1
|
García-Villegas R, Odenthal F, Giannoula Y, Bonekamp NA, Kühl I, Park CB, Spåhr H, Motori E, Levander F, Larsson NG. In vivo composition of the mitochondrial nucleoid in mice. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119955. [PMID: 40246179 DOI: 10.1016/j.bbamcr.2025.119955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 04/04/2025] [Accepted: 04/07/2025] [Indexed: 04/19/2025]
Abstract
Mitochondrial DNA (mtDNA) is compacted into dynamic structures called mitochondrial nucleoids (mt-nucleoids), with the mitochondrial transcription factor A (TFAM) as the core packaging protein. We generated bacterial artificial chromosome (BAC) transgenic mice expressing FLAG-tagged TFAM protein (Tfam-FLAGBAC mice) to investigate the mt-nucleoid composition in vivo. Importantly, we show that the TFAM-FLAG protein is functional and complements the absence of the wild-type TFAM protein in homozygous Tfam knockout mice. We performed immunoprecipitation experiments from different mouse tissues and identified 12 proteins as core mt-nucleoid components by proteomics analysis. Among these, eight proteins correspond to mtDNA replication and transcription factors, while the other four are involved in the mitoribosome assembly. In addition, we used the Tfam-FLAGBAC mice to identify ten proteins that may stabilize TFAM-FLAG upon depletion of the mitochondrial RNA polymerase despite the absence of mtDNA and induction of the LONP1 protease. Finally, we evaluated the changes in mt-nucleoids caused by very high levels of TFAM unraveling nine interactors that could counteract the high TFAM levels to maintain active mtDNA transcription. Altogether, we demonstrate that the Tfam-FLAGBAC mice are a valuable tool for investigating the mt-nucleoid composition in vivo.
Collapse
Affiliation(s)
- Rodolfo García-Villegas
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Franka Odenthal
- Institute of Biochemistry, University of Cologne, Zülpicher Str. 47, 50674 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Yvonne Giannoula
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Nina A Bonekamp
- Department of Neuroanatomy, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Inge Kühl
- Department of Cell Biology, Institute of Integrative Biology of the Cell, UMR9198, CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Chan Bae Park
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Henrik Spåhr
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Elisa Motori
- Institute of Biochemistry, University of Cologne, Zülpicher Str. 47, 50674 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany
| | - Fredrik Levander
- Department of Immunotechnology, National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Lund University, Lund 223 87, Sweden
| | - Nils-Göran Larsson
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
2
|
Molinero E, Pena RN, Estany J, Ros‐Freixedes R. Association between mitochondrial DNA copy number and production traits in pigs. J Anim Breed Genet 2025; 142:170-183. [PMID: 39189093 PMCID: PMC11812088 DOI: 10.1111/jbg.12894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/29/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024]
Abstract
Mitochondria are essential organelles in the regulation of cellular energetic metabolism. Mitochondrial DNA copy number (mtDNA_CN) can be used as a proxy for mitochondria number, size, and activity. The aims of our study are to evaluate the effect of mtDNA_CN and mitochondrial haploblocks on production traits in pigs, and to identify the genetic background of this cellular phenotype. We collected performance data of 234 pigs and extracted DNA from skeletal muscle. Whole-genome sequencing data was used to determine mtDNA_CN. We found positive correlations of muscle mtDNA_CN with backfat thickness at 207 d (+0.14; p-value = 0.07) and negative correlations with carcase loin thickness (-0.14; p-value = 0.03). Pigs with mtDNA_CN values below the lower quartile had greater loin thickness (+4.1 mm; p-value = 0.01) and lower backfat thickness (-1.1 mm; p-value = 0.08), which resulted in greater carcase lean percentage (+2.4%; p-value = 0.04), than pigs with mtDNA_CN values above the upper quartile. These results support the hypothesis that a reduction of mitochondrial activity is associated with greater feed efficiency. Higher mtDNA_CN was also positively correlated with higher meat ultimate pH (+0.19; p-value <0.01) but we did not observe significant difference for meat ultimate pH between the two groups with extreme mtDNA_CN. We found no association of the most frequent mitochondrial haploblocks with mtDNA_CN or the production traits, but several genomic regions that harbour potential candidate genes with functions related to mitochondrial biogenesis and homeostasis were associated with mtDNA_CN. These regions provide new insights into the genetic background of this cellular phenotype but it is still uncertain if such associations translate into noticeable effects on the production traits.
Collapse
Affiliation(s)
- Eduard Molinero
- Departament de Ciència AnimalUniversitat de LleidaLleidaSpain
- Agrotecnio‐CERCA CenterLleidaSpain
| | - Ramona N. Pena
- Departament de Ciència AnimalUniversitat de LleidaLleidaSpain
- Agrotecnio‐CERCA CenterLleidaSpain
| | - Joan Estany
- Departament de Ciència AnimalUniversitat de LleidaLleidaSpain
- Agrotecnio‐CERCA CenterLleidaSpain
| | - Roger Ros‐Freixedes
- Departament de Ciència AnimalUniversitat de LleidaLleidaSpain
- Agrotecnio‐CERCA CenterLleidaSpain
| |
Collapse
|
3
|
Nam Y, Song Y, Seo SJ, Ko GR, Lee SH, Cha E, Kwak SM, Kim S, Shin M, Jin Y, Lee JS. Metabolic reprogramming via mitochondrial delivery for enhanced maturation of chemically induced cardiomyocyte-like cells. MedComm (Beijing) 2024; 5:e70005. [PMID: 39611044 PMCID: PMC11604293 DOI: 10.1002/mco2.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 11/30/2024] Open
Abstract
Heart degenerative diseases pose a significant challenge due to the limited ability of native heart to restore lost cardiomyocytes. Direct cellular reprogramming technology, particularly the use of small molecules, has emerged as a promising solution to prepare functional cardiomyocyte through faster and safer processes without genetic modification. However, current methods of direct reprogramming often exhibit low conversion efficiencies and immature characteristics of the generated cardiomyocytes, limiting their use in regenerative medicine. This study proposes the use of mitochondrial delivery to metabolically reprogram chemically induced cardiomyocyte-like cells (CiCMs), fostering enhanced maturity and functionality. Our findings show that mitochondria sourced from high-energy-demand organs (liver, brain, and heart) can enhance structural maturation and metabolic functions. Notably, heart-derived mitochondria resulted in CiCMs with a higher oxygen consumption rate capacity, enhanced electrical functionality, and higher sensitivity to hypoxic condition. These results are related to metabolic changes caused by increased number and size of mitochondria and activated mitochondrial fusion after mitochondrial treatment. In conclusion, our study suggests that mitochondrial delivery into CiCMs can be an effective strategy to promote cellular maturation, potentially contributing to the advancement of regenerative medicine and disease modeling.
Collapse
Affiliation(s)
- Yena Nam
- Department of PhysiologyGraduate School of Medical ScienceBrain Korea 21 ProjectYonsei University College of MedicineSeoulRepublic of Korea
| | - Yoonji Song
- Department of Biomedical EngineeringSungkyunkwan University (SKKU)SuwonRepublic of Korea
| | - Seung Ju Seo
- Department of PhysiologyGraduate School of Medical ScienceBrain Korea 21 ProjectYonsei University College of MedicineSeoulRepublic of Korea
| | - Ga Ryang Ko
- Department of Intelligent Precision Healthcare ConvergenceSungkyunkwan University (SKKU)SuwonRepublic of Korea
| | - Seung Hyun Lee
- Department of Intelligent Precision Healthcare ConvergenceSungkyunkwan University (SKKU)SuwonRepublic of Korea
| | - Eunju Cha
- Department of PhysiologyGraduate School of Medical ScienceBrain Korea 21 ProjectYonsei University College of MedicineSeoulRepublic of Korea
| | - Su Min Kwak
- Department of MedicineCollege of MedicineYonsei University Graduate SchoolSeoulRepublic of Korea
| | - Sumin Kim
- Department of Intelligent Precision Healthcare ConvergenceSungkyunkwan University (SKKU)SuwonRepublic of Korea
| | - Mikyung Shin
- Department of Biomedical EngineeringSungkyunkwan University (SKKU)SuwonRepublic of Korea
- Department of Intelligent Precision Healthcare ConvergenceSungkyunkwan University (SKKU)SuwonRepublic of Korea
- Center for Neuroscience Imaging ResearchInstitute for Basic Science (IBS)SuwonRepublic of Korea
| | - Yoonhee Jin
- Department of PhysiologyGraduate School of Medical ScienceBrain Korea 21 ProjectYonsei University College of MedicineSeoulRepublic of Korea
- Department of MedicineCollege of MedicineYonsei University Graduate SchoolSeoulRepublic of Korea
| | - Jung Seung Lee
- Department of Biomedical EngineeringSungkyunkwan University (SKKU)SuwonRepublic of Korea
- Department of Intelligent Precision Healthcare ConvergenceSungkyunkwan University (SKKU)SuwonRepublic of Korea
- Department of MetaBioHealthSungkyunkwan University (SKKU)SuwonRepublic of Korea
| |
Collapse
|
4
|
Vidyadharan VA, Betancourt A, Smith C, Blesson CS, Yallampalli C. Maternal Low-Protein Diet Leads to Mitochondrial Dysfunction and Impaired Energy Metabolism in the Skeletal Muscle of Male Rats. Int J Mol Sci 2024; 25:12860. [PMID: 39684571 DOI: 10.3390/ijms252312860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/18/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
A prenatal low-protein (LP) diet disrupts glucose homeostasis in adult offspring. Skeletal muscles are one of the main sites of glucose clearance, and mitochondria residing in the muscle fibers are central to glucose homeostasis. Our previous studies indicated that impaired mitochondrial health is central to dysregulated glucose metabolism in the gastrocnemius muscle of the LP-programmed female rats. In addition, dysfunctional mitochondria are often an indicator of underlying irregularities in energy metabolism and metabolic inflexibility. Therefore, this study examined the mitochondrial function and metabolic flexibility in the skeletal muscles of prenatal LP-programmed adult male rats. Pregnant Wistar rats were randomly allotted to a control diet (20% protein) or an isocaloric LP diet (6% protein). Standard laboratory rat chow was given to the dams and the pups after delivery and weaning. Gene and protein expressions, mtDNA copy number, and electron microscopy were assessed in gastrocnemius (GS) muscle, and the mitochondrial oxygen consumption rate was determined using isolated flexor digitorum brevis muscle fibers. The genes associated with mitochondrial outer membrane fusion, mitofusin1 and 2 (Mfn1 and Mfn2), fission (Fis1), and biogenesis (Pgc1B, Nrf1, and Esrra) were lower in the LP group. Further, our functional studies showed that the ATP-linked oxygen consumption rate (OCR), maximal, spare respiratory, and non-mitochondrial respiration-associated OCRs were lower in the LP rats. Further, the mRNA and protein expressions of Ndufb8, a key factor involved in the complex-I catalytic activity, were downregulated in the LP group. In addition, the expression of genes linked to mitochondrial pyruvate transport (Mpc1) and metabolism (Pdha1) was lower in the LP group. In contrast, the expression of mitochondrial fatty acid transporters (Cpt1a and Cpt2) was higher in the LP when compared to the control group. However, electron microscopic analysis exhibited no difference in the mitochondrial ultrastructure in the LP muscle compared to the control. Altogether, our results indicate that the LP diet affects the mitochondrial complex-I integrity and dynamics and leads to altered expression of genes associated with substrate oxidation and mitochondrial dysfunction in the skeletal muscle of the male LP offspring.
Collapse
Affiliation(s)
- Vipin A Vidyadharan
- Basic Sciences Perinatology Research Laboratories, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ancizar Betancourt
- Basic Sciences Perinatology Research Laboratories, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Craig Smith
- Agilent Technologies Inc., Santa Clara, CA 95051, USA
| | - Chellakkan S Blesson
- Reproductive Endocrinology and Infertility Division, Baylor College of Medicine, Houston, TX 77030, USA
- Family Fertility Center, Texas Children's Hospital, Houston, TX 77030, USA
| | - Chandra Yallampalli
- Basic Sciences Perinatology Research Laboratories, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
5
|
Li X, Liu X, Chen X, Wang Y, Wu S, Li F, Su Y, Chen L, Xiao J, Ma J, Qin P. Leukocyte mitochondrial DNA copy number and cardiovascular disease: A systematic review and meta-analysis of cohort studies. iScience 2024; 27:110522. [PMID: 39220264 PMCID: PMC11363494 DOI: 10.1016/j.isci.2024.110522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/10/2024] [Accepted: 07/12/2024] [Indexed: 09/04/2024] Open
Abstract
Increasing cohort studies have examined the link between mitochondrial DNA copy number (mtDNA-CN) and cardiovascular disease (CVD), with inconsistent findings. We searched PubMed, EMBASE, and Web of Science up to July 11, 2023 and used a random-effects model to calculate summary hazard ratios (HRs) and 95% confidence intervals (CIs). This systematic review and meta-analysis included 8 articles encompassing 29 studies with 646,398 participants. Individuals with the lowest mtDNA-CN had a summary HR of 1.27 (95% CI 1.02-1.59) for CVD, 1.18 (95% CI 0.92-1.50) for coronary heart disease (CHD), 1.10 (95% CI 0.89-1.37) for stroke, and 1.30 (95% CI 1.07-1.56) for heart failure (HF). Decreased mtDNA-CN is linked to an increased risk of CVD and HF but not CHD and stroke. These findings suggest mtDNA-CN from leukocytes may be a potential early biomarker for CVD. However, more prospective studies with long follow-up are needed.
Collapse
Affiliation(s)
- Xinying Li
- Center for Clinical Epidemiology and Evidence-Based Medicine, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, Guangdong, China
- School of Public Health, Shantou University, Shantou, Guangdong, China
| | - Xiaoning Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaojuan Chen
- Center for Clinical Epidemiology and Evidence-Based Medicine, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, Guangdong, China
- School of Public Health, Shantou University, Shantou, Guangdong, China
| | - Yanqi Wang
- Center for Clinical Epidemiology and Evidence-Based Medicine, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, Guangdong, China
- School of Public Health, Shantou University, Shantou, Guangdong, China
| | - Shuning Wu
- Department of Thyroid and Breast Surgery, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China
| | - Fengjuan Li
- Center for Clinical Epidemiology and Evidence-Based Medicine, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, Guangdong, China
- School of Public Health, Shantou University, Shantou, Guangdong, China
| | - Yuhao Su
- Center for Clinical Epidemiology and Evidence-Based Medicine, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, Guangdong, China
- School of Public Health, Shantou University, Shantou, Guangdong, China
| | - Lifang Chen
- Department of Cardiovascular Medicine, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen 518000, Guangdong, China
| | - Jian Xiao
- Department of Cardiovascular Medicine, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen 518000, Guangdong, China
| | - Jianping Ma
- Center for Clinical Epidemiology and Evidence-Based Medicine, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, Guangdong, China
| | - Pei Qin
- Center for Clinical Epidemiology and Evidence-Based Medicine, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
6
|
Landoni JC, Erkul S, Laalo T, Goffart S, Kivelä R, Skube K, Nieminen AI, Wickström SA, Stewart J, Suomalainen A. Overactive mitochondrial DNA replication disrupts perinatal cardiac maturation. Nat Commun 2024; 15:8066. [PMID: 39277581 PMCID: PMC11401880 DOI: 10.1038/s41467-024-52164-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 08/26/2024] [Indexed: 09/17/2024] Open
Abstract
High mitochondrial DNA (mtDNA) amount has been reported to be beneficial for resistance and recovery of metabolic stress, while increased mtDNA synthesis activity can drive aging signs. The intriguing contrast of these two mtDNA boosting outcomes prompted us to jointly elevate mtDNA amount and frequency of replication in mice. We report that high activity of mtDNA synthesis inhibits perinatal metabolic maturation of the heart. The offspring of the asymptomatic parental lines are born healthy but manifest dilated cardiomyopathy and cardiac collapse during the first days of life. The pathogenesis, further enhanced by mtDNA mutagenesis, involves prenatal upregulation of mitochondrial integrated stress response and the ferroptosis-inducer MESH1, leading to cardiac fibrosis and cardiomyocyte death after birth. Our evidence indicates that the tight control of mtDNA replication is critical for early cardiac homeostasis. Importantly, ferroptosis sensitivity is a potential targetable mechanism for infantile-onset cardiomyopathy, a common manifestation of mitochondrial diseases.
Collapse
MESH Headings
- Animals
- DNA, Mitochondrial/genetics
- DNA, Mitochondrial/metabolism
- DNA Replication
- Mice
- Myocytes, Cardiac/metabolism
- Female
- Male
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/metabolism
- Cardiomyopathy, Dilated/pathology
- Ferroptosis/genetics
- Myocardium/metabolism
- Myocardium/pathology
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/genetics
- Mice, Inbred C57BL
- Animals, Newborn
- Humans
- Heart/physiopathology
- Fibrosis
Collapse
Affiliation(s)
- Juan C Landoni
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Semin Erkul
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tuomas Laalo
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Steffi Goffart
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Riikka Kivelä
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Wihuri Research Institute, Helsinki, Finland
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Karlo Skube
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anni I Nieminen
- Metabolomics Unit, Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Sara A Wickström
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Wihuri Research Institute, Helsinki, Finland
| | - James Stewart
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Anu Suomalainen
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- HUS Diagnostic Centre, Helsinki University Hospital, Helsinki, Finland.
