1
|
Šmigová J, Šnábel V, Cavallero S, Šmiga Ľ, Papajová I, Sak B, Holubová N, Kváč M. Waterborne protozoan and microsporidian parasites in Eurasian beavers ( Castor fiber). Int J Parasitol Parasites Wildl 2025; 26:101050. [PMID: 40115542 PMCID: PMC11925192 DOI: 10.1016/j.ijppaw.2025.101050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/26/2025] [Accepted: 02/26/2025] [Indexed: 03/23/2025]
Abstract
The Eurasian beaver (Castor fiber) is an expanding species in Europe in recent decades due to reintroductions and natural population growth. Beavers expanded rapidly in the second half of the 20th century, and their expansion was particularly rapid in the Danube basin. Nowadays, the majority of the continuous population located in the central and eastern parts of the continent and a large disjunct population in Norway and Sweden. Despite the increasing population size, the role of the beaver as a source of waterborne pathogens is not firmly established or is often inferred from circumstantial data. In order to extend knowledge about the composition of the parasite fauna of beavers occurring in Slovakia, 21 faecal samples taken near their burrows from three sites (located in the Topľa, Poprad and Danube river basin) were examined microscopically and by polymerase chain reaction (PCR). PCR-positive specimens were further examined by DNA sequencing. Parasites were detected in 21% of the examined beavers, specifically the protozoa Cryptosporidium spp. (n = 2), Blastocystis sp. (n = 1), and microsporidia Enterocytozoon bieneusi (n = 1) and Encephalitozoon spp. (n = 1). Using the sequence analysis, two variants of Cryptosporidium proliferans, a new subtype of Blastocystis sp., genotype D of E. bieneusi and Encephalitozoon intestinalis were identified. A putatively novel Blastocystis subtype (ST), originated from a site near the Danube river (southwestern Slovakia), was proposed based on high genetic divergence from the closest described subtype ST12 (11.9%) and unique phylogenetic position in a clade composed of ST's 35-38. The increased risk of zoonotic transmission or transmission to other animals was particularly evident in the site near the Topľa river (northeastern Slovakia), where fungal spores of zoonotic genotype D of E. bieneusi and E. intestinalis, together with oocysts of the potentially zoonotic C. proliferans, were found.
Collapse
Affiliation(s)
- Júlia Šmigová
- Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 040 01, Košice, Slovak Republic
| | - Viliam Šnábel
- Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 040 01, Košice, Slovak Republic
| | - Serena Cavallero
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Ľubomír Šmiga
- University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81, Košice, Slovak Republic
| | - Ingrid Papajová
- Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 040 01, Košice, Slovak Republic
| | - Bohumil Sak
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, České Budějovice, Czech Republic
| | - Nikola Holubová
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, České Budějovice, Czech Republic
| | - Martin Kváč
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, České Budějovice, Czech Republic
- Faculty of Agriculture and Technology, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
2
|
Sone B, Ambe LA, Ampama MN, Ajohkoh C, Che D, Nguinkal JA, Taubert A, Hermosilla C, Kamena F. Prevalence and Molecular Characterization of Cryptosporidium Species in Diarrheic Children in Cameroon. Pathogens 2025; 14:287. [PMID: 40137772 PMCID: PMC11945035 DOI: 10.3390/pathogens14030287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/09/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
Cryptosporidiosis remains a major cause of diarrhea-related childhood death, particularly in developing countries. Although effective anti-retroviral therapy has significantly reduced the cryptosporidiosis burden in western nations, the situation in developing countries remains alarming due to limited therapeutic options and a lack of preventive measures. To better control disease transmission and develop effective prevention strategies, a thorough understanding of the genetic diversity of circulating species is crucial. While cryptosporidiosis has previously been reported in Cameroon, information on the genetic diversity of parasite strains is lacking. In a large cross-sectional study conducted between March 2020 and March 2021 in four regions of Cameroon, Southwest, Littoral, Center and West, a total of 1119 fecal samples of children (n = 1119) were collected and genetically analyzed. This study aimed to assess the genetic diversity of Cryptosporidium strains circulating in this patient cohort in Cameroon. Using modified Ziehl-Neelsen fecal smear staining, an overall prevalence of 8.5% (96/1119) was recorded. PCR analysis revealed a prevalence of 15.4% in the Center, 7.2% in the Littoral, 10.5% in the West, and 13.1% in the Southwest regions. Molecular analysis identified Cryptosporidium. hominis and Cryptosporidium parvum as circulating species, with all subtype families suggesting anthroponotic transmission. No zoonotic subtypes of C. parvum were detected. These findings confirm that cryptosporidiosis transmission in Cameroon is primarily anthroponotic. Nonetheless, much larger epidemiological surveys, including other patient cohorts, are necessary for final confirmation of this statement.
Collapse
Affiliation(s)
- Bertrand Sone
- Laboratory for Molecular Parasitology, Department of Microbiology and Parasitology, University of Buea, Buea P.O. Box 63, Cameroon; (B.S.); (L.A.A.); (C.A.); (D.C.)
| | - Lum Abienwi Ambe
- Laboratory for Molecular Parasitology, Department of Microbiology and Parasitology, University of Buea, Buea P.O. Box 63, Cameroon; (B.S.); (L.A.A.); (C.A.); (D.C.)
- Centre for Research on Health and Priority Pathologies, Institute of Medical Research and Medicinal Plants Studies (IMPM), Yaoundé, P.O. Box 13033, Cameroon
| | - Mireille Nguele Ampama
- Institute of Parasitology, Biomedical Research Center Seltersberg (B.F.S.), Justus Liebig University Giessen, 35392 Giessen, Germany; (A.T.); (C.H.)
| | - Constance Ajohkoh
- Laboratory for Molecular Parasitology, Department of Microbiology and Parasitology, University of Buea, Buea P.O. Box 63, Cameroon; (B.S.); (L.A.A.); (C.A.); (D.C.)
| | - Desmond Che
- Laboratory for Molecular Parasitology, Department of Microbiology and Parasitology, University of Buea, Buea P.O. Box 63, Cameroon; (B.S.); (L.A.A.); (C.A.); (D.C.)
| | - Julien Alban Nguinkal
- Department of Infectious Disease Epidemiology, Bernhard-Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany;
| | - Anja Taubert
- Institute of Parasitology, Biomedical Research Center Seltersberg (B.F.S.), Justus Liebig University Giessen, 35392 Giessen, Germany; (A.T.); (C.H.)
| | - Carlos Hermosilla
- Institute of Parasitology, Biomedical Research Center Seltersberg (B.F.S.), Justus Liebig University Giessen, 35392 Giessen, Germany; (A.T.); (C.H.)
| | - Faustin Kamena
- Laboratory for Molecular Parasitology, Department of Microbiology and Parasitology, University of Buea, Buea P.O. Box 63, Cameroon; (B.S.); (L.A.A.); (C.A.); (D.C.)
| |
Collapse
|
3
|
Ghorbani A, Asghari A, Mohammadi MR, Badri M, Shamsi L, Hanifeh F, Mohammadi‐Ghalehbin B, Bastaminejad S. Cryptosporidium in Rabbits: A Global Systematic Review and Meta-Analysis of Prevalence, Species/Genotypes Distribution and Zoonotic Significance. Vet Med Sci 2025; 11:e70309. [PMID: 40103565 PMCID: PMC11920741 DOI: 10.1002/vms3.70309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 02/20/2025] [Accepted: 03/07/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND This systematic review and meta-analysis assessed the global prevalence, species/genotype distribution and zoonotic impact of Cryptosporidium in rabbits. METHODS A systematic search of PubMed, Scopus and Web of Science was performed for studies from 2000 to 25 October 2024 on Cryptosporidium spp. in rabbits. Data on publication/implementation years, prevalence rates, rabbit types, diagnostics, countries and species/genotypes were collected. A meta-analysis with random-effects models estimated overall prevalence and assessed heterogeneity using the I2 index. A sensitivity analysis evaluated the robustness of the results. RESULTS This systematic review included 26 studies with 6093 rabbits from 9 countries, revealing a pooled Cryptosporidium spp. prevalence of 9% (95% CI: 6%-13.4%). Three zoonotic species were found in rabbits: Cryptosporidium cuniculus in 18 studies and each of C. parvum and C. andersoni in 1 study. The isolates included 2 genotypes of C. cuniculus (Va, Vb) and 1 genotype of C. parvum (IIc), along with 18 subtypes of C. cuniculus (VaA16, VaA18, VaA31, VbA18, VbA19, VbA21, VbA22, VbA23, VbA24, VbA25, VbA26, VbA28, VbA29, VbA31, VbA32, VbA33, VbA35 and VbA36). Among these, 11 subtypes (VbA19, VbA22-VbA26, VbA28, VbA29 and VbA31-VbA33) are identified as zoonotic. Pet rabbits had the highest Cryptosporidium spp. pooled prevalence at 21.9% (95% CI: 14.7%-31.3%), followed by farmed rabbits at 9.7% (95% CI: 5.1%-17.8%), wild rabbits at 8.8% (95% CI: 4.8%-15.5%) and laboratory rabbits at 1% (95% CI: 0.3%-3.1%), with higher rates noted in Africa and the AFR WHO region. CONCLUSIONS This study assessed the global distribution of Cryptosporidium spp. in rabbits, highlighting its zoonotic implications. It serves as a key resource for researchers, veterinarians and public health officials for future studies and control strategies.
Collapse
Affiliation(s)
- Ali Ghorbani
- Department of Microbiology and Virology, School of MedicineKerman University of Medical SciencesKermanIran
| | - Ali Asghari
- Medical Microbiology Research CenterQazvin University of Medical SciencesQazvinIran
| | | | - Milad Badri
- Medical Microbiology Research CenterQazvin University of Medical SciencesQazvinIran
| | - Laya Shamsi
- Department of Pathobiology, Faculty of Veterinary MedicineUrmia UniversityUrmiaIran
| | - Fatemeh Hanifeh
- Department of Biology, Faculty of ScienceDanesh Alborz UniversityAbyekIran
| | | | - Saiyad Bastaminejad
- Department of Genetics and Molecular Medicine, School of ParaMedicineIlam University of Medical SciencesIlamIran
| |
Collapse
|
4
|
Halliday-Isaac AK, Jackson CR. Microeukaryotes Associated with Freshwater Mussels in Rivers of the Southeastern United States. Microorganisms 2024; 12:1835. [PMID: 39338509 PMCID: PMC11434547 DOI: 10.3390/microorganisms12091835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/20/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Microeukaryotes are a diverse and often overlooked group of microbes that are important in food webs and other ecological linkages. Little is known about microeukaryotes associated with aquatic invertebrates, although filter feeders such as mussels are likely to take in and potentially retain microeukaryotes in their gut while feeding. Microeukaryotes such as apicomplexans have been reported in marine mussel species, but no studies have examined the presence of these microorganisms in freshwater mussels or how they relate to mussel host species or environmental conditions. In this study, microbial community DNA was extracted from the gut tissue of over 300 freshwater mussels, representing 22 species collected from rivers in the southeastern USA. Microeukaryote DNA was detected using PCR amplification, followed by the sequencing of positive amplicons. Microeukaryotes were found in 167 individual mussels (53%) of those tested. Amplicons included dinoflagellates/algae that differed between mussel species and are likely food sources that were distinct from those found in water and sediment samples analyzed concurrently. A total of 5% of the positive amplicons were non-photosynthetic alveolates that could represent parasitic microeukaryotes. Understanding the distribution of microeukaryotes in the freshwater mussel gut microbiome could further our understanding of the ongoing decline of mussel populations.
Collapse
Affiliation(s)
| | - Colin R. Jackson
- Department of Biology, University of Mississippi, University, Oxford, MS 38677, USA;
| |
Collapse
|
5
|
Barbosa AD, Egan S, Feng Y, Xiao L, Balogun S, Ryan U. Zoonotic Cryptosporidium and Giardia in marsupials-an update. Parasitol Res 2024; 123:107. [PMID: 38253768 PMCID: PMC10803519 DOI: 10.1007/s00436-024-08129-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
Marsupials, inhabiting diverse ecosystems, including urban and peri-urban regions in Australasia and the Americas, intersect with human activities, leading to zoonotic spill-over and anthroponotic spill-back of pathogens, including Cryptosporidium and Giardia. This review assesses the current knowledge on the diversity of Cryptosporidium and Giardia species in marsupials, focusing on the potential zoonotic risks. Cryptosporidium fayeri and C. macropodum are the dominant species in marsupials, while in possums, the host-specific possum genotype dominates. Of these three species/genotypes, only C. fayeri has been identified in two humans and the zoonotic risk is considered low. Generally, oocyst shedding in marsupials is low, further supporting a low transmission risk. However, there is some evidence of spill-back of C. hominis into kangaroo populations, which requires continued monitoring. Although C. hominis does not appear to be established in small marsupials like possums, comprehensive screening and analysis are essential for a better understanding of the prevalence and potential establishment of zoonotic Cryptosporidium species in small marsupials. Both host-specific and zoonotic Giardia species have been identified in marsupials. The dominance of zoonotic G. duodenalis assemblages A and B in marsupials may result from spill-back from livestock and humans and it is not yet understood if these are transient or established infections. Future studies using multilocus typing tools and whole-genome sequencing are required for a better understanding of the zoonotic risk from Giardia infections in marsupials. Moreover, much more extensive screening of a wider range of marsupial species, particularly in peri-urban areas, is required to provide a clearer understanding of the zoonotic risk of Cryptosporidium and Giardia in marsupials.
