1
|
Smith HA, Dallmeyer-Drennen G, Bourne DG, Egan S, Page CA. Sea-weeding enhances early coral survival on seeding devices, but benefits of seeding diminish after one year. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 383:125322. [PMID: 40267811 DOI: 10.1016/j.jenvman.2025.125322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 04/25/2025]
Abstract
Borrowing from principles of aerial seeding in terrestrial reforestation, coral seeding utilises "devices" designed to increase coral spat survival. However, device-assisted coral survival has not been compared to natural survivorship, nor have devices been trialled in environments with strong competitors such as macroalgae. Herein, we deployed seeded devices alongside terracotta tiles, a proxy for natural coral recruitment dynamics. Tiles and devices were deployed to plots examining ongoing macroalgae removal ("sea-weeding"), and survival was monitored over two years. First-year coral survival was enhanced on devices compared to natural survival, and devices conferred the greatest survival benefit when deployed in areas where "sea-weeding" was undertaken. However, over the second year, the benefits of sea-weeding for device-assisted survival were lost, with no significant difference in survival on devices in control versus weeded plots. On average, devices retained 1.3 surviving colonies at two years, which was lower than naturally-occurring juvenile density in removal plots, but higher than control plots. Several factors influenced survival, including the starting spat density, orientation of deployment surface, and site. After two years, 50 % of devices yielded one live coral, but site-based survival varied between 37 % and 93 %. The estimated cost per surviving coral varied when accounting for site-based survival (high survival: $334 coral-1; low survival: $577 coral-1), which could be reduced via future efficiencies. The results of this study inform the potential outcomes of coral seeding on macroalgae dominated reefs, and highlight that assessing survival up to one year is not sufficient to measure long-term restoration goals.
Collapse
Affiliation(s)
- Hillary A Smith
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia; College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia.
| | - Genevieve Dallmeyer-Drennen
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia; AIMS@JCU, Townsville, QLD, 4810, Australia.
| | - David G Bourne
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia; Australian Institute of Marine Science, Cape Cleveland, QLD, 4810, Australia.
| | - Suhelen Egan
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Cathie A Page
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia; AIMS@JCU, Townsville, QLD, 4810, Australia; Australian Institute of Marine Science, Cape Cleveland, QLD, 4810, Australia.
| |
Collapse
|
2
|
De Souza Coração AC, Gomes BA, Chyaromont AM, Lannes-Vieira ACP, Gomes APB, Lopes-Filho EAP, Leitão SG, Teixeira VL, De Paula JC. How the Ecology of Calcified Red Macroalgae is Investigated under a Chemical Approach? A Systematic Review and Bibliometric Study. J Chem Ecol 2024; 50:593-609. [PMID: 38958678 DOI: 10.1007/s10886-024-01525-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
Characteristics such as calcareous morphology and life cycle are used to understand the ecology of calcified rhodophytes. However, there is limited information regarding their chemical profiles and biological activities. Therefore, a systematic review (PRISMA) was conducted to assess the influence of the chemistry of calcareous rhodophytes on ecological interactions in the marine environment. The keywords used were: ["Chemical AND [Ecology OR Interaction OR Response OR Defense OR Effect OR Cue OR Mediated OR Induce]"] AND ["Red Seaweed" OR "Red Macroalgae" OR Rhodophy?] AND [Calcified OR Calcareous] in Science Direct, Scielo, PUBMED, Springer, Web of Science, and Scopus. Only English articles within the proposed theme were considered. Due to the low number of articles, another search was conducted with three classes and 16 genera. Finally, 67 articles were considered valid. Their titles, abstracts, and keywords were analyzed using IRaMuTeQ through factorial, hierarchical and similarity classification. Most of the studies used macroalgae thallus to evaluate chemical mediation while few tested crude extracts. Some substances were noted as sesquiterpene (6-hydroxy-isololiolide), fatty acid (heptadeca5,8,11-triene) and dibromomethane. The articles were divided into four classes: Herbivory, Competition, Settlement/Metamorphosis, and Epiphytism. Crustose calcareous algae were associated with studies of Settlement/Metamorphosis, while calcified algae were linked to herbivory. Thus, the importance of chemistry in the ecology of these algae is evident,and additional studies are needed to identify the substances responsible for ecological interactions. This study collected essential information on calcified red algae, whose diversity appears to be highly vulnerable to the harmful impacts of ongoing climate change.
Collapse
Affiliation(s)
- Amanda Cunha De Souza Coração
- Programa de Pós-Graduação em Ciências Biológicas (Biodiversidade Neotropical), Centro de Ciências Biológicas e da Saúde, Universidade Federal do Estado do Rio de Janeiro, Avenue Pasteur, 458, Rio de Janeiro, Urca, CEP: 22.290-255, Brazil.
| | - Brendo Araujo Gomes
- Programa de Pós-Graduação em Biotecnologia Vegetal e Bioprocessos, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Avenue Carlos Chagas Filho, 373, Rio de Janeiro, CEP: 21941-590, Brazil
| | - Amanda Mendonça Chyaromont
- Centro de Ciências Biológicas e da Saúde, Instituto de Biociências, Universidade Federal do Estado do Rio de Janeiro, Avenue Pasteur, 458, Rio de Janeiro, Urca, CEP: 22.290-255, Brazil
| | - Ana Christina Pires Lannes-Vieira
- Programa de Pós-Graduação em Ciências Biológicas (Biodiversidade Neotropical), Centro de Ciências Biológicas e da Saúde, Universidade Federal do Estado do Rio de Janeiro, Avenue Pasteur, 458, Rio de Janeiro, Urca, CEP: 22.290-255, Brazil
| | - Ana Prya Bartolo Gomes
- Centro de Ciências Biológicas e da Saúde, Instituto de Biociências, Universidade Federal do Estado do Rio de Janeiro, Avenue Pasteur, 458, Rio de Janeiro, Urca, CEP: 22.290-255, Brazil
| | - Erick Alves Pereira Lopes-Filho
- Programa de Pós-Graduação em Ciências Biológicas (Botânica), Museu Nacional, Universidade Federal do Rio de Janeiro, , Quinta da Boa Vista s/n, Horto Botânico, Rio de Janeiro, CEP: 20.940-040, Brazil
| | - Suzana Guimarães Leitão
- Faculdade de Farmácia, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Avenue Carlos Chagas Filho, 373, Rio de Janeiro, CEP: 21941-590, Brazil
| | - Valéria Laneuville Teixeira
- Instituto de Biologia, Universidade Federal Fluminense, Professor Marcos Waldemar de Freitas Reis Street, s/n, Niterói, Rio de Janeiro, CEP: 24.210-201, Brazil
| | - Joel Campos De Paula
- Programa de Pós-Graduação em Ciências Biológicas (Biodiversidade Neotropical), Centro de Ciências Biológicas e da Saúde, Universidade Federal do Estado do Rio de Janeiro, Avenue Pasteur, 458, Rio de Janeiro, Urca, CEP: 22.290-255, Brazil
| |
Collapse
|
3
|
Fulton SE, Hines T, Page CA, McLeod IM, Whinney J, Heron SF, Bourne DG, Smith HA. Inshore coral reef sediment and turf dynamics unaffected by canopy-forming macroalgae. MARINE POLLUTION BULLETIN 2024; 208:117037. [PMID: 39366064 DOI: 10.1016/j.marpolbul.2024.117037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/06/2024]
Abstract
Nearshore coral reefs face an increasing abundance of fleshy macroalgae, an indicator of degradation and threat to ecosystem functioning. Removal of macroalgae is proposed to assist coral recovery, though the ecological and physical impacts have not been studied. Nearshore reefs are also confronted with sedimentation stress, influencing reef dynamics including algal turfs, with flow-on impacts to coral recruitment, fish diets, and trophic cascades. In this study, the interplay between macroalgal canopies, sediment deposition and algal turf environments was investigated on the nearshore Great Barrier Reef. Removal of fleshy macroalgae over two years had no significant effect on the amount or composition of sediment deposited on proxy coral (SedPods) and algal turf (TurfPods) surfaces, nor was the height of algal turfs impacted. Deposition on TurfPods was greater with high-energy currents, likely due to retention of sediment within turfs. Therefore, macroalgae removal is unlikely to exacerbate nor alleviate sediment-related stress on benthic communities.
Collapse
Affiliation(s)
- Stella E Fulton
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia; AIMS@JCU, Townsville, QLD 4811, Australia; Fathom Pacific, Melbourne, VIC 3195, Australia
| | - Tehya Hines
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia; Marine Geophysics Laboratory, James Cook University, Townsville, QLD 4811, Australia
| | - Cathie A Page
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia; AIMS@JCU, Townsville, QLD 4811, Australia; Australian Institute of Marine Science, Townsville, QLD 4810, Australia
| | - Ian M McLeod
- TropWATER, James Cook University, Townsville, QLD 4811, Australia
| | - James Whinney
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia; Marine Geophysics Laboratory, James Cook University, Townsville, QLD 4811, Australia
| | - Scott F Heron
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia; Marine Geophysics Laboratory, James Cook University, Townsville, QLD 4811, Australia
| | - David G Bourne
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia; AIMS@JCU, Townsville, QLD 4811, Australia; Australian Institute of Marine Science, Townsville, QLD 4810, Australia
| | - Hillary A Smith
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia; School of Biological, Earth and Environmental Sciences, University of New South Wales, Randwick, NSW 2052, Australia.
| |
Collapse
|
4
|
Imchen T, Tilvi S, Singh KS, Thakur N. Allelochemicals from the seaweeds and their bioprospecting potential. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5387-5401. [PMID: 38396154 DOI: 10.1007/s00210-024-03002-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024]
Abstract
Allelochemicals are secondary metabolites which function as a natural protection against grazing activities by algae and higher plants. They are one of the major metabolites engaged in the interactions of organisms. The chemically mediated interactions between organisms significantly influence the functioning of the ecosystems. Most of these compounds are secondary metabolites comprising sterols, terpenes, and polyphenols. These compounds not only play a defensive role, but also exhibit biological activities such as antioxidants, anti-cancer, anti-diabetes, anti-inflammation, and anti-microbial properties. This review article discusses the current understanding of the allelochemicals of seaweeds and their bioprospecting potential that can bring benefit to humanity. Specifically, the bioactive substances having specific health benefits associated with the consumption or application of seaweed-derived compounds. The properties of such allelochemicals can have implications for bioprospecting pharmaceutical, nutraceutical and cosmetic applications.
Collapse
Affiliation(s)
- Temjensangba Imchen
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Panaji, Goa, India, 403004.
| | - Supriya Tilvi
- Chemical Oceanography Division, CSIR-National Institute of Oceanography, Panaji, Goa, India, 403004
| | - Keisham Sarjit Singh
- Chemical Oceanography Division, CSIR-National Institute of Oceanography, Panaji, Goa, India, 403004
| | - Narsinh Thakur
- Chemical Oceanography Division, CSIR-National Institute of Oceanography, Panaji, Goa, India, 403004.
| |
Collapse
|
5
|
Clements CS, Pratte ZA, Stewart FJ, Hay ME. Biodiversity of macroalgae does not differentially suppress coral performance: The other side of a biodiversity issue. Ecology 2024; 105:e4329. [PMID: 38772876 DOI: 10.1002/ecy.4329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/16/2024] [Accepted: 04/13/2024] [Indexed: 05/23/2024]
Abstract
Hundreds of studies now document positive relationships between biodiversity and critical ecosystem processes, but as ecological communities worldwide shift toward new species configurations, less is known regarding how the biodiversity of undesirable species will shape the functioning of ecosystems or foundation species. We manipulated macroalgal species richness in experimental field plots to test whether and how the identity and diversity of competing macroalgae affected the growth, survival, and microbiome of a common coral in Mo'orea, French Polynesia. Compared to controls without algal competitors, coral growth was significantly suppressed across three macroalgal monocultures, a polyculture of the same three macroalgae, and plots containing inert seaweed mimics; coral mortality was limited and did not differ significantly among treatments. One macroalga suppressed coral growth significantly less than the other two, but none differed from the inert mimic in terms of coral suppression. The composition, dispersion, and diversity of coral microbiomes in treatments with live macroalgae or inert plastic mimics did not differ from controls experiencing no competition. Microbiome composition differed between two macroalgal monocultures and a monoculture versus plastic mimics, but no other microbiome differences were observed among macroalgal or mimic treatments. Together, these findings suggest that algal diversity does not alter harmful impacts of macroalgae on coral performance, which could be accounted for by physical structure alone in these field experiments. While enhancing biodiversity is a recognized strategy for promoting desirable species, it would be worrisome if biodiversity also enhanced the negative impacts of undesirable species. We documented no such effects in this investigation.
Collapse
Affiliation(s)
- Cody S Clements
- School of Biological Sciences and Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Zoe A Pratte
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Frank J Stewart
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Mark E Hay
- School of Biological Sciences and Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
6
|
Segaran TC, Azra MN, Mohd Noor MI, Danish-Daniel M, Burlakovs J, Lananan F, Xu J, Kari ZA, Wei LS. Knowledge mapping analysis of the global seaweed research using CiteSpace. Heliyon 2024; 10:e28418. [PMID: 38560172 PMCID: PMC10981124 DOI: 10.1016/j.heliyon.2024.e28418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 03/10/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
Seaweed research has gained substantial momentum in recent years, attracting the attention of researchers, academic institutions, industries, policymakers, and philanthropists to explore its potential applications and benefits. Despite the growing body of literature, there is a paucity of comprehensive scientometric analyses, highlighting the need for an in-depth investigation. In this study, we utilized CiteSpace to examine the global seaweed research landscape through the Web of Science Core Collection database, assessing publication trends, collaboration patterns, network structures, and co-citation analyses across 48,278 original works published since 1975. Our results demonstrate a diverse and active research community, with a multitude of authors and journals contributing to the advancement of seaweed science. Thematic co-citation cluster analysis identified three primary research areas: "Coral reef," "Solar radiation," and "Mycosporine-like amino acid," emphasizing the multidisciplinary nature of seaweed research. The increasing prominence of "Chemical composition" and "Antioxidant" keywords indicates a burgeoning interest in characterizing the nutritional value and health-promoting properties of seaweed. Timeline co-citation analysis unveils that recent research priorities have emerged around the themes of coral reefs, ocean acidification, and antioxidants, underlining the evolving focus and interdisciplinary approach of the field. Moreover, our analysis highlights the potential of seaweed as a functional food product, poised to contribute significantly to addressing global food security and sustainability challenges. This study underscores the importance of bibliometric analysis in elucidating the global seaweed research landscape and emphasizes the need for sustained knowledge exchange and collaboration to drive the field forward. By revealing key findings and emerging trends, our research offers valuable insights for academics and stakeholders, fostering a more profound understanding of seaweed's potential and informing future research endeavors in this promising domain.