- HiLife, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
7
|
Igami K, Kittaka H, Yagi M, Gotoh K, Matsushima Y, Ide T, Ikeda M, Ueda S, Nitta SI, Hayakawa M, Nakayama KI, Matsumoto M, Kang D, Uchiumi T. iMPAQT reveals that adequate mitohormesis from TFAM overexpression leads to life extension in mice. Life Sci Alliance 2024; 7:e202302498. [PMID: 38664021 PMCID: PMC11046090 DOI: 10.26508/lsa.202302498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Mitochondrial transcription factor A, TFAM, is essential for mitochondrial function. We examined the effects of overexpressing the TFAM gene in mice. Two types of transgenic mice were created: TFAM heterozygous (TFAM Tg) and homozygous (TFAM Tg/Tg) mice. TFAM Tg/Tg mice were smaller and leaner notably with longer lifespans. In skeletal muscle, TFAM overexpression changed gene and protein expression in mitochondrial respiratory chain complexes, with down-regulation in complexes 1, 3, and 4 and up-regulation in complexes 2 and 5. The iMPAQT analysis combined with metabolomics was able to clearly separate the metabolomic features of the three types of mice, with increased degradation of fatty acids and branched-chain amino acids and decreased glycolysis in homozygotes. Consistent with these observations, comprehensive gene expression analysis revealed signs of mitochondrial stress, with elevation of genes associated with the integrated and mitochondrial stress responses, including Atf4, Fgf21, and Gdf15. These found that mitohormesis develops and metabolic shifts in skeletal muscle occur as an adaptive strategy.
Collapse
Affiliation(s)
- Ko Igami
- LSI Medience Corporation, Tokyo, Japan
- Kyushu Pro Search Limited Liability Partnership, Fukuoka, Japan
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Hiroki Kittaka
- LSI Medience Corporation, Tokyo, Japan
- Kyushu Pro Search Limited Liability Partnership, Fukuoka, Japan
| | - Mikako Yagi
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
- Clinical Chemistry, Division of Biochemical Science and Technology, Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuhito Gotoh
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
- Department of Laboratory Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Yuichi Matsushima
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Tomomi Ide
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masataka Ikeda
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Saori Ueda
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Shin-Ichiro Nitta
- LSI Medience Corporation, Tokyo, Japan
- Kyushu Pro Search Limited Liability Partnership, Fukuoka, Japan
| | - Manami Hayakawa
- Kyushu Pro Search Limited Liability Partnership, Fukuoka, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Anticancer Strategies Laboratory, TMDU Advanced Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masaki Matsumoto
- Department of Omics and Systems Biology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
- Kashiigaoka Rehabilitation Hospital, Fukuoka, Japan
| | - Takeshi Uchiumi
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
- Clinical Chemistry, Division of Biochemical Science and Technology, Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
8
|
Yousef A, Sosnowski DK, Fang L, Legaspi RJ, Korodimas J, Lee A, Magor KE, Seubert JM. Cardioprotective response and senescence in aged sEH null female mice exposed to LPS. Am J Physiol Heart Circ Physiol 2024; 326:H1366-H1385. [PMID: 38578240 DOI: 10.1152/ajpheart.00706.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/06/2024]
Abstract
Deterioration of physiological systems, like the cardiovascular system, occurs progressively with age impacting an individual's health and increasing susceptibility to injury and disease. Cellular senescence has an underlying role in age-related alterations and can be triggered by natural aging or prematurely by stressors such as the bacterial toxin lipopolysaccharide (LPS). The metabolism of polyunsaturated fatty acids by CYP450 enzymes produces numerous bioactive lipid mediators that can be further metabolized by soluble epoxide hydrolase (sEH) into diol metabolites, often with reduced biological effects. In our study, we observed age-related cardiac differences in female mice, where young mice demonstrated resistance to LPS injury, and genetic deletion or pharmacological inhibition of sEH using trans-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid attenuated LPS-induced cardiac dysfunction in aged female mice. Bulk RNA-sequencing analyses revealed transcriptomics differences in aged female hearts. The confirmatory analysis demonstrated changes to inflammatory and senescence gene markers such as Il-6, Mcp1, Il-1β, Nlrp3, p21, p16, SA-β-gal, and Gdf15 were attenuated in the hearts of aged female mice where sEH was deleted or inhibited. Collectively, these findings highlight the role of sEH in modulating the aging process of the heart, whereby targeting sEH is cardioprotective.NEW & NOTEWORTHY Soluble epoxide hydrolase (sEH) is an essential enzyme for converting epoxy fatty acids to their less bioactive diols. Our study suggests deletion or inhibition of sEH impacts the aging process in the hearts of female mice resulting in cardioprotection. Data indicate targeting sEH limits inflammation, preserves mitochondria, and alters cellular senescence in the aged female heart.
Collapse
Affiliation(s)
- Ala Yousef
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Deanna K Sosnowski
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Liye Fang
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Renald James Legaspi
- Department of Biological Sciences, Faculty of Science, University of Alberta, Edmonton, Alberta, Canada
| | - Jacob Korodimas
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Andy Lee
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Katharine E Magor
- Department of Biological Sciences, Faculty of Science, University of Alberta, Edmonton, Alberta, Canada
| | - John M Seubert
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
9
|
VanPortfliet JJ, Chute C, Lei Y, Shutt TE, West AP. Mitochondrial DNA release and sensing in innate immune responses. Hum Mol Genet 2024; 33:R80-R91. [PMID: 38779772 PMCID: PMC11112387 DOI: 10.1093/hmg/ddae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 02/09/2024] [Indexed: 05/25/2024] Open
Abstract
Mitochondria are pleiotropic organelles central to an array of cellular pathways including metabolism, signal transduction, and programmed cell death. Mitochondria are also key drivers of mammalian immune responses, functioning as scaffolds for innate immune signaling, governing metabolic switches required for immune cell activation, and releasing agonists that promote inflammation. Mitochondrial DNA (mtDNA) is a potent immunostimulatory agonist, triggering pro-inflammatory and type I interferon responses in a host of mammalian cell types. Here we review recent advances in how mtDNA is detected by nucleic acid sensors of the innate immune system upon release into the cytoplasm and extracellular space. We also discuss how the interplay between mtDNA release and sensing impacts cellular innate immune endpoints relevant to health and disease.
Collapse
Affiliation(s)
- Jordyn J VanPortfliet
- The Jackson Laboratory, Bar Harbor, ME 04609, United States
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, TX 77807, United States
| | - Cole Chute
- Departments of Medical Genetics and Biochemistry & Molecular Biology, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Yuanjiu Lei
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, United States
| | - Timothy E Shutt
- Departments of Medical Genetics and Biochemistry & Molecular Biology, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - A Phillip West
- The Jackson Laboratory, Bar Harbor, ME 04609, United States
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, TX 77807, United States
| |
Collapse
|
10
|
Hughes LA, Rackham O, Filipovska A. Illuminating mitochondrial translation through mouse models. Hum Mol Genet 2024; 33:R61-R79. [PMID: 38779771 PMCID: PMC11112386 DOI: 10.1093/hmg/ddae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/22/2024] [Accepted: 01/31/2024] [Indexed: 05/25/2024] Open
Abstract
Mitochondria are hubs of metabolic activity with a major role in ATP conversion by oxidative phosphorylation (OXPHOS). The mammalian mitochondrial genome encodes 11 mRNAs encoding 13 OXPHOS proteins along with 2 rRNAs and 22 tRNAs, that facilitate their translation on mitoribosomes. Maintaining the internal production of core OXPHOS subunits requires modulation of the mitochondrial capacity to match the cellular requirements and correct insertion of particularly hydrophobic proteins into the inner mitochondrial membrane. The mitochondrial translation system is essential for energy production and defects result in severe, phenotypically diverse diseases, including mitochondrial diseases that typically affect postmitotic tissues with high metabolic demands. Understanding the complex mechanisms that underlie the pathologies of diseases involving impaired mitochondrial translation is key to tailoring specific treatments and effectively targeting the affected organs. Disease mutations have provided a fundamental, yet limited, understanding of mitochondrial protein synthesis, since effective modification of the mitochondrial genome has proven challenging. However, advances in next generation sequencing, cryoelectron microscopy, and multi-omic technologies have revealed unexpected and unusual features of the mitochondrial protein synthesis machinery in the last decade. Genome editing tools have generated unique models that have accelerated our mechanistic understanding of mitochondrial translation and its physiological importance. Here we review the most recent mouse models of disease pathogenesis caused by defects in mitochondrial protein synthesis and discuss their value for preclinical research and therapeutic development.
Collapse
Affiliation(s)
- Laetitia A Hughes
- Telethon Kids Institute, Northern Entrance, Perth Children’s Hospital, 15 Hospital Avenue, Nedlands, WA 6009, Australia
- Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, WA 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, 35 Stirling Highway, Crawley, WA 6009, The University of Western Australia, Crawley, WA 6009, Australia
| | - Oliver Rackham
- Telethon Kids Institute, Northern Entrance, Perth Children’s Hospital, 15 Hospital Avenue, Nedlands, WA 6009, Australia
- Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, WA 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, 35 Stirling Highway, Crawley, WA 6009, The University of Western Australia, Crawley, WA 6009, Australia
- Curtin Medical School, Curtin University, Kent Street, Bentley, WA 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Kent Street, Bentley, WA 6102, Australia
| | - Aleksandra Filipovska
- Telethon Kids Institute, Northern Entrance, Perth Children’s Hospital, 15 Hospital Avenue, Nedlands, WA 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, 35 Stirling Highway, Crawley, WA 6009, The University of Western Australia, Crawley, WA 6009, Australia
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, 19 Innovation Walk, Clayton, Clayton, VIC 3168, Australia
| |
Collapse
|
11
|
Montserrat-Mesquida M, Ferrer MD, Pons A, Sureda A, Capó X. Effects of chronic hydrogen peroxide exposure on mitochondrial oxidative stress genes, ROS production and lipid peroxidation in HL60 cells. Mitochondrion 2024; 76:101869. [PMID: 38467292 DOI: 10.1016/j.mito.2024.101869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/25/2024] [Accepted: 03/07/2024] [Indexed: 03/13/2024]
Abstract
Hydrogen peroxide (H2O2) is a reactive species that is also involved in the redox regulation of cells because of it is relative stability. In numerous pathological situations, a chronic increase in the production of reactive species is observed, which is related to oxidative stress and cellular damage. This study aimed to evaluate the effects of long-term exposure to different H2O2 concentrations on oxidative stress biomarkers and mitochondrial dynamics in HL60 cells. HL60 cells were treated with a sustained production (0.1, 1.0 and 10.0 nM/s) of H2O2 for one hour. H2O2 production and malondialdehyde (MDA) levels, as a lipid peroxidation marker, increased progressively in HL60 cells in accordance with higher H2O2 exposure, with significant differences between the 10 nM/s H2O2 group and the control and 0.1 nM/s groups. Similarly, progressive increased expression in genes related to the mitochondrial antioxidant defences and mitochondrial dynamics were also observed. Significantly increased gene expression in the 10 nM/s H2O2 with respect to the control group was observed for manganese superoxide dismutase (MnSOD), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PCG1α), nuclear respiratory factor 2 (Nrf2), mitochondrial transcription factor A (Tfam), mitofusins 1 and 2 (Mfn1 and Mfn2) and uncoupling protein 3 (UCP3), whereas no significant changes were observed in the cytochrome c oxidase subunit IV (COXIV) gene expression. In conclusion, exposure to different sustained production of H2O2 is related to a progressive increase in the gene expression of mitochondrial dynamics and redox processes in HL60 cells, but also to oxidative damage at higher H2O2 production levels.
Collapse
Affiliation(s)
- M Montserrat-Mesquida
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands-IUNICS, 07122 Palma, Spain; Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - M D Ferrer
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands-IUNICS, 07122 Palma, Spain
| | - A Pons
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands-IUNICS, 07122 Palma, Spain; Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - A Sureda
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands-IUNICS, 07122 Palma, Spain; Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain.
| | - X Capó
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands-IUNICS, 07122 Palma, Spain; Translational Research in Aging and Longevity (TRIAL) Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
| |
Collapse
|
12
|
Cheng Q, Liu QQ, Lu CA. A state-of-the-science review of using mitochondrial DNA copy number as a biomarker for environmental exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123642. [PMID: 38402934 DOI: 10.1016/j.envpol.2024.123642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/06/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Mitochondria are bioenergetic, biosynthetic, and signaling organelles in eukaryotes, and contain their own genomes, mitochondrial DNA (mtDNA), to supply energy to cells by generating ATP via oxidative phosphorylation. Therefore, the threat to mitochondria' integrity and health resulting from environmental exposure could induce adverse health effects in organisms. In this review, we summarized the association between mtDNA copy number (mtDNAcn), and environmental exposures as reported in the literature. We conducted a literature search in the Web of Science using [Mitochondrial DNA copy number] and [Exposure] as two keywords and employed three selection criteria for the final inclusion of 97 papers for review. The consensus of data was that mtDNAcn could be used as a plausible biomarker for cumulative exposures to environmental chemical and physical agents. In order to furtherly expand the application of mtDNAcn in ecological and environmental health research, we suggested a series of algorithms aiming to standardize the calculation of mtDNAcn based on the PCR results in this review. We also discussed the pitfalls of using whole blood/plasma samples for mtDNAcn measurements and regard buccal cells a plausible and practical alternative. Finally, we recognized the importance of better understanding the mechanistic analysis and regulatory mechanism of mtDNAcn, in particular the signals release and regulation pathways. We believe that the development of using mtDNAcn as an exposure biomarker will revolutionize the evaluation of chronic sub-lethal toxicity of chemicals to organisms in ecological and environmental health research that has not yet been implemented.
Collapse
Affiliation(s)
- Qing Cheng
- College of Resources and Environment, Southwest University, Chongqing, 400715, People's Republic of China
| | - Qing Qing Liu
- College of Resources and Environment, Southwest University, Chongqing, 400715, People's Republic of China
| | - Chensheng Alex Lu
- College of Resources and Environment, Southwest University, Chongqing, 400715, People's Republic of China; School of Public Health, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
13
|
Xia Q, Lan J, Pan Y, Wang Y, Song T, Yang Y, Tian X, Chen L, Gu Z, Ding YY. Effects of Dityrosine on Lactic Acid Metabolism in Mice Gastrocnemius Muscle During Endurance Exercise via the Oxidative Stress-Induced Mitochondria Damage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5269-5282. [PMID: 38439706 DOI: 10.1021/acs.jafc.3c09649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Dityrosine (Dityr) has been detected in commercial food as a product of protein oxidation and has been shown to pose a threat to human health. This study aims to investigate whether Dityr causes a decrease in lactic acid metabolism in the gastrocnemius muscle during endurance exercise. C57BL/6 mice were administered Dityr or saline by gavage for 13 weeks and underwent an endurance exercise test on a treadmill. Dityr caused a severe reduction in motion displacement and endurance time, along with a significant increase in lactic acid accumulation in the blood and gastrocnemius muscle in mice after exercise. Dityr induced significant mitochondrial defects in the gastrocnemius muscle of mice. Additionally, Dityr induced serious oxidative stress in the gastrocnemius muscle, accompanied by inflammation, which might be one of the causes of mitochondrial dysfunction. Moreover, significant apoptosis in the gastrocnemius muscle increased after exposure to Dityr. This study confirmed that Dityr induced oxidative stress in the gastrocnemius muscle, which further caused significant mitochondrial damage in the gastrocnemius muscle cell, resulting in decreased capacity of lactic acid metabolism and finally affected performance in endurance exercise. This may be one of the possible mechanisms by which highly oxidized foods cause a decreased muscle energy metabolism.
