1
|
Rashwan ME, Amer MAS, Elshemey WM, Elfiky AA. Nonhuman primates as valuable models for mpox drug and vaccine discovery. Expert Opin Drug Discov 2025; 20:575-583. [PMID: 40178341 DOI: 10.1080/17460441.2025.2489473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 04/02/2025] [Indexed: 04/05/2025]
Abstract
INTRODUCTION In recent months, monkeypox (mpox) virus (MPXV) infections has grown to be a major worldwide concern. Cynomolgus monkeys, rhesus macaques, marmosets, and baboons are the nonhuman primate (NHP) models that provide the much needed means for developing new therapies against MPXV due to their genetic proximity to humans. AREA COVERED In this review, the authors discuss epidemiology, transmission, clinical presentation, and the use of NHP in studying the treatment of MPXV over the past two decades on Google Scholar. NHP models have been widely used to evaluate the efficacy of antiviral drugs and antibodies, providing important information regarding immune responses and disease. NHPs continue to be an important mainstay in preclinical testing, enabling the optimization of the efficacy and safety of drugs, antibodies, and vaccines to accelerate the development of effective MPXV treatments for humans. EXPERT OPINION The intravenous forms of medications like cidofovir, brincidofovir, and Vaccinia Immune Globulin (VIG) constitute the basis of MPXV therapy. Additionally, antibodies such as HAI, PN, and CF assess the efficacy of smallpox vaccination against MPXV in primates. This would help both the development of diagnostic tools and the optimization of vaccine strategies. Moreover, the similarities between MPXV and vaccinia or variola can play a role in developing targeted antiviral treatment methods.
Collapse
Affiliation(s)
- Mahmoud E Rashwan
- Physics Department, Faculty of Science, Sohag University, Sohag, Egypt
| | | | - Wael M Elshemey
- Physics Department, Faculty of Science, Islamic University in Madinah, Madinah, Saudi Arabia
| | - Abdo A Elfiky
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
2
|
Li Y, Wang L, Chen S. An overview of the progress made in research into the Mpox virus. Med Res Rev 2025; 45:788-812. [PMID: 39318037 DOI: 10.1002/med.22085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/05/2024] [Accepted: 09/01/2024] [Indexed: 09/26/2024]
Abstract
Mpox is a zoonotic illness caused by the Mpox virus (MPXV), a member of the Orthopoxvirus family. Although a few cases have been reported outside Africa, it was originally regarded as an endemic disease limited to African countries. However, the Mpox outbreak of 2022 was remarkable in that the infection spread to more than 123 countries worldwide, causing thousands of infections and deaths. The ongoing Mpox outbreak has been declared as a public health emergency of international concern by the World Health Organization. For a better management and control of the epidemic, this review summarizes the research advances and important scientific findings on MPXV by reviewing the current literature on epidemiology, clinical characteristics, diagnostic methods, prevention and treatment measures, and animal models of MPXV. This review provides useful information to raise awareness about the transmission, symptoms, and protective measures of MPXV, serving as a theoretical guide for relevant institutions to control MPXV.
Collapse
Affiliation(s)
- Yansheng Li
- Shenzhen Key Laboratory of Microbiology in Genomic Modification & Editing and Application, Medical Innovation Technology Transformation Center of Shenzhen Second People's Hospital, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound lmaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Department of Critical Care Medicine, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Lianrong Wang
- Department of Respiratory Diseases, Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Shi Chen
- Shenzhen Key Laboratory of Microbiology in Genomic Modification & Editing and Application, Medical Innovation Technology Transformation Center of Shenzhen Second People's Hospital, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound lmaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Department of Critical Care Medicine, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
3
|
Song G, Cheng L, Liu J, Zhou Y, Zhang C, Zong Y. Establishment of an animal model for monkeypox virus infection in dormice. Sci Rep 2025; 15:4044. [PMID: 39900992 PMCID: PMC11791048 DOI: 10.1038/s41598-025-88725-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/30/2025] [Indexed: 02/05/2025] Open
Abstract
This study aims to establish an animal model of monkeypox virus (MPXV) infection in dormice through intranasal inoculation. Male dormice aged 4-5 months were selected as experimental subjects and administered different titers of MPXV (103.5 PFU, 104.5 PFU, and 105.5 PFU, respectively) via nasal instillation. Within 14 days post-infection, clinical indicators such as survival rate, body weight changes, respiratory status, and mental state were continuously monitored. Additionally, tissue samples from the lungs, liver, spleen, and trachea of dormice from each group were collected on the 5th and 10th days for virus titer detection, and histopathological analysis was performed on lung samples collected on the 5th and 10th days. Dormice infected with MPXV exhibited typical symptoms such as appetite loss, continuous body weight reduction, aggravated respiratory difficulties, accompanied by lethargy, chills, and other clinical manifestations similar to human monkeypox infection. Virological tests further confirmed the distribution of MPXV in multiple vital organs of dormice, including the lungs, liver, spleen, and trachea, with particularly significant pathological damage observed in lung tissue. An MPXV infection model in dormice was successfully established through intranasal inoculation with a titer of 105.5 PFU MPXV, which can be used for studying the infection mechanism and pharmacology of MPXV.
Collapse
Affiliation(s)
- Gaojie Song
- Jiangxi Provincial Key Laboratory of Cell Precision Therapy, School of Basic Medical Sciences, Jiujiang University, Jiujiang, 332005, Jiangxi, P. R. China.
| | - Lingling Cheng
- Jiangxi Provincial Key Laboratory of Cell Precision Therapy, School of Basic Medical Sciences, Jiujiang University, Jiujiang, 332005, Jiangxi, P. R. China
| | - Jun Liu
- Jiangxi Provincial Key Laboratory of Cell Precision Therapy, School of Basic Medical Sciences, Jiujiang University, Jiujiang, 332005, Jiangxi, P. R. China
| | - Yu Zhou
- Department of Disease Prevention and Control, Navy 971 Hospital, Qingdao, P. R. China.
| | - Cuiling Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, P. R. China.
| | - Yuping Zong
- Cadre Ward, 964 Hospital of Joint Logistics Support Force, Changchun, 130122, P. R. China.
| |
Collapse
|
4
|
Mantlo E, Trujillo JD, Gaudreault NN, Morozov I, Lewis CE, Matias-Ferreyra F, McDowell C, Bold D, Kwon T, Cool K, Balaraman V, Madden D, Artiaga B, Souza-Neto J, Doty JB, Carossino M, Balasuriya U, Wilson WC, Osterrieder N, Hensley L, Richt JA. Experimental inoculation of pigs with monkeypox virus results in productive infection and transmission to sentinels. Emerg Microbes Infect 2024; 13:2352434. [PMID: 38712637 PMCID: PMC11168330 DOI: 10.1080/22221751.2024.2352434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024]
Abstract
Monkeypox virus (MPXV) is a re-emerging zoonotic poxvirus responsible for producing skin lesions in humans. Endemic in sub-Saharan Africa, the 2022 outbreak with a clade IIb strain has resulted in ongoing sustained transmission of the virus worldwide. MPXV has a relatively wide host range, with infections reported in rodent and non-human primate species. However, the susceptibility of many domestic livestock species remains unknown. Here, we report on a susceptibility/transmission study in domestic pigs that were experimentally inoculated with a 2022 MPXV clade IIb isolate or served as sentinel contact control animals. Several principal-infected and sentinel contact control pigs developed minor lesions near the lips and nose starting at 12 through 18 days post-challenge (DPC). No virus was isolated and no viral DNA was detected from the lesions; however, MPXV antigen was detected by IHC in tissue from a pustule of a principal infected pig. Viral DNA and infectious virus were detected in nasal and oral swabs up to 14 DPC, with peak titers observed at 7 DPC. Viral DNA was also detected in nasal tissues or skin collected from two principal-infected animals at 7 DPC post-mortem. Furthermore, all principal-infected and sentinel control animals enrolled in the study seroconverted. In conclusion, we provide the first evidence that domestic pigs are susceptible to experimental MPXV infection and can transmit the virus to contact animals.
Collapse
Affiliation(s)
- Emily Mantlo
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Jessie D. Trujillo
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Natasha N. Gaudreault
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Igor Morozov
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Charles E. Lewis
- Foreign Animal Disease Diagnostic Laboratory, National Bio and Agro-defense Facility, Animal and Plant Health Inspection Service, United States Department of Agriculture, Manhattan, KS, USA
| | - Franco Matias-Ferreyra
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Chester McDowell
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Dashzeveg Bold
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Taeyong Kwon
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Konner Cool
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Velmurugan Balaraman
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Daniel Madden
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Bianca Artiaga
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Jayme Souza-Neto
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Jeffrey B. Doty
- U.S. Centers for Disease Control and Prevention, Poxvirus and Rabies Branch, Atlanta, GA, USA
| | - Mariano Carossino
- Louisiana Animal Disease Diagnostic Laboratory and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Udeni Balasuriya
- Louisiana Animal Disease Diagnostic Laboratory and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - William C. Wilson
- Foreign Arthropod-Borne Animal Diseases Research Unit, National Bio and Agro-defense Facility, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS, USA
| | - Nikolaus Osterrieder
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Lisa Hensley
- Zoonotic and Emerging Disease Research Unit, National Bio- and Agro-defense Facility, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS, USA
| | - Juergen A. Richt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
5
|
Huang Y, Bergant V, Grass V, Emslander Q, Hamad MS, Hubel P, Mergner J, Piras A, Krey K, Henrici A, Öllinger R, Tesfamariam YM, Dalla Rosa I, Bunse T, Sutter G, Ebert G, Schmidt FI, Way M, Rad R, Bowie AG, Protzer U, Pichlmair A. Multi-omics characterization of the monkeypox virus infection. Nat Commun 2024; 15:6778. [PMID: 39117661 PMCID: PMC11310467 DOI: 10.1038/s41467-024-51074-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
Multiple omics analyzes of Vaccinia virus (VACV) infection have defined molecular characteristics of poxvirus biology. However, little is known about the monkeypox (mpox) virus (MPXV) in humans, which has a different disease manifestation despite its high sequence similarity to VACV. Here, we perform an in-depth multi-omics analysis of the transcriptome, proteome, and phosphoproteome signatures of MPXV-infected primary human fibroblasts to gain insights into the virus-host interplay. In addition to expected perturbations of immune-related pathways, we uncover regulation of the HIPPO and TGF-β pathways. We identify dynamic phosphorylation of both host and viral proteins, which suggests that MAPKs are key regulators of differential phosphorylation in MPXV-infected cells. Among the viral proteins, we find dynamic phosphorylation of H5 that influenced the binding of H5 to dsDNA. Our extensive dataset highlights signaling events and hotspots perturbed by MPXV, extending the current knowledge on poxviruses. We use integrated pathway analysis and drug-target prediction approaches to identify potential drug targets that affect virus growth. Functionally, we exemplify the utility of this approach by identifying inhibitors of MTOR, CHUK/IKBKB, and splicing factor kinases with potent antiviral efficacy against MPXV and VACV.
