1
|
Benga L, Rehm A, Gougoula C, Westhoff P, Wachtmeister T, Benten WPM, Engelhardt E, Weber APM, Köhrer K, Sager M, Janssen S. The host genotype actively shapes its microbiome across generations in laboratory mice. MICROBIOME 2024; 12:256. [PMID: 39639355 PMCID: PMC11619136 DOI: 10.1186/s40168-024-01954-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 10/18/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND The microbiome greatly affects health and wellbeing. Evolutionarily, it is doubtful that a host would rely on chance alone to pass on microbial colonization to its offspring. However, the literature currently offers only limited evidence regarding two alternative hypotheses: active microbial shaping by host genetic factors or transmission of a microbial maternal legacy. RESULTS To further dissect the influence of host genetics and maternal inheritance, we collected two-cell stage embryos from two representative wild types, C57BL6/J and BALB/c, and transferred a mixture of both genotype embryos into hybrid recipient mice to be inoculated by an identical microbiome at birth. CONCLUSIONS Observing the offspring for six generations unequivocally emphasizes the impact of host genetic factors over maternal legacy in constant environments, akin to murine laboratory experiments. Interestingly, maternal legacy solely controlled the microbiome in the first offspring generation. However, current evidence supporting maternal legacy has not extended beyond this initial generation, resolving the aforementioned debate. Video Abstract.
Collapse
Affiliation(s)
- Laurentiu Benga
- Central Unit for Animal Research and Animal Welfare Affairs, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Anna Rehm
- Algorithmic Bioinformatics, Justus Liebig University Giessen, Giessen, Germany
| | - Christina Gougoula
- Central Unit for Animal Research and Animal Welfare Affairs, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Philipp Westhoff
- Cluster of Excellence on Plant Science, Institute of Plant Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Thorsten Wachtmeister
- Genomics and Transcriptomics Laboratory, Biological and Medical Research Center, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - W Peter M Benten
- Central Unit for Animal Research and Animal Welfare Affairs, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Eva Engelhardt
- Central Unit for Animal Research and Animal Welfare Affairs, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Andreas P M Weber
- Cluster of Excellence on Plant Science, Institute of Plant Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Karl Köhrer
- Genomics and Transcriptomics Laboratory, Biological and Medical Research Center, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Martin Sager
- Central Unit for Animal Research and Animal Welfare Affairs, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Stefan Janssen
- Algorithmic Bioinformatics, Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
2
|
Murayama MA. Complement C3 deficient mice show more severe imiquimod-induced psoriasiform dermatitis than wild-type mice regardless of the commensal microbiota. Exp Anim 2024; 73:458-467. [PMID: 38945882 PMCID: PMC11534491 DOI: 10.1538/expanim.24-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024] Open
Abstract
The complement active product, C3a, and the receptor C3aR comprise an axis that exerts various biological functions, such as protection against infection. C3a is highly expressed in the inflamed skin and blood from patients with psoriasiform dermatitis. However, the role of the C3a/C3aR axis in psoriasiform dermatitis remains unclear because conflicting results using C3-/- mice have been published. In this study, to elucidate the contribution of commensal microbiota in C3-/- and wild-type (WT) mice were subjected to imiquimod-induced psoriasiform dermatitis under different housing conditions. C3-/- mice showed increased epidermal thickness and keratinocyte proliferation markers in the inflamed ear compared to WT mice upon treatment with IMQ. These inflamed phenotypes were observed in both cohoused and separately housed conditions, and antibiotic treatment did not abolish the aggravation of IMQ-induced psoriasiform dermatitis in C3-/- mice. These results suggested that the difference of commensal microbiota is not important for the C3-involved psoriasiform dermatitis. Keratinocyte hyperproliferation is a major feature of the inflamed skin in patients with psoriasiform dermatitis. In vitro experiments showed that C3a and C3aR agonists inhibited keratinocyte proliferation, which was abolished by introduction of a C3aR antagonist. Collectively, these results suggest that the C3a/C3aR axis plays a critical role in psoriasiform dermatitis development by inhibiting keratinocyte proliferation, regardless of the regulation of the commensal microbiota.
Collapse
Affiliation(s)
- Masanori A Murayama
- Department of Animal Models for Human Diseases, Institute of Biomedical Science, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka 573-1010, Japan
| |
Collapse
|
3
|
Muino AF, Compo NR, Everett BM, Abrahams DF, Baldwin MK, James TN, Wanner SE, Perkins MJ, Parr CE, Wiltshire ND, Miedel EL, Engelman RW. Equipment and Methods for Concurrently Housing Germfree and Gnotobiotic Mice in the Same Room. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2023; 62:395-408. [PMID: 37640503 PMCID: PMC10597338 DOI: 10.30802/aalas-jaalas-23-000019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/04/2023] [Accepted: 05/05/2023] [Indexed: 08/31/2023]
Abstract
Here, we combined the use of 2 technologies that have not previously been used together-a positively pressurized isolator IVC (IsoIVC-P) and a modular isolator with integrated vaporized hydrogen peroxide (VHP) technology???to develop highly tractable and scalable methods to support long-term maintenance of germfree mouse colonies and the concurrent use of germfree and gnotobiotic mice in the same room. This space-efficient system increases the practicality of microbiome studies. Specifically, the exterior surfaces of microbially similar IsoIVC-P were sterilized by using VHP prior to opening the cages and handling the mice therein. This space-efficient system increases the feasibility of microbiome studies. After over 74 wk of experimentation and handling equivalent to more than 1,379,693 germfree mouse-days, we determined that the method and practices we developed have a weekly performance metric of 0.0001 sterility breaks per husbandry unit; this rate is comparable to the isolator 'gold standard.' These data were achieved without adverse incidents while maintaining an Altered Schaedler Flora colony and multiple gnotobiotic studies involving fecal microbial transplants in the same room. Our novel IsoIVC-P???VHP workstation housing system thus improves microbiome research efficiency, eliminates hazards, and reduces risks associated with traditional methods.
Collapse
Affiliation(s)
- Anastasia F Muino
- Comparative Medicine, Research, and Innovation, University of South Florida
| | - Nicole R Compo
- Comparative Medicine, Research, and Innovation, University of South Florida
| | - Bo M Everett
- Comparative Medicine, Research, and Innovation, University of South Florida
| | | | - Margi K Baldwin
- Comparative Medicine, Research, and Innovation, University of South Florida
| | - Tara N James
- Comparative Medicine, Research, and Innovation, University of South Florida
| | - Susan E Wanner
- Comparative Medicine, Research, and Innovation, University of South Florida
| | - M Jane Perkins
- Comparative Medicine, Research, and Innovation, University of South Florida
| | - Courtnee E Parr
- Comparative Medicine, Research, and Innovation, University of South Florida
| | - Norman D Wiltshire
- Comparative Medicine, Research, and Innovation, University of South Florida
| | - Emily L Miedel
- Comparative Medicine, Research, and Innovation, University of South Florida
| | - Robert W Engelman
- Comparative Medicine, Research, and Innovation, University of South Florida
- H Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| |
Collapse
|
4
|
Chen B, Li D, Leng D, Kui H, Bai X, Wang T. Gut microbiota and meat quality. Front Microbiol 2022; 13:951726. [PMID: 36081790 PMCID: PMC9445620 DOI: 10.3389/fmicb.2022.951726] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Sustainable meat production is important to providing safe and quality protein sources for humans worldwide. Intensive artificial selection and high energy input into the diet of many commercial animals for the last decade has significantly increased the daily gain of body weight and shortened the raising period, but unexpectedly decreased the meat quality. The gastrointestinal tract of animals harbors a diverse and complex microbial community that plays a vital role in the digestion and absorption of nutrients, immune system development, pathogen exclusion, and meat quality. Fatty acid composition and oxidative stress in adipose and muscle tissue influences meat quality in livestock and poultry. Recent studies showed that nutraceuticals are receiving increased attention, which could alter the intestinal microbiota and regulate the fat deposition and immunity of hosts to improve their meat quality. Understanding the microbiota composition, the functions of key bacteria, and the host-microbiota interaction is crucial for the development of knowledge-based strategies to improve both animal meat quality and host health. This paper reviews the microorganisms that affect the meat quality of livestock and poultry. A greater understanding of microbial changes that accompany beneficial dietary changes will lead to novel strategies to improve livestock and poultry meat product quality.
Collapse
Affiliation(s)
- Binlong Chen
- College of Animal Science, Xichang University, Xichang, China
| | - Diyan Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
- *Correspondence: Diyan Li,
| | - Dong Leng
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Hua Kui
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xue Bai
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Tao Wang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
- Tao Wang,
| |
Collapse
|
5
|
Van averbeke V, Berkell M, Mysara M, Rodriguez-Ruiz JP, Xavier BB, De Winter FHR, Jongers B‘, Jairam RK, Hotterbeekx A, Goossens H, Cohen ES, Malhotra-Kumar S, Kumar-Singh S. Host Immunity Influences the Composition of Murine Gut Microbiota. Front Immunol 2022; 13:828016. [PMID: 35371073 PMCID: PMC8965567 DOI: 10.3389/fimmu.2022.828016] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/21/2022] [Indexed: 12/24/2022] Open
Abstract
The influence of gut microbiota on host immunity is widely studied, and its disturbance has been linked to several immune-mediated disorders. Conversely, whether and how inherently disturbed canonical Th1 (pro-inflammatory) and/or Th2 (anti-inflammatory) immune pathways modify the host microbiome is not sufficiently investigated. Here, we characterized the humoral, cellular, and cytokine immunity, and associated alterations in gut microbiota of naïve wild-type mice (C57BL/6 and BALB/c), and mice with deficiencies in Th2 responses (IL-4Rα and IL-33 knockout mice) or in both Th1 and Th2 responses (NOD scid gamma, NSG mice). A global analysis by de novo clustering of 16S rRNA profiles of the gut microbiota independently grouped wild-type immunocompetent (C57BL/6 and BALB/c), Th2-deficient (IL-4Rα-/- and IL-33-/-), and severely immunodeficient (NSG) mice; where wild-type mice, but not Th2 or severely immunodeficient mice, were enriched in gut bacteria that produce short-chain fatty acids. These include members of phyla Firmicutes, Verrucomicrobia, and Bacteroidetes such as Lactobacillus spp., Akkermansia muciniphila, and Odoribacter spp. Further comparison of the two naïve wild-type mouse strains showed higher microbial diversity (Shannon), primarily linked to higher richness (Chao1), as well as a distinct difference in microbial composition (weighted UniFrac) in BALB/c mice compared to C57BL/6. T-cell and blood cytokine analyses demonstrated a Th1-polarization in naïve adaptive immunity in C57BL/6 animals compared to BALB/c mice, and an expected Th2 deficient cellular response in IL-4Rα-/- and IL-33-/- mice compared to its genetic background BALB/c strain. Together, these data suggest that alterations in the Th1/Th2 balance or a complete ablation of Th1/Th2 responses can lead to major alterations in gut microbiota composition and function. Given the similarities between the human and mouse immune systems and gut microbiota, our finding that immune status is a strong driver of gut microbiota composition has important consequences for human immunodeficiency studies.
