1
|
Monti N, Antinori D, Proietti S, Piombarolo A, Querqui A, Lentini G, Liguoro D, Aventaggiato M, Lucarelli M, Pensotti A, Giuliani A, Tafani M, Fuso A, Bizzarri M. miRNAs from Zebrafish Embryo Extracts Inhibit Breast Cancer Invasiveness and Migration by Modulating miR-218-5p/PI3K Pathway. Int J Mol Sci 2025; 26:3812. [PMID: 40332412 PMCID: PMC12027887 DOI: 10.3390/ijms26083812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/05/2025] [Accepted: 04/14/2025] [Indexed: 05/08/2025] Open
Abstract
Herein, we demonstrate that soluble factors extracted from the distinct phases of the development of zebrafish embryos (ZFEs) exhibit a specific miRNA profile. We removed proteins and concentrated miRNAs in different phase-related samples, which we investigated further. We observed that ZFEs modulate miRNA expression in both normal and cancerous breast cells, significantly inhibiting the invasiveness and motility of triple-negative breast cancer cells. Namely, ZFEs reactivate the synthesis of miR-218-5p in cancerous cells, leading to the downregulation of PI3K, which consequently alters the distribution of phosphoinositides (such as PIP2/PIP3). Moreover, the silencing of miR-218-5p abolished the ZFE effects. Restoring a proper PIP2/PIP3 ratio is crucial for promoting the regression of the malignant phenotype. Phenotypic reversion follows the extensive cytoskeleton rearrangement and the re-emergence of E-cadherin/β-catenin complexes. In addition, ZFEs antagonize the Epithelial Mesenchymal Transition (EMT) by modulating several pathways, including the TCTP-p53 axis. Overall, these results show that embryo extracts enriched with fish miRNAs reactivate endogenous miR-218-5p in cancerous cells, which in turn downregulates critical pathways involved in tumor progression and metastasis.
Collapse
Affiliation(s)
- Noemi Monti
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (D.A.); (A.P.); (A.Q.); (G.L.); (M.A.); (M.L.); (M.T.); (A.F.)
- System Biology Group Lab, Sapienza University of Rome, 00161 Rome, Italy;
| | - Daniele Antinori
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (D.A.); (A.P.); (A.Q.); (G.L.); (M.A.); (M.L.); (M.T.); (A.F.)
| | - Sara Proietti
- System Biology Group Lab, Sapienza University of Rome, 00161 Rome, Italy;
| | - Aurora Piombarolo
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (D.A.); (A.P.); (A.Q.); (G.L.); (M.A.); (M.L.); (M.T.); (A.F.)
- System Biology Group Lab, Sapienza University of Rome, 00161 Rome, Italy;
| | - Alessandro Querqui
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (D.A.); (A.P.); (A.Q.); (G.L.); (M.A.); (M.L.); (M.T.); (A.F.)
- System Biology Group Lab, Sapienza University of Rome, 00161 Rome, Italy;
| | - Guglielmo Lentini
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (D.A.); (A.P.); (A.Q.); (G.L.); (M.A.); (M.L.); (M.T.); (A.F.)
- System Biology Group Lab, Sapienza University of Rome, 00161 Rome, Italy;
| | - Domenico Liguoro
- SAFU Laboratory, Department of Research, Advanced Diagnostics and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Michele Aventaggiato
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (D.A.); (A.P.); (A.Q.); (G.L.); (M.A.); (M.L.); (M.T.); (A.F.)
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (D.A.); (A.P.); (A.Q.); (G.L.); (M.A.); (M.L.); (M.T.); (A.F.)
- Pasteur Institute, Cenci Bolognetti Foundation, Sapienza University of Rome, 00161 Rome, Italy
| | - Andrea Pensotti
- Research Unit of Philosophy of Science and Human Development, University Campus Bio-Medico of Rome, 00128 Rome, Italy;
| | - Alessandro Giuliani
- Environment and Health Department, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Marco Tafani
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (D.A.); (A.P.); (A.Q.); (G.L.); (M.A.); (M.L.); (M.T.); (A.F.)
| | - Andrea Fuso
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (D.A.); (A.P.); (A.Q.); (G.L.); (M.A.); (M.L.); (M.T.); (A.F.)
- CRiN, Center for Research in Neurobiology D. Bovet, Sapienza University of Rome, 00161 Rome, Italy
| | - Mariano Bizzarri
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (D.A.); (A.P.); (A.Q.); (G.L.); (M.A.); (M.L.); (M.T.); (A.F.)
- System Biology Group Lab, Sapienza University of Rome, 00161 Rome, Italy;
| |
Collapse
|
2
|
Taei A, Sajadi FS, Salahi S, Enteshari Z, Falah N, Shiri Z, Abasalizadeh S, Hajizadeh-Saffar E, Hassani SN, Baharvand H. The cell replacement therapeutic potential of human pluripotent stem cells. Expert Opin Biol Ther 2025; 25:47-67. [PMID: 39679436 DOI: 10.1080/14712598.2024.2443079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/29/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
INTRODUCTION The remarkable ability of human pluripotent stem cells (hPSCs) to differentiate into specialized cells of the human body emphasizes their immense potential in treating various diseases. Advances in hPSC technology are paving the way for personalized and allogeneic cell-based therapies. The first-in-human studies showed improved treatment of diseases with no adverse effects, which encouraged the industrial production of this type of medicine. To ensure the quality, safety and efficacy of hPSC-based products throughout their life cycle, it is important to monitor and control their clinical translation through good practices (GxP) regulations. Understanding these rules in advance will help ensure that the industrial development of hPSC-derived products for widespread clinical implementation is feasible and progresses rapidly. AREAS COVERED In this review, we discuss the key translational obstacles of hPSCs, outline the current hPSC-based clinical trials, and present a workflow for putative clinical hPSC-based products. Finally, we highlight some future therapeutic opportunities for hPSC-derivatives. EXPERT OPINION hPSC-based products continue to show promise for the treatment of a variety of diseases. While clinical trials support the relative safety and efficacy of hPSC-based products, further investigation is required to explore the clinical challenges and achieve exclusive regulations for hPSC-based cell therapies.