Collapse
Affiliation(s)
- Yiqi Huang
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany
| | - Valter Bergant
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany
| | - Vincent Grass
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany
| | - Quirin Emslander
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany
| | - M Sabri Hamad
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany
| | - Philipp Hubel
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Munich, Germany
- Core Facility Hohenheim, Universität Hohenheim, Stuttgart, Germany
| | - Julia Mergner
- Bavarian Center for Biomolecular Mass Spectrometry at University Hospital rechts der Isar (BayBioMS@MRI), Technical University of Munich, Munich, Germany
| | - Antonio Piras
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany
| | - Karsten Krey
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany
| | - Alexander Henrici
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany
| | - Rupert Öllinger
- Institute of Molecular Oncology and Functional Genomics and Department of Medicine II, School of Medicine, Technical University of Munich, Munich, Germany
| | - Yonas M Tesfamariam
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Ilaria Dalla Rosa
- Cellular signalling and cytoskeletal function laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Till Bunse
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany
| | - Gerd Sutter
- Institute for Infectious Diseases and Zoonoses, Department of Veterinary Sciences, LMU Munich, Munich, Germany
- German Centre for Infection Research (DZIF), Partner site Munich, Munich, Germany
| | - Gregor Ebert
- Institute of Virology, Technical University of Munich, School of Medicine/Helmholtz Munich, Munich, Germany
| | - Florian I Schmidt
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Michael Way
- Cellular signalling and cytoskeletal function laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Department of Infectious Disease, Imperial College, London, UK
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics and Department of Medicine II, School of Medicine, Technical University of Munich, Munich, Germany
| | - Andrew G Bowie
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Ulrike Protzer
- German Centre for Infection Research (DZIF), Partner site Munich, Munich, Germany
- Institute of Virology, Technical University of Munich, School of Medicine/Helmholtz Munich, Munich, Germany
| | - Andreas Pichlmair
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany.
- German Centre for Infection Research (DZIF), Partner site Munich, Munich, Germany.
| |
Collapse
|
6
|
Yang CH, Song AL, Qiu Y, Ge XY. Cross-species transmission and host range genes in poxviruses. Virol Sin 2024; 39:177-193. [PMID: 38272237 PMCID: PMC11074647 DOI: 10.1016/j.virs.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
The persistent epidemic of human mpox, caused by mpox virus (MPXV), raises concerns about the future spread of MPXV and other poxviruses. MPXV is a typical zoonotic virus which can infect human and cause smallpox-like symptoms. MPXV belongs to the Poxviridae family, which has a relatively broad host range from arthropods to vertebrates. Cross-species transmission of poxviruses among different hosts has been frequently reported and resulted in numerous epidemics. Poxviruses have a complex linear double-strand DNA genome that encodes hundreds of proteins. Genes related to the host range of poxvirus are called host range genes (HRGs). This review briefly introduces the taxonomy, phylogeny and hosts of poxviruses, and then comprehensively summarizes the current knowledge about the cross-species transmission of poxviruses. In particular, the HRGs of poxvirus are described and their impacts on viral host range are discussed in depth. We hope that this review will provide a comprehensive perspective about the current progress of researches on cross-species transmission and HRG variation of poxviruses, serving as a valuable reference for academic studies and disease control in the future.
Collapse
Affiliation(s)
- Chen-Hui Yang
- College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, 410012, China
| | - A-Ling Song
- College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, 410012, China
| | - Ye Qiu
- College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, 410012, China.
| | - Xing-Yi Ge
- College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, 410012, China.
| |
Collapse
|
7
|
Chi H, Zhao SQ, Chen RY, Suo XX, Zhang RR, Yang WH, Zhou DS, Fang M, Ying B, Deng YQ, Qin CF. Rapid development of double-hit mRNA antibody cocktail against orthopoxviruses. Signal Transduct Target Ther 2024; 9:69. [PMID: 38531869 DOI: 10.1038/s41392-024-01766-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 03/28/2024] Open
Abstract
The Orthopoxvirus genus, especially variola virus (VARV), monkeypox virus (MPXV), remains a significant public health threat worldwide. The development of therapeutic antibodies against orthopoxviruses is largely hampered by the high cost of antibody engineering and manufacturing processes. mRNA-encoded antibodies have emerged as a powerful and universal platform for rapid antibody production. Herein, by using the established lipid nanoparticle (LNP)-encapsulated mRNA platform, we constructed four mRNA combinations that encode monoclonal antibodies with broad neutralization activities against orthopoxviruses. In vivo characterization demonstrated that a single intravenous injection of each LNP-encapsulated mRNA antibody in mice resulted in the rapid production of neutralizing antibodies. More importantly, mRNA antibody treatments showed significant protection from weight loss and mortality in the vaccinia virus (VACV) lethal challenge mouse model, and a unique mRNA antibody cocktail, Mix2a, exhibited superior in vivo protection by targeting both intracellular mature virus (IMV)-form and extracellular enveloped virus (EEV)-form viruses. In summary, our results demonstrate the proof-of-concept production of orthopoxvirus antibodies via the LNP-mRNA platform, highlighting the great potential of tailored mRNA antibody combinations as a universal strategy to combat orthopoxvirus as well as other emerging viruses.
Collapse
Affiliation(s)
- Hang Chi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, 100071, Beijing, China
| | - Suo-Qun Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, 100071, Beijing, China
| | - Ru-Yi Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, 100071, Beijing, China
| | - Xing-Xing Suo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, 100071, Beijing, China
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, 010018, Inner Mongolia, China
| | - Rong-Rong Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, 100071, Beijing, China
| | - Wen-Hui Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, 100071, Beijing, China
| | - Dong-Sheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, 100071, Beijing, China
| | - Min Fang
- School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Bo Ying
- Suzhou Abogen Biosciences Co., Ltd, Suzhou, 215123, Jiangsu, China
| | - Yong-Qiang Deng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, 100071, Beijing, China.
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, 100071, Beijing, China.
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, 100071, Beijing, China.
| |
Collapse
|
8
|
Herron ICT, Laws TR, Nelson M. Marmosets as models of infectious diseases. Front Cell Infect Microbiol 2024; 14:1340017. [PMID: 38465237 PMCID: PMC10921895 DOI: 10.3389/fcimb.2024.1340017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/29/2024] [Indexed: 03/12/2024] Open
Abstract
Animal models of infectious disease often serve a crucial purpose in obtaining licensure of therapeutics and medical countermeasures, particularly in situations where human trials are not feasible, i.e., for those diseases that occur infrequently in the human population. The common marmoset (Callithrix jacchus), a Neotropical new-world (platyrrhines) non-human primate, has gained increasing attention as an animal model for a number of diseases given its small size, availability and evolutionary proximity to humans. This review aims to (i) discuss the pros and cons of the common marmoset as an animal model by providing a brief snapshot of how marmosets are currently utilized in biomedical research, (ii) summarize and evaluate relevant aspects of the marmoset immune system to the study of infectious diseases, (iii) provide a historical backdrop, outlining the significance of infectious diseases and the importance of developing reliable animal models to test novel therapeutics, and (iv) provide a summary of infectious diseases for which a marmoset model exists, followed by an in-depth discussion of the marmoset models of two studied bacterial infectious diseases (tularemia and melioidosis) and one viral infectious disease (viral hepatitis C).
Collapse
Affiliation(s)
- Ian C. T. Herron
- CBR Division, Defence Science and Technology Laboratory (Dstl), Salisbury, United Kingdom
| | | | | |
Collapse
|
9
|
Kwon T. Utilizing non-human primate models to combat recent COVID-19/SARS-CoV-2 and viral infectious disease outbreaks. J Med Primatol 2024; 53:e12689. [PMID: 38084001 DOI: 10.1111/jmp.12689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/01/2023] [Accepted: 12/01/2023] [Indexed: 02/13/2024]
Abstract
In recent times, global viral outbreaks and diseases, such as COVID-19 (SARS-CoV-2), Zika (ZIKV), monkeypox (MPOX), Ebola (EBOV), and Marburg (MARV), have been extensively documented. Swiftly deciphering the mechanisms underlying disease pathogenesis and devising vaccines or therapeutic interventions to curtail these outbreaks stand as paramount imperatives. Amidst these endeavors, animal models emerge as pivotal tools. Among these models, non-human primates (NHPs) hold a position of particular importance. Their proximity in evolutionary lineage and physiological resemblances to humans render them a primary model for comprehending human viral infections. This review encapsulates the pivotal role of various NHP species-such as rhesus macaques (Macaca mulatta), cynomolgus macaques (Macaca fascicularis), african green monkeys (Chlorocebus sabaeus/aethiops), pigtailed macaques (Macaca nemestrina/Macaca leonina), baboons (Papio hamadryas/Papio anubis), and common marmosets (Callithrix jacchus)-in investigations pertaining to the abovementioned viral outbreaks. These NHP models play a pivotal role in illuminating key aspects of disease dynamics, facilitating the development of effective countermeasures, and contributing significantly to our overall understanding of viral pathogenesis.
Collapse
Affiliation(s)
- Taeho Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si, Jeonbuk, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea National University of Science and Technology (UST), Daejeon, Korea
| |
Collapse
|
10
|
Atasoy MO, Naggar RFE, Rohaim MA, Munir M. Zoonotic and Zooanthroponotic Potential of Monkeypox. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1451:75-90. [PMID: 38801572 DOI: 10.1007/978-3-031-57165-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The current multicounty outbreak of monkeypox virus (MPXV) posed an emerging and continued challenge to already strained public healthcare sector, around the globe. Since its first identification, monkeypox disease (mpox) remained enzootic in Central and West African countries where reports of human cases are sporadically described. Recent trends in mpox spread outside the Africa have highlighted increased incidence of spillover of the MPXV from animal to humans. While nature of established animal reservoirs remained undefined, several small mammals including rodents, carnivores, lagomorphs, insectivores, non-human primates, domestic/farm animals, and several species of wildlife are proposed to be carrier of the MPXV infection. There are established records of animal-to-human (zoonotic) spread of MPXV through close interaction of humans with animals by eating bushmeat, contracting bodily fluids or trading possibly infected animals. In contrast, there are reports and increasing possibilities of human-to-animal (zooanthroponotic) spread of the MPXV through petting and close interaction with pet owners and animal care workers. We describe here the rationales and molecular factors which predispose the spread of MPXV not only amongst humans but also from animals to humans. A range of continuing opportunities for the spread and evolution of MPXV are discussed to consider risks beyond the currently identified groups. With the possibility of MPXV establishing itself in animal reservoirs, continued and broad surveillance, investigation into unconventional transmissions, and exploration of spillover events are warranted.
Collapse
Affiliation(s)
- Mustafa O Atasoy
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Furness College, Lancaster University, Tower Ave, Bailrigg, LA1 4YG, UK
| | - Rania F El Naggar
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Furness College, Lancaster University, Tower Ave, Bailrigg, LA1 4YG, UK
| | - Mohammed A Rohaim
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Furness College, Lancaster University, Tower Ave, Bailrigg, LA1 4YG, UK
| | - Muhammad Munir
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Furness College, Lancaster University, Tower Ave, Bailrigg, LA1 4YG, UK.
| |
Collapse
|
11
|
Rong N, Liu J. Development of animal models for emerging infectious diseases by breaking the barrier of species susceptibility to human pathogens. Emerg Microbes Infect 2023; 12:2178242. [PMID: 36748729 PMCID: PMC9970229 DOI: 10.1080/22221751.2023.2178242] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Outbreaks of emerging infectious diseases pose a serious threat to public health security, human health and economic development. After an outbreak, an animal model for an emerging infectious disease is urgently needed for studying the etiology, host immune mechanisms and pathology of the disease, evaluating the efficiency of vaccines or drugs against infection, and minimizing the time available for animal model development, which is usually hindered by the nonsusceptibility of common laboratory animals to human pathogens. Thus, we summarize the technologies and methods that induce animal susceptibility to human pathogens, which include viral receptor humanization, pathogen-targeted tissue humanization, immunodeficiency induction and screening for naturally susceptible animal species. Furthermore, the advantages and deficiencies of animal models developed using each method were analyzed, and these will guide the selection of susceptible animals and potentially reduce the time needed to develop animal models during epidemics.