Collapse
Affiliation(s)
- Thirukanthan Chandra Segaran
- Institute of Climate Adaptation and Marine Biotechnology (ICAMB), Universiti Malaysia Terengganu (UMT), Kuala Nerus, 21030, Terengganu, Malaysia
| | - Mohamad Nor Azra
- Institute of Climate Adaptation and Marine Biotechnology (ICAMB), Universiti Malaysia Terengganu (UMT), Kuala Nerus, 21030, Terengganu, Malaysia
- Research Center for Marine and Land Bioindustry, Earth Sciences and Maritime Organization, National Research and Innovation Agency (BRIN), Pemenang, 83352, Indonesia
| | - Mohd Iqbal Mohd Noor
- Faculty of Business Management, Universiti Teknologi MARA (UiTM) (Pahang), 27600, Raub, Pahang, Malaysia
- Institute for Biodiversity and Sustainable Development, Universiti Teknologi MARA (UiTM), 40450, Shah Alam, Selangor, Malaysia
| | - Muhd Danish-Daniel
- Institute of Climate Adaptation and Marine Biotechnology (ICAMB), Universiti Malaysia Terengganu (UMT), Kuala Nerus, 21030, Terengganu, Malaysia
| | - Juris Burlakovs
- Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, Poland
| | - Fathurrahman Lananan
- Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, 22200 Besut, Terengganu, 21300, Malaysia
| | - Juntian Xu
- School of Marine Science and Fisheries, Jiangsu Ocean University, No. 59 Cangwu Road, Haizhou District, Lianyungang City, Jiangsu, China
| | - Zulhisyam Abdul Kari
- Department of Agricultural Science, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, 17600, Jeli, Kelantan, Malaysia
| | - Lee Seong Wei
- Department of Agricultural Science, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, 17600, Jeli, Kelantan, Malaysia
- Tropical Rainforest Research Centre (TRaCe), Universiti Malaysia Kelantan, Pulau Banding, 33300, Gerik, Perak, Malaysia
| |
Collapse
|
7
|
Fu J, Zhou J, Zhou J, Zhang Y, Liu L. Competitive effects of the macroalga Caulerpa taxifolia on key physiological processes in the scleractinian coral Turbinaria peltata under thermal stress. PeerJ 2023; 11:e16646. [PMID: 38107563 PMCID: PMC10725675 DOI: 10.7717/peerj.16646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/20/2023] [Indexed: 12/19/2023] Open
Abstract
An increased abundance of macroalgae has been observed in coral reefs damaged by climate change and local environmental stressors. Macroalgae have a sublethal effect on corals that includes the inhibition of their growth, development, and reproduction. Thus, this study explored the effects of the macroalga, Caulerpa taxifolia, on the massive coral, Turbinaria peltata, under thermal stress. We compared the responses of the corals' water-meditated interaction with algae (the co-occurrence group) and those in direct contact with algae at two temperatures. The results show that after co-culturing with C. taxifolia for 28 days, the density content of the dinoflagellate endosymbionts was significantly influenced by the presence of C. taxifolia at ambient temperature (27 °C), from 1.3 × 106 cells cm-2 in control group to 0.95 × 106 cells cm-2 in the co-occurrence group and to 0.89 × 106 cells cm-2 in the direct contact group. The chlorophyll a concentration only differed significantly between the control and the direct contact group at 27 °C. The protein content of T. peltata decreased by 37.2% in the co-occurrence group and 49.0% in the direct contact group compared to the control group. Meanwhile, the growth rate of T. peltata decreased by 57.7% in the co-occurrence group and 65.5% in the direct contact group compared to the control group. The activity of the antioxidant enzymes significantly increased, and there was a stronger effect of direct coral contact with C. taxifolia than the co-occurrence group. At 30 °C, the endosymbiont density, chlorophyll a content, and growth rate of T. peltata significantly decreased compared to the control temperature; the same pattern was seen in the increase in antioxidant enzyme activity. Additionally, when the coral was co-cultured with macroalgae at 30 °C, there was no significant decrease in the density or chlorophyll a content of the endosymbiont compared to the control. However, the interaction of macroalgae and elevated temperature was evident in the feeding rate, protein content, superoxide dismutase (SOD), and catalase (CAT) activity compared to the control group. The direct contact of the coral with macroalga had a greater impact than water-meditated interactions. Hence, the competition between coral and macroalga may be more intense under thermal stress.
Collapse
Affiliation(s)
- JianRong Fu
- Fisheries College, Guangdong Ocean University, Zhanjiang, Guangdong, China
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Jie Zhou
- Fisheries College, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - JiaLi Zhou
- Fisheries College, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - YanPing Zhang
- Fisheries College, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Li Liu
- Fisheries College, Guangdong Ocean University, Zhanjiang, Guangdong, China
| |
Collapse
|
8
|
Spiers L, Frazer TK. Comparison of feeding preferences of herbivorous fishes and the sea urchin Diadema antillarum in Little Cayman. PeerJ 2023; 11:e16264. [PMID: 38025680 PMCID: PMC10656904 DOI: 10.7717/peerj.16264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 09/18/2023] [Indexed: 12/01/2023] Open
Abstract
On Caribbean coral reefs, losses of two key groups of grazers, herbivorous fishes and Diadema antillarum, coincided with dramatic increases in macroalgae, which have contributed to decreases in the resilience of these coral reefs and continued low coral cover. In some locations, herbivorous reef fishes and D. antillarum populations have begun to recover, and reductions in macroalgal cover and abundance have followed. Harder to determine, and perhaps more important, are the combined grazing effects of herbivorous fishes and D. antillarum on the structure of macroalgal communities. Surprisingly few studies have examined the feeding preferences of D. antillarum for different macroalgal species, and there have been even fewer comparative studies between these different herbivore types. Accordingly, a series of in-situ and ex-situ feeding assays involving herbivorous fishes and D. antillarum were used to examine feeding preferences. Ten macrophytes representing palatable and chemically and/or structurally defended species were used in these assays, including nine macroalgae, and one seagrass. All species were eaten by at least one of the herbivores tested, although consumption varied greatly. All herbivores consumed significant portions of two red algae species while avoiding Halimeda tuna, which has both chemical and structural defenses. Herbivorous fishes mostly avoided chemically defended species while D. antillarum consumed less of the structurally defended algae. These results suggest complementarity and redundancy in feeding by these different types of herbivores indicating the most effective macroalgal control and subsequent restoration of degraded coral reefs may depend on the recovery of both herbivorous fishes and D. antillarum.
Collapse
Affiliation(s)
- Lindsay Spiers
- Fisheries and Aquatic Sciences Program, School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, FL, United States of America
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, Marathon, FL, United States of America
| | - Thomas K. Frazer
- Fisheries and Aquatic Sciences Program, School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, FL, United States of America
- College of Marine Science, University of South Florida, St. Petersburg, FL, United States of America
| |
Collapse
|
9
|
Fong J, Tang PPY, Deignan LK, Seah JCL, McDougald D, Rice SA, Todd PA. Chemically Mediated Interactions with Macroalgae Negatively Affect Coral Health but Induce Limited Changes in Coral Microbiomes. Microorganisms 2023; 11:2261. [PMID: 37764105 PMCID: PMC10535309 DOI: 10.3390/microorganisms11092261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Allelopathic chemicals facilitated by the direct contact of macroalgae with corals are potentially an important mechanism mediating coral-macroalgal interactions, but only a few studies have explored their impacts on coral health and microbiomes and the coral's ability to recover. We conducted a field experiment on an equatorial urbanized reef to assess the allelopathic effects of four macroalgal species (Bryopsis sp., Endosiphonia horrida, Hypnea pannosa and Lobophora challengeriae) on the health and microbiomes of three coral species (Merulina ampliata, Montipora stellata and Pocillopora acuta). Following 24 h of exposure, crude extracts of all four macroalgal species caused significant coral tissue bleaching and reduction in effective quantum yield. The corals were able to recover within 72 h of the removal of extracts, except those that were exposed to L. challengeriae. While some macroalgal extracts caused an increase in the alpha diversity of coral microbiomes, there were no significant differences in the composition and variability of coral microbiomes between controls and macroalgal extracts at each sampling time point. Nevertheless, DESeq2 differential abundance analyses showed species-specific responses of coral microbiomes. Overall, our findings provide insights on the limited effect of chemically mediated interactions with macroalgae on coral microbiomes and the capacity of corals to recover quickly from the macroalgal chemicals.
Collapse
Affiliation(s)
- Jenny Fong
- Experimental Marine Ecology Laboratory, National University of Singapore, Singapore 117558, Singapore; (J.C.L.S.); (P.A.T.)
| | - Peggy P. Y. Tang
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; (P.P.Y.T.); (L.K.D.); (D.M.); (S.A.R.)
| | - Lindsey K. Deignan
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; (P.P.Y.T.); (L.K.D.); (D.M.); (S.A.R.)
| | - Jovena C. L. Seah
- Experimental Marine Ecology Laboratory, National University of Singapore, Singapore 117558, Singapore; (J.C.L.S.); (P.A.T.)
| | - Diane McDougald
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; (P.P.Y.T.); (L.K.D.); (D.M.); (S.A.R.)
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Scott A. Rice
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; (P.P.Y.T.); (L.K.D.); (D.M.); (S.A.R.)
| | - Peter A. Todd
- Experimental Marine Ecology Laboratory, National University of Singapore, Singapore 117558, Singapore; (J.C.L.S.); (P.A.T.)
| |
Collapse
|
10
|
Fu JR, Zhou J, Zhang YP, Liu L. Effects of Caulerpa taxifolia on Physiological Processes and Gene Expression of Acropora hyacinthus during Thermal Stress. BIOLOGY 2022; 11:biology11121792. [PMID: 36552301 PMCID: PMC9775474 DOI: 10.3390/biology11121792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
An increasing ecological phase shift from coral-dominated reefs to macroalgae-dominated reefs as a result of anthropogenic impacts, such as eutrophication, sedimentation, and overfishing, has been observed in many reef systems around the world. Ocean warming is a universal threat to both corals and macroalgae, which may alter the outcome of competition between them. Therefore, in order to explore the effects of indirect and direct exposure to macroalgae on the physiological, biochemical, and genetic expression of corals at elevated temperature, the coral Acropora hyacinthus and highly invasive green algae Caulerpa taxifolia were chosen. Physiologically, the results exhibited that, between the control and direct contact treatments, the density and chlorophyll a content of zooxanthella decreased by 53.1% and 71.2%, respectively, when the coral indirectly contacted with the algae at an ambient temperature (27 °C). Moreover, the enzyme activities of superoxide dismutase (SOD) and catalase (CAT) in coral tissue were enhanced by interacting with algae. After an increase of 3 °C, the density and chlorophyll a content of the zooxanthella reduced by 84.4% and 93.8%, respectively, whereas the enzyme activities of SOD and CAT increased 2.3- and 3.1-fold. However, only the zooxanthellae density and pigment content decreased when Caulerpa taxifolia was co-cultured with Acropora hyacinthus at 30 °C. Molecularly, different from the control group, the differentially expressed genes (DEGs) such as Rab family, ATG family, and Casp7 genes were significantly enriched in the endocytosis, autophagy, and apoptosis pathways, regardless of whether Acropora hyacinthus was directly or indirectly exposed to Caulerpa taxifolia at 27 °C. Under thermal stress without algae interaction, the DEGs were significantly enriched in the microbial immune signal transduction pathways, such as the Toll-like receptor signaling pathway and TNF signaling pathway, while multiple cellular immunity (IFI47, TRAF family) and oxidative stress (CAT, SODC, HSP70) genes were upregulated. Inversely, compared with corals without interaction with algae at 30 °C, the DEGs of the corals that interacted with Caulerpa taxifolia at 30 °C were remarkably enriched in apoptosis and the NOD-like receptor signaling pathway, including the transcription factors such as the Casp family and TRAF family. In conclusion, the density and chlorophyll a content of zooxanthella maintained a fading tendency induced by the macroalgae at ambient temperatures. The oxidative stress and immune response levels of the coral was elevated at 30 °C, but the macroalgae alleviated the negative effects triggered by thermal stress.
Collapse
Affiliation(s)
- Jian-Rong Fu
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jie Zhou
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yan-Ping Zhang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Li Liu
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Laboratory of Southern Ocean Science and Engineering, Zhanjiang 524025, China
- Correspondence:
| |
Collapse
|
11
|
Smallhorn‐West P, Cohen PJ, Phillips M, Jupiter SD, Govan H, Pressey RL. Linking small-scale fisheries co-management to U.N. Sustainable Development Goals. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2022; 36:e13977. [PMID: 35866368 PMCID: PMC10091792 DOI: 10.1111/cobi.13977] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Small-scale fisheries account for 90% of global fishers and 40% of the global catch. Effectively managing small-scale fisheries is, therefore, crucial to progressing the United Nations Sustainable Development Goals (SDGs). Co-management and community-based fisheries management are widely considered the most appropriate forms of governance for many small-scale fisheries. We outlined relationships between small-scale fisheries co-management and attainment of the SDGs, including evidence for impacts and gaps in dominant logic. We identified 11 targets across five SDGs to which small-scale fisheries co-management (including community-based fisheries management) can contribute; the theory of change by which these contributions could be achieved; and the strength of evidence for progress toward SDG targets related to various co-management strategies. Our theory of change links the 11 SDG targets by qualifying that progress toward some targets is contingent on others being achieved first. We then reviewed 58 case studies of co-management impacts from the Pacific Islands--a region rich in local marine governance--to evaluate evidence of where, to what degree, and with how much certainty different co-management strategies conferred positive impacts to each SDG target. These strategies included access restrictions, permanent area closures, periodic closures, and gear and species restrictions. Although many studies provide evidence linking multiple co-management strategies to improvements in resource status (SDG 14.4), there was limited evidence of follow-on effects, such as improvements in catch (SDG 2.3, 2.4), livelihoods (SDG 1.2), consumption (SDG 2.1), and nutrition (SDG 2.2). Our findings suggest that leaps of logic and assumptions are prevalent in co-management planning and evaluation. Hence, when evaluating co-management impacts against the SDGs, consideration of ultimate goals is required, otherwise, there is a risk of shortfalls between aspirations and impact.