Collapse
Affiliation(s)
- Adeleh Taei
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Fatemeh-Sadat Sajadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Sarvenaz Salahi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Zahra Enteshari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Nasrin Falah
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Zahra Shiri
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Saeed Abasalizadeh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ensiyeh Hajizadeh-Saffar
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Seyedeh-Nafiseh Hassani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| |
Collapse
|
3
|
Abdouh M, Chen Y, Goyeneche A, Burnier MN. Blue Light-Induced Mitochondrial Oxidative Damage Underlay Retinal Pigment Epithelial Cell Apoptosis. Int J Mol Sci 2024; 25:12619. [PMID: 39684332 DOI: 10.3390/ijms252312619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Reactive oxygen species (ROS) play a pivotal role in apoptosis. We reported that Blue Light (BL) induced oxidative stress in human retinal pigment epithelial (RPE) cells in vitro and increased drusen deposition and RPE cell apoptosis in human eyes. Here, we investigated the mechanisms underlying BL-induced damage to RPE cells. Cells were exposed to BL with or without the antioxidant N-acetylcysteine. Cells were analyzed for levels of ROS, proliferation, viability, and mitochondria membrane potential (ΔΨM) fluctuation. We performed proteomic analyses to search for differentially expressed proteins. ROS levels increased following RPE cell exposure to BL. While ROS production did not affect RPE cell proliferation, it was accompanied by decreased ΔΨM and increased cell apoptosis due to the caspase cascade activation in a ROS-dependent manner. Proteomic analyses revealed that BL decreased the levels of ROS detoxifying enzymes in exposed cells. We conclude that BL-induced oxidative stress is cytotoxic to RPE cells. These findings bring new insights into the involvement of BL on RPE cell damage and its role in the progression of age-related macular degeneration. The use of antioxidants is an avenue to block or delay BL-mediated RPE cell apoptosis to counteract the disease progression.
Collapse
Affiliation(s)
- Mohamed Abdouh
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- The MUHC-McGill University Ocular Pathology & Translational Research Laboratory, McGill University, Montreal, QC H4A 3J1, Canada
| | - Yunxi Chen
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Alicia Goyeneche
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- The MUHC-McGill University Ocular Pathology & Translational Research Laboratory, McGill University, Montreal, QC H4A 3J1, Canada
| | - Miguel N Burnier
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- The MUHC-McGill University Ocular Pathology & Translational Research Laboratory, McGill University, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
4
|
Taskiran A, Oktem G, Demir A, Oltulu F, Ozcinar E, Duzagac F, Guven U, Karakoc E, Cakir A, Ayla S, Guven S, Acikgoz E. Embryonic microenvironment suppresses YY1 and YY1-related genes in prostate cancer stem cells. Pathol Res Pract 2024; 260:155467. [PMID: 39047662 DOI: 10.1016/j.prp.2024.155467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/03/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
Yin yang 1 (YY1), a transcription factor, plays crucial roles in cell fate specification, differentiation, and pluripotency during embryonic development. It is also involved in tumorigenesis, drug resistance, metastasis, and relapse caused by cancer stem cells (CSCs), particularly in prostate cancer (PCa). Targeting YY1 could potentially eliminate prostate CSCs (PCSCs) and provide novel therapeutic approaches. PCa tissues often exhibit elevated YY1 expression levels, especially in high-grade cases. Notably, high-grade PCa tissues from 58 PCa patients and CD133high/CD44high PCSCs isolated from DU145 PCa cell line by FACS both showed significantly increased YY1 expression as observed through immunofluorescence staining, respectively. To investigate the embryonic microenvironment impact on YY1 expression in CSC populations, firstly PCSCs were microinjected into the inner cell mass of blastocysts and then PCSCs were co-cultured with blastocysts. Next Generation Sequencing was used to analyze alterations in YY1 and related gene expressions. Interestingly, exposure to the embryonic microenvironment significantly reduced the expressions of YY1, YY2, and other relevant genes in PCSCs. These findings emphasize the tumor-suppressing effects of the embryonic environment by downregulating YY1 and YY1-related genes in PCSCs, thus providing promising strategies for PCa therapy. Through elucidating the mechanisms involved in embryonic reprogramming and its effects on YY1 expression, this research offers opportunities for further investigation into focused therapies directed against PCSCs, therefore enhancing the outcomes of PCa therapy. As a result, PCa tumors may benefit from YY1 and associated genes as a novel therapeutic target.
Collapse
Affiliation(s)
- Aysegul Taskiran
- Ege University Faculty of Medicine Department of Histology and Embryology, İzmir 35100, Turkey
| | - Gulperi Oktem
- Ege University Faculty of Medicine Department of Histology and Embryology, İzmir 35100, Turkey; Ege University Institute of Health Sciences Department of Stem Cell, İzmir 35100, Turkey
| | - Aleyna Demir
- Ege University Faculty of Medicine Department of Histology and Embryology, İzmir 35100, Turkey
| | - Fatih Oltulu
- Ege University Faculty of Medicine Department of Histology and Embryology, İzmir 35100, Turkey
| | - Emine Ozcinar
- İzmir Tinaztepe University Department of Histology and Embryology, İzmir 35400, Turkey
| | - Fahriye Duzagac
- University of Texas MD Anderson Cancer Center, Department of Clinical Cancer Prevention, Texas, Houston, TX 77030, USA
| | - Ummu Guven
- Università degli Studi di Milano Department of Biosciences, Milan 20122, Italy
| | - Emre Karakoc
- Wellcome Sanger Institute Translational Cancer Genomics, Hinxton, Cambridge CB10 1SA, UK
| | - Asli Cakir
- Istanbul Medipol University Faculty of Medicine Department of Pathology, İstanbul 34810, Turkey
| | - Sule Ayla
- Istanbul Medeniyet University Faculty of Medicine Department of Histology and Embryology, İstanbul 34700, Turkey
| | - Selcuk Guven
- Necmettin Erbakan University Meram Medical Faculty Department of Urology, Konya 42090, Turkey
| | - Eda Acikgoz
- Van Yuzuncu Yil University, Faculty of Medicine, Department of Histology and Embryology, Van 65090, Turkey.
