1
|
Zhang X, Zhang Z, Xu Y, Luo J, Shen Z, Liang H, Zeng Y, Liu W, Zheng C, Li J. Mechanism of Action and Efficacy of Wu-Hua-Yan-Xiao in the Treatment of Pediatric Acute Pharyngitis Based on Network Pharmacology and Experimental Validation. Drug Des Devel Ther 2025; 19:4321-4342. [PMID: 40443981 PMCID: PMC12120256 DOI: 10.2147/dddt.s513073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 05/19/2025] [Indexed: 06/02/2025] Open
Abstract
Ethnopharmacological Relevance Wu-Hua-Yan-Xiao (WHYX) is an innovative volatile oil formulation derived from the traditional Yinqiao-Mabo decoction, developed for the treatment of pediatric acute pharyngitis. Materials and Methods Network pharmacology was utilized to identify active components and potential therapeutic targets of WHYX in acute pharyngitis. Compounds in WHYX were characterized using UHPLC-QE-MS. A pediatric acute pharyngitis rat model was established by administering 25% ammonia to the pharyngeal mucosa of young rats. WHYX was delivered via aerosol inhalation at gradient concentrations. Histopathological changes in pharyngeal tissues were evaluated by H&E staining. Serum levels of IL-6, IL-1β, TNF-α, and PGE2 were quantified by ELISA. Expression levels of TNF-α, TP53, IL17A, IL6, and Bcl-2 were assessed by qRT-PCR and Western blotting. Apoptosis was analyzed through immunofluorescence staining for Caspase-3 and TUNEL. Results Network pharmacology identified 130 active compounds and 600 gene targets, with 194 overlapping drug-disease targets. TP53 signaling emerged as a central regulatory pathway. Compared with the model group, the high-dose WHYX volatile oil group showed marked improvements in pharyngeal pathology, significant reductions in inflammatory cytokines, downregulation of TNF-α, TP53, IL17A, IL6, and Bcl-2 expression, and suppressed apoptosis (P < 0.05). Therapeutic effects were comparable to or exceeded those observed in the positive control group. (P < 0.05). Conclusion The WHYX formula alleviates inflammation, reduces apoptosis, and protects pharyngeal tissue in young rats with acute pharyngitis. Aerosol inhalation of WHYX presents a direct, effective, and non-invasive strategy for pediatric acute pharyngitis management.
Collapse
Affiliation(s)
- Xinyun Zhang
- Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Zengyu Zhang
- Research Center for Clinical Medicine, Jinshan Hospital Affiliated to Fudan University, Shanghai, 20000, People’s Republic of China
| | - Yingzi Xu
- Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Jiawei Luo
- Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Zihao Shen
- Xiangxing College, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Hao Liang
- Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
- Provincial Key Laboratory of TCM Diagnostics, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Yidi Zeng
- Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
- Provincial Key Laboratory of TCM Diagnostics, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Wanghua Liu
- Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
- Provincial Key Laboratory of TCM Diagnostics, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Caixing Zheng
- Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Jinxia Li
- Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
- Provincial Key Laboratory of TCM Diagnostics, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| |
Collapse
|
2
|
Claus ED, McDonald J, Dolan SB, Jackson KJ, Gahl R, Wang J, Paredes A, Meredith S. The effects of menthol content on the abuse liability of smokeless tobacco in a randomized crossover trial. J Psychopharmacol 2025:2698811251337367. [PMID: 40336202 DOI: 10.1177/02698811251337367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
BACKGROUND Menthol is a common additive in tobacco products and reduces the aversiveness of nicotine. While numerous studies have examined the effects of menthol in cigarettes on nicotine exposure and other addiction-related outcomes, no clinical study to date has investigated the influence of menthol on nicotine pharmacokinetics (PK) and abuse liability in smokeless tobacco (ST). AIMS The current study investigated the effects of varying levels of menthol in ST on nicotine PK, pharmacodynamics (i.e., heart rate and blood pressure), hypothetical purchasing, subjective effects (e.g., withdrawal, craving, and liking), and nicotine extraction from ST. METHODS Twenty-eight male participants completed five sessions of prescribed ST use in a within-subjects, crossover design that included participants' usual-brand ST products and study ST products in which nicotine concentration was held constant and menthol levels were systematically varied: non-menthol, 1 mg of menthol per g of ST, 3 mg/g menthol, and 5 mg/g menthol. RESULTS No significant differences in nicotine or cotinine PK, heart rate, hypothetical purchasing, or nicotine extraction were observed between products. Subjective ratings of "cooling" significantly differed between the non-menthol and mentholated study products, and higher ratings of cooling were associated with greater positive subjective effects. CONCLUSIONS These results suggest that menthol content up to 5 mg/g is unlikely to significantly impact nicotine absorption and may have a limited impact on the subjective experience of using ST.
Collapse
Affiliation(s)
- Eric D Claus
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, USA
- The Mind Research Network, Albuquerque, NM, USA
- Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | - Jacob McDonald
- Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | - Sean B Dolan
- Food and Drug Administration, Center for Tobacco Products, Silver Spring, MD, USA
| | - Kia J Jackson
- Food and Drug Administration, Center for Tobacco Products, Silver Spring, MD, USA
| | - Robert Gahl
- National Cancer Institute, Bethesda, MD, USA
| | - Jia Wang
- Food and Drug Administration, Center for Tobacco Products, Silver Spring, MD, USA
| | - Antonio Paredes
- Food and Drug Administration, Center for Tobacco Products, Silver Spring, MD, USA
| | - Steven Meredith
- Food and Drug Administration, Center for Tobacco Products, Silver Spring, MD, USA
| |
Collapse
|
3
|
Jabba SV, Erythropel HC, Woodrow JG, Anastas PT, O'Malley S, Krishnan-Sarin S, Zimmerman JB, Jordt SE. Synthetic cooling agent in oral nicotine pouch products marketed as 'Flavour-Ban Approved'. Tob Control 2025; 34:106-110. [PMID: 37380351 PMCID: PMC10753027 DOI: 10.1136/tc-2023-058035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/09/2023] [Indexed: 06/30/2023]
Abstract
BACKGROUND US sales of oral nicotine pouches (ONPs) have rapidly increased, with cool/mint-flavoured ONPs the most popular flavour category. Restrictions on sales of flavoured tobacco products have either been implemented or proposed by several US states and localities. Zyn, the most popular ONP brand, is marketing Zyn Chill and Zyn Smooth as 'Flavour-Ban Approved' or 'unflavoured', probably to evade flavour bans and increase product appeal. At present, it is unclear whether these ONPs are indeed free of flavour additives that can impart pleasant sensations such as cooling. METHODS Sensory cooling and irritant activities of 'Flavour-Ban Approved' Zyn ONPs, Chill and Smooth, along with minty varieties (Cool Mint, Peppermint, Spearmint, Menthol), were analysed by Ca2+ microfluorimetry in HEK293 cells expressing the cold/menthol (TRPM8) or menthol/irritant receptor (TRPA1). Flavour chemical content of these ONPs was analysed by gas chromatography/mass spectrometry. RESULTS Zyn Chill ONP extracts robustly activated TRPM8, with much higher efficacy (39%-53%) than the mint-flavoured ONPs. In contrast, mint-flavoured ONP extracts elicited stronger TRPA1 irritant receptor responses than Chill extracts. Chemical analysis demonstrated that Chill exclusively contained WS-3, an odourless synthetic cooling agent, while mint-flavoured ONPs contained WS-3 together with mint flavourants. CONCLUSIONS ONP products marketed as 'Flavour-Ban Approved' or 'unflavoured' contain flavouring agents, proving that the manufacturer's advertising is misleading. Synthetic coolants such as WS-3 can provide a robust cooling sensation with reduced sensory irritancy, thereby increasing product appeal and use. Regulators need to develop effective strategies for the control of odourless sensory additives used by the industry to bypass flavour bans.
Collapse
Affiliation(s)
- Sairam V Jabba
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina, USA
- Yale Tobacco Center of Regulatory Science, Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
| | - Hanno C Erythropel
- Yale Tobacco Center of Regulatory Science, Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
- Chemical and Environmental Engineering, Yale University, New Haven, Connecticut, USA
| | | | - Paul T Anastas
- Center for Green Chemistry & Green Engineering, Yale University, New Haven, Connecticut, USA
- Department of Forestry and Environmental Studies, Yale University, New Haven, Connecticut, USA
| | - Stephanie O'Malley
- Yale Tobacco Center of Regulatory Science, Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
- Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
| | - Suchitra Krishnan-Sarin
- Yale Tobacco Center of Regulatory Science, Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
- Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
| | - Julie B Zimmerman
- Yale Tobacco Center of Regulatory Science, Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
- Chemical and Environmental Engineering, Yale University, New Haven, Connecticut, USA
| | - Sven Eric Jordt
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina, USA
- Yale Tobacco Center of Regulatory Science, Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
4
|
Yang C, Wei C, Alam S, Chen X, McKemy DD. The neurotrophic factor artemin and its receptor GFRα3 mediate migraine-like pain via the ion channel TRPM8. Cephalalgia 2024; 44:3331024241297679. [PMID: 39552306 DOI: 10.1177/03331024241297679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
BACKGROUND Migraine has a strong genetic foundation, including both monogenic and polygenic types. The former are rare, with most migraine considered polygenic, supported by genome-wide association studies (GWAS) identifying numerous genetic variants linked with migraine risk. Surprisingly, some of the most common mutations are associated with transient receptor potential melastatin 8 (TRPM8), a non-selective cation channel that is the primary sensor of cold temperatures in cutaneous primary afferents of the somatosensory system. However, it is unlikely that the temperature sensitivity of TRPM8 is relevant in migraine-related tissues, such as the meninges, suggesting other activation mechanisms underly its role in migraine pathogenesis. Thus, to define the basis of the channel's involvement, we reasoned that cellular processes that increase cold sensitivity in the skin, such as the neurotrophic factor artemin, via its receptor glial cell-line derived neurotrophic factor family receptor alpha-3 (GFRα3), also mediate TRPM8-associated migraine-like pain in the meninges. METHODS To investigate the role of artemin and GFRα3 in preclinical rodent migraine models, we infused nitroglycerin acutely and chronically, and measured changes in periorbital and hind paw mechanical sensitivity in male and female mice lacking GFRα3, after neutralization of free artemin with specific monoclonal antibodies, or by systemic treatment with a TRPM8-specific antagonist. Further, in mice lacking GFRα3 we tested the effects of supradural infusions of a mix of inflammatory mediators, as well as tested if dura stimulation with artemin or a TRPM8-specific agonist induce migraine-related pain in mice. RESULTS We find that mechanical allodynia induced by systemic nitroglycerin, or supradural infusion of inflammatory mediators, involves GFRα3. In addition, neutralization of circulating artemin reduces the nitroglycerin phenotype, demonstrating the importance of this neurotrophic pathway in headaches. Further, we show TRPM8 expression in the meninges, and that direct supradural infusion of either a TRPM8-specific agonist or artemin itself produces mechanical allodynia, with the latter dependent on TRPM8 and ameliorated by concurrent treatment with sumatriptan. CONCLUSIONS These results indicate that neuroinflammatory events in the meninges can produce migraine-like pain in mice via artemin and GFRα3, likely acting upstream of TRPM8, providing a novel pathway that may contribute to headaches or migraine pathogenesis.
Collapse
Affiliation(s)
- Chenyu Yang
- Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
- Molecular and Computational Biology Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Chao Wei
- Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
- Department of Anesthesia and Critical Care, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Sanaa Alam
- Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Xunyang Chen
- Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - David D McKemy
- Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
- Molecular and Computational Biology Graduate Program, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
5
|
Talhout R, Leventhal AM. Coolants, organic acids, flavourings and other additives that facilitate inhalation of tobacco and nicotine products: implications for regulation. Tob Control 2024:tc-2024-058738. [PMID: 39256038 DOI: 10.1136/tc-2024-058738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/19/2024] [Indexed: 09/12/2024]
Abstract
To inform regulatory policy, this article summarises findings on inhalation facilitation from the ninth report of the WHO Study Group on Tobacco Product Regulation. Some additives counteract the harshness and bitterness of tobacco and nicotine product aerosols, making them easier to inhale. Additives that promote inhalability may perpetuate and increase the use of inhaled tobacco and nicotine products, especially by young people. Thus, as a class, additives that facilitate inhalation are an important regulatory target to prevent tobacco and nicotine product uptake. We defined inhalation facilitation as modifications to products during manufacturing that enhance the sensory experience and (potentially) behaviours associated with inhalation (eg, deeper puffs, faster inhalation, larger puff volume, shorter intervals in between puffs and use episodes). Evidence review showed that: (a) menthol and synthetic coolants decrease irritation caused by aerosol constituents by activating sensory perception receptors (eg, cooling receptors) and may promote dependence in inexperienced users; (b) acid additives and sugars, which lower the pH of aerosols and shift nicotine from free-base to protonated salt forms, reduce harshness and increase blood nicotine yield; (c) e-cigarette flavourings perceived as sweet or fruity reduce subjective bitterness, increase attractiveness and may escalate use, although their effects on perceived harshness are inconclusive; (d) sugars in tobacco impart sweet sensations, but limited industry-independent data preclude strong conclusions for sugars' roles in inhalation facilitation. Given these findings, WHO policy recommendations suggest that regulators might consider banning ingredients that facilitate inhalation in all commercial inhaled tobacco and nicotine products.
Collapse
Affiliation(s)
- Reinskje Talhout
- Centre for Health Protection, Dutch National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Adam M Leventhal
- Preventive Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| |
Collapse
|
6
|
Yang C, Wei C, Alam S, Chen X, McKemy DD. The neurotrophic factor artemin and its receptor GFRα3 mediate migraine-like pain via the ion channel TRPM8. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.611532. [PMID: 39314341 PMCID: PMC11419092 DOI: 10.1101/2024.09.09.611532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Background Migraine has a strong genetic foundation, including both monogenic and polygenic types. The former are rare, with most migraine considered polygenic, supported by genome-wide association studies (GWAS) identifying numerous genetic variants associated with migraine risk. Surprisingly, some of the most common mutations are associated with TRPM8, a non-selective cation channel that is the primary sensor of cold temperatures in primary afferent neurons of the somatosensory system. However, it is unlikely that the temperature sensitivity of TRPM8 underlies its role in migraine pathogenesis. To define the basis of the channel's involvement, we reasoned that cellular processes that increase cold sensitivity in the skin, such as the neurotrophic factor artemin, via its receptor GFRα3, also mediate TRPM8-associated migraine-like pain in the meninges. Methods To investigate the role of artemin and GFRα3 in preclinical rodent migraine models, we infused nitroglycerin acutely and chronically, and measured changes in periorbital and hind paw mechanical sensitivity in male and female mice lacking GFRα3, after neutralization of free artemin with specific monoclonal antibodies, or by systemic treatment with a TRPM8-specific antagonist. Further, in wildtypes and mice lacking either GFRα3 or TRPM8, we tested the effects of supradural infusions of a mix of inflammatory mediators, artemin, and a TRPM8-specific agonist on migraine-related pain in mice. Results We find that mechanical allodynia induced by systemic nitroglycerin, or supradural infusion of inflammatory mediators, involves GFRα3. In addition, neutralization of circulating artemin reduces the nitroglycerin phenotype, demonstrating the importance of this neurotrophic pathway. Further, we show TRPM8 expression in the meninges and that direct supradural infusion of either a TRPM8-specific agonist or artemin itself produces mechanical allodynia, the latter dependent on TRPM8 and ameliorated by concurrent treatment with sumatriptan. Conclusions These results indicate that neuroinflammatory events in the meninges can produce migraine-like pain in mice via artemin and GFRα3, likely acting upstream of TRPM8, providing a novel pathway that may contribute to migraine pathogenesis.