Collapse
Affiliation(s)
- Patrick Smallhorn‐West
- Australian Research Council Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
- WorldFish, Jalan Batu MaungBayan LepasMalaysia
- Wildlife Conservation SocietyNew York CityNew YorkUSA
| | - Philippa J. Cohen
- Australian Research Council Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
- WorldFish, Jalan Batu MaungBayan LepasMalaysia
- Centre of Marine Socioecology, Institute of Antarctic and Marine ScienceUniversity of TasmaniaHobartTasmaniaAustralia
| | | | | | - Hugh Govan
- University of the South Pacific (USP), School of Law and Social Sciences (SOLASS)SuvaFiji
- Locally Managed Marine Area NetworkSuvaFiji
| | - Robert L. Pressey
- Australian Research Council Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
- Faculty of ScienceQueensland University of TechnologyBrisbaneQueenslandAustralia
| |
Collapse
|
12
|
Nieder C, Liao C, Lee C, Clements KD, Liu S. Novel field observations of coral reef fishes feeding on epiphytic and epizoic organisms associated with the allelopathic seaweed Galaxaura divaricata. Ecol Evol 2022; 12:e9529. [PMID: 36447596 PMCID: PMC9702579 DOI: 10.1002/ece3.9529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 11/29/2022] Open
Abstract
In degraded coral reef ecosystems, allelopathic macroalgae have received increasing attention from marine ecologists because their secondary metabolites (also known as allelochemicals) kill corals that grow adjacent to them and weaken the recovery of degraded reefs. One well-known coral-killing macroalga is the calcareous red seaweed Galaxaura. However, our knowledge of how coral reef fishes interact with allelopathic algae like Galaxaura is very limited. Here, we documented novel observations of feeding interactions of 17 species of coral reef fishes (herbivorous and carnivorous) with the filamentous Galaxaura divaricata on degraded lagoon patch reefs in Dongsha Atoll (South China Sea). Video analyses showed that territorial farming damselfishes (i.e., Dischistodus perspicillatus, D. prosopotaenia, Hemiglyphidodon plagiometopon, Pomacentrus grammorhynchus, P. adelus, and Neoglyphidodon nigroris) and juvenile parrotfishes (Scarus schlegeli, S. ghobban, S. rivulatus, and Chlorurus spilurus) likely used G. divaricata as a feeding substratum. Further, microscopic analyses revealed that the filamentous surface of G. divaricata harbored a wealth of epiphytic microalgae, such as filamentous cyanobacteria (i.e., Leptolyngbya, Lyngbya, Rivularia, Oscillatoria, and Stigonema), diatoms (i.e., Synedra, Nitzschia, Mastogloia, and Pleurosigma), and filamentous red algae (i.e., Heterosiphonia), suggesting that these fishes targeted the nutrient-rich microscopic epiphytes rather than the nutrient-poor host. Juvenile benthic carnivores (i.e., Labridae, Parupeneus multifasciatus, and Meiacanthus grammistes) form feeding assemblages with roving parrotfishes to feed on small invertebrates (i.e., amphipods, copepods, isopods, gastropods, and polychaetes) associated with G. divaricata. Given that coral reef fishes appear to target the epiphytes associated with Galaxaura rather than the alga itself, these observations thus substantiate the threat posed by the overgrowth of G. divaricata to coral recovery in degraded reef systems due to the lack of natural grazers.
Collapse
Affiliation(s)
- Carolin Nieder
- Institute of Marine ScienceUniversity of AucklandAucklandNew Zealand
| | - Chen‐Pan Liao
- Department of BiologyNational Museum of Natural ScienceTaichungTaiwan
| | - Chen‐Lu Lee
- Institute of Marine BiologyNational Taiwan UniversityKeelungTaiwan
| | | | - Shao‐Lun Liu
- Department of Life Science & Center for Ecology and EnvironmentTunghai UniversityTaichungTaiwan
| |
Collapse
|
13
|
Ding DS, Wang SH, Sun WT, Liu HL, Pan CH. The Effect of Feeding on Briareum violacea Growth, Survival and Larval Development under Temperature and Salinity Stress. BIOLOGY 2022; 11:410. [PMID: 35336784 PMCID: PMC8945342 DOI: 10.3390/biology11030410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
In recent years, climate change has often caused fluctuations in seawater salinity and temperature, which threaten the survival and growth of corals. Effectively improving the stress response to temperature and salinity changes in corals to prevent bleaching is one of the important issues. This study initially explored the use of artificial polyunsaturated fatty acids to assess the ability of Briareum violacea to slow bleaching, enhance growth, stabilize larval development and reduce antistress factors (superoxide dismutase and catalase) when they were exposed to temperature and salinity stress. The salinities used in the experiment were 25, 30, 35 and 40 psu, and the temperatures were 20, 25 and 30 °C. It was divided into two parts: Experiment 1-Effects of temperature and salinity and feeding on digestive enzymes, reproduction and stress response of B. violacea; Experiment 2-Effects of temperature and salinity and feeding on the settlement and survival of larvae. The results showed that the feeding treatment group reduced the superoxide dismutase, catalase and mortality of corals under stress and significantly improved larval development and larval settlement.
Collapse
|
14
|
Reverter M, Helber SB, Rohde S, de Goeij JM, Schupp PJ. Coral reef benthic community changes in the Anthropocene: Biogeographic heterogeneity, overlooked configurations, and methodology. GLOBAL CHANGE BIOLOGY 2022; 28:1956-1971. [PMID: 34951504 DOI: 10.1111/gcb.16034] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/04/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Non-random community changes are becoming more frequent in many ecosystems. In coral reefs, changes towards communities dominated by other than hard corals are increasing in frequency, with severe impacts on ecosystem functioning and provision of ecosystem services. Although new research suggests that a variety of alternative communities (i.e. not dominated by hard corals) exist, knowledge on the global diversity and functioning of alternative coral reef benthic communities, especially those not dominated by algae, remains scattered. In this systematic review and meta-analysis of 523 articles, we analyse the different coral reef benthic community changes reported to date and discuss the advantages and limitations of the methods used to study these changes. Furthermore, we used field cover data (1116 reefs from the ReefCheck database) to explore the biogeographic and latitudinal patterns in dominant benthic organisms. We found a mismatch between literature focus on coral-algal changes (over half of the studies analysed) and observed global natural patterns. We identified strong biogeographic patterns, with the largest and most biodiverse biogeographic regions (Western and Central Indo-Pacific) presenting previously overlooked soft-coral-dominated communities as the most abundant alternative community. Finally, we discuss the potential biases associated with methods that overlook ecologically important cryptobenthic communities and the potential of new technological advances in improving monitoring efforts. As coral reef communities inevitably and swiftly change under changing ocean conditions, there is an urgent need to better understand the distribution, dynamics as well as the ecological and societal impacts of these new communities.
Collapse
Affiliation(s)
- Miriam Reverter
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Wilhelmshaven, Germany
| | - Stephanie B Helber
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Wilhelmshaven, Germany
| | - Sven Rohde
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Wilhelmshaven, Germany
| | - Jasper M de Goeij
- Department of Freshwater and Marine Ecology (FAME), Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Peter J Schupp
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Wilhelmshaven, Germany
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Oldenburg, Germany
| |
Collapse
|
15
|
Fong J, Todd PA. Spatio-temporal dynamics of coral-macroalgal interactions and their impacts on coral growth on urbanised reefs. MARINE POLLUTION BULLETIN 2021; 172:112849. [PMID: 34425366 DOI: 10.1016/j.marpolbul.2021.112849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 08/07/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Interactions between corals and macroalgae are important in influencing benthic community structures on coral reefs and have become increasingly common occurrences. However, little is known about their temporal variation as most studies have only documented them from single surveys. To investigate the dynamics of coral-macroalgal interactions, we surveyed three urbanised reefs in Singapore bi-monthly for three years. We found that the frequency of coral-macroalgal interactions varied greatly across sites and seasons. The extent of coral-macroalgal contact was positively correlated with macroalgal abundance, but the correlation differed significantly among macroalgal genera. The growth rates of Goniopora, Montipora and Pavona corals, but not Platygra, were also negatively correlated with the extent of macroalgal interactions. Overall, our results highlight that coral-macroalgal interactions are spatially and temporally dynamic, with varying effects among coral species. It is critical to consider seasonal fluctuations of macroalgae if the overall long-term impacts of macroalgae are to be understood.
Collapse
Affiliation(s)
- Jenny Fong
- Experimental Marine Ecology Laboratory, Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore.
| | - Peter A Todd
- Experimental Marine Ecology Laboratory, Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| |
Collapse
|
16
|
Ding DS, Sun WT, Pan CH. Feeding of a Scleractinian Coral, Goniopora columna, on Microalgae, Yeast, and Artificial Feed in Captivity. Animals (Basel) 2021; 11:ani11113009. [PMID: 34827743 PMCID: PMC8614412 DOI: 10.3390/ani11113009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Coral aquaculture is an innovative and sustainable aquaculture industry. Coral husbandry can address ecological environment conservation needs and industrial demand for corals. Many previous studies have confirmed that corals also belong to heterotrophic organisms. Heterotrophic feeding is essential for overcoming nutrient deficiency. The preliminary results of this study indicate that Goniopora columna have high levels of proteases, and artificial feeds containing high protein can be used for feeding during aquaculture, which can increase the growth rate. In conclusion, we have initially explored that Goniopora columna will have better growth by feeding artificial PUFA rich in animal protein. In addition, the best feeding time is 6:00–12:00 in the morning, when there is better digestion and absorption. It is hoped that this research will be helpful to the development of coral aquaculture in the future. Abstract Nutritional requirements are critical in the process of coral aquaculture. In addition to energy from symbiotic algae, corals obtain sufficient nutrition through heterotrophic feeding. Microalgae and yeast are commonly used as nutritional supplements for many aquaculture organisms. In addition, if artificial feed can match or improve upon the nutritional supplementation provided by microalgae and yeast in the case of G. columna, then feeding this coral would be markedly easier. Hence, this article preliminarily discusses feeds suitable for G. columna. In this study, artificial PUFA rich in animal protein (R), Saccharomyces cerevisiae, Isochrysis galbana tml, and Nannochloropsis oculate were fed to G. columna at quantities of 5% and 10% of body weight. Growth, survival, body composition, and digestive enzymes were assessed. Regarding body composition, the coral’s protein content is higher than that of carbohydrate or fat; thus, evaluating the heterotrophic nutrition of G. columna by using protein absorption is appropriate. The protease content is also high in digestive enzymes. Protein content, protease activity, and specific growth rate were significantly higher in the R group than in other groups. The number of polyps in the groups fed R at 5% and 10% of body weight increased by 40.00 ± 2.43 and 47.33 ± 0.89 number, respectively, significantly greater increases than those achieved in the other groups (p < 0.05). Changes in body composition and digestive enzymes over a 24-h period were compared to determine the optimal feeding time. Protein content and protease activity increased markedly between 6:00 and 12:00. The experimental results suggest that R can improve the activity of G. columna digestive enzymes and their protein and lipid content in body tissue, shorten the cultivation time, and enhance the profitability of coral aquaculture.
Collapse
Affiliation(s)
- De-Sing Ding
- Ph.D. Program of Aquatic Science and Technology in Industry, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, No. 142, Haijhuan Rd., Nanzih District, Kaohsiung 811213, Taiwan
- Correspondence:
| | - Wei-Ting Sun
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, No. 142, Haijhuan Rd., Nanzih District, Kaohsiung 811213, Taiwan; (W.-T.S.); (C.-H.P.)
| | - Chih-Hung Pan
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, No. 142, Haijhuan Rd., Nanzih District, Kaohsiung 811213, Taiwan; (W.-T.S.); (C.-H.P.)
| |
Collapse
|
17
|
Budzałek G, Śliwińska-Wilczewska S, Wiśniewska K, Wochna A, Bubak I, Latała A, Wiktor JM. Macroalgal Defense against Competitors and Herbivores. Int J Mol Sci 2021; 22:7865. [PMID: 34360628 PMCID: PMC8346039 DOI: 10.3390/ijms22157865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 11/02/2022] Open
Abstract
Macroalgae are the source of many harmful allelopathic compounds, which are synthesized as a defense strategy against competitors and herbivores. Therefore, it can be predicted that certain species reduce aquaculture performance. Herein, the allelopathic ability of 123 different taxa of green, red, and brown algae have been summarized based on literature reports. Research on macroalgae and their allelopathic effects on other animal organisms was conducted primarily in Australia, Mexico, and the United States. Nevertheless, there are also several scientific reports in this field from South America and Asia; the study areas in the latter continents coincide with areas where aquaculture is highly developed and widely practiced. Therefore, the allelopathic activity of macroalgae on coexisting animals is an issue that is worth careful investigation. In this work, we characterize the distribution of allelopathic macroalgae and compare them with aquaculture locations, describe the methods for the study of macroalgal allelopathy, present the taxonomic position of allelopathic macroalgae and their impact on coexisting aquatic competitors (Cnidaria) and herbivores (Annelida, Echinodermata, Arthropoda, Mollusca, and Chordata), and compile information on allelopathic compounds produced by different macroalgae species. This work gathers the current knowledge on the phenomenon of macroalgal allelopathy and their allelochemicals affecting aquatic animal (competitors and predators) worldwide and it provides future research directions for this topic.
Collapse
Affiliation(s)
- Gracjana Budzałek
- Division of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdańsk, P-81-378 Gdynia, Poland; (G.B.); (A.L.)
| | - Sylwia Śliwińska-Wilczewska
- Division of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdańsk, P-81-378 Gdynia, Poland; (G.B.); (A.L.)
| | - Kinga Wiśniewska
- Division of Marine Chemistry and Environmental Protection, Institute of Oceanography, University of Gdańsk, P-81-378 Gdynia, Poland;
| | - Agnieszka Wochna
- GIS Centre, Institute of Oceanography, University of Gdańsk, P-81-378 Gdynia, Poland;
| | - Iwona Bubak
- Division of Hydrology, Institute of Geography, University of Gdansk, P-80-309 Gdańsk, Poland;
| | - Adam Latała
- Division of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdańsk, P-81-378 Gdynia, Poland; (G.B.); (A.L.)
| | - Józef Maria Wiktor
- Department of Marine Ecology, Institute of Oceanology of the Polish Academy of Sciences, P-81-779 Sopot, Poland;
| |
Collapse
|
18
|
Ford AK, Visser PM, van Herk MJ, Jongepier E, Bonito V. First insights into the impacts of benthic cyanobacterial mats on fish herbivory functions on a nearshore coral reef. Sci Rep 2021; 11:7147. [PMID: 33785764 PMCID: PMC8009962 DOI: 10.1038/s41598-021-84016-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 02/04/2021] [Indexed: 11/22/2022] Open
Abstract
Benthic cyanobacterial mats (BCMs) are becoming increasingly common on coral reefs. In Fiji, blooms generally occur in nearshore areas during warm months but some are starting to prevail through cold months. Many fundamental knowledge gaps about BCM proliferation remain, including their composition and how they influence reef processes. This study examined a seasonal BCM bloom occurring in a 17-year-old no-take inshore reef area in Fiji. Surveys quantified the coverage of various BCM-types and estimated the biomass of key herbivorous fish functional groups. Using remote video observations, we compared fish herbivory (bite rates) on substrate covered primarily by BCMs (> 50%) to substrate lacking BCMs (< 10%) and looked for indications of fish (opportunistically) consuming BCMs. Samples of different BCM-types were analysed by microscopy and next-generation amplicon sequencing (16S rRNA). In total, BCMs covered 51 ± 4% (mean ± s.e.m) of the benthos. Herbivorous fish biomass was relatively high (212 ± 36 kg/ha) with good representation across functional groups. Bite rates were significantly reduced on BCM-dominated substratum, and no fish were unambiguously observed consuming BCMs. Seven different BCM-types were identified, with most containing a complex consortium of cyanobacteria. These results provide insight into BCM composition and impacts on inshore Pacific reefs.