Collapse
Affiliation(s)
- Na Rong
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, People’s Republic of China
| | - Jiangning Liu
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, People’s Republic of China, Jiangning Liu
| |
Collapse
|
12
|
Wei ZK, Zhao YC, Wang ZD, Sui LY, Zhao YH, Liu Q. Animal models of mpox virus infection and disease. INFECTIOUS MEDICINE 2023; 2:153-166. [PMID: 38073883 PMCID: PMC10699680 DOI: 10.1016/j.imj.2023.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/27/2023] [Accepted: 05/28/2023] [Indexed: 01/07/2025]
Abstract
Mpox (monkeypox) virus (MPXV), which causes a mild smallpox-like disease, has been endemic in Africa for several decades, with sporadic cases occurring in other parts of the world. However, the most recent outbreak of mpox mainly among men that have sex with men has affected several continents, posing serious global public health concerns. The infections exhibit a wide spectrum of clinical presentation, ranging from asymptomatic infection to mild, severe disease, especially in immunocompromised individuals, young children, and pregnant women. Some therapeutics and vaccines developed for smallpox have partial protective and therapeutic effects against MPXV historic isolates in animal models. However, the continued evolution of MPXV has produced multiple lineages, leading to significant gaps in the knowledge of their pathogenesis that constrain the development of targeted antiviral therapies and vaccines. MPXV infections in various animal models have provided a central platform for identification and comparison of diseased pathogenesis between the contemporary and historic isolates. In this review, we discuss the susceptibility of various animals to MPXV, and describe the key pathologic features of rodent, rabbit and nonhuman primate models. We also provide application examples of animal models in elucidating viral pathogenesis and evaluating effectiveness of vaccine and antiviral drugs. These animal models are essential to understand the biology of MPXV contemporary isolates and to rapidly test potential countermeasures. Finally, we list some remaining scientific questions of MPXV that can be resolved by animal models.
Collapse
Affiliation(s)
- Zheng-Kai Wei
- Department of Infectious Diseases, Center of Infectious diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130021, China
- School of Life Sciences and Engineering, Foshan University, Foshan 528225, China
| | - Yi-Cheng Zhao
- Department of Infectious Diseases, Center of Infectious diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130021, China
| | - Ze-Dong Wang
- Department of Infectious Diseases, Center of Infectious diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130021, China
| | - Li-Yan Sui
- Department of Infectious Diseases, Center of Infectious diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130021, China
| | - Ying-Hua Zhao
- Department of Infectious Diseases, Center of Infectious diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130021, China
| | - Quan Liu
- Department of Infectious Diseases, Center of Infectious diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130021, China
- School of Life Sciences and Engineering, Foshan University, Foshan 528225, China
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| |
Collapse
|
13
|
Schwartz DA, Ha S, Dashraath P, Baud D, Pittman PR, Adams Waldorf K. Mpox Virus in Pregnancy, the Placenta, and Newborn. Arch Pathol Lab Med 2023; 147:746-757. [PMID: 36857117 DOI: 10.5858/arpa.2022-0520-sa] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2023] [Indexed: 03/02/2023]
Abstract
CONTEXT.— Before its eradication, the smallpox virus was a significant cause of poor obstetric outcomes, including maternal and fetal morbidity and mortality. The mpox (monkeypox) virus is now the most pathogenic member of the Orthopoxvirus genus infecting humans. The 2022 global mpox outbreak has focused attention on its potential effects during pregnancy. OBJECTIVE.— To understand the comparative effects of different poxvirus infections on pregnancy, including mpox virus, variola virus, vaccinia virus, and cowpox virus. The impact on the pregnant individual, fetus, and placenta will be examined, with particular attention to the occurrence of intrauterine vertical transmission and congenital infection. DATA SOURCES.— The data are obtained from the authors' cases and from various published sources, including early historical information and contemporary publications. CONCLUSIONS.— Smallpox caused maternal and perinatal death, with numerous cases reported of intrauterine transmission. In endemic African countries, mpox has also affected pregnant individuals, with up to a 75% perinatal case fatality rate. Since the start of the 2022 mpox outbreak, increasing numbers of pregnant women have been infected with the virus. A detailed description is given of the congenital mpox syndrome in a stillborn fetus, resulting from maternal-fetal transmission and placental infection, and the potential mechanisms of intrauterine infection are discussed. Other poxviruses, notably vaccinia virus and, in 1 case, cowpox virus, can also cause perinatal infection. Based on the historical evidence of poxvirus infections, mpox remains a threat to the pregnant population, and it can be expected that additional cases will occur in the future.
Collapse
Affiliation(s)
- David A Schwartz
- From Perinatal Pathology Consulting, Atlanta, Georgia (Schwartz)
| | - Sandy Ha
- The Department of Obstetrics and Gynecology, University of Washington, Seattle (Ha)
| | - Pradip Dashraath
- The Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (Dashraath)
| | - David Baud
- Materno-Fetal and Obstetrics Research Unit, Department Woman-Mother-Child, Lausanne University Hospital, Lausanne, Switzerland (Baud)
| | - Phillip R Pittman
- The Department of Clinical Research, US Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Maryland (Pittman)
| | - Kristina Adams Waldorf
- The Departments of Obstetrics and Gynecology and Global Health, University of Washington School of Medicine, Seattle (Adams Waldorf)
| |
Collapse
|
14
|
Ullah M, Li Y, Munib K, Zhang Z. Epidemiology, host range, and associated risk factors of monkeypox: an emerging global public health threat. Front Microbiol 2023; 14:1160984. [PMID: 37213509 PMCID: PMC10196482 DOI: 10.3389/fmicb.2023.1160984] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/27/2023] [Indexed: 05/23/2023] Open
Abstract
Based on recent multiregional epidemiological investigations of Monkeypox (MPX), on 24 July 2022, the World Health Organization declared it a global public health threat. Retrospectively MPX was an ignored zoonotic endemic infection to tropical rainforest regions of Western and Central African rural communities until a worldwide epidemic in May 2022 verified the potential threat of monkeypox virus (MPXV) to be propagated across the contemporary world via transnational tourism and animal movements. During 2018-2022, different cases of MPX diagnosed in Nigerian travelers have been documented in Israel, the United Kingdom, Singapore, and the United States. More recently, on 27 September 2022, 66,000 MPX cases have been confirmed in more than 100 non-endemic countries, with fluctuating epidemiological footprinting from retrospective epidemics. Particular disease-associated risk factors fluctuate among different epidemics. The unpredicted appearance of MPX in non-endemic regions suggests some invisible transmission dynamic. Hence, broad-minded and vigilant epidemiological attention to the current MPX epidemic is mandatory. Therefore, this review was compiled to highlight the epidemiological dynamic, global host ranges, and associated risk factors of MPX, concentrating on its epidemic potential and global public health threat.
Collapse
Affiliation(s)
- Munib Ullah
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Department of Clinical Studies, Faculty of Veterinary and Animal Sciences, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Yanmin Li
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, China
| | - Kainat Munib
- Department of Sociology, Allama Iqbal Open University Islamabad, Islamabad, Pakistan
| | - Zhidong Zhang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, China
| |
Collapse
|
15
|
Falendysz EA, Lopera JG, Rocke TE, Osorio JE. Monkeypox Virus in Animals: Current Knowledge of Viral Transmission and Pathogenesis in Wild Animal Reservoirs and Captive Animal Models. Viruses 2023; 15:905. [PMID: 37112885 PMCID: PMC10142277 DOI: 10.3390/v15040905] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Mpox, formerly called monkeypox, is now the most serious orthopoxvirus (OPXV) infection in humans. This zoonotic disease has been gradually re-emerging in humans with an increasing frequency of cases found in endemic areas, as well as an escalating frequency and size of epidemics outside of endemic areas in Africa. Currently, the largest known mpox epidemic is spreading throughout the world, with over 85,650 cases to date, mostly in Europe and North America. These increased endemic cases and epidemics are likely driven primarily by decreasing global immunity to OPXVs, along with other possible causes. The current unprecedented global outbreak of mpox has demonstrated higher numbers of human cases and greater human-to-human transmission than previously documented, necessitating an urgent need to better understand this disease in humans and animals. Monkeypox virus (MPXV) infections in animals, both naturally occurring and experimental, have provided critical information about the routes of transmission; the viral pathogenicity factors; the methods of control, such as vaccination and antivirals; the disease ecology in reservoir host species; and the conservation impacts on wildlife species. This review briefly described the epidemiology and transmission of MPXV between animals and humans and summarizes past studies on the ecology of MPXV in wild animals and experimental studies in captive animal models, with a focus on how animal infections have informed knowledge concerning various aspects of this pathogen. Knowledge gaps were highlighted in areas where future research, both in captive and free-ranging animals, could inform efforts to understand and control this disease in both humans and animals.
Collapse
Affiliation(s)
| | | | - Tonie E. Rocke
- U.S. Geological Survey, National Wildlife Health Center, Madison, WI 53711, USA
| | - Jorge E. Osorio
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
- Global Health Institute, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
16
|
Li Y, Peng X, Fu L, Wang B, Sun Y, Chen Y, Lin YF, Wu X, Liu Q, Gao Y, Zheng W, Bian J, Lu Z, Meng X, Xue H, Li H, Jiang H, Zou H. Monkeypox awareness and low vaccination hesitancy among men who have sex with men in China. J Med Virol 2023; 95:e28567. [PMID: 36786385 DOI: 10.1002/jmv.28567] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/24/2023] [Accepted: 02/04/2023] [Indexed: 02/15/2023]
Abstract
Men who have sex with men (MSM) have been recommended for targeted monkeypox vaccination. We aimed to investigate monkeypox awareness and explore the correlates of monkeypox vaccination hesitancy among MSM in China. We conducted a cross-sectional survey from August 10 to September 9, 2022. Awareness related to monkeypox and attitude toward monkeypox vaccination among MSM aged ≥18 years were collected. Multivariable logistic regression was applied to evaluate correlates of vaccination hesitancy. The discrepancy in awareness between subgroups regarding HIV status was assessed. A total of 1090 MSM were included (age: median 30 years, interquartile range [IQR], 25-35; HIV-infected: 53.12%). Only 13.85% of respondents expressed high monkeypox vaccination hesitancy. Hesitancy was associated with no fixed income (adjuster odds ratio [aOR], 2.46, 95% confidence interval [CI], 1.48-4.11), infrequent information following (sometimes, 3.01, 1.55-5.83; seldom or never, 5.66, 2.58-12.45), and lack of worries about monkeypox endemic (1.78, 1.11-2.87). Participants who believed that HIV-infected cases accounted for a smaller proportion (1.62, 1.01-2.60), disagreed that monkeypox virus could be detected in semen (2.21, 1.26-3.88), and considered either replication-competent (1.84, 1.14-2.96) or replication-deficient (4.80, 2.26-10.21) monkeypox vaccine unsuitable for HIV-infected people were generally more hesitant. Compared with HIV-uninfected MSM, HIV-infected MSM supported more for vaccination promotion. MSM in China had low hesitancy toward monkeypox vaccination. Safety and affordability of vaccine and availability of information were essential aspects to reduce hesitancy. Education on vaccination benefits should be encouraged to promote future vaccination plans.