Collapse
Affiliation(s)
- Amanda D Barbosa
- Harry Butler Institute, Vector- and Water-Borne Pathogens Research Group, Murdoch University, Murdoch, Western Australia, 6150, Australia.
- CAPES Foundation, Ministry of Education of Brazil, Brasilia, DF, 70040-020, Brazil.
| | - Siobhon Egan
- Harry Butler Institute, Vector- and Water-Borne Pathogens Research Group, Murdoch University, Murdoch, Western Australia, 6150, Australia
| | - Yaoyu Feng
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Lihua Xiao
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Samson Balogun
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Wales, United Kingdom
| | - Una Ryan
- Harry Butler Institute, Vector- and Water-Borne Pathogens Research Group, Murdoch University, Murdoch, Western Australia, 6150, Australia
| |
Collapse
|
6
|
Ryan U, Hill K, Deere D. Review of generic screening level assumptions for quantitative microbial risk assessment (QMRA) for estimating public health risks from Australian drinking water sources contaminated with Cryptosporidium by recreational activities. WATER RESEARCH 2022; 220:118659. [PMID: 35635918 DOI: 10.1016/j.watres.2022.118659] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 04/26/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
As urban communities continue to grow, demand for recreational access (including swimming) in drinking water sources have increased, yet relatively little is understood about the public health implications this poses for drinking water consumers. Preventative risk-based approaches to catchment management, informed by quantitative microbial risk assessment (QMRA), requires accurate input data to effectively model risks. A sound understanding of the knowledge gaps is also important to comprehend levels of uncertainty and help prioritise research needs. Cryptosporidium is one of the most important causes of waterborne outbreaks of gastroenteritis globally due to its resistance to chlorine. This review was undertaken by Water Research Australia to provide the most up-to-date information on current Cryptosporidium epidemiological data and underlying assumptions for exposure assessment, dose response and risk assessment for generic components of QMRA for Cryptosporidium and highlights priorities for common research. Key interim recommendations and guidelines for numerical values for relatively simple screening level QMRA modelling are provided to help support prospective studies of risks to drinking water consumers from Cryptosporidium due to body-contact recreation in source water. The review does not cover site-specific considerations, such as the levels of activity in the source water, the influence of dilution and inactivation in reservoirs, or water treatment. Although the focus is Australia, the recommendations and numerical values developed in this review, and the highlighted research priorities, are broadly applicable across all drinking source water sources that allow recreational activities.
Collapse
Affiliation(s)
- U Ryan
- Harry Butler Institute, Murdoch University, 90 South Street, Perth, Australia.
| | - Kelly Hill
- Water Research Australia, 250 Victoria Square, Adelaide, South Australia, Australia
| | - Dan Deere
- Water Futures, Sydney, Australia and Water Research Australia, Australia
| |
Collapse
|
7
|
Pane S, Putignani L. Cryptosporidium: Still Open Scenarios. Pathogens 2022; 11:pathogens11050515. [PMID: 35631036 PMCID: PMC9143492 DOI: 10.3390/pathogens11050515] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/20/2022] [Accepted: 04/23/2022] [Indexed: 01/27/2023] Open
Abstract
Cryptosporidiosis is increasingly identified as a leading cause of childhood diarrhea and malnutrition in both low-income and high-income countries. The strong impact on public health in epidemic scenarios makes it increasingly essential to identify the sources of infection and understand the transmission routes in order to apply the right prevention or treatment protocols. The objective of this literature review was to present an overview of the current state of human cryptosporidiosis, reviewing risk factors, discussing advances in the drug treatment and epidemiology, and emphasizing the need to identify a government system for reporting diagnosed cases, hitherto undervalued.
Collapse
Affiliation(s)
- Stefania Pane
- Department of Diagnostic and Laboratory Medicine, Bambino Gesù Children’s Hospital, IRCCS, Unit of Microbiology and Diagnostic Immunology, Unit of Microbiomics, 00146 Rome, Italy;
| | - Lorenza Putignani
- Department of Diagnostic and Laboratory Medicine, Bambino Gesù Children’s Hospital, IRCCS, Unit of Microbiology and Diagnostic Immunology, Unit of Microbiomics and Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, 00146 Rome, Italy
- Correspondence:
| |
Collapse
|
8
|
Hijjawi N, Zahedi A, Al-Falah M, Ryan U. A review of the molecular epidemiology of Cryptosporidium spp. and Giardia duodenalis in the Middle East and North Africa (MENA) region. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 98:105212. [PMID: 35065302 DOI: 10.1016/j.meegid.2022.105212] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Cryptosporidium spp. and Giardia duodenalis are important protozoan parasites which are associated with diarrheal diseases in humans and animals worldwide. Relatively little is known about the molecular epidemiology of Cryptosporidium spp. and Giardia duodenalis in the Middle East Countries and North Africa (MENA region). Therefore, this review aimed to inspect published genotyping and subtyping studies on Cryptosporidium spp. and Giardia duodenalis in the MENA region. These studies indicate that both anthroponotic and zoonotic transmission of Cryptosporidium occurs with the predominance of zoonotic transmission in most countries. Seven Cryptosporidium species were identified in humans (C. parvum, C. hominis, Cryptosporidium meleagridis, C. felis, Cryptosporidium muris, C. canis and C. bovis), with C. parvum by far being the most prevalent species (reported in 95.4% of the retrieved studies). Among C. parvum gp60 subtype families, IIa and IId predominated, suggesting potential zoonotic transmission. However, in four MENA countries (Lebanon, Israel, Egypt and Tunisia), C. hominis was the predominant species with five subtype families reported including Ia, Ib, Id, If and Ie, all of which are usually anthroponotically transmitted between humans. In animals, the majority of studies were conducted mainly on livestock and poultry, 15 species were identified (C. parvum, C. hominis, C. muris, Cryptosporidium cuniculus, C. andersoni, C. bovis, C. meleagridis, C. baileyi, C. erinacei, C. ryanae, C. felis, C. suis, Cryptosporidium galli, C. xiaoi and C. ubiquitum) with C. parvum (IIa and IId subtypes) the dominant species in livestock and C. meleagridis and C. baileyi the dominant species in poultry. With G. duodenalis, five assemblages (A, B, C, E and F) were identified in humans and six (A, B, C, E, D and F) in animals in MENA countries with assemblages A and B commonly reported in humans, and assemblages A and E dominant in livestock. This review also identified a major knowledge gap in the lack of Cryptosporidium spp. and Giardia duodenalis typing studies in water and food sources in the MENA region. Of the few studies conducted on water sources (including drinking and tap water), ten Cryptosporidium species and four genotypes were identified, highlighting the potential role of water as the major route of Cryptosporidium spp. transmission in the region. In addition, three G. duodenalis assemblages (A, B and E) were detected in different water sources with AI, AII and BIV being the main sub-assemblages reported. More research is required in order to better understand the molecular diversity and transmission dynamics of Cryptsporidum spp. and Giardia duodenalis in humans, animals, water and food sources in MENA region.
Collapse
Affiliation(s)
- Nawal Hijjawi
- Department of Medical Laboratory Sciences, Faculty of Applied Health Sciences, The Hashemite University, P.O. Box 150459, Zarqa 13115, Jordan.
| | - Alizera Zahedi
- The Centre of Biosecurity and One Health, Harry Butler Institute, Murdoch University, Perth, Western Australia, Australia
| | | | - Una Ryan
- The Centre of Biosecurity and One Health, Harry Butler Institute, Murdoch University, Perth, Western Australia, Australia
| |
Collapse
|
9
|
Baz-González E, Martín-Carrillo N, García-Livia K, Foronda P. Molecular Detection of Cryptosporidium cuniculus in Rabbits (Oryctolagus cuniculus) from Tenerife, Canary Islands, Spain. Vet Sci 2022; 9:vetsci9020091. [PMID: 35202344 PMCID: PMC8877424 DOI: 10.3390/vetsci9020091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 10/27/2022] Open
Abstract
Cryptosporidium cuniculus is a zoonotic parasite responsible for cryptosporidiosis cases and outbreaks in both humans and rabbits. Since there are no molecular Cryptosporidium spp. infection data in rabbits (Oryctolagus cuniculus) from Spain, our aim was to gather information about this parasite in wild European rabbits from Tenerife, Canary Islands (Spain). A total of 100 faecal samples were collected from rabbits from eight municipalities of Tenerife. Microscopic analysis showed that 4.0% of the samples presented structures compatible with Cryptosporidium oocyst. A nested polymerase chain reaction (PCR) targeting 18S ribosomal RNA (rRNA) gene fragments was carried out, and sequencing confirmed the identity of C. cuniculus in one sample (1.0%). The sample was successfully subtyped using nested PCR analysis of the 60-kDa glycoprotein (gp60) gene as the subtype VbA26R3. This study confirms the presence of C. cuniculus in wild rabbits from Tenerife, providing new information on the occurrence of this zoonotic parasite. Further studies are required to better understand the epidemiology of Cryptosporidium spp. in wild rabbits in Spain and their possible public health repercussions.
Collapse
Affiliation(s)
- Edgar Baz-González
- Department Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Tenerife, Canary Islands, Spain; (E.B.-G.); (N.M.-C.); (K.G.-L.)
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Tenerife, Canary Islands, Spain
| | - Natalia Martín-Carrillo
- Department Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Tenerife, Canary Islands, Spain; (E.B.-G.); (N.M.-C.); (K.G.-L.)
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Tenerife, Canary Islands, Spain
| | - Katherine García-Livia
- Department Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Tenerife, Canary Islands, Spain; (E.B.-G.); (N.M.-C.); (K.G.-L.)
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Tenerife, Canary Islands, Spain
| | - Pilar Foronda
- Department Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Tenerife, Canary Islands, Spain; (E.B.-G.); (N.M.-C.); (K.G.-L.)
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Tenerife, Canary Islands, Spain
- Correspondence:
| |
Collapse
|
10
|
Baptista RP, Li Y, Sateriale A, Sanders MJ, Brooks KL, Tracey A, Ansell BRE, Jex AR, Cooper GW, Smith ED, Xiao R, Dumaine JE, Georgeson P, Pope BJ, Berriman M, Striepen B, Cotton JA, Kissinger JC. Long-read assembly and comparative evidence-based reanalysis of Cryptosporidium genome sequences reveal expanded transporter repertoire and duplication of entire chromosome ends including subtelomeric regions. Genome Res 2022; 32:203-213. [PMID: 34764149 PMCID: PMC8744675 DOI: 10.1101/gr.275325.121] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 11/10/2021] [Indexed: 11/25/2022]
Abstract
Cryptosporidiosis is a leading cause of waterborne diarrheal disease globally and an important contributor to mortality in infants and the immunosuppressed. Despite its importance, the Cryptosporidium community has only had access to a good, but incomplete, Cryptosporidium parvum IOWA reference genome sequence. Incomplete reference sequences hamper annotation, experimental design, and interpretation. We have generated a new C. parvum IOWA genome assembly supported by Pacific Biosciences (PacBio) and Oxford Nanopore long-read technologies and a new comparative and consistent genome annotation for three closely related species: C. parvum, Cryptosporidium hominis, and Cryptosporidium tyzzeri We made 1926 C. parvum annotation updates based on experimental evidence. They include new transporters, ncRNAs, introns, and altered gene structures. The new assembly and annotation revealed a complete Dnmt2 methylase ortholog. Comparative annotation between C. parvum, C. hominis, and C. tyzzeri revealed that most "missing" orthologs are found, suggesting that the biological differences between the species must result from gene copy number variation, differences in gene regulation, and single-nucleotide variants (SNVs). Using the new assembly and annotation as reference, 190 genes are identified as evolving under positive selection, including many not detected previously. The new C. parvum IOWA reference genome assembly is larger, gap free, and lacks ambiguous bases. This chromosomal assembly recovers all 16 chromosome ends, 13 of which are contiguously assembled. The three remaining chromosome ends are provisionally placed. These ends represent duplication of entire chromosome ends including subtelomeric regions revealing a new level of genome plasticity that will both inform and impact future research.