Collapse
Affiliation(s)
- Amanda K Ford
- School of Agriculture, Geography, Environment, Ocean and Natural Sciences (SAGEONS), University of the South Pacific, Suva, Fiji.
- Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden.
| | - Petra M Visser
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Maria J van Herk
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Evelien Jongepier
- Bioinformatics, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
19
|
Eggertsen M, Halling C. Knowledge gaps and management recommendations for future paths of sustainable seaweed farming in the Western Indian Ocean. AMBIO 2021; 50:60-73. [PMID: 31997147 PMCID: PMC7708553 DOI: 10.1007/s13280-020-01319-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/10/2019] [Accepted: 01/08/2020] [Indexed: 05/07/2023]
Abstract
Farming of eucheumatoid seaweeds is a widespread, promising activity and an important livelihood option in many tropical coastal areas as for example in East Africa, Western Indian Ocean (WIO). Compared to other types of aquaculture, seaweed farming has generally low impact on the environment. Nonetheless, there are potential direct or indirect negative effects of seaweed farming, such as introduction of alien species and changes in local environmental conditions. Although farming has been practiced in this region during several decades, the knowledge concerning the actual environmental impacts from faming non-native eucheumatoid haplotypes and consequently how to manage farming activities to mitigate those is highly limited. In this review, we provide a summary of the current scientific knowledge of potential direct and indirect negative environmental effects linked to eucheumatoid seaweed farming such as alterations of benthic macrophyte habitats and loss of native biodiversity. Furthermore, we highlight knowledge gaps that are of importance to address in the near future, e.g., large-scale ecosystem effects and farms as potential vectors of pathogens. We also provide a number of feasible management recommendations to be implemented for a continued development of environmentally sustainable seaweed farming practices in the WIO region, which includes spatial planning of farms to avoid sensitive areas and farming of native haplotypes of eucheumatoids instead of introduced specimens.
Collapse
Affiliation(s)
- Maria Eggertsen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - Christina Halling
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
20
|
Brown KT, Bender-Champ D, Hoegh-Guldberg O, Dove S. Seasonal shifts in the competitive ability of macroalgae influence the outcomes of coral-algal competition. ROYAL SOCIETY OPEN SCIENCE 2020; 7:201797. [PMID: 33489294 PMCID: PMC7813255 DOI: 10.1098/rsos.201797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/06/2020] [Indexed: 06/12/2023]
Abstract
Understanding the effects of natural processes on coral-algal competition is an important step in identifying the role of macroalgae in perturbed coral reef ecosystems. However, studies investigating coral-algal interactions are often conducted in response to a disturbance, and rarely incorporate seasonal variability. Here, naturally occurring coral-algal interactions were assessed in situ four times a year over 2 years across eight sites spanning diverse benthic communities. In over 6500 recorded coral-algal interactions, cyanobacteria and turf algae were found to be the most damaging regardless of season, resulting in visible damage to coral in greater than 95% of interactions. Macroalgae that primarily compete using chemical mechanisms were found to be more damaging than those that compete using physical mechanisms (e.g. abrasion), with both groups demonstrating decreased competitive ability in summer. While crustose coralline algae were the least damaging to competing coral, during summer, it became three times more competitive. Our results demonstrate that the competitive ability of macroalgae and the outcomes of coral-algal competition can fluctuate in seasonal cycles that may be related to biomass, production of chemical defences and/or physical toughness. The results of this study have important implications for understanding the trajectory and resilience of coral reef ecosystems into the future.
Collapse
Affiliation(s)
- Kristen T. Brown
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
- Australian Research Council Centre of Excellence for Coral Reef Studies, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Dorothea Bender-Champ
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
- Australian Research Council Centre of Excellence for Coral Reef Studies, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Ove Hoegh-Guldberg
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
- Australian Research Council Centre of Excellence for Coral Reef Studies, The University of Queensland, St Lucia, Queensland 4072, Australia
- Global Change Institute, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Sophie Dove
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
- Australian Research Council Centre of Excellence for Coral Reef Studies, The University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
21
|
Acclimatization Drives Differences in Reef-Building Coral Calcification Rates. DIVERSITY 2020. [DOI: 10.3390/d12090347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Coral reefs are susceptible to climate change, anthropogenic influence, and environmental stressors. However, corals in Kāneʻohe Bay, Hawaiʻi have repeatedly shown resilience and acclimatization to anthropogenically-induced rising temperatures and increased frequencies of bleaching events. Variations in coral and algae cover at two sites—just 600 m apart—at Malaukaʻa fringing reef suggest genetic or environmental differences in coral resilience between sites. A reciprocal transplant experiment was conducted to determine if calcification (linear extension and dry skeletal weight) for dominant reef-building species, Montipora capitata and Porites compressa, varied between the two sites and whether or not parent colony or environmental factors were responsible for the differences. Despite the two sites representing distinct environmental conditions with significant differences between temperature, salinity, and aragonite saturation, M. capitata growth rates remained the same between sites and treatments. However, dry skeletal weight increases in P. compressa were significantly different between sites, but not across treatments, with linear mixed effects model results suggesting heterogeneity driven by environmental differences between sites and the parent colonies. These results provide evidence of resilience and acclimatization for M. capitata and P. compressa. Variability of resilience may be driven by local adaptations at a small, reef-level scale for P. compressa in Kāneʻohe Bay.
Collapse
|
22
|
Evans RD, Wilson SK, Fisher R, Ryan NM, Babcock R, Blakeway D, Bond T, Dorji P, Dufois F, Fearns P, Lowe RJ, Stoddart J, Thomson DP. Early recovery dynamics of turbid coral reefs after recurring bleaching events. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 268:110666. [PMID: 32510431 DOI: 10.1016/j.jenvman.2020.110666] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/22/2020] [Accepted: 04/26/2020] [Indexed: 06/11/2023]
Abstract
The worlds' coral reefs are declining due to the combined effects of natural disturbances and anthropogenic pressures including thermal coral bleaching associated with global climate change. Nearshore corals are receiving increased anthropogenic stress from coastal development and nutrient run-off. Considering forecast increases in global temperatures, greater understanding of drivers of recovery on nearshore coral reefs following widespread bleaching events is required to inform management of local stressors. The west Pilbara coral reefs, with cross-shelf turbidity gradients coupled with a large nearby dredging program and recent history of repeated coral bleaching due to heat stress, represent an opportune location to study recovery from multiple disturbances. Mean coral cover at west Pilbara reefs was monitored from 2009 to 2018 and declined from 45% in 2009 to 5% in 2014 following three heat waves. Recruitment and juvenile abundance of corals were monitored from 2014 to 2018 and were combined with biological and physical data to identify which variables enhanced or hindered early-stage coral recovery of all hard corals and separately for the acroporids, the genera principally responsible for recovery in the short-term (<7 years). From 2014 to 2018, coral cover increased from 5 to 10% but recovery varied widely among sites (0-13%). Hard coral cover typically recovered most at shallower sites that had higher abundance of herbivorous fish, less macroalgae, and lower turbidity. Similarly, acroporid corals recovered most at sites with lower turbidity and macroalgal cover. Juvenile acroporid densities were a good indicator of recovery at least two years after they were recorded. However, recruitment to settlement tiles was not a good predictor of total coral or acroporid recovery. This study shows that coral recovery can be slower in areas of high turbidity and the rate may be reduced by local pressures, such as dredging. Management should focus on improving or maintaining local water quality to increase the likelihood of coral recovery under climate stress. Further, in turbid environments, juvenile coral density predicts early coral recovery better than recruits on tiles and may be a more cost-effective technique for monitoring recovery potential.
Collapse
Affiliation(s)
- Richard D Evans
- Department of Biodiversity, Conservation and Attractions, Kensington, W.A, 6151, Australia; Oceans Institute, The University of Western Australia, 35 Stirling Hwy, Perth, WA, 6009, Australia.
| | - Shaun K Wilson
- Department of Biodiversity, Conservation and Attractions, Kensington, W.A, 6151, Australia; Oceans Institute, The University of Western Australia, 35 Stirling Hwy, Perth, WA, 6009, Australia
| | - Rebecca Fisher
- Oceans Institute, The University of Western Australia, 35 Stirling Hwy, Perth, WA, 6009, Australia; Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Perth, WA, 6009, Australia
| | - Nicole M Ryan
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Perth, WA, 6009, Australia
| | - Russ Babcock
- CSIRO Oceans & Atmosphere, Indian Ocean Marine Research Centre, Perth, WA, 6009, Australia
| | | | - Todd Bond
- Oceans Institute, The University of Western Australia, 35 Stirling Hwy, Perth, WA, 6009, Australia; School of Biological Science, The University of Western Australia, 35 Stirling Hwy, Perth, WA, 6009, Australia
| | - Passang Dorji
- Remote Sensing and Satellite Research Group, Department of Imaging and Applied Physics, Curtin University, Bentley, WA, 6102, Australia
| | - Francois Dufois
- IFREMER, DYNECO/DHYSED, ZI Pointe du Diable, 29280, Plouzané, France
| | - Peter Fearns
- Remote Sensing and Satellite Research Group, Department of Imaging and Applied Physics, Curtin University, Bentley, WA, 6102, Australia
| | - Ryan J Lowe
- School of Biological Science, The University of Western Australia, 35 Stirling Hwy, Perth, WA, 6009, Australia; ARC Centre of Excellence for Coral Reef Studies, The University of Western Australia, 35 Stirling Hwy, Perth, WA, 6009, Australia
| | - Jim Stoddart
- Oceans Institute, The University of Western Australia, 35 Stirling Hwy, Perth, WA, 6009, Australia; MScience Pty Ltd, Perth, WA, Australia
| | - Damian P Thomson
- CSIRO Oceans & Atmosphere, Indian Ocean Marine Research Centre, Perth, WA, 6009, Australia
| |
Collapse
|
23
|
Carturan BS, Pither J, Maréchal JP, Bradshaw CJA, Parrott L. Combining agent-based, trait-based and demographic approaches to model coral-community dynamics. eLife 2020; 9:e55993. [PMID: 32701058 PMCID: PMC7473774 DOI: 10.7554/elife.55993] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 07/23/2020] [Indexed: 11/26/2022] Open
Abstract
The complexity of coral-reef ecosystems makes it challenging to predict their dynamics and resilience under future disturbance regimes. Models for coral-reef dynamics do not adequately account for the high functional diversity exhibited by corals. Models that are ecologically and mechanistically detailed are therefore required to simulate the ecological processes driving coral reef dynamics. Here, we describe a novel model that includes processes at different spatial scales, and the contribution of species' functional diversity to benthic-community dynamics. We calibrated and validated the model to reproduce observed dynamics using empirical data from Caribbean reefs. The model exhibits realistic community dynamics, and individual population dynamics are ecologically plausible. A global sensitivity analysis revealed that the number of larvae produced locally, and interaction-induced reductions in growth rate are the parameters with the largest influence on community dynamics. The model provides a platform for virtual experiments to explore diversity-functioning relationships in coral reefs.
Collapse
Affiliation(s)
| | - Jason Pither
- Department of Biology, University of British ColumbiaKelownaCanada
- Institute for Biodiversity, Resilience, and Ecosystem Services, University of British ColumbiaKelownaCanada
- Department of Earth, Environmental and Geographic Sciences, University of British ColumbiaKelownaCanada
| | | | - Corey JA Bradshaw
- Global Ecology, College of Science and Engineering, Flinders UniversityAdelaideAustralia
| | - Lael Parrott
- Department of Biology, University of British ColumbiaKelownaCanada
- Institute for Biodiversity, Resilience, and Ecosystem Services, University of British ColumbiaKelownaCanada
- Department of Earth, Environmental and Geographic Sciences, University of British ColumbiaKelownaCanada
| |
Collapse
|
24
|
Clements CS, Burns AS, Stewart FJ, Hay ME. Seaweed-coral competition in the field: effects on coral growth, photosynthesis and microbiomes require direct contact. Proc Biol Sci 2020; 287:20200366. [PMID: 32453990 DOI: 10.1098/rspb.2020.0366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A number of tropical reefs have transitioned from coral to macroalgal dominance, but the role of macroalgal competition in coral decline is debated. There is a need to understand the relative roles of direct coral-algal effects versus indirect, microbially mediated effects shaping these interactions, as well as the relevant scales at which interactions operate under natural field, as opposed to laboratory, conditions. We conducted a manipulative field experiment investigating how direct contact versus close proximity (approx. 1.5 cm) with macroalgae (Galaxaura rugosa, Sargassum polycystum) impacted the growth, photosynthetic efficiency, and prokaryotic microbiome of the common Indo-Pacific coral Acropora millepora. Both coral growth and photosynthetic efficiency were suppressed when in direct contact with algae or their inert mimics--but not when in close proximity to corals without direct contact. Coral microbiomes were largely unaltered in composition, variability, or diversity regardless of treatment, although a few uncommon taxa differed in abundance among treatments. Negative impacts of macroalgae were contact dependent, accounted for by physical structure alone and had minimal effects on coral microbiomes. The spatial constraints of these interactions have important implications for understanding and predicting benthic community dynamics as reefs degrade.
Collapse
Affiliation(s)
- Cody S Clements
- School of Biological Sciences, Aquatic Chemical Ecology Center, and Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA
| | - Andrew S Burns
- School of Biological Sciences, Aquatic Chemical Ecology Center, and Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA.,NIAID Microbiome Program, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Frank J Stewart
- School of Biological Sciences, Aquatic Chemical Ecology Center, and Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA.,Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717-3520, USA
| | - Mark E Hay
- School of Biological Sciences, Aquatic Chemical Ecology Center, and Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA
| |
Collapse
|
25
|
Carvalho VF, Assis J, Serrão EA, Nunes JM, Anderson AB, Batista MB, Barufi JB, Silva J, Pereira SMB, Horta PA. Environmental drivers of rhodolith beds and epiphytes community along the South Western Atlantic coast. MARINE ENVIRONMENTAL RESEARCH 2020; 154:104827. [PMID: 31780097 DOI: 10.1016/j.marenvres.2019.104827] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 07/31/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
Environmental conditions shape the occurrence and abundance of habitat-building organisms at global scales. Rhodolith beds structure important hard substrate habitats for a large number of marine benthic organisms. These organisms can benefit local biodiversity levels, but also compete with rhodoliths for essential resources. Therefore, understanding the factors shaping the distribution of rhodoliths and their associated communities along entire distributional ranges is of much relevance for conservational biology, particularly in the scope of future environmental changes. Here we predict suitable habitat areas and identify the main environmental drivers of rhodoliths' variability and of associated epiphytes along a large-scale latitudinal gradient. Occurrence and abundance data were collected throughout the South-western Atlantic coast (SWA) and modelled against high resolution environmental predictors extracted from Bio-Oracle. The main drivers for rhodolith occurrence were light availability and temperature at the bottom of the ocean, while abundance was explained by nitrate, temperature and current velocity. Tropical regions showed the highest abundance of rhodoliths. No latitudinal pattern was detected in the variability of epiphytes abundance. However, significant differences were found between sampled sites regarding the composition of predominant taxa. The predictors influencing such differences were temperature and nitrate. The Tropical region is abundant in species with warm-water affinities, decreasing toward warm temperate region. The expressive occurrence of tropical species not referred before for warm temperate beds indicate a plausible tropicalization event.