Collapse
Affiliation(s)
- Yuwei Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Xin Peng
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Leiwen Fu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Bingyi Wang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Yinghui Sun
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Yuanyi Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Yi-Fan Lin
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Xinsheng Wu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Qi Liu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Yanxiao Gao
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Weiran Zheng
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Junye Bian
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Zhen Lu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Xiaojun Meng
- Wuxi Municipal Center for Disease Control and Prevention, Wuxi, China
| | - Hui Xue
- Beijing BlueCity Youning Health Management Co., Beijing, China
| | - Hui Li
- Shizhong District Center for Disease Control and Prevention, Jinan, China
| | - Hongbo Jiang
- Department of Epidemiology and Biostatistics, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Huachun Zou
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
17
|
Al-Kuraishy HM, Al-Gareeb AI, Hetta HF, Alexiou A, Papadakis M, Batiha GES. Heparanase is the possible link between monkeypox and Covid-19: robust candidature in the mystic and present perspective. AMB Express 2023; 13:13. [PMID: 36705773 PMCID: PMC9880376 DOI: 10.1186/s13568-023-01517-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/18/2023] [Indexed: 01/28/2023] Open
Abstract
Heparanase (HPSE) is an endoglycosidase cleaves heparan sulfate (HS) and this contributes to the degradation and remodeling of the extracellular matrix. HS cleaved by HPSE induces activation of autophagy and formation of autophagosommes which facilitate binding of HPSE to the HS and subsequent release of growth factors. The interaction between HPSE and HS triggers releases of chemokines and cytokines which affect inflammatory response and cell signaling pathways with development of hyperinflammation, cytokine storm (CS) and coagulopathy. HPSE expression is induced by both SARS-CoV-2 and monkeypox virus (MPXV) leading to induction release of pro-inflammatory cytokines, endothelial dysfunction and thrombotic events. Co-infection of MPX with SARS-CoV-2 may occur as we facing many outbreaks of MPX cases during Covid-19 pandemic. Therefore, targeting of HPSE by specific inhibitors may reduce the risk of complications in both SARS-CoV-2 and MPXV infections. Taken together, HPSE could be a potential link between MPX with SARS-CoV-2 in Covid-19 era.
Collapse
Affiliation(s)
- Hayder M. Al-Kuraishy
- Department of Clinical Pharmacology and Therapeutic Medicine, College of Medicine, ALmustansiriyiah University, Baghdad, Iraq
| | - Ali I. Al-Gareeb
- Department of Clinical Pharmacology and Therapeutic Medicine, College of Medicine, ALmustansiriyiah University, Baghdad, Iraq
| | - Helal F. Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, 71515 Egypt
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW 2770 Australia
- AFNP Med, 1030 Vienna, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283 Wuppertal, Germany
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, AlBeheira, Damanhour, 22511 Egypt
| |
Collapse
|
18
|
Rosa RB, Ferreira de Castro E, Vieira da Silva M, Paiva Ferreira DC, Jardim ACG, Santos IA, Marinho MDS, Ferreira França FB, Pena LJ. In vitro and in vivo models for monkeypox. iScience 2023; 26:105702. [PMID: 36471873 PMCID: PMC9712139 DOI: 10.1016/j.isci.2022.105702] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The emergence and rapid spread outside of monkeypox virus (MPXV) to non-endemic areas has led to another global health emergency in the midst of the COVID-19 pandemic. The scientific community has sought to rapidly develop in vitro and in vivo models that could be applied in research with MPXV. In vitro models include two-dimensional (2D) cultures of immortalized cell lines or primary cells and three-dimensional (3D) cultures. In vitro models are considered cost-effective and can be done in highly controlled conditions; however, they do not always resemble physiological conditions. In this way, several in vivo models are being characterized to meet the growing demand for new studies related to MPXV. In this review, we summarize the main MPXV models that have already been developed and discuss how they can contribute to advance the understanding of its pathogenesis, replication, and transmission, as well as identifying antivirals to treat infected patients.
Collapse
Affiliation(s)
- Rafael Borges Rosa
- Department of Virology and Experimental Therapy (LAVITE), Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), Recife 50740-465, Brazil
- Rodents Animal Facilities Complex, Federal University of Uberlândia (REBIR-UFU), Uberlândia 38400-902, Brazil
| | - Emilene Ferreira de Castro
- Rodents Animal Facilities Complex, Federal University of Uberlândia (REBIR-UFU), Uberlândia 38400-902, Brazil
| | - Murilo Vieira da Silva
- Rodents Animal Facilities Complex, Federal University of Uberlândia (REBIR-UFU), Uberlândia 38400-902, Brazil
| | | | | | - Igor Andrade Santos
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia 38405-302, Brazil
| | | | | | - Lindomar José Pena
- Department of Virology and Experimental Therapy (LAVITE), Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), Recife 50740-465, Brazil
| |
Collapse
|
19
|
Mukherjee AG, Wanjari UR, Kannampuzha S, Das S, Murali R, Namachivayam A, Renu K, Ramanathan G, Doss C GP, Vellingiri B, Dey A, Valsala Gopalakrishnan A. The pathophysiological and immunological background of the monkeypox virus infection: An update. J Med Virol 2023; 95:e28206. [PMID: 36217803 DOI: 10.1002/jmv.28206] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 01/18/2023]
Abstract
In addition to the COVID-19 waves, the globe is facing global monkeypox (MPX) outbreak. MPX is an uncommon zoonotic infection characterized by symptoms similar to smallpox. It is caused by the monkeypox virus (MPXV), a double-stranded DNA virus that belongs to the genus Orthopoxvirus (OPXV). MPXV, which causes human disease, has been confined to Africa for many years, with only a few isolated cases in other areas. Outside of Africa, the continuing MPXV outbreak in multiple countries in 2022 is the greatest in recorded history. The current outbreak, with over 10 000 confirmed cases in over 50 countries between May and July 2022, demonstrates that MPXV may travel rapidly among humans and pose a danger to human health worldwide. The rapid spread of such outbreaks in recent times has elevated MPX to the status of a rising zoonotic disease with significant epidemic potential. While the MPXV is not as deadly or contagious as the variola virus that causes smallpox, it poses a threat because it could evolve into a more potent human pathogen. This review assesses the potential threat to the human population and provides a brief overview of what is currently known about this reemerging virus. By analyzing the biological effects of MPXV on human health, its shifting epidemiological footprint, and currently available therapeutic options, this review has presented the most recent insights into the biology of the virus. This study also clarifies the key potential causes that could be to blame for the present MPX outbreak and draw attention to major research questions and promising new avenues for combating the current MPX epidemic.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Sandra Kannampuzha
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Soumik Das
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Reshma Murali
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Arunraj Namachivayam
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Kaviyarasi Renu
- Department of Biochemistry, Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Gnanasambandan Ramanathan
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - George Priya Doss C
- Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Balachandar Vellingiri
- Department of Human Genetics and Molecular Biology, Human Molecular Cytogenetics and Stem Cell Laboratory, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| |
Collapse
|
20
|
Huang Y, Mu L, Wang W. Monkeypox: epidemiology, pathogenesis, treatment and prevention. Signal Transduct Target Ther 2022; 7:373. [PMID: 36319633 PMCID: PMC9626568 DOI: 10.1038/s41392-022-01215-4] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/18/2022] [Accepted: 09/27/2022] [Indexed: 11/15/2022] Open
Abstract
Monkeypox is a zoonotic disease that was once endemic in west and central Africa caused by monkeypox virus. However, cases recently have been confirmed in many nonendemic countries outside of Africa. WHO declared the ongoing monkeypox outbreak to be a public health emergency of international concern on July 23, 2022, in the context of the COVID-19 pandemic. The rapidly increasing number of confirmed cases could pose a threat to the international community. Here, we review the epidemiology of monkeypox, monkeypox virus reservoirs, novel transmission patterns, mutations and mechanisms of viral infection, clinical characteristics, laboratory diagnosis and treatment measures. In addition, strategies for the prevention, such as vaccination of smallpox vaccine, is also included. Current epidemiological data indicate that high frequency of human-to-human transmission could lead to further outbreaks, especially among men who have sex with men. The development of antiviral drugs and vaccines against monkeypox virus is urgently needed, despite some therapeutic effects of currently used drugs in the clinic. We provide useful information to improve the understanding of monkeypox virus and give guidance for the government and relative agency to prevent and control the further spread of monkeypox virus.
Collapse
Affiliation(s)
- Yong Huang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Li Mu
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
21
|
Marietta M, Coluccio V, Luppi M. Monkeypox outbreak: after COVID-19, another challenge for the hemostatic system? Intern Emerg Med 2022; 17:2179-2183. [PMID: 36194336 PMCID: PMC9529604 DOI: 10.1007/s11739-022-03112-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/20/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Marco Marietta
- Hematology Unit, Azienda Ospedaliero-Universitaria, Modena, Italy.
| | - Valeria Coluccio
- Hematology Unit, Azienda Ospedaliero-Universitaria, Modena, Italy
| | - Mario Luppi
- Hematology Unit, Azienda Ospedaliero-Universitaria, Modena, Italy
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
22
|
Serological Evidence of Orthopoxvirus Infection in Neotropical Primates in Brazil. Pathogens 2022; 11:pathogens11101167. [PMID: 36297224 PMCID: PMC9610851 DOI: 10.3390/pathogens11101167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/19/2022] Open
Abstract
The genus Orthopoxvirus (OPXV) of the family Poxviridae comprises several viruses that are capable of infecting a wide range of hosts. One of the most widespread OPXVs is the Vaccinia virus (VACV), which circulates in zoonotic cycles in South America, especially in Brazil, infecting domestic and wild animals and humans and causing economic losses as well as impacting public health. Despite this, little is known about the presence and/or exposure of neotropical primates to orthopoxviruses in the country. In this study, we report the results of a search for evidence of OPVX infections in neotropical free-living primates in the state of Minas Gerais, southeast Brazil. The sera or liver tissues of 63 neotropical primates were examined through plaque reduction neutralization tests (PRNT) and real-time PCR. OPXV-specific neutralizing antibodies were detected in two sera (4.5%) from Callithrix penicillata, showing 55% and 85% reduction in plaque counts, evidencing their previous exposure to the virus. Both individuals were collected in urban areas. All real-time PCR assays were negative. This is the first time that evidence of OPXV exposure has been detected in C. penicillata, a species that usually lives at the interface between cities and forests, increasing risks of zoonotic transmissions through spillover/spillback events. In this way, studies on the circulation of OPXV in neotropical free-living primates are necessary, especially now, with the monkeypox virus being detected in new regions of the planet.