Collapse
Affiliation(s)
- Rodrigo P Baptista
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, USA
- Institute of Bioinformatics, University of Georgia, Athens, Georgia 30602, USA
| | - Yiran Li
- Institute of Bioinformatics, University of Georgia, Athens, Georgia 30602, USA
| | - Adam Sateriale
- Department of Pathology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Mandy J Sanders
- The Wellcome Sanger Institute, Hinxton, CB10 1SA, United Kingdom
| | - Karen L Brooks
- The Wellcome Sanger Institute, Hinxton, CB10 1SA, United Kingdom
| | - Alan Tracey
- The Wellcome Sanger Institute, Hinxton, CB10 1SA, United Kingdom
| | - Brendan R E Ansell
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne and Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
| | - Aaron R Jex
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne and Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
| | - Garrett W Cooper
- Department of Clinical Pathology, The University of Melbourne, Victorian Comprehensive Cancer Centre, Melbourne VIC 3000, Australia
| | - Ethan D Smith
- Department of Clinical Pathology, The University of Melbourne, Victorian Comprehensive Cancer Centre, Melbourne VIC 3000, Australia
| | - Rui Xiao
- Institute of Bioinformatics, University of Georgia, Athens, Georgia 30602, USA
| | - Jennifer E Dumaine
- Department of Pathology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Peter Georgeson
- Department of Clinical Pathology, The University of Melbourne, Victorian Comprehensive Cancer Centre, Melbourne VIC 3000, Australia
- Melbourne Bioinformatics, The University of Melbourne, Parkville VIC 3010, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Melbourne VIC 3000, Australia
| | - Bernard J Pope
- Department of Clinical Pathology, The University of Melbourne, Victorian Comprehensive Cancer Centre, Melbourne VIC 3000, Australia
- Melbourne Bioinformatics, The University of Melbourne, Parkville VIC 3010, Australia
- Department of Surgery (Royal Melbourne Hospital), Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne 3010, Australia
- Department of Medicine, Central Clinical School, Faculty of Medicine Nursing and Health Sciences, Monash University, Melbourne 3004, Australia
| | - Matthew Berriman
- The Wellcome Sanger Institute, Hinxton, CB10 1SA, United Kingdom
| | - Boris Striepen
- Department of Pathology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - James A Cotton
- The Wellcome Sanger Institute, Hinxton, CB10 1SA, United Kingdom
| | - Jessica C Kissinger
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, USA
- Institute of Bioinformatics, University of Georgia, Athens, Georgia 30602, USA
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
11
|
Ryan U, Zahedi A, Feng Y, Xiao L. An Update on Zoonotic Cryptosporidium Species and Genotypes in Humans. Animals (Basel) 2021; 11:3307. [PMID: 34828043 PMCID: PMC8614385 DOI: 10.3390/ani11113307] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022] Open
Abstract
The enteric parasite, Cryptosporidium is a major cause of diarrhoeal illness in humans and animals worldwide. No effective therapeutics or vaccines are available and therefore control is dependent on understanding transmission dynamics. The development of molecular detection and typing tools has resulted in the identification of a large number of cryptic species and genotypes and facilitated our understanding of their potential for zoonotic transmission. Of the 44 recognised Cryptosporidium species and >120 genotypes, 19 species, and four genotypes have been reported in humans with C. hominis, C. parvum, C. meleagridis, C. canis and C. felis being the most prevalent. The development of typing tools that are still lacking some zoonotic species and genotypes and more extensive molecular epidemiological studies in countries where the potential for transmission is highest are required to further our understanding of this important zoonotic pathogen. Similarly, whole-genome sequencing (WGS) and amplicon next-generation sequencing (NGS) are important for more accurately tracking transmission and understanding the mechanisms behind host specificity.
Collapse
Affiliation(s)
- Una Ryan
- Harry Butler Institute, Murdoch University, Perth, WA 6152, Australia;
| | - Alireza Zahedi
- Harry Butler Institute, Murdoch University, Perth, WA 6152, Australia;
| | - Yaoyu Feng
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.F.); (L.X.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Lihua Xiao
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.F.); (L.X.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
12
|
Occurrence and molecular characterization of Cryptosporidium spp., Giardia duodenalis, Enterocytozoon bieneusi, and Blastocystis sp. in captive wild animals in zoos in Henan, China. BMC Vet Res 2021; 17:332. [PMID: 34663327 PMCID: PMC8522229 DOI: 10.1186/s12917-021-03035-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 09/28/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Captive wild animals in zoos infected with Cryptosporidium spp., Giardia duodenalis, Enterocytozoon bieneusi, and Blastocystis sp. can be sources of zoonotic infections and diseases. Therefore, to investigate the distribution of these pathogens in captive wild animals of zoos in Henan, China, a total of 429 fresh fecal samples were collected from six zoos in Henan, China. The infection rates of Cryptosporidium spp., G. duodenalis, E. bieneusi, and Blastocystis sp. were determined by PCR analysis of corresponding loci. Positive results for Cryptosporidium (C. parvum and C. hominis) were subtyped based on the (gp60) gene. RESULTS The overall prevalence was 43.1% (185/429), and the prevalence of Cryptosporidium, Giardia duodenalis, Enterocytozoon bieneusi, and Blastocystis sp. were 2.8% (12/429), 0.5% (2/429), 20.8% (89/429), and 19.1% (82/429), respectively. Five Cryptosporidium species, namely, C. hominis, C. parvum, C. muris, C. andersoni, and C. macropodum, were identified in this study. Cryptosporidium parvum was further subtyped as IIdA19G1. Two Giardia duodenalis assemblages (A and E) were also identified. A total of 20 Enterocytozoon bieneusi genotypes were detected, including 18 known (BEB6, D, HND-1, CD7, SDD1, Henan-IV, KIN-1, CHK1, Peru8, Henan-V, CHG11, CHG-1, CHS9, CHG21, Type-IV, CHC9, CM5, and CHB1) and 2 novel genotypes (CHWD1 and CHPM1). A total of nine subtypes of Blastocystis sp. (ST1, ST2, ST3, ST5, ST6, ST7, ST10, ST13, and ST14) were identified in captive wild animals in zoos in the present study. Cryptosporidium andersoni, nine Enterocytozoon bieneusi genotypes, and five Blastocystis subtypes were here first identified in new hosts. CONCLUSIONS Our study has expanded the host ranges of these four pathogens. The data indicate that animals in zoos can commonly be infected with these four zoonotic pathogens, and animals in zoos are potential sources of zoonotic infections in humans.
Collapse
|
13
|
Forbes O, Hosking R, Mokany K, Lal A. Bayesian spatio-temporal modelling to assess the role of extreme weather, land use change and socio-economic trends on cryptosporidiosis in Australia, 2001-2018. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148243. [PMID: 34412375 DOI: 10.1016/j.scitotenv.2021.148243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/23/2021] [Accepted: 05/29/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Intensification of land use threatens to increase the emergence and prevalence of zoonotic diseases, with an adverse impact on human wellbeing. Understanding how the interaction between agriculture, natural systems, climate and socioeconomic drivers influence zoonotic disease distribution is crucial to inform policy planning and management to limit the emergence of new infections. OBJECTIVES Here we assess the relative contribution of environmental, climatic and socioeconomic factors influencing reported cryptosporidiosis across Australia from 2001 to 2018. METHODS We apply a Bayesian spatio-temporal analysis using Integrated Nested Laplace Approximation (INLA). RESULTS We find that area-level risk of reported disease are associated with the proportions of the population under 5 and over 65 years of age, socioeconomic disadvantage, annual rainfall anomaly, and the proportion of natural habitat remaining. This combination of multiple factors influencing cryptosporidiosis highlights the benefits of a sophisticated spatio-temporal statistical approach. Two key findings from our model include: an estimated 4.6% increase in the risk of reported cryptosporidiosis associated with 22.8% higher percentage of postal area covered with original habitat; and an estimated 1.8% increase in disease risk associated with a 77.99 mm increase in annual rainfall anomaly at the postal area level. DISCUSSION These results provide novel insights regarding the predictive effects of extreme rainfall and the proportion of remaining natural habitat, which add unique explanatory power to the model alongside the variance associated with other predictive variables and spatiotemporal variation in reported disease. This demonstrates the importance of including perspectives from land and water management experts for policy making and public health responses to manage environmentally mediated diseases, including cryptosporidiosis.
Collapse
Affiliation(s)
- Owen Forbes
- Research School of Population Health, Australian National University, Acton, Australia; School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia; ARC Centre of Excellence for Mathematical and Statistical Frontiers (ACEMS), Brisbane, Australia
| | - Rose Hosking
- Research School of Population Health, Australian National University, Acton, Australia
| | - Karel Mokany
- Macroecological Modelling, CSIRO Land & Water, Black Mountain Laboratories, Canberra, ACT, Australia
| | - Aparna Lal
- Research School of Population Health, Australian National University, Acton, Australia.
| |
Collapse
|
14
|
Witto SG, Kankya C, Akurut G, Mugasa CM, Kazibwe A, Ochwo S. The prevalence and genetic characterisation of Cryptosporidium isolates from cattle in Kiruhura district, South Western Uganda. J Parasit Dis 2021; 45:778-789. [PMID: 34475660 PMCID: PMC8368637 DOI: 10.1007/s12639-021-01361-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/05/2021] [Indexed: 11/24/2022] Open
Abstract
Cryptosporidium is an emerging opportunistic zoonotic pathogen that causes diarrheal illness in a wide range of hosts including livestock and humans. This study set out to establish the prevalence of Cryptosporidium as well as the circulating genotypes in order to elucidate the potential role of cattle in the spread of human cryptosporidiosis. Rectal coprological samples from 363 cattle in 11 households in Kiruhura district, Southwestern Uganda were collected and screened for the presence of Cryptosporidium oocysts using the phenol auramine staining method followed by fluorescent microscopy. DNA was extracted from the microscopy positive samples and the COWP gene amplified using PCR. PCR products were sequenced and subjected to phylogenetic analysis. Additionally a multiplex realtime PCR was used to identify the Cryptosporidium spp. Multivariable mixed effect logistic regression models were used to identify potential risk factors for Cryptosporidium infection. The overall prevalence of Cryptosporidium was 7.7% (95% CI 5.1-10.9), and herd level prevalence was 33.3% (95% CI 18.5-52.2). We found a statistically significant difference (OR = 30.78, 95% CI 4.31-219.95, p = 0.001) between infection in bulls as compared to cows. There was no significant difference in the prevalence among the different cattle breeds sampled. All the sequenced COWP gene DNA amplicons were confirmed to be C. hominis, with 93%-100% identity to sequences in the GenBank. The amplification of the small subunit rRNA by multiplex realtime PCR further established that the isolates in this study are C. hominis. This study represents the first time naturally occurring C. hominis has been detected from cattle in Uganda.
Collapse
Affiliation(s)
- Sarah Gift Witto
- Molecular Biology Laboratory, Department of Biomolecular Resources and Biolab Sciences, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, P. O. Box 7062, Kampala, Uganda
- Department of Microbiology and Immunology, Kampala International University-Western Campus, P. O. Box 71, Ishaka, Uganda
| | - Clovice Kankya
- Department of Biosecurity, Ecosystems and Veterinary Public Health, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - Gloria Akurut
- Molecular Biology Laboratory, Department of Biomolecular Resources and Biolab Sciences, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - Claire Mack Mugasa
- Molecular Biology Laboratory, Department of Biomolecular Resources and Biolab Sciences, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - Anne Kazibwe
- Department of Biomolecular Resources and Biolab Sciences, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - Sylvester Ochwo
- Molecular Biology Laboratory, Department of Biomolecular Resources and Biolab Sciences, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, P. O. Box 7062, Kampala, Uganda
| |
Collapse
|
15
|
Genetic Characterization of Cryptosporidium cuniculus from Rabbits in Egypt. Pathogens 2021; 10:pathogens10060775. [PMID: 34203099 PMCID: PMC8235062 DOI: 10.3390/pathogens10060775] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/04/2022] Open
Abstract
Rabbits are increasingly farmed in Egypt for meat. They are, however, known reservoirs of infectious pathogens. Currently, no information is available on the genetic characteristics of Cryptosporidium spp. in rabbits in Egypt. To understand the prevalence and genetic identity of Cryptosporidium spp. in these animals, 235 fecal samples were collected from rabbits of different ages on nine farms in El-Dakahlia, El-Gharbia, and Damietta Provinces, Egypt during the period from July 2015 to April 2016. PCR-RFLP analysis of the small subunit rRNA gene was used to detect and genotype Cryptosporidium spp. The overall detection rate was 11.9% (28/235). All 28 samples were identified as Cryptosporidium cuniculus. The 16 samples successfully subtyped by the sequence analysis of the partial 60 kDa glycoprotein gene belonged to two subtypes, VbA19 (n = 1) and VbA33 (n = 15). As C. cuniculus is increasingly recognized as a cause of human cryptosporidiosis, Cryptosporidium spp. in rabbits from Egypt have zoonotic potential.