| |
Collapse
|
5
|
El Hayek T, Alnaser-Almusa OA, Alsalameh SM, Alhalabi MT, Sabbah AN, Alshehri EA, Mir TA, Mani NK, Al-Kattan K, Chinnappan R, Yaqinuddin A. Emerging role of exosomal microRNA in liver cancer in the era of precision medicine; potential and challenges. Front Mol Biosci 2024; 11:1381789. [PMID: 38993840 PMCID: PMC11236732 DOI: 10.3389/fmolb.2024.1381789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 06/05/2024] [Indexed: 07/13/2024] Open
Abstract
Exosomal microRNAs (miRNAs) have great potential in the fight against hepatocellular carcinoma (HCC), the fourth most common cause of cancer-related death worldwide. In this study, we explored the various applications of these small molecules while analyzing their complex roles in tumor development, metastasis, and changes in the tumor microenvironment. We also discussed the complex interactions that exist between exosomal miRNAs and other non-coding RNAs such as circular RNAs, and show how these interactions coordinate important biochemical pathways that propel the development of HCC. The possibility of targeting exosomal miRNAs for therapeutic intervention is paramount, even beyond their mechanistic significance. We also highlighted their growing potential as cutting-edge biomarkers that could lead to tailored treatment plans by enabling early identification, precise prognosis, and real-time treatment response monitoring. This thorough analysis revealed an intricate network of exosomal miRNAs lead to HCC progression. Finally, strategies for purification and isolation of exosomes and advanced biosensing techniques for detection of exosomal miRNAs are also discussed. Overall, this comprehensive review sheds light on the complex web of exosomal miRNAs in HCC, offering valuable insights for future advancements in diagnosis, prognosis, and ultimately, improved outcomes for patients battling this deadly disease.
Collapse
Affiliation(s)
- Tarek El Hayek
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | | | | | | | - Eman Abdullah Alshehri
- Tissue/Organ Bioengineering and BioMEMS Laboratory, Organ Transplant Centre of Excellence (TR&I-Dpt), King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Tanveer Ahmad Mir
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Tissue/Organ Bioengineering and BioMEMS Laboratory, Organ Transplant Centre of Excellence (TR&I-Dpt), King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Naresh Kumar Mani
- Centre for Microfluidics, Biomarkers, Photoceutics and Sensors (μBioPS), Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India
| | - Khaled Al-Kattan
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Lung Health Center Department, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Raja Chinnappan
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Tissue/Organ Bioengineering and BioMEMS Laboratory, Organ Transplant Centre of Excellence (TR&I-Dpt), King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | | |
Collapse
|
6
|
Ten A, Kumeiko V, Farniev V, Gao H, Shevtsov M. Tumor Microenvironment Modulation by Cancer-Derived Extracellular Vesicles. Cells 2024; 13:682. [PMID: 38667297 PMCID: PMC11049026 DOI: 10.3390/cells13080682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/06/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
The tumor microenvironment (TME) plays an important role in the process of tumorigenesis, regulating the growth, metabolism, proliferation, and invasion of cancer cells, as well as contributing to tumor resistance to the conventional chemoradiotherapies. Several types of cells with relatively stable phenotypes have been identified within the TME, including cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), neutrophils, and natural killer (NK) cells, which have been shown to modulate cancer cell proliferation, metastasis, and interaction with the immune system, thus promoting tumor heterogeneity. Growing evidence suggests that tumor-cell-derived extracellular vesicles (EVs), via the transfer of various molecules (e.g., RNA, proteins, peptides, and lipids), play a pivotal role in the transformation of normal cells in the TME into their tumor-associated protumorigenic counterparts. This review article focuses on the functions of EVs in the modulation of the TME with a view to how exosomes contribute to the transformation of normal cells, as well as their importance for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Artem Ten
- School of Medicine and Life Sciences, Far Eastern Federal University, 690922 Vladivostok, Russia; (A.T.); (V.K.); (V.F.)
| | - Vadim Kumeiko
- School of Medicine and Life Sciences, Far Eastern Federal University, 690922 Vladivostok, Russia; (A.T.); (V.K.); (V.F.)
| | - Vladislav Farniev
- School of Medicine and Life Sciences, Far Eastern Federal University, 690922 Vladivostok, Russia; (A.T.); (V.K.); (V.F.)
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, China;
| | - Maxim Shevtsov
- School of Medicine and Life Sciences, Far Eastern Federal University, 690922 Vladivostok, Russia; (A.T.); (V.K.); (V.F.)