Collapse
|
23
|
Mucker EM, Shamblin JD, Goff AJ, Bell TM, Reed C, Twenhafel NA, Chapman J, Mattix M, Alves D, Garry RF, Hensley LE. Evaluation of Virulence in Cynomolgus Macaques Using a Virus Preparation Enriched for the Extracellular Form of Monkeypox Virus. Viruses 2022; 14:v14091993. [PMID: 36146799 PMCID: PMC9505131 DOI: 10.3390/v14091993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
The 2022 global human monkeypox outbreak emphasizes the importance of maintaining poxvirus research, including enriching a basic understanding of animal models for developing and advancing therapeutics and vaccines. Intravenous administration of monkeypox virus in macaques is arguably one of the best animal models for evaluating the efficacy of medical countermeasures. Here we addressed one criticism of the model, a requirement for a high-titer administration of virus, as well as improving our understanding of monkeypox virus pathogenesis. To do so, we infected macaques with a challenge dose containing a characterized inoculum enriched for the extracellular form of monkeypox virus. Although there were some differences between diseases caused by the enriched preparation compared with a relatively similar unpurified preparation, we were unable to reduce the viral input with the enriched preparation and maintain severe disease. We found that inherent factors contained within the serum of nonhuman primate blood affect the stability of the monkeypox extracellular virions. As a first step to study a role of the extracellular form in transmission, we also showed the presence of this form in the oropharyngeal swabs from nonhuman primates exposed to monkeypox virus.
Collapse
Affiliation(s)
- Eric M. Mucker
- United States Army Medical Research Institute of Infectious Diseases, Virology Division, Fort Detrick, Frederick, MD 21702, USA
- Correspondence:
| | - Josh D. Shamblin
- United States Army Medical Research Institute of Infectious Diseases, Virology Division, Fort Detrick, Frederick, MD 21702, USA
| | - Arthur J. Goff
- United States Army Medical Research Institute of Infectious Diseases, Virology Division, Fort Detrick, Frederick, MD 21702, USA
| | - Todd M. Bell
- United States Army Medical Research Institute of Infectious Diseases, Pathology Division, Fort Detrick, Frederick, MD 21702, USA
| | - Christopher Reed
- United States Army Medical Research Institute of Infectious Diseases, Pathology Division, Fort Detrick, Frederick, MD 21702, USA
| | - Nancy A. Twenhafel
- United States Army Medical Research Institute of Infectious Diseases, Pathology Division, Fort Detrick, Frederick, MD 21702, USA
| | - Jennifer Chapman
- United States Army Medical Research Institute of Infectious Diseases, Pathology Division, Fort Detrick, Frederick, MD 21702, USA
| | - Marc Mattix
- United States Army Medical Research Institute of Infectious Diseases, Pathology Division, Fort Detrick, Frederick, MD 21702, USA
| | - Derron Alves
- National Institutes of Health, National Institute of Allergy and Infectious Diseases, Infectious Disease Pathogenesis Section, Rockville, MD 20852, USA
| | - Robert F. Garry
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
- Zalgen Labs, Frederick, MD 21703, USA
- Global Virus Network (GVN), Baltimore, MD 21201, USA
| | - Lisa E. Hensley
- United States Department of Agriculture, Zoonotic and Emerging Disease Unit, Manhattan, KS 66505, USA
| |
Collapse
|
24
|
Di Gennaro F, Veronese N, Marotta C, Shin JI, Koyanagi A, Silenzi A, Antunes M, Saracino A, Bavaro DF, Soysal P, Segala FV, Butler L, Milano E, Barbagallo M, Barnett Y, Parris C, Nicastri E, Pizzol D, Smith L. Human Monkeypox: A Comprehensive Narrative Review and Analysis of the Public Health Implications. Microorganisms 2022; 10:1633. [PMID: 36014051 PMCID: PMC9416167 DOI: 10.3390/microorganisms10081633] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 01/13/2023] Open
Abstract
Recently, numerous cases of monkeypox were reported from several non-endemic countries in Europe, North America, and Oceania, suggesting an unusual and alarming public health issue, particularly considering that the disease is not directly related to human or animal travels. Attention is currently being drawn to this phenomenon since more than 70% of the global population is no longer vaccinated against smallpox. Indeed, the smallpox vaccination also confers some indirect degree of protection against other poxviruses, including monkeypox. We performed a narrative review to describe the existing literature with regard to monkeypox using the MEDLINE, EMBASE, and Scopus databases. This review aims to provide updated evidence of findings on the epidemiology, clinical features, diagnosis, management, and prevention of monkeypox, also considering the concurrent zoonotic pandemic caused by the COVID-19 coronavirus, SARS-CoV-2.
Collapse
Affiliation(s)
- Francesco Di Gennaro
- Clinic of Infectious Diseases, University of Bari, University Hospital Policlinico, 70121 Bari, Italy
| | - Nicola Veronese
- Geriatric Unit, Department of Internal Medicine and Geriatrics, University of Palermo, 90133 Palermo, Italy
| | - Claudia Marotta
- General Directorate of Health Prevention, Ministry of Health, 00144 Rome, Italy
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Ai Koyanagi
- Research and Development Unit, Parc Sanitari Sant Joan de Déu, CIBERSAM, ISCIII, 08010 Barcelona, Spain
- ICREA, Passeig Lluis Companys 23, 08010 Barcelona, Spain
| | - Andrea Silenzi
- General Directorate of Health Prevention, Ministry of Health, 00144 Rome, Italy
| | - Mario Antunes
- Department of Surgery, Catholic University of Mozambique, Beira 13016, Mozambique
| | - Annalisa Saracino
- Clinic of Infectious Diseases, University of Bari, University Hospital Policlinico, 70121 Bari, Italy
| | - Davide Fiore Bavaro
- Clinic of Infectious Diseases, University of Bari, University Hospital Policlinico, 70121 Bari, Italy
| | - Pinar Soysal
- Department of Geriatric Medicine, Faculty of Medicine, Bezmialem Vakif University, Istanbul 34093, Turkey
| | | | - Laurie Butler
- Faculty of Science and Engineering, Anglia Ruskin University, Cambridge CB1 1PT, UK
| | - Eugenio Milano
- Clinic of Infectious Diseases, University of Bari, University Hospital Policlinico, 70121 Bari, Italy
| | - Mario Barbagallo
- Geriatric Unit, Department of Internal Medicine and Geriatrics, University of Palermo, 90133 Palermo, Italy
| | - Yvonne Barnett
- Faculty of Science and Engineering, Anglia Ruskin University, Cambridge CB1 1PT, UK
| | - Christopher Parris
- Faculty of Science and Engineering, Anglia Ruskin University, Cambridge CB1 1PT, UK
| | - Emanuele Nicastri
- National Institute for Infectious Diseases, Lazzaro Spallanzani, IRCCS, Via Portuense, 292, 00149 Rome, Italy
| | - Damiano Pizzol
- Italian Agency for Development Cooperation, 00135 Khartoum, Sudan
| | - Lee Smith
- Centre for Health Performance and Wellbeing, Anglia Ruskin University, Cambridge CB1 1PT, UK
| |
Collapse
|
25
|
Mucker EM, Shamblin JD, Raymond JL, Twenhafel NA, Garry RF, Hensley LE. Effect of Monkeypox Virus Preparation on the Lethality of the Intravenous Cynomolgus Macaque Model. Viruses 2022; 14:1741. [PMID: 36016363 PMCID: PMC9413320 DOI: 10.3390/v14081741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 02/05/2023] Open
Abstract
For over two decades, researchers have sought to improve smallpox vaccines and also develop therapies to ensure protection against smallpox or smallpox-like disease. The 2022 human monkeypox pandemic is a reminder that these efforts should persist. Advancing such therapies have involved animal models primarily using surrogate viruses such as monkeypox virus. The intravenous monkeypox model in macaques produces a disease that is clinically similar to the lesional phase of fulminant human monkeypox or smallpox. Two criticisms of the model have been the unnatural route of virus administration and the high dose required to induce severe disease. Here, we purified monkeypox virus with the goal of lowering the challenge dose by removing cellular and viral contaminants within the inoculum. We found that there are advantages to using unpurified material for intravenous exposures.
Collapse
Affiliation(s)
- Eric M. Mucker
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
| | - Josh D. Shamblin
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
| | - Jo Lynne Raymond
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
| | - Nancy A. Twenhafel
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
| | - Robert F. Garry
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
- Zalgen Labs, Frederick, MD 21703, USA
- Global Virus Network (GVN), Baltimore, MD 21201, USA
| | - Lisa E. Hensley
- Zoonotic and Emerging Disease Unit, United States Department of Agriculture, Manhattan, KS 66505, USA
| |
Collapse
|
26
|
Mucker EM, Thiele-Suess C, Baumhof P, Hooper JW. Lipid nanoparticle delivery of unmodified mRNAs encoding multiple monoclonal antibodies targeting poxviruses in rabbits. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 28:847-858. [PMID: 35664703 PMCID: PMC9149018 DOI: 10.1016/j.omtn.2022.05.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 05/07/2022] [Indexed: 11/15/2022]
Abstract
Poxviruses are a large and complex family of viruses with members such as monkeypox virus and variola virus. The possibility of an outbreak of monkeypox virus (or a related poxvirus) or the misuse of variola virus justifies the development of countermeasures. Furthermore, poxviruses can be a useful surrogate for developing technology involving antibody therapies. In our experiments, we explored the feasibility of utilizing unmodified mRNA that encodes three previously described monoclonal antibodies, c8A, c6C, and c7D11, as countermeasures to smallpox in a relatively large (>3 kg) laboratory animal (rabbits). We confirmed in vitro translation, secretion, and biological activity of mRNA constructs and identified target monoclonal antibody levels from a murine vaccinia virus model that provided a clinical benefit. Individually, we were able to detect c7D11, c8A, and c6C in the serum of rabbits within 1 day of an intramuscular jet injection of lipid nanoparticle (LNP)-formulated mRNA. Injection of a combination of three LNP-formulated mRNA constructs encoding the three different antibodies produced near equivalent serum levels compared with each individual construct administered alone. These data are among the first demonstrating the feasibility of launching multiple antibodies using mRNA constructs in a large, nonrodent species. Based on empirically derived target serum level and the observed decay rate, the antibody levels attained were unlikely to provide protection.
Collapse
Affiliation(s)
- Eric M Mucker
- Virology Division, United States Army Medical Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | | | | | - Jay W Hooper
- Virology Division, United States Army Medical Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| |
Collapse
|
27
|
A nucleic acid-based orthopoxvirus vaccine targeting the vaccinia virus L1, A27, B5 and A33 proteins protects rabbits against lethal rabbitpox virus aerosol challenge. J Virol 2021; 96:e0150421. [PMID: 34851148 DOI: 10.1128/jvi.01504-21] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In the age of COVID, nucleic acid vaccines have garnered much attention, at least in part, because of the simplicity of construction, production, and flexibility to adjust and adapt to an evolving outbreak. Orthopoxviruses remain a threat on multiple fronts, especially as emerging zoonosis. In response, we developed a DNA vaccine, termed 4pox, that protected nonhuman primates against monkeypox virus (MPXV) induced severe disease. Here, we examined the protective efficacy of the 4pox DNA vaccine delivered by intramuscular (i.m.) electroporation (EP) in rabbits challenged with aerosolized rabbitpox virus (RPXV), a model that recapitulates the respiratory route of exposure and low dose associated with natural smallpox exposure in humans. We found that 4pox vaccinated rabbits developed immunogen-specific antibodies, including neutralizing antibodies and did not develop any clinical disease, indicating protection against aerosolized RPXV. In contrast, unvaccinated animals developed significant signs of disease, including lesions, and were euthanized. These findings demonstrate that an unformulated, non-adjuvanted DNA vaccine delivered (i.m.) can protect against an aerosol exposure. Importance The eradication of smallpox and subsequent cessation of vaccination has left a majority of the population susceptible to variola virus or other emerging poxvirus. This is exemplified by human monkeypox, as evidenced by the increase in reported endemic and imported cases over the past decades. Therefore, a malleable vaccine technology that can be mass produced, and doesn't require complex conditions for distribution and storage is sought. Herein, we show that a DNA vaccine, in the absence of a specialized formulation or adjuvant, can protect against a lethal aerosol insult of rabbitpox virus.