Collapse
Affiliation(s)
- Vincent Van averbeke
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
| | - Matilda Berkell
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
- Laboratory of Medical Microbiology - Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Mohamed Mysara
- Microbiology Unit, Belgian Nuclear Research Centre (SCK-CEN), Mol, Belgium
| | - Juan Pablo Rodriguez-Ruiz
- Laboratory of Medical Microbiology - Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Basil Britto Xavier
- Laboratory of Medical Microbiology - Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Fien H. R. De Winter
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
| | - Bart ‘s Jongers
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
| | - Ravi Kumar Jairam
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
| | - An Hotterbeekx
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
| | - Herman Goossens
- Laboratory of Medical Microbiology - Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - E. Suzanne Cohen
- Bioscience Asthma, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology - Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Samir Kumar-Singh
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
- Laboratory of Medical Microbiology - Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
- Translational Neurosciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
6
|
Stutz R, Meyer C, Kaiser E, Goedicke-Fritz S, Schroeder HW, Bals R, Haertel C, Rogosch T, Kerzel S, Zemlin M. Attenuated asthma phenotype in mice with a fetal-like antigen receptor repertoire. Sci Rep 2021; 11:14199. [PMID: 34244568 PMCID: PMC8270943 DOI: 10.1038/s41598-021-93553-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 06/21/2021] [Indexed: 11/09/2022] Open
Abstract
We hypothesized that the scarcity of N-nucleotides might contribute to the inability of the neonate to mount a robust allergic immune response. To test this, we used terminal deoxyribunucleotidyl Transferase deficient (TdT-/-) mice, which express "fetal-like" T cell receptor and immunoglobulin repertoires with largely germline-encoded CDR3 regions. Intraperitoneal sensitization was followed by aerosol provocation with either PBS or the allergen OVA in both TdT-/- mice and wild-type mice to develop allergic respiratory inflammation. The effects of this procedure were investigated by lung function test, immunological analysis of serum and brochoalveolar lavage. The local TH2 cytokine milieu was significantly attenuated in TdT-/- mice. Within this group, the induction of total IgE levels was also significantly reduced after sensitization. TdT-/- mice showed a tendency toward reduced eosinophilic inflow into the bronchial tubes, which was associated with the elimination of respiratory hyperreactivity. In conclusion, in a murine model of allergic airway inflammation, the expression of fetal-like antigen receptors was associated with potent indications of a reduced ability to mount an asthma phenotype. This underlines the importance of somatically-generated antigen-receptor repertoire diversity in type one allergic immune responses and suggests that the fetus may be protected from allergic responses, at least in part, by controlling N addition.
Collapse
Affiliation(s)
- Regine Stutz
- Department of General Pediatrics and Neonatology, Saarland University Medical School, Homburg, Germany
| | - Christopher Meyer
- Department of General Pediatrics and Neonatology, Saarland University Medical School, Homburg, Germany
| | - Elisabeth Kaiser
- Department of General Pediatrics and Neonatology, Saarland University Medical School, Homburg, Germany
| | - Sybelle Goedicke-Fritz
- Department of General Pediatrics and Neonatology, Saarland University Medical School, Homburg, Germany.,Department of Pediatrics, Philipps-University Marburg, Marburg, Germany
| | - Harry W Schroeder
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert Bals
- Department of Internal Medicine V-Pulmonology, Allergology and Critical Care Medicine, Saarland University, Saarland University Medical School, Homburg, Germany
| | - Christoph Haertel
- Department of Pediatrics, Würzburg University Medical Center, Würzburg, Germany
| | - Tobias Rogosch
- Department of Pediatrics, Philipps-University Marburg, Marburg, Germany
| | - Sebastian Kerzel
- Department of Pediatrics, Philipps-University Marburg, Marburg, Germany.,Department of Pediatric Pneumology and Allergy, University Children's Hospital Regensburg, Campus St. Hedwig, Regensburg, Germany
| | - Michael Zemlin
- Department of General Pediatrics and Neonatology, Saarland University Medical School, Homburg, Germany. .,Department of Pediatrics, Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
7
|
Kaiser-Thom S, Hilty M, Gerber V. Effects of hypersensitivity disorders and environmental factors on the equine intestinal microbiota. Vet Q 2021; 40:97-107. [PMID: 32189583 PMCID: PMC7170319 DOI: 10.1080/01652176.2020.1745317] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Recent evidence suggests that an altered intestinal microbiota, specifically a reduction of bacterial diversity or a shift in microbial composition, is associated with the development of hypersensitivity disorders in humans, but this is unknown for horses. Objectives In this study we hypothesized that horses affected by either Culicoides hypersensitivity or severe equine asthma or both show a decreased diversity of their intestinal microbiota. We also investigated environmental effects. Methods Rectal swab samples of a total of 140 horses were collected and the owners completed a detailed questionnaire about their horse. For each allergic horse, a healthy peer from the same stable was equally sampled as an environmentally matched control. Microbiota in the swabs was determined by assessing the V4 region of the bacterial 16S rRNA gene. Structures of bacterial communities were investigated by means of alpha and beta diversity indices. Results Group wise comparisons between healthy and allergic horses showed no significant differences regarding alpha (p = 0.9) and beta diversity (p = 0.5). However, the microbial structure was associated with environmental factors such as the type of stable (p = 0.001), access to pasture (p = 0.001) or the type of feeding (p = 0.003). There was also a strong location effect meaning that the microbiota was more similar within the same as compared between farms within this study. Conclusion Our observations suggest that hypersensitivity disorders in adult horses are not associated with an alteration of the intestinal microbiota, but environmental and/or location factors strongly influence these bacteria.
Collapse
Affiliation(s)
- S Kaiser-Thom
- Swiss Institute of Equine Medicine (ISME), Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, and Agroscope, Bern, Switzerland
| | - M Hilty
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - V Gerber
- Swiss Institute of Equine Medicine (ISME), Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, and Agroscope, Bern, Switzerland
| |
Collapse
|
8
|
Velasco-Galilea M, Guivernau M, Piles M, Viñas M, Rafel O, Sánchez A, Ramayo-Caldas Y, González-Rodríguez O, Sánchez JP. Breeding farm, level of feeding and presence of antibiotics in the feed influence rabbit cecal microbiota. Anim Microbiome 2020; 2:40. [PMID: 33499975 PMCID: PMC7807820 DOI: 10.1186/s42523-020-00059-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023] Open
Abstract
Background The effect of the production environment and different management practices in rabbit cecal microbiota remains poorly understood. While previous studies have proved the impact of the age or the feed composition, research in the breeding farm and other animal management aspects, such as the presence of antibiotics in the feed or the level of feeding, is still needed. Characterization of microbial diversity and composition of growing rabbits raised under different conditions could help better understand the role these practices play in cecal microbial communities and how it may result in different animal performance. Results Four hundred twenty-five meat rabbits raised in two different facilities, fed under two feeding regimes (ad libitum or restricted) with feed supplemented or free of antibiotics, were selected for this study. A 16S rRNA gene-based assessment through the MiSeq Illumina sequencing platform was performed on cecal samples collected from these individuals at slaughter. Different univariate and multivariate approaches were conducted to unravel the influence of the different factors on microbial alpha diversity and composition at phylum, genus and OTU taxonomic levels. The animals raised in the facility harboring the most stable environmental conditions had greater, and less variable, microbial richness and diversity. Bootstrap univariate analyses of variance and sparse partial least squares-discriminant analyses endorsed that farm conditions exerted an important influence on rabbit microbiota since the relative abundances of many taxa were found differentially represented between both facilities at all taxonomic levels characterized. Furthermore, only five OTUs were needed to achieve a perfect classification of samples according to the facility where animals were raised. The level of feeding and the presence of antibiotics did not modify the global alpha diversity but had an impact on some bacteria relative abundances, albeit in a small number of taxa compared with farm, which is consistent with the lower sample classification power according to these factors achieved using microbial information. Conclusions This study reveals that factors associated with the farm effect and other management factors, such as the presence of antibiotics in the diet or the feeding level, modify cecal microbial communities. It highlights the importance of offering a controlled breeding environment that reduces differences in microbial cecal composition that could be responsible for different animal performance.
Collapse
Affiliation(s)
- María Velasco-Galilea
- Institute of Agrifood Research and Technology (IRTA) - Animal Breeding and Genetics, E08140 Caldes de Montbui, Barcelona, Spain.
| | - Miriam Guivernau
- Institute of Agrifood Research and Technology (IRTA) - Integral Management of Organic Waste, E08140 Caldes de Montbui, Barcelona, Spain
| | - Miriam Piles
- Institute of Agrifood Research and Technology (IRTA) - Animal Breeding and Genetics, E08140 Caldes de Montbui, Barcelona, Spain
| | - Marc Viñas
- Institute of Agrifood Research and Technology (IRTA) - Integral Management of Organic Waste, E08140 Caldes de Montbui, Barcelona, Spain
| | - Oriol Rafel
- Institute of Agrifood Research and Technology (IRTA) - Animal Breeding and Genetics, E08140 Caldes de Montbui, Barcelona, Spain
| | - Armand Sánchez
- Animal Genomics Group, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, Catalonia, Spain.,Unit of Animal Science, Department of Animal and Food Science, Autonomous University of Barcelona, Barcelona, Spain
| | - Yuliaxis Ramayo-Caldas
- Institute of Agrifood Research and Technology (IRTA) - Animal Breeding and Genetics, E08140 Caldes de Montbui, Barcelona, Spain
| | - Olga González-Rodríguez
- Institute of Agrifood Research and Technology (IRTA) - Animal Breeding and Genetics, E08140 Caldes de Montbui, Barcelona, Spain
| | - Juan P Sánchez
- Institute of Agrifood Research and Technology (IRTA) - Animal Breeding and Genetics, E08140 Caldes de Montbui, Barcelona, Spain
| |
Collapse
|
9
|
Jeuthe S, Kemna J, Kemna CP, Zocholl D, Klopfleisch R, Palme R, Kirschbaum C, Thoene-Reineke C, Kammertoens T. Stress hormones or general well-being are not altered in immune-deficient mice lacking either T- and B- lymphocytes or Interferon gamma signaling if kept under specific pathogen free housing conditions. PLoS One 2020; 15:e0239231. [PMID: 32997686 PMCID: PMC7526874 DOI: 10.1371/journal.pone.0239231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/01/2020] [Indexed: 11/18/2022] Open
Abstract
It is controversially discussed whether immune-deficient mice experience severity in the absence of infection. Because a comprehensive analysis of the well-being of immune-deficient mice under specific pathogen free conditions is missing, we used a multi-parametric test analyzing, corticosterone, weight, nest building and facial expression over a period of 9 month to determine the well-being of two immune-deficient mouse lines (recombination activating gene 2- and interferon gamma receptor-deficient mice). We do not find evidence for severity when comparing immune-deficient mice to their heterozygous immune-competent littermates. Our data challenge the assumption that immune-deficiency per se regardless of housing conditions causes severity. Based on our study we propose to use objective non-invasive parameters determined by laboratory animal science for decisions concerning severity of immune-deficient mice.
Collapse
Affiliation(s)
- Sarah Jeuthe
- Animal Facility of the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Josephine Kemna
- Department of Gene Therapy and Molecular Immunology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Institute of Immunology, Charité Campus Berlin Buch, Berlin, Germany
| | | | - Dario Zocholl
- Institut für Biometrie und Klinische Epidemiologie, Charité Campus Mitte, Berlin, Germany
| | - Robert Klopfleisch
- Department of Veterinary Medicine, Institute of Veterinary Pathology, Free University, Berlin, Germany
| | - Rupert Palme
- Unit of Physiology, Pathophysiology and Experimental Endocrinology, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | | | - Christa Thoene-Reineke
- Department of Veterinary Medicine, Institute for Animal Welfare, Animal Behavior and Laboratory Animal Science, Free University, Berlin, Germany
| | - Thomas Kammertoens
- Department of Gene Therapy and Molecular Immunology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Institute of Immunology, Charité Campus Berlin Buch, Berlin, Germany
| |
Collapse
|
10
|
Compton SR. PCR and RT-PCR in the Diagnosis of Laboratory Animal Infections and in Health Monitoring. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2020; 59:458-468. [PMID: 32580820 PMCID: PMC7479767 DOI: 10.30802/aalas-jaalas-20-000008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/01/2020] [Accepted: 03/25/2020] [Indexed: 12/25/2022]
Abstract
Molecular diagnostics (PCR and RT-PCR) have become commonplace in laboratory animal research and diagnostics, augmenting or replacing serological and microbiologic methods. This overview will discuss the uses of molecular diagnostics in the diagnosis of pathogenic infections of laboratory animals and in monitoring the microbial status of laboratory animals and their environment. The article will focus primarily on laboratory rodents, although PCR can be used on samples from any laboratory animal species.