Collapse
Affiliation(s)
- Chenyu Yang
- Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089
- Molecular and Computational Biology Graduate Program, University of Southern California, Los Angeles, CA 90089
| | - Chao Wei
- Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089
- Department of Anesthesia and Critical Care, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215
| | - Sanaa Alam
- Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089
| | - Xunyang Chen
- Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089
| | - David D. McKemy
- Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089
- Molecular and Computational Biology Graduate Program, University of Southern California, Los Angeles, CA 90089
| |
Collapse
|
7
|
Oliveira da Silva AL, Lempert LK, Glantz SA. More than a "characterizing flavor": Menthol at subliminal levels in tobacco products. Drug Alcohol Depend 2024; 261:111346. [PMID: 38870568 PMCID: PMC11251543 DOI: 10.1016/j.drugalcdep.2024.111346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 06/15/2024]
Abstract
INTRODUCTION In addition to imparting flavor, menthol in menthol-flavored cigarettes enhances nicotine addiction and increases experimentation, initiation, and progression to regular smoking. Menthol can be added to cigarettes at perceptible levels (so-called flavored cigarettes or characterized flavored cigarettes) or non-perceptible levels (subliminal). Our objective was to understand the reasons that tobacco companies use subliminal menthol. METHODS We identified previously secret internal tobacco company documents dated 1955-2012 in the Truth Tobacco Industry Documents archive on menthol at subliminal levels. RESULTS Beginning in at least the 1950s, tobacco companies used subliminal menthol to compensate the flavor loss caused by filters, reduce smoke harshness, reduce dryness, and increase smoke coolness. Varying menthol concentrations were considered to help convert people who smoke non-menthol to menthol brands, possibly because people who use menthol cigarettes have more harship quitting than people who use non-menthol cigarettes. CONCLUSIONS Menthol is an important additive beyond its function as a "characterizing flavor." Tobacco companies use menthol in "non-menthol" cigarettes at subliminal (non-perceptible by the people who smoke cigarettes) levels to improve taste, make them easier to smoke and facilitate initiation, and possibly convert people who smoke non-menthol cigarettes to menthol cigarettes.
Collapse
Affiliation(s)
- Andre Luiz Oliveira da Silva
- Tobacco Control Office, Brazilian Health Regulatory Agency, Rio de Janeiro - Brazil; Center for Tobacco Control Research & Education, University of California, San Francisco - USA.
| | - Lauren K Lempert
- Center for Tobacco Control Research & Education, University of California, San Francisco - USA
| | - Stanton A Glantz
- Center for Tobacco Control Research & Education, University of California, San Francisco - USA
| |
Collapse
|
8
|
Akinola LS, Gonzales J, Buzzi B, Mathews HL, Papke RL, Stitzel JA, Damaj MI. Investigating the role of nicotinic acetylcholine receptors in menthol's effects in mice. Drug Alcohol Depend 2024; 257:111262. [PMID: 38492255 PMCID: PMC11031278 DOI: 10.1016/j.drugalcdep.2024.111262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/13/2024] [Accepted: 03/01/2024] [Indexed: 03/18/2024]
Abstract
The use of menthol in tobacco products has been linked to an increased likelihood of developing nicotine dependence. The widespread use of menthol can be attributed to its unique sensory characteristics; however, emerging evidence suggests that menthol also alters sensitivity to nicotine through modulation of nicotinic acetylcholine receptors (nAChRs). Nicotinic subunits, such as β2 and α5, are of interest due to their implications in nicotine reward, reinforcement, intake regulation, and aversion. This study, therefore, examined the in vivo relevance of β2 and α5 nicotinic subunits on the pharmacological and behavioral effects of menthol. Data suggests that the α5 nicotinic subunit modulates menthol intake in mice. Overall, deletion or a reduction in function of the α5 subunit lessened aversion to menthol. α5 KO mice and mice possessing the humanized α5 SNP, a variant that confers a nicotine dependence phenotype in humans, demonstrated increased menthol intake compared to their WT counterparts and in a sex-related fashion for α5 SNP mice. We further reported that the modulatory effects of the α5 subunit do not extend to other aversive tastants like quinine, suggesting that deficits in α5* nAChR signaling may not abolish general sensitivity to the aversive effects of other noxious chemicals. Further probing into the role of α5 in other pharmacological properties of menthol revealed that the α5 subunit does not modulate the antinociceptive properties of menthol in mice and suggests that the in vivo differences observed are likely not due to the direct effects of menthol on α5-containing nAChRs in vitro.
Collapse
Affiliation(s)
- Lois S Akinola
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA.
| | - Jada Gonzales
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| | - Belle Buzzi
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| | - Hunter L Mathews
- Department of Psychology and Neuroscience, The University of Colorado Boulder, Institute for Behavioral Genetics, Boulder, CO, USA
| | - Roger L Papke
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Jerry A Stitzel
- Department of Psychology and Neuroscience, The University of Colorado Boulder, Institute for Behavioral Genetics, Boulder, CO, USA; Department of Integrative Physiology, The University of Colorado Boulder, Institute for Behavioral Genetics, Boulder, CO, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
9
|
Leventhal AM, Tackett AP, Whitted L, Jordt SE, Jabba SV. Ice flavours and non-menthol synthetic cooling agents in e-cigarette products: a review. Tob Control 2023; 32:769-777. [PMID: 35483721 PMCID: PMC9613790 DOI: 10.1136/tobaccocontrol-2021-057073] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 04/19/2022] [Indexed: 01/21/2023]
Abstract
E-cigarettes with cooling flavours have diversified in ways that complicate tobacco control with the emergence of: (1) Ice-hybrid flavours (eg, 'Raspberry Ice') that combine cooling and fruity/sweet properties; and (2) Products containing non-menthol synthetic cooling agents (eg, Wilkinson Sword (WS), WS-3, WS-23 (termed 'koolada')). This paper reviews the background, chemistry, toxicology, marketing, user perceptions, use prevalence and policy implications of e-cigarette products with ice-hybrid flavours or non-menthol coolants. Scientific literature search supplemented with industry-generated and user-generated information found: (a) The tobacco industry has developed products containing synthetic coolants since 1974, (b) WS-3 and WS-23 are detected in mass-manufactured e-cigarettes (eg, PuffBar); (c) While safe for limited oral ingestion, inhalational toxicology and health effects from daily synthetic coolant exposure are unknown and merit scientific inquiry and attention from regulatory agencies; (d) Ice-hybrid flavours are marketed with themes incorporating fruitiness and/or coolness (eg, snow-covered raspberries); (e) WS-23/WS-3 concentrates also are sold as do-it-yourself additives, (f) Pharmacology research and user-generated and industry-generated information provide a premise to hypothesise that e-cigarette products with ice flavours or non-menthol cooling agents generate pleasant cooling sensations that mask nicotine's harshness while lacking certain aversive features of menthol-only products, (g) Adolescent and young adult use of e-cigarettes with ice-hybrid or other cooling flavours may be common and cross-sectionally associated with more frequent vaping and nicotine dependence in convenience samples. Evidence gaps in the epidemiology, toxicology, health effects and smoking cessation-promoting potential of using these products exist. E-cigarettes with ice flavours or synthetic coolants merit scientific and regulatory attention.
Collapse
Affiliation(s)
- Adam M Leventhal
- Institute for Addiction Science, University of Southern California, Los Angeles, California, USA
| | - Alayna P Tackett
- Department of Preventive Medicine, Keck School of Medicine University of Southern California, Los Angeles, California, USA
| | - Lauren Whitted
- Department of Preventive Medicine, Keck School of Medicine University of Southern California, Los Angeles, California, USA
| | - Sven Eric Jordt
- Anesthesiology, Duke University School of Medicine, Durham, North Carolina, USA
- Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
| | - Sairam V Jabba
- Anesthesiology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
10
|
Hooper JS, Taylor-Clark TE. Irritant-evoked reflex tachyarrhythmia in spontaneously hypertensive rats is reduced by inhalation of TRPM8 agonists l-menthol and WS-12. J Appl Physiol (1985) 2023; 134:307-315. [PMID: 36603045 PMCID: PMC9886351 DOI: 10.1152/japplphysiol.00495.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/06/2022] [Accepted: 12/24/2022] [Indexed: 01/06/2023] Open
Abstract
Inhalation of noxious irritants activates nociceptive sensory afferent nerves innervating the airways, inducing reflex regulation of autonomic networks and the modulation of respiratory drive and cardiovascular (CV) parameters such as heart rate and blood pressure. In healthy mammals, irritant-evoked pulmonary-cardiac reflexes cause parasympathetic-mediated bradycardia. However, in spontaneously hypertensive (SH) rats, irritant inhalation also increases sympathetic drive to the heart. This remodeled pulmonary-cardiac reflex may contribute to cardiovascular risk caused by inhalation of air pollutants/irritants in susceptible individuals with cardiovascular disease (CVD). Previous studies have shown that the cooling mimic l-menthol, an agonist for the cold-sensitive transient receptor potential melastatin 8 (TRPM8), can alleviate nasal inflammatory symptoms and respiratory reflexes evoked by irritants. Here, we investigated the impact of inhalation of TRPM8 agonists l-menthol and WS-12 on pulmonary-cardiac reflexes evoked by inhalation of the irritant allyl isothiocyanate (AITC) using radiotelemetry. l-Menthol, but not its inactive analog d-menthol, significantly reduced the AITC-evoked reflex tachycardia and premature ventricular contractions (PVCs) in SH rats but had no effect on the AITC-evoked bradycardia in either SH or normotensive Wistar-Kyoto (WKY) rats. WS-12 reduced AITC-evoked tachycardia and PVCs in SH rats, but this more potent TRPM8 agonist also reduced AITC-evoked bradycardia. l-Menthol had no effect on heart rate when given alone, whereas WS-12 evoked a minor bradycardia in WKY rats. We conclude that stimulation of TRPM8-expressing afferents within the airways reduces irritant-evoked pulmonary-cardiac reflexes, especially the aberrant reflex tachyarrhythmia in SH rats. Airway menthol treatment may be an effective therapy for reducing pollution-associated CV exacerbations.NEW & NOTEWORTHY Irritant-evoked pulmonary-cardiac reflexes are remodeled in spontaneously hypertensive (SH) rats-causing de novo sympathetic reflexes that drive tachyarrhythmia. This remodeling may contribute to air pollution-associated risk in susceptible individuals with cardiovascular disease. We found that inhalation of TRPM8 agonists, l-menthol and WS-12, but not the inactive analog d-menthol, selectively reduces the reflex tachyarrhythmia evoked by allyl isothiocyanate (AITC) inhalation in SH rats. Use of menthol may protect susceptible individuals from pollution-associated CV exacerbations.
Collapse
Affiliation(s)
- J Shane Hooper
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Thomas E Taylor-Clark
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| |
Collapse
|
11
|
Cheng H, An X. Cold stimuli, hot topic: An updated review on the biological activity of menthol in relation to inflammation. Front Immunol 2022; 13:1023746. [PMID: 36439160 PMCID: PMC9682018 DOI: 10.3389/fimmu.2022.1023746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/25/2022] [Indexed: 01/01/2025] Open
Abstract
BACKGROUND Rising incidence of inflammation-related diseases is an increasing concern nowadays. However, while menthol is a wildly-used and efficacious complementary medicine, its pharmacological mechanism still remains uncertain. Superimposed upon that, the aim of this review is to summarize the contemporary evidence of menthol's anti-inflammatory activity. METHODS Using the pharmacopeias and electronic databases, including Web of Science, PubMed, and CNKI, this study analyzed the relevant research articles and review articles from 2002 to 2022 and concluded those results and conjectures to finish this article. RESULTS The decrease in pro-inflammatory cytokines and related inflammatory markers, as well as associated pathway activation, was found to play the greatest role in the protective effects of menthol against inflammatory damage or association with protection against chronic inflammation. CONCLUSION This review mainly concludes the progress in menthol's anti-inflammatory activity. Further studies are needed to establish relationships between the mechanisms of action and to clarify the clinical relevance of any anti-inflammatory effects.
Collapse
Affiliation(s)
- Haojin Cheng
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xuemei An
- Nursing Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
12
|
Carll AP, Arab C, Salatini R, Miles MD, Nystoriak MA, Fulghum KL, Riggs DW, Shirk GA, Theis WS, Talebi N, Bhatnagar A, Conklin DJ. E-cigarettes and their lone constituents induce cardiac arrhythmia and conduction defects in mice. Nat Commun 2022; 13:6088. [PMID: 36284091 PMCID: PMC9596490 DOI: 10.1038/s41467-022-33203-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 08/24/2022] [Indexed: 01/11/2023] Open
Abstract
E-cigarette use has surged, but the long-term health effects remain unknown. E-cigarette aerosols containing nicotine and acrolein, a combustion and e-cigarette byproduct, may impair cardiac electrophysiology through autonomic imbalance. Here we show in mouse electrocardiograms that acute inhalation of e-cigarette aerosols disturbs cardiac conduction, in part through parasympathetic modulation. We demonstrate that, similar to acrolein or combustible cigarette smoke, aerosols from e-cigarette solvents (vegetable glycerin and propylene glycol) induce bradycardia, bradyarrhythmias, and elevations in heart rate variability during inhalation exposure, with inverse post-exposure effects. These effects are slighter with tobacco- or menthol-flavored aerosols containing nicotine, and in female mice. Yet, menthol-flavored and PG aerosols also increase ventricular arrhythmias and augment early ventricular repolarization (J amplitude), while menthol uniquely alters atrial and atrioventricular conduction. Exposure to e-cigarette aerosols from vegetable glycerin and its byproduct, acrolein, diminish heart rate and early repolarization. The pro-arrhythmic effects of solvent aerosols on ventricular repolarization and heart rate variability depend partly on parasympathetic modulation, whereas ventricular arrhythmias positively associate with early repolarization dependent on the presence of nicotine. Our study indicates that chemical constituents of e-cigarettes could contribute to cardiac risk by provoking pro-arrhythmic changes and stimulating autonomic reflexes.
Collapse
Affiliation(s)
- Alex P Carll
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA.
- American Heart Association Tobacco Regulation and Addiction Center, Louisville, KY, USA.
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA.
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, USA.
- Center for Integrative Environmental Health Sciences, School of Medicine, University of Louisville, Louisville, KY, USA.