Collapse
|
28
|
Vallée G, Norris P, Paszkowski P, Noyce RS, Evans DH. Vaccinia Virus Gene Acquisition through Nonhomologous Recombination. J Virol 2021; 95:e0031821. [PMID: 33910949 PMCID: PMC8223923 DOI: 10.1128/jvi.00318-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/19/2021] [Indexed: 01/04/2023] Open
Abstract
Many of the genes encoded by poxviruses are orthologs of cellular genes. These virus genes serve different purposes, but perhaps of most interest is the way some have been repurposed to inhibit the antiviral pathways that their cellular homologs still regulate. What is unclear is how these virus genes were acquired, although it is presumed to have been catalyzed by some form(s) of nonhomologous recombination (NHR). We used transfection assays and substrates encoding a fluorescent and drug-selectable marker to examine the NHR frequency in vaccinia virus (VAC)-infected cells. These studies showed that when cells were transfected with linear duplex DNAs bearing VAC N2L gene homology, it yielded a recombinant frequency (RF) of 6.7 × 10-4. In contrast, DNA lacking any VAC homology reduced the yield of recombinants ∼400-fold (RF = 1.6 × 10-6). DNA-RNA hybrids were also substrates, although homologous molecules yielded fewer recombinants (RF = 2.1 × 10-5), and nonhomologous substrates yielded only rare recombinants (RF ≤ 3 × 10-8). NHR was associated with genome rearrangements ranging from simple insertions with flanking sequence duplications to large-scale indels that produced helper-dependent viruses. The insert was often also partially duplicated and would rapidly rearrange through homologous recombination. Most of the virus-insert junctions exhibited little or no preexiting microhomology, although a few encoded VAC topoisomerase recognition sites (C/T·CCTT). These studies show that VAC can catalyze NHR through a process that may reflect a form of aberrant replication fork repair. Although it is less efficient than classical homologous recombination, the rates of NHR may still be high enough to drive virus evolution. IMPORTANCE Large DNA viruses sometimes interfere in antiviral defenses using repurposed and mutant forms of the cellular proteins that mediate these same reactions. Such virus orthologs of cellular genes were presumably captured through nonhomologous recombination, perhaps in the distant past, but nothing is known about the processes that might promote "gene capture" or even how often these events occur over the course of an infectious cycle. This study shows that nonhomologous recombination in vaccinia virus-infected cells is frequent enough to seed a small but still significant portion of novel recombinants into large populations of newly replicated virus particles. This offers a route by which a pool of virus might survey the host genome for sequences that offer a selective growth advantage and potentially drive discontinuous virus evolution (saltation) through the acquisition of adventitious traits.
Collapse
Affiliation(s)
- Greg Vallée
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Li Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Peter Norris
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Li Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Patrick Paszkowski
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Li Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Ryan S. Noyce
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Li Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - David H. Evans
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Li Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
29
|
Nguyen PY, Ajisegiri WS, Costantino V, Chughtai AA, MacIntyre CR. Reemergence of Human Monkeypox and Declining Population Immunity in the Context of Urbanization, Nigeria, 2017-2020. Emerg Infect Dis 2021; 27. [PMID: 33756100 PMCID: PMC8007331 DOI: 10.3201/eid2704.203569] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A monkeypox outbreak in Nigeria during 2017-2020 provides an illustrative case study for emerging zoonoses. We built a statistical model to simulate declining immunity from monkeypox at 2 levels: At the individual level, we used a constant rate of decline in immunity of 1.29% per year as smallpox vaccination rates fell. At the population level, the cohort of vaccinated residents decreased over time because of deaths and births. By 2016, only 10.1% of the total population in Nigeria was vaccinated against smallpox; the serologic immunity level was 25.7% among vaccinated persons and 2.6% in the overall population. The substantial resurgence of monkeypox in Nigeria in 2017 appears to have been driven by a combination of population growth, accumulation of unvaccinated cohorts, and decline in smallpox vaccine immunity. The expanding unvaccinated population means that entire households, not just children, are now more susceptible to monkeypox, increasing risk of human-to-human transmission.
Collapse
|
30
|
Nguyen PY, Ajisegiri WS, Costantino V, Chughtai AA, MacIntyre CR. Reemergence of Human Monkeypox and Declining Population Immunity in the Context of Urbanization, Nigeria, 2017–2020. Emerg Infect Dis 2021. [DOI: 10.3201/203569] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
31
|
Silva NIO, de Oliveira JS, Kroon EG, Trindade GDS, Drumond BP. Here, There, and Everywhere: The Wide Host Range and Geographic Distribution of Zoonotic Orthopoxviruses. Viruses 2020; 13:E43. [PMID: 33396609 PMCID: PMC7823380 DOI: 10.3390/v13010043] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 01/05/2023] Open
Abstract
The global emergence of zoonotic viruses, including poxviruses, poses one of the greatest threats to human and animal health. Forty years after the eradication of smallpox, emerging zoonotic orthopoxviruses, such as monkeypox, cowpox, and vaccinia viruses continue to infect humans as well as wild and domestic animals. Currently, the geographical distribution of poxviruses in a broad range of hosts worldwide raises concerns regarding the possibility of outbreaks or viral dissemination to new geographical regions. Here, we review the global host ranges and current epidemiological understanding of zoonotic orthopoxviruses while focusing on orthopoxviruses with epidemic potential, including monkeypox, cowpox, and vaccinia viruses.
Collapse
Affiliation(s)
| | | | | | | | - Betânia Paiva Drumond
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais: Belo Horizonte, Minas Gerais 31270-901, Brazil; (N.I.O.S.); (J.S.d.O.); (E.G.K.); (G.d.S.T.)
| |
Collapse
|
32
|
Sood A, Sui Y, McDonough E, Santamaría-Pang A, Al-Kofahi Y, Pang Z, Jahrling PB, Kuhn JH, Ginty F. Comparison of Multiplexed Immunofluorescence Imaging to Chromogenic Immunohistochemistry of Skin Biomarkers in Response to Monkeypox Virus Infection. Viruses 2020; 12:E787. [PMID: 32717786 PMCID: PMC7472296 DOI: 10.3390/v12080787] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/15/2020] [Accepted: 07/19/2020] [Indexed: 12/17/2022] Open
Abstract
Over the last 15 years, advances in immunofluorescence-imaging based cycling methods, antibody conjugation methods, and automated image processing have facilitated the development of a high-resolution, multiplexed tissue immunofluorescence (MxIF) method with single cell-level quantitation termed Cell DIVETM. Originally developed for fixed oncology samples, here it was evaluated in highly fixed (up to 30 days), archived monkeypox virus-induced inflammatory skin lesions from a retrospective study in 11 rhesus monkeys to determine whether MxIF was comparable to manual H-scoring of chromogenic stains. Six protein markers related to immune and cellular response (CD68, CD3, Hsp70, Hsp90, ERK1/2, ERK1/2 pT202_pY204) were manually quantified (H-scores) by a pathologist from chromogenic IHC double stains on serial sections and compared to MxIF automated single cell quantification of the same markers that were multiplexed on a single tissue section. Overall, there was directional consistency between the H-score and the MxIF results for all markers except phosphorylated ERK1/2 (ERK1/2 pT202_pY204), which showed a decrease in the lesion compared to the adjacent non-lesioned skin by MxIF vs an increase via H-score. Improvements to automated segmentation using machine learning and adding additional cell markers for cell viability are future options for improvement. This method could be useful in infectious disease research as it conserves tissue, provides marker colocalization data on thousands of cells, allowing further cell level data mining as well as a reduction in user bias.
Collapse
Affiliation(s)
- Anup Sood
- GE Research, 1 Research Circle, Niskayuna, NY 12309, USA; (A.S.); (Y.S.); (E.M.); (A.S.-P.); (Y.A.-K.); (Z.P.)
| | - Yunxia Sui
- GE Research, 1 Research Circle, Niskayuna, NY 12309, USA; (A.S.); (Y.S.); (E.M.); (A.S.-P.); (Y.A.-K.); (Z.P.)
| | - Elizabeth McDonough
- GE Research, 1 Research Circle, Niskayuna, NY 12309, USA; (A.S.); (Y.S.); (E.M.); (A.S.-P.); (Y.A.-K.); (Z.P.)
| | - Alberto Santamaría-Pang
- GE Research, 1 Research Circle, Niskayuna, NY 12309, USA; (A.S.); (Y.S.); (E.M.); (A.S.-P.); (Y.A.-K.); (Z.P.)
| | - Yousef Al-Kofahi
- GE Research, 1 Research Circle, Niskayuna, NY 12309, USA; (A.S.); (Y.S.); (E.M.); (A.S.-P.); (Y.A.-K.); (Z.P.)
| | - Zhengyu Pang
- GE Research, 1 Research Circle, Niskayuna, NY 12309, USA; (A.S.); (Y.S.); (E.M.); (A.S.-P.); (Y.A.-K.); (Z.P.)
| | - Peter B. Jahrling
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, B-8200 Research Plaza, Frederick, MD 21702, USA;
| | - Jens H. Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, B-8200 Research Plaza, Frederick, MD 21702, USA;
| | - Fiona Ginty
- GE Research, 1 Research Circle, Niskayuna, NY 12309, USA; (A.S.); (Y.S.); (E.M.); (A.S.-P.); (Y.A.-K.); (Z.P.)
| |
Collapse
|
33
|
IMVAMUNE ® and ACAM2000 ® Provide Different Protection against Disease When Administered Postexposure in an Intranasal Monkeypox Challenge Prairie Dog Model. Vaccines (Basel) 2020; 8:vaccines8030396. [PMID: 32698399 PMCID: PMC7565152 DOI: 10.3390/vaccines8030396] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023] Open
Abstract
The protection provided by smallpox vaccines when used after exposure to Orthopoxviruses is poorly understood. Postexposu re administration of 1st generation smallpox vaccines was effective during eradication. However, historical epidemiological reports and animal studies on postexposure vaccination are difficult to extrapolate to today’s populations, and 2nd and 3rd generation vaccines, developed after eradication, have not been widely tested in postexposure vaccination scenarios. In addition to concerns about preparedness for a potential malevolent reintroduction of variola virus, humans are becoming increasingly exposed to naturally occurring zoonotic orthopoxviruses and, following these exposures, disease severity is worse in individuals who never received smallpox vaccination. This study investigated whether postexposure vaccination of prairie dogs with 2nd and 3rd generation smallpox vaccines was protective against monkeypox disease in four exposure scenarios. We infected animals with monkeypox virus at doses of 104 pfu (2× LD50) or 106 pfu (170× LD50) and vaccinated the animals with IMVAMUNE® or ACAM2000® either 1 or 3 days after challenge. Our results indicated that postexposure vaccination protected the animals to some degree from the 2× LD50, but not the 170× LD5 challenge. In the 2× LD50 challenge, we also observed that administration of vaccine at 1 day was more effective than administration at 3 days postexposure for IMVAMUNE®, but ACAM2000® was similarly effective at either postexposure vaccination time-point. The effects of postexposure vaccination and correlations with survival of total and neutralizing antibody responses, protein targets, take formation, weight loss, rash burden, and viral DNA are also presented.