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave., 4, 194064 St. Petersburg, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, Akkuratova Str., 2, 197341 St. Petersburg, Russia
- Department of Radiation Oncology, Technishe Universität München (TUM), Klinikum Rechts der Isar, Ismaninger Str., 22, 81675 Munich, Germany
| |
Collapse
|
7
|
Pensotti A, Bizzarri M, Bertolaso M. The phenotypic reversion of cancer: Experimental evidences on cancer reversibility through epigenetic mechanisms (Review). Oncol Rep 2024; 51:48. [PMID: 38275101 PMCID: PMC10835663 DOI: 10.3892/or.2024.8707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/11/2024] [Indexed: 01/27/2024] Open
Abstract
Different experimental models reveal that malignant cancer cells can be induced to change their phenotype into a benign one. This phenotypic transformation, confirmed both in vitro and in vivo, currently is known as 'tumor reversion'. This evidence raises a radical question among current cancer models: Is cancer reversible? How do genetic and epigenetic alterations hierarchically relate? Understanding the mechanisms of 'tumor reversion' represents a key point in order to evolve the actual cancer models and develop new heuristic models that can possibly lead to drugs that target epigenetic mechanisms, for example epigenetic drugs. Even though evidence of tumor reversion dates back to the 1950s, this remains a completely new field of research recently re‑discovered thanks to the interest in cell reprogramming research, developmental biology and the increasing understanding of epigenetic mechanisms. In the current review, a comprehensive review of all the main experimental models on tumor reversion was presented.
Collapse
Affiliation(s)
- Andrea Pensotti
- Research Unit of Philosophy of Science and Human Development, University Campus Bio‑Medico of Rome, I‑00128 Rome, Italy
| | - Mariano Bizzarri
- Systems Biology Group Lab, Department of Experimental Medicine, Sapienza University, I‑00185 Rome, Italy
| | - Marta Bertolaso
- Research Unit of Philosophy of Science and Human Development, University Campus Bio‑Medico of Rome, I‑00128 Rome, Italy
| |
Collapse
|
8
|
Bi Y, Chen J, Li Q, Li Y, Zhang L, Zhida L, Yuan F, Zhang R. Tumor-derived extracellular vesicle drug delivery system for chemo-photothermal-immune combination cancer treatment. iScience 2024; 27:108833. [PMID: 38333709 PMCID: PMC10850737 DOI: 10.1016/j.isci.2024.108833] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/27/2023] [Accepted: 01/03/2024] [Indexed: 02/10/2024] Open
Abstract
Tumor extracellular vesicles (EVs) demonstrate considerable promise for medication delivery and tumor targeting owing to their natural long-term blood circulation and tissue targeting capabilities. We extracted EVs from mouse breast cancer cell 4T1 using UV stimulation and differential centrifugation. To create a new nano-drug delivery system, the vesicle delivery system (EPM) loaded with melanin and paclitaxel albumin (PA), the collected EVs were repeatedly compressed on a 200 nm porous polycarbonate membrane with melanin and PA. Our findings suggest that EPM is readily absorbed by breast cancer and dendritic cells. EPM generates significant photoacoustic signals and photothermal effects when exposed to near-infrared light and can enhance the infiltration of CD8+ T cells in mouse tumor tissues. EPM is more cytotoxic than PA in in vivo and in vitro investigations. The efficacy of EPM in clinical transformation when paired with chemotherapy/photothermal/immunotherapy treatment is demonstrated in this study.
Collapse
Affiliation(s)
- Yanghui Bi
- Center of Gene Sequencing, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, P.R. China
| | - Jieya Chen
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences,Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, P.R. China
| | - Qing Li
- Center of Gene Sequencing, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, P.R. China
| | - Yan Li
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, P.R. China
| | - Ling Zhang
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Liu Zhida
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Fajia Yuan
- Shanxi Jinzhong Health School, Jinzhong 030600, P.R. China
| | - Ruiping Zhang
- The Radiology Department of Shanxi Provincial People’s Hospital, The Fifth Hospital of Shanxi Medical University, Taiyuan 030001, P.R. China
| |
Collapse
|
9
|
Chen Y, Zhou Y, Yan Z, Tong P, Xia Q, He K. Effect of infiltrating immune cells in tumor microenvironment on metastasis of hepatocellular carcinoma. Cell Oncol (Dordr) 2023; 46:1595-1604. [PMID: 37414962 DOI: 10.1007/s13402-023-00841-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2023] [Indexed: 07/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal and prevalent human malignancies, leading to poor prognosis due to its high recurrence and metastasis rates. In recent years it has become increasingly evident that the tumor microenvironment (TME) plays an important role in tumor progression and metastasis. Tumor microenvironment (TME) refers to the complex tissue environment of tumor occurrence and development. Here, we summarize the development of HCC and the role of cellular and non-cellular components of the TME in the metastasis HCC, with particular reference to tumor-infiltrating immune cells. We also discuss some of the possible therapeutic targets for the TME and the future prospectives of this evolving field. SIGNIFICANCE: This review provides a comprehensive analysis of the role of the infiltrating immune cells in TME in the metastasis of HCC and highlights the future outlook for targeted therapy of the TME in the context of recent experiments revealing a number of therapeutic targets targeting the TME.
Collapse
Affiliation(s)
- Yiwen Chen
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| | - Yuhang Zhou
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| | - Ziyang Yan
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| | - Peilin Tong
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China.
- Shanghai Institute of Transplantation, Shanghai, China.
| | - Kang He
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China.
- Shanghai Institute of Transplantation, Shanghai, China.
| |
Collapse
|
10
|
Li YR, Fang Y, Lyu Z, Zhu Y, Yang L. Exploring the dynamic interplay between cancer stem cells and the tumor microenvironment: implications for novel therapeutic strategies. J Transl Med 2023; 21:686. [PMID: 37784157 PMCID: PMC10546755 DOI: 10.1186/s12967-023-04575-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/28/2023] [Indexed: 10/04/2023] Open
Abstract
Cancer stem cells (CSCs) have emerged as key contributors to tumor initiation, growth, and metastasis. In addition, CSCs play a significant role in inducing immune evasion, thereby compromising the effectiveness of cancer treatments. The reciprocal communication between CSCs and the tumor microenvironment (TME) is observed, with the TME providing a supportive niche for CSC survival and self-renewal, while CSCs, in turn, influence the polarization and persistence of the TME, promoting an immunosuppressive state. Consequently, these interactions hinder the efficacy of current cancer therapies, necessitating the exploration of novel therapeutic approaches to modulate the TME and target CSCs. In this review, we highlight the intricate strategies employed by CSCs to evade immune surveillance and develop resistance to therapies. Furthermore, we examine the dynamic interplay between CSCs and the TME, shedding light on how this interaction impacts cancer progression. Moreover, we provide an overview of advanced therapeutic strategies that specifically target CSCs and the TME, which hold promise for future clinical and translational studies in cancer treatment.