Collapse
Affiliation(s)
- Vanessa F Carvalho
- Laboratório de Ficologia, Departamento de Botânica, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| | - Jorge Assis
- CCMAR - Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Ester A Serrão
- CCMAR - Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - José M Nunes
- Instituto de Biologia, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Antônio B Anderson
- Universidade Federal do Espírito Santo - Programa de Pós-graduação em Oceanografia - Laboratório de Ictiologia (Ictiolab) - Campus Goiabeiras - Vitória - ES - Brazil
| | - Manuela B Batista
- Laboratório de Ficologia, Departamento de Botânica, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - José B Barufi
- Laboratório de Ficologia, Departamento de Botânica, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - João Silva
- CCMAR - Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Sonia M B Pereira
- Departamento de Biologia, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | - Paulo A Horta
- Laboratório de Ficologia, Departamento de Botânica, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil; Programa de Pós Graduação em Oceanografia, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil; Programa de Pós Graduação em Ecologia, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
26
|
Francini-Filho RB, Cordeiro MC, Omachi CY, Rocha AM, Bahiense L, Garcia GD, Tschoeke D, de Almeida MG, Rangel TP, De Oliveira BCV, de Almeida DQR, Menezes R, Mazzei EF, Joyeux JC, Rezende CE, Thompson CC, Thompson FL. Remote sensing, isotopic composition and metagenomics analyses revealed Doce River ore plume reached the southern Abrolhos Bank Reefs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 697:134038. [PMID: 32380596 DOI: 10.1016/j.scitotenv.2019.134038] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/17/2019] [Accepted: 08/20/2019] [Indexed: 06/11/2023]
Abstract
On November 5th, 2015, the Fundão dam rupture released >50 million m3 of ore tailings into the Doce River, Minas Gerais State, Brazil. The huge volume of mud spread along the river and reached the sea, 17 days after the disaster, in Regência, Espírito Santo State (ES). In 2018, after three years of the disaster, the impacts of the ore tailings in the marine environment are still unclear. This study aims to investigate possible short-term impacts in marine biodiversity caused by the ore tailings' mud over the reef ecosystems that are closest to the disaster area: i.e. recently discovered reefs in the southern Abrolhos Bank. A remote sensing surveillance including winds, sea surface temperature, total suspended material and watercolor (MODIS Aqua data) indicated that the iron tailings plume reached the southern portion of Abrolhos Bank on June 16th, 2016. Subsequently, to obtain further evidence of the presence of the tailings in the coral reefs, water samples were collected in a gradient spanning from the river estuary to the reefs in southern Abrolhos Bank, we also analyzed the isotopic and microbial composition of the samples, as well as the reef benthic composition. Despite no clues of negative impact on benthic (coral) communities, isotopic analysis confirmed the presence of the plume over the reefs area. This study serves as a baseline for future long-term impact assessments of the health of coral reefs in the Abrolhos Bank.
Collapse
Affiliation(s)
- Ronaldo B Francini-Filho
- Departamento de Engenharia e Meio Ambiente, Universidade Federal da Paraíba, Rio Tinto, Paraíba, Brazil
| | - Marcelle C Cordeiro
- Núcleo Professor Rogerio Valle de Produção Sustentável-SAGE/COPPE, Centro de Gestão Tecnológica-CT2, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Claudia Y Omachi
- Instituto de Biologia, CCS, Laboratório de Microbiologia, Anexo ao Bloco A, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro 21941-902, Brazil
| | - André M Rocha
- Systems Engineering and Computer Science Program at COPPE/UFRJ (Brazil), Avenida Horácio Macedo 2030, Centro de Tecnologia, Bloco H, sala 319, Cidade Universitária, Rio de Janeiro, RJ 21941-914, Brazil
| | - Laura Bahiense
- Systems Engineering and Computer Science Program at COPPE/UFRJ (Brazil), Avenida Horácio Macedo 2030, Centro de Tecnologia, Bloco H, sala 319, Cidade Universitária, Rio de Janeiro, RJ 21941-914, Brazil
| | - Gizele D Garcia
- Núcleo Professor Rogerio Valle de Produção Sustentável-SAGE/COPPE, Centro de Gestão Tecnológica-CT2, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil; Instituto de Biologia, CCS, Laboratório de Microbiologia, Anexo ao Bloco A, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro 21941-902, Brazil
| | - Diogo Tschoeke
- Núcleo Professor Rogerio Valle de Produção Sustentável-SAGE/COPPE, Centro de Gestão Tecnológica-CT2, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil; Instituto de Biologia, CCS, Laboratório de Microbiologia, Anexo ao Bloco A, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro 21941-902, Brazil
| | - Marcelo G de Almeida
- Laboratório de Ciências Ambientais, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Av. Alberto Lamego 2000, 28015-620 Campos dos Goytacazes, RJ, Brazil
| | - Thiago P Rangel
- Laboratório de Ciências Ambientais, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Av. Alberto Lamego 2000, 28015-620 Campos dos Goytacazes, RJ, Brazil
| | - Braulio Cherene Vaz De Oliveira
- Laboratório de Ciências Ambientais, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Av. Alberto Lamego 2000, 28015-620 Campos dos Goytacazes, RJ, Brazil
| | - Diogo Q R de Almeida
- Laboratório de Ciências Ambientais, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Av. Alberto Lamego 2000, 28015-620 Campos dos Goytacazes, RJ, Brazil
| | - Rafael Menezes
- Laboratório de Ictiologia, Programa de Pós-Graduação em Ciências Biológicas (Zoologia), Universidade Federal da Paraíba, Cidade Universitária, João Pessoa, PB, Brazil
| | | | - Jean-Christophe Joyeux
- Departamento de Oceanografia e Ecologia, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | - Carlos E Rezende
- Laboratório de Ciências Ambientais, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Av. Alberto Lamego 2000, 28015-620 Campos dos Goytacazes, RJ, Brazil
| | - Cristiane C Thompson
- Núcleo Professor Rogerio Valle de Produção Sustentável-SAGE/COPPE, Centro de Gestão Tecnológica-CT2, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil; Instituto de Biologia, CCS, Laboratório de Microbiologia, Anexo ao Bloco A, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro 21941-902, Brazil
| | - Fabiano L Thompson
- Núcleo Professor Rogerio Valle de Produção Sustentável-SAGE/COPPE, Centro de Gestão Tecnológica-CT2, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil; Instituto de Biologia, CCS, Laboratório de Microbiologia, Anexo ao Bloco A, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro 21941-902, Brazil.
| |
Collapse
|
27
|
Beatty DS, Valayil JM, Clements CS, Ritchie KB, Stewart FJ, Hay ME. Variable effects of local management on coral defenses against a thermally regulated bleaching pathogen. SCIENCE ADVANCES 2019; 5:eaay1048. [PMID: 31616794 PMCID: PMC6774716 DOI: 10.1126/sciadv.aay1048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/05/2019] [Indexed: 05/05/2023]
Abstract
Bleaching and disease are decimating coral reefs especially when warming promotes bleaching pathogens, such as Vibrio coralliilyticus. We demonstrate that sterilized washes from three common corals suppress V. coralliilyticus but that this defense is compromised when assays are run at higher temperatures. For a coral within the ecologically critical genus Acropora, inhibition was 75 to 154% greater among colonies from coral-dominated marine protected areas versus adjacent fished areas that were macroalgae-dominated. Acropora microbiomes were more variable within fished areas, suggesting that reef degradation may also perturb coral microbial communities. Defenses of a robust poritid coral and a weedy pocilloporid coral were not affected by reef degradation, and microbiomes were unaltered for these species. For some ecologically critical, but bleaching-susceptible, corals such as Acropora, local management to improve reef state may bolster coral resistance to global change, such as bacteria-induced coral bleaching during warming events.
Collapse
Affiliation(s)
- Deanna S. Beatty
- School of Biological Sciences and Aquatic Chemical Ecology Center, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, GA 30332, USA
| | - Jinu Mathew Valayil
- School of Biological Sciences and Aquatic Chemical Ecology Center, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, GA 30332, USA
| | - Cody S. Clements
- School of Biological Sciences and Aquatic Chemical Ecology Center, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, GA 30332, USA
| | - Kim B. Ritchie
- Department of Natural Sciences, University of South Carolina Beaufort, 801 Carteret St., Beaufort, SC 29902, USA
| | - Frank J. Stewart
- School of Biological Sciences and Aquatic Chemical Ecology Center, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, GA 30332, USA
| | - Mark E. Hay
- School of Biological Sciences and Aquatic Chemical Ecology Center, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, GA 30332, USA
- Corresponding author.
| |
Collapse
|
28
|
Fong J, Lim ZW, Bauman AG, Valiyaveettil S, Liao LM, Yip ZT, Todd PA. Allelopathic effects of macroalgae on Pocillopora acuta coral larvae. MARINE ENVIRONMENTAL RESEARCH 2019; 151:104745. [PMID: 31229278 DOI: 10.1016/j.marenvres.2019.06.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/06/2019] [Accepted: 06/09/2019] [Indexed: 06/09/2023]
Abstract
Allelopathy has been proposed as a key mechanism mediating coral-algal interactions; however, few studies have tested macroalgal allelochemicals on coral larvae. In this study, we examined the effects of crude extracts from four macroalgal species on Pocillopora acuta larvae under different exposure conditions. Larval mortality increased considerably with increasing concentrations of Bryopsis sp., Endosiphonia horrida, and Lobophora sp. extracts. Increasing E. horrida and Lobophora sp. extract concentrations also substantially decreased larval settlement. No detectable effects on larvae were observed in Hypnea pannosa extracts. Further, while larval mortality increased with exposure duration to Lobophora sp. extracts, larval settlement was enhanced at 12 h exposure, but reduced at shorter and longer durations. Our results emphasize that macroalgal chemical effects are highly dependent on macroalgal species and exposure conditions. On reefs dominated by allelopathic macroalgae, the survivorship and settlement of coral larvae are potentially constrained, thereby limiting the recovery of degraded reefs.
Collapse
Affiliation(s)
- Jenny Fong
- Experimental Marine Ecology Laboratory, Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore.
| | - Zi Wei Lim
- Experimental Marine Ecology Laboratory, Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore
| | - Andrew G Bauman
- Experimental Marine Ecology Laboratory, Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore
| | - Suresh Valiyaveettil
- Materials Research Laboratory, Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Lawrence M Liao
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, 739-8528, Japan
| | - Zhi Ting Yip
- Reef Ecology Laboratory, Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore
| | - Peter A Todd
- Experimental Marine Ecology Laboratory, Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore.
| |
Collapse
|
29
|
Nieder C, Liao CP, Chen CA, Liu SL. Filamentous calcareous alga provides substrate for coral-competitive macroalgae in the degraded lagoon of Dongsha Atoll, Taiwan. PLoS One 2019; 14:e0200864. [PMID: 31095566 PMCID: PMC6522048 DOI: 10.1371/journal.pone.0200864] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 05/05/2019] [Indexed: 12/11/2022] Open
Abstract
Background The chemically-rich seaweed Galaxaura is not only highly competitive with corals, but also provides substrate for other macroalgae. Its ecology and associated epiphytes remain largely unexplored. To fill this knowledge gap, we undertook an ecological assessment to explore the spatial variation, temporal dynamics, and diversity of epiphytic macroalgae of Galaxaura divaricata on patch reefs in the lagoon of Dongsha Atoll, a shallow coral reef ecosystem in the northern South China Sea that has been repeatedly impacted by mass coral bleaching events. Methods Twelve spatially independent patch reefs in the Dongsha lagoon were first surveyed to assess benthic composition in April 2016, and then revisited to determine G. divaricata cover in September 2017, with one additional Galaxaura-dominated reef (site 9). Four surveys over a period of 17 months were then carried out on a degraded patch reef site to assess the temporal variation in G. divaricata cover. Epiphytic macroalgae associated with G. divaricata were quantified and identified through the aid of DNA barcoding at this degraded site. Results Patch reefs in the Dongsha lagoon were degraded, exhibiting relatively low coral cover (5–43%), but high proportions of macroalgae (13–58%) and other substrate (rubble and dead corals; 23–69%). The distribution of G. divaricata was heterogeneous across the lagoon, with highest abundance (16–41%) in the southeast area. Temporal surveys showed consistently high covers (mean ± SD = 16.9 ± 1.21%) of G. divaricata for 17 months. Additional photographic evidence suggested that overgrowth of G. divaricata can persist for 3.5 years. Yet, G. divaricata provides substrate to other macroalgae (e.g., Lobophora sp.) that also limit the growth of corals. Conclusions Our study demonstrates that an allelopathic seaweed, such as G. divaricata, can overgrow degraded coral reefs for extended periods of time. By providing habitat for other harmful macroalgae, a prolonged Galaxaura overgrowth could further enhance the spread of macroalgae, and strengthen negative feedback loops, decreasing the recovery potential of degraded reefs.
Collapse
Affiliation(s)
- Carolin Nieder
- Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, Leigh, New Zealand
| | - Chen-Pan Liao
- Department of Life Science & Center for Ecology and Environment, Tunghai University, Taichung, Taiwan
- Department of Biology, National Museum of Natural Science, Taichung, Taiwan
| | - Chaolun Allen Chen
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Institute of Oceanography, National Taiwan University, Taipei, Taiwan
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Shao-Lun Liu
- Department of Life Science & Center for Ecology and Environment, Tunghai University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
30
|
Liao Z, Yu K, Wang Y, Huang X, Xu L. Coral-algal interactions at Weizhou Island in the northern South China Sea: variations by taxa and the exacerbating impact of sediments trapped in turf algae. PeerJ 2019; 7:e6590. [PMID: 30886777 PMCID: PMC6420801 DOI: 10.7717/peerj.6590] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 02/10/2019] [Indexed: 12/01/2022] Open
Abstract
Competitive interactions between corals and benthic algae are increasingly frequent on degrading coral reefs, but the processes and mechanisms surrounding the interactions, as well as the exacerbating effects of sediments trapped in turf algae, are poorly described. We surveyed the frequency, proportion, and outcomes of interactions between benthic algae (turf algae and macroalgae) and 631 corals (genera: Porites, Favites, Favia, Platygyra, and Pavona) on a degenerating reef in the northern South China Sea, with a specific focus on the negative effects of algal contact on corals. Our data indicated that turf algae were the main algal competitors for each surveyed coral genus and the proportion of algal contact along the coral edges varied significantly among the coral genera and the algal types. The proportions of algal wins between corals and turf algae or macroalgae differed significantly among coral genera. Compared to macroalgae, turf algae consistently yielded more algal wins and fewer coral wins on all coral genera. Amongst the coral genera, Porites was the most easily damaged by algal competition. The proportions of turf algal wins on the coral genera increased 1.1–1.9 times in the presence of sediments. Furthermore, the proportions of algal wins on massive and encrusting corals significantly increased with the combination of sediments and turf algae as the algal type. However, the variation in proportions of algal wins between massive and encrusting corals disappeared as sediments became trapped in turf algae. Sediments bound within turf algae further induced damage to corals and reduced the competitive advantage of the different coral growth forms in their competitive interactions with adjacent turf algae.