Collapse
|
34
|
Abstract
Forty years after the last endemic smallpox case, variola virus (VARV) is still considered a major threat to humans due to its possible use as a bioterrorism agent. For many years, the risk of disease reemergence was thought to solely be through deliberate misuse of VARV strains kept in clandestine laboratories. However, recent experiments using synthetic biology have proven the feasibility of recreating a poxvirus de novo, implying that VARV could, in theory, be resurrected. Because of this new perspective, the WHO Advisory Committee on VARV Research released new recommendations concerning research on poxviruses that strongly encourages pursuing the development of new antiviral drugs against orthopoxviruses. In 2018, the U.S. FDA advised in favor of two molecules for smallpox treatment, tecovirimat and brincidofovir. This review highlights the difficulties to develop new drugs targeting an eradicated disease, especially as it requires working under the FDA "animal efficacy rule" with the few, and imperfect, animal models available.
Collapse
|
35
|
Doshi RH, Alfonso VH, Morier D, Hoff NA, Sinai C, Mulembakani P, Kisalu N, Cheng A, Ashbaugh H, Gadoth A, Cowell B, Okitolonda EW, Muyembe-Tamfum JJ, Rimoin AW. Monkeypox Rash Severity and Animal Exposures in the Democratic Republic of the Congo. ECOHEALTH 2020; 17:64-73. [PMID: 31875271 DOI: 10.1007/s10393-019-01459-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 11/07/2019] [Indexed: 05/25/2023]
Abstract
Experimental studies have suggested a larger inoculum of monkeypox virus may be associated with increased rash severity; however, little data are available on the relationship between specific animal exposures and rash severity in endemic regions. Using cross-sectional data from an active surveillance program conducted between 2005 and 2007 in the Sankuru Province of the Democratic Republic of the Congo, we explored the possible relationship between rash severity and exposures to rodents and non-human primates among confirmed MPX cases. Among the 223 PCR-confirmed MPX cases identified during active surveillance, the majority of cases (n = 149) presented with mild rash (5-100 lesions) and 33% had a more serious presentation (> 100 lesions). No association between exposure to rodents and rash severity was found in the multivariable analysis. Those that self-reported hunting NHP 3 weeks prior to onset of MPX symptoms had 2.78 times the odds of severe rash than those that did not report such exposure (95% CI: 1.18, 6.58). This study provides a preliminary step in understanding the association between animal exposure and rash severity and demonstrates correlation with exposure to NHPs and human MPX presentation. Additional research exploring the relationship between rash severity and NHPs is warranted.
Collapse
Affiliation(s)
- Reena H Doshi
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, USA
| | - Vivian H Alfonso
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, USA
| | - Douglas Morier
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, USA
| | - Nicole A Hoff
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, USA
| | - Cyrus Sinai
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, USA
| | - Prime Mulembakani
- Kinshasa School of Public Health, Kinshasa, Democratic Republic of the Congo
| | - Neville Kisalu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Alvan Cheng
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, USA
| | - Hayley Ashbaugh
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, USA
| | - Adva Gadoth
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, USA
| | - Brian Cowell
- Texas A&M School of Public Health, College Station, TX, USA
| | - Emile W Okitolonda
- Kinshasa School of Public Health, Kinshasa, Democratic Republic of the Congo
| | | | - Anne W Rimoin
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, USA.
- , Los Angeles, USA.
| |
Collapse
|
36
|
Mucker EM, Lindquist M, Hooper JW. Particle-specific neutralizing activity of a monoclonal antibody targeting the poxvirus A33 protein reveals differences between cell associated and extracellular enveloped virions. Virology 2020; 544:42-54. [PMID: 32174513 DOI: 10.1016/j.virol.2020.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 10/24/2022]
Abstract
Only a small subset of the hundreds of proteins encoded by the poxvirus genome have been shown to be effective as vaccine and/or therapeutic targets. One of these proteins is A33. Here we assess and dissect the ability of an anti-A33 humanized monoclonal antibody, c6C, to affect vaccinia virus infection in vitro. Enveloped virions (EV) released from infected cells can be sensitive or resistant to neutralization by c6C indicating there are different types of EV particles, extracellular enveloped virions (EEV) and released cellular-associated virions (rCEV), that are biologically distinct. Through a combination of plaque phenotype, confocal imaging, and neutralization assays, we found that c6C differentially affects EV from two different virus strains, IHD-J and WR. Evidence for an anti-A33 resistant EV particle, and strain differences in this phenotype, provides a logical answer as to why certain functional assays in the literature have been unable to detect anti-viral effects of anti-A33 antibodies.
Collapse
Affiliation(s)
- Eric M Mucker
- Molecular Virology Branch, Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, 21702, MD, USA
| | - Michael Lindquist
- Molecular Virology Branch, Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, 21702, MD, USA
| | - Jay W Hooper
- Molecular Virology Branch, Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, 21702, MD, USA.
| |
Collapse
|
37
|
Perley CC, Brocato RL, Kwilas SA, Daye S, Moreau A, Nichols DK, Wetzel KS, Shamblin J, Hooper JW. Three asymptomatic animal infection models of hemorrhagic fever with renal syndrome caused by hantaviruses. PLoS One 2019; 14:e0216700. [PMID: 31075144 PMCID: PMC6510444 DOI: 10.1371/journal.pone.0216700] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 04/26/2019] [Indexed: 12/22/2022] Open
Abstract
Hantaan virus (HTNV) and Puumala virus (PUUV) are rodent-borne hantaviruses that are the primary causes of hemorrhagic fever with renal syndrome (HFRS) in Europe and Asia. The development of well characterized animal models of HTNV and PUUV infection is critical for the evaluation and the potential licensure of HFRS vaccines and therapeutics. In this study we present three animal models of HTNV infection (hamster, ferret and marmoset), and two animal models of PUUV infection (hamster, ferret). Infection of hamsters with a ~3 times the infectious dose 99% (ID99) of HTNV by the intramuscular and ~1 ID99 of HTNV by the intranasal route leads to a persistent asymptomatic infection, characterized by sporadic viremia and high levels of viral genome in the lung, brain and kidney. In contrast, infection of hamsters with ~2 ID99 of PUUV by the intramuscular or ~1 ID99 of PUUV by the intranasal route leads to seroconversion with no detectable viremia, and a transient detection of viral genome. Infection of ferrets with a high dose of either HTNV or PUUV by the intramuscular route leads to seroconversion and gradual weight loss, though kidney function remained unimpaired and serum viremia and viral dissemination to organs was not detected. In marmosets a 1,000 PFU HTNV intramuscular challenge led to robust seroconversion and neutralizing antibody production. Similarly to the ferret model of HTNV infection, no renal impairment, serum viremia or viral dissemination to organs was detected in marmosets. This is the first report of hantavirus infection in ferrets and marmosets.
Collapse
Affiliation(s)
- Casey C. Perley
- Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Ft. Detrick, Maryland, United States of America
| | - Rebecca L. Brocato
- Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Ft. Detrick, Maryland, United States of America
| | - Steven A. Kwilas
- Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Ft. Detrick, Maryland, United States of America
| | - Sharon Daye
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Ft. Detrick, Maryland, United States of America
| | - Alicia Moreau
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Ft. Detrick, Maryland, United States of America
| | - Donald K. Nichols
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Ft. Detrick, Maryland, United States of America
| | - Kelly S. Wetzel
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Ft. Detrick, Maryland, United States of America
| | - Joshua Shamblin
- Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Ft. Detrick, Maryland, United States of America
| | - Jay W. Hooper
- Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Ft. Detrick, Maryland, United States of America
- * E-mail:
| |
Collapse
|
38
|
Reynolds MG, Doty JB, McCollum AM, Olson VA, Nakazawa Y. Monkeypox re-emergence in Africa: a call to expand the concept and practice of One Health. Expert Rev Anti Infect Ther 2019; 17:129-139. [PMID: 30625020 PMCID: PMC6438170 DOI: 10.1080/14787210.2019.1567330] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 01/03/2019] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Monkeypox is a re-emerging viral zoonosis that occurs naturally in heavily forested regions of West and Central Africa. Inter-human transmission of monkeypox virus, although limited, drives outbreaks, particularly in household and health-care settings. But the available evidence suggests that without repeated zoonotic introductions, human infections would eventually cease to occur. Therefore, interrupting virus transmission from animals to humans is key to combating this disease. Areas covered: Herein we review laboratory and field studies examining the susceptibility of various animal taxa to monkeypox virus infection, and note the competence of various species to serve as reservoirs or transmission hosts. In addition, we discuss early socio-ecologic theories of monkeypox virus transmission in rural settings and review current modes of ecologic investigation - including ecologic niche modeling, and ecologic sampling - in light of their potential to identify specific animal species and features of the environment that are associated with heightened risk for human disease. Expert opinion: The role of disease ecology and scientific research in ongoing disease prevention efforts should be reinforced, particularly for wildlife-associated zoonoses such as monkeypox. Such efforts alongside those aimed at nurturing 'One Health' collaborations may ultimately hold the greatest promise for reducing human infections with this pathogen.
Collapse
Affiliation(s)
- Mary G. Reynolds
- US Centers for Disease Control and Prevention, Poxvirus and Rabies Branch, Atlanta, GA, USA
| | - Jeffry B. Doty
- US Centers for Disease Control and Prevention, Poxvirus and Rabies Branch, Atlanta, GA, USA
| | - Andrea M. McCollum
- US Centers for Disease Control and Prevention, Poxvirus and Rabies Branch, Atlanta, GA, USA
| | - Victoria A. Olson
- US Centers for Disease Control and Prevention, Poxvirus and Rabies Branch, Atlanta, GA, USA
| | - Yoshinori Nakazawa
- US Centers for Disease Control and Prevention, Poxvirus and Rabies Branch, Atlanta, GA, USA
| |
Collapse
|
39
|
Patterson JL, Lanford RE. Experimental Infections of the Common Marmoset (Callithrix jacchus). THE COMMON MARMOSET IN CAPTIVITY AND BIOMEDICAL RESEARCH 2019. [PMCID: PMC7149626 DOI: 10.1016/b978-0-12-811829-0.00028-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Interest in the use of marmosets for experimental infectious disease has dramatically increased in the last decade. These animals are native to the Atlantic coastal forests in northeastern Brazil. The majority of experimental animals come from the National Primate Research Centers and other breeding facilities. They are advantageous because of their relative small size, weighting 350–400 g as adults, their life span is compact compared with other nonhuman primate (NHP), and they produce offspring by 3 years of age. They are free of Herpes B virus and, it is believed, to date, other dangerous human pathogens (Abbot et al., 2003) [1]. We describe here the experimental infections of marmosets to human pathogens. While it is always interesting to compare various NHPs with each other, the importance of an animal model is always in comparing its similarities to human infections.