Collapse
Affiliation(s)
- Qiudong Xia
- Department of Physical Education, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Jinchi Lan
- Food Safety Key Laboratory of Zhejiang Province, National Experimental Teaching Demonstration Center for Food Engineering and Quality and Safety, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yuxiang Pan
- Food Safety Key Laboratory of Zhejiang Province, National Experimental Teaching Demonstration Center for Food Engineering and Quality and Safety, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yuxin Wang
- Food Safety Key Laboratory of Zhejiang Province, National Experimental Teaching Demonstration Center for Food Engineering and Quality and Safety, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Tianyuan Song
- Food Safety Key Laboratory of Zhejiang Province, National Experimental Teaching Demonstration Center for Food Engineering and Quality and Safety, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Ying Yang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xu Tian
- Beijing Competitor Sports Nutrition Research Institute, Beijing 100027, China
| | - Longjun Chen
- Huzhou Shengtao Biotechnology LLC, Huzhou 313000, China
| | - Zhenyu Gu
- Food Safety Key Laboratory of Zhejiang Province, National Experimental Teaching Demonstration Center for Food Engineering and Quality and Safety, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yin-Yi Ding
- Food Safety Key Laboratory of Zhejiang Province, National Experimental Teaching Demonstration Center for Food Engineering and Quality and Safety, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| |
Collapse
|
14
|
Shokri F, Zarei M, Komaki A, Raoufi S, Ramezani-Aliakbari F. Effect of diminazene on cardiac hypertrophy through mitophagy in rat models with hyperthyroidism induced by levothyroxine. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1151-1162. [PMID: 37632551 DOI: 10.1007/s00210-023-02680-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/17/2023] [Indexed: 08/28/2023]
Abstract
Hyperthyroidism is associated with the alteration in molecular pathways involved in the regulation of mitochondrial mass and apoptosis, which contribute to the development of cardiac hypertrophy. Diminazene (DIZE) is an animal anti-infection drug that has shown promising effects on improving cardiovascular disease. The aim of the present study was to investigate the therapeutic effect of DIZE on cardiac hypertrophy and the signaling pathways involved in this process in the hyperthyroid rat model. Twenty male Wistar rats were equally divided into four groups: control, hyperthyroid, DIZE, and hyperthyroid + DIZE. After 28 days of treatment, serum thyroxine (T4) and thyroid stimulating hormone (TSH) level, cardiac hypertrophy indices, cardiac damage markers, cardiac malondialdehyde (MDA), and superoxide dismutase (SOD) level, the mRNA expression level of mitochondrial and apoptotic genes were evaluated. Hyperthyroidism significantly decreased the cardiac expression level of SIRT1/PGC1α and its downstream involved in the regulation of mitochondrial biogenesis, mitophagy, and antioxidant enzyme activities including TFAM, PINK1/MFN2, Drp1, and Nrf2, respectively, as well as stimulated mitochondrial-dependent apoptosis by reducing Bcl-2 expression and increasing Bax expression. Treatment with DIZE significantly reversed the downregulation of SIRT1, PGC1α, PINK1, MFN2, Drp1, and Nrf2 but did not significantly change the TFAM expression. Moreover, DIZE suppressed apoptosis by normalizing the cardiac expression levels of Bax and Bcl-2. DIZE is effective in attenuating hyperthyroidism-induced cardiac hypertrophy by modulating the mitophagy-related pathway, suppressing apoptosis and oxidative stress.
Collapse
Affiliation(s)
- Farid Shokri
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Zarei
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Safoura Raoufi
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fatemeh Ramezani-Aliakbari
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
15
|
Wang C, Deng X, Li L, Li M. Maternally Inherited Essential Hypertension May Be Associated with the Mutations in Mitochondrial tRNA Glu Gene. Pharmgenomics Pers Med 2024; 17:13-26. [PMID: 38222291 PMCID: PMC10787565 DOI: 10.2147/pgpm.s436235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 12/21/2023] [Indexed: 01/16/2024] Open
Abstract
Background Mitochondrial DNA (mtDNA) mutations are associated with essential hypertension (EH), but the molecular mechanism remains largely unknown. Objective The aim of this study is to explore the association between mtDNA mutations and EH. Methods Two maternally inherited families with EH are underwent clinical, genetic and biochemical assessments. mtDNA mutations are screened by PCR-Sanger sequencing and phylogenetic, and bioinformatics analyses are performed to evaluate the pathogenicity of mtDNA mutations. We also generate cytoplasmic hybrid (cybrid) cell lines to analysis mitochondrial functions. Results Matrilineal relatives exhibit variable degree of clinical phenotypes. Molecular analysis reveals the presence of m.A14693G and m.A14696G mutations in two pedigrees. Notably, the m.A14693G mutation occurs at position 54 in the TψC loop of tRNAGlu, a position which is critical for post-transcriptionally modification of tRNAGlu. While the m.A14696G mutation creates a novel base-pairing (51C-64G). Bioinformatic analysis shows that these mutations alter tRNAGlu secondary structure. Additionally, patients with tRNAGlu mutations exhibit markedly decreased in mtDNA copy number, mitochondrial membrane potential (MMP) and ATP, whereas the levels of reactive oxygen species (ROS) increase significantly. Conclusion The m.A14696G and m.A14693G mutations lead to failure in tRNAGlu metabolism and cause mitochondrial dysfunction that is responsible for EH.
Collapse
Affiliation(s)
- Chun Wang
- Department of Integrated TCM & Western Medicine, Mengcheng County Second People’s Hospital, Anhui, 233500, People’s Republic of China
| | - Xin Deng
- Department of Integrated TCM & Western Medicine, Mengcheng County Second People’s Hospital, Anhui, 233500, People’s Republic of China
| | - Lei Li
- Department of Cardiology, Mengcheng County Second People’s Hospital, Anhui, 233500, People’s Republic of China
| | - Mei Li
- Department of Pharmacy, Mengcheng County Second People’s Hospital, Anhui, 233500, People’s Republic of China
| |
Collapse
|
16
|
Ishimaru K, Ikeda M, Miyamoto HD, Furusawa S, Abe K, Watanabe M, Kanamura T, Fujita S, Nishimura R, Toyohara T, Matsushima S, Koumura T, Yamada K, Imai H, Tsutsui H, Ide T. Deferasirox Targeting Ferroptosis Synergistically Ameliorates Myocardial Ischemia Reperfusion Injury in Conjunction With Cyclosporine A. J Am Heart Assoc 2024; 13:e031219. [PMID: 38158218 PMCID: PMC10863836 DOI: 10.1161/jaha.123.031219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/17/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Ferroptosis, an iron-dependent form of regulated cell death, is a major cell death mode in myocardial ischemia reperfusion (I/R) injury, along with mitochondrial permeability transition-driven necrosis, which is inhibited by cyclosporine A (CsA). However, therapeutics targeting ferroptosis during myocardial I/R injury have not yet been developed. Hence, we aimed to investigate the therapeutic efficacy of deferasirox, an iron chelator, against hypoxia/reoxygenation-induced ferroptosis in cultured cardiomyocytes and myocardial I/R injury. METHODS AND RESULTS The effects of deferasirox on hypoxia/reoxygenation-induced iron overload in the endoplasmic reticulum, lipid peroxidation, and ferroptosis were examined in cultured cardiomyocytes. In a mouse model of I/R injury, the infarct size and adverse cardiac remodeling were examined after treatment with deferasirox, CsA, or both in combination. Deferasirox suppressed hypoxia- or hypoxia/reoxygenation-induced iron overload in the endoplasmic reticulum, lipid peroxidation, and ferroptosis in cultured cardiomyocytes. Deferasirox treatment reduced iron levels in the endoplasmic reticulum and prevented increases in lipid peroxidation and ferroptosis in the I/R-injured myocardium 24 hours after I/R. Deferasirox and CsA independently reduced the infarct size after I/R injury to a similar degree, and combination therapy with deferasirox and CsA synergistically reduced the infarct size (infarct area/area at risk; control treatment: 64±2%; deferasirox treatment: 48±3%; CsA treatment: 48±4%; deferasirox+CsA treatment: 37±3%), thereby ameliorating adverse cardiac remodeling on day 14 after I/R. CONCLUSIONS Combination therapy with deferasirox and CsA may be a clinically feasible and effective therapeutic approach for limiting I/R injury and ameliorating adverse cardiac remodeling after myocardial infarction.
Collapse
Affiliation(s)
- Kosei Ishimaru
- Department of Cardiovascular Medicine, Faculty of Medical SciencesKyushu UniversityFukuokaJapan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical SciencesKyushu UniversityFukuokaJapan
| | - Masataka Ikeda
- Department of Cardiovascular Medicine, Faculty of Medical SciencesKyushu UniversityFukuokaJapan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical SciencesKyushu UniversityFukuokaJapan
| | - Hiroko Deguchi Miyamoto
- Department of Cardiovascular Medicine, Faculty of Medical SciencesKyushu UniversityFukuokaJapan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical SciencesKyushu UniversityFukuokaJapan
| | - Shun Furusawa
- Department of Cardiovascular Medicine, Faculty of Medical SciencesKyushu UniversityFukuokaJapan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical SciencesKyushu UniversityFukuokaJapan
| | - Ko Abe
- Department of Cardiovascular Medicine, Faculty of Medical SciencesKyushu UniversityFukuokaJapan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical SciencesKyushu UniversityFukuokaJapan
| | - Masatsugu Watanabe
- Department of Cardiovascular Medicine, Faculty of Medical SciencesKyushu UniversityFukuokaJapan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical SciencesKyushu UniversityFukuokaJapan
- Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Takuya Kanamura
- Department of Cardiovascular Medicine, Faculty of Medical SciencesKyushu UniversityFukuokaJapan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical SciencesKyushu UniversityFukuokaJapan
| | - Satoshi Fujita
- Department of Cardiovascular Medicine, Faculty of Medical SciencesKyushu UniversityFukuokaJapan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical SciencesKyushu UniversityFukuokaJapan
| | - Ryohei Nishimura
- Department of Cardiovascular Medicine, Faculty of Medical SciencesKyushu UniversityFukuokaJapan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical SciencesKyushu UniversityFukuokaJapan
| | - Takayuki Toyohara
- Department of Cardiovascular Medicine, Faculty of Medical SciencesKyushu UniversityFukuokaJapan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical SciencesKyushu UniversityFukuokaJapan
| | - Shouji Matsushima
- Department of Cardiovascular Medicine, Faculty of Medical SciencesKyushu UniversityFukuokaJapan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical SciencesKyushu UniversityFukuokaJapan
| | - Tomoko Koumura
- Department of Hygienic Chemistry and Medical Research Laboratories, School of Pharmaceutical SciencesKitasato UniversityTokyoJapan
| | - Ken‐ichi Yamada
- Department of Molecular Pathobiology, Faculty of Pharmaceutical SciencesKyushu UniversityFukuokaJapan
| | - Hirotaka Imai
- Department of Hygienic Chemistry and Medical Research Laboratories, School of Pharmaceutical SciencesKitasato UniversityTokyoJapan
| | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine, Faculty of Medical SciencesKyushu UniversityFukuokaJapan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical SciencesKyushu UniversityFukuokaJapan
- School of Medicine and Graduate SchoolInternational University of Health and WelfareFukuokaJapan
| | - Tomomi Ide
- Department of Cardiovascular Medicine, Faculty of Medical SciencesKyushu UniversityFukuokaJapan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical SciencesKyushu UniversityFukuokaJapan
| |
Collapse
|
17
|
Schrott S, Osman C. Two mitochondrial HMG-box proteins, Cim1 and Abf2, antagonistically regulate mtDNA copy number in Saccharomyces cerevisiae. Nucleic Acids Res 2023; 51:11813-11835. [PMID: 37850632 PMCID: PMC10681731 DOI: 10.1093/nar/gkad849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/21/2023] [Accepted: 09/24/2023] [Indexed: 10/19/2023] Open
Abstract
The mitochondrial genome, mtDNA, is present in multiple copies in cells and encodes essential subunits of oxidative phosphorylation complexes. mtDNA levels have to change in response to metabolic demands and copy number alterations are implicated in various diseases. The mitochondrial HMG-box proteins Abf2 in yeast and TFAM in mammals are critical for mtDNA maintenance and packaging and have been linked to mtDNA copy number control. Here, we discover the previously unrecognized mitochondrial HMG-box protein Cim1 (copy number influence on mtDNA) in Saccharomyces cerevisiae, which exhibits metabolic state dependent mtDNA association. Surprisingly, in contrast to Abf2's supportive role in mtDNA maintenance, Cim1 negatively regulates mtDNA copy number. Cells lacking Cim1 display increased mtDNA levels and enhanced mitochondrial function, while Cim1 overexpression results in mtDNA loss. Intriguingly, Cim1 deletion alleviates mtDNA maintenance defects associated with loss of Abf2, while defects caused by Cim1 overexpression are mitigated by simultaneous overexpression of Abf2. Moreover, we find that the conserved LON protease Pim1 is essential to maintain low Cim1 levels, thereby preventing its accumulation and concomitant repressive effects on mtDNA. We propose a model in which the protein ratio of antagonistically acting Cim1 and Abf2 determines mtDNA copy number.
Collapse
Affiliation(s)
- Simon Schrott
- Faculty of Biology, Ludwig-Maximilians-Universität München, Großhaderner Str. 2, Planegg-Martinsried 82152, Germany
| | - Christof Osman
- Faculty of Biology, Ludwig-Maximilians-Universität München, Großhaderner Str. 2, Planegg-Martinsried 82152, Germany
| |
Collapse
|
18
|
Tewari SR, Kirk GD, Arking DE, Astemborski J, Newcomb C, Piggott DA, Mehta S, Lucas GM, Sun J. Mitochondrial DNA copy number is associated with incident chronic kidney disease and proteinuria in the AIDS linked to the intravenous experience cohort. Sci Rep 2023; 13:18406. [PMID: 37891237 PMCID: PMC10611749 DOI: 10.1038/s41598-023-45404-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
We evaluated the prospective association of mitochondrial DNA copy number (mtDNA CN) with markers of kidney function among a cohort of persons who inject drugs (PWID). This is a Prospective cohort study nested in the AIDS linked to the intravenous experience cohort (community-based cohort of PWID in Baltimore, MD). mtDNA CN was measured at two time-points 5 years apart using a real-time polymerase chain reaction. Kidney function (estimated glomerular filtration rate [eGFR], serum creatinine, urine protein) was measured annually. We used linear mixed effects models to evaluate kidney function trajectories (N = 946) and Cox regression models to assess hazard of incident CKD (eGFR < 60 at two consecutive visits, N = 739) and proteinuria (urine protein:creatinine ratio > 200, N = 573) by level of mtDNA CN (Low [lowest quartile], vs high [other three quartiles]. Models were adjusted for demographic and behavioral characteristics, HIV and/or HCV infection, and comorbidity burden. Low mtDNA CN was independently associated with higher hazard of incident CKD (aHR: 2.33, 95% CI 1.42, 3.80) and proteinuria (aHR: 1.42, 95% CI 1.04, 1.96). Participants with low mtDNA CN had greater declines in eGFR and greater increases in serum creatinine over time. Low mtDNA CN is associated with more rapid kidney function decline and risk of incident CKD and proteinuria.
Collapse
Affiliation(s)
- Sakshi R Tewari
- Department of Epidemiology, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, USA
| | - Gregory D Kirk
- Department of Epidemiology, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, USA
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Dan E Arking
- Department of Genetic Medicine, McKusick-Nathan Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jacquie Astemborski
- Department of Epidemiology, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, USA
| | - Charles Newcomb
- Department of Genetic Medicine, McKusick-Nathan Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Damani A Piggott
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Shruti Mehta
- Department of Epidemiology, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, USA
| | - Gregory M Lucas
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Jing Sun
- Department of Epidemiology, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, USA.
| |
Collapse
|
19
|
Boovarahan SR, Balu K, Prem P, Sivakumar B, Kurian GA. DNA hypomethylation by fisetin preserves mitochondria functional genes and contributes to the protection of I/R rat heart. Funct Integr Genomics 2023; 23:325. [PMID: 37880513 DOI: 10.1007/s10142-023-01257-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023]
Abstract
Myocardial I/R can alter the expression of different sets of cardiac genes that negatively influence the I/R outcome via epigenetic modifications. Fisetin is known to be cardioprotective against I/R, but its underlying epigenetic mode of action is not known and is addressed in the present study. Male Wistar rats were subjected to I/R by using the Langendorff perfusion system. Fisetin (20 mg/kg; i.p.) was administered before I/R induction, followed by the measurement of cardiac injury, hemodynamics, physiological indices, the differential expression of genes that regulate DNA methylation, and the function of mitochondria were performed. Fisetin administered I/R rat heart significantly reduced the global DNA hypermethylation and infarct size with an improved physiological recovery, measured via RPP (81%) and LVDP (82%) from the I/R control. Additionally, we noted decreased expression of the DNMT1 gene by 35% and increased expression of the TET1, TET2, and TET3 genes in fisetin-treated I/R rat hearts. Molecular docking analysis data reveals that the fisetin inhibits DNMT1 at the substrate binding site with minimum binding energy (- 8.2 kcal/mol) compared to the DNMT1 inhibitor, 5-azacytidine. Moreover, fisetin-treated I/R heart reversed the expression of the I/R-linked declined expression of bioenergetics genes (MT-ND1, MT-ND2, MT-ND4, MT-Cyt B, MT-COX1, MT-COX2, MT-ATP6), mitochondrial fission gene (Fis1), replication control genes PGC-1α, POLG, and TFAM to near-normal level. Based on the above findings, we demonstrated that fisetin possesses the ability to modulate the expression of different mitochondrial genes via influencing the global DNA methylation in cardiac tissue, which contributes significantly to the improved contractile function and thereby renders cardioprotection against I/R.