Collapse
Affiliation(s)
- Susan R Compton
- Section of Comparative Medicine, Yale University School of Medicine;,
| |
Collapse
|
11
|
The association between microbial community and ileal gene expression on intestinal wall thickness alterations in chickens. Poult Sci 2020; 99:1847-1861. [PMID: 32241465 PMCID: PMC7587722 DOI: 10.1016/j.psj.2019.10.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 10/05/2019] [Accepted: 10/11/2019] [Indexed: 12/17/2022] Open
Abstract
The dynamic development of the animal intestine with a concurrent succession of microbiota and changes in microbial community and metabolite spectrum can exert far-reaching effects on host physiology. However, the precise mechanism of mutual response between microbiota and the gut is yet to be fully elucidated. Broilers with varying developmental degrees of intestinal wall thickness were selected, and they were divided into the thick group (H type) and the thin group (B type), using multiomics data integration analysis to reveal the fundamental regulatory mechanisms of gut–microbiota interplay. Our data showed, in broilers with similar body weight, the intestinal morphological parameters were improved in H type and the diversity of microbial communities is distinguishable from each other. The beneficial bacteria such as Bifidobacterium breve was increased whereas avian endogenous retrovirus EAV-HP was decreased in the H type compared with the B type. Furthermore, microbial metabolic potentials were more active, especially the biosynthesis of folate was improved in the H type. Similarly, the consolidation of absorption, immunity, metabolism, and development was noticed in the thick group. Correlation analysis indicated that the expression levels of material transport and immunomodulatory-related genes were positively correlated with the relative abundance of several probiotics such as B. breve, Lactobacillus saerimneri, and Butyricicoccus pullicaecorum. Our findings suggest that the chickens with well-developed ileal thickness own exclusive microbial composition and metabolic potential, which is closely related to small intestinal morphogenesis and homeostasis.
Collapse
|
12
|
Maerz JK, Trostel C, Lange A, Parusel R, Michaelis L, Schäfer A, Yao H, Löw HC, Frick JS. Bacterial Immunogenicity Is Critical for the Induction of Regulatory B Cells in Suppressing Inflammatory Immune Responses. Front Immunol 2020; 10:3093. [PMID: 32038631 PMCID: PMC6993086 DOI: 10.3389/fimmu.2019.03093] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/18/2019] [Indexed: 01/18/2023] Open
Abstract
B cells fulfill multifaceted functions that influence immune responses during health and disease. In autoimmune diseases, such as inflammatory bowel disease, multiple sclerosis and rheumatoid arthritis, depletion of functional B cells results in an aggravation of disease in humans and respective mouse models. This could be due to a lack of a pivotal B cell subpopulation: regulatory B cells (Bregs). Although Bregs represent only a small proportion of all immune cells, they exhibit critical properties in regulating immune responses, thus contributing to the maintenance of immune homeostasis in healthy individuals. In this study, we report that the induction of Bregs is differentially triggered by the immunogenicity of the host microbiota. In comparative experiments with low immunogenic Bacteroides vulgatus and strong immunogenic Escherichia coli, we found that the induction and longevity of Bregs depend on strong Toll-like receptor activation mediated by antigens of strong immunogenic commensals. The potent B cell stimulation via E. coli led to a pronounced expression of suppressive molecules on the B cell surface and an increased production of anti-inflammatory cytokines like interleukin-10. These bacteria-primed Bregs were capable of efficiently inhibiting the maturation and function of dendritic cells (DCs), preventing the proliferation and polarization of T helper (Th)1 and Th17 cells while simultaneously promoting Th2 cell differentiation in vitro. In addition, Bregs facilitated the development of regulatory T cells (Tregs) resulting in a possible feedback cooperation to establish immune homeostasis. Moreover, the colonization of germfree wild type mice with E. coli but not B. vulgatus significantly reduced intestinal inflammatory processes in dextran sulfate sodium (DSS)-induced colitis associated with an increase induction of immune suppressive Bregs. The quantity of Bregs directly correlated with the severity of inflammation. These findings may provide new insights and therapeutic approaches for B cell-controlled treatments of microbiota-driven autoimmune disease.
Collapse
Affiliation(s)
- Jan Kevin Maerz
- Department for Medical Microbiology and Hygiene, Interfacultary Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Constanze Trostel
- Department for Medical Microbiology and Hygiene, Interfacultary Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Anna Lange
- Department for Medical Microbiology and Hygiene, Interfacultary Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Raphael Parusel
- Department for Medical Microbiology and Hygiene, Interfacultary Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Lena Michaelis
- Department for Medical Microbiology and Hygiene, Interfacultary Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Andrea Schäfer
- Department for Medical Microbiology and Hygiene, Interfacultary Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Hans Yao
- Department for Medical Microbiology and Hygiene, Interfacultary Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Hanna-Christine Löw
- Department for Medical Microbiology and Hygiene, Interfacultary Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Julia-Stefanie Frick
- Department for Medical Microbiology and Hygiene, Interfacultary Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| |
Collapse
|
13
|
Vidal-Lletjós S, Andriamihaja M, Blais A, Grauso M, Lepage P, Davila AM, Gaudichon C, Leclerc M, Blachier F, Lan A. Mucosal healing progression after acute colitis in mice. World J Gastroenterol 2019; 25:3572-3589. [PMID: 31367158 PMCID: PMC6658396 DOI: 10.3748/wjg.v25.i27.3572] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/27/2019] [Accepted: 06/08/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Mucosal healing has become a therapeutic goal to achieve stable remission in patients with inflammatory bowel diseases. To achieve this objective, overlapping actions of complex cellular processes, such as migration, proliferation, and differentiation, are required. These events are longitudinally and tightly controlled by numerous factors including a wide range of distinct regulatory proteins. However, the sequence of events associated with colon mucosal repair after colitis and the evolution of the luminal content characteristics during this process have been little studied.
AIM To document the evolution of colon mucosal characteristics during mucosal healing using a mouse model with chemically-induced colitis.
METHODS C57BL/6 male mice were given 3.5% dextran sodium sulfate (DSS) in drinking water for 5 d. They were euthanized 2 (day 7), 5 (day 10), 8 (day 13), and 23 (day 28) d after DSS removal. The colonic luminal environment and epithelial repair processes during the inflammatory flare and colitis resolution were analyzed with reference to a non-DSS treated control group, euthanized at day 0. Epithelial repair events were assessed histo-morphologically in combination with functional permeability tests, expression of key inflammatory and repairing factors, and evaluation of colon mucosa-adherent microbiota composition by 16S rRNA sequencing.
RESULTS The maximal intensity of colitis was concomitant with maximal alterations of intestinal barrier function and histological damage associated with goblet cell depletion in colon mucosa. It was recorded 2 d after termination of the DSS-treatment, followed by a progressive return to values similar to those of control mice. Although signs of colitis were severe (inflammatory cell infiltrate, crypt disarray, increased permeability) and associated with colonic luminal alterations (hyperosmolarity, dysbiosis, decrease in short-chain fatty acid content), epithelial healing processes were launched early during the inflammatory flare with increased gene expression of certain key epithelial repair modulators, including transforming growth factor-β, interleukin (Il)-15, Il-22, Il-33, and serum amyloid A. Whereas signs of inflammation progressively diminished, luminal colonic environment alterations and microscopic abnormalities of colon mucosa persisted long after colitis induction.
CONCLUSION This study shows that colon repair can be initiated in the context of inflamed mucosa associated with alterations of the luminal environment and highlights the longitudinal involvement of key modulators.
Collapse
Affiliation(s)
| | | | - Anne Blais
- UMR PNCA, AgroParisTech, INRA, Université Paris-Saclay, Paris 75005, France
| | - Marta Grauso
- UMR PNCA, AgroParisTech, INRA, Université Paris-Saclay, Paris 75005, France
| | - Patricia Lepage
- UMR MICALIS, INRA, Université Paris-Saclay, Jouy-en-Josas 78350, France
| | - Anne-Marie Davila
- UMR PNCA, AgroParisTech, INRA, Université Paris-Saclay, Paris 75005, France
| | - Claire Gaudichon
- UMR PNCA, AgroParisTech, INRA, Université Paris-Saclay, Paris 75005, France
| | - Marion Leclerc
- UMR MICALIS, INRA, Université Paris-Saclay, Jouy-en-Josas 78350, France
| | - François Blachier
- UMR PNCA, AgroParisTech, INRA, Université Paris-Saclay, Paris 75005, France
| | - Annaïg Lan
- UMR PNCA, AgroParisTech, INRA, Université Paris-Saclay, Paris 75005, France
| |
Collapse
|
14
|
Cryptosporidium parvum-Infected Neonatal Mice Show Gut Microbiota Remodelling Using High-Throughput Sequencing Analysis: Preliminary Results. Acta Parasitol 2019; 64:268-275. [PMID: 30915719 DOI: 10.2478/s11686-019-00044-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/19/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND During the last decade, the scientific community has begun to investigate the composition and role of gut microbiota in normal health and disease. These studies have provided crucial information on the relationship between gut microflora composition and intestinal parasitic infection, and have demonstrated that many enteric pathogen infections are associated with altered gut microflora composition. In this study, we investigated the effects of Cryptosporidium parvum infection (zoonotic protozoan affecting a large range of vertebrates) on both qualitative and quantitative composition of gut microbiota in a CD-1 neonatal mouse model. METHODS 5-day-old neonate mice were experimentally infected with 105Cryptosporidium parvum Iowa oocysts by oesophageal gavage. The intestinal microbiota of both infected (Cp+) and uninfected (Cp-) mice groups was examined by high-throughput sequencing of the bacterial 16S rDNA gene V3-V4 hypervariable region. RESULTS The most consistent change in the microbiota composition of Cp+ mice was the increased proportion of bacterial communities belonging to the Phylum Bacteroidetes. In contrast, the microbiota of Cp- mice was associated with increased proportions of several Firmicutes and Actinobacteria phyla members. CONCLUSION For the first time, our study provides evidence of an association between cryptosporidial infection and gut dysbiosis, thus contributing valuable knowledge to the as-yet little-explored field of Cryptosporidium-microbiota interactions in a neonatal mouse model.
Collapse
|
15
|
Breen P, Winters AD, Nag D, Ahmad MM, Theis KR, Withey JH. Internal Versus External Pressures: Effect of Housing Systems on the Zebrafish Microbiome. Zebrafish 2019; 16:388-400. [PMID: 31145047 DOI: 10.1089/zeb.2018.1711] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Zebrafish (Danio rerio) are an attractive model organism for scientific studies, including host-microbe interactions. The organism is particularly useful for studying aquatic microbes that can colonize vertebrate hosts, including Vibrio cholerae. Previous studies have established the presence of a core zebrafish intestinal microbiome, and tracked the development of the zebrafish intestinal microbiome from the larval stage to adulthood. An unexplored matter in this host-microbe relationship is the effect of the housing system on the zebrafish intestinal and tank water microbiomes. In this study, we used 16S rRNA gene sequencing to investigate the response of zebrafish intestinal and tank water microbiomes to a change in housing conditions. Zebrafish in the separated fish tanks showed no initial differences in the structures of their intestinal microbial profiles; the same prominent bacteria were present and abundant across tanks. Immediately after the housing switch, the zebrafish intestinal microbial profiles changed in composition and structure. Within 5 days of the housing switch, the intestinal microbiome had stabilized, and changed significantly from the prehousing switch profile. This study demonstrates that although external factors can significantly perturb and alter the zebrafish intestinal microbiome, the microbiome displays a large level of selective resilience whose primary members (namely Vibrio) persist.