- Division of Environmental Medicine, School of Medicine, University of Louisville, Louisville, KY, USA.
| | - Claudia Arab
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA
- Department of Cardiology, Paulista School of Medicine, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Renata Salatini
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA
- Department of Surgery, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Meredith D Miles
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA
| | - Matthew A Nystoriak
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA
- American Heart Association Tobacco Regulation and Addiction Center, Louisville, KY, USA
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA
- Division of Environmental Medicine, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Kyle L Fulghum
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, USA
- Division of Environmental Medicine, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Daniel W Riggs
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA
- American Heart Association Tobacco Regulation and Addiction Center, Louisville, KY, USA
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA
- Division of Environmental Medicine, School of Medicine, University of Louisville, Louisville, KY, USA
- Department of Epidemiology and Population Health, University of Louisville, Louisville, KY, USA
| | - Gregg A Shirk
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA
- Division of Environmental Medicine, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Whitney S Theis
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA
- American Heart Association Tobacco Regulation and Addiction Center, Louisville, KY, USA
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA
- Division of Environmental Medicine, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Nima Talebi
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA
| | - Aruni Bhatnagar
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA
- American Heart Association Tobacco Regulation and Addiction Center, Louisville, KY, USA
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA
- Center for Integrative Environmental Health Sciences, School of Medicine, University of Louisville, Louisville, KY, USA
- Division of Environmental Medicine, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Daniel J Conklin
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA
- American Heart Association Tobacco Regulation and Addiction Center, Louisville, KY, USA
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA
- Center for Integrative Environmental Health Sciences, School of Medicine, University of Louisville, Louisville, KY, USA
- Division of Environmental Medicine, School of Medicine, University of Louisville, Louisville, KY, USA
| |
Collapse
|
13
|
Wong ET, Luettich K, Cammack L, Chua CS, Sciuscio D, Merg C, Corciulo M, Piault R, Ashutosh K, Smith C, Leroy P, Moine F, Glabasnia A, Diana P, Chia C, Tung CK, Ivanov N, Hoeng J, Peitsch M, Lee KM, Vanscheeuwijck P. Assessment of inhalation toxicity of cigarette smoke and aerosols from flavor mixtures: 5-week study in A/J mice. J Appl Toxicol 2022; 42:1701-1722. [PMID: 35543240 PMCID: PMC9545811 DOI: 10.1002/jat.4338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/20/2022] [Accepted: 05/05/2022] [Indexed: 11/10/2022]
Abstract
Most flavors used in e-liquids are generally recognized as safe for oral consumption, but their potential effects when inhaled are not well characterized. In vivo inhalation studies of flavor ingredients in e-liquids are scarce. A structure-based grouping approach was used to select 38 flavor group representatives (FGR) on the basis of known and in silico-predicted toxicological data. These FGRs were combined to create prototype e-liquid formulations and tested against cigarette smoke (CS) in a 5-week inhalation study. Female A/J mice were whole-body exposed for 6 h/day, 5 days/week, for 5 weeks to air, mainstream CS, or aerosols from (1) test formulations containing propylene glycol (PG), vegetable glycerol (VG), nicotine (N; 2% w/w), and flavor (F) mixtures at low (4.6% w/w), medium (9.3% w/w), or high (18.6% w/w) concentration or (2) base formulation (PG/VG/N). Male A/J mice were exposed to air, PG/VG/N, or PG/VG/N/F-high under the same exposure regimen. There were no significant mortality or in-life clinical findings in the treatment groups, with only transient weight loss during the early exposure adaptation period. While exposure to flavor aerosols did not cause notable lung inflammation, it caused only minimal adaptive changes in the larynx and nasal epithelia. In contrast, exposure to CS resulted in lung inflammation and moderate-to-severe changes in the epithelia of the nose, larynx, and trachea. In summary, the study evaluates an approach for assessing the inhalation toxicity potential of flavor mixtures, thereby informing the selection of flavor exposure concentrations (up to 18.6%) for a future chronic inhalation study.
Collapse
Affiliation(s)
- Ee Tsin Wong
- PMI R&DPhilip Morris International Research Laboratories Pte LtdSingapore
| | | | - Lydia Cammack
- PMI R&DPhilip Morris International Research Laboratories Pte LtdSingapore
| | - Chin Suan Chua
- PMI R&DPhilip Morris International Research Laboratories Pte LtdSingapore
| | | | - Celine Merg
- PMI R&DPhilip Morris Products S.ANeuchâtelSwitzerland
| | | | - Romain Piault
- PMI R&DPhilip Morris Products S.ANeuchâtelSwitzerland
| | | | | | - Patrice Leroy
- PMI R&DPhilip Morris Products S.ANeuchâtelSwitzerland
| | - Fabian Moine
- PMI R&DPhilip Morris Products S.ANeuchâtelSwitzerland
| | | | | | - Cecilia Chia
- PMI R&DPhilip Morris International Research Laboratories Pte LtdSingapore
| | - Ching Keong Tung
- PMI R&DPhilip Morris International Research Laboratories Pte LtdSingapore
| | | | - Julia Hoeng
- PMI R&DPhilip Morris Products S.ANeuchâtelSwitzerland
| | | | | | | |
Collapse
|
14
|
Lin W, Zhu J, Hayes JE, Richie JP, Muscat JE. Comparison of Carcinogen Biomarkers in Smokers of Menthol and Nonmenthol Cigarettes: The 2015-2016 National Health and Nutrition Examination Survey Special Sample. Cancer Epidemiol Biomarkers Prev 2022; 31:1539-1545. [PMID: 35654409 PMCID: PMC9357114 DOI: 10.1158/1055-9965.epi-22-0239] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/13/2022] [Accepted: 05/26/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The US FDA announced its commitment to prohibiting menthol as a characterizing flavor in tobacco. The relationship between cigarette menthol and exposure to toxic substances in mainstream tobacco smoke is not well characterized. METHODS Data from the National Health and Nutrition Examination Survey (NHANES) 2015 to 2016 special sample were used to study markers of 26 harmful and potentially harmful constituents (HPHC) in tobacco smoke. These include urine metabolites of polycyclic aromatic hydrocarbons (PAH), volatile organic compounds (VOC), and heavy metals in exclusive menthol (n = 162) and nonmenthol (n = 189) cigarette smokers. Urine metabolites of 7 PAHs, 15 VOCs, and 4 heavy metal biomarkers were compared by menthol status. Multivariable analyses were conducted on creatinine-adjusted concentrations. RESULTS There were no significant differences in cotinine levels or in 22 of 26 HPHCs. Among the urine metabolites of PAHs, the levels of 1-hydroxyphenanthrene were about 16% lower in menthol smokers. Among the urine metabolites of VOCs, menthol cigarette smokers presented significantly lower concentrations of acrylamide, N,N-dimethylformamide, and acrylonitrile. Menthol and nonmenthol smokers presented similar levels of heavy metals. Menthol did not affect the levels of cotinine and the nicotine metabolite ratio in urine. CONCLUSIONS Menthol and nonmenthol cigarettes deliver similar levels of most HPHCs. IMPACT Findings on toxicity are similar for menthol and nonmenthol cigarettes.
Collapse
Affiliation(s)
- Wenxue Lin
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | - Junjia Zhu
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | - John E. Hayes
- Sensory Evaluation Center, The Pennsylvania State University, 220 Erickson Food Science Building, University Park, PA 16802, United States
- Department of Food Science, College of Agricultural Sciences, The Pennsylvania State University, 220 Erickson Food Science Building, University Park, PA 16802, United States
| | - John P. Richie
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | - Joshua E. Muscat
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| |
Collapse
|
15
|
Eden MJ, Farra YM, Matz J, Bellini C, Oakes JM. Pharmacological and physiological response in Apoe -/- mice exposed to cigarette smoke or e-cigarette aerosols. Inhal Toxicol 2022; 34:260-274. [PMID: 35793285 DOI: 10.1080/08958378.2022.2086948] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Electronic cigarettes (e-cigs) are popular nicotine delivery devices, yet the health effects remain unclear. To determine equivalent biomarkers, we characterized the immediate response in Apoe-/- mice exposed to tank/box-mod e-cig (e-cigtank), pod e-cig (e-cigpod), or cig smoke. MATERIALS AND METHODS Reproducible puff profiles were generated for each aerosol and delivered to Apoe-/- mice via a nose-only exposure system. Serum cotinine levels were quantified at various time points through ELISA and utilized to model cotinine pharmacokinetics. In addition, particle size measurements and mouse respiratory function were characterized to calculate particle dosimetry. RESULTS AND DISCUSSION Cig and e-cigtank particles were lognormally distributed with similar count median diameters (cig: 178 ± 2, e-cigtank: 200 ± 34nm), while e-cigpod particles were bimodally distributed and smaller (116 ± 13 and 13.3 ± 0.4 nm). Minute volumes decreased with cig exposure (5.4 ± 2.7 mL/min) compared to baseline (90.8 ± 11.6 mL/min), and less so with e-cigtank (45.2 ± 9.2 mL/min) and e-cigpod exposures (58.6 ± 6.8 mL/min), due to periods of apnea in the cig exposed groups. Cotinine was absorbed and eliminated most rapidly in the e-cigpod group (tmax = 14.5; t1/2' = 51.9 min), whereas cotinine was absorbed (cig: 50.4, e-cigtank: 40.1 min) and eliminated (cig: 104.6, e-cigtank: 94.1 min) similarly in the cig and e-cigtank groups. For exposure times which equate the area under the cotinine-concentration curve, ∼6.4× (e-cigtank) and 4.6× (e-cigpod) more nicotine deposited in e-cig compared to cig exposed mice. CONCLUSIONS This study provides a basis for incorporating cotinine pharmacokinetics into preclinical exposure studies, allowing for longitudinal studies of structural and functional changes due to exposure.
Collapse
Affiliation(s)
- Matthew J Eden
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Yasmeen M Farra
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Jacqueline Matz
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Chiara Bellini
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Jessica M Oakes
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
16
|
Johnson NL, Patten T, Ma M, De Biasi M, Wesson DW. Chemosensory Contributions of E-Cigarette Additives on Nicotine Use. Front Neurosci 2022; 16:893587. [PMID: 35928010 PMCID: PMC9344001 DOI: 10.3389/fnins.2022.893587] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
While rates of smoking combustible cigarettes in the United States have trended down in recent years, use of electronic cigarettes (e-cigarettes) has dramatically increased, especially among adolescents. The vast majority of e-cigarette users consume "flavored" products that contain a variety of chemosensory-rich additives, and recent literature suggests that these additives have led to the current "teen vaping epidemic." This review, covering research from both human and rodent models, provides a comprehensive overview of the sensory implications of e-cigarette additives and what is currently known about their impact on nicotine use. In doing so, we specifically address the oronasal sensory contributions of e-cigarette additives. Finally, we summarize the existing gaps in the field and highlight future directions needed to better understand the powerful influence of these additives on nicotine use.
Collapse
Affiliation(s)
- Natalie L. Johnson
- Department of Pharmacology and Therapeutics, Center for Smell and Taste, Center for Addiction Research and Education, University of Florida, Gainesville, FL, United States
| | - Theresa Patten
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Minghong Ma
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Mariella De Biasi
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Daniel W. Wesson
- Department of Pharmacology and Therapeutics, Center for Smell and Taste, Center for Addiction Research and Education, University of Florida, Gainesville, FL, United States
| |
Collapse
|
17
|
Havermans A, Mallock N, Zervas E, Caillé-Garnier S, Mansuy T, Michel C, Pennings JLA, Schulz T, Schwarze PE, Solimini R, Tassin JP, Vardavas CI, Merino M, Pauwels CGGM, van Nierop LE, Lambré C, Bolling AK. Review of industry reports on EU priority tobacco additives part A: Main outcomes and conclusions. Tob Prev Cessat 2022; 8:27. [PMID: 35860504 PMCID: PMC9255285 DOI: 10.18332/tpc/151529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 02/01/2023]
Abstract
The European Union Tobacco Products Directive (EU TPD) mandates enhanced reporting obligations for tobacco manufacturers regarding 15 priority additives. Within the Joint Action on Tobacco Control (JATC), a review panel of independent experts was appointed for the scientific evaluation of the additive reports submitted by a consortium of 12 tobacco manufacturers. As required by the TPD, the reports were evaluated based on their comprehensiveness, methodology and conclusions. In addition, we evaluated the chemical, toxicological, addictive, inhalation facilitating and flavoring properties of the priority additives based on the submitted reports, supplemented by the panel's expert knowledge and some independent literature. The industry concluded that none of the additives is associated with concern. Due to significant methodological limitations, we question the scientific validity of these conclusions and conclude that they are not warranted. Our review demonstrates that many issues regarding toxicity, addictiveness and attractiveness of the additives have not been sufficiently addressed, and therefore concerns remain. For example, menthol facilitates inhalation by activation of the cooling receptor TRPM8. The addition of sorbitol and guar gum leads to a significant increase of aldehydes that may contribute to toxicity and addictiveness. Titanium dioxide particles (aerodynamic diameter <10 µm) are legally classified as carcinogenic when inhaled. For diacetyl no report was provided. Overall, the industry reports were not comprehensive, and the information presented provides an insufficient basis for the regulation of most additives. We, therefore, advise MS to consider alternative approaches such as the precautionary principle.
Collapse
Affiliation(s)
- Anne Havermans
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Nadja Mallock
- German Federal Institute for Risk Assessment, Berlin, Germany
| | - Efthimios Zervas
- Hellenic Thoracic Society, Athens, Greece
- School of Applied Arts and Sustainable Design, Hellenic Open University, Athens, Greece
| | | | - Thibault Mansuy
- French Agency for Food, Environmental and Occupational Health and Safety, Paris, France
| | - Cécile Michel
- French Agency for Food, Environmental and Occupational Health and Safety, Paris, France
| | - Jeroen L. A. Pennings
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Thomas Schulz
- German Federal Institute for Risk Assessment, Berlin, Germany
| | | | | | | | | | - Miguel Merino
- Andalusia Agency For Agriculture and Fisheries Development, Seville, Spain
| | - Charlotte G. G. M. Pauwels
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Lotte E. van Nierop
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Claude Lambré
- National Institute of Health and Medical Research, Paris, France
| | | |
Collapse
|
18
|
Akinola LS, Rahman Y, Ondo O, Gonzales J, Bagdas D, Jackson A, Davidson-Wert N, Damaj MI. Genotypic Differences in the Effects of Menthol on Nicotine Intake and Preference in Mice. Front Neurosci 2022; 16:905330. [PMID: 35769694 PMCID: PMC9234577 DOI: 10.3389/fnins.2022.905330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Menthol has been shown to exacerbate elements of nicotine addiction in humans and rodents; however, the mechanisms mediating its effects are not fully understood. This study examined the impact of genetic factors in menthol’s effects on oral nicotine consumption by comparing two inbred mouse strains with differing sensitivities to nicotine. C57BL/6J (B6J) mice are nicotine-preferring, while DBA/2J (D2J) mice are not. While the effects of menthol on oral nicotine consumption have been highlighted in B6J mice, it is unknown if they extend to the D2J strain as well. Consequently, adolescent (PND 21) and adult (PND 63), male and female D2J mice were subjected to the nicotine two-bottle choice (2BC) paradigm with orally and systemically administered menthol. Then, we evaluated its impact on nicotine pharmacological responses in conditioned reward and nociception after systemic administration and, lastly, investigated the potential involvement of the TAAR1 gene and α7 nAChRs in menthol’s effects. Menthol failed to enhance oral nicotine consumption in adult and adolescent female and male D2J mice. Moreover, this lack in effect was not due to nicotine concentration, oral aversion to menthol, or basal preference for nicotine. Menthol also failed to augment nicotine reward or enhance nicotine-induced antinociception in D2J mice, demonstrating that genetic background plays a significant role in sensitivity to menthol’s effects on nicotine. Furthermore, TAAR1 or α7 nAChRs did not seem to mediate menthol’s differential effects in D2J mice. These findings support the existence of genotype-specific mechanisms that may contribute to the variable effects of menthol in different populations.