Collapse
Affiliation(s)
- Sri Rahavi Boovarahan
- Vascular Biology Lab, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, 613401, India
| | - Kirankumar Balu
- Vascular Biology Lab, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, 613401, India
| | - Priyanka Prem
- Vascular Biology Lab, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, 613401, India
| | - Bhavana Sivakumar
- Vascular Biology Lab, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, 613401, India
| | - Gino A Kurian
- Vascular Biology Lab, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, 613401, India.
| |
Collapse
|
20
|
Furusawa S, Ikeda M, Ide T, Kanamura T, Miyamoto HD, Abe K, Ishimaru K, Watanabe M, Tsutsui Y, Miyake R, Fujita S, Tohyama T, Matsushima S, Baba Y, Tsutsui H. Cardiac Autoantibodies Against Cardiac Troponin I in Post-Myocardial Infarction Heart Failure: Evaluation in a Novel Murine Model and Applications in Therapeutics. Circ Heart Fail 2023; 16:e010347. [PMID: 37522180 DOI: 10.1161/circheartfailure.122.010347] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 06/05/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND Cardiac autoantibodies (cAAbs) are involved in the progression of adverse cardiac remodeling in heart failure (HF). However, our understanding of cAAbs in HF is limited owing to the absence of relevant animal models. Herein, we aimed to establish and characterize a murine model of cAAb-positive HF after myocardial infarction (MI), thereby facilitating the development of therapeutics targeting cAAbs in post-MI HF. METHODS MI was induced in BALB/c mice. Plasma cAAbs were evaluated using modified Western blot-based methods. Prognosis, cardiac function, inflammation, and fibrosis were compared between cAAb-positive and cAAb-negative MI mice. Rapamycin was used to inhibit cAAb production. RESULTS Common cAAbs in BALB/c MI mice targeted cTnI (cardiac troponin I). Herein, 71% (24/34) and 44% (12/27) of the male and female MI mice, respectively, were positive for cAAbs against cTnI (cTnIAAb). Germinal centers were formed in the spleens and mediastinal lymph nodes of cTnIAAb-positive MI mice. cTnIAAb-positive MI mice showed progressive cardiac remodeling with a worse prognosis (P=0.014, by log-rank test), which was accompanied by cardiac inflammation, compared with that in cTnIAAb-negative MI mice. Rapamycin treatment during the first 7 days after MI suppressed cTnIAAb production (cTnIAAb positivity, 59% [29/49] and 7% [2/28] in MI mice treated with vehicle and rapamycin, respectively; P<0.001, by Pearson χ2 test), consequently improving the survival and ameliorating cardiac inflammation, cardiac remodeling, and HF in MI mice. CONCLUSIONS The present post-MI HF model may accelerate our understanding of cTnIAAb and support the development of therapeutics against cTnIAAbs in post-MI HF.
Collapse
Affiliation(s)
- Shun Furusawa
- Department of Cardiovascular Medicine (S. Furusawa, M.I., T.I., T.K., H.D.M., K.A., K.I., M.W., Y.T., R.M., S. Fujita, T.T., S.M., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology (S. Furusawa, M.I., T.I., T.K., H.D.M., K.A., K.I., M.W., Y.T., R.M., S. Fujita, S.M., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masataka Ikeda
- Department of Cardiovascular Medicine (S. Furusawa, M.I., T.I., T.K., H.D.M., K.A., K.I., M.W., Y.T., R.M., S. Fujita, T.T., S.M., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology (S. Furusawa, M.I., T.I., T.K., H.D.M., K.A., K.I., M.W., Y.T., R.M., S. Fujita, S.M., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomomi Ide
- Department of Cardiovascular Medicine (S. Furusawa, M.I., T.I., T.K., H.D.M., K.A., K.I., M.W., Y.T., R.M., S. Fujita, T.T., S.M., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology (S. Furusawa, M.I., T.I., T.K., H.D.M., K.A., K.I., M.W., Y.T., R.M., S. Fujita, S.M., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takuya Kanamura
- Department of Cardiovascular Medicine (S. Furusawa, M.I., T.I., T.K., H.D.M., K.A., K.I., M.W., Y.T., R.M., S. Fujita, T.T., S.M., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology (S. Furusawa, M.I., T.I., T.K., H.D.M., K.A., K.I., M.W., Y.T., R.M., S. Fujita, S.M., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroko Deguchi Miyamoto
- Department of Cardiovascular Medicine (S. Furusawa, M.I., T.I., T.K., H.D.M., K.A., K.I., M.W., Y.T., R.M., S. Fujita, T.T., S.M., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology (S. Furusawa, M.I., T.I., T.K., H.D.M., K.A., K.I., M.W., Y.T., R.M., S. Fujita, S.M., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ko Abe
- Department of Cardiovascular Medicine (S. Furusawa, M.I., T.I., T.K., H.D.M., K.A., K.I., M.W., Y.T., R.M., S. Fujita, T.T., S.M., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology (S. Furusawa, M.I., T.I., T.K., H.D.M., K.A., K.I., M.W., Y.T., R.M., S. Fujita, S.M., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kosei Ishimaru
- Department of Cardiovascular Medicine (S. Furusawa, M.I., T.I., T.K., H.D.M., K.A., K.I., M.W., Y.T., R.M., S. Fujita, T.T., S.M., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology (S. Furusawa, M.I., T.I., T.K., H.D.M., K.A., K.I., M.W., Y.T., R.M., S. Fujita, S.M., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masatsugu Watanabe
- Department of Cardiovascular Medicine (S. Furusawa, M.I., T.I., T.K., H.D.M., K.A., K.I., M.W., Y.T., R.M., S. Fujita, T.T., S.M., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology (S. Furusawa, M.I., T.I., T.K., H.D.M., K.A., K.I., M.W., Y.T., R.M., S. Fujita, S.M., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan (M.W.)
| | - Yoshitomo Tsutsui
- Department of Cardiovascular Medicine (S. Furusawa, M.I., T.I., T.K., H.D.M., K.A., K.I., M.W., Y.T., R.M., S. Fujita, T.T., S.M., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology (S. Furusawa, M.I., T.I., T.K., H.D.M., K.A., K.I., M.W., Y.T., R.M., S. Fujita, S.M., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryo Miyake
- Department of Cardiovascular Medicine (S. Furusawa, M.I., T.I., T.K., H.D.M., K.A., K.I., M.W., Y.T., R.M., S. Fujita, T.T., S.M., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology (S. Furusawa, M.I., T.I., T.K., H.D.M., K.A., K.I., M.W., Y.T., R.M., S. Fujita, S.M., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Satoshi Fujita
- Department of Cardiovascular Medicine (S. Furusawa, M.I., T.I., T.K., H.D.M., K.A., K.I., M.W., Y.T., R.M., S. Fujita, T.T., S.M., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology (S. Furusawa, M.I., T.I., T.K., H.D.M., K.A., K.I., M.W., Y.T., R.M., S. Fujita, S.M., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeshi Tohyama
- Department of Cardiovascular Medicine (S. Furusawa, M.I., T.I., T.K., H.D.M., K.A., K.I., M.W., Y.T., R.M., S. Fujita, T.T., S.M., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- Center for Clinical and Translational Research of Kyushu University Hospital, Fukuoka, Japan (T.T.)
| | - Shouji Matsushima
- Department of Cardiovascular Medicine (S. Furusawa, M.I., T.I., T.K., H.D.M., K.A., K.I., M.W., Y.T., R.M., S. Fujita, T.T., S.M., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology (S. Furusawa, M.I., T.I., T.K., H.D.M., K.A., K.I., M.W., Y.T., R.M., S. Fujita, S.M., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Baba
- Department of Molecular Genetics, Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan (Y.B.)
| | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine (S. Furusawa, M.I., T.I., T.K., H.D.M., K.A., K.I., M.W., Y.T., R.M., S. Fujita, T.T., S.M., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology (S. Furusawa, M.I., T.I., T.K., H.D.M., K.A., K.I., M.W., Y.T., R.M., S. Fujita, S.M., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- School of Medicine and Graduate School, International University of Health and Welfare, Fukuoka, Japan (H.T.)
| |
Collapse
|
21
|
Rossi A, Assunto A, Rosano C, Tucci S, Ruoppolo M, Caterino M, Pirozzi F, Strisciuglio P, Parenti G, Melis D. Mitochondrial reprogramming in peripheral blood mononuclear cells of patients with glycogen storage disease type Ia. GENES & NUTRITION 2023; 18:10. [PMID: 37280548 DOI: 10.1186/s12263-023-00729-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 05/05/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND Glycogen storage disease type Ia (GSDIa) is an inborn metabolic disorder caused by the deficiency of glucose-6-phospatase-α (G6Pase-α) leading to mitochondrial dysfunction. It remains unclear whether mitochondrial dysfunction is present in patients' peripheral blood mononuclear cells (PBMC) and whether dietary treatment can play a role. The aim of this study was to investigate mitochondrial function in PBMC of GSDIa patients. METHODS Ten GSDIa patients and 10 age-, sex- and fasting-time matched controls were enrolled. Expression of genes involved in mitochondrial function and activity of key fatty acid oxidation (FAO) and Krebs cycle proteins were assessed in PBMC. Targeted metabolomics and assessment of metabolic control markers were also performed. RESULTS Adult GSDIa patients showed increased CPT1A, SDHB, TFAM, mTOR expression (p < 0.05) and increased VLCAD, CPT2 and citrate synthase activity in PBMC (p < 0.05). VLCAD activity directly correlated with WC (p < 0.01), BMI (p < 0.05), serum malonycarnitine levels (p < 0.05). CPT2 activity directly correlated with BMI (p < 0.05). CONCLUSION Mitochondrial reprogramming is detectable in PBMC of GSDIa patients. This feature may develop as an adaptation to the liver enzyme defect and may be triggered by dietary (over)treatment in the frame of G6Pase-α deficiency. PBMC can represent an adequate mean to assess (diet-induced) metabolic disturbances in GSDIa.
Collapse
Affiliation(s)
- Alessandro Rossi
- Department of Translational Medicine, Section of Pediatrics, University of Naples Federico II, Naples, Italy
| | - Antonia Assunto
- Department of Translational Medicine, Section of Pediatrics, University of Naples Federico II, Naples, Italy
| | - Carmen Rosano
- Department of Translational Medicine, Section of Pediatrics, University of Naples Federico II, Naples, Italy
| | - Sara Tucci
- Pharmacy, Medical Center - University of Freiburg, Hugstetterstr. 55, D-79106, Freiburg, Germany
| | - Margherita Ruoppolo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
- CEINGE Advanced Biotechnologies, Naples, Italy
| | - Marianna Caterino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
- CEINGE Advanced Biotechnologies, Naples, Italy
| | - Francesca Pirozzi
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
- CEINGE Advanced Biotechnologies, Naples, Italy
| | - Pietro Strisciuglio
- Department of Translational Medicine, Section of Pediatrics, University of Naples Federico II, Naples, Italy
| | - Giancarlo Parenti
- Department of Translational Medicine, Section of Pediatrics, University of Naples Federico II, Naples, Italy
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Daniela Melis
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Section of Pediatrics, University of Salerno, Via Salvador Allende, 43 84081, Baronissi (Salerno), Italy.
| |
Collapse
|
22
|
Ding Y, Zhang S, Guo Q, Leng J. Mitochondrial Diabetes Is Associated with the ND4 G11696A Mutation. Biomolecules 2023; 13:907. [PMID: 37371486 DOI: 10.3390/biom13060907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/21/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a common endocrine disorder which remains a large challenge for clinicians. Previous studies have suggested that mitochondrial dysfunction plays an active role in T2DM progression, but a detailed mechanism is still elusive. In the current study, two Han Chinese families with maternally inherited T2DM were evaluated using clinical, genetic, molecular, and biochemical analyses. The mitochondrial genomes were PCR amplified and sequenced. Phylogenetic and bioinformatic analyses were used to assess the potential pathogenicity of mitochondrial DNA (mtDNA) mutations. Interestingly, the matrilineal relatives of these pedigrees exhibited variable severity of T2DM, in particular, the age at onset of T2DM varied from 26 to 65 years, with an average of 49 years. Sequence analysis revealed the presence of ND4 G11696A mutation, which resulted in the substitution of an isoleucine for valine at amino acid (AA) position 312. Indeed, this mutation was present in homoplasmy only in the maternal lineage, not in other members of these families, as well as 200 controls. Furthermore, the m.C5601T in the tRNAAla and novel m.T5813C in the tRNACys, showing high evolutional conservation, may contribute to the phenotypic expression of ND4 G11696A mutation. In addition, biochemical analysis revealed that cells with ND4 G11696A mutation exhibited higher levels of reactive oxygen species (ROS) productions than the controls. In contrast, the levels of mitochondrial membrane potential (MMP), ATP, mtDNA copy number (mtDNA-CN), Complex I activity, and NAD+/NADH ratio significantly decreased in cell lines carrying the m.G11696A and tRNA mutations, suggesting that these mutations affected the respiratory chain function and led to mitochondrial dysfunction that was involved in T2DM. Thus, our study broadened the clinical phenotypes of m.G11696A mutation.
Collapse
Affiliation(s)
- Yu Ding
- Central Laboratory, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Shunrong Zhang
- Department of Geriatrics, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Qinxian Guo
- Central Laboratory, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Jianhang Leng
- Central Laboratory, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| |
Collapse
|
23
|
Headley CA, Tsao PS. Building the case for mitochondrial transplantation as an anti-aging cardiovascular therapy. Front Cardiovasc Med 2023; 10:1141124. [PMID: 37229220 PMCID: PMC10203246 DOI: 10.3389/fcvm.2023.1141124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/11/2023] [Indexed: 05/27/2023] Open
Abstract
Mitochondrial dysfunction is a common denominator in both biological aging and cardiovascular disease (CVD) pathology. Understanding the protagonist role of mitochondria in the respective and independent progressions of CVD and biological aging will unravel the synergistic relationship between biological aging and CVD. Moreover, the successful development and implementation of therapies that can simultaneously benefit mitochondria of multiple cell types, will be transformational in curtailing pathologies and mortality in the elderly, including CVD. Several works have compared the status of mitochondria in vascular endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) in CVD dependent context. However, fewer studies have cataloged the aging-associated changes in vascular mitochondria, independent of CVD. This mini review will focus on the present evidence related to mitochondrial dysfunction in vascular aging independent of CVD. Additionally, we discuss the feasibility of restoring mitochondrial function in the aged cardiovascular system through mitochondrial transfer.
Collapse
|
24
|
Shen Q, Fang J, Guo H, Su X, Zhu B, Yao X, Wang Y, Cao A, Wang H, Wang L. Astragaloside IV attenuates podocyte apoptosis through ameliorating mitochondrial dysfunction by up-regulated Nrf2-ARE/TFAM signaling in diabetic kidney disease. Free Radic Biol Med 2023; 203:45-57. [PMID: 37030337 DOI: 10.1016/j.freeradbiomed.2023.03.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/01/2023] [Accepted: 03/23/2023] [Indexed: 04/10/2023]
Abstract
Defective antioxidant system as well as mitochondrial dysfunction contributes to the pathogenesis and progression of diabetic kidney disease (DKD). Nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated signaling is the central defensive mechanism against oxidative stress and therefore pharmacological activation of Nrf2 is a promising therapeutic strategy. In this study, using molecular docking we found that Astragaloside IV (AS-IV), an active ingredient from traditional formula of Huangqi decoction (HQD), exerted a higher potential to promote Nrf2 escape from Keap1-Nrf2 interaction via competitively bind to amino acid sites in Keap1. When podocyte exposed to high glucose (HG) stimulation, mitochondrial morphological alterations and podocyte apoptosis were presented and accompanied by Nrf2 and mitochondrial transcription factor A (TFAM) downregulation. Mechanistically, HG promoted a decrease in mitochondria-specific electron transport chain (ETC) complexes, ATP synthesis and mtDNA content as well as increased ROS production. Conversely, all these mitochondrial defects were dramatically alleviated by AS-IV, but suppression of Nrf2 with inhibitor or siRNA and TFAM siRNA simultaneously alleviated the AS-IV efficacy. Moreover, experimental diabetic mice exhibited significant renal injury as well as mitochondrial disorder, corresponding with the decreased expression of Nrf2 and TFAM. On the contrary, AS-IV reversed the abnormality and the Nrf2 and TFAM expression were also restored. Taken together, the present findings demonstrate the improvement of AS-IV on mitochondrial function, thereby resistance to oxidative stress-induced diabetic kidney injury and podocyte apoptosis, and the process is closely associated with activation of Nrf2-ARE/TFAM signaling.