Collapse
Affiliation(s)
- Paul Breen
- Department of Biochemistry, Microbiology and Immunology, Wayne State University, Detroit, Michigan
| | - Andrew D Winters
- Department of Biochemistry, Microbiology and Immunology, Wayne State University, Detroit, Michigan
| | - Dhrubajyoti Nag
- Department of Biochemistry, Microbiology and Immunology, Wayne State University, Detroit, Michigan
| | - Madison M Ahmad
- Department of Biochemistry, Microbiology and Immunology, Wayne State University, Detroit, Michigan
| | - Kevin R Theis
- Department of Biochemistry, Microbiology and Immunology, Wayne State University, Detroit, Michigan
| | - Jeffrey H Withey
- Department of Biochemistry, Microbiology and Immunology, Wayne State University, Detroit, Michigan
| |
Collapse
|
16
|
Inserra A, Choo JM, Lewis MD, Rogers GB, Wong ML, Licinio J. Mice lacking Casp1, Ifngr and Nos2 genes exhibit altered depressive- and anxiety-like behaviour, and gut microbiome composition. Sci Rep 2019; 9:6456. [PMID: 31015500 PMCID: PMC6478737 DOI: 10.1038/s41598-018-38055-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/10/2018] [Indexed: 12/21/2022] Open
Abstract
Converging evidence supports the involvement of pro-inflammatory pathways and the gut microbiome in major depressive disorder (MDD). Pre-clinical and clinical studies suggest that decreasing pro-inflammatory signaling may provide clinical benefit in MDD. In this study, we used the chronic unpredictable stress (CUS) paradigm to assess whether mice lacking the pro-inflammatory caspase 1, interferon gamma-receptor, and nitric oxide synthase (Casp1, Ifngr, Nos2)-/- present altered depressive- and anxiety-like behaviour at baseline and in response to CUS. In comparison to wild-type (wt) mice, (Casp1, Ifngr, Nos2)-/- mice displayed decreased depressive- and anxiety-like behaviour, and increased hedonic-like behaviour and locomotor activity at baseline, and resistance to developing anhedonic-like behaviour and a heightened emotional state following stress. Plasma levels of ACTH and CORT did not differ between the triple knockout and wt mice following stress. The faecal microbiome of (Casp1, Ifngr, Nos2)-/- mice differed from that of wt mice at baseline and displayed reduced changes in response to chronic stress. Our results demonstrate that simultaneous deficit in multiple pro-inflammatory pathways has antidepressant-like effects at baseline, and confers resilience to stress-induced anhedonic-like behaviour. Moreover, accompanying changes in the gut microbiome composition suggest that CASP1, IFNGR and NOS2 play a role in maintaining microbiome homeostasis.
Collapse
Affiliation(s)
- Antonio Inserra
- Mind and Brain Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Discipline of Psychiatry, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
- Centre for Neuroscience, Flinders University, Bedford Park, Australia
| | - Jocelyn M Choo
- Infection and Immunity Theme, South Australia Health and Medical Research Institute, North Terrace, Adelaide, SA, Australia
- SAHMRI Microbiome Research Laboratory, Flinders University College of Medicine and Public Health, Bedford Park, SA, Australia
| | - Martin D Lewis
- Mind and Brain Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Discipline of Psychiatry, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Geraint B Rogers
- Infection and Immunity Theme, South Australia Health and Medical Research Institute, North Terrace, Adelaide, SA, Australia.
- SAHMRI Microbiome Research Laboratory, Flinders University College of Medicine and Public Health, Bedford Park, SA, Australia.
| | - Ma-Li Wong
- Mind and Brain Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.
- Discipline of Psychiatry, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia.
- State University of New York Upstate Medical University, Syracuse, NY, USA.
| | - Julio Licinio
- Mind and Brain Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.
- Discipline of Psychiatry, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia.
- State University of New York Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
17
|
Yang L, Liu B, Zheng J, Huang J, Zhao Q, Liu J, Su Z, Wang M, Cui Z, Wang T, Zhang W, Li Q, Lu H. Rifaximin Alters Intestinal Microbiota and Prevents Progression of Ankylosing Spondylitis in Mice. Front Cell Infect Microbiol 2019; 9:44. [PMID: 30886835 PMCID: PMC6409347 DOI: 10.3389/fcimb.2019.00044] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 02/12/2019] [Indexed: 12/11/2022] Open
Abstract
Recently, accumulating evidence has suggested that gut microbiota may be involved in the occurrence and development of ankylosing spondylitis (AS). It has been suggested that rifaximin have the ability to modulate the gut bacterial communities, prevent inflammatory response, and modulate gut barrier function. The goal of this work is to evaluate the protective effects of rifaximin in fighting AS and to elucidate the potential underlying mechanism. Rifaximin were administered to the proteoglycan (PG)-induced AS mice for 4 consecutive weeks. The disease severity was measured with the clinical and histological of arthritis and spondylitis. Intestinal histopathological, pro-inflammatory cytokine levels and the intestinal mucosal barrier were evaluated. Then, western blot was performed to explore the toll-like receptor 4 (TLR-4) signal transducer and NF-κB expression. Stool samples were collected to analyze the differences in the gut microbiota via next-generation sequencing of 16S rDNA. We found that rifaximin significantly reduced the severity of AS and resulted in down-regulation of inflammatory factors, such as TNF-α, IL-6, IL-17A, and IL-23. Meanwhile, rifaximin prevented ileum histological alterations, restored intestinal barrier function and inhibited TLR-4/NF-κB signaling pathway activation. Rifaximin also changed the gut microbiota composition with increased Bacteroidetes/Firmicutes phylum ratio, as well as selectively promoting some probiotic populations, including Lactobacillales. Our results suggest that rifaximin suppressed progression of AS and regulated gut microbiota in AS mice. Rifaximin might be useful as a novel treatment for AS.
Collapse
Affiliation(s)
- Lianjun Yang
- Department of Orthopedic Surgery, Orthopaedic Hospital of Guangdong Province, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Bin Liu
- Department of Orthopedic Surgery, Orthopaedic Hospital of Guangdong Province, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Junchi Zheng
- Department of Orthopedic Surgery, Orthopaedic Hospital of Guangdong Province, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Jincheng Huang
- Department of Orthopedics, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Qinghao Zhao
- Department of Orthopedic Surgery, Orthopaedic Hospital of Guangdong Province, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Jinshi Liu
- Department of Orthopedic Surgery, Orthopaedic Hospital of Guangdong Province, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Zhihai Su
- Department of Orthopedic Surgery, Orthopaedic Hospital of Guangdong Province, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Min Wang
- Department of Orthopedic Surgery, Orthopaedic Hospital of Guangdong Province, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Zhifei Cui
- Department of Orthopedic Surgery, Orthopaedic Hospital of Guangdong Province, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Tingxuan Wang
- Department of Orthopedic Surgery, Orthopaedic Hospital of Guangdong Province, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Weicong Zhang
- Department of Orthopedic Surgery, Orthopaedic Hospital of Guangdong Province, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Qingchu Li
- Department of Orthopedic Surgery, Orthopaedic Hospital of Guangdong Province, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Hai Lu
- Department of Orthopedic Surgery, Orthopaedic Hospital of Guangdong Province, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
18
|
Guo L, He Y, Li H, Chen Y, Zhu F, Yang M, Yang C, Dai Q, Shi H, Liu L. Monitoring and evaluation of the immune status of female Kunming mice maintained in different biosafety level laboratories. Biol Open 2018; 7:bio.035006. [PMID: 30404902 PMCID: PMC6310890 DOI: 10.1242/bio.035006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
High-level biosafety laboratories (BSL), such as BSL-3 and BSL-4, which deal with high infectivity and virulence pathogens, have become indispensable. Mice are frequently used in animal BSL (ABSL) to establish animal models for infection and to evaluate in vivo immune responses. A project of monitoring and evaluation on the physiology and immune status of mice housed in different ABSL labs was performed in the ABSL-2/3/4 labs of Kunming National High-level Biosafety Research Center, China. Female Kunming mice were housed in the ABSL-2/3/4 labs for 1 month, and mouse behavior, body physiology/immune status, pulmonary immune status and respiratory bacteria composition were evaluated and compared among mice from the different labs. Mice settled in their new housing environment of the different labs after transfer and gained weight steadily. Blood hematology testing, serum cytokine/chemokine profiles and blood/spleen lymphocyte constitutions were comparable between the ABSL-2/3/4 labs. The numbers of different pulmonary leukocytes in the bronchoalveolar lavage fluid were at baseline levels in mice from the ABSL-2/3/4 labs. Diversity and dominance of mice respiratory bacteria were semblable among the ABSL-2/3/4 labs. Our results confirm the stability of physiology and immune status of Kunming mice maintained in different ABSL-2/3/4 labs for at least 1 month.
Collapse
Affiliation(s)
- Lei Guo
- Department of respiratory infection, Kunming National High-level Biosafety Research Center, Institute of Medical Biology, Chinese Academy of Medical Science, Kunming, Yunnan 650118, China
| | - Yuan He
- Department of respiratory infection, Kunming National High-level Biosafety Research Center, Institute of Medical Biology, Chinese Academy of Medical Science, Kunming, Yunnan 650118, China
| | - Heng Li
- Department of respiratory infection, Kunming National High-level Biosafety Research Center, Institute of Medical Biology, Chinese Academy of Medical Science, Kunming, Yunnan 650118, China
| | - Yong Chen
- Department of respiratory infection, Kunming National High-level Biosafety Research Center, Institute of Medical Biology, Chinese Academy of Medical Science, Kunming, Yunnan 650118, China
| | - Fanli Zhu
- Department of respiratory infection, Kunming National High-level Biosafety Research Center, Institute of Medical Biology, Chinese Academy of Medical Science, Kunming, Yunnan 650118, China
| | - Mengli Yang
- Department of respiratory infection, Kunming National High-level Biosafety Research Center, Institute of Medical Biology, Chinese Academy of Medical Science, Kunming, Yunnan 650118, China
| | - Chengyun Yang
- Department of respiratory infection, Kunming National High-level Biosafety Research Center, Institute of Medical Biology, Chinese Academy of Medical Science, Kunming, Yunnan 650118, China
| | - Qing Dai
- Department of respiratory infection, Kunming National High-level Biosafety Research Center, Institute of Medical Biology, Chinese Academy of Medical Science, Kunming, Yunnan 650118, China
| | - Haijing Shi
- Department of respiratory infection, Kunming National High-level Biosafety Research Center, Institute of Medical Biology, Chinese Academy of Medical Science, Kunming, Yunnan 650118, China
| | - Longding Liu
- Department of respiratory infection, Kunming National High-level Biosafety Research Center, Institute of Medical Biology, Chinese Academy of Medical Science, Kunming, Yunnan 650118, China
| |
Collapse
|
19
|
Mueller FS, Polesel M, Richetto J, Meyer U, Weber-Stadlbauer U. Mouse models of maternal immune activation: Mind your caging system! Brain Behav Immun 2018; 73:643-660. [PMID: 30026057 DOI: 10.1016/j.bbi.2018.07.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/27/2018] [Accepted: 07/14/2018] [Indexed: 12/19/2022] Open
Abstract
Rodent models of maternal immune activation (MIA) are increasingly used as experimental tools to study neuronal and behavioral dysfunctions in relation to infection-mediated neurodevelopmental disorders. One of the most widely used MIA models is based on gestational administration of poly(I:C) (= polyriboinosinic-polyribocytdilic acid), a synthetic analog of double-stranded RNA that induces a cytokine-associated viral-like acute phase response. The effects of poly(I:C)-induced MIA on phenotypic changes in the offspring are known to be influenced by various factors, including the precise prenatal timing, genetic background, and immune stimulus intensity. Thus far, however, it has been largely ignored whether differences in the basic type of laboratory housing can similarly affect the outcomes of MIA models. Here, we examined this possibility by comparing the poly(I:C)-based MIA model in two housing systems that are commonly used in preclinical mouse research, namely the open cage (OC) and individually ventilated cage (IVC) systems. Pregnant C57BL6/N mice were kept in OCs or IVCs and treated with a low (1 mg/kg, i.v.) or high (5 mg/kg, i.v.) dose of poly(I:C), or with control vehicle solution. MIA or control treatment was induced on gestation day (GD) 9 or 12, and the resulting offspring were raised and maintained in OCs or IVCs until adulthood for behavioral testing. An additional cohort of dams was used to assess the influence of the different caging systems on poly(I:C)-induced cytokine and stress responses in the maternal plasma. Maternal poly(I:C) administration on GD9 caused a dose-dependent increase in spontaneous abortion in IVCs but not in OCs, whereas MIA in IVC systems during a later gestational time-point (GD12) did not affect pregnancy outcomes. Moreover, the precise type of caging system markedly affected maternal cytokines and chemokines at basal states and in response to poly(I:C) and further influenced the maternal levels of the stress hormone, corticosterone. The efficacy of MIA to induce deficits in working memory, social interaction, and sensorimotor gating in the adult offspring was influenced by the different housing conditions, the dosing of poly(I:C), and the precise prenatal timing. Taken together, the present study identifies the basic type of caging system as a novel factor that can confound the outcomes of MIA in mice. Our findings thus urge the need to consider and report the kind of laboratory housing systems used to implement MIA models. Providing this information seems pivotal to yield reproducible results in these models.