Collapse
|
16
|
Li X, Atwill ER. Diverse Genotypes and Species of Cryptosporidium in Wild Rodent Species from the West Coast of the USA and Implications for Raw Produce Safety and Microbial Water Quality. Microorganisms 2021; 9:microorganisms9040867. [PMID: 33920594 PMCID: PMC8073747 DOI: 10.3390/microorganisms9040867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 11/25/2022] Open
Abstract
Cryptosporidium spp. are protozoan parasites that infect perhaps all vertebrate animals, with a subset of species and genotypes that function as food- and waterborne pathogens. The objective of this work was to collate the Cryptosporidium species and genotypes from common wild rodents on the west coast of the USA and update the information regarding the zoonotic potential of Cryptosporidium from these ubiquitous wild species. Representative sequences of the 18S rRNA gene for a unique set of Cryptosporidium isolates obtained from deer mice, house mice, mountain beavers, yellow-bellied marmot, long-tailed vole, California ground squirrels, Belding’s ground squirrels, and a golden-mantled ground squirrel in GenBank were selected for phylogenetic analysis. Phylogenetic and BLAST analysis indicated that 4 (18%) of the 22 unique Cryptosporidium sequences from these wild rodent species were 99.75% to 100% identical to known zoonotic species (C. parvum, C. ubiquitum, C. xiaoi), suggesting that a minority of these representative Cryptosporidium isolates could have a public health impact through food and waterborne routes of human exposure. These zoonotic isolates were shed by deer mice and a yellow-bellied marmot from California, and from a mountain beaver trapped in Oregon. In addition, the group of unique Cryptosporidium isolates from deer mice and ground dwelling squirrels exhibited considerable DNA diversity, with multiple isolates appearing to be either host-limited or distributed throughout the various clades within the phylogenetic tree representing the various Cryptosporidium species from host mammals. These results indicate that only a subset of the unique Cryptosporidium genotypes and species obtained from wild rodents on the US west coast are of public health concern; nevertheless, given the geographic ubiquity of many of these host species and often high density at critical locations like municipal watersheds or produce production fields, prudent pest control practices are warranted to minimize the risks of water- and foodborne transmission to humans.
Collapse
Affiliation(s)
- Xunde Li
- Western Institute for Food Safety and Security, University of California, Davis, CA 95616, USA;
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Edward Robert Atwill
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
- Correspondence:
| |
Collapse
|
17
|
Zhang Y, Koehler AV, Wang T, Gasser RB. Enterocytozoon bieneusi of animals-With an 'Australian twist'. ADVANCES IN PARASITOLOGY 2021; 111:1-73. [PMID: 33482973 DOI: 10.1016/bs.apar.2020.10.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Enterocytozoon bieneusi is a microsporidian microorganism that causes intestinal disease in animals including humans. E. bieneusi is an obligate intracellular pathogen, typically causing severe or chronic diarrhoea, malabsorption and/or wasting. Currently, E. bieneusi is recognised as a fungus, although its exact classification remains contentious. The transmission of E. bieneusi can occur from person to person and/or animals to people. Transmission is usually via the faecal-oral route through E. bieneusi spore-contaminated water, environment or food, or direct contact with infected individuals. Enterocytozoon bieneusi genotypes are usually identified and classified by PCR-based sequencing of the internal transcribed spacer region (ITS) of nuclear ribosomal DNA. To date, ~600 distinct genotypes of E. bieneusi have been recorded in ~170 species of animals, including various orders of mammals and reptiles as well as insects in >40 countries. Moreover, E. bieneusi has also been found in recreational water, irrigation water, and treated raw- and waste-waters. Although many studies have been conducted on the epidemiology of E. bieneusi, prevalence surveys of animals and humans are scant in some countries, such as Australia, and transmission routes of individual genotypes and related risk factors are poorly understood. This article/chapter reviews aspects of the taxonomy, biology and epidemiology of E. bieneusi; the diagnosis, treatment and prevention of microsporidiosis; critically appraises the naming system for E. bieneusi genotypes as well as the phylogenetic relationships of these genotypes; provides new insights into the prevalence and genetic composition of E. bieneusi populations in animals in parts of Australia using molecular epidemiological tools; and proposes some areas for future research in the E. bieneusi/microsporidiosis field.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Anson V Koehler
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia.
| | - Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
18
|
Zahedi A, Ryan U, Rawlings V, Greay T, Hancock S, Bruce M, Jacobson C. Cryptosporidium and Giardia in dam water on sheep farms – An important source of transmission? Vet Parasitol 2020. [DOI: 10.1108/01435129610106083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
19
|
Breternitz BS, Barbosa da Veiga DP, Pepe Razzolini MT, Nardocci AC. Land use associated with Cryptosporidium sp. and Giardia sp.in surface water supply in the state of São Paulo, Brazil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115143. [PMID: 32682184 DOI: 10.1016/j.envpol.2020.115143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/18/2020] [Accepted: 06/27/2020] [Indexed: 06/11/2023]
Abstract
Land use/Land cover (LULC) associated with Cryptosporidium sp. and Giardia sp. quantification and distribution can provide identification of the environmental circulation patterns of these parasites. The aim of this research was to relate the occurrence and circulation of these parasites to the LULC watershed with poor sanitation infrastructure and livestock as important economic activity. The study involved 11 municipalities in the state of São Paulo, located in southeastern Brazil. Sampling was carried out at the catchment sites of each water supply on a monthly basis, starting in December 2014 and lasting until November 2015, totalizing 128 samples. Protozoans were quantified according to the 1623.1 US. EPA Method. For watershed delimitation, the hydrographic network was extracted from the hydrology tool of ArcGIS 10.1. The frequency of occurrence of these pathogens and the high concentrations were evidenced in the municipality with the largest urban area (16.2%) and intense livestock activity (39%) near the catchment site. The municipality that showed the lowest frequency of occurrence presented the smallest urban area (0.87%) and absence of livestock activity near the catchment site. The high concentration of pathogens suggests a correlation between the impact on water supply networks and river basin degradation caused by urban activity and livestock.
Collapse
Affiliation(s)
- Bruna Suellen Breternitz
- School of Public Health, University of São Paulo, Av. Dr Arnaldo 715, 1° Floor, 01246-904, São Paulo, Brazil; NARA - Center for Research Into Environmental Risk Assessment, Av. Dr Arnaldo 715, 1° Floor, 01246-904, São Paulo, Brazil.
| | - Denise Piccirillo Barbosa da Veiga
- School of Public Health, University of São Paulo, Av. Dr Arnaldo 715, 1° Floor, 01246-904, São Paulo, Brazil; NARA - Center for Research Into Environmental Risk Assessment, Av. Dr Arnaldo 715, 1° Floor, 01246-904, São Paulo, Brazil
| | - Maria Tereza Pepe Razzolini
- School of Public Health, University of São Paulo, Av. Dr Arnaldo 715, 1° Floor, 01246-904, São Paulo, Brazil; NARA - Center for Research Into Environmental Risk Assessment, Av. Dr Arnaldo 715, 1° Floor, 01246-904, São Paulo, Brazil
| | - Adelaide Cássia Nardocci
- School of Public Health, University of São Paulo, Av. Dr Arnaldo 715, 1° Floor, 01246-904, São Paulo, Brazil; NARA - Center for Research Into Environmental Risk Assessment, Av. Dr Arnaldo 715, 1° Floor, 01246-904, São Paulo, Brazil
| |
Collapse
|
20
|
Cryptosporidium and Giardia in dam water on sheep farms - An important source of transmission? Vet Parasitol 2020; 288:109281. [PMID: 33142151 DOI: 10.1016/j.vetpar.2020.109281] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/18/2022]
Abstract
Cryptosporidium and Giardia infections can negatively impact livestock health and reduce productivity, and some species and genotypes infecting livestock have zoonotic potential. Infection occurs via the faecal-oral route. Waterborne infections are a recognised source of infection for humans, but the role of livestock drinking water as a source of infection in livestock has not been described. This study aimed to determine whether contaminated drinking water supplies, such as farm dams, are a likely transmission source for Cryptosporidium and Giardia infections for extensively managed sheep. Dam water samples (n = 47) were collected during autumn, winter and spring from 12 farm dams located on six different farms in south west Western Australia, and faecal samples (n = 349) were collected from sheep with access to these dams. All samples were initially screened for Cryptosporidium spp. at the 18S locus and Giardia spp. at the gdh gene using qPCR, and oocyst numbers were determined directly from the qPCR data using DNA standards calibrated by droplet digital PCR. Cryptosporidium-positive sheep faecal samples were typed and subtyped by sequence analysis of 18S and gp60 loci, respectively. Giardia-specific PCR and Sanger sequencing targeting tpi and gdh loci were performed on Giardia- positive sheep faecal samples to characterise Giardia duodenalis assemblages. To identify Cryptosporidium and Giardia spp. in dam water samples, next-generation sequencing analysis of 18S and gdh amplicons were performed, respectively. Two species of Cryptosporidium (Cryptosporidium xiaoi and Cryptospordium ubiquitum (subtype family XIIa)) were detected in 38/345 sheep faecal samples, and in water from 9/12 farm dams during the study period, with C. xiaoi the species most frequently detected in both faeces and dam water overall. Giardia duodenalis assemblages AI, AII and E were detected in 36/348 faecal samples and water from 10/12 farm dams. For dam water samples where oo/cysts were detected by qPCR, Cryptosporidium oocyst concentration ranged from 518-2429 oocysts/L (n = 14), and Giardia cyst concentration ranged from 102 to 1077 cysts/L (n = 17). Cryptosporidium and Giardia with zoonotic potential were detected in farm dam water, including C. ubiquitum, C. hominis, C. parvum, C. cuniculus, C. xiaoi, and G. duodenalis assemblages A, B and E. The findings suggest that dam water can be contaminated with Cryptosporidium species and G. duodenalis assemblages that may infect sheep and with zoonotic potential, and farm dam water may represent one source of transmission for infections.
Collapse
|
21
|
Zahedi A, Ryan U. Cryptosporidium – An update with an emphasis on foodborne and waterborne transmission. Res Vet Sci 2020; 132:500-512. [DOI: 10.1016/j.rvsc.2020.08.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/24/2020] [Accepted: 08/03/2020] [Indexed: 12/15/2022]
|
22
|
Epidemiology of Cryptosporidiosis in France from 2017 to 2019. Microorganisms 2020; 8:microorganisms8091358. [PMID: 32899825 PMCID: PMC7563450 DOI: 10.3390/microorganisms8091358] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 01/28/2023] Open
Abstract
Cryptosporidiosis is currently recognized worldwide as a leading cause of moderate to severe diarrhea. In Europe, large water- and foodborne outbreaks have been reported, highlighting the widespread distribution of the parasite and its important health impact. Surveillance networks have been progressively set up and the aim of this study was to present recent epidemiological data obtained in France from 2017 to 2019 by the National Reference Center-Expert Laboratory of cryptosporidiosis (Centre National de Référence-Laboratoire Expert cryptosporidioses CNR-LE). Data were obtained from online reports of volunteer network participants and stools were sent to the CNR-LE for species identification and GP60 genotyping. During this period, data from 750 online reports were available. Cryptosporidiosis occurred predominantly in young children (<5 years old) and in young adults, especially during late summer. Most patients were immunocompetent (60%), and deaths were reported only in immunocompromised patients. Cryptosporidium parvum was largely predominant (72% of cases) over C. hominis (24%) and some other uncommon species. C. parvum GP60 subtypes IIa and IId were the most represented, which suggests frequent zoonotic transmission. For C. hominis, subtypes IbA10G2 and IaA22R2 were predominant.