Collapse
Affiliation(s)
- Qian Shen
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ji Fang
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hengjiang Guo
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Anesthesiology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China; Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Hefei, 230032, China
| | - Xue Su
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bingbing Zhu
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xingmei Yao
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yunman Wang
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Aili Cao
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hao Wang
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Li Wang
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
25
|
Srivastava V, Zelmanovich V, Shukla V, Abergel R, Cohen I, Ben-Sasson SA, Gross E. Distinct designer diamines promote mitophagy, and thereby enhance healthspan in C. elegans and protect human cells against oxidative damage. Autophagy 2023; 19:474-504. [PMID: 35579620 PMCID: PMC9851263 DOI: 10.1080/15548627.2022.2078069] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Impaired mitophagy is a primary pathogenic event underlying diverse aging-associated diseases such as Alzheimer and Parkinson diseases and sarcopenia. Therefore, augmentation of mitophagy, the process by which defective mitochondria are removed, then replaced by new ones, is an emerging strategy for preventing the evolvement of multiple morbidities in the elderly population. Based on the scaffold of spermidine (Spd), a known mitophagy-promoting agent, we designed and tested a family of structurally related compounds. A prototypic member, 1,8-diaminooctane (VL-004), exceeds Spd in its ability to induce mitophagy and protect against oxidative stress. VL-004 activity is mediated by canonical aging genes and promotes lifespan and healthspan in C. elegans. Moreover, it enhances mitophagy and protects against oxidative injury in rodent and human cells. Initial structural characterization suggests simple rules for the design of compounds with improved bioactivity, opening the way for a new generation of agents with a potential to promote healthy aging.
Collapse
Affiliation(s)
- Vijigisha Srivastava
- Department Biochemistry and Molecular Biology, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Veronica Zelmanovich
- Department Biochemistry and Molecular Biology, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Virendra Shukla
- Department Biochemistry and Molecular Biology, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rachel Abergel
- Department Biochemistry and Molecular Biology, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Irit Cohen
- Department Biochemistry and Molecular Biology, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shmuel A. Ben-Sasson
- Department Developmental Biology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Einav Gross
- Department Biochemistry and Molecular Biology, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel,CONTACT Einav Gross Department Biochemistry and Molecular Biology, IMRIC, Faculty of Medicine, the Hebrew University of Jerusalem, Ein Kerem. PO Box 12271, Jerusalem9112102, Israel
| |
Collapse
|
26
|
Abe K, Ikeda M, Ide T, Tadokoro T, Miyamoto HD, Furusawa S, Tsutsui Y, Miyake R, Ishimaru K, Watanabe M, Matsushima S, Koumura T, Yamada KI, Imai H, Tsutsui H. Doxorubicin causes ferroptosis and cardiotoxicity by intercalating into mitochondrial DNA and disrupting Alas1-dependent heme synthesis. Sci Signal 2022; 15:eabn8017. [PMID: 36318618 DOI: 10.1126/scisignal.abn8017] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Clinical use of doxorubicin (DOX) is limited because of its cardiotoxicity, referred to as DOX-induced cardiomyopathy (DIC). Mitochondria-dependent ferroptosis, which is triggered by iron overload and excessive lipid peroxidation, plays a pivotal role in the progression of DIC. Here, we showed that DOX accumulated in mitochondria by intercalating into mitochondrial DNA (mtDNA), inducing ferroptosis in an mtDNA content-dependent manner. In addition, DOX disrupted heme synthesis by decreasing the abundance of 5'-aminolevulinate synthase 1 (Alas1), the rate-limiting enzyme in this process, thereby impairing iron utilization, resulting in iron overload and ferroptosis in mitochondria in cultured cardiomyocytes. Alas1 overexpression prevented this outcome. Administration of 5-aminolevulinic acid (5-ALA), the product of Alas1, to cultured cardiomyocytes and mice suppressed iron overload and lipid peroxidation, thereby preventing DOX-induced ferroptosis and DIC. Our findings reveal that the accumulation of DOX and iron in mitochondria cooperatively induces ferroptosis in cardiomyocytes and suggest that 5-ALA can be used as a potential therapeutic agent for DIC.
Collapse
Affiliation(s)
- Ko Abe
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Masataka Ikeda
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Department of Immunoregulatory Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Tomomi Ide
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Tomonori Tadokoro
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Hiroko Deguchi Miyamoto
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Shun Furusawa
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yoshitomo Tsutsui
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Ryo Miyake
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Kosei Ishimaru
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Masatsugu Watanabe
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Shouji Matsushima
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Tomoko Koumura
- Departments of Hygienic Chemistry and Medical Research Laboratories, School of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Ken-ichi Yamada
- Physical Chemistry for Life Science Laboratory, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Hirotaka Imai
- Departments of Hygienic Chemistry and Medical Research Laboratories, School of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
27
|
Ikeda M, Ide T, Matsushima S, Ikeda S, Okabe K, Ishikita A, Tadokoro T, Sada M, Abe K, Sato M, Hanada A, Arai S, Ohtani K, Nonami A, Mizuno S, Morimoto S, Motohashi S, Akashi K, Taniguchi M, Tsutsui H. Immunomodulatory Cell Therapy Using αGalCer-Pulsed Dendritic Cells Ameliorates Heart Failure in a Murine Dilated Cardiomyopathy Model. Circ Heart Fail 2022; 15:e009366. [PMID: 36268712 PMCID: PMC9760469 DOI: 10.1161/circheartfailure.122.009366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Dilated cardiomyopathy (DCM) is a life-threatening disease, resulting in refractory heart failure. An immune disorder underlies the pathophysiology associated with heart failure progression. Invariant natural killer T (iNKT) cell activation is a prospective therapeutic strategy for ischemic heart disease. However, its efficacy in nonischemic cardiomyopathy, such as DCM, remains to be elucidated, and the feasible modality for iNKT cell activation in humans is yet to be validated. METHODS Dendritic cells isolated from human volunteers were pulsed with α-galactosylceramide ex vivo, which were used as α-galactosylceramide-pulsed dendritic cells (αGCDCs). We treated DCM mice harboring mutated troponin TΔK210/ΔK210 with αGCDCs and evaluated the efficacy of iNKT cell activation on heart failure in DCM mice. Furthermore, we investigated the molecular basis underlying its therapeutic effects in these mice and analyzed primary cardiac cells under iNKT cell-secreted cytokines. RESULTS The number of iNKT cells in the spleens of DCM mice was reduced compared with that in wild-type mice, whereas αGCDC treatment activated iNKT cells, prolonged survival of DCM mice, and prevented decline in the left ventricular ejection fraction for 4 weeks, accompanied by suppressed interstitial fibrosis. Mechanistically, αGCDC treatment suppressed TGF (transforming growth factor)-β signaling and expression of fibrotic genes and restored vasculature that was impaired in DCM hearts by upregulating angiopoietin 1 (Angpt1) expression. Consistently, IFNγ (interferon gamma) suppressed TGF-β-induced Smad2/3 signaling and the expression of fibrotic genes in cardiac fibroblasts and upregulated Angpt1 expression in cardiomyocytes via Stat1. CONCLUSIONS Immunomodulatory cell therapy with αGCDCs is a novel therapeutic strategy for heart failure in DCM.
Collapse
Affiliation(s)
- Masataka Ikeda
- Department of Cardiovascular Medicine (M.I., T.I., S.M., S.I., K.O., A.I., T.T., M.S., K. Abe, M.S., A.H., K.O., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.,Division of Cardiovascular Medicine, Research Institute of Angiocardiology (M.I., T.I., S.M., S.I., K.O., A.I., T.T., M.S., K. Abe, M.S., A.H., K.O., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Immunoregulatory Cardiovascular Medicine (M.I., T.I.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomomi Ide
- Department of Cardiovascular Medicine (M.I., T.I., S.M., S.I., K.O., A.I., T.T., M.S., K. Abe, M.S., A.H., K.O., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.,Division of Cardiovascular Medicine, Research Institute of Angiocardiology (M.I., T.I., S.M., S.I., K.O., A.I., T.T., M.S., K. Abe, M.S., A.H., K.O., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Immunoregulatory Cardiovascular Medicine (M.I., T.I.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shouji Matsushima
- Department of Cardiovascular Medicine (M.I., T.I., S.M., S.I., K.O., A.I., T.T., M.S., K. Abe, M.S., A.H., K.O., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.,Division of Cardiovascular Medicine, Research Institute of Angiocardiology (M.I., T.I., S.M., S.I., K.O., A.I., T.T., M.S., K. Abe, M.S., A.H., K.O., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Soichiro Ikeda
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology (M.I., T.I., S.M., S.I., K.O., A.I., T.T., M.S., K. Abe, M.S., A.H., K.O., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kosuke Okabe
- Department of Cardiovascular Medicine (M.I., T.I., S.M., S.I., K.O., A.I., T.T., M.S., K. Abe, M.S., A.H., K.O., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.,Division of Cardiovascular Medicine, Research Institute of Angiocardiology (M.I., T.I., S.M., S.I., K.O., A.I., T.T., M.S., K. Abe, M.S., A.H., K.O., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akihito Ishikita
- Department of Cardiovascular Medicine (M.I., T.I., S.M., S.I., K.O., A.I., T.T., M.S., K. Abe, M.S., A.H., K.O., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.,Division of Cardiovascular Medicine, Research Institute of Angiocardiology (M.I., T.I., S.M., S.I., K.O., A.I., T.T., M.S., K. Abe, M.S., A.H., K.O., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomonori Tadokoro
- Department of Cardiovascular Medicine (M.I., T.I., S.M., S.I., K.O., A.I., T.T., M.S., K. Abe, M.S., A.H., K.O., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.,Division of Cardiovascular Medicine, Research Institute of Angiocardiology (M.I., T.I., S.M., S.I., K.O., A.I., T.T., M.S., K. Abe, M.S., A.H., K.O., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masashi Sada
- Department of Cardiovascular Medicine (M.I., T.I., S.M., S.I., K.O., A.I., T.T., M.S., K. Abe, M.S., A.H., K.O., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.,Division of Cardiovascular Medicine, Research Institute of Angiocardiology (M.I., T.I., S.M., S.I., K.O., A.I., T.T., M.S., K. Abe, M.S., A.H., K.O., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ko Abe
- Department of Cardiovascular Medicine (M.I., T.I., S.M., S.I., K.O., A.I., T.T., M.S., K. Abe, M.S., A.H., K.O., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.,Division of Cardiovascular Medicine, Research Institute of Angiocardiology (M.I., T.I., S.M., S.I., K.O., A.I., T.T., M.S., K. Abe, M.S., A.H., K.O., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Midori Sato
- Department of Cardiovascular Medicine (M.I., T.I., S.M., S.I., K.O., A.I., T.T., M.S., K. Abe, M.S., A.H., K.O., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.,Division of Cardiovascular Medicine, Research Institute of Angiocardiology (M.I., T.I., S.M., S.I., K.O., A.I., T.T., M.S., K. Abe, M.S., A.H., K.O., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akiko Hanada
- Department of Cardiovascular Medicine (M.I., T.I., S.M., S.I., K.O., A.I., T.T., M.S., K. Abe, M.S., A.H., K.O., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.,Division of Cardiovascular Medicine, Research Institute of Angiocardiology (M.I., T.I., S.M., S.I., K.O., A.I., T.T., M.S., K. Abe, M.S., A.H., K.O., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinobu Arai
- Department of Early Childhood and Elementary Education, Faculty of Education, Nakamura Gakuen University, Fukuoka, Japan (S.A.)
| | - Kisho Ohtani
- Department of Cardiovascular Medicine (M.I., T.I., S.M., S.I., K.O., A.I., T.T., M.S., K. Abe, M.S., A.H., K.O., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.,Division of Cardiovascular Medicine, Research Institute of Angiocardiology (M.I., T.I., S.M., S.I., K.O., A.I., T.T., M.S., K. Abe, M.S., A.H., K.O., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Atsushi Nonami
- Center for Advanced Medical Innovation, Kyushu University Hospital, Fukuoka, Japan (A.N.)
| | - Shinichi Mizuno
- Department of Health Sciences (S. Mizuno), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Sachio Morimoto
- Department of Health Sciences at Fukuoka, International University of Health and Welfare, Japan (S. Morimoto)
| | - Shinichiro Motohashi
- Department of Cardiovascular Medicine (M.I., T.I., S.M., S.I., K.O., A.I., T.T., M.S., K. Abe, M.S., A.H., K.O., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Medical Immunology, Graduate School of Medicine, Chiba University, Japan (S. Motohashi)
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science (K. Akashi), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masaru Taniguchi
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan (M.T.)
| | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine (M.I., T.I., S.M., S.I., K.O., A.I., T.T., M.S., K. Abe, M.S., A.H., K.O., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.,Division of Cardiovascular Medicine, Research Institute of Angiocardiology (M.I., T.I., S.M., S.I., K.O., A.I., T.T., M.S., K. Abe, M.S., A.H., K.O., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
28
|
Mitra A, Vo L, Soukar I, Chaubal A, Greenberg ML, Pile LA. Isoforms of the transcriptional cofactor SIN3 differentially regulate genes necessary for energy metabolism and cell survival. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119322. [PMID: 35820484 PMCID: PMC10557476 DOI: 10.1016/j.bbamcr.2022.119322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 11/24/2022]
Abstract
The SIN3 scaffolding protein is a conserved transcriptional regulator known to fine-tune gene expression. In Drosophila, there are two major isoforms of SIN3, SIN3 220 and SIN3 187, which each assemble into multi-subunit histone modifying complexes. The isoforms have distinct developmental expression patterns and non-redundant functions. Gene regulatory network analyses indicate that both isoforms affect genes encoding proteins in pathways such as the cell cycle and cell morphogenesis. Interestingly, the SIN3 187 isoform uniquely regulates a subset of pathways including post-embryonic development, phosphate metabolism and apoptosis. Target genes in the phosphate metabolism pathway include nuclear-encoded mitochondrial genes coding for proteins responsible for oxidative phosphorylation. Here, we investigate the physiological effects of SIN3 isoforms on energy metabolism and cell survival. We find that ectopic expression of SIN3 187 represses expression of several nuclear-encoded mitochondrial genes affecting production of ATP and generation of reactive oxygen species (ROS). Forced expression of SIN3 187 also activates several pro-apoptotic and represses a few anti-apoptotic genes. In the SIN3 187 expressing cells, these gene expression patterns are accompanied with an increased sensitivity to paraquat-mediated oxidative stress. These findings indicate that SIN3 187 influences the regulation of mitochondrial function, apoptosis and oxidative stress response in ways that are dissimilar from SIN3 220. The data suggest that the distinct SIN3 histone modifying complexes are deployed in different cellular contexts to maintain cellular homeostasis.
Collapse
Affiliation(s)
- Anindita Mitra
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, United States of America
| | - Linh Vo
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, United States of America
| | - Imad Soukar
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, United States of America
| | - Ashlesha Chaubal
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, United States of America; Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, United States of America
| | - Miriam L Greenberg
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, United States of America
| | - Lori A Pile
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, United States of America.
| |
Collapse
|
29
|
Guajardo-Correa E, Silva-Agüero JF, Calle X, Chiong M, Henríquez M, García-Rivas G, Latorre M, Parra V. Estrogen signaling as a bridge between the nucleus and mitochondria in cardiovascular diseases. Front Cell Dev Biol 2022; 10:968373. [PMID: 36187489 PMCID: PMC9516331 DOI: 10.3389/fcell.2022.968373] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/25/2022] [Indexed: 11/29/2022] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality worldwide. Epidemiological studies indicate that pre-menopausal women are more protected against the development of CVDs compared to men of the same age. This effect is attributed to the action/effects of sex steroid hormones on the cardiovascular system. In this context, estrogen modulates cardiovascular function in physiological and pathological conditions, being one of the main physiological cardioprotective agents. Here we describe the common pathways and mechanisms by which estrogens modulate the retrograde and anterograde communication between the nucleus and mitochondria, highlighting the role of genomic and non-genomic pathways mediated by estrogen receptors. Additionally, we discuss the presumable role of bromodomain-containing protein 4 (BRD4) in enhancing mitochondrial biogenesis and function in different CVD models and how this protein could act as a master regulator of estrogen protective activity. Altogether, this review focuses on estrogenic control in gene expression and molecular pathways, how this activity governs nucleus-mitochondria communication, and its projection for a future generation of strategies in CVDs treatment.