Collapse
Affiliation(s)
- Flavia S Mueller
- Institute of Pharmacology and Toxicology, University of Zurich - Vetsuisse, Zurich, Switzerland
| | | | - Juliet Richetto
- Institute of Pharmacology and Toxicology, University of Zurich - Vetsuisse, Zurich, Switzerland
| | - Urs Meyer
- Institute of Pharmacology and Toxicology, University of Zurich - Vetsuisse, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Ulrike Weber-Stadlbauer
- Institute of Pharmacology and Toxicology, University of Zurich - Vetsuisse, Zurich, Switzerland.
| |
Collapse
|
20
|
Escher U, Giladi E, Dunay IR, Bereswill S, Gozes I, Heimesaat MM. Anti-inflammatory Effects of the Octapeptide NAP in Human Microbiota-Associated Mice Suffering from Subacute Ileitis. Eur J Microbiol Immunol (Bp) 2018; 8:34-40. [PMID: 29997909 PMCID: PMC6038539 DOI: 10.1556/1886.2018.00006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 04/11/2018] [Indexed: 12/17/2022] Open
Abstract
The octapeptide NAP is well known for its neuroprotective properties. We here investigated whether NAP treatment could alleviate pro-inflammatory immune responses during experimental subacute ileitis. To address this, mice with a human gut microbiota were perorally infected with one cyst of Toxoplasma gondii (day 0) and subjected to intraperitoneal synthetic NAP treatment from day 1 until day 8 postinfection (p.i.). Whereas placebo (PLC) control animals displayed subacute ileitis at day 9 p.i., NAP-treated mice exhibited less pronounced pro-inflammatory immune responses as indicated by lower numbers of intestinal mucosal T and B lymphocytes and lower interferon (IFN)-γ concentrations in mesenteric lymph nodes. The NAP-induced anti-inflammatory effects were not restricted to the intestinal tract but could also be observed in extra-intestinal including systemic compartments, given that pro-inflammatory cytokines were lower in liver, kidney, and lung following NAP as compared to PLC application, whereas at day 9 p.i., colonic and serum interleukin (IL)-10 concentrations were higher in the former as compared to the latter. Remarkably, probiotic commensal bifidobacterial loads were higher in the ileal lumen of NAP as compared to PLC-treated mice with ileitis. Our findings thus further support that NAP might be regarded as future treatment option directed against intestinal inflammation.
Collapse
Affiliation(s)
- Ulrike Escher
- Charité — Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Microbiology and Infection Immunology, Berlin, Germany
| | - Eliezer Giladi
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Aviv University, Aviv, Israel
| | - Ildikò R. Dunay
- Institute of Inflammation and Neurodegeneration, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Stefan Bereswill
- Charité — Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Microbiology and Infection Immunology, Berlin, Germany
| | - Illana Gozes
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Aviv University, Aviv, Israel
| | - Markus M. Heimesaat
- Charité — Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Microbiology and Infection Immunology, Berlin, Germany
| |
Collapse
|
21
|
Heimesaat MM, Escher U, Grunau A, Fiebiger U, Bereswill S. Peroral Low-Dose Toxoplasma gondii Infection of Human Microbiota-Associated Mice - A Subacute Ileitis Model to Unravel Pathogen-Host Interactions. Eur J Microbiol Immunol (Bp) 2018; 8:53-61. [PMID: 29997912 PMCID: PMC6038537 DOI: 10.1556/1886.2018.00005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 03/16/2018] [Indexed: 02/06/2023] Open
Abstract
Within 1 week following high-dose Toxoplasma gondii infection, mice develop lethal necrotizing ileitis. However, data from a subacute T. gondii-induced ileitis model are scarce. Therefore, mice harboring a human gut microbiota were perorally infected with one cyst of T. gondii. Within 9 days post-infection, the intestinal microbiota composition shifted towards higher loads of commensal enterobacteria and enterococci. Following T. gondii infection, mice were clinically only mildly affected, whereas ≈60% of mice displayed fecal blood and mild-to-moderate ileal histopathological changes. Intestinal inflammation was further characterized by increased apoptotic intestinal epithelial cells, which were accompanied by elevated proliferating gut epithelial cell numbers. As compared to naive controls, infected mice displayed elevated numbers of intestinal T lymphocytes and regulatory T-cells and increased pro-inflammatory mediator secretion. Remarkably, T. gondii-induced apoptotic and pro-inflammatory immune responses were not restricted to the gut, but could also be observed in extra-intestinal compartments including kidney, liver, and lung. Strikingly, low-dose T. gondii infection resulted in increased serum levels of pro- and anti-inflammatory cytokines. In conclusion, the here presented subacute ileitis model following peroral low-dose T. gondii infection of humanized mice allows for detailed investigations of the molecular mechanism underlying the “ménage à trois” of pathogens, human gut microbiota, and immunity.
Collapse
Affiliation(s)
- Markus M Heimesaat
- Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Microbiology and Infection Immunology, Berlin, Germany
| | - Ulrike Escher
- Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Microbiology and Infection Immunology, Berlin, Germany
| | - Anne Grunau
- Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Microbiology and Infection Immunology, Berlin, Germany
| | - Ulrike Fiebiger
- Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Microbiology and Infection Immunology, Berlin, Germany
| | - Stefan Bereswill
- Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Microbiology and Infection Immunology, Berlin, Germany
| |
Collapse
|
22
|
Ericsson AC, Gagliardi J, Bouhan D, Spollen WG, Givan SA, Franklin CL. The influence of caging, bedding, and diet on the composition of the microbiota in different regions of the mouse gut. Sci Rep 2018; 8:4065. [PMID: 29511208 PMCID: PMC5840362 DOI: 10.1038/s41598-018-21986-7] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 02/14/2018] [Indexed: 02/08/2023] Open
Abstract
Countless studies have identified differences between the gut microbiota of humans affected with myriad conditions and healthy individuals, and animal models are commonly used to determine whether those differences are causative or correlative. Recently, concerns have arisen regarding the reproducibility of animal models between institutions and across time. To determine the influence of three common husbandry-associated factors that vary between institutions, groups of weanling mice were placed in either static or ventilated microisolator caging, with either aspen or paperchip bedding, and with one of three commonly used rodent chows, in a fully crossed study design. After thirteen weeks, samples were collected from multiple regions of the gastrointestinal tract and characterized using culture-independent sequencing methods. Results demonstrated that seemingly benign husbandry factors can interact to induce profound changes in the composition of the microbiota present in certain regions of the gut, most notably the cecum, and that those changes are muted during colonic transit. These findings indicate that differences in factors such as caging and bedding can interact to modulate the gut microbiota that in turn may affect reproducibility of some animal models, and that cecal samples might be optimal when screening environmental effects on the gut microbiota.
Collapse
Affiliation(s)
- Aaron C Ericsson
- University of Missouri Mutant Mouse Resource and Research Center, Columbia, USA
- University of Missouri Metagenomics Center, Columbia, USA
- University of Missouri, College of Veterinary Medicine, Department of Veterinary Pathobiology, Columbia, USA
| | - Jonalyn Gagliardi
- University of Missouri, College of Veterinary Medicine, Department of Veterinary Pathobiology, Columbia, USA
| | - Delia Bouhan
- University of Missouri Mutant Mouse Resource and Research Center, Columbia, USA
| | - William G Spollen
- University of Missouri, Informatics Research Core Facility, Columbia, USA
| | - Scott A Givan
- University of Missouri, Informatics Research Core Facility, Columbia, USA
| | - Craig L Franklin
- University of Missouri Mutant Mouse Resource and Research Center, Columbia, USA.
- University of Missouri Metagenomics Center, Columbia, USA.
- University of Missouri, College of Veterinary Medicine, Department of Veterinary Pathobiology, Columbia, USA.
| |
Collapse
|
23
|
White EC, Houlden A, Bancroft AJ, Hayes KS, Goldrick M, Grencis RK, Roberts IS. Manipulation of host and parasite microbiotas: Survival strategies during chronic nematode infection. SCIENCE ADVANCES 2018; 4:eaap7399. [PMID: 29546242 PMCID: PMC5851687 DOI: 10.1126/sciadv.aap7399] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 02/05/2018] [Indexed: 06/08/2023]
Abstract
Intestinal dwelling parasites have evolved closely with the complex intestinal microbiota of their host, but the significance of the host microbiota for metazoan pathogens and the role of their own intestinal microbiota are still not fully known. We have found that the parasitic nematode Trichuris muris acquired a distinct intestinal microbiota from its host, which was required for nematode fitness. Infection of germ-free mice and mice monocolonized with Bacteroides thetaiotaomicron demonstrated that successful T. muris infections require a host microbiota. Following infection, T. muris-induced alterations in the host intestinal microbiota inhibited subsequent rounds of infection, controlling parasite numbers within the host intestine. This dual strategy could promote the long-term survival of the parasite within the intestinal niche necessary for successful chronic nematode infection.
Collapse
Affiliation(s)
- Emily C. White
- School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Ashley Houlden
- School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Allison J. Bancroft
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Kelly S. Hayes
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Marie Goldrick
- School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Richard K. Grencis
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Ian S. Roberts
- School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
24
|
Heimesaat MM, Giladi E, Kühl AA, Bereswill S, Gozes I. The octapetide NAP alleviates intestinal and extra-intestinal anti-inflammatory sequelae of acute experimental colitis. Peptides 2018; 101:1-9. [PMID: 29288684 DOI: 10.1016/j.peptides.2017.12.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 12/26/2022]
Abstract
The octapeptide NAP has been shown to exert neuroprotective properties and reduce neuro-inflammatory responses. The aim of the present study was to investigate if NAP provides anti-inflammatory effects in acute murine colitis. To address this, C57BL/6 j mice were challenged with 3.5% dextran sulfate sodium from day 0 until day 6 to induce colitis, either treated intraperitoneally with NAP or placebo (NaCl 0.9%) from day 1 until day 6 post-induction (p.i.) and subjected to in depth macroscopic, microscopic and immunological evaluations. Whereas NAP application did not alleviate macroscopic (i.e. clinical) sequelae of colitis, lower numbers of apoptotic, but higher counts of proliferating/regenerating colonic epithelial cells could be observed in NAP as compared to placebo treated mice at day 7 p.i. Furthermore, lower numbers of adaptive immune cells such as T lymphocytes and regulatory T cells were abundant in the colonic mucosa and lamina propria upon NAP versus placebo treatment that were accompanied by less colonic secretion of pro-inflammatory mediators including IFN-γ and nitric oxide at day 7 p.i. In mesenteric lymph nodes, pro-inflammatory IFN-γ, TNF and IL-6 concentrations were increased in placebo, but not NAP treated mice at day 7 p.i., whereas interestingly, elevated anti-inflammatory IL-10 levels could be observed in NAP treated mice only. The assessed anti-inflammatory properties of NAP were not restricted to the intestinal tract, given that in extra-intestinal compartments such as the kidneys, IFN-γ levels increased in placebo, but not NAP treated mice upon colitis induction. NAP induced effects were accompanied by distinct changes in intestinal microbiota composition, given that colonic luminal loads of bifidobacteria, regarded as anti-inflammatory, "health-promoting" commensal species, were two orders of magnitude higher in NAP as compared to placebo treated mice and even naive controls. In conclusion, NAP alleviates intestinal and extra-intestinal pro-inflammatory sequelae of acute experimental colitis and may provide novel treatment options of intestinal inflammatory diseases in humans.