Collapse
Affiliation(s)
- Lois S. Akinola
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, United States
- *Correspondence: Lois S. Akinola,
| | - Yumna Rahman
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, United States
| | - Olivia Ondo
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, United States
| | - Jada Gonzales
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, United States
| | - Deniz Bagdas
- Department of Psychiatry, School of Medicine, Yale University, New Haven, CT, United States
- Yale Tobacco Center of Regulatory Science, Yale School of Medicine, New Haven, CT, United States
| | - Asti Jackson
- Department of Psychiatry, School of Medicine, Yale University, New Haven, CT, United States
- Yale Tobacco Center of Regulatory Science, Yale School of Medicine, New Haven, CT, United States
| | - Nicole Davidson-Wert
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, United States
| | - M. Imad Damaj
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
19
|
Jabba SV, Erythropel HC, Torres DG, Delgado LA, Woodrow JG, Anastas PT, Zimmerman JB, Jordt SE. Synthetic Cooling Agents in US-marketed E-cigarette Refill Liquids and Popular Disposable E-cigarettes: Chemical Analysis and Risk Assessment. Nicotine Tob Res 2022; 24:1037-1046. [PMID: 35167696 PMCID: PMC9199944 DOI: 10.1093/ntr/ntac046] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 12/06/2021] [Accepted: 02/12/2022] [Indexed: 11/13/2022]
Abstract
INTRODUCTION Menthol, through its cooling and pleasant sensory effects, facilitates smoking and tobacco product initiation, resulting in the high popularity of mint/menthol-flavored E-cigarettes. More recently, E-cigarette vendors started marketing synthetic cooling agents as additives that impart a cooling effect but lack a characteristic minty odor. Knowledge about content of synthetic coolants in US-marketed E-cigarette products and associated health risks is limited. AIMS AND METHODS E-liquid vendor sites were searched with the terms "koolada", "kool/cool", "ice", or WS-3/WS-23, denoting individual cooling agents, and relevant refill E-liquids were purchased. "Ice" flavor varieties of Puffbar, the most popular disposable E-cigarette brand, were compared with non-"Ice" varieties. E-liquids were characterized, and synthetic coolants quantified using GC/MS. Margin of exposure (MOE), a risk assessment parameter, was calculated to assess the risk associated with synthetic coolant exposure from E-cigarette use. RESULTS WS-3 was detected in 24/25 refill E-liquids analyzed. All Puffbar flavor varieties contained either WS-23 (13/14) or WS-3 (5/14), in both "Ice"- and non-"Ice" flavors. Modeling consumption of WS-3 from vaped E-liquids, resulted in MOEs below the safe margin of 100 for most daily use scenarios. MOEs for WS-23 were <100 for 10/13 Puffbar flavors in all use scenarios. Puffbar power specifications are identical to Juul devices. CONCLUSIONS Synthetic cooling agents (WS-3/WS-23) were present in US-marketed E-cigarettes, at levels that may result in consumer exposures exceeding safety thresholds set by regulatory agencies. Synthetic coolants are not only found in mint- or menthol-flavored products but also in fruit- and candy-flavored products, including popular disposable E-cigarette products such as Puffbar. IMPLICATIONS Synthetic cooling agents are widely used in "kool/cool"- and "ice"-flavored E-liquids and in E-liquids without these labels, both as a potential replacement for menthol or to add cooling "notes" to nonmenthol flavors. These agents may be used to bypass current and future regulatory limits on menthol content in tobacco products, and not just E-cigarettes. Because synthetic cooling agents are odorless, they may not fall under the category of "characterizing flavor", potentially circumventing regulatory measures based on this concept. Regulators need to consider the additional health risks associated with exposure to synthetic cooling agents.
Collapse
Affiliation(s)
| | | | | | | | | | - Paul T Anastas
- Environmental Health Sciences Department, School of Public Health, Yale University, New Haven, CT, USA
| | - Julie B Zimmerman
- Yale Center for the Study of Tobacco Products (YCSTP), Department of Psychiatry, Yale School of Medicine, New Haven, CT,USA,Department of Chemical and Environmental Engineering, Yale University, New Haven, CT,USA
| | - Sven-Eric Jordt
- Corresponding Author: Sven-Eric Jordt, PhD, Department of Anesthesiology, Duke University School of Medicine, 3 Genome Ct., Durham, NC 27710-3094, USA. E-mail:
| |
Collapse
|
20
|
Kuehl PJ, McDonald JD, Weber DT, Khlystov A, Nystoriak MA, Conklin DJ. Composition of aerosols from thermal degradation of flavors used in ENDS and tobacco products. Inhal Toxicol 2022; 34:319-328. [PMID: 35913821 PMCID: PMC9830633 DOI: 10.1080/08958378.2022.2103602] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Aim: The cardiovascular toxicity of unheated and heated flavorants and their products as commonly present in electronic cigarette liquids (e-liquids) was evaluated previously in vitro. Based on the results of in vitro assays, cinnamaldehyde, eugenol, menthol, and vanillin were selected to conduct a detailed chemical analysis of the aerosol generated following heating of each compound both at 250 and 750 °C. Materials and Methods: Each flavoring was heated in a drop-tube furnace within a quartz tube. The combustion atmosphere was captured using different methods to enable analysis of 308 formed compounds. Volatile organic compounds (VOCs) were captured with an evacuated Summa canister and assayed via gas chromatography interfaced with mass spectrometry (GC-MS). Carbonyls (aldehydes and ketones) were captured using a 2,4-dinitrophenylhydrazine (DNPH) cartridge and assayed via a high-performance liquid chromatography-ultra-violet (HPLC-UV) assay. Polyaromatic hydrocarbons (PAHs) were captured using an XAD cartridge and filter, and extracts were assayed using GC-MS/MS. Polar compounds were assayed after derivatization of the XAD/filter extracts and analyzed via GC-MS. Conclusion: At higher temperature, both cinnamaldehyde and menthol combustion significantly increased formaldehyde and acetaldehyde levels. At higher temperature, cinnamaldehyde, eugenol, and menthol resulted in increased benzene concentrations. At low temperature, all four compounds led to higher levels of benzoic acid. These data show that products of thermal degradation of common flavorant compounds vary by flavorant and by temperature and include a wide variety of harmful and potentially harmful constituents (HPHCs).
Collapse
Affiliation(s)
| | | | | | | | - Matthew A. Nystoriak
- American Heart Association-Tobacco Regulation and Addiction Center, University of Louisville, Louisville, KY
| | - Daniel J. Conklin
- American Heart Association-Tobacco Regulation and Addiction Center, University of Louisville, Louisville, KY
| |
Collapse
|
21
|
Abaricia JO, Whitehead AJ, Kandalam S, Shah AH, Hotchkiss KM, Morandini L, Olivares-Navarrete R. E-cigarette Aerosol Mixtures Inhibit Biomaterial-Induced Osseointegrative Cell Phenotypes. MATERIALIA 2021; 20:101241. [PMID: 34778733 PMCID: PMC8589285 DOI: 10.1016/j.mtla.2021.101241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
OBJECTIVES Smoking is a known contributor to the failure of dental implants. Despite a decline in cigarette use, the popularity of e-cigarettes has exploded. However, little is known about how e-cigarettes affect the biologic response to implants. This study examines the effect of e-cigarette aerosol mixtures (ecig-AM) on macrophage activation and osteoblastogenesis of mesenchymal stem cells (MSCs) in response to titanium (Ti) implant surfaces. METHODS Ecig-AMs were prepared by bubbling aerosol through PBS. Human-derived MSCs or murine-derived macrophages were plated on smooth, rough-hydrophobic, or rough-hydrophilic Ti surfaces in media supplemented with ecig-AM. In macrophages, expression of inflammatory markers was measured by qPCR and macrophage immunophenotype characterized by flow cytometry after 24 hours of exposure. In MSCs, expression of osteogenic markers and inflammatory cytokines was measured by qPCR and ELISA, while alkaline phosphatase activity (ALP) was determined by colorimetric assay. RESULTS Ecig-AM polarized primary macrophages into a pro-inflammatory state with higher effect on ecig-AM with flavorants and nicotine. Metabolic activity of MSCs decreased in a concentration dependent fashion and was stronger in ecig-AM containing nicotine. MSCs reduced expression of osteogenic markers in response to ecig-AM, but increased RANKL secretion, particularly at the highest ecig-AM concentrations. The effect of ecig-AM exposure was lessened when macrophages or MSCs were cultured on rough-hydrophilic substrates. SIGNIFICANCE Ecig-AM activated macrophages into a pro-inflammatory phenotype and impaired MSC-to-osteoblast differentiation in response to Ti implant surfaces. These effects were potentiated by flavorants and nicotine, suggesting that e-cigarette use may compromise the osseointegration of dental implants.
Collapse
Affiliation(s)
| | | | - Suraj Kandalam
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Arth H. Shah
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Kelly M Hotchkiss
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Lais Morandini
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Rene Olivares-Navarrete
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
22
|
Nicotine self-administration with menthol and audiovisual cue facilitates differential packaging of CYP2A6 and cytokines/chemokines in rat plasma extracellular vesicles. Sci Rep 2021; 11:17393. [PMID: 34462474 PMCID: PMC8405708 DOI: 10.1038/s41598-021-96807-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 08/10/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, we investigated whether intravenously self-administered nicotine with menthol and audiovisual cue modulates nicotine-metabolizing CYP2A6, oxidative stress modulators, and cytokines/chemokines in plasma extracellular vesicles (EVs) in rats. We assigned rats to self-administered nicotine with: (a) audiovisual cue (AV), (b) menthol, and (c) menthol and AV cue. We found increased levels of CD9 in plasma EVs after self-administered nicotine with menthol and AV cue. Moreover, expression of CYP2A6 in plasma EVs was significantly increased after self-administered nicotine in response to menthol and AV cue. However, despite an upward trend on SOD1 and catalase, increase was not found to be statistically significant, while total antioxidant capacity was found to be significantly increased in plasma and plasma EVs obtained after self-administered nicotine with menthol and AV cue. Among cytokine and chemokine profiling, we found a significant increase in the levels of MCP-1 after self-administered nicotine with menthol and AV cue and complete packaging of IL-1β in EVs. Taken together, the study provides evidence that nicotine in response to menthol and AV cues can package altered levels of CYP2A6, and cytokines/chemokines in plasma EVs that may contribute to cell–cell communication, nicotine metabolism, and inflammation upon cigarette smoking.
Collapse
|
23
|
Cooper SY, Akers AT, Journigan VB, Henderson BJ. Novel Putative Positive Modulators of α4β2 nAChRs Potentiate Nicotine Reward-Related Behavior. Molecules 2021; 26:4793. [PMID: 34443380 PMCID: PMC8398432 DOI: 10.3390/molecules26164793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 11/18/2022] Open
Abstract
The popular tobacco and e-cigarette chemical flavorant (-)-menthol acts as a nonselective, noncompetitive antagonist of nicotinic acetylcholine receptors (nAChRs), and contributes to multiple physiological effects that exacerbates nicotine addiction-related behavior. Menthol is classically known as a TRPM8 agonist; therefore, some have postulated that TRPM8 antagonists may be potential candidates for novel nicotine cessation pharmacotherapies. Here, we examine a novel class of TRPM8 antagonists for their ability to alter nicotine reward-related behavior in a mouse model of conditioned place preference. We found that these novel ligands enhanced nicotine reward-related behavior in a mouse model of conditioned place preference. To gain an understanding of the potential mechanism, we examined these ligands on mouse α4β2 nAChRs transiently transfected into neuroblastoma-2a cells. Using calcium flux assays, we determined that these ligands act as positive modulators (PMs) on α4β2 nAChRs. Due to α4β2 nAChRs' important role in nicotine dependence, as well as various neurological disorders including Parkinson's disease, the identification of these ligands as α4β2 nAChR PMs is an important finding, and they may serve as novel molecular tools for future nAChR-related investigations.
Collapse
Affiliation(s)
- Skylar Y. Cooper
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25703, USA; (S.Y.C.); (A.T.A.); (V.B.J.)
| | - Austin T. Akers
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25703, USA; (S.Y.C.); (A.T.A.); (V.B.J.)
| | - Velvet Blair Journigan
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25703, USA; (S.Y.C.); (A.T.A.); (V.B.J.)
- Department of Pharmaceutical Sciences, School of Pharmacy, Marshall University, Huntington, WV 25701, USA
| | - Brandon J. Henderson
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25703, USA; (S.Y.C.); (A.T.A.); (V.B.J.)
| |
Collapse
|
24
|
Jackson A, Green B, Erythropel HC, Kong G, Cavallo DA, Eid T, Gueorguieva R, Buta E, O’Malley SS, Krishnan-Sarin S. Influence of menthol and green apple e-liquids containing different nicotine concentrations among youth e-cigarette users. Exp Clin Psychopharmacol 2021; 29:355-365. [PMID: 32297782 PMCID: PMC7572568 DOI: 10.1037/pha0000368] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
E-cigarettes are popular among adolescents. Given that flavors enhance e-cigarette appeal, this study examined the influence of flavors on nicotine in e-cigarettes. Youth e-cigarette users (average 26.2 days [SD = 3.6] in past 28 days) were randomized to use e-cigarettes containing 6 or 12 mg/mL of freebase nicotine and completed 4 test sessions. During the first 3 test sessions, participants completed 3 fixed puffing bouts (1 puffing bout = 10 puffs, 3 s each, 30-s interval), using menthol, green-apple, and unflavored e-liquids (50 propylene glycol [PG]/50 vegetable glycerin [VG]) with their assigned nicotine concentration in a random order using a ∼5.5-W V2 e-cigarette device. After each puffing bout, participants assessed subjective effects of nicotine and flavor. In the 4th test session, participants used any of the e-liquids they had tried in the earlier sessions, ad libitum for 60 min and the amount of e-liquid used for each flavor and the number of puffs was assessed. Participants (n = 49; 6 mg/mL [n = 24]; 12 mg/mL [n = 25]) were 63.3% male, 65.3% non-Hispanic White with an average age of 18.7 (SD = 0.9). Mixed models analysis revealed that green apple and 6 mg/mL of nicotine independently increased liking of e-cigarette taste. In addition, green apple produced higher ratings of fruitiness, sourness, sweetness, and menthol produced higher ratings of coolness. We did not observe any interactions between nicotine and flavor. Youth liked the taste of e-liquids containing green-apple flavor or low nicotine concentration which highlights the appeal of fruit flavors in e-cigarettes to adolescents. (PsycInfo Database Record (c) 2021 APA, all rights reserved).
Collapse
Affiliation(s)
- Asti Jackson
- Department of Psychiatry, Yale School of Medicine
| | - Barry Green
- The John B. Pierce Laboratory and Department of Surgery, Yale School of Medicine
| | | | - Grace Kong
- Department of Psychiatry, Yale School of Medicine
| | | | - Tore Eid
- Department of Laboratory Medicine, Yale School of Medicine
| | | | - Eugenia Buta
- Department of Biostatistics, Yale School of Public Health
| | | | | |
Collapse
|
25
|
Quinones Tavarez Z, Li D, Croft DP, Gill SR, Ossip DJ, Rahman I. The Interplay Between Respiratory Microbiota and Innate Immunity in Flavor E-Cigarette Vaping Induced Lung Dysfunction. Front Microbiol 2020; 11:589501. [PMID: 33391205 PMCID: PMC7772214 DOI: 10.3389/fmicb.2020.589501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022] Open
Abstract
Global usage of electronic nicotine delivery systems (ENDS) has been increasing in the last decade. ENDS are non-combustible tobacco products that heat and aerosolize a liquid containing humectants, with added flavorings and often nicotine. Though ENDS are promoted as a less harmful alternative to smoking, current evidence links their use to a wide range of deleterious health effects including acute and chronic lung damage. ENDS can elicit an inflammatory response and impair the innate immune response in the lungs. Exposure to ENDS flavorings results in abnormal activation of the lung epithelial cells and β-defensins, dysfunction of the macrophage phagocytic activity, increased levels of mucin (MUC5AC) and abnormal activation of the neutrophilic response (NETosis). ENDS menthol flavorings disrupt innate immunity and might be associated with allergies and asthma through activation of transient receptor potential ankyrin 1 (TRAP1). Recent studies have expanded our understanding of the relationship between the homeostasis of lung innate immunity and the immunomodulatory effect of the host-microbiota interaction. Alterations of the normal respiratory microbiota have been associated with chronic obstructive pulmonary disease (COPD), asthma, atopy and cystic fibrosis complications which are strongly associated with smoking and potentially with ENDS use. Little is known about the short-and long-term effects of ENDS on the respiratory microbiota, their impact on the innate immune response and their link to pulmonary health and disease. Here we review the interaction between the innate immune system and the respiratory microbiota in the pathogenesis of ENDS-induced pulmonary dysfunction and identify future areas of research.