Collapse
Affiliation(s)
- Yan-Ruide Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Ying Fang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Zibai Lyu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yichen Zhu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Lili Yang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
11
|
Castro-Pérez E, Singh M, Sadangi S, Mela-Sánchez C, Setaluri V. Connecting the dots: Melanoma cell of origin, tumor cell plasticity, trans-differentiation, and drug resistance. Pigment Cell Melanoma Res 2023; 36:330-347. [PMID: 37132530 PMCID: PMC10524512 DOI: 10.1111/pcmr.13092] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 02/17/2023] [Accepted: 04/17/2023] [Indexed: 05/04/2023]
Abstract
Melanoma, a lethal malignancy that arises from melanocytes, exhibits a multiplicity of clinico-pathologically distinct subtypes in sun-exposed and non-sun-exposed areas. Melanocytes are derived from multipotent neural crest cells and are present in diverse anatomical locations, including skin, eyes, and various mucosal membranes. Tissue-resident melanocyte stem cells and melanocyte precursors contribute to melanocyte renewal. Elegant studies using mouse genetic models have shown that melanoma can arise from either melanocyte stem cells or differentiated pigment-producing melanocytes depending on a combination of tissue and anatomical site of origin and activation of oncogenic mutations (or overexpression) and/or the repression in expression or inactivating mutations in tumor suppressors. This variation raises the possibility that different subtypes of human melanomas (even subsets within each subtype) may also be a manifestation of malignancies of distinct cells of origin. Melanoma is known to exhibit phenotypic plasticity and trans-differentiation (defined as a tendency to differentiate into cell lineages other than the original lineage from which the tumor arose) along vascular and neural lineages. Additionally, stem cell-like properties such as pseudo-epithelial-to-mesenchymal (EMT-like) transition and expression of stem cell-related genes have also been associated with the development of melanoma drug resistance. Recent studies that employed reprogramming melanoma cells to induced pluripotent stem cells have uncovered potential relationships between melanoma plasticity, trans-differentiation, and drug resistance and implications for cell or origin of human cutaneous melanoma. This review provides a comprehensive summary of the current state of knowledge on melanoma cell of origin and the relationship between tumor cell plasticity and drug resistance.
Collapse
Affiliation(s)
- Edgardo Castro-Pérez
- Center for Cellular and Molecular Biology of Diseases, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), City of Knowledge, Panama City, Panama
- Department of Genetics and Molecular Biology, University of Panama, Panama City, Panama
| | - Mithalesh Singh
- Department of Dermatology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, U.S.A
| | - Shreyans Sadangi
- Department of Dermatology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, U.S.A
| | - Carmen Mela-Sánchez
- Department of Genetics and Molecular Biology, University of Panama, Panama City, Panama
| | - Vijayasaradhi Setaluri
- Department of Dermatology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, U.S.A
- William S. Middleton VA Hospital, Madison, WI, U.S.A
| |
Collapse
|
12
|
Gnocchi D, Nikolic D, Paparella RR, Sabbà C, Mazzocca A. Cellular Adaptation Takes Advantage of Atavistic Regression Programs during Carcinogenesis. Cancers (Basel) 2023; 15:3942. [PMID: 37568758 PMCID: PMC10416974 DOI: 10.3390/cancers15153942] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/01/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Adaptation of cancer cells to extreme microenvironmental conditions (i.e., hypoxia, high acidity, and reduced nutrient availability) contributes to cancer resilience. Furthermore, neoplastic transformation can be envisioned as an extreme adaptive response to tissue damage or chronic injury. The recent Systemic-Evolutionary Theory of the Origin of Cancer (SETOC) hypothesizes that cancer cells "revert" to "primitive" characteristics either ontogenically (embryo-like) or phylogenetically (single-celled organisms). This regression may confer robustness and maintain the disordered state of the tissue, which is a hallmark of malignancy. Changes in cancer cell metabolism during adaptation may also be the consequence of altered microenvironmental conditions, often resulting in a shift toward lactic acid fermentation. However, the mechanisms underlying the robust adaptive capacity of cancer cells remain largely unknown. In recent years, cancer cells' metabolic flexibility has received increasing attention among researchers. Here, we focus on how changes in the microenvironment can affect cancer cell energy production and drug sensitivity. Indeed, changes in the cellular microenvironment may lead to a "shift" toward "atavistic" biologic features, such as the switch from oxidative phosphorylation (OXPHOS) to lactic acid fermentation, which can also sustain drug resistance. Finally, we point out new integrative metabolism-based pharmacological approaches and potential biomarkers for early detection.