Collapse
Affiliation(s)
- Zhiheng Liao
- Coral Reef Research Center of China, Guangxi University, Nanning, Guangxi, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, Guangxi, China.,School of Marine Sciences, Guangxi University, Nanning, Guangxi, China
| | - Kefu Yu
- Coral Reef Research Center of China, Guangxi University, Nanning, Guangxi, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, Guangxi, China.,School of Marine Sciences, Guangxi University, Nanning, Guangxi, China
| | - Yinghui Wang
- Coral Reef Research Center of China, Guangxi University, Nanning, Guangxi, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, Guangxi, China.,School of Marine Sciences, Guangxi University, Nanning, Guangxi, China
| | - Xueyong Huang
- Coral Reef Research Center of China, Guangxi University, Nanning, Guangxi, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, Guangxi, China.,School of Marine Sciences, Guangxi University, Nanning, Guangxi, China.,School of Forestry, Guangxi University, Nanning, Guangxi, China
| | - Lijia Xu
- Coral Reef Research Center of China, Guangxi University, Nanning, Guangxi, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, Guangxi, China.,School of Marine Sciences, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
31
|
Eich A, Ford AK, Nugues MM, McAndrews RS, Wild C, Ferse SCA. Positive association between epiphytes and competitiveness of the brown algal genus Lobophora against corals. PeerJ 2019; 7:e6380. [PMID: 30775176 PMCID: PMC6369833 DOI: 10.7717/peerj.6380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 12/28/2018] [Indexed: 11/20/2022] Open
Abstract
Observations of coral–algal competition can provide valuable information about the state of coral reef ecosystems. Here, we report contact rates and apparent competition states for six shallow lagoonal reefs in Fiji. A total of 81.4% of examined coral perimeters were found to be in contact with algae, with turf algae (54.7%) and macroalgae of the genus Lobophora (16.8%) representing the most frequently observed contacts. Turf algae competitiveness was low, with 21.8% of coral–turf contacts being won by the algae (i.e. overgrowth or bleaching of coral tissue). In contrast, Lobophora competitiveness against corals was high, with 62.5% of contacts being won by the alga. The presence of epiphytic algae on Lobophora was associated with significantly greater algal competitiveness against corals, with 75.8% and 21.1% of interactions recorded as algal wins in the presence and absence of epiphytes, respectively. Sedimentation rate, herbivorous fish biomass, and coral colony size did not have a significant effect on Lobophora–coral interactions. This research indicates a novel and important role of epiphytes in driving the outcome of coral–algal contacts.
Collapse
Affiliation(s)
- Andreas Eich
- Department of Ecology, Leibniz Centre for Tropical Marine Research (ZMT), Bremen, Germany.,Department of Marine Ecology, FB2 Biology/Chemistry, University of Bremen, Bremen, Germany
| | - Amanda K Ford
- Department of Ecology, Leibniz Centre for Tropical Marine Research (ZMT), Bremen, Germany.,Department of Marine Ecology, FB2 Biology/Chemistry, University of Bremen, Bremen, Germany.,Stockholm University, Stockholm Resilience Centre, Stockholm, Sweden
| | - Maggy M Nugues
- EPHE, PSL Research University, UPVD-CNRS, USR3278, CRIOBE, Perpignan, France.,Labex Corail, CRIOBE, Moorea, French Polynesia
| | - Ryan S McAndrews
- Department of Ecology, Leibniz Centre for Tropical Marine Research (ZMT), Bremen, Germany.,Department of Marine Ecology, FB2 Biology/Chemistry, University of Bremen, Bremen, Germany
| | - Christian Wild
- Department of Marine Ecology, FB2 Biology/Chemistry, University of Bremen, Bremen, Germany
| | - Sebastian C A Ferse
- Department of Ecology, Leibniz Centre for Tropical Marine Research (ZMT), Bremen, Germany.,Department of Marine Ecology, FB2 Biology/Chemistry, University of Bremen, Bremen, Germany
| |
Collapse
|
32
|
Biodiversity enhances coral growth, tissue survivorship and suppression of macroalgae. Nat Ecol Evol 2019; 3:178-182. [PMID: 30617344 PMCID: PMC6353673 DOI: 10.1038/s41559-018-0752-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 11/14/2018] [Indexed: 12/29/2022]
Abstract
Coral reefs are declining dramatically and losing species richness, but the impact of declining biodiversity on coral well-being remains inadequately understood. Here, we demonstrate that lower coral species richness alone can suppress growth and survivorship of multiple species of corals (Porites cylindrica, Pocillopora damicornis, and Acropora millepora) under field conditions on a degraded, macroalgal dominated reef. Our findings highlight the positive role of biodiversity in the function of coral reefs, and suggest that loss of coral species richness may trigger a negative feedback that causes further ecosystem decline.
Collapse
|
33
|
Clements CS, Hay ME. Overlooked coral predators suppress foundation species as reefs degrade. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2018; 28:1673-1682. [PMID: 30048025 PMCID: PMC6167153 DOI: 10.1002/eap.1765] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 05/20/2018] [Accepted: 05/29/2018] [Indexed: 05/03/2023]
Abstract
Loss of larger consumers from stressed ecosystems can lead to trophic release of mid-level consumers that then impact foundation species, suppressing ecosystem function and resilience. For example, in coral reef ecosystems, outbreaks of coral predators like crown-of-thorns sea stars have been associated with fishing pressure and can dramatically impact the composition and persistence of corals. However, the ecological impacts, and consequences for management, of smaller, less obvious corallivores remain inadequately understood. We investigated whether reef state (coral vs. seaweed domination) influenced densities and size frequencies of the corallivorous gastropod Coralliophila violacea on its common host, the coral Porites cylindrica, within three pairs of small Marine Protected Areas (MPAs) and adjacent fished areas in Fiji. C. violacea densities were 5-35 times greater, and their size frequencies more broadly distributed, within seaweed-dominated fished areas than in adjacent MPAs dominated by corals. Tethering snails (4-9 mm in shell height) in place on their coral hosts indicated that suppression of snails in MPAs was due to predation, apparently by fishes. When tethered on the benthos (where they rarely occur), rather than on their host, mortality of larger snails (15.0-25.0 mm in shell height) was high in all areas, primarily due to hermit crabs killing them and occupying their shells. Because C. violacea is a sessile gastropod that feeds affixed to the base of corals and produces minimal visible damage, it has been considered a "prudent feeder" that minimally impacts its host coral. We assessed this over a 24-d feeding period in the field. Feeding by individual C. violacea reduced P. cylindrica growth by ~18-43% depending on snail size. Our findings highlight the considerable, but underappreciated, negative impacts of this common corallivore on degraded reefs. As reefs degrade and corals are lost, remaining corals (often species of Porites) may gain the full attention of elevated densities of coral consumers. This will further damage the remaining foundation species, suppressing the resilience of corals and enhancing the resilience of degraded, seaweed-dominated reefs.
Collapse
Affiliation(s)
- Cody S Clements
- School of Biological Sciences and Aquatic Chemical Ecology Center, Georgia Institute of Technology, Atlanta, Georgia, 30332-0230, USA
| | - Mark E Hay
- School of Biological Sciences and Aquatic Chemical Ecology Center, Georgia Institute of Technology, Atlanta, Georgia, 30332-0230, USA
| |
Collapse
|
34
|
Gurjão LMD, Lotufo TMDC. Native species exploited by marine aquarium trade in Brazil. BIOTA NEOTROPICA 2018. [DOI: 10.1590/1676-0611-bn-2017-0387] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract: Brazil has an important role in marine ornamental trade, exploiting native species for both international and domestic market. A few works have previously assessed wild species exploited by the Brazilian marine aquarium industry and most of them focused solely on fish. Hence, the present paper intends to address an information gap regarding the species currently traded in the country, as well as concerning their conservation statuses. Thus, different sources of information were investigated and each species was categorized in accordance with existing lists of threatened species. A wide variety of native species was identified in Brazilian marine aquarium trade, including not only fish but also invertebrates, seaweeds and macrophytes. Some of these species were legally protected, but are still commerced anyway. Such illegal exploitation of native species causes increasing concerns about the sustainability of the activity. Therefore, in order to reduce environmental impacts caused by marine ornamental trade, Brazilian authorities should encourage the implementation of eco-fees, the purchase of eco-labeled aquarium products, the development of sustainable ornamental aquaculture and ecosystem-based management initiatives.
Collapse
Affiliation(s)
- Lívio Moreira de Gurjão
- Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis, Brasil; Universidade Federal do Ceará, Brasil
| | | |
Collapse
|
35
|
Helber SB, Hoeijmakers DJJ, Muhando CA, Rohde S, Schupp PJ. Sponge chemical defenses are a possible mechanism for increasing sponge abundance on reefs in Zanzibar. PLoS One 2018; 13:e0197617. [PMID: 29924803 PMCID: PMC6010217 DOI: 10.1371/journal.pone.0197617] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 05/04/2018] [Indexed: 12/17/2022] Open
Abstract
Coral reefs are experiencing increasing anthropogenic impacts that result in substantial declines of reef-building corals and a change of community structure towards other benthic invertebrates or macroalgae. Reefs around Zanzibar are exposed to untreated sewage and runoff from the main city Stonetown. At many of these sites, sponge cover has increased over the last years. Sponges are one of the top spatial competitors on reefs worldwide. Their success is, in part, dependent on their strong chemical defenses against predators, microbial attacks and other sessile benthic competitors. This is the first study that investigates the bioactive properties of sponge species in the Western Indian Ocean region. Crude extracts of the ten most dominant sponge species were assessed for their chemical defenses against 35 bacterial strains (nine known as marine pathogens) using disc diffusion assays and general cytotoxic activities were assessed with brine shrimp lethality assays. The three chemically most active sponge species were additionally tested for their allelopathic properties against the scleractinian coral competitor Porites sp.. The antimicrobial assays revealed that all tested sponge extracts had strong antimicrobial properties and that the majority (80%) of the tested sponges were equally defended against pathogenic and environmental bacterial strains. Additionally, seven out of ten sponge species exhibited cytotoxic activities in the brine shrimp assay. Moreover, we could also show that the three most bioactive sponge species were able to decrease the photosynthetic performance of the coral symbionts and thus were likely to impair the coral physiology.
Collapse
Affiliation(s)
- Stephanie B. Helber
- Leibniz Centre for Tropical Marine Research (ZMT), Bremen, Germany
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University Oldenburg, Wilhelmshaven, Germany
| | | | - Christopher A. Muhando
- Institute of Marine Sciences (IMS), University of Dar es Salaam, Stonetown, Zanzibar, Tanzania
| | - Sven Rohde
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University Oldenburg, Wilhelmshaven, Germany
| | - Peter J. Schupp
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University Oldenburg, Wilhelmshaven, Germany
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
36
|
Beatty DS, Clements CS, Stewart FJ, Hay ME. Intergenerational effects of macroalgae on a reef coral: major declines in larval survival but subtle changes in microbiomes. MARINE ECOLOGY PROGRESS SERIES 2018; 589:97-114. [PMID: 30505048 PMCID: PMC6261492 DOI: 10.3354/meps12465] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Tropical reefs are shifting from coral to macroalgal dominance, with macroalgae suppressing coral recovery, potentially via effects on coral microbiomes. Understanding how macroalgae affect corals and their microbiomes requires comparing algae- versus coral-dominated reefs without confounding aspects of time and geography. We compared survival, settlement, and post-settlement survival of larvae, as well as the microbiomes of larvae and adults, of the Pacific coral Pocillopora damicornis between an Marine Protected Area (MPA) dominated by corals versus an adjacent fished area dominated by macroalgae. Microbiome composition in adult coral, larval coral, and seawater did not differ between the MPA and fished area. However, microbiomes of adult coral were more variable in the fished area and Vibrionaceae bacteria, including strains most closely related to the pathogen Vibrio shilonii, were significantly enriched, but rare, in adult and larval coral from the fished area. Larvae from the macroalgae-dominated area exhibited higher pre-settlement mortality and reduced settlement compared to those from the coral-dominated area. Juveniles planted into a coral-dominated area survived better than those placed into a fished area dominated by macroalgae. Differential survival depended on whether macroalgae were immediately adjacent to juvenile coral rather than on traits of the areas per se. Contrary to our expectations, coral microbiomes were relatively uniform at the community level despite dramatic differences in macroalgal cover between the MPA (~2% cover) and fished (~90%) area. Reducing macroalgae may elicit declines in rare but potentially harmful microbes in coral and their larvae, as well as positive intergenerational effects on offspring survival.
Collapse
Affiliation(s)
- Deanna S. Beatty
- School of Biological Sciences and Aquatic Chemical Ecology Center Georgia Institute of Technology, Atlanta, GA 30332-0230
| | - Cody S. Clements
- School of Biological Sciences and Aquatic Chemical Ecology Center Georgia Institute of Technology, Atlanta, GA 30332-0230
| | - Frank J. Stewart
- School of Biological Sciences and Aquatic Chemical Ecology Center Georgia Institute of Technology, Atlanta, GA 30332-0230
| | - Mark E. Hay
- School of Biological Sciences and Aquatic Chemical Ecology Center Georgia Institute of Technology, Atlanta, GA 30332-0230
| |
Collapse
|
37
|
Clements CS, Rasher DB, Hoey AS, Bonito VE, Hay ME. Spatial and temporal limits of coral-macroalgal competition: the negative impacts of macroalgal density, proximity, and history of contact. MARINE ECOLOGY PROGRESS SERIES 2018; 586:11-20. [PMID: 30505047 PMCID: PMC6261525 DOI: 10.3354/meps12410] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Tropical reefs are commonly transitioning from coral- to macroalgal-dominance, producing abrupt, and often lasting, shifts in community composition and ecosystem function. Although negative effects of macroalgae on corals are well documented, whether such effects vary with spatial scale or the density of macroalgae remains inadequately understood, as does the legacy of their impact on coral growth. Using closely adjacent coral- versus macroalgal-dominated areas, we tested effects of macroalgal competition on the Indo-Pacific corals Acropora millepora and Porites cylindrica. When corals were transplanted to areas of: i) macroalgal-dominance, ii) macroalgal-dominance but with nearby macroalgae removed, or iii) coral-dominance lacking macroalgae, coral growth was equivalently high in plots without macroalgae and low (62-90% less) in plots with macroalgae, regardless of location. In a separate experiment, we raised corals above the benthos in each area and exposed them to differing densities of the dominant macroalga Sargassum polycystum. Coral survivorship was high (≥ 93% after 3 months) and did not differ among treatments, whereas the growth of both coral species decreased as a function of Sargassum density. When Sargassum was removed after two months, there was no legacy effect of macroalgal density on coral growth over the next seven months; however, there was no compensation for previously depressed growth. In sum, macroalgal impacts were density dependent, occurred only if macroalgae were in close contact, and coral growth was resilient to prior macroalgal contact. The temporal and spatial constraints of these interactions suggest that corals may be surprisingly resilient to periodic macroalgal competition, which could have important implications for ecosystem trajectories that lead to reef decline or recovery.