Collapse
Affiliation(s)
- Zahira Quinones Tavarez
- Department of Clinical and Translational Research, University of Rochester Medical Center, Rochester, NY, United States
| | - Dongmei Li
- Department of Clinical and Translational Research, University of Rochester Medical Center, Rochester, NY, United States
| | - Daniel P. Croft
- Department of Medicine, Pulmonary Diseases and Critical Care, University of Rochester, Rochester, NY, United States
| | - Steven R. Gill
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Deborah J. Ossip
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, United States
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
26
|
Morales-Mantilla DE, Huang X, Erice P, Porter P, Zhang Y, Figueroa M, Chandra J, King KY, Kheradmand F, Rodríguez A. Cigarette Smoke Exposure in Mice using a Whole-Body Inhalation System. J Vis Exp 2020. [PMID: 33165327 DOI: 10.3791/61793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Close to 14% of adults in the United States were reported to smoke cigarettes in 2018. The effects of cigarette smoke (CS) on lungs and cardiovascular diseases have been widely studied, however, the impact of CS in other tissues and organs such as blood and bone marrow remain incompletely defined. Finding the appropriate system to study the effects of CS in rodents can be prohibitively expensive and require the purchase of commercially available systems. Thus, we set out to build an affordable, reliable, and versatile system to study the pathologic effects of CS in mice. This whole-body inhalation exposure system (WBIS) set-up mimics the breathing and puffing of cigarettes by alternating exposure to CS and clean air. Here we show that this do-it-yourself (DIY) system induces airway inflammation and lung emphysema in mice after 4-months of cigarette smoke exposure. The effects of whole-body inhalation (WBI) of CS on hematopoietic stem and progenitor cells (HSPCs) in the bone marrow using this apparatus are also shown.
Collapse
Affiliation(s)
- Daniel E Morales-Mantilla
- Program in Immunology, Baylor College of Medicine; Department of Pediatrics, Section of Infectious Diseases, Baylor College of Medicine
| | - Xinyan Huang
- Department of Medicine - Immunology Allergy and Rheumatology, Baylor College of Medicine; Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University
| | - Philip Erice
- Program in Immunology, Baylor College of Medicine; Department of Medicine - Immunology Allergy and Rheumatology, Baylor College of Medicine
| | - Paul Porter
- Department of Medicine, Pulmonary, Critical Care, Sleep Medicine, Baylor College of Medicine
| | - Yun Zhang
- Program in Immunology, Baylor College of Medicine; Department of Pathology and Immunology, Baylor College of Medicine
| | - Mary Figueroa
- Department of Pediatrics, Research and Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center
| | - Joya Chandra
- Department of Pediatrics, Research and Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center
| | - Katherine Y King
- Department of Pediatrics, Section of Infectious Diseases, Baylor College of Medicine
| | - Farrah Kheradmand
- Department of Medicine, Pulmonary, Critical Care, Sleep Medicine, Baylor College of Medicine; Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center
| | - Antony Rodríguez
- Department of Medicine - Immunology Allergy and Rheumatology, Baylor College of Medicine; Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center;
| |
Collapse
|
27
|
Kopa PN, Pawliczak R. Menthol additives to tobacco products. Reasons for withdrawing mentholated cigarettes in European Union on 20th may 2020 according to tobacco products directive (2014/40/EU). Toxicol Mech Methods 2020; 30:555-561. [PMID: 32746758 DOI: 10.1080/15376516.2020.1805662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Menthol, which is a natural cyclic monoterpene alcohol with a minty smell, is one of the main constituents of essential oils that naturally occur in some aromatic plants, such as Mentha × piperita L. This natural compound shows many biological properties, such as anesthetic, analgesic, antibacterial and antifungal, immunomodulating, and skin penetration-enhancing. It is added to a variety of goods, such as food, oral-care products, OTC products, cosmetics, and tobacco products. Menthol is not just a simple flavoring agent, especially when it comes to tobacco products. Its ability to 'mask' the negative effects of nicotine and its additional positive sensory effects makes it the most common additive in such products. For the customers, mentholated tobacco products may be mistakenly perceived as less harmful for health, which may increase their consumption. However, as the evidence shows, menthol cigarettes are no safer than conventional cigarettes and may lead to more frequent disease exacerbation during prolonged exposure to smoke from such products. In addition, because of its complex interactions with nicotine, menthol may affect smoking behavior and may increase addiction to nicotine. For those reasons, the European Union banned flavored cigarettes (whose sale size reached more than 3% of the total tobacco product market) by implementing the Tobacco Products Directive (2014/40/EU) on 20th May 2020. While the menthol ban was based on health concerns, the ultimate effect on consumers, regarding potential quitting, is yet to be determined.
Collapse
Affiliation(s)
- Paulina Natalia Kopa
- Faculty of Medicine, Department of Immunopathology, Division of Biomedical Science, Medical University of Lodz, Lodz, Poland
| | - Rafał Pawliczak
- Faculty of Medicine, Department of Immunopathology, Division of Biomedical Science, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
28
|
Luo J, Chen L, Lu X, Yuan J, Xie Z, Li D. Analysis of potential associations of JUUL flavours with health symptoms based on user-generated data from Reddit. Tob Control 2020; 30:534-541. [PMID: 32709604 DOI: 10.1136/tobaccocontrol-2019-055439] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 11/04/2022]
Abstract
BACKGROUND The rise of the popular e-cigarette, JUUL, has been partly attributed to various teen-friendly e-liquid flavours offered. However, the possible health risks associated with each e-liquid flavour still remain unclear. This research focuses on the possible associations between JUUL flavours and health symptoms using social media data from Reddit. METHODS Keyword filtering was used to obtain 5,746 JUUL flavour-related posts and 7927 health symptom-related posts from June 2015 to April 2019 from Reddit. Posts from September 2016 to April 2019 were used to conduct temporal analysis for nine health symptom categories and the 8 JUUL flavours. Finally, associations between the JUUL flavours and health symptom categories were examined on the user level using generalised estimating equation models. RESULTS According to our temporal analysis, Mango and Mint were the most discussed JUUL flavours on Reddit. Respiratory and throat symptoms were the most discussed health issues together with JUUL on Reddit over time. Respiratory symptoms had potential associations with the Mango, Mint and Fruit JUUL flavours. Digestive symptoms had a potential association with the Crème flavour, psychological symptoms had a potential association with the Cucumber flavour, and cardiovascular symptoms had a potential association with the tobacco flavours. CONCLUSIONS Mango and Mint were the two most mentioned JUUL flavours on Reddit. Certain JUUL flavours were more likely to be mentioned together with certain categories of health symptoms by the same Reddit users. Our findings could prompt further medical research into the health symptoms associated with different e-liquid flavours.
Collapse
Affiliation(s)
- Joyce Luo
- Department of Operations Research & Financial Engineering, Princeton University, Princeton, New Jersey, USA
| | - Long Chen
- Department of Computer Science, University of Rochester, Rochester, New York, USA
| | - Xinyi Lu
- Goergen Institute for Data Science, University of Rochester, Rochester, New York, USA
| | - Jianbo Yuan
- Department of Computer Science, University of Rochester, Rochester, New York, USA
| | - Zidian Xie
- Department of Clinical & Translational Research, University of Rochester Medical Center, Rochester, New York, USA
| | - Dongmei Li
- Department of Clinical & Translational Research, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
29
|
Farra YM, Eden MJ, Coleman JR, Kulkarni P, Ferris CF, Oakes JM, Bellini C. Acute neuroradiological, behavioral, and physiological effects of nose-only exposure to vaporized cannabis in C57BL/6 mice. Inhal Toxicol 2020; 32:200-217. [PMID: 32475185 DOI: 10.1080/08958378.2020.1767237] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Objective: The rapid increase of cannabis consumption reinforces the need to elucidate the health hazards of this practice. The presence of fine particulate matter in cannabis smoke and vapor poses a major concern, as it may contribute to cardiopulmonary disease. To facilitate the assessment of risks associated with cannabis inhalation, we developed and characterized a method for exposing mice to cannabis in a way that mimics the delivery of the drug to the airways of smokers. Materials and Methods: Cannabis (10.3% THC, 0.05% CBD) was vaporized to generate aerosols with a reproducible particle profile. Aerosols were acutely delivered to male, adult C57BL/6 mice via a nose-only exposure system. Serum THC levels were measured for increasing cannabis doses. Blood pressure and heart rate were recorded at baseline and following exposure. Behavioral response to cannabis inhalation in the open field was documented. Awake neurological activity upon cannabis exposure was monitored using BOLD fMRI.Results and Discussion: Cannabis aerosols contained particles with count median diameter of 243 ± 39 nm and geometric standard deviation of 1.56 ± 0.06. Blood serum THC levels increased linearly with aerosolized mass and peaked at 136 ± 5 ng/mL. Cannabis inhalation decreased heart rate and blood pressure but promoted anxiety-like behavior. Observed differences in BOLD activation volumes linked cannabis to increased awareness to sensory stimuli and reduced behavioral arousal.Conclusions: Quantified physiological, behavioral, and neurological responses served as validation for our mouse model of cannabis inhalation. Animal models of aerosol exposure will be instrumental for uncovering the health outcomes of chronic cannabis use.
Collapse
Affiliation(s)
- Yasmeen M Farra
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Matthew J Eden
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - James R Coleman
- Department of Psychology, Center for Translational NeuroImaging, Northeastern University, Boston, MA, USA
| | - Praveen Kulkarni
- Department of Psychology, Center for Translational NeuroImaging, Northeastern University, Boston, MA, USA
| | - Craig F Ferris
- Department of Psychology, Center for Translational NeuroImaging, Northeastern University, Boston, MA, USA
| | - Jessica M Oakes
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Chiara Bellini
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
30
|
Ho J, Sciuscio D, Kogel U, Titz B, Leroy P, Vuillaume G, Talikka M, Martin E, Pospisil P, Lebrun S, Xia W, Lee T, Chng YX, Phillips BW, Veljkovic E, Guedj E, Xiang Y, Ivanov NV, Peitsch MC, Hoeng J, Vanscheeuwijck P. Evaluation of toxicity of aerosols from flavored e-liquids in Sprague-Dawley rats in a 90-day OECD inhalation study, complemented by transcriptomics analysis. Arch Toxicol 2020; 94:2179-2206. [PMID: 32367274 PMCID: PMC7303093 DOI: 10.1007/s00204-020-02759-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 04/22/2020] [Indexed: 01/08/2023]
Abstract
The use of flavoring substances is an important element in the development of reduced-risk products for adult smokers to increase product acceptance and encourage switching from cigarettes. In a first step towards characterizing the sub-chronic inhalation toxicity of neat flavoring substances, a study was conducted using a mixture of the substances in a base solution of e-liquid, where the standard toxicological endpoints of the nebulized aerosols were supplemented with transcriptomics analysis. The flavor mixture was produced by grouping 178 flavors into 26 distinct chemical groups based on structural similarities and potential metabolic and biological effects. Flavoring substances predicted to show the highest toxicological effect from each group were selected as the flavor group representatives (FGR). Following Organization for Economic Cooperation and Development Testing Guideline 413, rats were exposed to three concentrations of the FGR mixture in an e-liquid composed of nicotine (23 µg/L), propylene glycol (1520 µg/L), and vegetable glycerin (1890 µg/L), while non-flavored and no-nicotine mixtures were included as references to identify potential additive or synergistic effects between nicotine and the flavoring substances. The results indicated that the inhalation of an e-liquid containing the mixture of FGRs caused very minimal local and systemic toxic effects. In particular, there were no remarkable clinical (in-life) observations in flavored e-liquid-exposed rats. The biological effects related to exposure to the mixture of neat FGRs were limited and mainly nicotine-mediated, including changes in hematological and blood chemistry parameters and organ weight. These results indicate no significant additive biological changes following inhalation exposure to the nebulized FGR mixture above the nicotine effects measured in this sub-chronic inhalation study. In a subsequent study, e-liquids with FGR mixtures will be aerosolized by thermal treatment and assessed for toxicity.
Collapse
Affiliation(s)
- Jenny Ho
- PMI S&I, Philip Morris International Research Laboratories Pte. Ltd., Science Park II, Singapore, Singapore
| | - Davide Sciuscio
- PMI S&I, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Ulrike Kogel
- PMI S&I, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Bjoern Titz
- PMI S&I, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Patrice Leroy
- PMI S&I, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Gregory Vuillaume
- PMI S&I, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Marja Talikka
- PMI S&I, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Elyette Martin
- PMI S&I, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Pavel Pospisil
- PMI S&I, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Stefan Lebrun
- PMI S&I, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Wenhao Xia
- PMI S&I, Philip Morris International Research Laboratories Pte. Ltd., Science Park II, Singapore, Singapore
| | - Tom Lee
- PMI S&I, Philip Morris International Research Laboratories Pte. Ltd., Science Park II, Singapore, Singapore
| | - Yun Xuan Chng
- PMI S&I, Philip Morris International Research Laboratories Pte. Ltd., Science Park II, Singapore, Singapore
| | - Blaine W Phillips
- PMI S&I, Philip Morris International Research Laboratories Pte. Ltd., Science Park II, Singapore, Singapore
| | - Emilija Veljkovic
- PMI S&I, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Emmanuel Guedj
- PMI S&I, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Yang Xiang
- PMI S&I, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Nikolai V Ivanov
- PMI S&I, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Manuel C Peitsch
- PMI S&I, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Julia Hoeng
- PMI S&I, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Patrick Vanscheeuwijck
- PMI S&I, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| |
Collapse
|
31
|
Erythropel HC, Jabba SV, DeWinter TM, Mendizabal M, Anastas PT, Jordt SE, Zimmerman JB. Formation of flavorant-propylene Glycol Adducts With Novel Toxicological Properties in Chemically Unstable E-Cigarette Liquids. Nicotine Tob Res 2020; 21:1248-1258. [PMID: 30335174 DOI: 10.1093/ntr/nty192] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 09/13/2018] [Indexed: 12/12/2022]
Abstract
INTRODUCTION "Vaping" electronic cigarettes (e-cigarettes) is increasingly popular with youth, driven by the wide range of available flavors, often created using flavor aldehydes. The objective of this study was to examine whether flavor aldehydes remain stable in e-cigarette liquids or whether they undergo chemical reactions, forming novel chemical species that may cause harm to the user. METHODS Gas chromatography was used to determine concentrations of flavor aldehydes and reaction products in e-liquids and vapor generated from a commercial e-cigarette. Stability of the detected reaction products in aqueous media was monitored by ultraviolet spectroscopy and nuclear magnetic resonance spectroscopy, and their effects on irritant receptors determined by fluorescent calcium imaging in HEK-293T cells. RESULTS Flavor aldehydes including benzaldehyde, cinnamaldehyde, citral, ethylvanillin, and vanillin rapidly reacted with the e-liquid solvent propylene glycol (PG) after mixing, and upward of 40% of flavor aldehyde content was converted to flavor aldehyde PG acetals, which were also detected in commercial e-liquids. Vaping experiments showed carryover rates of 50%-80% of acetals to e-cigarette vapor. Acetals remained stable in physiological aqueous solution, with half-lives above 36 hours, suggesting they persist when inhaled by the user. Acetals activated aldehyde-sensitive TRPA1 irritant receptors and aldehyde-insensitive TRPV1 irritant receptors. CONCLUSIONS E-liquids are potentially reactive chemical systems in which new compounds can form after mixing of constituents and during storage, as demonstrated here for flavor aldehyde PG acetals, with unexpected toxicological effects. For regulatory purposes, a rigorous process is advised to monitor the potentially changing composition of e-liquids and e-vapors over time, to identify possible health hazards. IMPLICATIONS This study demonstrates that e-cigarette liquids can be chemically unstable, with reactions occurring between flavorant and solvent components immediately after mixing at room temperature. The resulting compounds have toxicological properties that differ from either the flavorants or solvent components. These findings suggest that the reporting of manufacturing ingredients of e-liquids is insufficient for a safety assessment. The establishment of an analytical workflow to detect newly formed compounds in e-liquids and their potential toxicological effects is imperative for regulatory risk analysis.