Collapse
Affiliation(s)
- Markus M Heimesaat
- Department of Microbiology and Hygiene, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| | - Eliezer Giladi
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anja A Kühl
- Department of Medicine I for Gastroenterology, Infectious Disease and Rheumatology/Research Center ImmunoSciences (RCIS), Charité - University Medicine Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Stefan Bereswill
- Department of Microbiology and Hygiene, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Illana Gozes
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
25
|
Rogala AR, Schoenborn AA, Fee BE, Cantillana VA, Joyce MJ, Gharaibeh RZ, Roy S, Fodor AA, Sartor RB, Taylor GA, Gulati AS. Environmental factors regulate Paneth cell phenotype and host susceptibility to intestinal inflammation in Irgm1-deficient mice. Dis Model Mech 2018; 11:dmm.031070. [PMID: 29361512 PMCID: PMC5894938 DOI: 10.1242/dmm.031070] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 12/14/2017] [Indexed: 12/29/2022] Open
Abstract
Crohn's disease (CD) represents a chronic inflammatory disorder of the intestinal tract. Several susceptibility genes have been linked to CD, though their precise role in the pathogenesis of this disorder remains unclear. Immunity-related GTPase M (IRGM) is an established risk allele in CD. We have shown previously that conventionally raised (CV) mice lacking the IRGM ortholog, Irgm1 exhibit abnormal Paneth cells (PCs) and increased susceptibility to intestinal injury. In the present study, we sought to utilize this model system to determine if environmental conditions impact these phenotypes, as is thought to be the case in human CD. To accomplish this, wild-type and Irgm1−/− mice were rederived into specific pathogen-free (SPF) and germ-free (GF) conditions. We next assessed how these differential housing environments influenced intestinal injury patterns, and epithelial cell morphology and function in wild-type and Irgm1−/− mice. Remarkably, in contrast to CV mice, SPF Irgm1−/− mice showed only a slight increase in susceptibility to dextran sodium sulfate-induced inflammation. SPF Irgm1−/− mice also displayed minimal abnormalities in PC number and morphology, and in antimicrobial peptide expression. Goblet cell numbers and epithelial proliferation were also unaffected by Irgm1 in SPF conditions. No microbial differences were observed between wild-type and Irgm1−/− mice, but gut bacterial communities differed profoundly between CV and SPF mice. Specifically, Helicobacter sequences were significantly increased in CV mice; however, inoculating SPF Irgm1−/− mice with Helicobacter hepaticus was not sufficient to transmit a pro-inflammatory phenotype. In summary, our findings suggest the impact of Irgm1-deficiency on susceptibility to intestinal inflammation and epithelial function is critically dependent on environmental influences. This work establishes the importance of Irgm1−/− mice as a model to elucidate host-environment interactions that regulate mucosal homeostasis and intestinal inflammatory responses. Defining such interactions will be essential for developing novel preventative and therapeutic strategies for human CD. Summary: In this study, we rederived conventionally raised Irgm1-deficient mice into specific pathogen-free and germ-free conditions. We show that these environments determine how Irgm1 regulates Paneth cell function and gut inflammation susceptibility.
Collapse
Affiliation(s)
- Allison R Rogala
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Pediatrics, Division of Gastroenterology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alexi A Schoenborn
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Pediatrics, Division of Gastroenterology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Brian E Fee
- Geriatric Research, Education, and Clinical Center, VA Medical Center, Durham, NC 27705, USA
| | - Viviana A Cantillana
- Departments of Medicine; Molecular Genetics and Microbiology; and Immunology; Division of Geriatrics, and Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, NC 27710, USA
| | - Maria J Joyce
- Department of Medicine, Division of Infectious Disease, Duke University Medical Center, Durham, NC 27710, USA
| | - Raad Z Gharaibeh
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Sayanty Roy
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Pediatrics, Division of Gastroenterology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Anthony A Fodor
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - R Balfour Sartor
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Gregory A Taylor
- Geriatric Research, Education, and Clinical Center, VA Medical Center, Durham, NC 27705, USA.,Departments of Medicine; Molecular Genetics and Microbiology; and Immunology; Division of Geriatrics, and Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, NC 27710, USA
| | - Ajay S Gulati
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA .,Department of Pediatrics, Division of Gastroenterology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
26
|
Ekmekciu I, von Klitzing E, Fiebiger U, Neumann C, Bacher P, Scheffold A, Bereswill S, Heimesaat MM. The Probiotic Compound VSL#3 Modulates Mucosal, Peripheral, and Systemic Immunity Following Murine Broad-Spectrum Antibiotic Treatment. Front Cell Infect Microbiol 2017; 7:167. [PMID: 28529928 PMCID: PMC5418240 DOI: 10.3389/fcimb.2017.00167] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/18/2017] [Indexed: 12/16/2022] Open
Abstract
There is compelling evidence linking the commensal intestinal microbiota with host health and, in turn, antibiotic induced perturbations of microbiota composition with distinct pathologies. Despite the attractiveness of probiotic therapy as a tool to beneficially alter the intestinal microbiota, its immunological effects are still incompletely understood. The aim of the present study was to assess the efficacy of the probiotic formulation VSL#3 consisting of eight distinct bacterial species (including Streptococcus thermophilus, Bifidobacterium breve, B. longum, B. infantis, Lactobacillus acidophilus, L. plantarum, L. paracasei, and L. delbrueckii subsp. Bulgaricus) in reversing immunological effects of microbiota depletion as compared to reassociation with a complex murine microbiota. To address this, conventional mice were subjected to broad-spectrum antibiotic therapy for 8 weeks and perorally reassociated with either VSL#3 bacteria or a complex murine microbiota. VSL#3 recolonization resulted in restored CD4+ and CD8+ cell numbers in the small and large intestinal lamina propria as well as in B220+ cell numbers in the former, whereas probiotic intervention was not sufficient to reverse the antibiotic induced changes of respective cell populations in the spleen. However, VSL#3 application was as efficient as complex microbiota reassociation to attenuate the frequencies of regulatory T cells, activated dendritic cells and memory/effector T cells in the small intestine, colon, mesenteric lymph nodes, and spleen. Whereas broad-spectrum antibiotic treatment resulted in decreased production of cytokines such as IFN-γ, IL-17, IL-22, and IL-10 by CD4+ cells in respective immunological compartments, VSL#3 recolonization was sufficient to completely recover the expression of the anti-inflammatory cytokine IL-10 without affecting pro-inflammatory mediators. In summary, the probiotic compound VSL#3 has an extensive impact on mucosal, peripheral, and systemic innate as well as adaptive immunity, exerting beneficial anti-inflammatory effects in intestinal as well as systemic compartments. Hence, VSL#3 might be considered a therapeutic immunomodulatory tool following antibiotic therapy.
Collapse
Affiliation(s)
- Ira Ekmekciu
- Gastrointestinal Microbiology Research Group, Department of Microbiology and Hygiene, Institute for Microbiology and Hygiene, Charité - University MedicineBerlin, Germany
| | - Eliane von Klitzing
- Gastrointestinal Microbiology Research Group, Department of Microbiology and Hygiene, Institute for Microbiology and Hygiene, Charité - University MedicineBerlin, Germany
| | - Ulrike Fiebiger
- Gastrointestinal Microbiology Research Group, Department of Microbiology and Hygiene, Institute for Microbiology and Hygiene, Charité - University MedicineBerlin, Germany
| | - Christian Neumann
- Department of Cellular Immunology, Clinic for Rheumatology and Clinical Immunology, Charité - University MedicineBerlin, Germany.,German Rheumatism Research Center, Leibniz AssociationBerlin, Germany
| | - Petra Bacher
- Department of Cellular Immunology, Clinic for Rheumatology and Clinical Immunology, Charité - University MedicineBerlin, Germany
| | - Alexander Scheffold
- Department of Cellular Immunology, Clinic for Rheumatology and Clinical Immunology, Charité - University MedicineBerlin, Germany.,German Rheumatism Research Center, Leibniz AssociationBerlin, Germany
| | - Stefan Bereswill
- Gastrointestinal Microbiology Research Group, Department of Microbiology and Hygiene, Institute for Microbiology and Hygiene, Charité - University MedicineBerlin, Germany
| | - Markus M Heimesaat
- Gastrointestinal Microbiology Research Group, Department of Microbiology and Hygiene, Institute for Microbiology and Hygiene, Charité - University MedicineBerlin, Germany
| |
Collapse
|
27
|
von Klitzing E, Ekmekciu I, Kühl AA, Bereswill S, Heimesaat MM. Intestinal, extra-intestinal and systemic sequelae of Toxoplasma gondii induced acute ileitis in mice harboring a human gut microbiota. PLoS One 2017; 12:e0176144. [PMID: 28414794 PMCID: PMC5393883 DOI: 10.1371/journal.pone.0176144] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/05/2017] [Indexed: 01/27/2023] Open
Abstract
Background Within seven days following peroral high dose infection with Toxoplasma gondii susceptible conventionally colonized mice develop acute ileitis due to an underlying T helper cell (Th) -1 type immunopathology. We here addressed whether mice harboring a human intestinal microbiota developed intestinal, extra-intestinal and systemic sequelae upon ileitis induction. Methodology/Principal findings Secondary abiotic mice were generated by broad-spectrum antibiotic treatment and associated with a complex human intestinal microbiota following peroral fecal microbiota transplantation. Within three weeks the human microbiota had stably established in the murine intestinal tract as assessed by quantitative cultural and culture-independent (i.e. molecular 16S rRNA based) methods. At day 7 post infection (p.i.) with 50 cysts of T. gondii strain ME49 by gavage human microbiota associated (hma) mice displayed severe clinical, macroscopic and microscopic sequelae indicating acute ileitis. In diseased hma mice increased numbers of innate and adaptive immune cells within the ileal mucosa and lamina propria and elevated intestinal secretion of pro-inflammatory mediators including IFN-γ, IL-12 and nitric oxide could be observed at day 7 p.i. Ileitis development was accompanied by substantial shifts in intestinal microbiota composition of hma mice characterized by elevated total bacterial loads and increased numbers of intestinal Gram-negative commensals such as enterobacteria and Bacteroides / Prevotella species overgrowing the small and large intestinal lumen. Furthermore, viable bacteria translocated from the inflamed ileum to extra-intestinal including systemic compartments. Notably, pro-inflammatory immune responses were not restricted to the intestinal tract as indicated by increased pro-inflammatory cytokine secretion in extra-intestinal (i.e. liver and kidney) and systemic compartments including spleen and serum. Conclusion/Significance With respect to the intestinal microbiota composition “humanized” mice display acute ileitis following peroral high dose T. gondii infection. Thus, hma mice constitute a suitable model to further dissect the interactions between pathogens, human microbiota and vertebrate host immunity during acute intestinal inflammation.
Collapse
Affiliation(s)
- Eliane von Klitzing
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
| | - Ira Ekmekciu
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
| | - Anja A. Kühl
- Department of Medicine I for Gastroenterology, Infectious Diseases and Rheumatology / Research Center ImmunoSciences (RCIS), Charité – University Medicine Berlin, Berlin, Germany
| | - Stefan Bereswill
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
| | - Markus M. Heimesaat
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
28
|
The role of adaptive immunity as an ecological filter on the gut microbiota in zebrafish. ISME JOURNAL 2017; 11:1630-1639. [PMID: 28304369 DOI: 10.1038/ismej.2017.28] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 01/13/2017] [Accepted: 01/31/2017] [Indexed: 12/15/2022]
Abstract
All animals live in intimate association with communities of microbes, collectively referred to as their microbiota. Certain host traits can influence which microbial taxa comprise the microbiota. One potentially important trait in vertebrate animals is the adaptive immune system, which has been hypothesized to act as an ecological filter, promoting the presence of some microbial taxa over others. Here we surveyed the intestinal microbiota of 68 wild-type zebrafish, with functional adaptive immunity, and 61 rag1- zebrafish, lacking functional B- and T-cell receptors, to test the role of adaptive immunity as an ecological filter on the intestinal microbiota. In addition, we tested the robustness of adaptive immunity's filtering effects to host-host interaction by comparing the microbiota of fish populations segregated by genotype to those containing both genotypes. The presence of adaptive immunity individualized the gut microbiota and decreased the contributions of neutral processes to gut microbiota assembly. Although mixing genotypes led to increased phylogenetic diversity in each, there was no significant effect of adaptive immunity on gut microbiota composition in either housing condition. Interestingly, the most robust effect on microbiota composition was co-housing within a tank. In all, these results suggest that adaptive immunity has a role as an ecological filter of the zebrafish gut microbiota, but it can be overwhelmed by other factors, including transmission of microbes among hosts.