Collapse
Affiliation(s)
| | | | | | | | - Antonio Mazzocca
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11, 70124 Bari, Italy; (D.G.); (D.N.); (R.R.P.); (C.S.)
| |
Collapse
|
13
|
Khodayari S, Khodayari H, Saeedi E, Mahmoodzadeh H, Sadrkhah A, Nayernia K. Single-Cell Transcriptomics for Unlocking Personalized Cancer Immunotherapy: Toward Targeting the Origin of Tumor Development Immunogenicity. Cancers (Basel) 2023; 15:3615. [PMID: 37509276 PMCID: PMC10377122 DOI: 10.3390/cancers15143615] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer immunotherapy is a promising approach for treating malignancies through the activation of anti-tumor immunity. However, the effectiveness and safety of immunotherapy can be limited by tumor complexity and heterogeneity, caused by the diverse molecular and cellular features of tumors and their microenvironments. Undifferentiated tumor cell niches, which we refer to as the "Origin of Tumor Development" (OTD) cellular population, are believed to be the source of these variations and cellular heterogeneity. From our perspective, the existence of distinct features within the OTD is expected to play a significant role in shaping the unique tumor characteristics observed in each patient. Single-cell transcriptomics is a high-resolution and high-throughput technique that provides insights into the genetic signatures of individual tumor cells, revealing mechanisms of tumor development, progression, and immune evasion. In this review, we explain how single-cell transcriptomics can be used to develop personalized cancer immunotherapy by identifying potential biomarkers and targets specific to each patient, such as immune checkpoint and tumor-infiltrating lymphocyte function, for targeting the OTD. Furthermore, in addition to offering a possible workflow, we discuss the future directions of, and perspectives on, single-cell transcriptomics, such as the development of powerful analytical tools and databases, that will aid in unlocking personalized cancer immunotherapy through the targeting of the patient's cellular OTD.
Collapse
Affiliation(s)
- Saeed Khodayari
- International Center for Personalized Medicine (P7MEDICINE), Luise-Rainer-Str. 6-12, 40235 Düsseldorf, Germany
| | - Hamid Khodayari
- International Center for Personalized Medicine (P7MEDICINE), Luise-Rainer-Str. 6-12, 40235 Düsseldorf, Germany
| | - Elnaz Saeedi
- Oxford Clinical Trials Research Unit, Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford OX3 7LD, UK
| | - Habibollah Mahmoodzadeh
- Breast Disease Research Center, Tehran University of Medical Sciences, Tehran 1819613844, Iran
| | | | - Karim Nayernia
- International Center for Personalized Medicine (P7MEDICINE), Luise-Rainer-Str. 6-12, 40235 Düsseldorf, Germany
| |
Collapse
|
14
|
Tang Y, Liu X, Sun M, Xiong S, Xiao N, Li J, He X, Xie J. Recent Progress in Extracellular Vesicle-Based Carriers for Targeted Drug Delivery in Cancer Therapy. Pharmaceutics 2023; 15:1902. [PMID: 37514088 PMCID: PMC10384044 DOI: 10.3390/pharmaceutics15071902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/19/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Extracellular vesicles (EVs) are small, membrane-based vesicles released by cells that play a critical role in various physiological and pathological processes. They act as vehicles for transporting a variety of endogenous cargo molecules, enabling intercellular communication. Due to their natural properties, EVs have emerged as a promising "cell-free therapy" strategy for treating various diseases, including cancer. They serve as excellent carriers for different therapeutics, including nucleic acids, proteins, small molecules, and other nanomaterials. Modifying or engineering EVs can improve the efficacy, targeting, specificity, and biocompatibility of EV-based therapeutics for cancer therapy. In this review, we comprehensively outline the biogenesis, isolation, and methodologies of EVs, as well as their biological functions. We then focus on specific applications of EVs as drug carriers in cancer therapy by citing prominent recent studies. Additionally, we discuss the opportunities and challenges for using EVs as pharmaceutical drug delivery vehicles. Ultimately, we aim to provide theoretical and technical support for the development of EV-based carriers for cancer treatment.
Collapse
Affiliation(s)
- Yaqin Tang
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xingyou Liu
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Meng Sun
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Su Xiong
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Nianting Xiao
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Jianchao Li
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Xiao He
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Jing Xie
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| |
Collapse
|
15
|
Matos BMD, Stimamiglio MA, Correa A, Robert AW. Human pluripotent stem cell-derived extracellular vesicles: From now to the future. World J Stem Cells 2023; 15:453-465. [PMID: 37342215 PMCID: PMC10277970 DOI: 10.4252/wjsc.v15.i5.453] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/14/2023] [Accepted: 04/13/2023] [Indexed: 05/26/2023] Open
Abstract
Extracellular vesicles (EVs) are nanometric particles that enclose cell-derived bioactive molecules in a lipid bilayer and serve as intercellular communication tools. Accordingly, in various biological contexts, EVs are reported to engage in immune modulation, senescence, and cell proliferation and differentiation. Therefore, EVs could be key elements for potential off-the-shelf cell-free therapy. Little has been studied regarding EVs derived from human pluripotent stem cells (hPSC-EVs), even though hPSCs offer good opportunities for induction of tissue regeneration and unlimited proliferative ability. In this review article, we provide an overview of studies using hPSC-EVs, focusing on identifying the conditions in which the cells are cultivated for the isolation of EVs, how they are characterized, and applications already demonstrated. The topics reported in this article highlight the incipient status of the studies in the field and the significance of hPSC-EVs’ prospective applications as PSC-derived cell-free therapy products.