Collapse
Affiliation(s)
- Emanuel Guajardo-Correa
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Juan Francisco Silva-Agüero
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Ximena Calle
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
- Center of Applied Nanoscience (CANS), Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago, Chile
| | - Mario Chiong
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Mauricio Henríquez
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Red para el Estudio de Enfermedades Cardiopulmonares de Alta Letalidad (REECPAL), Universidad de Chile, Santiago, Chile
| | - Gerardo García-Rivas
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León, Mexico
- Tecnológico de Monterrey, The Institute for Obesity Research, Hospital Zambrano Hellion, San Pedro Garza Garcia, Nuevo León, Mexico
| | - Mauricio Latorre
- Laboratorio de Bioingeniería, Instituto de Ciencias de la Ingeniería, Universidad de O’Higgins, Rancagua, Chile
- Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, Santiago, Chile
| | - Valentina Parra
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Red para el Estudio de Enfermedades Cardiopulmonares de Alta Letalidad (REECPAL), Universidad de Chile, Santiago, Chile
| |
Collapse
|
30
|
Miyamoto HD, Ikeda M, Ide T, Tadokoro T, Furusawa S, Abe K, Ishimaru K, Enzan N, Sada M, Yamamoto T, Matsushima S, Koumura T, Yamada KI, Imai H, Tsutsui H. Iron Overload via Heme Degradation in the Endoplasmic Reticulum Triggers Ferroptosis in Myocardial Ischemia-Reperfusion Injury. JACC Basic Transl Sci 2022; 7:800-819. [PMID: 36061338 PMCID: PMC9436815 DOI: 10.1016/j.jacbts.2022.03.012] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 10/25/2022]
Abstract
Ischemia-reperfusion (I/R) injury is a promising therapeutic target to improve clinical outcomes after acute myocardial infarction. Ferroptosis, triggered by iron overload and excessive lipid peroxides, is reportedly involved in I/R injury. However, its significance and mechanistic basis remain unclear. Here, we show that glutathione peroxidase 4 (GPx4), a key endogenous suppressor of ferroptosis, determines the susceptibility to myocardial I/R injury. Importantly, ferroptosis is a major mode of cell death in I/R injury, distinct from mitochondrial permeability transition (MPT)-driven necrosis. This suggests that the use of therapeutics targeting both modes is an effective strategy to further reduce the infarct size and thereby ameliorate cardiac remodeling after I/R injury. Furthermore, we demonstrate that heme oxygenase 1 up-regulation in response to hypoxia and hypoxia/reoxygenation degrades heme and thereby induces iron overload and ferroptosis in the endoplasmic reticulum (ER) of cardiomyocytes. Collectively, ferroptosis triggered by GPx4 reduction and iron overload in the ER is distinct from MPT-driven necrosis in both in vivo phenotype and in vitro mechanism for I/R injury. The use of therapeutics targeting ferroptosis in conjunction with cyclosporine A can be a promising strategy for I/R injury.
Collapse
Key Words
- AMI, acute myocardial infarction
- CsA, cyclosporine A
- CypD, cyclophilin D
- DXZ, dexrazoxane
- ER, endoplasmic reticulum
- Fer-1, ferrostatin-1
- GPx4, glutathione peroxidase 4
- H/R, hypoxia-reoxygenation
- HF, heart failure
- HO-1, heme oxygenase 1
- I/R, ischemia-reperfusion
- LP, lipid peroxide
- MPT, mitochondrial permeability transition
- MPT-driven necrosis
- RCD, regulated cell death
- STEMI, ST-segment elevation myocardial infarction
- cyclosporine A
- ferroptosis
- glutathione peroxidase 4
- ischemia-reperfusion injury
Collapse
Affiliation(s)
- Hiroko Deguchi Miyamoto
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masataka Ikeda
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomomi Ide
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomonori Tadokoro
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shun Furusawa
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ko Abe
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kosei Ishimaru
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Nobuyuki Enzan
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masashi Sada
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Taishi Yamamoto
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shouji Matsushima
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoko Koumura
- Department of Hygienic Chemistry and Medical Research Laboratories, School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Ken-ichi Yamada
- Physical Chemistry for Life Science Laboratory, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Hirotaka Imai
- Department of Hygienic Chemistry and Medical Research Laboratories, School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
31
|
Ziemann M, Wu W, Deng XL, Du XJ. Transcriptomic Analysis of Dysregulated Genes of the nDNA-mtDNA Axis in a Mouse Model of Dilated Cardiomyopathy. Front Genet 2022; 13:921610. [PMID: 35754828 PMCID: PMC9214240 DOI: 10.3389/fgene.2022.921610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Mitochondrial dysfunction is implicated in the development of cardiomyopathy and heart failure. Transcription of mitochondrial DNA (mtDNA) encoded genes and subsequent protein synthesis are tightly regulated by nuclear DNA (nDNA) encoded proteins forming the nDNA-mtDNA axis. The scale of abnormalities in this axis in dilated cardiomyopathy (DCM) is unclear. We previously demonstrated, in a mouse DCM model with cardiac Mst1 overexpression, extensive downregulation of mitochondrial genes and mitochondrial dysfunction. Using the pre-acquired transcriptome sequencing database, we studied expression of gene sets of the nDNA-mtDNA axis. Methods: Using RNA-sequencing data from DCM hearts of mice at early and severe disease stages, transcriptome was performed for dysregulated nDNA-encoded gene sets that govern mtDNA transcription and in situ protein synthesis. To validate gene data, expression of a panel of proteins was determined by immunoblotting. Results: Relative to littermate controls, DCM hearts showed significant downregulation of all mtDNA encoded mRNAs, as well as mtDNA transcriptional activators. Downregulation was also evident for gene sets of mt-rRNA processing, aminoacyl-tRNA synthases, and mitoribosome subunits for in situ protein synthesis. Multiple downregulated genes belong to mitochondrial protein-importing machinery indicating compromised importing of proteins for mtDNA transcription and translation. Diverse changes were genes of mtRNA-binding proteins that govern maturation and stability of mtDNA-derived RNAs. Expression of mtDNA replicome genes was largely unchanged. These changes were similarly observed in mouse hearts at early and severe stages of DCM. Conclusion: Transcriptome revealed in our DCM model dysregulation of multiple gene sets of the nDNA-mtDNA axis, that is, expected to interfere with mtDNA transcription and in situ protein synthesis. Dysfunction of the nDNA-mtDNA axis might contribute to mitochondrial dysfunction and ultimately development of DCM.
Collapse
Affiliation(s)
- Mark Ziemann
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia
| | - Wei Wu
- Key Laboratory of Environment and Genes Related to Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Ministry of Education, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xiu-Ling Deng
- Key Laboratory of Environment and Genes Related to Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Ministry of Education, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xiao-Jun Du
- Key Laboratory of Environment and Genes Related to Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Ministry of Education, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| |
Collapse
|
32
|
Mally A, Jarzina S. Mapping Adverse Outcome Pathways for Kidney Injury as a Basis for the Development of Mechanism-Based Animal-Sparing Approaches to Assessment of Nephrotoxicity. FRONTIERS IN TOXICOLOGY 2022; 4:863643. [PMID: 35785263 PMCID: PMC9242087 DOI: 10.3389/ftox.2022.863643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
In line with recent OECD activities on the use of AOPs in developing Integrated Approaches to Testing and Assessment (IATAs), it is expected that systematic mapping of AOPs leading to systemic toxicity may provide a mechanistic framework for the development and implementation of mechanism-based in vitro endpoints. These may form part of an integrated testing strategy to reduce the need for repeated dose toxicity studies. Focusing on kidney and in particular the proximal tubule epithelium as a key target site of chemical-induced injury, the overall aim of this work is to contribute to building a network of AOPs leading to nephrotoxicity. Current mechanistic understanding of kidney injury initiated by 1) inhibition of mitochondrial DNA polymerase γ (mtDNA Polγ), 2) receptor mediated endocytosis and lysosomal overload, and 3) covalent protein binding, which all present fairly well established, common mechanisms by which certain chemicals or drugs may cause nephrotoxicity, is presented and systematically captured in a formal description of AOPs in line with the OECD AOP development programme and in accordance with the harmonized terminology provided by the Collaborative Adverse Outcome Pathway Wiki. The relative level of confidence in the established AOPs is assessed based on evolved Bradford-Hill weight of evidence considerations of biological plausibility, essentiality and empirical support (temporal and dose-response concordance).
Collapse
|
33
|
Avilés-Ramírez C, Moreno-Godínez ME, Bonner MR, Parra-Rojas I, Flores-Alfaro E, Ramírez M, Huerta-Beristain G, Ramírez-Vargas MA. Effects of exposure to environmental pollutants on mitochondrial DNA copy number: a meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:43588-43606. [PMID: 35399130 DOI: 10.1007/s11356-022-19967-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Exposure to environmental pollutants has been associated with alteration on relative levels of mitochondrial DNA copy number (mtDNAcn). However, the results obtained from epidemiological studies are inconsistent. This meta-analysis aimed to evaluate whether environmental pollutant exposure can modify the relative levels of mtDNAcn in humans. We performed a literature search using PubMed, Scopus, and Web of Science databases. We selected and reviewed original articles performed in humans that analyzed the relationship between environmental pollutant exposure and the relative levels of mtDNAcn; the selection of the included studies was based on inclusion and exclusion criteria. Only twenty-two studies fulfilled our inclusion criteria. A total of 6011 study participants were included in this systematic review and meta-analysis. We grouped the included studies into four main categories according to the type of environmental pollutant: (1) heavy metals, (2) polycyclic aromatic hydrocarbons (PAHs), (3) particulate matter (PM), and (4) cigarette smoking. Inconclusive results were observed in all categories; the pooled analysis shows a marginal increase of relative levels of mtDNAcn in response to environmental pollutant exposure. The trial sequential analysis and rate confidence in body evidence showed the need to perform new studies. Therefore, a large-scale cohort and mechanistic studies in this area are required to probe the possible use of relative levels of mtDNAcn as biomarkers linked to environmental pollution exposure.
Collapse
Affiliation(s)
- Cristian Avilés-Ramírez
- Facultad de Ciencias Químico-Biológicas, Laboratorio de Toxicología Y Salud Ambiental, Universidad Autónoma De Guerrero, Av. Lázaro Cárdenas s/n, 39089, Chilpancingo, GRO, México
| | - Ma Elena Moreno-Godínez
- Facultad de Ciencias Químico-Biológicas, Laboratorio de Toxicología Y Salud Ambiental, Universidad Autónoma De Guerrero, Av. Lázaro Cárdenas s/n, 39089, Chilpancingo, GRO, México
| | - Matthew R Bonner
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA
| | - Isela Parra-Rojas
- Facultad de Ciencias Químico-Biológicas, Laboratorio de Investigación en Obesidad Y Diabetes, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México
| | - Eugenia Flores-Alfaro
- Facultad de Ciencias Químico-Biológicas, Laboratorio de Epidemiología Clínica Y Molecular, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México
| | - Mónica Ramírez
- Facultad de Ciencias Químico-Biológicas, CONACyT, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México
| | - Gerardo Huerta-Beristain
- Facultad de Ciencias Químico-Biológicas, Laboratorio de Toxicología Y Salud Ambiental, Universidad Autónoma De Guerrero, Av. Lázaro Cárdenas s/n, 39089, Chilpancingo, GRO, México
| | - Marco Antonio Ramírez-Vargas
- Facultad de Ciencias Químico-Biológicas, Laboratorio de Toxicología Y Salud Ambiental, Universidad Autónoma De Guerrero, Av. Lázaro Cárdenas s/n, 39089, Chilpancingo, GRO, México.
| |
Collapse
|
34
|
Mitochondrial health quality control: measurements and interpretation in the framework of predictive, preventive, and personalized medicine. EPMA J 2022; 13:177-193. [PMID: 35578648 PMCID: PMC9096339 DOI: 10.1007/s13167-022-00281-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/03/2022] [Indexed: 12/11/2022]
Abstract
Mitochondria are the “gatekeeper” in a wide range of cellular functions, signaling events, cell homeostasis, proliferation, and apoptosis. Consequently, mitochondrial injury is linked to systemic effects compromising multi-organ functionality. Although mitochondrial stress is common for many pathomechanisms, individual outcomes differ significantly comprising a spectrum of associated pathologies and their severity grade. Consequently, a highly ambitious task in the paradigm shift from reactive to predictive, preventive, and personalized medicine (PPPM/3PM) is to distinguish between individual disease predisposition and progression under circumstances, resulting in compromised mitochondrial health followed by mitigating measures tailored to the individualized patient profile. For the successful implementation of PPPM concepts, robust parameters are essential to quantify mitochondrial health sustainability. The current article analyses added value of Mitochondrial Health Index (MHI) and Bioenergetic Health Index (BHI) as potential systems to quantify mitochondrial health relevant for the disease development and its severity grade. Based on the pathomechanisms related to the compromised mitochondrial health and in the context of primary, secondary, and tertiary care, a broad spectrum of conditions can significantly benefit from robust quantification systems using MHI/BHI as a prototype to be further improved. Following health conditions can benefit from that: planned pregnancies (improved outcomes for mother and offspring health), suboptimal health conditions with reversible health damage, suboptimal life-style patterns and metabolic syndrome(s) predisposition, multi-factorial stress conditions, genotoxic environment, ischemic stroke of unclear aetiology, phenotypic predisposition to aggressive cancer subtypes, pathologies associated with premature aging and neuro/degeneration, acute infectious diseases such as COVID-19 pandemics, among others.
Collapse
|
35
|
Morin AL, Win PW, Lin AZ, Castellani CA. Mitochondrial genomic integrity and the nuclear epigenome in health and disease. Front Endocrinol (Lausanne) 2022; 13:1059085. [PMID: 36419771 PMCID: PMC9678080 DOI: 10.3389/fendo.2022.1059085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022] Open
Abstract
Bidirectional crosstalk between the nuclear and mitochondrial genomes is essential for proper cell functioning. Mitochondrial DNA copy number (mtDNA-CN) and heteroplasmy influence mitochondrial function, which can influence the nuclear genome and contribute to health and disease. Evidence shows that mtDNA-CN and heteroplasmic variation are associated with aging, complex disease, and all-cause mortality. Further, the nuclear epigenome may mediate the effects of mtDNA variation on disease. In this way, mitochondria act as an environmental biosensor translating vital information about the state of the cell to the nuclear genome. Cellular communication between mtDNA variation and the nuclear epigenome can be achieved by modification of metabolites and intermediates of the citric acid cycle and oxidative phosphorylation. These essential molecules (e.g. ATP, acetyl-CoA, ɑ-ketoglutarate and S-adenosylmethionine) act as substrates and cofactors for enzymes involved in epigenetic modifications. The role of mitochondria as an environmental biosensor is emerging as a critical modifier of disease states. Uncovering the mechanisms of these dynamics in disease processes is expected to lead to earlier and improved treatment for a variety of diseases. However, the influence of mtDNA-CN and heteroplasmy variation on mitochondrially-derived epigenome-modifying metabolites and intermediates is poorly understood. This perspective will focus on the relationship between mtDNA-CN, heteroplasmy, and epigenome modifying cofactors and substrates, and the influence of their dynamics on the nuclear epigenome in health and disease.
Collapse
Affiliation(s)
- Amanda L. Morin
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Phyo W. Win
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Angela Z. Lin
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Christina A. Castellani
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- *Correspondence: Christina A. Castellani,
| |
Collapse
|
36
|
Nomiyama T, Setoyama D, Yasukawa T, Kang D. Mitochondria Metabolomics Reveals a Role of β-Nicotinamide Mononucleotide Metabolism in Mitochondrial DNA Replication. J Biochem 2021; 171:325-338. [PMID: 34865026 DOI: 10.1093/jb/mvab136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/30/2021] [Indexed: 11/14/2022] Open
Abstract
Mitochondrial DNA (mtDNA) replication is tightly regulated and necessary for cellular homeostasis; however, its relationship with mitochondrial metabolism remains unclear. Advances in metabolomics integrated with the rapid isolation of mitochondria will allow for remarkable progress in analyzing mitochondrial metabolism. Here, we propose a novel methodology for mitochondria-targeted metabolomics, which employs a quick isolation procedure using a hemolytic toxin from Streptococcus pyogenes streptolysin O (SLO). SLO-isolation of mitochondria from cultured HEK293 cells is time- and labor-saving for simultaneous multi-sample processing and has been applied to various other cell lines in this study. Furthermore, our method can detect the time-dependent reduction in mitochondrial ATP in response to a glycolytic inhibitor 2-deoxyglucose, indicating the suitability to prepare metabolite analysis-competent mitochondria. Using this methodology, we searched for specific mitochondrial metabolites associated with mtDNA replication activation, and nucleotides and NAD+ were identified to be prominently altered. Most notably, treatment of β-Nicotinamide Mononucleotide (β-NMN), a precursor of NAD+, to HEK293 cells activated and improved the rate of mtDNA replication by increasing nucleotides in mitochondria and decreasing their degradation products: nucleosides. Our results suggest that β-NMN metabolism play a role in supporting mtDNA replication by maintaining the nucleotide pool balance in the mitochondria.