Collapse
|
29
|
von Klitzing E, Öz F, Ekmekciu I, Escher U, Bereswill S, Heimesaat MM. Comprehensive Survey of Intestinal Microbiota Changes in Offspring of Human Microbiota-Associated Mice. Eur J Microbiol Immunol (Bp) 2017; 7:65-75. [PMID: 28386472 PMCID: PMC5372482 DOI: 10.1556/1886.2017.00002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 02/05/2017] [Indexed: 12/21/2022] Open
Abstract
Secondary abiotic mice generated by broad-spectrum antibiotic treatment provide a valuable tool for association studies with microbiota derived from different vertebrate hosts. We here generated human microbiota-associated (hma) mice by human fecal microbiota transplantation of secondary abiotic mice and performed a comprehensive survey of the intestinal microbiota dynamics in offspring of hma mice over 18 weeks following weaning as compared to their mothers applying both cultural and molecular methods. Mice were maintained under standard hygienic conditions with open cages, handled under aseptic conditions, and fed autoclaved chow and water. Within 1 week post weaning, fecal loads of commensal enterobacteria and enterococci had decreased, whereas obligate anaerobic bacteria such as Bacteroides/Prevotella species and clostridia were stably colonizing the intestines of hma offspring at high loads. Lactobacilli numbers were successively increasing until 18 weeks post weaning in both hma offspring and mothers, whereas by then, bifidobacteria were virtually undetectable in the former only. Interestingly, fecal lactobacilli and bifidobacteria were higher in mothers as compared to their offspring at 5 and 18 weeks post weaning. We conclude that the intestinal microbiota composition changes in offspring of hma mice, but also their mothers over time particularly affecting aerobic and microaerobic species.
Collapse
Affiliation(s)
- Eliane von Klitzing
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Fulya Öz
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Ira Ekmekciu
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Ulrike Escher
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Stefan Bereswill
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Markus M Heimesaat
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| |
Collapse
|
30
|
Lundberg R, Bahl MI, Licht TR, Toft MF, Hansen AK. Microbiota composition of simultaneously colonized mice housed under either a gnotobiotic isolator or individually ventilated cage regime. Sci Rep 2017; 7:42245. [PMID: 28169374 PMCID: PMC5294411 DOI: 10.1038/srep42245] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/05/2017] [Indexed: 12/26/2022] Open
Abstract
Germ-free rodents colonized with microbiotas of interest are used for host-microbiota investigations and for testing microbiota-targeted therapeutic candidates. Traditionally, isolators are used for housing such gnotobiotic rodents due to optimal protection from the environment, but research groups focused on the microbiome are increasingly combining or substituting isolator housing with individually ventilated cage (IVC) systems. We compared the effect of housing systems on the gut microbiota composition of germ-free mice colonized with a complex microbiota and housed in either multiple IVC cages in an IVC facility or in multiple open-top cages in an isolator during three generations and five months. No increase in bacterial diversity as assessed by 16S rRNA gene sequencing was observed in the IVC cages, despite not applying completely aseptic cage changes. The donor bacterial community was equally represented in both housing systems. Time-dependent clustering between generations was observed in both systems, but was strongest in the IVC cages. Different relative abundance of a Rikenellaceae genus contributed to separate clustering of the isolator and IVC communities. Our data suggest that complex microbiotas are protected in IVC systems, but challenges related to temporal dynamics should be addressed.
Collapse
Affiliation(s)
- Randi Lundberg
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark.,Internal Research and Development, Taconic Biosciences, 4623 Lille Skensved, Denmark
| | - Martin I Bahl
- National Food Institute, Technical University of Denmark, 2860 Søborg, Denmark
| | - Tine R Licht
- National Food Institute, Technical University of Denmark, 2860 Søborg, Denmark
| | - Martin F Toft
- Internal Research and Development, Taconic Biosciences, 4623 Lille Skensved, Denmark
| | - Axel K Hansen
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| |
Collapse
|
31
|
Stahl M, Graef FA, Vallance BA. Mouse Models for Campylobacter jejuni Colonization and Infection. Methods Mol Biol 2017; 1512:171-188. [PMID: 27885607 DOI: 10.1007/978-1-4939-6536-6_15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Relevant animal models for Campylobacter jejuni infection have been difficult to establish due to C. jejuni's inability to cause disease in many common animal research models. Fortunately, recent work has proven successful in developing several new and relevant mouse models of C. jejuni infection, including the SIGIRR-deficient mouse strain that develops acute enterocolitis in response to C. jejuni. Here we describe how to properly infect mice with C. jejuni, as well as a number of accompanying histological techniques to aid in studying C. jejuni colonization and infection in mice.
Collapse
Affiliation(s)
- Martin Stahl
- Division of Gastroenterology, Department of Pediatrics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, V6H 3V4, Canada
| | - Franziska A Graef
- Division of Gastroenterology, Department of Pediatrics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, V6H 3V4, Canada
| | - Bruce A Vallance
- Division of Gastroenterology, Department of Pediatrics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, V6H 3V4, Canada.
| |
Collapse
|
32
|
Heimesaat MM, Grundmann U, Alutis ME, Fischer A, Bereswill S. Microbiota Composition and Immune Responses During Campylobacter Jejuni Infection in Conventionally Colonized IL-10 -/- Mice Lacking Nucleotide Oligomerization Domain 2. Eur J Microbiol Immunol (Bp) 2016; 7:1-14. [PMID: 28386467 PMCID: PMC5372477 DOI: 10.1556/1886.2016.00038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 12/02/2016] [Indexed: 01/01/2023] Open
Abstract
Host immune responses are pivotal for combating enteropathogenic infections. We here assessed the impact of the innate receptor nucleotide oligomerization domain protein 2 (NOD2) in murine Campylobacter jejuni-infection. Conventionally colonized IL-10–/– mice lacking NOD2 and IL-10–/– controls were perorally challenged with C. jejuni strain 81-176 and displayed comparable pathogenic colonization of intestines until day 14 postinfection (p.i.). Whereas overall intestinal microbiota compositions were comparable in naive mice, NOD2–/– IL-10–/– mice exhibited less fecal bifidobacteria and lactobacilli than IL-10–/– counterparts after infection. Interestingly, NOD2–/– IL-10–/– mice were clinically more compromised during the early phase of infection, whereas, conversely, IL-10–/– animals exhibited more frequently bloody feces lateron. While colonic apoptotic cell and T lymphocyte numbers were comparable in either C. jejuni-infected mice, B lymphocytes were lower in the colon of infected NOD2–/– IL-10–/– mice versus controls. At day 14 p.i., colonic TNF and IL-23p19 mRNA levels were upregulated in NOD2–/– IL-10–/– mice only. Translocation rates of intestinal commensals to mesenteric lymphnodes and extra-intestinal compartments including liver and kidney were comparable, whereas viable bacteria were more frequently detected in spleens derived from IL-10–/– as compared to NOD2–/– IL-10–/– mice. In conclusion, NOD2 is involved during C. jejuni infection in conventionally colonized IL-10–/– mice in a time-dependent manner.
Collapse
Affiliation(s)
- Markus M Heimesaat
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Ursula Grundmann
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Marie E Alutis
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - André Fischer
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Stefan Bereswill
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| |
Collapse
|
33
|
Hansen AK, Krych Ł, Nielsen DS, Hansen CHF. A Review of Applied Aspects of Dealing with Gut Microbiota Impact on Rodent Models. ILAR J 2016; 56:250-64. [PMID: 26323634 DOI: 10.1093/ilar/ilv010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The gut microbiota (GM) affects numerous human diseases, as well as rodent models for these. We will review this impact and summarize ways to handle this challenge in animal research. The GM is complex, with the largest fractions being the gram-positive phylum Firmicutes and the gram-negative phylum Bacteroidetes. Other important phyla are the gram-negative phyla Proteobacteria and Verrucomicrobia, and the gram-positive phylum Actinobacteria. GM members influence models for diseases, such as inflammatory bowel diseases, allergies, autoimmunity, cancer, and neuropsychiatric diseases. GM characterization of all individual animals and incorporation of their GM composition in data evaluation may therefore be considered in future protocols. Germfree isolator-housed rodents or rodents made virtually germ free by antibiotic cocktails can be used to study diverse microbial influences on disease expression. Through subsequent inoculation with selected strains or cocktails of microbes, new "defined flora" models can yield valuable knowledge on the impact of the GM, and of specific GM members and their interactions, on important disease phenotypes and mechanisms. Rodent husbandry and microbial quality assurance practices will be important to ensure and confirm appropriate and research relevant GM.
Collapse
Affiliation(s)
- Axel Kornerup Hansen
- Axel Kornerup Hansen, DVM, DVsc, DipECLAM, Professor, Section of Experimental Animal Models, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Thorvaldsensvej 57, 1871 Frederiksberg C, Denmark. Łukasz Krych, MSc, PhD, Postdoc, Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark. Dennis Sandris Nielsen, MSc, PhD, Associate Professor, Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark. Camilla Hartmann Friis Hansen, DVM, PhD, Assistant Professor, Section of Experimental Animal Models, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Thorvaldsensvej 57, 1871 Frederiksberg C, Denmark
| | - Łukasz Krych
- Axel Kornerup Hansen, DVM, DVsc, DipECLAM, Professor, Section of Experimental Animal Models, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Thorvaldsensvej 57, 1871 Frederiksberg C, Denmark. Łukasz Krych, MSc, PhD, Postdoc, Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark. Dennis Sandris Nielsen, MSc, PhD, Associate Professor, Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark. Camilla Hartmann Friis Hansen, DVM, PhD, Assistant Professor, Section of Experimental Animal Models, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Thorvaldsensvej 57, 1871 Frederiksberg C, Denmark
| | - Dennis Sandris Nielsen
- Axel Kornerup Hansen, DVM, DVsc, DipECLAM, Professor, Section of Experimental Animal Models, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Thorvaldsensvej 57, 1871 Frederiksberg C, Denmark. Łukasz Krych, MSc, PhD, Postdoc, Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark. Dennis Sandris Nielsen, MSc, PhD, Associate Professor, Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark. Camilla Hartmann Friis Hansen, DVM, PhD, Assistant Professor, Section of Experimental Animal Models, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Thorvaldsensvej 57, 1871 Frederiksberg C, Denmark
| | - Camilla Hartmann Friis Hansen
- Axel Kornerup Hansen, DVM, DVsc, DipECLAM, Professor, Section of Experimental Animal Models, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Thorvaldsensvej 57, 1871 Frederiksberg C, Denmark. Łukasz Krych, MSc, PhD, Postdoc, Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark. Dennis Sandris Nielsen, MSc, PhD, Associate Professor, Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark. Camilla Hartmann Friis Hansen, DVM, PhD, Assistant Professor, Section of Experimental Animal Models, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Thorvaldsensvej 57, 1871 Frederiksberg C, Denmark
| |
Collapse
|
34
|
Gonzalez-Perez G, Hicks AL, Tekieli TM, Radens CM, Williams BL, Lamousé-Smith ESN. Maternal Antibiotic Treatment Impacts Development of the Neonatal Intestinal Microbiome and Antiviral Immunity. THE JOURNAL OF IMMUNOLOGY 2016; 196:3768-79. [PMID: 27036912 DOI: 10.4049/jimmunol.1502322] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/29/2016] [Indexed: 12/20/2022]
Abstract
Microbial colonization of the infant gastrointestinal tract (GIT) begins at birth, is shaped by the maternal microbiota, and is profoundly altered by antibiotic treatment. Antibiotic treatment of mothers during pregnancy influences colonization of the GIT microbiota of their infants. The role of the GIT microbiota in regulating adaptive immune function against systemic viral infections during infancy remains undefined. We used a mouse model of perinatal antibiotic exposure to examine the effect of GIT microbial dysbiosis on infant CD8(+) T cell-mediated antiviral immunity. Maternal antibiotic treatment/treated (MAT) during pregnancy and lactation resulted in profound alterations in the composition of the GIT microbiota in mothers and infants. Streptococcus spp. dominated the GIT microbiota of MAT mothers, whereas Enterococcus faecalis predominated within the MAT infant GIT. MAT infant mice subsequently exhibited increased and accelerated mortality following vaccinia virus infection. Ag-specific IFN-γ-producing CD8(+) T cells were reduced in sublethally infected MAT infant mice. MAT CD8(+) T cells from uninfected infant mice also demonstrated a reduced capacity to sustain IFN-γ production following in vitro activation. We additionally determined that control infant mice became more susceptible to infection if they were born in an animal facility using stricter standards of hygiene. These data indicate that undisturbed colonization and progression of the GIT microbiota during infancy are necessary to promote robust adaptive antiviral immune responses.