Collapse
|
23
|
Li X, Nguyen T, Xiao C, Levy A, Akagi Y, Silkie S, Atwill ER. Prevalence and Genotypes of Cryptosporidium in Wildlife Populations Co-Located in a Protected Watershed in the Pacific Northwest, 2013 to 2016. Microorganisms 2020; 8:microorganisms8060914. [PMID: 32560295 PMCID: PMC7357093 DOI: 10.3390/microorganisms8060914] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/12/2020] [Accepted: 06/14/2020] [Indexed: 02/04/2023] Open
Abstract
Between October 2013 and May 2016, 506 scat samples were collected from 22 species of wildlife located in a protected watershed of a major municipal water supply in the Pacific Northwest, USA. Overall prevalence of Cryptosporidium in the wildlife scat was 13.8% (70/506), with 15 species of wildlife found positive for Cryptosporidium. Prevalence of Cryptosporidium varied among species of wildlife, with higher prevalences observed in cougars (50.0%), mountain beavers (40.0%), and bobcats (33.3%), but none of these species are riparian-dependent. Genotyping of Cryptosporidium by sequencing PCR amplicons from the 18S rRNA gene were successful for seven species of wildlife, including bobcat, unknown predator, black-tailed deer, deer mouse, snowshoe hare, mountain beaver, and western spotted skunk. BLAST and phylogenetic analyses indicated that multiple species and genotypes of Cryptosporidium were present, with some isolates possibly co-circulating within and between wildlife populations in this protected watershed. Evidence of oocyst exchange between infected prey and their predators was also found. During the study period, several zoonotic Cryptosporidium species and genotypes that are uncommon in humans were detected in bobcat (99.58% identical to Cryptosporidium felis), unknown predator (100% identical to Cryptosporidium canis), snowshoe hare (100% identical to Cryptosporidium sp. skunk genotype), and mountain beaver (100% identical to Cryptosporidium ubiquitum). Novel sequences were also found in mountain beaver. To our knowledge, this is the first published report of a unique genotype or species of Cryptosporidium in mountain beaver (Aplodontia rufa).
Collapse
Affiliation(s)
- Xunde Li
- Western Institute for Food Safety and Security, University of California, Davis, CA 95616, USA; (X.L.); (T.N.); (C.X.)
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Tran Nguyen
- Western Institute for Food Safety and Security, University of California, Davis, CA 95616, USA; (X.L.); (T.N.); (C.X.)
| | - Chengling Xiao
- Western Institute for Food Safety and Security, University of California, Davis, CA 95616, USA; (X.L.); (T.N.); (C.X.)
| | - Ann Levy
- Portland Water Bureau, Portland, OR 97227, USA; (A.L.); (Y.A.); (S.S.)
| | - Yone Akagi
- Portland Water Bureau, Portland, OR 97227, USA; (A.L.); (Y.A.); (S.S.)
| | - Sarah Silkie
- Portland Water Bureau, Portland, OR 97227, USA; (A.L.); (Y.A.); (S.S.)
| | - Edward R. Atwill
- Western Institute for Food Safety and Security, University of California, Davis, CA 95616, USA; (X.L.); (T.N.); (C.X.)
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
- Correspondence: ; Tel.: +1-530-754-2154; Fax: +1-530-752-5845
| |
Collapse
|
24
|
Garcia-R JC, Pita AB, Velathanthiri N, French NP, Hayman DTS. Species and genotypes causing human cryptosporidiosis in New Zealand. Parasitol Res 2020; 119:2317-2326. [PMID: 32494897 DOI: 10.1007/s00436-020-06729-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/25/2020] [Indexed: 01/03/2023]
Abstract
Cryptosporidium is one of the most common causes of diarrhoea around the world. Successful management and prevention of this infectious disease requires knowledge of the diversity of species and subtypes causing human disease. We use sequence data from 2598 human faecal samples collected during an 11-year period (2009-2019) to better understand the impact of different species and subtypes on public health and to gain insights into the variation of human cryptosporidiosis in New Zealand. Human cryptosporidiosis in New Zealand is caused by a high diversity of species and subtypes. Six species cause human disease in New Zealand: C. hominis, C. parvum, C. cuniculus, C. erinacei, C. meleagridis and C. tyzzeri. Sequence analysis of the gp60 gene identified 16 subtype families and 101 subtypes. Cryptosporidium hominis IbA10G2 and C. parvum IIaA18G3R1 were the most frequent causes of human cryptosporidiosis with 27% and 29% of infections, respectively. Cryptosporidium hominis presented a peak of notified human cases during autumn (March-May) whereas most cases of human cryptosporidiosis caused by C. parvum are found during the calving and lambing season in spring (September-November). We also reported some subtypes that have been rarely detected in other countries such as IbA20G2 and IIoA13G1 and a low prevalence of the hypertransmissible and virulent IIaA15G2R1. This study provides insight into the variability of cryptosporidiosis in New Zealand essential for disease management and surveillance to prevent the introduction or spread of new species and subtypes in the country.
Collapse
Affiliation(s)
- Juan C Garcia-R
- Molecular Epidemiology and Public Health Laboratory, Hopkirk Research Institute, School of Veterinary Science, Massey University, Private Bag 11-222, Palmerston North, New Zealand.
| | - Anthony B Pita
- Molecular Epidemiology and Public Health Laboratory, Hopkirk Research Institute, School of Veterinary Science, Massey University, Private Bag 11-222, Palmerston North, New Zealand
| | - Niluka Velathanthiri
- Molecular Epidemiology and Public Health Laboratory, Hopkirk Research Institute, School of Veterinary Science, Massey University, Private Bag 11-222, Palmerston North, New Zealand
| | - Nigel P French
- Molecular Epidemiology and Public Health Laboratory, Hopkirk Research Institute, School of Veterinary Science, Massey University, Private Bag 11-222, Palmerston North, New Zealand
| | - David T S Hayman
- Molecular Epidemiology and Public Health Laboratory, Hopkirk Research Institute, School of Veterinary Science, Massey University, Private Bag 11-222, Palmerston North, New Zealand
| |
Collapse
|
25
|
Widmer G, Köster PC, Carmena D. Cryptosporidium hominis infections in non-human animal species: revisiting the concept of host specificity. Int J Parasitol 2020; 50:253-262. [PMID: 32205089 DOI: 10.1016/j.ijpara.2020.01.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 12/21/2022]
Abstract
Parasites in the genus Cryptosporidium, phylum Apicomplexa, are found worldwide in the intestinal tract of many vertebrate species and in the environment. Driven by sensitive PCR methods, and the availability of abundant sequence data and reference genomes, the taxonomic complexity of the genus has steadily increased; 38 species have been named to date. Due to its public health importance, Cryptosporidium hominis has long attracted the interest of the research community. This species was initially described as infectious to humans only. This perception has persisted in spite of an increasing number of observations of natural and experimental infections of animals with this species. Here we summarize and discuss this literature published since 2000 and conclude that the host range of C. hominis is broader than originally described. The evolving definition of the C. hominis host range raises interesting questions about host specificity and the evolution of Cryptosporidium parasites.
Collapse
Affiliation(s)
- Giovanni Widmer
- Department of Infectious Disease & Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA, 01536, United States
| | - Pamela C Köster
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Ctra. Majadahonda-Pozuelo Km 2, 28220 Majadahonda, Madrid, Spain
| | - David Carmena
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Ctra. Majadahonda-Pozuelo Km 2, 28220 Majadahonda, Madrid, Spain.
| |
Collapse
|
26
|
Hatam-Nahavandi K, Ahmadpour E, Carmena D, Spotin A, Bangoura B, Xiao L. Cryptosporidium infections in terrestrial ungulates with focus on livestock: a systematic review and meta-analysis. Parasit Vectors 2019; 12:453. [PMID: 31521186 PMCID: PMC6744657 DOI: 10.1186/s13071-019-3704-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/05/2019] [Indexed: 12/15/2022] Open
Abstract
Background Cryptosporidium spp. are causative agents of gastrointestinal diseases in a wide variety of vertebrate hosts. Mortality resulting from the disease is low in livestock, although severe cryptosporidiosis has been associated with fatality in young animals. Methods The goal of this systematic review and meta-analysis was to review the prevalence and molecular data on Cryptosporidium infections in selected terrestrial domestic and wild ungulates of the families Bovidae (bison, buffalo, cattle, goat, impala, mouflon sheep, sheep, yak), Cervidae (red deer, roe deer, white-tailed deer), Camelidae (alpaca, camel), Suidae (boar, pig), Giraffidae (giraffes) and Equidae (horses). Data collection was carried out using PubMed, Scopus, Science Direct and Cochran databases, with 429 papers being included in this systematic analysis. Results The results show that overall 18.9% of ungulates from the investigated species were infected with Cryptosporidium spp. Considering livestock species (cattle, sheep, goats, pigs, horses and buffaloes), analysis revealed higher Cryptosporidium infection prevalence in ungulates of the Cetartiodactyla than in those of the Perissodactyla, with cattle (29%) being the most commonly infected farm animal. Conclusions Overall, the investigated domestic ungulates are considered potential sources of Cryptosporidium contamination in the environment. Control measures should be developed to reduce the occurrence of Cryptosporidium infection in these animals. Furthermore, literature on wild populations of the named ungulate species revealed a widespread presence and potential reservoir function of wildlife.
Collapse
Affiliation(s)
| | - Ehsan Ahmadpour
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - David Carmena
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Carlos III Health Institute, Ctra Majadahonda-Pozuelo Km 2, 28220, Majadahonda, Madrid, Spain
| | - Adel Spotin
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Berit Bangoura
- Department of Veterinary Sciences, College of Agriculture and Natural Resources, University of Wyoming, Laramie, WY, USA
| | - Lihua Xiao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
27
|
Ahmed W, Payyappat S, Cassidy M, Besley C. Enhanced insights from human and animal host-associated molecular marker genes in a freshwater lake receiving wet weather overflows. Sci Rep 2019; 9:12503. [PMID: 31467317 PMCID: PMC6715810 DOI: 10.1038/s41598-019-48682-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023] Open
Abstract
This study investigated the magnitude of wet weather overflow (WWO)-driven sewage pollution in an urban lake (Lake Parramatta) located in Sydney, New South Wales, Australia. Water samples were collected during a dry weather period and after two storm events, and tested for a range of novel and established sewage- [Bacteroides HF183, crAssphage CPQ_056 and pepper mild mottle virus (PMMoV)] and animal feces-associated (Bacteroides BacCan-UCD, cowM2 and Helicobacter spp. associated GFD) microbial source tracking marker genes along with the enumeration of culturable fecal indicator bacteria (FIB), namely Escherichia coli (E. coli) and Enterococcus spp. The magnitude of general and source-specific fecal pollution was low in water samples collected during dry weather compared to storm events. The levels of HF183, crAssphage and PMMoV in water samples collected during storm events were as high as 6.39, 6.33 and 5.27 log10 GC/L of water, respectively. Moderate to strong positive correlations were observed among the quantitative occurrence of sewage-associated marker genes. The concentrations of HF183 and PMMoV in most storm water samples exceeded the risk benchmark threshold values established in the literature for primary contact recreators. None of the samples tested was positive for the cowM2 (cow) marker gene, while BacCan-UCD (dog) and GFD (avian) animal-associated markers were sporadically detected in water samples collected from both dry weather and storm events. Based on the results, the ongoing advice that swimming should be avoided for several days after storm events appears appropriate. Further research to determine the decay rates of sewage-associated marker genes in relation to each other and enteric viruses would help refine current advice. Microbial source tracking approaches employed in this study provided insights into sources of contamination over currently used FIB.
Collapse
Affiliation(s)
- Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD, 4102, Australia.
| | - Sudhi Payyappat
- Sydney Water, 1 Smith Street, Parramatta, NSW, 2150, Australia
| | - Michele Cassidy
- Sydney Water, 1 Smith Street, Parramatta, NSW, 2150, Australia
| | - Colin Besley
- Sydney Water, 1 Smith Street, Parramatta, NSW, 2150, Australia
| |
Collapse
|
28
|
Zahedi A, Greay TL, Paparini A, Linge KL, Joll CA, Ryan UM. Identification of eukaryotic microorganisms with 18S rRNA next-generation sequencing in wastewater treatment plants, with a more targeted NGS approach required for Cryptosporidium detection. WATER RESEARCH 2019; 158:301-312. [PMID: 31051375 DOI: 10.1016/j.watres.2019.04.041] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/02/2019] [Accepted: 04/19/2019] [Indexed: 06/09/2023]
Abstract
While some microbial eukaryotes can improve effluent quality in wastewater treatment plants (WWTPs), eukaryotic waterborne pathogens are a threat to public health. This study aimed to identify Eukarya, particularly faecal pathogens including Cryptosporidium, in different treatment stages (influent, intermediate and effluent) from four WWTPs in Western Australia (WA). Three WWTPs that utilise stabilisation ponds and one WWTP that uses activated sludge (oxidation ditch) treatment technologies were sampled. Eukaryotic 18S rRNA (18S) was targeted in the wastewater samples (n = 26) for next-generation sequencing (NGS), and a mammalian-blocking primer was used to reduce the amplification of mammalian DNA. Overall, bioinformatics analyses revealed 49 eukaryotic phyla in WWTP samples, and three of these phyla contained human intestinal parasites, which were primarily detected in the influent. These human intestinal parasites either had a low percent sequence composition or were not detected in the intermediate and effluent stages and included the amoebozoans Endolimax sp., Entamoeba sp. and Iodamoeba sp., the human pinworm Enterobius vermicularis (Nematoda), and Blastocystis sp. subtypes (Sarcomastigophora). Six Blastocystis subtypes and four Entamoeba species were identified by eukaryotic 18S NGS, however, Cryptosporidium sp. and Giardia sp. were not detected. Real-time polymerase chain reaction (PCR) also failed to detect Giardia, but Cryptosporidium-specific NGS detected Cryptosporidium in all WWTPs, and a total of nine species were identified, including five zoonotic pathogens. Although eukaryotic 18S NGS was able to identify some faecal pathogens, this study has demonstrated that more specific NGS approaches for pathogen detection are more sensitive and should be applied to future wastewater pathogen assessments.