Collapse
|
40
|
Mucker EM, Wollen-Roberts SE, Kimmel A, Shamblin J, Sampey D, Hooper JW. Intranasal monkeypox marmoset model: Prophylactic antibody treatment provides benefit against severe monkeypox virus disease. PLoS Negl Trop Dis 2018; 12:e0006581. [PMID: 29927927 PMCID: PMC6029809 DOI: 10.1371/journal.pntd.0006581] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 07/03/2018] [Accepted: 06/04/2018] [Indexed: 02/08/2023] Open
Abstract
Concerns regarding outbreaks of human monkeypox or the potential reintroduction of smallpox into an immunological naïve population have prompted the development of animal models and countermeasures. Here we present a marmoset model of monkeypox and smallpox disease utilizing a relevant poxvirus via a natural exposure route. We found that 1000 plaque forming units (PFU) of Monkeypox virus was sufficient to recapitulate smallpox disease, to include an incubation period of approximately 13 days, followed by the onset of rash, and death between 15 and 17 days. Temporally accurate manifestation of viremia and oral shedding were also features. The number of lesions ranged from no lesions to 299, the most reported in a marmoset exposed to a poxvirus. To both evaluate the efficacy of our antibodies and the applicability of the model system, marmosets were prophylactically treated with two monoclonal antibodies, c7D11 and c8A. Of three marmosets, two were completely free of disease and a single marmoset died 8 days after the mock (n = 1) or PBS control(s) (n = 2). Evaluation of the serum levels of the three animals provided a possible explanation to the animal succumbing to disease. Interestingly, more females had lesions (and a greater number of lesions) and lower viral burden (viremia and oral shedding) than males in our studies, suggesting a possible gender effect.
Collapse
Affiliation(s)
- Eric M. Mucker
- United States Army Medical Research Institute of Infectious Diseases, Virology Division, Fort Detrick Maryland, United States of America
| | - Suzanne E. Wollen-Roberts
- United States Army Medical Research Institute of Infectious Diseases, Virology Division, Fort Detrick Maryland, United States of America
| | - Adrienne Kimmel
- United States Army Medical Research Institute of Infectious Diseases, Virology Division, Fort Detrick Maryland, United States of America
| | - Josh Shamblin
- United States Army Medical Research Institute of Infectious Diseases, Virology Division, Fort Detrick Maryland, United States of America
| | - Darryl Sampey
- BioFactura, Inc, Frederick, Maryland, United States of America
| | - Jay W. Hooper
- United States Army Medical Research Institute of Infectious Diseases, Virology Division, Fort Detrick Maryland, United States of America
| |
Collapse
|
41
|
Reynolds MG, McCollum AM, Nguete B, Shongo Lushima R, Petersen BW. Improving the Care and Treatment of Monkeypox Patients in Low-Resource Settings: Applying Evidence from Contemporary Biomedical and Smallpox Biodefense Research. Viruses 2017; 9:E380. [PMID: 29231870 PMCID: PMC5744154 DOI: 10.3390/v9120380] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/16/2017] [Accepted: 12/07/2017] [Indexed: 11/17/2022] Open
Abstract
Monkeypox is a smallpox-like illness that can be accompanied by a range of significant medical complications. To date there are no standard or optimized guidelines for the clinical management of monkeypox (MPX) patients, particularly in low-resource settings. Consequently, patients can experience protracted illness and poor outcomes. Improving care necessitates developing a better understanding of the range of clinical manifestations-including complications and sequelae-as well as of features of illness that may be predictive of illness severity and poor outcomes. Experimental and natural infection of non-human primates with monkeypox virus can inform the approach to improving patient care, and may suggest options for pharmaceutical intervention. These studies have traditionally been performed to address the threat of smallpox bioterrorism and were designed with the intent of using MPX as a disease surrogate for smallpox. In many cases this necessitated employing high-dose, inhalational or intravenous challenge to recapitulate the severe manifestations of illness seen with smallpox. Overall, these data-and data from biomedical research involving burns, superficial wounds, herpes, eczema vaccinatum, and so forth-suggest that MPX patients could benefit from clinical support to mitigate the consequences of compromised skin and mucosa. This should include prevention and treatment of secondary bacterial infections (and other complications), ensuring adequate hydration and nutrition, and protecting vulnerable anatomical locations such as the eyes and genitals. A standard of care that considers these factors should be developed and assessed in different settings, using clinical metrics specific for MPX alongside consideration of antiviral therapies.
Collapse
Affiliation(s)
- Mary G Reynolds
- US Centers for Disease Control and Prevention, Poxvirus and Rabies Branch, Atlanta, GA 30329, USA.
| | - Andrea M McCollum
- US Centers for Disease Control and Prevention, Poxvirus and Rabies Branch, Atlanta, GA 30329, USA.
| | | | | | - Brett W Petersen
- US Centers for Disease Control and Prevention, Poxvirus and Rabies Branch, Atlanta, GA 30329, USA.
| |
Collapse
|
42
|
Dyall J, Gross R, Kindrachuk J, Johnson RF, Olinger GG, Hensley LE, Frieman MB, Jahrling PB. Middle East Respiratory Syndrome and Severe Acute Respiratory Syndrome: Current Therapeutic Options and Potential Targets for Novel Therapies. Drugs 2017; 77:1935-1966. [PMID: 29143192 PMCID: PMC5733787 DOI: 10.1007/s40265-017-0830-1] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
No specific antivirals are currently available for two emerging infectious diseases, Middle East respiratory syndrome (MERS) and severe acute respiratory syndrome (SARS). A literature search was performed covering pathogenesis, clinical features and therapeutics, clinically developed drugs for repurposing and novel drug targets. This review presents current knowledge on the epidemiology, pathogenesis and clinical features of the SARS and MERS coronaviruses. The rationale for and outcomes with treatments used for SARS and MERS is discussed. The main focus of the review is on drug development and the potential that drugs approved for other indications provide for repurposing. The drugs we discuss belong to a wide range of different drug classes, such as cancer therapeutics, antipsychotics, and antimalarials. In addition to their activity against MERS and SARS coronaviruses, many of these approved drugs have broad-spectrum potential and have already been in clinical use for treating other viral infections. A wealth of knowledge is available for these drugs. However, the information in this review is not meant to guide clinical decisions, and any therapeutic described here should only be used in context of a clinical trial. Potential targets for novel antivirals and antibodies are discussed as well as lessons learned from treatment development for other RNA viruses. The article concludes with a discussion of the gaps in our knowledge and areas for future research on emerging coronaviruses.
Collapse
Affiliation(s)
- Julie Dyall
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, USA.
| | - Robin Gross
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, USA
| | - Jason Kindrachuk
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MN, Canada
| | - Reed F Johnson
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, USA
| | | | - Lisa E Hensley
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, USA
| | - Matthew B Frieman
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - Peter B Jahrling
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, USA
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, USA
| |
Collapse
|
43
|
Validation of a pan-orthopox real-time PCR assay for the detection and quantification of viral genomes from nonhuman primate blood. Virol J 2017; 14:210. [PMID: 29100534 PMCID: PMC5670720 DOI: 10.1186/s12985-017-0880-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/27/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In 1980, smallpox disease was eradicated from nature and Variola virus, the etiological agent of smallpox, was confined to two laboratories, one located in Russia (Moscow) later moved to VECTOR (Novosibirsk, Siberia) and one in the United States (CDC Atlanta). Vaccinations among the general public ceased shortly after the successful eradication campaign, resulting in an increasingly immunologically susceptible population. Because of the possibility of intentional reintroduction of Variola virus and the emergence of other pathogenic poxviruses, there is a great need for the development of medical countermeasures to treat poxvirus disease. It is highly likely that the U.S. FDA "animal rule" will be necessary for regulatory approval of these interventions. Therefore, relevant animal models and the associated supporting assays will require development to stand up to regulatory scrutiny. METHODS An optimized real time PCR assay for the detection of orthopoxviruses has been developed by researchers at the United States Army Research Institute of Infectious Diseases (USAMRIID). To support animal studies that will be used to support approval of medical countermeasures by the U.S. FDA, the assay was designed to quantitate poxvirus genomic DNA in a nonhuman primate (cynomolgus macaque) blood matrix as a measurement of viremia. This manuscript describes the validation of the process, including DNA extraction from whole blood anticoagulated with EDTA, for obtaining and quantitating monkeypox genomes by evaluating precision, accuracy, the standard curve, specificity, robustness and stability of the assay and/or components of the assay. RESULTS The assay had a lower limit of quantitation of 50 genome copies/5 uL sample, upper limit of quantitation of 5 × 107 GC/5uL sample and a limit of detection of 2.5 genome copies /5uL sample. The assay was specific for orthopoxvirus. Matrix effects were detected and suggest the presence of PCR inhibitor(s) that was co-extracted with the target DNA. CONCLUSIONS The assay has been validated for the purpose of quantitating monkeypox viral load in blood from cynomolgus macaques. This assay has and will continue to support submissions to the FDA for approval of antiviral therapeutics for smallpox.
Collapse
|
44
|
Suen WW, Prow NA, Setoh YX, Hall RA, Bielefeldt-Ohmann H. End-point disease investigation for virus strains of intermediate virulence as illustrated by flavivirus infections. J Gen Virol 2015; 97:366-377. [PMID: 26614392 DOI: 10.1099/jgv.0.000356] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Viruses of intermediate virulence are defined as isolates causing an intermediate morbidity/mortality rate in a specific animal model system, involving specific host and inoculation parameters (e.g. dose and route). Therefore, variable disease phenotype may exist between animals that develop severe disease or die and those that are asymptomatic or survive after infection with these isolates. There may also be variability amongst animals within each of these subsets. Such potential variability may confound the use of time-point sacrifice experiments to investigate pathogenesis of this subset of virus strains, as uniformity in disease outcome is a fundamental assumption for time-course sacrifice experiments. In the current study, we examined the disease phenotype, neuropathology, neural infection and glial cell activity in moribund/dead and surviving Swiss white (CD-1) mice after intraperitoneal infection with various Australian flaviviruses, including West Nile virus (WNV) strains of intermediate virulence (WNVNSW2011 and WNVNSW2012), and highly virulent Murray Valley encephalitis virus (MVEV) isolates. We identified notable intragroup variation in the end-point disease in mice infected with either WNVNSW strain, but to a lesser extent in mice infected with MVEV strains. The variable outcomes associated with WNVNSW infection suggest that pathogenesis investigations using time-point sacrifice of WNVNSW-infected mice may not be the best approach, as the assumption of uniformity in outcomes is violated. Our study has therefore highlighted a previously unacknowledged challenge to investigating pathogenesis of virus isolates of intermediate virulence. We have also set a precedent for routine examination of the disease phenotype in moribund/dead and surviving mice during survival challenge experiments.
Collapse
Affiliation(s)
- Willy W Suen
- School of Veterinary Science, The University of Queensland, Gatton, Queensland 4343, Australia
| | - Natalie A Prow
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Yin X Setoh
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Roy A Hall
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Helle Bielefeldt-Ohmann
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, Queensland 4072, Australia.,School of Veterinary Science, The University of Queensland, Gatton, Queensland 4343, Australia
| |
Collapse
|