Collapse
Affiliation(s)
- Bruno Moises de Matos
- Stem Cells Basic Biology Laboratory, Carlos Chagas Institute, Curitiba 81350010, Paraná, Brazil
| | | | - Alejandro Correa
- Stem Cells Basic Biology Laboratory, Carlos Chagas Institute, Curitiba 81350010, Paraná, Brazil
| | - Anny Waloski Robert
- Stem Cells Basic Biology Laboratory, Carlos Chagas Institute, Curitiba 81350010, Paraná, Brazil
| |
Collapse
|
16
|
Ji S, Xiong M, Chen H, Liu Y, Zhou L, Hong Y, Wang M, Wang C, Fu X, Sun X. Cellular rejuvenation: molecular mechanisms and potential therapeutic interventions for diseases. Signal Transduct Target Ther 2023; 8:116. [PMID: 36918530 PMCID: PMC10015098 DOI: 10.1038/s41392-023-01343-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/16/2022] [Accepted: 01/19/2023] [Indexed: 03/16/2023] Open
Abstract
The ageing process is a systemic decline from cellular dysfunction to organ degeneration, with more predisposition to deteriorated disorders. Rejuvenation refers to giving aged cells or organisms more youthful characteristics through various techniques, such as cellular reprogramming and epigenetic regulation. The great leaps in cellular rejuvenation prove that ageing is not a one-way street, and many rejuvenative interventions have emerged to delay and even reverse the ageing process. Defining the mechanism by which roadblocks and signaling inputs influence complex ageing programs is essential for understanding and developing rejuvenative strategies. Here, we discuss the intrinsic and extrinsic factors that counteract cell rejuvenation, and the targeted cells and core mechanisms involved in this process. Then, we critically summarize the latest advances in state-of-art strategies of cellular rejuvenation. Various rejuvenation methods also provide insights for treating specific ageing-related diseases, including cellular reprogramming, the removal of senescence cells (SCs) and suppression of senescence-associated secretory phenotype (SASP), metabolic manipulation, stem cells-associated therapy, dietary restriction, immune rejuvenation and heterochronic transplantation, etc. The potential applications of rejuvenation therapy also extend to cancer treatment. Finally, we analyze in detail the therapeutic opportunities and challenges of rejuvenation technology. Deciphering rejuvenation interventions will provide further insights into anti-ageing and ageing-related disease treatment in clinical settings.
Collapse
Affiliation(s)
- Shuaifei Ji
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Mingchen Xiong
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Huating Chen
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Yiqiong Liu
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Laixian Zhou
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Yiyue Hong
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Mengyang Wang
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, 999078, Macau SAR, China.
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China.
| | - Xiaoyan Sun
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China.
| |
Collapse
|
17
|
Naeem P, Baumgartner A, Ghaderi N, Sefat F, Alhawamdeh M, Heidari S, Shahzad F, Swaminathan K, Akhbari P, Isreb M, Anderson D, Wright A, Najafzadeh M. Anticarcinogenic impact of extracellular vesicles (exosomes) from cord blood stem cells in malignant melanoma: A potential biological treatment. J Cell Mol Med 2022; 27:222-231. [PMID: 36545841 PMCID: PMC9843520 DOI: 10.1111/jcmm.17639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/19/2022] [Accepted: 10/28/2022] [Indexed: 12/24/2022] Open
Abstract
Incidence of Malignant Melanoma has become the 5th in the UK. To date, the major anticancer therapeutics include cell therapy, immunotherapy, gene therapy and nanotechnology-based strategies. Recently, extracellular vesicles, especially exosomes, have been highlighted for their therapeutic benefits in numerous chronic diseases. Exosomes display multifunctional properties, including inhibition of cancer cell proliferation and initiation of apoptosis. In the present in vitro study, the antitumour effect of cord blood stem cell (CBSC)-derived exosomes was confirmed by the CCK-8 assay (p < 0.05) on CHL-1 melanoma cells and improve the repair mechanism on lymphocytes from melanoma patients. Importantly, no significant effect was observed in healthy lymphocytes when treated with the exosome concentrations at 24, 48 and 72 h. Comet assay results (OTM and %Tail DNA) demonstrated that the optimal exosome concentration showed a significant impact (p < 0.05) in lymphocytes from melanoma patients whilst causing no significant DNA damage in lymphocytes of healthy volunteers was 300 μg/ml. Similarly, the Comet assay results depicted significant DNA damage in a melanoma cell line (CHL-1 cells) treated with CBSC-derived exosomes, both the cytotoxicity of CHL-1 cells treated with CBSC-derived exosomes exhibited a significant time-dependent decrease in cell survival. Sequencing analysis of CBSC exosomes showed the presence of the let-7 family of miRNAs, including let-7a-5p, let-7b-5p, let-7c-5p, let-7d-3p, let-7d-5p and two novel miRNAs. The potency of CBSC exosomes in inhibiting cancer progression in lymphocytes from melanoma patients and CHL-1 cells whilst causing no harm to the healthy lymphocytes makes it a potential candidate as an anticancer therapy.
Collapse
Affiliation(s)
- Parisa Naeem
- School of Life SciencesUniversity of BradfordBradfordUK
| | - Adi Baumgartner
- School of Science, Technology and Health, BiosciencesYork St John UniversityYorkUK
| | - Nader Ghaderi
- Bradford Teaching Hospitals NHS Foundation TrustSt Luke's HospitalBradfordUK
| | - Farshid Sefat
- Department of Biomedical and Electronics Engineering, Faculty of Engineering and InformaticsUniversity of BradfordBradfordUK
| | - Maysa Alhawamdeh
- Department of Medical Laboratory Sciences, Faculty of Allied Medical SciencesMutah UniversityAlkarakJordan
| | - Saeed Heidari
- Cell Therapy and Tissue engineering Department, Faculty of Medical SciencesShahid Beheshti UniversityTehranIran
| | | | | | - Pouria Akhbari
- Institute of Biomedical and Clinical Science, College of Medicine and HealthUniversity of ExeterExeterUK
| | - Mohammad Isreb
- School of Pharmacy and Medical SciencesUniversity of BradfordBradfordUK
| | | | - Andrew Wright
- Bradford Teaching Hospitals NHS Foundation TrustSt Luke's HospitalBradfordUK
| | | |
Collapse
|
18
|
Uthamacumaran A, Abdouh M, Sengupta K, Gao ZH, Forte S, Tsering T, Burnier JV, Arena G. Machine intelligence-driven classification of cancer patients-derived extracellular vesicles using fluorescence correlation spectroscopy: results from a pilot study. Neural Comput Appl 2022. [DOI: 10.1007/s00521-022-08113-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
19
|
Uthamacumaran A. Dissecting cell fate dynamics in pediatric glioblastoma through the lens of complex systems and cellular cybernetics. BIOLOGICAL CYBERNETICS 2022; 116:407-445. [PMID: 35678918 DOI: 10.1007/s00422-022-00935-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Cancers are complex dynamic ecosystems. Reductionist approaches to science are inadequate in characterizing their self-organized patterns and collective emergent behaviors. Since current approaches to single-cell analysis in cancer systems rely primarily on single time-point multiomics, many of the temporal features and causal adaptive behaviors in cancer dynamics are vastly ignored. As such, tools and concepts from the interdisciplinary paradigm of complex systems theory are introduced herein to decode the cellular cybernetics of cancer differentiation dynamics and behavioral patterns. An intuition for the attractors and complex networks underlying cancer processes such as cell fate decision-making, multiscale pattern formation systems, and epigenetic state-transitions is developed. The applications of complex systems physics in paving targeted therapies and causal pattern discovery in precision oncology are discussed. Pediatric high-grade gliomas are discussed as a model-system to demonstrate that cancers are complex adaptive systems, in which the emergence and selection of heterogeneous cellular states and phenotypic plasticity are driven by complex multiscale network dynamics. In specific, pediatric glioblastoma (GBM) is used as a proof-of-concept model to illustrate the applications of the complex systems framework in understanding GBM cell fate decisions and decoding their adaptive cellular dynamics. The scope of these tools in forecasting cancer cell fate dynamics in the emerging field of computational oncology and patient-centered systems medicine is highlighted.