Collapse
Affiliation(s)
- Tomoko Nomiyama
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, Japan.,Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Hospital, 3-1-1 Maidashi, Fukuoka, Japan
| | - Daiki Setoyama
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, Japan.,Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Hospital, 3-1-1 Maidashi, Fukuoka, Japan
| | - Takehiro Yasukawa
- Department of Pathology and Oncology, Juntendo University School of Medicine, 2-1-1 Hongo, Tokyo, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, Japan.,Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Hospital, 3-1-1 Maidashi, Fukuoka, Japan
| |
Collapse
|
37
|
mtDNA in the Pathogenesis of Cardiovascular Diseases. DISEASE MARKERS 2021; 2021:7157109. [PMID: 34795807 PMCID: PMC8595034 DOI: 10.1155/2021/7157109] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/06/2021] [Accepted: 10/24/2021] [Indexed: 12/14/2022]
Abstract
The incidence rate of cardiovascular disease (CVD) has been increasing year by year and has become the main cause for the increase of mortality. Mitochondrial DNA (mtDNA) plays a crucial role in the pathogenesis of CVD, especially in heart failure and ischemic heart diseases. With the deepening of research, more and more evidence showed that mtDNA is related to the occurrence and development of CVD. Current studies mainly focus on how mtDNA copy number, an indirect biomarker of mitochondrial function, contributes to CVD and its underlying mechanisms including mtDNA autophagy, the effect of mtDNA on cardiac inflammation, and related metabolic functions. However, no relevant studies have been conducted yet. In this paper, we combed the current research status of the mechanism related to the influence of mtDNA on the occurrence, development, and prognosis of CVD, so as to find whether these mechanisms have something in common, or is there a correlation between each mechanism for the development of CVD?
Collapse
|
38
|
Yang Y, Qian J, Li B, Lu M, Le G, Xie Y. Metabolomics Based on 1H-NMR Reveal the Regulatory Mechanisms of Dietary Methionine Restriction on Splenic Metabolic Dysfunction in Obese Mice. Foods 2021; 10:foods10102439. [PMID: 34681487 PMCID: PMC8535630 DOI: 10.3390/foods10102439] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/06/2021] [Accepted: 10/12/2021] [Indexed: 12/13/2022] Open
Abstract
Methionine restriction (MR) has been reported to have many beneficial health effects, including stress resistance enhancement and lifespan extension. However, the effects of MR on the splenic metabolic dysfunction induced by obesity in mice remain unknown. This study aimed to investigate the scientific problem and clarify its possible mechanisms. C57BL/6J mice in the control group were fed a control diet (0.86% methionine, 4.2% fat) for 34 weeks, and others were fed a high-fat diet (0.86% methionine, 24% fat) for 10 weeks to establish diet-induced obese (DIO) mouse models. Then, the obtained DIO mice were randomly divided into two groups: the DIO group (DIO diet), the DIO + MR group (0.17% methionine, 24% fat) for 24 weeks. Our results indicated that MR decreased spleen weight, and spleen and plasma lipid profiles, promoted lipid catabolism and fatty acid oxidation, glycolysis and tricarboxylic acid cycle metabolism, and improved mitochondrial function and ATP generation in the spleen. Moreover, MR normalized the splenic redox state and inflammation-related metabolite levels, and increased plasma levels of immunoglobulins. Furthermore, MR increased percent lean mass and splenic crude protein levels, activated the autophagy pathway and elevated nucleotide synthesis to maintain protein synthesis in the spleen. These findings indicate that MR can ameliorate metabolic dysfunction by reducing lipid accumulation, oxidative stress, and inflammation in the spleen, and the mechanism may be the activation of autophagy pathway.
Collapse
Affiliation(s)
- Yuhui Yang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (Y.Y.); (J.Q.); (M.L.)
| | - Jing Qian
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (Y.Y.); (J.Q.); (M.L.)
| | - Bowen Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (B.L.); (G.L.)
| | - Manman Lu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (Y.Y.); (J.Q.); (M.L.)
| | - Guowei Le
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (B.L.); (G.L.)
| | - Yanli Xie
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (Y.Y.); (J.Q.); (M.L.)
- Correspondence: ; Tel.: +86-371-6775-8022
| |
Collapse
|
39
|
Ikeda M, Ide T, Tadokoro T, Miyamoto HD, Ikeda S, Okabe K, Ishikita A, Sato M, Abe K, Furusawa S, Ishimaru K, Matsushima S, Tsutsui H. Excessive Hypoxia-Inducible Factor-1α Expression Induces Cardiac Rupture via p53-Dependent Apoptosis After Myocardial Infarction. J Am Heart Assoc 2021; 10:e020895. [PMID: 34472375 PMCID: PMC8649270 DOI: 10.1161/jaha.121.020895] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background Apoptosis plays a pivotal role in cardiac rupture after myocardial infarction (MI), and p53 is a key molecule in apoptosis during cardiac rupture. Hif‐1α (hypoxia‐inducible factor‐1α), upregulated under hypoxia, is a known p53 inducer. However, the role of Hif‐1α in the regulatory mechanisms underlying p53 upregulation, apoptosis, and cardiac rupture after MI is unclear. Methods and Results We induced MI in mice by ligating the left anterior descending artery. Hif‐1α and p53 expressions were upregulated in the border zone at day 5 after MI, accompanied by apoptosis. In rat neonatal cardiomyocytes, treatment with cobalt chloride (500 μmol/L), which mimics severe hypoxia by inhibiting PHD (prolyl hydroxylase domain‐containing protein), increased Hif‐1α and p53, accompanied by myocyte death with caspase‐3 cleavage. Silencing Hif‐1α or p53 inhibited caspase‐3 cleavage, and completely prevented myocyte death under PHD inhibition. In cardiac‐specific Hif‐1α hetero‐knockout mice, expression of p53 and cleavage of caspase‐3 and poly (ADP‐ribose) polymerase were reduced, and apoptosis was suppressed on day 5. Furthermore, the cleavage of caspase‐8 and IL‐1β (interleukin‐1β) was also suppressed in hetero knockout mice, accompanied by reduced macrophage infiltration and matrix metalloproteinase/tissue inhibitor of metalloproteinase activation. Although there was no intergroup difference in infarct size, the cardiac rupture and survival rates were significantly improved in the hetero knockout mice until day 10 after MI. Conclusions Hif‐1α plays a pivotal role in apoptosis, inflammation, and cardiac rupture after MI, in which p53 is a critical mediator, and may be a prospective therapeutic target for preventing cardiac rupture.
Collapse
Affiliation(s)
- Masataka Ikeda
- Department of Cardiovascular Medicine Faculty of Medical Sciences Kyushu University Fukuoka Japan.,Division of Cardiovascular Medicine Research Institute of Angiocardiology Faculty of Medical Sciences Kyushu University Fukuoka Japan
| | - Tomomi Ide
- Department of Cardiovascular Medicine Faculty of Medical Sciences Kyushu University Fukuoka Japan.,Division of Cardiovascular Medicine Research Institute of Angiocardiology Faculty of Medical Sciences Kyushu University Fukuoka Japan
| | - Tomonori Tadokoro
- Department of Cardiovascular Medicine Faculty of Medical Sciences Kyushu University Fukuoka Japan.,Division of Cardiovascular Medicine Research Institute of Angiocardiology Faculty of Medical Sciences Kyushu University Fukuoka Japan
| | - Hiroko Deguchi Miyamoto
- Department of Cardiovascular Medicine Faculty of Medical Sciences Kyushu University Fukuoka Japan.,Division of Cardiovascular Medicine Research Institute of Angiocardiology Faculty of Medical Sciences Kyushu University Fukuoka Japan
| | - Soichiro Ikeda
- Department of Cardiovascular Medicine Faculty of Medical Sciences Kyushu University Fukuoka Japan.,Division of Cardiovascular Medicine Research Institute of Angiocardiology Faculty of Medical Sciences Kyushu University Fukuoka Japan
| | - Kosuke Okabe
- Department of Cardiovascular Medicine Faculty of Medical Sciences Kyushu University Fukuoka Japan.,Division of Cardiovascular Medicine Research Institute of Angiocardiology Faculty of Medical Sciences Kyushu University Fukuoka Japan
| | - Akihito Ishikita
- Department of Cardiovascular Medicine Faculty of Medical Sciences Kyushu University Fukuoka Japan.,Division of Cardiovascular Medicine Research Institute of Angiocardiology Faculty of Medical Sciences Kyushu University Fukuoka Japan
| | - Midori Sato
- Department of Cardiovascular Medicine Faculty of Medical Sciences Kyushu University Fukuoka Japan.,Division of Cardiovascular Medicine Research Institute of Angiocardiology Faculty of Medical Sciences Kyushu University Fukuoka Japan
| | - Ko Abe
- Department of Cardiovascular Medicine Faculty of Medical Sciences Kyushu University Fukuoka Japan.,Division of Cardiovascular Medicine Research Institute of Angiocardiology Faculty of Medical Sciences Kyushu University Fukuoka Japan
| | - Shun Furusawa
- Department of Cardiovascular Medicine Faculty of Medical Sciences Kyushu University Fukuoka Japan.,Division of Cardiovascular Medicine Research Institute of Angiocardiology Faculty of Medical Sciences Kyushu University Fukuoka Japan
| | - Kosei Ishimaru
- Department of Cardiovascular Medicine Faculty of Medical Sciences Kyushu University Fukuoka Japan.,Division of Cardiovascular Medicine Research Institute of Angiocardiology Faculty of Medical Sciences Kyushu University Fukuoka Japan
| | - Shouji Matsushima
- Department of Cardiovascular Medicine Faculty of Medical Sciences Kyushu University Fukuoka Japan.,Division of Cardiovascular Medicine Research Institute of Angiocardiology Faculty of Medical Sciences Kyushu University Fukuoka Japan
| | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine Faculty of Medical Sciences Kyushu University Fukuoka Japan.,Division of Cardiovascular Medicine Research Institute of Angiocardiology Faculty of Medical Sciences Kyushu University Fukuoka Japan
| |
Collapse
|
40
|
Alikhani M, Touati E, Karimipoor M, Vosough M, Mohammadi M. Mitochondrial DNA Copy Number Variations in Gastrointestinal Tract Cancers: Potential Players. J Gastrointest Cancer 2021; 53:770-781. [PMID: 34486088 DOI: 10.1007/s12029-021-00707-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2021] [Indexed: 10/20/2022]
Abstract
Alterations of mitochondria have been linked to several cancers. Also, the mitochondrial DNA copy number (mtDNA-CN) is altered in various cancers, including gastrointestinal tract (GIT) cancers, and several research groups have investigated its potential as a cancer biomarker. However, the exact causes of mtDNA-CN variations are not yet revealed. This review discussed the conceivable players in this scheme, including reactive oxygen species (ROS), mtDNA genetic variations, DNA methylation, telomere length, autophagy, immune system activation, aging, and infections, and discussed their possible impact in the initiation and progression of cancer. By further exploring such mechanisms, mtDNA-CN variations may be effectively utilized as cancer biomarkers and provide grounds for developing novel cancer therapeutic agents.
Collapse
Affiliation(s)
- Mehdi Alikhani
- Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Eliette Touati
- Unit of Helicobacter Pathogenesis, Department of Microbiology, CNRS UMR2001, Institut Pasteur, 25-28 Rue du Dr Roux cedex 15, 75724, Paris, France
| | - Morteza Karimipoor
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Marjan Mohammadi
- Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
41
|
Picard M. Blood mitochondrial DNA copy number: What are we counting? Mitochondrion 2021; 60:1-11. [PMID: 34157430 PMCID: PMC8464495 DOI: 10.1016/j.mito.2021.06.010] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/12/2021] [Accepted: 06/17/2021] [Indexed: 02/06/2023]
Abstract
There is growing scientific interest to develop scalable biological measures that capture mitochondrial (dys)function. Mitochondria have their own genome, the mitochondrial DNA (mtDNA). It has been proposed that the number of mtDNA copies per cell (mtDNA copy number; mtDNAcn) reflects mitochondrial health. The common availability of stored DNA material or existing DNA sequencing data, especially from blood and other easy-to-collect samples, has made its quantification a popular approach in clinical and epidemiological studies. However, the interpretation of mtDNAcn is not univocal, and either a reduction or elevation in mtDNAcn can indicate dysfunction. The major determinants of blood-derived mtDNAcn are the heterogeneous cell type composition of leukocytes and platelet abundance, which can change with time of day, aging, and with disease. Hematopoiesis is a likely driver of blood mtDNAcn. Here we discuss the rationale and available methods to quantify mtDNAcn, the influence of blood cell type variations, and consider important gaps in knowledge that need to be resolved to maximize the scientific value around the investigation of blood mtDNAcn.
Collapse
Affiliation(s)
- Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA; Department of Neurology, Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY, USA; New York State Psychiatric Institute, New York, NY, USA.
| |
Collapse
|
42
|
Martinez-Bernabe T, Sastre-Serra J, Ciobu N, Oliver J, Pons DG, Roca P. Estrogen Receptor Beta (ERβ) Maintains Mitochondrial Network Regulating Invasiveness in an Obesity-Related Inflammation Condition in Breast Cancer. Antioxidants (Basel) 2021; 10:antiox10091371. [PMID: 34573003 PMCID: PMC8466315 DOI: 10.3390/antiox10091371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 12/17/2022] Open
Abstract
Obesity, a physiological situation where different proinflammatory cytokines and hormones are secreted, is a major risk factor for breast cancer. Mitochondrial functionality exhibits a relevant role in the tumorigenic potential of a cancer cell. In the present study, it has been examined the influence of an obesity-related inflammation ELIT treatment (17β-estradiol, leptin, IL-6, and TNFα), which aims to stimulate the hormonal conditions of a postmenopausal obese woman on the mitochondrial functionality and invasiveness of MCF7 and T47D breast cancer cell lines, which display a different ratio of both estrogen receptor isoforms, ERα and ERβ. The results showed a decrease in mitochondrial functionality, with an increase in oxidative stress and invasiveness and motility, in the MCF7 cell line (high ERα/ERβ ratio) compared to a maintained status in the T47D cell line (low ERα/ERβ ratio) after ELIT treatment. In addition, breast cancer biopsies were analyzed, showing that breast tumors of obese patients present a high positive correlation between IL-6 receptor and ERβ and have an increased expression of cytokines, antioxidant enzymes, and mitochondrial biogenesis and dynamics genes. Altogether, giving special importance to ERβ in the pathology of obese patients with breast cancer is necessary, approaching to personalized medicine.
Collapse
Affiliation(s)
- Toni Martinez-Bernabe
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, 07122 Palma de Mallorca, Illes Balears, Spain; (T.M.-B.); (J.S.-S.); (N.C.); (J.O.); (P.R.)
- Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Hospital Universitario Son Espases, Edificio S, 07120 Palma de Mallorca, Illes Balears, Spain
| | - Jorge Sastre-Serra
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, 07122 Palma de Mallorca, Illes Balears, Spain; (T.M.-B.); (J.S.-S.); (N.C.); (J.O.); (P.R.)
- Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Hospital Universitario Son Espases, Edificio S, 07120 Palma de Mallorca, Illes Balears, Spain
- Ciber Fisiopatología Obesidad y Nutrición (CB06/03), Instituto Salud Carlos III, 28029 Madrid, Madrid, Spain
| | - Nicolae Ciobu
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, 07122 Palma de Mallorca, Illes Balears, Spain; (T.M.-B.); (J.S.-S.); (N.C.); (J.O.); (P.R.)
| | - Jordi Oliver
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, 07122 Palma de Mallorca, Illes Balears, Spain; (T.M.-B.); (J.S.-S.); (N.C.); (J.O.); (P.R.)
- Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Hospital Universitario Son Espases, Edificio S, 07120 Palma de Mallorca, Illes Balears, Spain
- Ciber Fisiopatología Obesidad y Nutrición (CB06/03), Instituto Salud Carlos III, 28029 Madrid, Madrid, Spain
| | - Daniel Gabriel Pons
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, 07122 Palma de Mallorca, Illes Balears, Spain; (T.M.-B.); (J.S.-S.); (N.C.); (J.O.); (P.R.)
- Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Hospital Universitario Son Espases, Edificio S, 07120 Palma de Mallorca, Illes Balears, Spain
- Correspondence: ; Tel.: +34-9711-73149
| | - Pilar Roca
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, 07122 Palma de Mallorca, Illes Balears, Spain; (T.M.-B.); (J.S.-S.); (N.C.); (J.O.); (P.R.)
- Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Hospital Universitario Son Espases, Edificio S, 07120 Palma de Mallorca, Illes Balears, Spain
- Ciber Fisiopatología Obesidad y Nutrición (CB06/03), Instituto Salud Carlos III, 28029 Madrid, Madrid, Spain
| |
Collapse
|
43
|
Feng Y, Huang W, Paul C, Liu X, Sadayappan S, Wang Y, Pauklin S. Mitochondrial nucleoid in cardiac homeostasis: bidirectional signaling of mitochondria and nucleus in cardiac diseases. Basic Res Cardiol 2021; 116:49. [PMID: 34392401 PMCID: PMC8364536 DOI: 10.1007/s00395-021-00889-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/20/2021] [Indexed: 01/11/2023]
Abstract
Metabolic function and energy production in eukaryotic cells are regulated by mitochondria, which have been recognized as the intracellular 'powerhouses' of eukaryotic cells for their regulation of cellular homeostasis. Mitochondrial function is important not only in normal developmental and physiological processes, but also in a variety of human pathologies, including cardiac diseases. An emerging topic in the field of cardiovascular medicine is the implication of mitochondrial nucleoid for metabolic reprogramming. This review describes the linear/3D architecture of the mitochondrial nucleoid (e.g., highly organized protein-DNA structure of nucleoid) and how it is regulated by a variety of factors, such as noncoding RNA and its associated R-loop, for metabolic reprogramming in cardiac diseases. In addition, we highlight many of the presently unsolved questions regarding cardiac metabolism in terms of bidirectional signaling of mitochondrial nucleoid and 3D chromatin structure in the nucleus. In particular, we explore novel techniques to dissect the 3D structure of mitochondrial nucleoid and propose new insights into the mitochondrial retrograde signaling, and how it regulates the nuclear (3D) chromatin structures in mitochondrial diseases.