Collapse
Affiliation(s)
- Cody S. Clements
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | - Andrew S. Hoey
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | | | - Mark E. Hay
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Corresponding author:
| |
Collapse
|
38
|
Clements CS, Hay ME. Size matters: Predator outbreaks threaten foundation species in small Marine Protected Areas. PLoS One 2017; 12:e0171569. [PMID: 28166257 PMCID: PMC5293237 DOI: 10.1371/journal.pone.0171569] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 01/22/2017] [Indexed: 11/23/2022] Open
Abstract
The unanticipated impacts of consumers in fragmented habitats are frequently a challenge for ecosystem management. On Indo-Pacific coral reefs, crown-of-thorns sea stars (Acanthaster spp.) are coral predators whose outbreaks cause precipitous coral decline. Across large spatial scales, Acanthaster densities are lower in large no-take Marine Protected Areas (MPAs) and reefs subject to limited human exploitation. However, using a combination of observational and manipulative experiments, we found that Acanthaster densities within a network of small, no-take MPAs on reef flats in Fiji were ~2–3.4 times greater inside MPAs than in adjacent fished areas and ~2–2.5 times greater than the upper threshold density indicative of an outbreak. This appeared to result from selective Acanthaster migration to the coral-rich MPAs from fished areas that are coral-poor and dominated by macroalgae. Small MPAs can dramatically increase the cover of foundation species like corals, but may selectively attract coral predators like Acanthaster due to greater food densities within MPAs or because the MPAs are too small to support Acanthaster enemies. As coral cover increases, their chemical and visual cues may concentrate Acanthaster to outbreak densities that cause coral demise, compromising the value of small MPAs. An understanding of predator dynamics as a function of habitat type, size, and fragmentation needs to be incorporated into MPA design and management.
Collapse
Affiliation(s)
- Cody S. Clements
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, United States of America
| | - Mark E. Hay
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, United States of America
- * E-mail:
| |
Collapse
|
39
|
Manikandan B, Ravindran J. Differential response of coral communities to Caulerpa spp. bloom in the reefs of Indian Ocean. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:3912-3922. [PMID: 27905045 DOI: 10.1007/s11356-016-8136-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 11/21/2016] [Indexed: 06/06/2023]
Abstract
Coral reef ecosystems are disturbed in tandem by climatic and anthropogenic stressors. A number of factors act synergistically to reduce the live coral cover and threaten the existence of reefs. Continuous monitoring of the coral communities during 2012-2014 captured an unprecedented growth of macroalgae as a bloom at Gulf of Mannar (GoM) and Palk Bay (PB) which are protected and unprotected reefs, respectively. The two reefs varying in their protection level enabled to conduct an assessment on the response of coral communities and their recovery potential during and after the macroalgal bloom. Surveys in 2012 revealed a live coral cover of 36.8 and 14.6% in GoM and PB, respectively. Live coral cover was lost at an annual rate of 4% in PB due to the Caulerpa racemosa blooms that occurred in 2013 and 2014. In GoM, the loss of live coral cover was estimated to be 16.5% due to C. taxifolia bloom in 2013. Tissue regeneration by the foliose and branching coral morphotypes aided the recovery of live coral cover in GoM, whereas the chances for the recovery of live coral cover in PB reef were low, primarily due to frequent algal blooms, and the existing live coral cover was mainly due to the abundance of slow-growing massive corals. In combination, results of this study suggested that the recovery of a coral reef after a macroalgal bloom largely depends on coral species composition and the frequency of stress events. A further study linking macroalgal bloom to its specific cause is essential for the successful intervention and management.
Collapse
Affiliation(s)
- B Manikandan
- Biological Oceanography Division, CSIR - National Institute of Oceanography, Dona Paula, Panaji, Goa -, 403004, India
| | - J Ravindran
- Biological Oceanography Division, CSIR - National Institute of Oceanography, Dona Paula, Panaji, Goa -, 403004, India.
| |
Collapse
|
40
|
Effects of ocean acidification on the potency of macroalgal allelopathy to a common coral. Sci Rep 2017; 7:41053. [PMID: 28145458 PMCID: PMC5286515 DOI: 10.1038/srep41053] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 12/16/2016] [Indexed: 12/22/2022] Open
Abstract
Many coral reefs have phase shifted from coral to macroalgal dominance. Ocean acidification (OA) due to elevated CO2 is hypothesised to advantage macroalgae over corals, contributing to these shifts, but the mechanisms affecting coral-macroalgal interactions under OA are unknown. Here, we show that (i) three common macroalgae are more damaging to a common coral when they compete under CO2 concentrations predicted to occur in 2050 and 2100 than under present-day conditions, (ii) that two macroalgae damage corals via allelopathy, and (iii) that one macroalga is allelopathic under conditions of elevated CO2, but not at ambient levels. Lipid-soluble, surface extracts from the macroalga Canistrocarpus (=Dictyota) cervicornis were significantly more damaging to the coral Acropora intermedia growing in the field if these extracts were from thalli grown under elevated vs ambient concentrations of CO2. Extracts from the macroalgae Chlorodesmis fastigiata and Amansia glomerata were not more potent when grown under elevated CO2. Our results demonstrate increasing OA advantages seaweeds over corals, that algal allelopathy can mediate coral-algal interactions, and that OA may enhance the allelopathy of some macroalgae. Other mechanisms also affect coral-macroalgal interactions under OA, and OA further suppresses the resilience of coral reefs suffering blooms of macroalgae.
Collapse
|
41
|
Small Marine Protected Areas in Fiji Provide Refuge for Reef Fish Assemblages, Feeding Groups, and Corals. PLoS One 2017; 12:e0170638. [PMID: 28122006 PMCID: PMC5266309 DOI: 10.1371/journal.pone.0170638] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/09/2017] [Indexed: 11/23/2022] Open
Abstract
The establishment of no-take marine protected areas (MPAs) on coral reefs is a common management strategy for conserving the diversity, abundance, and biomass of reef organisms. Generally, well-managed and enforced MPAs can increase or maintain the diversity and function of the enclosed coral reef, with some of the benefits extending to adjacent non-protected reefs. A fundamental question in coral reef conservation is whether these benefits arise within small MPAs (<1 km2), because larval input of reef organisms is largely decoupled from local adult reproduction. We examined the structure of fish assemblages, composition of fish feeding groups, benthic cover, and key ecosystem processes (grazing, macroalgal browsing, and coral replenishment) in three small (0.5–0.8 km2) no-take MPAs and adjacent areas where fisheries are allowed (non-MPAs) on coral reefs in Fiji. The MPAs exhibited greater species richness, density, and biomass of fishes than non-MPAs. Furthermore, MPAs contained a greater abundance and biomass of grazing herbivores and piscivores as well as a greater abundance of cleaners than fished areas. We also found differences in fish associations when foraging, with feeding groups being generally more diverse and having greater biomass within MPAs than adjacent non-MPAs. Grazing by parrotfishes was 3–6 times greater, and macroalgal browsing was 3–5 times greater in MPAs than in non-MPAs. On average, MPAs had 260–280% as much coral cover and only 5–25% as much macroalgal cover as their paired non-MPA sites. Finally, two of the three MPAs had three-fold more coral recruits than adjacent non-MPAs. The results of this study indicate that small MPAs benefit not only populations of reef fishes, but also enhance ecosystem processes that are critical to reef resilience within the MPAs.
Collapse
|
42
|
Morrow KM, Bromhall K, Motti CA, Munn CB, Bourne DG. Allelochemicals Produced by Brown Macroalgae of the Lobophora Genus Are Active against Coral Larvae and Associated Bacteria, Supporting Pathogenic Shifts to Vibrio Dominance. Appl Environ Microbiol 2017; 83:e02391-16. [PMID: 27795310 PMCID: PMC5165121 DOI: 10.1128/aem.02391-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/07/2016] [Indexed: 11/20/2022] Open
Abstract
Pervasive environmental stressors on coral reefs are attributed with shifting the competitive balance in favor of alternative dominants, such as macroalgae. Previous studies have demonstrated that macroalgae compete with corals via a number of mechanisms, including the production of potent primary and secondary metabolites that can influence coral-associated microbial communities. The present study investigates the effects of the Pacific brown macroalga Lobophora sp. (due to the shifting nature of the Lobophora species complex, it will be referred to here as Lobophora sp.) on coral bacterial isolates, coral larvae, and the microbiome associated with the coral Porites cylindrica. Crude aqueous and organic macroalgal extracts were found to inhibit the growth of coral-associated bacteria. Extracts and fractions were also shown to inhibit coral larval settlement and cause mortality at concentrations lower (<0.3 mg · ml-1) than calculated natural concentrations (4.4 mg · ml-1). Microbial communities associated with coral tissues exposed to aqueous (e.g., hydrophilic) crude extracts demonstrated a significant shift to Vibrio dominance and a loss of sequences related to the putative coral bacterial symbiont, Endozoicomonas sp., based on 16S rRNA amplicon sequencing. This study contributes to growing evidence that macroalgal allelochemicals, dissolved organic material, and native macroalgal microbial assemblages all play a role in shifting the microbial equilibrium of the coral holobiont away from a beneficial state, contributing to a decline in coral fitness and a shift in ecosystem structure. IMPORTANCE Diverse microbial communities associate with coral tissues and mucus, providing important protective and nutritional services, but once disturbed, the microbial equilibrium may shift from a beneficial state to one that is detrimental or pathogenic. Macroalgae (e.g., seaweeds) can physically and chemically interact with corals, causing abrasion, bleaching, and overall stress. This study contributes to a growing body of evidence suggesting that macroalgae play a critical role in shifting the coral holobiont equilibrium, which may promote the invasion of opportunistic pathogens and cause coral mortality, facilitating additional macroalgal growth and invasion in the reef. Thus, macroalgae not only contribute to a decline in coral fitness but also influence coral reef ecosystem structure.
Collapse
Affiliation(s)
| | - Katrina Bromhall
- Australian Institute of Marine Science, Townsville, QLD, Australia
- School of Marine Science and Engineering, Plymouth University, Plymouth, United Kingdom
| | - Cherie A Motti
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Colin B Munn
- School of Marine Science and Engineering, Plymouth University, Plymouth, United Kingdom
| | - David G Bourne
- Australian Institute of Marine Science, Townsville, QLD, Australia
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
43
|
Brooker RM, Hay ME, Dixson DL. Chemically cued suppression of coral reef resilience: Where is the tipping point? CORAL REEFS (ONLINE) 2016; 35:1263-1270. [PMID: 28781576 PMCID: PMC5539962 DOI: 10.1007/s00338-016-1474-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 06/04/2016] [Indexed: 06/07/2023]
Abstract
Coral reefs worldwide are shifting from high-diversity, coral-dominated communities to low-diversity systems dominated by seaweeds. This shift can impact essential recovery processes such as larval recruitment and ecosystem resilience. Recent evidence suggests that chemical cues from certain corals attract, and from certain seaweeds suppress, recruitment of juvenile fishes, with loss of coral cover and increases in seaweed cover creating negative feedbacks that prevent reef recovery and sustain seaweed dominance. Unfortunately, the level of seaweed increase and coral decline that creates this chemically cued tipping point remains unknown, depriving managers of data-based targets to prevent damaging feedbacks. We conducted flume and field assays that suggest juvenile fishes sense and respond to cues produced by low levels of seaweed cover. However, the herbivore species we tested was more tolerant of degraded reef cues than non-herbivores, possibly providing some degree of resilience if these fishes recruit, consume macroalgae, and diminish negative cues.
Collapse
Affiliation(s)
- Rohan M Brooker
- School of Marine Science and Policy, University of Delaware, Lewes, DE 19958, USA
- School of Biology and Aquatic Chemical Ecology Center, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA
| | - Mark E Hay
- School of Biology and Aquatic Chemical Ecology Center, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA
| | - Danielle L Dixson
- School of Marine Science and Policy, University of Delaware, Lewes, DE 19958, USA
- School of Biology and Aquatic Chemical Ecology Center, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA
| |
Collapse
|
44
|
Clements CS, Hay ME. Competitors as accomplices: seaweed competitors hide corals from predatory sea stars. Proc Biol Sci 2016; 282:rspb.2015.0714. [PMID: 26311663 DOI: 10.1098/rspb.2015.0714] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Indirect biotic effects arising from multispecies interactions can alter the structure and function of ecological communities--often in surprising ways that can vary in direction and magnitude. On Pacific coral reefs, predation by the crown-of-thorns sea star, Acanthaster planci, is associated with broad-scale losses of coral cover and increases of macroalgal cover. Macroalgal blooms increase coral-macroalgal competition and can generate further coral decline. However, using a combination of manipulative field experiments and observations, we demonstrate that macroalgae, such as Sargassum polycystum, produce associational refuges for corals and dramatically reduce their consumption by Acanthaster. Thus, as Acanthaster densities increase, macroalgae can become coral mutualists, despite being competitors that significantly suppress coral growth. Field feeding experiments revealed that the protective effects of macroalgae were strong enough to cause Acanthaster to consume low-preference corals instead of high-preference corals surrounded by macroalgae. This highlights the context-dependent nature of coral-algal interactions when consumers are common. Macroalgal creation of associational refuges from Acanthaster predation may have important implications for the structure,function and resilience of reef communities subject to an increasing number of biotic disturbances.
Collapse
|
45
|
Williams ID, White DJ, Sparks RT, Lino KC, Zamzow JP, Kelly ELA, Ramey HL. Responses of Herbivorous Fishes and Benthos to 6 Years of Protection at the Kahekili Herbivore Fisheries Management Area, Maui. PLoS One 2016; 11:e0159100. [PMID: 27462981 PMCID: PMC4963024 DOI: 10.1371/journal.pone.0159100] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/27/2016] [Indexed: 12/02/2022] Open
Abstract
In response to concerns about declining coral cover and recurring macroalgal blooms, in 2009 the State of Hawaii established the Kahekili Herbivore Fisheries Management Area (KHFMA). Within the KHFMA, herbivorous fishes and sea urchins are protected, but other fishing is allowed. As part of a multi-agency monitoring effort, we conducted surveys at KHFMA and comparison sites around Maui starting 19 months before closure, and over the six years since implementation of herbivore protection. Mean parrotfish and surgeonfish biomass both increased within the KHFMA (by 139% [95%QR (quantile range): 98–181%] and 28% [95%QR: 3–52%] respectively). Most of those gains were of small-to-medium sized species, whereas large-bodied species have not recovered, likely due to low levels of poaching on what are preferred fishery targets in Hawaii. Nevertheless, coincident with greater biomass of herbivores within the KHFMA, cover of crustose coralline algae (CCA) has increased from ~2% before closure to ~ 15% in 2015, and macroalgal cover has remained low throughout the monitoring period. Strong evidence that changes in the KHFMA were a consequence of herbivore management are that (i) there were no changes in biomass of unprotected fish families within the KHFMA; and that (ii) there were no similar changes in parrotfish or CCA at comparison sites around Maui. It is not yet clear how effective herbivore protection might eventually be for the KHFMA’s ultimate goal of coral recovery. Coral cover declined over the first few years of surveys–from 39.6% (SE 1.4%) in 2008, to 32.9% (SE 0.8%) in 2012, with almost all of that loss occurring by 2010 (1 year after closure), i.e. before meaningful herbivore recovery had occurred. Coral cover subsequently stabilized and may have slightly increased from 2012 through early 2015. However, a region-wide bleaching event in 2015 had already led to some coral mortality by the time surveys were conducted in late 2015, at which time cover had dropped back to levels recorded in the KHFMA in 2012.