Collapse
Affiliation(s)
- Alireza Zahedi
- Vector and Waterborne Pathogens Research Group, School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia; Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, Western Australia, Australia.
| | - Telleasha L Greay
- Vector and Waterborne Pathogens Research Group, School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia; Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, Western Australia, Australia.
| | - Andrea Paparini
- Vector and Waterborne Pathogens Research Group, School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia.
| | - Kathryn L Linge
- Curtin Water Quality Research Centre, Chemistry, School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, Australia; ChemCentre, PO Box 1250, Perth, Australia.
| | - Cynthia A Joll
- Curtin Water Quality Research Centre, Chemistry, School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, Australia.
| | - Una M Ryan
- Vector and Waterborne Pathogens Research Group, School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia.
| |
Collapse
|
29
|
Certad G, Follet J, Gantois N, Hammouma-Ghelboun O, Guyot K, Benamrouz-Vanneste S, Fréalle E, Seesao Y, Delaire B, Creusy C, Even G, Verrez-Bagnis V, Ryan U, Gay M, Aliouat-Denis C, Viscogliosi E. Prevalence, Molecular Identification, and Risk Factors for Cryptosporidium Infection in Edible Marine Fish: A Survey Across Sea Areas Surrounding France. Front Microbiol 2019; 10:1037. [PMID: 31156581 PMCID: PMC6530514 DOI: 10.3389/fmicb.2019.01037] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/24/2019] [Indexed: 12/19/2022] Open
Abstract
Cryptosporidium, a zoonotic pathogen, is able to infect a wide range of hosts including wild and domestic animals, and humans. Although it is well known that some parasites are both fish pathogens and recognized agents of zoonosis with a public health impact, little information is available concerning the prevalence of Cryptosporidium in wild aquatic environments. To evaluate the prevalence of Cryptosporidium spp. in commercially important edible marine fish in different European seas (English channel, North sea, Bay of Biscay, Celtic sea and Mediterranean sea), 1,853 specimens were collected as part of two surveys. Nested PCR followed by sequence analysis at the 18S rRNA gene locus was used to identify Cryptosporidium spp. The overall prevalence of Cryptosporidium spp. in sampled fish reached 2.3% (35 out of 1,508) in a first campaign and 3.2% (11 out of 345) in a second campaign. Sequence and phylogenetic analysis of positive samples identified Cryptosporidium parvum (n = 10) and seven genotypes which exhibited between 7.3 and 10.1% genetic distance from C. molnari, with the exception of one genotype which exhibited only 0.5–0.7% genetic distance from C. molnari. Among 31 analyzed fish species, 11 (35.5%) were identified as potential hosts for Cryptosporidium. A higher prevalence of Cryptosporidium spp. was observed in larger fish, in fish collected during the spring-summer period, and in those caught in the North East Atlantic. Pollachius virens (saithe) was the most frequently Cryptosporidium positive species. In fish infected by other parasites, the risk of being Cryptosporidium positive increased 10-fold (OR: 9.95, CI: 2.32–40.01.04, P = 0.0002). Four gp60 subtypes were detected among the C. parvum positive samples: IIaA13G1R1, IIaA15G2R1, IIaA17G2R1, and IIaA18G3R1. These C. parvum subtypes have been previously detected in terrestrial mammals and may constitute an additional source of infection for other animals and in particular for humans. Microscopical examination of histological sections confirmed the presence of round bodies suggestive of the development of C. parvum within digestive glands. We report herein the first epidemiological and molecular data concerning the detection of Cryptosporidium in edible marine fish in European seas surrounding France broadening its host range and uncovering potential novel infection routes.
Collapse
Affiliation(s)
- Gabriela Certad
- CNRS, Inserm, CHU Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Université de Lille, Lille, France.,Délégation à la Recherche Clinique et à l'innovation, Groupement des Hôpitaux de l'Institut Catholique de Lille, Lille, France
| | - Jérôme Follet
- ISA-YNCREA Hauts-de-France, Lille, France.,CNRS, ISEN, UMR 8520 - IEMN, Université de Lille, Lille, France
| | - Nausicaa Gantois
- CNRS, Inserm, CHU Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Université de Lille, Lille, France
| | | | - Karine Guyot
- CNRS, Inserm, CHU Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Sadia Benamrouz-Vanneste
- CNRS, Inserm, CHU Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Université de Lille, Lille, France.,Laboratoire Ecologie et Biodiversité, Faculté de Gestion Economie et Sciences, Institut Catholique de Lille, Lille, France
| | - Emilie Fréalle
- CNRS, Inserm, CHU Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Yuwalee Seesao
- CNRS, Inserm, CHU Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Baptiste Delaire
- Service d'Anatomie et de Cytologie Pathologiques, Groupement des Hôpitaux de l'Institut Catholique de Lille, Lille, France
| | - Colette Creusy
- Service d'Anatomie et de Cytologie Pathologiques, Groupement des Hôpitaux de l'Institut Catholique de Lille, Lille, France
| | - Gaël Even
- Gènes Diffusion, Douai, France.,PEGASE-Biosciences, Institut Pasteur de Lille, Lille, France
| | - Véronique Verrez-Bagnis
- Ifremer, Laboratoire Ecosystèmes Microbiens et Molécules Marines pour les Biotechnologies, Nantes, France
| | - Una Ryan
- Centre for Sustainable Aquatic Ecosystems, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Mélanie Gay
- Laboratory for Food Safety, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Boulogne-sur-mer, France
| | - Cécile Aliouat-Denis
- CNRS, Inserm, CHU Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Eric Viscogliosi
- CNRS, Inserm, CHU Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Université de Lille, Lille, France
| |
Collapse
|
30
|
Antoszczak M, Steverding D, Huczyński A. Anti-parasitic activity of polyether ionophores. Eur J Med Chem 2019; 166:32-47. [DOI: 10.1016/j.ejmech.2019.01.035] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/08/2019] [Accepted: 01/15/2019] [Indexed: 02/04/2023]
|
31
|
Zahedi A, Gofton AW, Greay T, Monis P, Oskam C, Ball A, Bath A, Watkinson A, Robertson I, Ryan U. Profiling the diversity of Cryptosporidium species and genotypes in wastewater treatment plants in Australia using next generation sequencing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 644:635-648. [PMID: 30743878 DOI: 10.1016/j.scitotenv.2018.07.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/02/2018] [Accepted: 07/02/2018] [Indexed: 06/09/2023]
Abstract
Wastewater recycling is an increasingly popular option in worldwide to reduce pressure on water supplies due to population growth and climate change. Cryptosporidium spp. are among the most common parasites found in wastewater and understanding the prevalence of human-infectious species is essential for accurate quantitative microbial risk assessment (QMRA) and cost-effective management of wastewater. The present study conducted next generation sequencing (NGS) to determine the prevalence and diversity of Cryptosporidium species in 730 raw influent samples from 25 Australian wastewater treatment plants (WWTPs) across three states: New South Wales (NSW), Queensland (QLD) and Western Australia (WA), between 2014 and 2015. All samples were screened for the presence of Cryptosporidium at the 18S rRNA (18S) locus using quantitative PCR (qPCR), oocyst numbers were determined directly from the qPCR data using DNA standards calibrated by droplet digital PCR, and positives were characterized using NGS of 18S amplicons. Positives were also screened using C. parvum and C. hominis specific qPCRs. The overall Cryptosporidium prevalence was 11.4% (83/730): 14.3% (3/21) in NSW; 10.8% (51/470) in QLD; and 12.1% (29/239) in WA. A total of 17 Cryptosporidium species and six genotypes were detected by NGS. In NSW, C. hominis and Cryptosporidium rat genotype III were the most prevalent species (9.5% each). In QLD, C. galli, C. muris and C. parvum were the three most prevalent species (7.7%, 5.7%, and 4.5%, respectively), while in WA, C. meleagridis was the most prevalent species (6.3%). The oocyst load/Litre ranged from 70 to 18,055 oocysts/L (overall mean of 3426 oocysts/L: 4746 oocysts/L in NSW; 3578 oocysts/L in QLD; and 3292 oocysts/L in WA). NGS-based profiling demonstrated that Cryptosporidium is prevalent in the raw influent across Australia and revealed a large diversity of Cryptosporidium species and genotypes, which indicates the potential contribution of livestock, wildlife and birds to wastewater contamination.
Collapse
Affiliation(s)
- Alireza Zahedi
- School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
| | - Alexander W Gofton
- School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
| | - Telleasha Greay
- School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
| | - Paul Monis
- Australian Water Quality Centre, South Australian Water Corporation, Adelaide, Australia
| | - Charlotte Oskam
- School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
| | | | | | - Andrew Watkinson
- Seqwater, Ipswich, Queensland, Australia; University of Queensland, St Lucia, Queensland, Australia
| | - Ian Robertson
- School of Veterinary and Life Sciences, Murdoch University, Perth, Australia; China-Australia Joint Research and Training Centre for Veterinary Epidemiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Una Ryan
- School of Veterinary and Life Sciences, Murdoch University, Perth, Australia.
| |
Collapse
|
32
|
Genetic Diversity and Population Structure of Cryptosporidium. Trends Parasitol 2018; 34:997-1011. [DOI: 10.1016/j.pt.2018.07.009] [Citation(s) in RCA: 269] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 12/14/2022]
|
33
|
Xiao S, Yin P, Zhang Y, Zhao X, Sun L, Yuan H, Lu J, Hu S. Occurrence, genotyping, and health risk of Cryptosporidium and Giardia in recreational lakes in Tianjin, China. WATER RESEARCH 2018; 141:46-56. [PMID: 29775772 DOI: 10.1016/j.watres.2018.05.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 06/08/2023]
Abstract
Cryptosporidium and Giardia are critical parasites in the etiology of diarrhea worldwide, and often cause waterborne outbreaks. The presence of Cryptosporidium and Giardia in recreational lakes was investigated with molecular characterization, and a comprehensive quantitative microbial risk assessment (QMRA) of protozoan infections was performed, considering multiple exposure pathways, differences in age, sex, and disease severity, and the genotypes of the protozoa. Forty-three (82.7%) and 51 (98.1%) water samples were positive for Cryptosporidium oocysts and Giardia cysts, respectively, with average counts of 3.65 oocysts/10 L and 12.58 cysts/10 L, respectively. Six Cryptosporidium species and three Giardia lamblia assemblages were confirmed with molecular analyses. The protozoan concentration was significantly associated with water turbidity, but not with the total coliform numbers. Swimming in the lakes entailed the highest incidence risk of 5.72 × 10-4 per person per year (pppy) (95% confidence interval (CI): 0.03-43.33 × 10-4) for Cryptosporidium and 4.04 × 10-4 pppy (95% CI: 0.01-32.66 × 10-4) for Giardia, whereas wading entailed the lowest risk (2.20 × 10-4 and 1.70 × 10-4 pppy, respectively). The annual burdens attributable to recreational-water-associated cryptosporidiosis and giardiasis were 3.44 (95% CI: 0.04-23.51) and 1.81 (95% CI: 0.01-12.96) disability-adjusted life years per 1,000,000 individuals per year, respectively. Children were more likely to have an individual disease burden than adults, and males were more likely than females. Sensitivity analysis highlighted the great importance of controlling the proportion of exposed individuals and reducing the frequency of exposure. The methodology and results of this study will allow us to better evaluate and reduce the burden of Cryptosporidium and/or Giardia infections associated with recreational water use in China and other countries.
