, UMRS 1138, Centre de Recherche des Cordeliers, F-75005 Paris, France; Université Paris Descartes-Paris 5, UMRS 1138, F-75006 Paris, France
| | - Armelle Leturque
- Sorbonne Universités, UPMC Univ Paris 06, UMRS 1138 and UMRS 1166, F-75005 Paris, France; INSERM, UMRS 1138, Centre de Recherche des Cordeliers, F-75005 Paris, France; Institute of Cardiometabolism and Nutrition, ICAN, Pitié-Salpêtrière Hospital F-75013, Paris, France
| | - Karine Clément
- Sorbonne Universités, UPMC Univ Paris 06, UMRS 1138 and UMRS 1166, F-75005 Paris, France; INSERM, UMRS 1166, Nutriomics team 6, F-75013 Paris, France; Assistance Publique Hôpitaux de Paris, AP-HP, Pitié Salpêtrière hospital, Nutrition and Endocrinology Department and Hepato-biliary and Digestive Surgery Department, F-75013 Paris, France; Institute of Cardiometabolism and Nutrition, ICAN, Pitié-Salpêtrière Hospital F-75013, Paris, France.
| | - Edith Brot-Laroche
- Sorbonne Universités, UPMC Univ Paris 06, UMRS 1138 and UMRS 1166, F-75005 Paris, France; INSERM, UMRS 1138, Centre de Recherche des Cordeliers, F-75005 Paris, France; Institute of Cardiometabolism and Nutrition, ICAN, Pitié-Salpêtrière Hospital F-75013, Paris, France.
| |
Collapse
|
47
|
Adaptive Immunity and Antigen-Specific Activation in Obesity-Associated Insulin Resistance. Mediators Inflamm 2015; 2015:593075. [PMID: 26146464 PMCID: PMC4471324 DOI: 10.1155/2015/593075] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 05/11/2015] [Accepted: 05/13/2015] [Indexed: 02/07/2023] Open
Abstract
Type 2 diabetes mellitus (T2D) is a metabolic disease that is strongly tied to obesity and often preceded by insulin resistance (IR). It has been established that chronic inflammation of hypertrophic adipose tissue depots in obese individuals leads to obesity-associated IR and is mediated by cells of the innate immune system, particularly macrophages. More recently, cells of the adaptive immune system, B and T lymphocytes, have also emerged as important regulators of glucose homeostasis, raising the intriguing possibility that antigen-driven immune responses play a role in disease. In this review, we critically evaluate the roles that various B and T cell subsets play in IR, and then we examine the data suggesting that antigen-driven mechanisms, such as antigen presentation and costimulation, may drive the activity of these lymphocytes.
Collapse
|
48
|
Wang XJ, Zeng HY, Zhou QY, Zhao L, Zhang Y. Relationship between Th1/Th2 balance and indexes of glucose metabolism in type 2 diabetes patients with spleen-deficiency and phlegm stagnation syndrome. Shijie Huaren Xiaohua Zazhi 2015; 23:876-880. [DOI: 10.11569/wcjd.v23.i5.876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the relationship between the changes of drift and proportion of Th1/Th2 cell subsets and glucose metabolism in type 2 diabetes mellitus (T2DM) patients with spleen-deficiency and phlegm stagnation syndrome.
METHODS: According to traditional Chinese medicine (TCM) syndrome classification, 45 type 2 diabetic patients were divided into a spleen-deficiency and phlegm stagnation syndrome group (23 cases) and a non-spleen-deficiency and phlegm stagnation syndrome group (22 cases). Meanwhile, 20 healthy subjects were recruited as a normal control group (NC group). Glycometabolic indexes such as fasting blood glucose (FBG) and glycosylated hemoglobin (HbAlc) were observed. Th1 and Th2 cell proportions and Th1/Th2 ratio in CD4+ T-cell subsets were determined by flow cytometry using monoclonal immunofluorescence method. The relationship between Th1/Th2 ratio and glycometabolic indexes was analyzed.