Collapse
Affiliation(s)
- Gabriela Gonzalez-Perez
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Columbia University, New York, NY 10032; and
| | - Allison L Hicks
- Center for Infection and Immunity, Columbia University, New York, NY 10032
| | - Tessa M Tekieli
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Columbia University, New York, NY 10032; and
| | - Caleb M Radens
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Columbia University, New York, NY 10032; and
| | - Brent L Williams
- Center for Infection and Immunity, Columbia University, New York, NY 10032
| | - Esi S N Lamousé-Smith
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Columbia University, New York, NY 10032; and
| |
Collapse
|
35
|
Zeng MY, Cisalpino D, Varadarajan S, Hellman J, Warren HS, Cascalho M, Inohara N, Núñez G. Gut Microbiota-Induced Immunoglobulin G Controls Systemic Infection by Symbiotic Bacteria and Pathogens. Immunity 2016; 44:647-658. [PMID: 26944199 DOI: 10.1016/j.immuni.2016.02.006] [Citation(s) in RCA: 289] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 11/10/2015] [Accepted: 12/07/2015] [Indexed: 12/21/2022]
Abstract
The gut microbiota is compartmentalized in the intestinal lumen and induces local immune responses, but it remains unknown whether the gut microbiota can induce systemic response and contribute to systemic immunity. We report that selective gut symbiotic gram-negative bacteria were able to disseminate systemically to induce immunoglobulin G (IgG) response, which primarily targeted gram-negative bacterial antigens and conferred protection against systemic infections by E. coli and Salmonella by directly coating bacteria to promote killing by phagocytes. T cells and Toll-like receptor 4 on B cells were important in the generation of microbiota-specific IgG. We identified murein lipoprotein (MLP), a highly conserved gram-negative outer membrane protein, as a major antigen that induced systemic IgG homeostatically in both mice and humans. Administration of anti-MLP IgG conferred crucial protection against systemic Salmonella infection. Thus, our findings reveal an important function for the gut microbiota in combating systemic infection through the induction of protective IgG.
Collapse
Affiliation(s)
- Melody Y Zeng
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Daniel Cisalpino
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Saranyaraajan Varadarajan
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Judith Hellman
- Department of Anesthesia and Perioperative Care, Division of Critical Care Medicine, University of California, San Francisco, San Francisco, CA 94110, USA
| | - H Shaw Warren
- Infectious Disease Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Marilia Cascalho
- Transplantation Biology, Department of Surgery and Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Naohiro Inohara
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Gabriel Núñez
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
36
|
Barroso-Batista J, Demengeot J, Gordo I. Adaptive immunity increases the pace and predictability of evolutionary change in commensal gut bacteria. Nat Commun 2015; 6:8945. [PMID: 26615893 PMCID: PMC4674774 DOI: 10.1038/ncomms9945] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 10/20/2015] [Indexed: 02/06/2023] Open
Abstract
Co-evolution between the mammalian immune system and the gut microbiota is believed to have shaped the microbiota's astonishing diversity. Here we test the corollary hypothesis that the adaptive immune system, directly or indirectly, influences the evolution of commensal species. We compare the evolution of Escherichia coli upon colonization of the gut of wild-type and Rag2−/− mice, which lack lymphocytes. We show that bacterial adaptation is slower in immune-compromised animals, a phenomenon explained by differences in the action of natural selection within each host. Emerging mutations exhibit strong beneficial effects in healthy hosts but substantial antagonistic pleiotropy in immune-deficient mice. This feature is due to changes in the composition of the gut microbiota, which differs according to the immune status of the host. Our results indicate that the adaptive immune system influences the tempo and predictability of E. coli adaptation to the mouse gut. The mechanisms underlying host-commensal coevolution are incompletely understood. Here the authors show that host adaptive immunity directs the evolution of Escherichia coli in the mouse gut towards host benefit by influencing the microbiome composition.
Collapse
Affiliation(s)
- João Barroso-Batista
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Jocelyne Demengeot
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Isabel Gordo
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| |
Collapse
|
37
|
Heimesaat MM, Fischer A, Kühl AA, Göbel UB, Gozes I, Bereswill S. Anti-Inflammatory Properties of NAP in Acute Toxoplasma Gondii-Induced Ileitis in Mice. Eur J Microbiol Immunol (Bp) 2015; 5:210-20. [PMID: 26495132 PMCID: PMC4598889 DOI: 10.1556/1886.2015.00025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 08/23/2015] [Indexed: 01/31/2023] Open
Abstract
The octapeptide NAP has been shown to exert neuroprotective properties. Here, we investigated potential anti-inflammatory effects of NAP in an acute ileitis model. To address this, C57BL/6j mice were perorally infected with Toxoplasma gondii (day 0). Within 1 week postinfection (p.i.), placebo (PLC)-treated mice developed acute ileitis due to Th1-type immune responses. Mice that were subjected to intraperitoneal NAP treatment from day 1 until day 6 p.i., however, developed less distinct macroscopic and microscopic disease as indicated by less body weight loss, less distinct histopathological ileal changes, and lower ileal apoptotic, but higher proliferating cell numbers, less abundance of neutrophils, macrophages, monocytes, and T lymphocytes, but higher numbers of regulatory T cells in the ileal mucosa and lamina propria, and lower concentrations of pro-inflammatory mediators in the ilea as compared to PLC controls at day 7 p.i. Remarkably, NAP-mediated anti-inflammatory effects could also be observed in extra-intestinal compartments including liver and spleen. Strikingly, lower MCP-1, TNF, and IL-12p70 serum concentrations in NAP as compared to PLC-treated mice at day 7 p.i. indicate a pronounced systemic anti-inflammatory effect of NAP in acute ileitis. These findings provide first evidence for NAP as a potential novel treatment option in intestinal inflammation.
Collapse
Affiliation(s)
- Markus M Heimesaat
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - André Fischer
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Anja A Kühl
- Department of Medicine I for Gastroenterology, Infectious Disease and Rheumatology/Research Center ImmunoSciences (RCIS), Charité - University Medicine Berlin , Berlin, Germany
| | - Ulf B Göbel
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Illana Gozes
- Department of Clinical Biochemistry, Sackler School of Medicine, Aviv University , Aviv, Israel
| | - Stefan Bereswill
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| |
Collapse
|
38
|
Erickson NA, Nyström EEL, Mundhenk L, Arike L, Glauben R, Heimesaat MM, Fischer A, Bereswill S, Birchenough GMH, Gruber AD, Johansson MEV. The Goblet Cell Protein Clca1 (Alias mClca3 or Gob-5) Is Not Required for Intestinal Mucus Synthesis, Structure and Barrier Function in Naive or DSS-Challenged Mice. PLoS One 2015; 10:e0131991. [PMID: 26162072 PMCID: PMC4498832 DOI: 10.1371/journal.pone.0131991] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/09/2015] [Indexed: 12/15/2022] Open
Abstract
The secreted, goblet cell-derived protein Clca1 (chloride channel regulator, calcium-activated-1) has been linked to diseases with mucus overproduction, including asthma and cystic fibrosis. In the intestine Clca1 is found in the mucus with an abundance and expression pattern similar to Muc2, the major structural mucus component. We hypothesized that Clca1 is required for the synthesis, structure or barrier function of intestinal mucus and therefore compared wild type and Clca1-deficient mice under naive and at various time points of DSS (dextran sodium sulfate)-challenged conditions. The mucus phenotype in Clca1-deficient compared to wild type mice was systematically characterized by assessment of the mucus protein composition using proteomics, immunofluorescence and expression analysis of selected mucin genes on mRNA level. Mucus barrier integrity was assessed in-vivo by analysis of bacterial penetration into the mucus and translocation into sentinel organs combined analysis of the fecal microbiota and ex-vivo by assessment of mucus penetrability using beads. All of these assays revealed no relevant differences between wild type and Clca1-deficient mice under steady state or DSS-challenged conditions in mouse colon. Clca1 is not required for mucus synthesis, structure and barrier function in the murine colon.
Collapse
Affiliation(s)
- Nancy A. Erickson
- Department of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | | | - Lars Mundhenk
- Department of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Liisa Arike
- Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Rainer Glauben
- Medical Department, Division of Gastroenterology, Infectiology and Rheumatology—Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Markus M. Heimesaat
- Department of Microbiology and Hygiene, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - André Fischer
- Department of Microbiology and Hygiene, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Stefan Bereswill
- Department of Microbiology and Hygiene, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Achim D. Gruber
- Department of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Malin E. V. Johansson
- Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
- * E-mail:
| |
Collapse
|
39
|
Daft JG, Ptacek T, Kumar R, Morrow C, Lorenz RG. Cross-fostering immediately after birth induces a permanent microbiota shift that is shaped by the nursing mother. MICROBIOME 2015; 3:17. [PMID: 25969735 PMCID: PMC4427954 DOI: 10.1186/s40168-015-0080-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 04/03/2015] [Indexed: 05/15/2023]
Abstract
BACKGROUND Current research has led to the appreciation that there are differences in the commensal microbiota between healthy individuals and individuals that are predisposed to disease. Treatments to reverse disease pathogenesis through the manipulation of the gastrointestinal (GI) microbiota are now being explored. Normalizing microbiota between different strains of mice in the same study is also needed to better understand disease pathogenesis. Current approaches require repeated delivery of bacteria and large numbers of animals and vary in treatment start time. A method is needed that can shift the microbiota of predisposed individuals to a healthy microbiota at an early age and sustain this shift through the lifetime of the individual. RESULTS We tested cross-fostering of pups within 48 h of birth as a means to permanently shift the microbiota from birth. Taxonomical analysis revealed that the nursing mother was the critical factor in determining bacterial colonization, instead of the birth mother. Data was evaluated using bacterial 16S rDNA sequences from fecal pellets and sequencing was performed on an Illumina Miseq using a 251 bp paired-end library. CONCLUSIONS The results show that cross-fostering is an effective means to induce an early and maintained shift in the commensal microbiota. This will allow for the evaluation of a prolonged microbial shift and its effects on disease pathogenesis. Cross-fostering will also eliminate variation within control models by normalizing the commensal microbiota between different strains of mice.
Collapse
Affiliation(s)
- Joseph G Daft
- />Department of Pathology, University of Alabama at Birmingham, 1825 University Blvd, SHEL 602, Birmingham, AL USA
- />Comprehensive Diabetes Center, University of Alabama at Birmingham, 1825 University Boulevard, SHEL 1207, Birmingham, AL USA
| | - Travis Ptacek
- />Department of Microbiology, University of Alabama at Birmingham, 3201 1st Avenue North, Birmingham, AL USA
- />Center for Clinical and Translational Science, University of Alabama at Birmingham, 1924 7th Avenue South, Birmingham, AL USA
| | - Ranjit Kumar
- />Center for Clinical and Translational Science, University of Alabama at Birmingham, 1924 7th Avenue South, Birmingham, AL USA
| | - Casey Morrow
- />Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1918 University Boulevard, Birmingham, AL USA
| | - Robin G Lorenz
- />Department of Pathology, University of Alabama at Birmingham, 1825 University Blvd, SHEL 602, Birmingham, AL USA
- />Comprehensive Diabetes Center, University of Alabama at Birmingham, 1825 University Boulevard, SHEL 1207, Birmingham, AL USA
| |
Collapse
|