Collapse
Affiliation(s)
- Shumin Xiao
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, PR China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin 300384, PR China.
| | - Pengna Yin
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, PR China
| | - Yan Zhang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, PR China
| | - Xiaoyun Zhao
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, PR China
| | - Liping Sun
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, PR China
| | - Hongying Yuan
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, PR China
| | - Jingfang Lu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, PR China
| | - Sike Hu
- School of Medicine, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
34
|
Adeyemo FE, Singh G, Reddy P, Stenström TA. Methods for the detection of Cryptosporidium and Giardia: From microscopy to nucleic acid based tools in clinical and environmental regimes. Acta Trop 2018; 184:15-28. [PMID: 29395034 DOI: 10.1016/j.actatropica.2018.01.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 12/21/2017] [Accepted: 01/22/2018] [Indexed: 01/18/2023]
Abstract
The detection and characterization of genotypes and sub genotypes of Cryptosporidium and Giardia is essential for their enumeration, surveillance, prevention, and control. Different diagnostic methods are available for the analysis of Cryptosporidium and Giardia including conventional phenotypic tools that face major limitations in the specific diagnosis of these protozoan parasites. The substantial advancement in the development of genetic signature based molecular tools for the quantification, diagnosis and genetic variation analysis has increased the understanding of the epidemiology and preventive measures of related infections. The conventional methods such as microscopy, antibody and enzyme based approaches, offer better detection results when combined with advanced molecular methods. Gene based approaches increase the precision of identification, for example, many signatures detected in environmental matrices represent species/genotype that are not infectious to humans. This review summarizes the available methods and the advantages and limitations of advance detection techniques like nucleic acid-based approaches for the detection of viable oocysts and cysts of Cryptosporidium and Giardia along with the conventional and widely accepted detection techniques like microscopy, antibody and enzyme based ones. This technical article also encourages the wide application of molecular methods in genetic characterization of distinct species of Cryptosporidium and Giardia, to adopt necessary preventive measures with reliable identification and mapping the source of contamination.
Collapse
Affiliation(s)
- Folasade Esther Adeyemo
- SARChI Chair, Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| | - Gulshan Singh
- SARChI Chair, Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa.
| | - Poovendhree Reddy
- Department of Community Health Studies, Faculty of Health Sciences, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| | - Thor Axel Stenström
- SARChI Chair, Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| |
Collapse
|
35
|
Díaz P, Varcasia A, Pipia AP, Tamponi C, Sanna G, Prieto A, Ruiu A, Spissu P, Díez-Baños P, Morrondo P, Scala A. Molecular characterisation and risk factor analysis of Cryptosporidium spp. in calves from Italy. Parasitol Res 2018; 117:3081-3090. [PMID: 30008134 PMCID: PMC7088234 DOI: 10.1007/s00436-018-6000-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 07/04/2018] [Indexed: 11/27/2022]
Abstract
To provide up-to-date information on the occurrence of Cryptosporidium in pre-weaned calves from Sardinia (Italy), the species implicated and their zoonotic potential, 147 faecal samples from 22 cattle herds were microscopically examined for Cryptosporidium oocysts; positive isolates were molecularly characterised. A questionnaire was developed to identify risk factors for Cryptosporidium infection. Overall, the percentage of positive calves and farms was 38.8 and 68.2%, respectively. The SSU rRNA-based PCR identified two Cryptosporidium species, Cryptosporidium parvum (95.8%) and C. bovis (4.2%). Sequence analyses of the glycoprotein (gp60) gene revealed that all C. parvum isolates belonged to the subtype family IIa (IIaA15G2R1 and IIaA16G3R1), with the exception of three isolates that belonged to the subtype family IId (IIdA20G1b and IIdA20). Mixed logistic regression results indicated that calves aged 15-21 days were more likely to be Cryptosporidium-positive. The risk of being positive was also significantly higher in herds from Central Sardinia and in farms using non-slatted flooring. In addition, the application of disinfectants and milk replacers was significantly associated with higher Cryptosporidium prevalence. In contrast, the risk of being positive was significantly reduced in halofuginone-treated calves. Our results reveal that a significant percentage of suckling calves are carriers of zoonotic subtypes of C. parvum. Thus, both healthy and diarrhoeic calves younger than 1 month may represent a risk for the transmission of cryptosporidiosis in humans and animals.
Collapse
Affiliation(s)
- P Díaz
- Investigation in Animal Health: Galicia (INVESAGA Group), School of Veterinary Medicine, Universidade de Santiago de Compostela, Lugo, Spain.
| | - A Varcasia
- Laboratory of Parasitology, Veterinary Teaching Hospital, Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - A P Pipia
- Laboratory of Parasitology, Veterinary Teaching Hospital, Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - C Tamponi
- Laboratory of Parasitology, Veterinary Teaching Hospital, Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - G Sanna
- Laboratory of Parasitology, Veterinary Teaching Hospital, Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - A Prieto
- Investigation in Animal Health: Galicia (INVESAGA Group), School of Veterinary Medicine, Universidade de Santiago de Compostela, Lugo, Spain
| | - A Ruiu
- Experimental Zooprophylactic Institute of Sardinia, Oristano, Italy
| | - P Spissu
- Regional Association of Sardinian Farmers, Cagliari, Italy
| | - P Díez-Baños
- Investigation in Animal Health: Galicia (INVESAGA Group), School of Veterinary Medicine, Universidade de Santiago de Compostela, Lugo, Spain
| | - P Morrondo
- Investigation in Animal Health: Galicia (INVESAGA Group), School of Veterinary Medicine, Universidade de Santiago de Compostela, Lugo, Spain
| | - A Scala
- Laboratory of Parasitology, Veterinary Teaching Hospital, Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| |
Collapse
|
36
|
Zahedi A, Monis P, Gofton AW, Oskam CL, Ball A, Bath A, Bartkow M, Robertson I, Ryan U. Cryptosporidium species and subtypes in animals inhabiting drinking water catchments in three states across Australia. WATER RESEARCH 2018; 134:327-340. [PMID: 29438893 DOI: 10.1016/j.watres.2018.02.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/22/2018] [Accepted: 02/04/2018] [Indexed: 06/08/2023]
Abstract
As part of long-term monitoring of Cryptosporidium in water catchments serving Western Australia, New South Wales (Sydney) and Queensland, Australia, we characterised Cryptosporidium in a total of 5774 faecal samples from 17 known host species and 7 unknown bird samples, in 11 water catchment areas over a period of 30 months (July 2013 to December 2015). All samples were initially screened for Cryptosporidium spp. at the 18S rRNA locus using a quantitative PCR (qPCR). Positives samples were then typed by sequence analysis of an 825 bp fragment of the 18S gene and subtyped at the glycoprotein 60 (gp60) locus (832 bp). The overall prevalence of Cryptosporidium across the various hosts sampled was 18.3% (1054/5774; 95% CI, 17.3-19.3). Of these, 873 samples produced clean Sanger sequencing chromatograms, and the remaining 181 samples, which initially produced chromatograms suggesting the presence of multiple different sequences, were re-analysed by Next- Generation Sequencing (NGS) to resolve the presence of Cryptosporidium and the species composition of potential mixed infections. The overall prevalence of confirmed mixed infection was 1.7% (98/5774), and in the remaining 83 samples, NGS only detected one species of Cryptosporidium. Of the 17 Cryptosporidium species and four genotypes detected (Sanger sequencing combined with NGS), 13 are capable of infecting humans; C. parvum, C. hominis, C. ubiquitum, C. cuniculus, C. meleagridis, C. canis, C. felis, C. muris, C. suis, C. scrofarum, C. bovis, C. erinacei and C. fayeri. Oocyst numbers per gram of faeces (g-1) were also determined using qPCR, with medians varying from 6021-61,064 across the three states. The significant findings were the detection of C. hominis in cattle and kangaroo faeces and the high prevalence of C. parvum in cattle. In addition, two novel C. fayeri subtypes (IVaA11G3T1 and IVgA10G1T1R1) and one novel C. meleagridis subtype (IIIeA18G2R1) were identified. This is also the first report of C. erinacei in Australia. Future work to monitor the prevalence of Cryptosporidium species and subtypes in animals in these catchments is warranted.
Collapse
Affiliation(s)
- Alireza Zahedi
- School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
| | - Paul Monis
- Australian Water Quality Centre, South Australian Water Corporation, Adelaide, Australia
| | - Alexander W Gofton
- School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
| | - Charlotte L Oskam
- School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
| | | | | | | | - Ian Robertson
- School of Veterinary and Life Sciences, Murdoch University, Perth, Australia; China-Australia Joint Research and Training Center for Veterinary Epidemiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Una Ryan
- School of Veterinary and Life Sciences, Murdoch University, Perth, Australia.
| |
Collapse
|
37
|
Razakandrainibe R, Diawara EHI, Costa D, Le Goff L, Lemeteil D, Ballet JJ, Gargala G, Favennec L. Common occurrence of Cryptosporidium hominis in asymptomatic and symptomatic calves in France. PLoS Negl Trop Dis 2018; 12:e0006355. [PMID: 29596411 PMCID: PMC5892941 DOI: 10.1371/journal.pntd.0006355] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 04/10/2018] [Accepted: 02/28/2018] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Cryptosporidium spp. infections are the most frequent parasitic cause of diarrhea in humans and cattle. However, asymptomatic cases are less often documented than symptomatic cases or cases with experimentally infected animals. Cryptosporidium (C.) hominis infection accounts for the majority of pediatric cases in several countries, while C. parvum is a major cause of diarrhea in neonatal calves. In cattle Cryptosporidium spp. infection can be caused by C. parvum, C. bovis, C.andersoni and C. ryanae, and recently, reports of cattle cases of C. hominis cryptosporidiosis cases suggest that the presence of C. hominis in calves was previously underestimated. METHODOLOGY/PRINCIPAL FINDINGS From February to November 2015, Cryptosporidium spp. infected calves were detected in 29/44 randomly included farms from 5 geographic regions of France. C. hominis and C. parvum were found in 12/44 and 26/44 farms, respectively with higher C. hominis prevalence in the western region. In 9 farms, both C. parvum and C. hominis were detected. Eighty-six of 412 (73/342 asymptomatic and 13/70 symptomatic) one to nine-week-old calves shed C. hominis or C. parvum oocysts (15 and 71 calves, respectively), with no mixed infection detected. The predominant C. hominis IbA9G3 genotype was present in all regions, and more frequent in the western region. An incompletely characterized Ib, and the IbA13G3, IbA9G2 and IbA14G2 genotypes were present only in the western region. For C. parvum, the most frequent genotype was IIaA16G3R1 with no geographic clustering. Most C. hominis infected calves were asymptomatic, with some exceptions of IbA9G2 and IbA9G3 isolates, while C. parvum IIaA16G3R1 was associated with symptoms. CONCLUSIONS/SIGNIFICANCE Present results indicate for the first time that in several geographic regions of France, C. hominis was present in about one fifth of both asymptomatic and symptomatic infected calves, with isolated genotypes likely associated with human infection. Further investigations are aimed at documenting direct or indirect transmissions between livestock and humans.
Collapse
Affiliation(s)
- Romy Razakandrainibe
- Normandie Université, UNIROUEN, EA3800, CNR laboratoire expert Cryptosporidiose, Rouen, France
| | | | - Damien Costa
- Normandie Université, UNIROUEN, EA3800, CNR laboratoire expert Cryptosporidiose, Rouen, France
| | - Laetitia Le Goff
- Normandie Université, UNIROUEN, EA3800, CNR laboratoire expert Cryptosporidiose, Rouen, France
| | - Denis Lemeteil
- Normandie Université, UNIROUEN, EA3800, CNR laboratoire expert Cryptosporidiose, Rouen, France
| | - Jean Jacques Ballet
- Normandie Université, UNIROUEN, EA3800, CNR laboratoire expert Cryptosporidiose, Rouen, France
| | - Gilles Gargala
- Normandie Université, UNIROUEN, EA3800, CNR laboratoire expert Cryptosporidiose, Rouen, France
| | - Loïc Favennec
- Normandie Université, UNIROUEN, EA3800, CNR laboratoire expert Cryptosporidiose, Rouen, France
| |
Collapse
|
38
|
Xiao S, Zhang Y, Zhao X, Sun L, Hu S. Presence and molecular characterization of Cryptosporidium and Giardia in recreational lake water in Tianjin, China: a preliminary study. Sci Rep 2018; 8:2353. [PMID: 29402951 PMCID: PMC5799358 DOI: 10.1038/s41598-018-20902-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/26/2018] [Indexed: 01/23/2023] Open
Abstract
Little is known about the occurrence of Cryptosporidium and Giardia in recreational water in China. A total of 52 samples were collected from recreational lakes in Tianjin during a high-occurrence season (June-October) for the waterborne cryptosporidiosis and giardiasis, and the occurrence and genotypes of Cryptosporidium and Giardia were investigated. The results showed that 82.7% (43) and 98.1% (51) of samples were positive for Cryptosporidium oocyst and Giardia cysts, respectively. The mean concentration of parasites was 3.65 oocysts/10 L and 12.58 cysts/10 L, respectively. Molecular characterization revealed that the presence of Cryptosporidium parvum, C. andersoni, C. hominis, C. meleagridis, C. fragile, C. ubiquitum, and Giardia lamblia assemblage A, B and D. The protozoan contamination in the studied lakes may originate from animal feces on ground, which was washed into the lake by stormwater runoff. Nevertheless, there is a potential risk of infection during recreational activities in the lake because the dominant detected protozoan genotypes are common human pathogens. Moreover, microbial indicators analysis does not adequately indicate the protozoan contamination in recreational water. The information from this study will be valuable for future protozoan source tracking, and any further control interventions against Cryptosporidium and/or Giardia infection associated with recreational water.