RESULTS: Th1 cell proportion and Th1/Th2 ratio were both significantly increased in the spleen-deficiency and phlegm stagnation syndrome group compared with the non-spleen-deficiency and phlegm stagnation syndrome group and NC group (P < 0.05). Th2 cell proportion was significantly decreased in the spleen-deficiency and phlegm stagnation syndrome group compared with the NC group (P < 0.05), although there was no significant difference between the two T2DM groups. Correlation analysis showed that Th1 cell proportion and Th1/Th2 ratio both had a significant correlation with FBG, and HbA1c (r = 0.898, 0.678; 0.869, 0.630) in spleen-deficiency and phlegm stagnation syndrome T2DM group, but there was no correlation between Th2 cell proportion and FBG or HbA1c. The similar results were obtained in the non-spleen-deficiency and phlegm stagnation syndrome group. Th1 cell proportion and Th1/Th2 ratio both had a significant correlation with FBG and HbA1c (r = 0.751, 0.589; 0.658, 0.545), and there was no correlation between Th2 cell proportion and FBG or HbA1c.
CONCLUSION: There is obvious Th1/Th2 imbalance in T2DM patients, and the imbalance correlates with the severity of glycometabolic disturbance, which is especially significant in T2DM patients with spleen-deficiency and phlegm stagnation syndrome. Altered cell immunological characteristics in T2DM patients may be one of the mechanisms by which spleen deficiency aggravates T2DM.
Collapse
|
49
|
Ip BC, Hogan AE, Nikolajczyk BS. Lymphocyte roles in metabolic dysfunction: of men and mice. Trends Endocrinol Metab 2015; 26:91-100. [PMID: 25573740 PMCID: PMC4315738 DOI: 10.1016/j.tem.2014.12.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 11/21/2014] [Accepted: 12/05/2014] [Indexed: 02/07/2023]
Abstract
Type 2 diabetes (T2D) is a metabolic disease associated with obesity-related insulin resistance (IR) and chronic inflammation. Animal studies indicate that IR can be caused and/or exacerbated by systemic and/or tissue-specific alterations in lymphocyte differentiation and function. Human studies also indicate that obesity-associated inflammation promotes IR. Nevertheless, clinical trials with anti-inflammatory therapies have yielded modest impacts on established T2D. Unlike mouse models, where obesity is predominantly associated with IR, 20-25% of obese humans are metabolically healthy with high insulin sensitivity. The uncoupling of obesity from IR in humans but not in animal models advocates for a more comprehensive understanding of mediators and mechanisms of human obesity-promoted IR, and better integration of knowledge from human studies into animal experiments to efficiently pursue T2D prevention and treatment.
Collapse
Affiliation(s)
- Blanche C Ip
- Department of Microbiology, Boston University, Boston, MA, USA
| | - Andrew E Hogan
- Obesity Immunology Group, Education and Research Centre, St Vincent's University Hospital, University College Dublin, Dublin, Ireland
| | - Barbara S Nikolajczyk
- Department of Microbiology, Boston University, Boston, MA, USA; Department of Medicine, Boston University, Boston, MA, USA.