Collapse
Affiliation(s)
- Yuliang Feng
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Oxford, OX3 7LD, UK
| | - Wei Huang
- Department of Pathology and Laboratory Medicine, Regenerative Medicine Research, University of Cincinnati College of Medicine, 231 Albert Sabin Way, CincinnatiCincinnati, OH, 45267-0529, USA
| | - Christian Paul
- Department of Pathology and Laboratory Medicine, Regenerative Medicine Research, University of Cincinnati College of Medicine, 231 Albert Sabin Way, CincinnatiCincinnati, OH, 45267-0529, USA
| | - Xingguo Liu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou Medical University, Guangzhou, 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Sakthivel Sadayappan
- Heart, Lung and Vascular Institute, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Yigang Wang
- Department of Pathology and Laboratory Medicine, Regenerative Medicine Research, University of Cincinnati College of Medicine, 231 Albert Sabin Way, CincinnatiCincinnati, OH, 45267-0529, USA.
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Oxford, OX3 7LD, UK.
| |
Collapse
|
44
|
Cho Y, Tachibana S, Lam K, Arita Y, Khosrowjerdi S, Zhang O, Liang A, Li R, Andreyev A, Murphy AN, Ross RS. Perm1 promotes cardiomyocyte mitochondrial biogenesis and protects against hypoxia/reoxygenation-induced damage in mice. J Biol Chem 2021; 297:100825. [PMID: 34029594 PMCID: PMC8214196 DOI: 10.1016/j.jbc.2021.100825] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/27/2021] [Accepted: 05/20/2021] [Indexed: 11/25/2022] Open
Abstract
Normal contractile function of the heart depends on a constant and reliable production of ATP by cardiomyocytes. Dysregulation of cardiac energy metabolism can result in immature heart development and disrupt the ability of the adult myocardium to adapt to stress, potentially leading to heart failure. Further, restoration of abnormal mitochondrial function can have beneficial effects on cardiac dysfunction. Previously, we identified a novel protein termed Perm1 (PGC-1 and estrogen-related receptor (ERR)-induced regulator, muscle 1) that is enriched in skeletal and cardiac-muscle mitochondria and transcriptionally regulated by PGC-1 (peroxisome proliferator-activated receptor gamma coactivator 1) and ERR. The role of Perm1 in the heart is poorly understood and is studied here. We utilized cell culture, mouse models, and human tissue, to study its expression and transcriptional control, as well as its role in transcription of other factors. Critically, we tested Perm1's role in cardiomyocyte mitochondrial function and its ability to protect myocytes from stress-induced damage. Our studies show that Perm1 expression increases throughout mouse cardiogenesis, demonstrate that Perm1 interacts with PGC-1α and enhances activation of PGC-1 and ERR, increases mitochondrial DNA copy number, and augments oxidative capacity in cultured neonatal mouse cardiomyocytes. Moreover, we found that Perm1 reduced cellular damage produced as a result of hypoxia and reoxygenation-induced stress and mitigated cell death of cardiomyocytes. Taken together, our results show that Perm1 promotes mitochondrial biogenesis in mouse cardiomyocytes. Future studies can assess the potential of Perm1 to be used as a novel therapeutic to restore cardiac dysfunction induced by ischemic injury.
Collapse
Affiliation(s)
- Yoshitake Cho
- Division of Cardiovascular Medicine, Department of Medicine, University of California San Diego, La Jolla, California, USA; Department of Medicine/Cardiology, Veterans Administration Healthcare, San Diego, California, USA.
| | - Shizuko Tachibana
- Division of Cardiovascular Medicine, Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Kayla Lam
- Division of Cardiovascular Medicine, Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Yoh Arita
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Shamim Khosrowjerdi
- Division of Cardiovascular Medicine, Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Oliver Zhang
- Division of Cardiovascular Medicine, Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Alex Liang
- Division of Cardiovascular Medicine, Department of Medicine, University of California San Diego, La Jolla, California, USA; Department of Medicine/Cardiology, Veterans Administration Healthcare, San Diego, California, USA
| | - Ruixia Li
- Division of Cardiovascular Medicine, Department of Medicine, University of California San Diego, La Jolla, California, USA; Department of Medicine/Cardiology, Veterans Administration Healthcare, San Diego, California, USA
| | - Aleksander Andreyev
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Anne N Murphy
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Robert S Ross
- Division of Cardiovascular Medicine, Department of Medicine, University of California San Diego, La Jolla, California, USA; Department of Medicine/Cardiology, Veterans Administration Healthcare, San Diego, California, USA
| |
Collapse
|
45
|
Del Campo A, Perez G, Castro PF, Parra V, Verdejo HE. Mitochondrial function, dynamics and quality control in the pathophysiology of HFpEF. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166208. [PMID: 34214606 DOI: 10.1016/j.bbadis.2021.166208] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 12/20/2022]
Abstract
Heart failure (HF) is one of the leading causes of hospitalization for the adult population and a major cause of mortality worldwide. The HF syndrome is characterized by the heart's inability to supply the cardiac output required to meet the body's metabolic requirements or only at the expense of elevated filling pressures. HF without overt impairment of left ventricular ejection fraction (LVEF) was initially labeled as "diastolic HF" until recognizing the coexistence of both systolic and diastolic abnormalities in most cases. Acknowledging these findings, the preferred nomenclature is HF with preserved EF (HFpEF). This syndrome primarily affects the elderly population and is associated with a heterogeneous overlapping of comorbidities that makes its diagnosis challenging. Despite extensive research, there is still no evidence-based therapy for HFpEF, reinforcing the need for a thorough understanding of the pathophysiology underlying its onset and progression. The role of mitochondrial dysfunction in developing the pathophysiological changes that accompany HFpEF onset and progression (low-grade systemic inflammation, oxidative stress, endothelial dysfunction, and myocardial remodeling) has just begun to be acknowledged. This review summarizes our current understanding of the participation of the mitochondrial network in the pathogenesis of HFpEF, with particular emphasis on the signaling pathways involved, which may provide future therapeutic targets.
Collapse
Affiliation(s)
- Andrea Del Campo
- Laboratorio de Fisiología y Bioenergética Celular, Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gonzalo Perez
- División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo F Castro
- División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Chile
| | - Valentina Parra
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile; Autophagy Research Center, Universidad de Chile, Santiago, Chile; Network for the Study of High-lethality Cardiopulmonary Diseases (REECPAL), Universidad de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Chile.
| | - Hugo E Verdejo
- División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Chile.
| |
Collapse
|
46
|
Sreekumar PG, Ferrington DA, Kannan R. Glutathione Metabolism and the Novel Role of Mitochondrial GSH in Retinal Degeneration. Antioxidants (Basel) 2021; 10:661. [PMID: 33923192 PMCID: PMC8146950 DOI: 10.3390/antiox10050661] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/18/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Glutathione (GSH) is present ubiquitously, and its role as a crucial cellular antioxidant in tissues, including the retina, is well established. GSH's antioxidant function arises from its ability to scavenge reactive oxygen species or to serve as an essential cofactor for GSH S-transferases and peroxidases. This review summarizes the general functions, retinal distribution, disorders linked to GSH deficiency, and the emerging role for mitochondrial GSH (mGSH) in retinal function. Though synthesized only in the cytosol, the presence of GSH in multiple cell organelles suggests the requirement for its active transport across organellar membranes. The localization and distribution of 2-oxoglutarate carrier (OGC) and dicarboxylate carrier (DIC), two recently characterized mitochondrial carrier proteins in RPE and retina, show that these transporters are highly expressed in human retinal pigment epithelium (RPE) cells and retinal layers, and their expression increases with RPE polarity in cultured cells. Depletion of mGSH levels via inhibition of the two transporters resulted in reduced mitochondrial bioenergetic parameters (basal respiration, ATP production, maximal respiration, and spare respiratory capacity) and increased RPE cell death. These results begin to reveal a critical role for mGSH in maintaining RPE bioenergetics and cell health. Thus, augmentation of mGSH pool under GSH-deficient conditions may be a valuable tool in treating retinal disorders, such as age-related macular degeneration and optic neuropathies, whose pathologies have been associated with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Parameswaran G. Sreekumar
- The Stephen J. Ryan Initiative for Macular Research (RIMR), Doheny Eye Institute, Los Angeles, CA 90033, USA;
| | - Deborah A. Ferrington
- Department of Ophthalmology and Visual Neurosciences and Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Ram Kannan
- The Stephen J. Ryan Initiative for Macular Research (RIMR), Doheny Eye Institute, Los Angeles, CA 90033, USA;
- Stein Eye Institute, Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
47
|
Ghazal N, Peoples JN, Mohiuddin TA, Kwong JQ. Mitochondrial functional resilience after TFAM ablation in the adult heart. Am J Physiol Cell Physiol 2021; 320:C929-C942. [PMID: 33760663 DOI: 10.1152/ajpcell.00508.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The nuclear genome-encoded mitochondrial DNA (mtDNA) transcription factor A (TFAM) is indispensable for mitochondrial energy production in the developing and postnatal heart; a similar role for TFAM is inferred in adult heart. Here, we provide evidence that challenges this long-standing paradigm. Unexpectedly, conditional Tfam ablation in vivo in adult mouse cardiomyocytes resulted in a prolonged period of functional resilience characterized by preserved mtDNA content, mitochondrial function, and cardiac function, despite mitochondrial structural alterations and decreased transcript abundance. Remarkably, TFAM protein levels did not directly dictate mtDNA content in the adult heart, and mitochondrial translation was preserved with acute TFAM inactivation, suggesting maintenance of respiratory chain assembly/function. Long-term Tfam inactivation, however, downregulated the core mtDNA transcription and replication machinery, leading to mitochondrial dysfunction and cardiomyopathy. Collectively, in contrast to the developing heart, these data reveal a striking resilience of the differentiated adult heart to acute insults to mtDNA regulation.
Collapse
Affiliation(s)
- Nasab Ghazal
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Jessica N Peoples
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia
| | | | - Jennifer Q Kwong
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia
| |
Collapse
|
48
|
Gautam S, Kumar U, Kumar M, Rana D, Dada R. Yoga improves mitochondrial health and reduces severity of autoimmune inflammatory arthritis: A randomized controlled trial. Mitochondrion 2021; 58:147-159. [PMID: 33741520 DOI: 10.1016/j.mito.2021.03.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/05/2021] [Accepted: 03/11/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Oxidative stress (OS) and mitochondrial alterations have been implicated in the pathogenesis of rheumatoid arthritis (RA). Various environmental triggers like air pollutants, smoking, unhealthy social habits and sedentary lifestyle induce OS, which may compromise mitochondrial integrity. This trial was designed to explore the effect of 8-weeks yoga practice on mitochondrial health and disease severity in an active RA group compared with a usual-care control group. METHODS A total of 70 subjects were randomized into two groups: yoga group and non-yoga group. Mitochondrial health was assessed by calculation of mitochondrial DNA copy number (mtDNA-CN), OS markers, mitochondrial activity, mitochondrial membrane potential (ΔΨm), circadian rhythm markers and transcripts associated with mitochondrial integrity: AMPK, TIMP-1, KLOTHO, SIRT-1, and TFAM. Parameters of disease activity and disability quotient were also assessed by disease activity score - erythrocyte sedimentation rate (DAS28-ESR) and health assessment questionnaire-disability index (HAQ-DI), respectively. RESULTS In yoga group, there was a significant upregulation of mtDNA-CN, mitochondrial activity markers, ΔΨm, and transcripts that maintain mitochondrial integrity after 8-weeks of yoga. There was optimization of OS markers, and circadian rhythm markers post 8-weeks practice of yoga. Yoga group participants showed significant improvements in DAS28-ESR (p < 0.05) and HAQ-DI (p < 0.05) over the non-yoga group. CONCLUSION Adoption of yoga by RA patients holds the key to enhance mitochondrial health, improve circadian rhythm markers, OS marker regulation, upregulation of transcripts that maintain mitochondrial integrity, reduce disease activity and its associated consequences on health outcome and hence can be beneficial as an adjunct therapy.
Collapse
Affiliation(s)
- Surabhi Gautam
- Laboratory for Molecular Reproduction and Genetics, Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Uma Kumar
- Department of Rheumatology, All India Institute of Medical Sciences, New Delhi, India
| | - Manoj Kumar
- Laboratory for Molecular Reproduction and Genetics, Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Deeksha Rana
- Laboratory for Molecular Reproduction and Genetics, Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Rima Dada
- Laboratory for Molecular Reproduction and Genetics, Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
49
|
Zhao M, Liu S, Wang C, Wang Y, Wan M, Liu F, Gong M, Yuan Y, Chen Y, Cheng J, Lu Y, Liu J. Mesenchymal Stem Cell-Derived Extracellular Vesicles Attenuate Mitochondrial Damage and Inflammation by Stabilizing Mitochondrial DNA. ACS NANO 2021; 15:1519-1538. [PMID: 33369392 DOI: 10.1021/acsnano.0c08947] [Citation(s) in RCA: 188] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mitochondrial dysfunction is a key feature of injury to numerous tissues and stem cell aging. Although the tissue regenerative role of mesenchymal stem cell (MSC)-derived extracellular vesicles (MSC-EVs) is well known, their specific role in regulating mitochondrial function in target cells remains elusive. Here, we report that MSC-EVs attenuated mtDNA damage and inflammation after acute kidney injury (AKI) and that this effect was at least partially dependent on the mitochondrial transcription factor A (TFAM) pathway. In detail, TFAM and mtDNA were depleted by oxidative stress in MSCs from aged or diabetic donors. Higher levels of TFAM mRNA and mtDNA were detected in normal control (NC) MSC-EVs than in TFAM-knockdown (TFAM-KD) and aged EVs. EV-mediated TFAM mRNA transfer in recipient cells was unaffected by transcriptional inhibition. Accordingly, the application of MSC-EVs restored TFAM protein and TFAM-mtDNA complex (nucleoid) stability, thereby reversing mtDNA deletion and mitochondrial oxidative phosphorylation (OXPHOS) defects in injured renal tubular cells. Loss of TFAM also led to downregulation of multiple anti-inflammatory miRNAs and proteins in MSC-EVs. In vivo, intravenously injected EVs primarily accumulated in the liver, kidney, spleen, and lung. MSC-EVs attenuated renal lesion formation, mitochondrial damage, and inflammation in mice with AKI, whereas EVs from TFAM-KD or aged MSCs resulted in poor therapeutic outcomes. Moreover, TFAM overexpression (TFAM-OE) improved the rescue effect of MSC-EVs on mitochondrial damage and inflammation to some extent. This study suggests that MSC-EVs are promising nanotherapeutics for diseases characterized by mitochondrial damage, and TFAM signaling is essential for maintaining their regenerative capacity.
Collapse
Affiliation(s)
- Meng Zhao
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shuyun Liu
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chengshi Wang
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yizhuo Wang
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Meihua Wan
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fang Liu
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Meng Gong
- West China-Washington Mitochondria and Metabolism Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yujia Yuan
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Younan Chen
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jingqiu Cheng
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yanrong Lu
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jingping Liu
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
50
|
Prole DL, Chinnery PF, Jones NS. Visualizing, quantifying, and manipulating mitochondrial DNA in vivo. J Biol Chem 2020; 295:17588-17601. [PMID: 33454000 PMCID: PMC7762947 DOI: 10.1074/jbc.rev120.015101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/15/2020] [Indexed: 01/06/2023] Open
Abstract
Mitochondrial DNA (mtDNA) encodes proteins and RNAs that support the functions of mitochondria and thereby numerous physiological processes. Mutations of mtDNA can cause mitochondrial diseases and are implicated in aging. The mtDNA within cells is organized into nucleoids within the mitochondrial matrix, but how mtDNA nucleoids are formed and regulated within cells remains incompletely resolved. Visualization of mtDNA within cells is a powerful means by which mechanistic insight can be gained. Manipulation of the amount and sequence of mtDNA within cells is important experimentally and for developing therapeutic interventions to treat mitochondrial disease. This review details recent developments and opportunities for improvements in the experimental tools and techniques that can be used to visualize, quantify, and manipulate the properties of mtDNA within cells.
Collapse
Affiliation(s)
- David L Prole
- Department of Mathematics, Imperial College London, London, United Kingdom; Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Patrick F Chinnery
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom; Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom.
| | - Nick S Jones
- Department of Mathematics, Imperial College London, London, United Kingdom.
| |
Collapse
|