Collapse
Affiliation(s)
- Shumin Xiao
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, P.R. China.
- Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin, 300384, P.R. China.
| | - Yan Zhang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, P.R. China
| | - Xiaoyun Zhao
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, P.R. China
| | - Liping Sun
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, P.R. China
| | - Sike Hu
- School of Medicine, Nankai University, Tianjin, 300071, P.R. China.
| |
Collapse
|
39
|
Koehler AV, Korhonen PK, Hall RS, Young ND, Wang T, Haydon SR, Gasser RB. Use of a bioinformatic-assisted primer design strategy to establish a new nested PCR-based method for Cryptosporidium. Parasit Vectors 2017; 10:509. [PMID: 29061171 PMCID: PMC5654123 DOI: 10.1186/s13071-017-2462-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 10/09/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The accurate tracking of Cryptosporidium in faecal, water and/or soil samples in water catchment areas is central to developing strategies to manage the potential risk of cryptosporidiosis transmission to humans. Various PCR assays are used for this purpose. Although some assays achieve specific amplification from Cryptosporidium DNA in animal faecal samples, some do not. Indeed, we have observed non-specificity of some oligonucleotide primers in the small subunit of nuclear ribosomal RNA gene (SSU), which has presented an obstacle to the identification and classification of Cryptosporidium species and genotypes (taxa) from faecal samples. RESULTS Using a novel bioinformatic approach, we explored all available Cryptosporidium genome sequences for new and diagnostically-informative, multi-copy regions to specifically design oligonucleotide primers in the large subunit of nuclear ribosomal RNA gene (LSU) as a basis for an effective nested PCR-based sequencing method for the identification and/or classification of Cryptosporidium taxa. CONCLUSION This newly established PCR, which has high analytical specificity and sensitivity, is now in routine use in our laboratory, together with other assays developed by various colleagues. Although the present bioinformatic workflow used here was for the specific design of primers in nuclear DNA of Cryptosporidium, this approach should be broadly applicable to many other microorganisms.
Collapse
Affiliation(s)
- Anson V Koehler
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Pasi K Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Ross S Hall
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Neil D Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | | | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
40
|
Caradonna T, Marangi M, Del Chierico F, Ferrari N, Reddel S, Bracaglia G, Normanno G, Putignani L, Giangaspero A. Detection and prevalence of protozoan parasites in ready-to-eat packaged salads on sale in Italy. Food Microbiol 2017. [DOI: 10.1016/j.fm.2017.06.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
41
|
Next Generation Sequencing uncovers within-host differences in the genetic diversity of Cryptosporidium gp60 subtypes. Int J Parasitol 2017; 47:601-607. [DOI: 10.1016/j.ijpara.2017.03.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/23/2017] [Accepted: 03/31/2017] [Indexed: 12/21/2022]
|
42
|
Ng-Hublin JSY, Combs B, Reid S, Ryan U. Differences in the occurrence and epidemiology of cryptosporidiosis in Aboriginal and non-Aboriginal people in Western Australia (2002-2012). INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2017; 53:100-106. [PMID: 28536073 DOI: 10.1016/j.meegid.2017.05.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/16/2017] [Accepted: 05/20/2017] [Indexed: 01/08/2023]
Abstract
Cryptosporidiosis is a diarrhoeal illness caused by the protozoan parasite Cryptosporidium. In Australia, very little is known about the epidemiology of cryptosporidiosis in Aboriginal peoples. The present study analysed long-term cryptosporidiosis patterns across Western Australia (WA) (2001-2012), combined with genotyping and subtyping data at the 18S and glycoprotein 60 (gp60) loci respectively. Comparison of cryptosporidiosis notifications between Aboriginal and non-Aboriginal people in WA, revealed that notification rates among Aboriginal people were up to 50 times higher compared to non-Aboriginal people, highlighting the burden of the disease in this population. More than 90% of notifications were in Aboriginal children aged 00-04years, who had a notification rate 20.5 times higher than non-Aboriginal children in the same age group. Cryptosporidium hominis was the predominant species infecting both Aboriginal and non-Aboriginal people. However, Aboriginal people were mainly infected with the C. hominis IdA15G1 subtype, whereas non-Aboriginal people were predominantly infected with the IbA10G2 subtype. To control cryptosporidiosis in Aboriginal populations in Australia, effective health interventions/promotions need to be a priority for public health research and action.
Collapse
Affiliation(s)
| | - Barry Combs
- OzFoodNet Communicable Disease Control Directorate, Perth, Western Australia, Australia
| | - Simon Reid
- The University of Queensland, School of Public Health, Herston, Queensland 4006, Australia
| | - Una Ryan
- School of Veterinary and Life Sciences, Murdoch University, Perth, Australia.
| |
Collapse
|
43
|
Symptoms and risk factors of Cryptosporidium hominis infection in children: data from a large waterborne outbreak in Sweden. Parasitol Res 2017; 116:2613-2618. [PMID: 28776228 PMCID: PMC5599474 DOI: 10.1007/s00436-017-5558-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/10/2017] [Indexed: 12/24/2022]
Abstract
Cryptosporidium is a major cause of diarrheal disease worldwide. In developing countries, this infection is endemic and in children, associated with growth faltering and cognitive function deficits, with the most severe impact on those aged <2 years. Little has been reported about symptoms and risk factors for children in industrialized countries, although the disease incidence is increasing in such regions. In November 2010, a large waterborne outbreak of C. hominis occurred in the city of Östersund in Sweden. Approximately 27,000 of the 60,000 inhabitants were symptomatic. We aimed to describe duration of symptoms and the risk factors for infection with C. hominis in children aged <15 years in a Western setting. Within 2 months after a boil water advisory, a questionnaire was sent to randomly selected inhabitants of all ages, including 753 children aged <15 years. Those with ≥3 loose stools/day were defined as cases of diarrhoea. The response rate was 70.3%, and 211 children (39.9%) fulfilled the case definition. Mean duration of diarrhoea was 7.5 days (median 6, range 1-80 days). Recurrence, defined as a new episode of diarrhoea after ≥2 days of normal stools, occurred in 52.5% of the cases. Significant risk factors for infection, besides living within the distribution area of the contaminated water plant, included a high level of water consumption, male sex, and a previous history of loose stools. The outbreak was characterized by high attack and recurrence rates, emphasizing the necessity of water surveillance to prevent future outbreaks.
Collapse
|
44
|
Cryptosporidium infection in children with cancer undergoing chemotherapy: how important is the prevention of opportunistic parasitic infections in patients with malignancies? Parasitol Res 2017; 116:2507-2515. [PMID: 28730516 DOI: 10.1007/s00436-017-5560-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/12/2017] [Indexed: 12/20/2022]
Abstract
Cryptosporidiosis is a relatively uncommon disease in healthy individuals but could be potentially worrisome in immunocompromised patients. This study aimed to evaluate Cryptosporidium infection in children with cancer undergoing chemotherapy. A case-control study was conducted in 132 children with cancer undergoing chemotherapy and 132 non-cancer controls. The modified Ziehl-Neelsen (MZN) staining and polymerase chain reaction methods were used for the detection of Cryptosporidium parasite. All positive isolates were sequenced for phylogenetic analysis. Statistical analysis was performed using the SPSS version 16 and Fisher exact test. The rate of cryptosporidiosis in children with cancer undergoing chemotherapy was 3.8%, which was higher than that of the control group. Other intestinal parasites detected in patients with cancer included Giardia lamblia (3%), Entamoeba coli (1.5%), and Chilomastix mesnili (0.8%). In the control group, only two (1.5%) cases were positive for G. lamblia. No significant difference was observed between the gender, age, residency, contact with domestic animals, stool appearance, neutropenia, chemotherapy period, and type of malignancy with regard to cryptosporidiosis. Phylogenetic analysis revealed that Cryptosporidium parvum isolates in this study relied on a branch that represents similar sequences from Iran and other countries. Although the rate of Cryptosporidium infection was relatively higher in children with cancer undergoing chemotherapy compared to the control group, any statistically significant difference has not been found between them. These findings should not be contrary to the need for healthcare to prevent opportunistic parasitic infections in malignant and immunocompromised patients.
Collapse
|
45
|
Local and global genetic diversity of protozoan parasites: Spatial distribution of Cryptosporidium and Giardia genotypes. PLoS Negl Trop Dis 2017; 11:e0005736. [PMID: 28704362 PMCID: PMC5526614 DOI: 10.1371/journal.pntd.0005736] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 07/25/2017] [Accepted: 06/21/2017] [Indexed: 01/09/2023] Open
Abstract
Cryptosporidiosis and giardiasis are recognized as significant enteric diseases due to their long-term health effects in humans and their economic impact in agriculture and medical care. Molecular analysis is essential to identify species and genotypes causing these infectious diseases and provides a potential tool for monitoring. This study uses information on species and genetic variants to gain insights into the geographical distribution and spatial patterns of Cryptosporidium and Giardia parasites. Here, we describe the population heterogeneity of genotypic groups within Cryptosporidium and Giardia present in New Zealand using gp60 and gdh markers to compare the observed variation with other countries around the globe. Four species of Cryptosporidium (C. hominis, C. parvum, C. cuniculus and C. erinacei) and one species of Giardia (G. intestinalis) were identified. These species have been reported worldwide and there are not unique Cryptosporidium gp60 subtype families and Giardiagdh assemblages in New Zealand, most likely due to high gene flow of historical and current human activity (travel and trade) and persistence of large host population sizes. The global analysis revealed that genetic variants of these pathogens are widely distributed. However, genetic variation is underestimated by data biases (e.g. neglected submission of sequences to genetic databases) and low sampling. New genotypes are likely to be discovered as sampling efforts increase according to accumulation prediction analyses, especially for C. parvum. Our study highlights the need for greater sampling and archiving of genotypes globally to allow comparative analyses that help understand the population dynamics of these protozoan parasites. Overall our study represents a comprehensive overview for exploring local and global protozoan genotype diversity and advances our understanding of the importance for surveillance and potential risk associated with these infectious diseases. Infectious diseases threaten the health and well-being of wildlife, livestock and human populations and contribute to significant economic impact in agriculture and medical care. Cryptosporidium and Giardia are enteric protozoan pathogens that cause diarrhea and nutritional disorders on a global level. Using molecular analysis and a review framework we showed that species and genetic variants within genera Cryptosporidium and Giardia (including two species recently infecting humans) found in an island system are not different from other parts of the world. This similarity is likely due to high gene flow of historical and current human activity (travel and trade) and persistence of large host population sizes, such as cattle and people. We also show that, although species and genotypes are widely distributed, new variants will arise when sampling effort increase and their dispersal will be facilitated by human activity. These findings suggest that geographical distribution of species and genotypes within Cryptosporidium and Giardia parasites may yield important clues for designing effective surveillance strategies and identification of factors driving within and cross species transmission.
Collapse
|
46
|
Barbosa A, Reiss A, Jackson B, Warren K, Paparini A, Gillespie G, Stokeld D, Irwin P, Ryan U. Prevalence, genetic diversity and potential clinical impact of blood-borne and enteric protozoan parasites in native mammals from northern Australia. Vet Parasitol 2017; 238:94-105. [DOI: 10.1016/j.vetpar.2017.04.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/15/2017] [Accepted: 04/03/2017] [Indexed: 12/29/2022]
|
47
|
Public health significance of zoonotic Cryptosporidium species in wildlife: Critical insights into better drinking water management. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2015; 5:88-109. [PMID: 28560163 PMCID: PMC5439462 DOI: 10.1016/j.ijppaw.2015.12.001] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/01/2015] [Accepted: 12/02/2015] [Indexed: 11/22/2022]
Abstract
Cryptosporidium is an enteric parasite that is transmitted via the faecal-oral route, water and food. Humans, wildlife and domestic livestock all potentially contribute Cryptosporidium to surface waters. Human encroachment into natural ecosystems has led to an increase in interactions between humans, domestic animals and wildlife populations. Increasing numbers of zoonotic diseases and spill over/back of zoonotic pathogens is a consequence of this anthropogenic disturbance. Drinking water catchments and water reservoir areas have been at the front line of this conflict as they can be easily contaminated by zoonotic waterborne pathogens. Therefore, the epidemiology of zoonotic species of Cryptosporidium in free-ranging and captive wildlife is of increasing importance. This review focuses on zoonotic Cryptosporidium species reported in global wildlife populations to date, and highlights their significance for public health and the water industry.
Collapse
|