| |
Collapse
|
50
|
Guo Y, Wu W, Cen Z, Li X, Kong Q, Zhou Q. IL-22-producing Th22 cells play a protective role in CVB3-induced chronic myocarditis and dilated cardiomyopathy by inhibiting myocardial fibrosis. Virol J 2014; 11:230. [PMID: 25547181 PMCID: PMC4304148 DOI: 10.1186/s12985-014-0230-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 12/16/2014] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND A new subset of T helper (Th) cells, named IL-22-producing Th22 cells, was identified recently. Th22 cells have been implicated in immunity and inflammation. However, the role of these cells in the progression from acute viral myocarditis (AVMC) to dilated cardiomyopathy (DCM) and myocardial fibrosis remains unknown. METHODS BALB/c mice were repeatedly i.p. infected with Coxsackie virus B3 (CVB3) to establish models of AVMC, chronic myocarditis and DCM. On week 2, 12 and 24 post initial injection, the percentage of splenic Th22 cells, the levels of plasma IL-22, cardiac IL-22 receptor (IL-22R) expression, and indicators of myocardial fibrosis were measured. Further, mice with AVMC and chronic myocarditis were treated with an anti-IL-22 neutralizing antibody (Ab). The collagen volume fraction (CVF), the percentage of splenic Th22 cells, plasma IL-22 levels, cardiac IL-22R expression and indicators of myocardial fibrosis were then monitored. RESULTS Compared to control mice at the same time points, AVMC, chronic myocarditis and DCM mice have higher percentage of splenic Th22 cells, higher plasma IL-22 levels, increased cardiac IL-22R, as well as increased collagen typeI-A1 (COL1-A1), collagen type III-A1 (COL3-A1) and matrix metalloproteinase-9 (MMP9) expression. However, the expression of tissue inhibitor of metalloproteinase-1(TIMP-1) was decreased. Treatment of AVMC and chronic myocarditis mice with an anti-IL-22 Ab decreased the survival rate and exacerbated myocardial fibrosis. The percentage of splenic Th22 cells, plasma IL-22 levels and cardiac IL-22R expression also decreased in anti-IL-22 Ab treatment group as compared to IgG and PBS treated groups of AVMC and chronic myocarditis mice. Moreover, increased expression of COL1-A1, COL3-A1, MMP9 but decreased expression of TIMP-1 were observed in anti-IL-22 Ab mouse group. CONCLUSIONS Th22 cells play an important role in the pathogenesis of CVB3-induced mouse chronic myocarditis and DCM. IL-22 is a myocardium-protective cytokine by inhibiting myocardial fibrosis. Therefore, Th 22 cells may be considered as potential therapeutic targets for DCM.
Collapse
MESH Headings
- Animals
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/immunology
- Cardiomyopathy, Dilated/pathology
- Cardiomyopathy, Dilated/virology
- Coxsackievirus Infections/genetics
- Coxsackievirus Infections/immunology
- Coxsackievirus Infections/pathology
- Coxsackievirus Infections/virology
- Disease Models, Animal
- Disease Progression
- Enterovirus B, Human/physiology
- Fibrosis/genetics
- Fibrosis/immunology
- Fibrosis/virology
- Humans
- Interleukins/immunology
- Male
- Mice
- Mice, Inbred BALB C
- Myocarditis/genetics
- Myocarditis/immunology
- Myocarditis/pathology
- Myocarditis/virology
- Receptors, Interleukin/genetics
- Receptors, Interleukin/immunology
- T-Lymphocytes, Helper-Inducer/immunology
- Interleukin-22
Collapse
Affiliation(s)
- Yujie Guo
- Department of Cardiology, First Affiliated Hospital of Guangxi Medical University, Guangxi Cardiovascular Institute, Nanning, 530021 China
| | - Weifeng Wu
- Department of Cardiology, First Affiliated Hospital of Guangxi Medical University, Guangxi Cardiovascular Institute, Nanning, 530021 China
| | - Zhihong Cen
- Department of Cardiology, First Affiliated Hospital of Guangxi Medical University, Guangxi Cardiovascular Institute, Nanning, 530021 China
| | - Xiaomo Li
- Department of Cardiology, First Affiliated Hospital of Guangxi Medical University, Guangxi Cardiovascular Institute, Nanning, 530021 China
| | - Qing Kong
- Department of Cardiology, First Affiliated Hospital of Guangxi Medical University, Guangxi Cardiovascular Institute, Nanning, 530021 China
| | - Qiuxi Zhou
- Department of Cardiology, First Affiliated Hospital of Guangxi Medical University, Guangxi Cardiovascular Institute, Nanning, 530021 China
| |
Collapse
|