Collapse
Affiliation(s)
- Hanno C Erythropel
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT.,Yale Tobacco Center of Regulatory Science, Department of Psychiatry, Yale School of Medicine, New Haven, CT
| | - Sairam V Jabba
- Yale Tobacco Center of Regulatory Science, Department of Psychiatry, Yale School of Medicine, New Haven, CT.,Department of Anesthesiology, Duke University School of Medicine, Durham, NC
| | - Tamara M DeWinter
- Yale Tobacco Center of Regulatory Science, Department of Psychiatry, Yale School of Medicine, New Haven, CT.,Yale School of Forestry and Environmental Studies, Yale University, New Haven, CT
| | - Melissa Mendizabal
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT
| | - Paul T Anastas
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT.,Yale School of Forestry and Environmental Studies, Yale University, New Haven, CT.,Department of Chemistry, Yale University, New Haven, CT.,Yale School of Public Health, Yale University, New Haven, CT
| | - Sven E Jordt
- Yale Tobacco Center of Regulatory Science, Department of Psychiatry, Yale School of Medicine, New Haven, CT.,Department of Anesthesiology, Duke University School of Medicine, Durham, NC
| | - Julie B Zimmerman
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT.,Yale Tobacco Center of Regulatory Science, Department of Psychiatry, Yale School of Medicine, New Haven, CT.,Yale School of Forestry and Environmental Studies, Yale University, New Haven, CT
| |
Collapse
|
32
|
Journigan VB, Feng Z, Rahman S, Wang Y, Amin ARMR, Heffner CE, Bachtel N, Wang S, Gonzalez-Rodriguez S, Fernández-Carvajal A, Fernández-Ballester G, Hilton JK, Van Horn WD, Ferrer-Montiel A, Xie XQ, Rahman T. Structure-Based Design of Novel Biphenyl Amide Antagonists of Human Transient Receptor Potential Cation Channel Subfamily M Member 8 Channels with Potential Implications in the Treatment of Sensory Neuropathies. ACS Chem Neurosci 2020; 11:268-290. [PMID: 31850745 DOI: 10.1021/acschemneuro.9b00404] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Structure-activity relationship studies of a reported menthol-based transient receptor potential cation channel subfamily M member 8 channel (TRPM8) antagonist, guided by computational simulations and structure-based design, uncovers a novel series of TRPM8 antagonists with >10-fold selectivity versus related TRP subtypes. Spiro[4.5]decan-8-yl analogue 14 inhibits icilin-evoked Ca2+ entry in HEK-293 cells stably expressing human TRPM8 (hTRPM8) with an IC50 of 2.4 ± 1.0 nM, while in whole-cell patch-clamp recordings this analogue inhibits menthol-evoked currents with a hTRPM8 IC50 of 64 ± 2 nM. Molecular dynamics (MD) simulations of compound 14 in our homology model of hTRPM8 suggest that this antagonist forms extensive hydrophobic contacts within the orthosteric site. In the wet dog shakes (WDS) assay, compound 14 dose-dependently blocks icilin-triggered shaking behaviors in mice. Upon local administration, compound 14 dose dependently inhibits cold allodynia evoked by the chemotherapy oxaliplatin in a murine model of peripheral neuropathy at microgram doses. Our findings suggest that 14 and other biphenyl amide analogues within our series can find utility as potent antagonist chemical probes derived from (-)-menthol as well as small molecule therapeutic scaffolds for chemotherapy-induced peripheral neuropathy (CIPN) and other sensory neuropathies.
Collapse
Affiliation(s)
- V. Blair Journigan
- Department of Pharmaceutical Sciences, School of Pharmacy, Marshall University, Huntington, West Virginia 25755, United States
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia 25755, United States
| | - Zhiwei Feng
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Saifur Rahman
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1TN, United Kingdom
| | - Yuanqiang Wang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - A. R. M. Ruhul Amin
- Department of Pharmaceutical Sciences, School of Pharmacy, Marshall University, Huntington, West Virginia 25755, United States
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia 25755, United States
| | - Colleen E. Heffner
- Department of Pharmaceutical Sciences, School of Pharmacy, Marshall University, Huntington, West Virginia 25755, United States
| | - Nicholas Bachtel
- Department of Pharmaceutical Sciences, School of Pharmacy, Marshall University, Huntington, West Virginia 25755, United States
| | - Siyi Wang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Sara Gonzalez-Rodriguez
- IDiBE: Instituto de Investigación, Desarrollo e innovación en Biotecnología sanitaria de Elche, Universitas Miguel Hernández, 03202 Elche, Spain
| | - Asia Fernández-Carvajal
- IDiBE: Instituto de Investigación, Desarrollo e innovación en Biotecnología sanitaria de Elche, Universitas Miguel Hernández, 03202 Elche, Spain
| | - Gregorio Fernández-Ballester
- IDiBE: Instituto de Investigación, Desarrollo e innovación en Biotecnología sanitaria de Elche, Universitas Miguel Hernández, 03202 Elche, Spain
| | - Jacob K. Hilton
- The School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- the Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States
- The Magnetic Resonance Research Center, Arizona State University, Tempe, Arizona 85287, United States
| | - Wade D. Van Horn
- The School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- the Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States
- The Magnetic Resonance Research Center, Arizona State University, Tempe, Arizona 85287, United States
| | - Antonio Ferrer-Montiel
- IDiBE: Instituto de Investigación, Desarrollo e innovación en Biotecnología sanitaria de Elche, Universitas Miguel Hernández, 03202 Elche, Spain
| | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Taufiq Rahman
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1TN, United Kingdom
| |
Collapse
|
33
|
Cwalina SN, Majmundar A, Unger JB, Barrington-Trimis JL, Pentz MA. Adolescent menthol cigarette use and risk of nicotine dependence: Findings from the national Population Assessment on Tobacco and Health (PATH) study. Drug Alcohol Depend 2020; 206:107715. [PMID: 31760252 PMCID: PMC6980659 DOI: 10.1016/j.drugalcdep.2019.107715] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 10/03/2019] [Accepted: 10/07/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND Menthol cigarettes appeal to adolescents because they mask the harsh taste and sensation of tobacco smoke thereby making it easier to inhale the smoke. As a result, menthol cigarette users expose themselves to higher levels of nicotine relative to non-menthol cigarettes and increase their risk for developing nicotine dependence. We examined whether adolescent menthol smokers (vs. non-menthol smokers) reported higher nicotine dependence. METHODS Data were from adolescent past 30-day cigarette smokers participating in Wave 2 of the Population Assessment of Tobacco and Health survey (n = 434). Nicotine dependence was assessed using eight items from the Wisconsin Inventory of Smoking Dependence Motives corresponding to individual subscale constructs. Linear regression models evaluated the association of past 30-day menthol (vs. non-menthol) cigarette use with each dependence outcome in separate models, adjusting for age, gender, race, and other tobacco product use. RESULTS 49.5% of past 30-day youth cigarette smokers reported smoking menthol cigarettes. In adjusted models, menthol smokers (vs. non-menthol smokers) reported significantly higher nicotine dependence for three constructs: craving (p = 0.005), affiliative attachment (p = 0.005), and tolerance (p = 0.003). No differences for menthol vs. non-menthol smokers were observed for loss of control, negative reinforcement, cognitive enhancement, automaticity, or social environment after correction for multiple comparisons. CONCLUSIONS Findings suggest that menthol cigarette smokers are not just more physically dependent on nicotine but also experience increased emotional attachments to cigarettes compared to their non-menthol smoking peers. Because adolescents are vulnerable to developing nicotine dependence, tobacco control policies that restrict youth access to menthol cigarettes are urgently needed.
Collapse
Affiliation(s)
- Sam N. Cwalina
- Corresponding author at: 2001 N. Soto Street, Los Angeles, CA 90089, United States. (S.N. Cwalina)
| | - Anuja Majmundar
- Department of Preventive Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA 90089, United States.
| | | | | | - Mary Ann Pentz
- Department of Preventive Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA 90089, United States.
| |
Collapse
|
34
|
Flavorant-Solvent Reaction Products and Menthol in JUUL E-Cigarettes and Aerosol. Am J Prev Med 2019; 57:425-427. [PMID: 31358341 PMCID: PMC6702051 DOI: 10.1016/j.amepre.2019.04.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 01/10/2023]
|
35
|
Nervo A, Calas AG, Nachon F, Krejci E. Respiratory failure triggered by cholinesterase inhibitors may involve activation of a reflex sensory pathway by acetylcholine spillover. Toxicology 2019; 424:152232. [PMID: 31175885 DOI: 10.1016/j.tox.2019.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/15/2019] [Accepted: 06/05/2019] [Indexed: 01/18/2023]
Abstract
Respiration failure during exposure by cholinesterase inhibitors has been widely assumed to be due to inhibition of cholinesterase in the brain. Using a double chamber plethysmograph to measure various respiratory parameters, we observed long "end inspiratory pauses" (EIP) during most exposure that depressed breathing. Surprisingly, Colq KO mice that have a normal level of acetylcholinesterase (AChE) in the brain but a severe deficit in muscles and other peripheral tissues do not pause the breathing by long EIP. In mice, long EIP can be triggered by a nasal irritant. Eucalyptol, an agonist of cold receptor (TRPM8) acting on afferent sensory neurons and known to reduce the EIP triggered by such irritants, strongly reduced the EIP induced by cholinesterase inhibitor. These results suggest that acetylcholine (ACh) spillover from the neuromuscular junction, which is unchanged in Colq KO mice, may activate afferent sensory systems and trigger sensory reflexes, as reversed by eucalyptol. Indeed, the role of AChE at the cholinergic synapses is not only to accurately control the synaptic transmission but also to prevent the spillover of ACh. In the peripheral tissues, the ACh flood induced by cholinesterase inhibition may be very toxic due to interaction with non-neuronal cells that use ACh at low levels to communicate with afferent sensory neurons.
Collapse
Affiliation(s)
- Aurélie Nervo
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France; COGnition and Action Group, UMR 8257, CNRS, Université Paris Descartes, Paris, France
| | - André-Guilhem Calas
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France; COGnition and Action Group, UMR 8257, CNRS, Université Paris Descartes, Paris, France
| | - Florian Nachon
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - Eric Krejci
- COGnition and Action Group, UMR 8257, CNRS, Université Paris Descartes, Paris, France.
| |
Collapse
|
36
|
Stabbert R, Ghosh D, Clarke A, Miller J, Collard J, Crooks I, Tafin Djoko D, Larroque S, Jaccard G, Roemer E, Park CH, Esposito M. Assessment of priority tobacco additives per the requirements in the EU Tobacco Products Directive (2014/40/EU): Part 2: Smoke chemistry and in vitro toxicology. Regul Toxicol Pharmacol 2019; 104:163-199. [DOI: 10.1016/j.yrtph.2019.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/15/2019] [Accepted: 03/01/2019] [Indexed: 01/05/2023]
|
37
|
Jaccard G, Belushkin M, Jeannet C, Aldilla EN, Ongko Wijoyo A. Investigation of menthol content and transfer rates in cigarettes and Tobacco Heating System 2.2. Regul Toxicol Pharmacol 2019; 101:48-52. [PMID: 30445138 DOI: 10.1016/j.yrtph.2018.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/11/2018] [Accepted: 11/12/2018] [Indexed: 01/27/2023]
Abstract
Menthol cigarettes account for a significant market share in many countries. However, little recent data exists on menthol levels in cigarettes and in mainstream smoke, limited to some markets or specific cigarette designs, such as cigarettes containing capsules filled with flavoring liquids. Samples of mentholated cigarettes bought worldwide with a variety of cigarette designs were analyzed for menthol content in cigarettes and in cigarette mainstream smoke with two analytical machine smoking regimes. A wide range of menthol content in cigarettes, from 1 to 22 mg/cigarette, was observed. The transfer of menthol to the cigarette mainstream smoke was generally slightly higher than the transfer of nicotine, with a range of 17%-40% using an intense smoking regime and 1%-17% using the ISO smoking regime. For the Tobacco Heating System (THS) 2.2, the menthol content was 12.8 mg/stick, and the transfer of menthol into the aerosol was about 17% with the ISO intense smoking regime, similar to the transfer of nicotine. The menthol content of the novel product THS 2.2 corresponds to the midpoint of the menthol content range of cigarettes, and the transfer of menthol to its aerosol is in the low range of cigarette menthol transfer.
Collapse
Affiliation(s)
- Guy Jaccard
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | - Maxim Belushkin
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Cyril Jeannet
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Evi Nurlaili Aldilla
- PT HM Sampoerna Tbk. Scientific Technical Services Laboratories, Jl. Raya Surabaya Malang Km 51.4, 67161, Pasuruan, Indonesia
| | - Andry Ongko Wijoyo
- PT HM Sampoerna Tbk. Scientific Technical Services Laboratories, Jl. Raya Surabaya Malang Km 51.4, 67161, Pasuruan, Indonesia
| |
Collapse
|
38
|
Effects of menthol-flavored substances at the cellular level on oral mucosal sites. Dent Res J (Isfahan) 2019; 16:7-11. [PMID: 30745912 PMCID: PMC6340220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND The purpose of this study was to determine the effects of menthol-flavored substances at the cellular level in different mucosal sites of the oral cavity and to compare the cellular changes between individuals without the habit of chewing menthol-flavored substances and individuals with the habit. MATERIALS AND METHODS This was an experimental cytology study including a total of 500 individuals belonging to the age group of 18-45 years based on the inclusion or exclusion criteria. The selected participants were divided into two groups of 250 participants each, based on participants not having the habit of chewing menthol-flavored substances (Group I) and participants having the habit of chewing menthol-flavored substances (Group II). Cytological smears were taken by gently scraping the mucosal surfaces in different sites of the oral mucosa using a wooden spatula and stained with Papanicolaou, analyzed under microscope for any cellular changes. The results were tabulated and statistically analyzed using Chi-square test and Fisher's exact test. P < 0.05 was considered statistically significant. RESULTS Micronuclei seen in all the participants belonging to group with the habit of chewing menthol-flavored substances with a P < 0.001 which was considered highly significant. Alteration in the nuclear-cytoplasmic ratio was also seen P = 0.001, which showed significant at 1% significance level. CONCLUSION Participants with habit of chewing menthol-flavored substances showed the presence of micronuclei and slight alteration in the nuclear-cytoplasmic ratio, which could be directly related to genotoxicity and cell damage.