Collapse
Affiliation(s)
- Ivor D. Williams
- Coral Reef Ecosystem Program, Pacific Islands Fisheries Science Center, National Oceanic and Atmospheric Administration, 1845 Wasp Boulevard, Building 176, Honolulu, Hawaii, United States of America
- * E-mail:
| | - Darla J. White
- Department of Land and Natural Resources, Division of Aquatic Resources, Maui Office, 130 Mahalani Street, Wailuku, Hawaii, United States of America
| | - Russell T. Sparks
- Department of Land and Natural Resources, Division of Aquatic Resources, Maui Office, 130 Mahalani Street, Wailuku, Hawaii, United States of America
| | - Kevin C. Lino
- Coral Reef Ecosystem Program, Pacific Islands Fisheries Science Center, National Oceanic and Atmospheric Administration, 1845 Wasp Boulevard, Building 176, Honolulu, Hawaii, United States of America
- Joint Institute for Marine and Atmospheric Research, 1000 Pope Road, Honolulu, Hawaii, United States of America
| | - Jill P. Zamzow
- Coral Reef Ecosystem Program, Pacific Islands Fisheries Science Center, National Oceanic and Atmospheric Administration, 1845 Wasp Boulevard, Building 176, Honolulu, Hawaii, United States of America
- Joint Institute for Marine and Atmospheric Research, 1000 Pope Road, Honolulu, Hawaii, United States of America
| | - Emily L. A. Kelly
- Center for Marine Biodiversity and Conservation, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, California, United States of America
| | | |
Collapse
|
46
|
Dell CLA, Longo GO, Hay ME. Positive Feedbacks Enhance Macroalgal Resilience on Degraded Coral Reefs. PLoS One 2016; 11:e0155049. [PMID: 27186979 PMCID: PMC4871466 DOI: 10.1371/journal.pone.0155049] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 04/22/2016] [Indexed: 11/18/2022] Open
Abstract
Many reefs have shifted from coral and fish dominated habitats to less productive macroalgal dominated habitats, and current research is investigating means of reversing this phase shift. In the tropical Pacific, overfished reefs with inadequate herbivory can become dominated by the brown alga Sargassum polycystum. This alga suppresses recruitment and survival of corals and fishes, thus limiting the potential for reef recovery. Here we investigate the mechanisms that reinforce S. polycystum dominance and show that in addition to negatively affecting other species, this species acts in a self-reinforcing manner, positively promoting survival and growth of conspecifics. We found that survival and growth of both recruit-sized and mature S. polycystum fronds were higher within Sargassum beds than outside the beds and these results were found in both protected and fished reefs. Much of this benefit resulted from reduced herbivory within the Sargassum beds, but adult fronds also grew ~50% more within the beds even when herbivory did not appear to be occurring, suggesting some physiological advantage despite the intraspecific crowding. Thus via positive feedbacks, S. polycystum enhances its own growth and resistance to herbivores, facilitating its dominance (perhaps also expansion) and thus its resilience on degraded reefs. This may be a key feedback mechanism suppressing the recovery of coral communities in reefs dominated by macroalgal beds.
Collapse
Affiliation(s)
- Claire L. A. Dell
- School of Biology and Aquatic Chemical Ecology Centre, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Guilherme O. Longo
- School of Biology and Aquatic Chemical Ecology Centre, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Mark E. Hay
- School of Biology and Aquatic Chemical Ecology Centre, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| |
Collapse
|
47
|
Hoey AS, Feary DA, Burt JA, Vaughan G, Pratchett MS, Berumen ML. Regional variation in the structure and function of parrotfishes on Arabian reefs. MARINE POLLUTION BULLETIN 2016; 105:524-531. [PMID: 26608505 DOI: 10.1016/j.marpolbul.2015.11.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 11/01/2015] [Accepted: 11/11/2015] [Indexed: 06/05/2023]
Abstract
Parrotfishes (f. Labridae) are a unique and ubiquitous group of herbivorous reef fishes. We compared the distribution and ecosystem function (grazing and erosion) of parrotfishes across 75 reefs in Arabia. Our results revealed marked regional differences in the abundance, and taxonomic and functional composition of parrotfishes between the Red Sea, Arabian Sea, and Arabian Gulf. High densities and diversity of parrotfishes, and high rates of grazing (210% year(-1)) and erosion (1.57 kgm(-2)year(-1)) characterised Red Sea reefs. Despite Arabian Sea and Red Sea reefs having broadly comparable abundances of parrotfishes, estimates of grazing (150% year(-1)) and erosion (0.43 kgm(-2)year(-1)) were markedly lower in the Arabian Sea. Parrotfishes were extremely rare within the southern Arabian Gulf, and as such rates of grazing and erosion were negligible. This regional variation in abundance and functional composition of parrotfishes appears to be related to local environmental conditions.
Collapse
Affiliation(s)
- Andrew S Hoey
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville Q4811, Australia; Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
| | - David A Feary
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - John A Burt
- Biology, New York University, Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Grace Vaughan
- Biology, New York University, Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Morgan S Pratchett
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville Q4811, Australia
| | - Michael L Berumen
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
48
|
Cruz ICS, Meira VH, de Kikuchi RKP, Creed JC. The role of competition in the phase shift to dominance of the zoanthid Palythoa cf. variabilis on coral reefs. MARINE ENVIRONMENTAL RESEARCH 2016; 115:28-35. [PMID: 26849036 DOI: 10.1016/j.marenvres.2016.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 01/21/2016] [Accepted: 01/25/2016] [Indexed: 06/05/2023]
Abstract
Phase shift phenomena are becoming increasingly common. However, they are also opportunities to better understand how communities are structured. In Southwest Atlantic coral reefs, a shift to the zoanthid Palythoa cf. variabilis dominance has been described. To test if competition drove this process, we carried out a manipulative experiment with three coral species. To estimate the natural frequency of encounters we assess the relationship between the proportion of encounters and this zoanthids coverage. The contact causes necrosis in 78% of coral colonies (6.47 ± SD 7.92 cm(2)) in 118 days. We found a logarithmic relationship between the proportion of these encounters and the cover of P. cf. variabilis, where 5.5% coverage of this zoanthid is enough to put 50% of coral colonies in contact, increasing their partial mortality. We demonstrate that zoanthid coverage increase followed by coral mortality increase will reduce coral cover and that competition drives the phase shift process.
Collapse
Affiliation(s)
- Igor Cristino Silva Cruz
- Programa de Pós Graduação em Ecologia, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier 524, ZIP 20559-900, Rio de Janeiro, RJ, Brazil; Laboratório de Manejo, Ecologia e Conservação Marinha, Instituto Oceanográfico, Universidade de São Paulo, Praça do Oceanográfico, 191, Cidade Universitária, ZIP 05508-120, São Paulo, SP, Brazil; Laboratório Recifes de Corais e Mudanças Globais, Instituto de Geociências, Universidade Federal da Bahia, Rua Barão de Geremoabo, s/n Ondina, ZIP 40170-115, Salvador, BA, Brazil; Laboratório de Ecologia Marinha Bêntica, Departamento de Ecologia, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro - UERJ, PHLC Sala 220, Rua São Francisco Xavier 524, ZIP 20559-900, Rio de Janeiro, RJ, Brazil.
| | - Verena Henschen Meira
- Laboratório Recifes de Corais e Mudanças Globais, Instituto de Geociências, Universidade Federal da Bahia, Rua Barão de Geremoabo, s/n Ondina, ZIP 40170-115, Salvador, BA, Brazil
| | - Ruy Kenji Papa de Kikuchi
- Laboratório Recifes de Corais e Mudanças Globais, Instituto de Geociências, Universidade Federal da Bahia, Rua Barão de Geremoabo, s/n Ondina, ZIP 40170-115, Salvador, BA, Brazil
| | - Joel Christopher Creed
- Laboratório de Ecologia Marinha Bêntica, Departamento de Ecologia, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro - UERJ, PHLC Sala 220, Rua São Francisco Xavier 524, ZIP 20559-900, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
49
|
Vieira C, Thomas OP, Culioli G, Genta-Jouve G, Houlbreque F, Gaubert J, De Clerck O, Payri CE. Allelopathic interactions between the brown algal genus Lobophora (Dictyotales, Phaeophyceae) and scleractinian corals. Sci Rep 2016; 6:18637. [PMID: 26728003 PMCID: PMC4700470 DOI: 10.1038/srep18637] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 11/20/2015] [Indexed: 11/09/2022] Open
Abstract
Allelopathy has been recently suggested as a mechanism by which macroalgae may outcompete corals in damaged reefs. Members of the brown algal genus Lobophora are commonly observed in close contact with scleractinian corals and have been considered responsible for negative effects of macroalgae to scleractinian corals. Recent field assays have suggested the potential role of chemical mediators in this interaction. We performed in situ bioassays testing the allelopathy of crude extracts and isolated compounds of several Lobophora species, naturally associated or not with corals, against four corals in New Caledonia. Our results showed that, regardless of their natural association with corals, organic extracts from species of the genus Lobophora are intrinsically capable of bleaching some coral species upon direct contact. Additionally, three new C21 polyunsaturated alcohols named lobophorenols A-C (1-3) were isolated and identified. Significant allelopathic effects against Acropora muricata were identified for these compounds. In situ observations in New Caledonia, however, indicated that while allelopathic interactions are likely to occur at the macroalgal-coral interface, Lobophora spp. rarely bleached their coral hosts. These findings are important toward our understanding of the importance of allelopathy versus other processes such as herbivory in the interaction between macroalgae and corals in reef ecosystems.
Collapse
Affiliation(s)
- Christophe Vieira
- UMR ENTROPIE, LabEx-CORAIL, U227 “Biocomplexité des écosystèmes coralliens”, Institut de Recherche pour le Développement, Nouméa, Nouvelle-Calédonie, France
- Phycology Research Group and Center for Molecular Phylogenetics and Evolution, Ghent University, Gent, Belgium
- Sorbonne Universités, UPMC Univ Paris 06, IFD, Paris, France
| | - Olivier P. Thomas
- Institut de Chimie de Nice-EEIC, UMR 7272 Université Nice Sophia Antipolis, CNRS, Faculté des Sciences, Nice, France
- Institut Méditerranéen de Biodiversité et d’Ecologie marine et continentale (IMBE), Aix Marseille Université, CNRS, IRD, Avignon Université, Station marine d’Endoume, rue de la Batterie des Lions, Marseille, France
| | - Gérald Culioli
- Institut de Chimie de Nice-EEIC, UMR 7272 Université Nice Sophia Antipolis, CNRS, Faculté des Sciences, Nice, France
- Université de Toulon, MAPIEM, EA 4323, La Garde, France
| | - Grégory Genta-Jouve
- Laboratoire de Pharmacognosie et de Chimie des Substances Naturelles- UMR CNRS 8638 COMETE - Université Paris Descartes, Paris, France
| | - Fanny Houlbreque
- UMR ENTROPIE, LabEx-CORAIL, U227 “Biocomplexité des écosystèmes coralliens”, Institut de Recherche pour le Développement, Nouméa, Nouvelle-Calédonie, France
| | - Julie Gaubert
- UMR ENTROPIE, LabEx-CORAIL, U227 “Biocomplexité des écosystèmes coralliens”, Institut de Recherche pour le Développement, Nouméa, Nouvelle-Calédonie, France
- Institut de Chimie de Nice-EEIC, UMR 7272 Université Nice Sophia Antipolis, CNRS, Faculté des Sciences, Nice, France
| | - Olivier De Clerck
- Phycology Research Group and Center for Molecular Phylogenetics and Evolution, Ghent University, Gent, Belgium
| | - Claude E. Payri
- UMR ENTROPIE, LabEx-CORAIL, U227 “Biocomplexité des écosystèmes coralliens”, Institut de Recherche pour le Développement, Nouméa, Nouvelle-Calédonie, France
| |
Collapse
|
50
|
Brooker RM, Brandl SJ, Dixson DL. Cryptic effects of habitat declines: coral-associated fishes avoid coral-seaweed interactions due to visual and chemical cues. Sci Rep 2016; 6:18842. [PMID: 26725835 PMCID: PMC4698739 DOI: 10.1038/srep18842] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/23/2015] [Indexed: 11/21/2022] Open
Abstract
Seaweed-dominated coral reefs are becoming increasingly common as environmental conditions shift away from those required by corals and toward those ideal for rampant seaweed growth. How coral-associated organisms respond to seaweed will not only impact their fate following environmental change but potentially also the trajectories of the coral communities on which they rely. However, behavioral responses by coral-associated organisms to seaweeds are poorly understood. This study examined interactions between a guild of obligate and opportunistic coral-feeding butterflyfishes (Chaetodontidae) and scleractinian corals to determine whether fishes continue to interact with corals in contact with seaweed or if they are avoided. Under natural conditions, all species interacted almost exclusively with seaweed-free corals. In a controlled patch reef experiment, fishes avoided corals in physical contact with seaweed, irrespective of dietary preferences. When visual seaweed cues were removed, butterflyfish continued to avoid corals that had been in contact with the allelopathic Galaxaura filamentosa, suggesting that chemical cues produced by coral-seaweed interactions are repellent. These findings suggest that, due to deleterious visual and chemical cues produced by coral-seaweed interactions, coral-associated organisms may struggle to locate resources as seaweed-free corals decline in abundance.
Collapse
Affiliation(s)
- Rohan M Brooker
- School of Marine Science and Policy, University of Delaware, Lewes, DE 19958, USA.,School of Biology, Georgia Institute of Technology, Atlanta, GA 30318, USA
| | - Simon J Brandl
- Tennenbaum Marine Observatories Network, Smithsonian Environmental Research Centre, Edgewater, MD, 21037, USA.,College of Tropical and Marine Science, James Cook University, Townsville, QLD 4811, Australia.,ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - Danielle L Dixson
- School of Marine Science and Policy, University of Delaware, Lewes, DE 19958, USA.,School of Biology, Georgia Institute of Technology, Atlanta, GA 30318, USA
| |
Collapse
|