Collapse
|
39
|
Lin AH, Liu MH, Ko HK, Perng DW, Lee TS, Kou YR. Menthol Cigarette Smoke Induces More Severe Lung Inflammation Than Non-menthol Cigarette Smoke Does in Mice With Subchronic Exposure - Role of TRPM8. Front Physiol 2018; 9:1817. [PMID: 30618827 PMCID: PMC6305452 DOI: 10.3389/fphys.2018.01817] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/05/2018] [Indexed: 01/27/2023] Open
Abstract
In smokers with chronic obstructive pulmonary disease, more severe lung inflammation is associated with menthol cigarette smoking compared to non-menthol cigarette smoking. However, the mechanisms remain unclear. Menthol is an activator of transient receptor potential melastatin-8 (TRPM8), which is also sensitive to reactive oxygen species (ROS). Our recent in vitro study demonstrated that the extracts of menthol cigarette smoke (M-CS) can induce greater ROS-sensitive, TRPM8-mediated, mitogen-activated protein kinase (MAPK)-dependent inflammatory responses in lung epithelial cells than the extracts of non-menthol cigarette smoke (Non-M-CS) can. In this study, we tested the hypothesis that M-CS can induce more severe lung inflammation than Non-M-CS can via the additional action of menthol in M-CS on epithelial and lung TRPM8 in mice. Compared with Non-M-CS exposure, subchronic M-CS exposure for 7 days up-regulated the epithelial and lung expression of TRPM8, induced more vigorous activation of epithelial and lung MAPKs, and caused more severe lung inflammation. The MAPK activation was evidenced by the increased expression of phosphor-extracellular signal-regulated and phosphor-c-Jun N-terminal kinases. The lung inflammation was evidenced by pathohistological findings and increases in several inflammatory indices. Moreover, treatment with a TRPM8 antagonist (N-(3-aminopropyl)-2-{[(3-methylphenyl)methyl]oxy}-N-(2-thienylmethyl)benzamide; AMTB) greatly suppressed the MAPK activation and lung inflammation induced by Non-M-CS and M-CS, and the residual responses to these two types of CS did not differ. Conversely, the levels of biomarkers of acute CS exposure (20 min), including carboxyhemoglobin and cotinine (a nicotine metabolite) in blood plasma, and superoxide and hydrogen peroxide (two major types of ROS) in bronchoalveolar lavage fluid, did not show significant differences in the mice with Non-M-CS and M-CS exposure. We concluded that M-CS could induce greater TRPM8-mediated activation of MAPKs and lung inflammation than Non-M-CS could in mice with subchronic exposure. The augmented inflammatory effects of M-CS are unlikely due to a larger total amount of CS inhaled, but may be caused by an additional stimulation of epithelial and lung TRPM8 by menthol in M-CS. A common stimulant (presumably ROS) generated by both CS types may also stimulate TRPM8, activate MAPKs, and induce lung inflammation because treatment with AMTB could reduce these responses to Non-M-CS.
Collapse
Affiliation(s)
- An-Hsuan Lin
- Department of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Meng-Han Liu
- Department of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Hsin-Kuo Ko
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Diahn-Warng Perng
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tzong-Shyuan Lee
- Graduate Institute and Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu Ru Kou
- Department of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
40
|
Henderson BJ, Grant S, Chu BW, Shahoei R, Huard SM, Saladi SSM, Tajkhorshid E, Dougherty DA, Lester HA. Menthol Stereoisomers Exhibit Different Effects on α4β2 nAChR Upregulation and Dopamine Neuron Spontaneous Firing. eNeuro 2018; 5:ENEURO.0465-18.2018. [PMID: 30627659 PMCID: PMC6325563 DOI: 10.1523/eneuro.0465-18.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 12/08/2018] [Indexed: 11/21/2022] Open
Abstract
Menthol contributes to poor cessation rates among smokers, in part because menthol enhances nicotine reward and reinforcement. Mentholated tobacco products contain (-)-menthol and (+)-menthol, in varying proportions. We examined these two menthol stereoisomers for their ability to upregulate α4β2 nAChRs and to alter dopamine neuron firing frequency using long-term, low-dose (≤500 nm) exposure that is pharmacologically relevant to smoking. We found that (-)-menthol upregulates α4β2 nAChRs while (+)-menthol does not. We also found that (-)-menthol decreases dopamine neuron baseline firing and dopamine neuron excitability, while (+)-menthol exhibits no effect. We then examined both stereoisomers for their ability to inhibit α4β2 nAChR function at higher concentrations (>10 µm) using the Xenopus oocyte expression system. To probe for the potential binding site of menthol, we conducted flooding simulations and site-directed mutagenesis. We found that menthol likely binds to the 9´ position on the TM2 (transmembrane M2) helix. We found that menthol inhibition is dependent on the end-to-end distance of the side chain at the 9´ residue. Additionally, we have found that (-)-menthol is only modestly (∼25%) more potent than (+)-menthol at inhibiting wild-type α4β2 nAChRs and a series of L9´ mutant nAChRs. These data reveal that menthol exhibits a stereoselective effect on nAChRs and that the stereochemical effect is much greater for long-term, submicromolar exposure in mice than for acute, higher-level exposure. We hypothesize that of the two menthol stereoisomers, only (-)-menthol plays a role in enhancing nicotine reward through nAChRs on dopamine neurons.
Collapse
Affiliation(s)
- Brandon J. Henderson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine at Marshall University, Huntington, West Virginia 25703
| | - Stephen Grant
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| | - Betty W. Chu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Rezvan Shahoei
- Department of Physics, National Institutes of Health Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Stephanie M. Huard
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Shyam S. M. Saladi
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| | - Emad Tajkhorshid
- Department of Biochemistry, National Institutes of Health Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Dennis A. Dougherty
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| | - Henry A. Lester
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
41
|
Kaur G, Muthumalage T, Rahman I. Mechanisms of toxicity and biomarkers of flavoring and flavor enhancing chemicals in emerging tobacco and non-tobacco products. Toxicol Lett 2018; 288:143-155. [PMID: 29481849 PMCID: PMC6549714 DOI: 10.1016/j.toxlet.2018.02.025] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/19/2018] [Accepted: 02/21/2018] [Indexed: 01/11/2023]
Abstract
Tobacco products containing flavorings, such as electronic nicotine delivery devices (ENDS) or e-cigarettes, cigars/cigarillos, waterpipes, and heat-not-burn devices (iQOS) are continuously evolving. In addition to increasing the exposure of teenagers and adults to nicotine containing flavoring products and flavoring enhancers, chances of nicotine addiction through chronic use and abuse also increase. These flavorings are believed to be safe for ingestion, but little information is available about their effects on the lungs. In this review, we have discussed the in vitro and in vivo data on toxicity of flavoring chemicals in lung cells. We have further discussed the common flavoring agents, such as diacetyl and menthol, currently available detection methods, and the toxicological mechanisms associated with oxidative stress, inflammation, mucociliary clearance, and DNA damage in cells, mice, and humans. Finally, we present potential biomarkers that could be utilized for future risk assessment. This review provides crucial parameters important for evaluation of risk associated with flavoring agents and flavoring enhancers used in tobacco products and ENDS. Future studies can be designed to address the potential toxicity of inhaled flavorings and their biomarkers in users as well as in chronic exposure studies.
Collapse
Affiliation(s)
- Gurjot Kaur
- Human and Environmental Toxicology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Thivanka Muthumalage
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
42
|
Gubner NR, Williams DD, Pagano A, Campbell BK, Guydish J. Menthol cigarette smoking among individuals in treatment for substance use disorders. Addict Behav 2018; 80:135-141. [PMID: 29407684 DOI: 10.1016/j.addbeh.2018.01.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 01/12/2018] [Accepted: 01/13/2018] [Indexed: 01/06/2023]
Abstract
There are higher rates of menthol cigarette smoking within certain population subgroups. Limited research has examined menthol use among individuals in treatment for substance use disorders (SUD), a population with a high prevalence of cigarette smoking, poor smoking cessation outcomes, and high tobacco disease burden. Survey data were collected from 863 smokers sampled from 24 SUD treatment programs affiliated with the NIDA Clinical Trials Network (CTN) in the United States. Prevalence of menthol cigarette smoking was examined for the sample. Bivariate and multivariate analyses were used to examine demographic and tobacco use characteristics associated with menthol cigarette smoking. Overall, the prevalence of menthol smoking among individuals in SUD treatment was 53.3%. Smoking menthol versus non-menthol cigarettes was associated with being female (AOR=1.61, p=0.003), African American (AOR=7.89, p<0.001), Hispanic/Latino (AOR=3.39, p<0.001), and lower odds of having a college degree (AOR=0.49, p=0.015). Controlling for demographic factors, menthol smokers were more likely to report marijuana (AOR=3.33, p<0.007) as their primary drug compared to alcohol. Lastly, menthol smokers were more likely to report interest in getting help for quitting smoking (AOR=1.53, p=0.01), although they were not more likely to report making a past year quit attempt. In conclusion, use of menthol cigarettes was higher among smokers in SUD treatment than in general population smokers. Regulatory policies targeting the manufacture, marketing, or sale of menthol cigarettes may benefit vulnerable populations, including smokers in SUD treatment.
Collapse
Affiliation(s)
- Noah R Gubner
- Philip R. Lee Institute for Health Policy Studies, University of California, San Francisco, CA, USA; Department of Psychiatry, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA.
| | - Denise D Williams
- Philip R. Lee Institute for Health Policy Studies, University of California, San Francisco, CA, USA
| | - Anna Pagano
- Prevention Research Center, Pacific Institute for Research and Evaluation, Oakland, CA, USA
| | - Barbara K Campbell
- Philip R. Lee Institute for Health Policy Studies, University of California, San Francisco, CA, USA; Oregon Health and Science University, Portland State University School of Public Health, Portland, OR, USA
| | - Joseph Guydish
- Philip R. Lee Institute for Health Policy Studies, University of California, San Francisco, CA, USA; Department of Psychiatry, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| |
Collapse
|
43
|
Han L, Limjunyawong N, Ru F, Li Z, Hall OJ, Steele H, Zhu Y, Wilson J, Mitzner W, Kollarik M, Undem BJ, Canning BJ, Dong X. Mrgprs on vagal sensory neurons contribute to bronchoconstriction and airway hyper-responsiveness. Nat Neurosci 2018; 21:324-328. [PMID: 29403029 PMCID: PMC5857222 DOI: 10.1038/s41593-018-0074-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 12/04/2017] [Indexed: 01/28/2023]
Abstract
Asthma, accompanied by lung inflammation, bronchoconstriction and airway hyper-responsiveness, is a significant public health burden. Here we report that Mas-related G protein-coupled receptors (Mrgprs) are expressed in a subset of vagal sensory neurons innervating the airway and mediates cholinergic bronchoconstriction and airway hyper-responsiveness. These findings provide insights into the neural mechanisms underlying the pathogenesis of asthma.
Collapse
Affiliation(s)
- Liang Han
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Nathachit Limjunyawong
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Fei Ru
- Department of Medicine, Division of Allergy and Clinical Immunology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Zhe Li
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Olivia J Hall
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Haley Steele
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Yuyan Zhu
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Julie Wilson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Wayne Mitzner
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Marian Kollarik
- Department of Medicine, Division of Allergy and Clinical Immunology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Bradley J Undem
- Department of Medicine, Division of Allergy and Clinical Immunology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Brendan J Canning
- Department of Medicine, Division of Allergy and Clinical Immunology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Howard Hughes Medical Institute, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
44
|
E-cigarettes and flavorings induce inflammatory and pro-senescence responses in oral epithelial cells and periodontal fibroblasts. Oncotarget 2018; 7:77196-77204. [PMID: 27791204 PMCID: PMC5363580 DOI: 10.18632/oncotarget.12857] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/14/2016] [Indexed: 12/31/2022] Open
Abstract
Electronic-cigarettes (e-cigs) represent a significant and increasing proportion of tobacco product consumption, which may pose an oral health concern. Oxidative/carbonyl stress via protein carbonylation is an important factor in causing inflammation and DNA damage. This results in stress-induced premature senescence (a state of irreversible growth arrest which re-enforces chronic inflammation) in gingival epithelium, which may contribute to the pathogenesis of oral diseases. We show that e-cigs with flavorings cause increased oxidative/carbonyl stress and inflammatory cytokine release in human periodontal ligament fibroblasts, Human Gingival Epithelium Progenitors pooled (HGEPp), and epigingival 3D epithelium. We further show increased levels of prostaglandin-E2 and cycloxygenase-2 are associated with upregulation of the receptor for advanced glycation end products (RAGE) by e-cig exposure-mediated carbonyl stress in gingival epithelium/tissue. Further, e-cigs cause increased oxidative/carbonyl and inflammatory responses, and DNA damage along with histone deacetylase 2 (HDAC2) reduction via RAGE-dependent mechanisms in gingival epithelium. A greater response is elicited by flavored e-cigs. Increased oxidative stress, pro-inflammatory and pro-senescence responses (DNA damage and HDAC2 reduction) can result in dysregulated repair due to proinflammatory and pro-senescence responses in periodontal cells. These data highlight the pathologic role of e-cig aerosol and its flavoring to cells and tissues of the oral cavity in compromised oral health.
Collapse
|
45
|
Kichko TI, Neuhuber W, Kobal G, Reeh PW. The roles of TRPV1, TRPA1 and TRPM8 channels in chemical and thermal sensitivity of the mouse oral mucosa. Eur J Neurosci 2018; 47:201-210. [PMID: 29247491 DOI: 10.1111/ejn.13799] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 11/28/2017] [Accepted: 12/05/2017] [Indexed: 12/24/2022]
Abstract
Spices in food and beverages and compounds in tobacco smoke interact with sensory irritant receptors of the transient receptor potential (TRP) cation channel family. TRPV1 (vanilloid type 1), TRPA1 (ankyrin 1) and TRPM8 (melastatin 8) not only elicit action potential signaling through trigeminal nerves, eventually evoking pungent or cooling sensations, but by their calcium conductance they also stimulate the release of calcitonin gene-related peptide (CGRP). This is measured as an index of neuronal activation to elucidate the chemo- and thermosensory transduction in the isolated mouse buccal mucosa of wild types and pertinent knockouts. We found that the lipophilic capsaicin, mustard oil and menthol effectively get access to the nerve endings below the multilayered squamous epithelium, while cigarette smoke and its gaseous phase were weakly effective releasing CGRP. The hydrophilic nicotine was ineffective unless applied unprotonated in alkaline (pH9) solution, activating TRPA1 and TRPV1. Also, mustard oil activated both these irritant receptors in millimolar but only TRPA1 in micromolar concentrations; in combination (1 mm) with heat (45 °C), it showed supraadditive, that is heat sensitizing, effects in TRPV1 and TRPA1 knockouts, suggesting action on an unknown heat-activated channel and mustard oil receptor. Menthol caused little CGRP release by itself, but in subliminal concentration (2 mm), it enabled a robust cold response that was absent in TRPM8-/- but retained in TRPA1-/- and strongly reduced by TRPM8 inhibitors. In conclusion, all three relevant irritant receptors are functionally expressed in the oral mucosa and play their specific roles in inducing neurogenic inflammation and sensitization to heat and cold.
Collapse
Affiliation(s)
- Tatjana I Kichko
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstrasse 17, Erlangen, 91056, Germany
| | - Winfried Neuhuber
- Institute of Anatomy I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Gerd Kobal
- Altria Client Services Inc., Richmond, VA, USA
| | - Peter W Reeh
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstrasse 17, Erlangen, 91056, Germany
| |
Collapse
|
46
|
Conklin DJ, Ogunwale MA, Chen Y, Theis WS, Nantz MH, Fu XA, Chen LC, Riggs DW, Lorkiewicz P, Bhatnagar A, Srivastava S. Electronic cigarette-generated aldehydes: The contribution of e-liquid components to their formation and the use of urinary aldehyde metabolites as biomarkers of exposure. AEROSOL SCIENCE AND TECHNOLOGY : THE JOURNAL OF THE AMERICAN ASSOCIATION FOR AEROSOL RESEARCH 2018; 52:1219-1232. [PMID: 31456604 PMCID: PMC6711607 DOI: 10.1080/02786826.2018.1500013] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 05/14/2018] [Accepted: 06/14/2018] [Indexed: 05/18/2023]
Abstract
Electronic cigarettes (e-cigarette) have emerged as a popular electronic nicotine delivery system (ENDS) in the last decade. Despite the absence of combustion products and toxins such as carbon monoxide (CO) and tobacco-specific nitrosamines (TSNA), carbonyls including short-chain, toxic aldehydes have been detected in e-cigarette-derived aerosols up to levels found in tobacco smoke. Given the health concerns regarding exposures to toxic aldehydes, understanding both aldehyde generation in e-cigarette and e-cigarette exposure is critical. Thus, we measured aldehydes generated in aerosols derived from propylene glycol (PG):vegetable glycerin (VG) mixtures and from commercial e-liquids with flavorants using a state-of-the-art carbonyl trap and mass spectrometry. To track e-cigarette exposure in mice, we measured urinary metabolites of 4 aldehydes using ULPC-MS/MS or GC-MS. Aldehyde levels, regardless of abundance (saturated: formaldehyde, acetaldehyde >> unsaturated: acrolein, crotonaldehyde), were dependent on the PG:VG ratio and the presence of flavorants. The metabolites of 3 aldehydes - formate, acetate and 3-hydroxypropyl mercapturic acid (3-HPMA; acrolein metabolite) -- were increased in urine after e-cigarette aerosol and mainstream cigarette smoke (MCS) exposures, but the crotonaldehyde metabolite (3-hydroxy-1-methylpropylmercapturic acid, HPMMA) was increased only after MCS exposure. Interestingly, exposure to menthol-flavored e-cigarette aerosol increased the levels of urinary 3-HPMA and sum of nicotine exposure (nicotine, cotinine, trans-3'-hydroxycotinine) relative to exposure to a Classic Tobacco-flavored e-cigarette aerosol. Comparing these findings with aerosols of other ENDS and by measuring aldehyde-derived metabolites in human urine following exposure to e-cigarette aerosols will further our understanding of the relationship between ENDS use, aldehyde exposure and health risk.
Collapse
Affiliation(s)
- Daniel J. Conklin
- American Heart Association – Tobacco Regulation and Addiction Center, University of Louisville, Louisville, KY 40292
- Diabetes and Obesity Center, University of Louisville, Louisville, KY 40292
| | - Mumiye A. Ogunwale
- Department of Chemistry, University of Louisville, Louisville, KY 40292
- Department of Chemical Engineering, University of Louisville, Louisville, KY 40292
| | - Yizheng Chen
- Department of Chemical Engineering, University of Louisville, Louisville, KY 40292
| | - Whitney S. Theis
- American Heart Association – Tobacco Regulation and Addiction Center, University of Louisville, Louisville, KY 40292
- Diabetes and Obesity Center, University of Louisville, Louisville, KY 40292
| | - Michael H. Nantz
- American Heart Association – Tobacco Regulation and Addiction Center, University of Louisville, Louisville, KY 40292
- Department of Chemistry, University of Louisville, Louisville, KY 40292
| | - Xiao-An Fu
- American Heart Association – Tobacco Regulation and Addiction Center, University of Louisville, Louisville, KY 40292
- Department of Chemical Engineering, University of Louisville, Louisville, KY 40292
| | - Lung-Chi Chen
- American Heart Association – Tobacco Regulation and Addiction Center, University of Louisville, Louisville, KY 40292
- Department of Environmental Medicine, New York University, Tuxedo, New York 10987
| | - Daniel W. Riggs
- American Heart Association – Tobacco Regulation and Addiction Center, University of Louisville, Louisville, KY 40292
- Diabetes and Obesity Center, University of Louisville, Louisville, KY 40292
| | - Pawel Lorkiewicz
- American Heart Association – Tobacco Regulation and Addiction Center, University of Louisville, Louisville, KY 40292
- Diabetes and Obesity Center, University of Louisville, Louisville, KY 40292
| | - Aruni Bhatnagar
- American Heart Association – Tobacco Regulation and Addiction Center, University of Louisville, Louisville, KY 40292
- Diabetes and Obesity Center, University of Louisville, Louisville, KY 40292
| | - Sanjay Srivastava
- American Heart Association – Tobacco Regulation and Addiction Center, University of Louisville, Louisville, KY 40292
- Diabetes and Obesity Center, University of Louisville, Louisville, KY 40292
| |
Collapse
|
47
|
Lamb JG, Romero EG, Lu Z, Marcus SK, Peterson HC, Veranth JM, Deering-Rice CE, Reilly CA. Activation of Human Transient Receptor Potential Melastatin-8 (TRPM8) by Calcium-Rich Particulate Materials and Effects on Human Lung Cells. Mol Pharmacol 2017; 92:653-664. [PMID: 29038158 PMCID: PMC5695664 DOI: 10.1124/mol.117.109959] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/11/2017] [Indexed: 01/08/2023] Open
Abstract
To better understand how adverse health effects are caused by exposure to particulate materials, and to develop preventative measures, it is important to identify the properties of particles and molecular targets that link exposure with specific biologic outcomes. Coal fly ash (CFA) is a by-product of coal combustion that can affect human health. We report that human transient receptor potential melastatin-8 (TRPM8) and an N-terminally truncated TRPM8 variant (TRPM8-Δ801) are activated by CFA and calcium-rich nanoparticles and/or soluble salts within CFA. TRPM8 activation by CFA was potentiated by cold temperature involving the phosphatidylinositol 4,5-bisphosphate binding residue (L1008), but was independent of the icilin and menthol binding site residue Y745 and, essentially, the N-terminal amino acids 1-800. CFA, calcium nanoparticles, and calcium salts also activated transient receptor potential vanilloid-1 (TRPV1) and transient receptor potential ankyrin-1 (TRPA1), but not TRPV4. CFA treatment induced CXCL1 and interleukin-8 mRNA in BEAS-2B and primary human bronchial epithelial cells through activation of both TRPM8 and TRPV1. However, neither mouse nor rat TRPM8 was activated by these materials, and Trpm8 knockout had no effect on cytokine induction in the lungs of CFA-instilled mice. Amino acids S921 and S927 in mouse Trpm8 were identified as important for the lack of response to CFA. These results imply that TRPM8, in conjunction with TRPV1 and TRPA1, might sense selected forms of inhaled particulate materials in human airways, shaping cellular responses to these materials, and improving our understanding of how and why certain particulate materials elicit different responses in biologic systems, affecting human health.
Collapse
Affiliation(s)
- John G Lamb
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah
| | - Erin G Romero
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah
| | - Zhenyu Lu
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah
| | - Seychelle K Marcus
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah
| | - Hannah C Peterson
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah
| | - John M Veranth
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah
| | - Cassandra E Deering-Rice
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah
| | - Christopher A Reilly
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
48
|
Effects of chronic inhalation of electronic cigarettes containing nicotine on glial glutamate transporters and α-7 nicotinic acetylcholine receptor in female CD-1 mice. Prog Neuropsychopharmacol Biol Psychiatry 2017; 77:1-8. [PMID: 28347687 PMCID: PMC5466499 DOI: 10.1016/j.pnpbp.2017.03.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 02/06/2017] [Accepted: 03/23/2017] [Indexed: 01/13/2023]
Abstract
Alteration in glutamate neurotransmission has been found to mediate the development of drug dependence, including nicotine. We and others, through using western blotting, have reported that exposure to drugs of abuse reduced the expression of glutamate transporter-1 (GLT-1) as well as cystine/glutamate antiporter (xCT), which consequently increased extracellular glutamate concentrations in the mesocorticolimbic area. However, our previous studies did not reveal any changes in glutamate/aspartate transporter (GLAST) following exposure to drugs of abuse. In the present study, for the first time, we investigated the effect of chronic exposure to electronic (e)-cigarette vapor containing nicotine, for one hour daily for six months, on GLT-1, xCT, and GLAST expression in frontal cortex (FC), striatum (STR), and hippocampus (HIP) in outbred female CD1 mice. In this study, we also investigated the expression of alpha-7 nicotinic acetylcholine receptor (α-7 nAChR), a major pre-synaptic nicotinic receptor in the glutamatergic neurons, which regulates glutamate release. We found that inhalation of e-cigarette vapor for six months increased α-7 nAChR expression in both FC and STR, but not in the HIP. In addition, chronic e-cigarette exposure reduced GLT-1 expression only in STR. Moreover, e-cigarette vapor inhalation induced downregulation of xCT in both the STR and HIP. We did not find any significant changes in GLAST expression in any brain region. Finally, using liquid chromatography-tandem mass spectrometry (LC-MS/MS) techniques, we detected high concentrations of nicotine and cotinine, a major metabolite of nicotine, in the FC tissues of e-cigarette exposed mice. These data provide novel evidence about the effects of chronic nicotine inhalation on the expression of key glial glutamate transporters as well as α-7 nAChR. Our work may suggest that nicotine exposure via chronic inhalation of e-cigarette vapor may be mediated in part by alterations in the glutamatergic system.
Collapse
|
49
|
Watson CV, Richter P, de Castro BR, Sosnoff C, Potts J, Clark P, McCraw J, Yan X, Chambers D, Watson C. Smoking Behavior and Exposure: Results of a Menthol Cigarette Cross-over Study. Am J Health Behav 2017; 41:309-319. [PMID: 28376975 DOI: 10.5993/ajhb.41.3.10] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Our objective was to improve understanding of the differences in use behavior and exposure when smoking menthol and non-menthol cigarettes using a 2-part cross-over design. METHODS Adult daily smokers were assigned randomly to alternate between 2 weeks of exclusively smoking a menthol test cigarette or a non-menthol test cigarette. Urine and saliva were collected for biomarker measurements; carbon monoxide (CO) was measured, and participants smoked test cigarettes through a CreSS® smoking topography device during 3 clinic visits. Participants turned in their cigarette butts from the test periods for determination of mouth level nicotine and completed subjective questionnaires related to the test cigarettes. RESULTS Regardless of cigarette preference, participants had higher salivary cotinine when smoking the non-menthol test cigarette, but there were no significant differences detected in urine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol between the 2 test cigarettes. Mouth level nicotine, puff volume, and puff duration were significantly higher when smoking the menthol brand. Both menthol and non-menthol smokers reported significantly lower enjoyment and satisfaction scores for test cigarettes compared with their brand of choice. CONCLUSIONS Our results suggest that mentholation has an effect on measures of smoking behavior and that mouth level nicotine is a useful indicator of between-brand smoke exposure.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joan McCraw
- Centers for Disease Control and Prevention, Atlanta, GA
| | - Xizheng Yan
- Centers for Disease Control and Prevention, Atlanta, GA
| | | | | |
Collapse
|
50
|
Lin AH, Liu MH, Ko HKB, Perng DW, Lee TS, Kou YR. Inflammatory Effects of Menthol vs. Non-menthol Cigarette Smoke Extract on Human Lung Epithelial Cells: A Double-Hit on TRPM8 by Reactive Oxygen Species and Menthol. Front Physiol 2017; 8:263. [PMID: 28496415 PMCID: PMC5406458 DOI: 10.3389/fphys.2017.00263] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/10/2017] [Indexed: 11/21/2022] Open
Abstract
Clinical studies suggest that smokers with chronic obstructive pulmonary disease who use menthol cigarettes may display more severe lung inflammation than those who smoke non-menthol cigarette. However, the mechanisms for this difference remain unclear. Menthol is a ligand of transient receptor potential melastatin-8 (TRPM8), a Ca2+-permeant channel sensitive to reactive oxygen species (ROS). We previously reported that exposure of human bronchial epithelial cells (HBECs) to non-menthol cigarette smoke extract (Non-M-CSE) triggers a cascade of inflammatory signaling leading to IL-8 induction. In this study, we used this in vitro model to compare the inflammatory effects of menthol cigarette smoke extract (M-CSE) and Non-M-CSE and delineate the mechanisms underlying the differences in their impacts. Compared with Non-M-CSE, M-CSE initially increased a similar level of extracellular ROS, suggesting the equivalent oxidant potency. However, M-CSE subsequently produced more remarkable elevations in intracellular Ca2+, activation of the mitogen-activated protein kinases (MAPKs)/nuclear factor-κB (NF-κB) signaling, and IL-8 induction. The extracellular ROS responses to both CSE types were totally inhibited by N-acetyl-cysteine (NAC; a ROS scavenger). The intracellular Ca2+ responses to both CSE types were also totally prevented by NAC, AMTB (a TRPM8 antagonist), or EGTA (an extracellular Ca2+ chelator). The activation of the MAPK/NF-κB signaling and induction of IL-8 to both CSE types were suppressed to similar levels by NAC, AMTB, or EGTA. These results suggest that, in addition to ROS generated by both CSE types, the menthol in M-CSE may act as another stimulus to further activate TRPM8 and induce the observed responses. We also found that menthol combined with Non-M-CSE induced greater responses of intracellular Ca2+ and IL-8 compared with Non-M-CSE alone. Moreover, we confirmed the essential role of TRPM8 in these responses to Non-M-CSE or M-CSE and the difference in these responses between the both CSE types using HBECs with TRPM8 knockdown and TRPM8 knockout, and using HEK293 cells transfected with hTRPM8. Thus, compared with exposure to Non-M-CSE, exposure to M-CSE induced greater TRPM8-mediated inflammatory responses in HBECs. These augmented effects may be due to a double-hit on lung epithelial TRPM8 by ROS generated from CSE and the menthol in M-CSE.
Collapse
Affiliation(s)
- An-Hsuan Lin
- Department of Physiology, School of Medicine, National Yang-Ming UniversityTaipei, Taiwan
| | - Meng-Han Liu
- Department of Physiology, School of Medicine, National Yang-Ming UniversityTaipei, Taiwan
| | - Hsin-Kuo B Ko
- Department of Chest Medicine, Taipei Veterans General HospitalTaipei, Taiwan
| | - Diahn-Warng Perng
- Department of Chest Medicine, Taipei Veterans General HospitalTaipei, Taiwan
| | - Tzong-Shyuan Lee
- Department of Physiology, School of Medicine, National Yang-Ming UniversityTaipei, Taiwan
| | - Yu Ru Kou
- Department of Physiology, School of Medicine, National Yang-Ming UniversityTaipei, Taiwan
| |
Collapse
|