Collapse
|
20
|
Optimized Method for Using Embryonic Microenvironment to Reprogram Cancer Stem Cells. JOURNAL OF BASIC AND CLINICAL HEALTH SCIENCES 2022. [DOI: 10.30621/jbachs.1138572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Purpose: The embryonic microenvironment contains many properties that have not yet been fully explored. Our aim in this study is to report an optimized and efficient method that enables investigating the effects of the secretome of pluripotent embryonic stem cells on cancer stem cells.
Methods: The study is performed with a chimeric model consisted of mouse blastocysts, human prostate cancer stem cells and non-cancer stem cells. Ovulation induced mice were used for blastocyst collection. DU145 prostate cancer cell line was separated into cancer stem cells and non-cancer stem cells according to cancer stem cells biomarker expressions by fluorescent activated cell sorting method. Human prostate cancer stem cells and non-cancer stem cells were microinjected into 4-day blastocyst culture in vitro by intracytoplasmic sperm injection method.
Results: Chimeric models provide us great convenience in basic oncological studies. In this study, using a chimeric model, we were able to study the secretome of mouse embryonic stem cells and their effect on cancer stem cells. The method is efficient and yield promising result; and could be used to study the effects on other cells as well.
Conclusion: The embryonic stem cell microenvironment is suggested to have a great regenerative capacity which is, nowadays, the center of attraction for cancer research studies. Ethical issues restrict the human embryo studies, however, mimicking the in vivo human microenvironment with 3D cell cultures or bioprinting are now possible. Finally, optimization of new methods including 3D cell cultures with human cell lines will be a great opportunity for better understanding the reprogramming notion.
Collapse
|
21
|
Romano V, Belviso I, Sacco AM, Cozzolino D, Nurzynska D, Amarelli C, Maiello C, Sirico F, Di Meglio F, Castaldo C. Human Cardiac Progenitor Cell-Derived Extracellular Vesicles Exhibit Promising Potential for Supporting Cardiac Repair in Vitro. Front Physiol 2022; 13:879046. [PMID: 35669580 PMCID: PMC9163838 DOI: 10.3389/fphys.2022.879046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Although human Cardiac Progenitor Cells (hCPCs) are not retained by host myocardium they still improve cardiac function when injected into ischemic heart. Emerging evidence supports the hypothesis that hCPC beneficial effects are induced by paracrine action on resident cells. Extracellular vesicles (EVs) are an intriguing mechanism of cell communication based on the transport and transfer of peptides, lipids, and nucleic acids that have the potential to modulate signaling pathways, cell growth, migration, and proliferation of recipient cells. We hypothesize that EVs are involved in the paracrine effects elicited by hCPCs and held accountable for the response of the infarcted myocardium to hCPC-based cell therapy. To test this theory, we collected EVs released by hCPCs isolated from healthy myocardium and evaluated the effects they elicited when administered to resident hCPC and cardiac fibroblasts (CFs) isolated from patients with post-ischemic end-stage heart failure. Evidence emerging from our study indicated that hCPC-derived EVs impacted upon proliferation and survival of hCPCs residing in the ischemic heart and regulated the synthesis and deposition of extracellular-matrix by CFs. These findings suggest that beneficial effects exerted by hCPC injection are, at least to some extent, ascribable to the delivery of signals conveyed by EVs.
Collapse
Affiliation(s)
- Veronica Romano
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Immacolata Belviso
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Anna Maria Sacco
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Domenico Cozzolino
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Daria Nurzynska
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”/DIPMED, University of Salerno, Baronissi, Italy
| | - Cristiano Amarelli
- Department of Cardiovascular Surgery and Transplant, Monaldi Hospital, Naples, Italy
| | - Ciro Maiello
- Department of Cardiovascular Surgery and Transplant, Monaldi Hospital, Naples, Italy
| | - Felice Sirico
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Franca Di Meglio
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Clotilde Castaldo
- Department of Public Health, University of Naples Federico II, Naples, Italy
| |
Collapse
|
22
|
Salgado MTSF, Fernandes E Silva E, Matsumoto AM, Mattozo FH, Amarante MCAD, Kalil SJ, Votto APDS. C-phycocyanin decreases proliferation and migration of melanoma cells: In silico and in vitro evidences. Bioorg Chem 2022; 122:105757. [PMID: 35339928 DOI: 10.1016/j.bioorg.2022.105757] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 10/25/2021] [Accepted: 03/20/2022] [Indexed: 12/24/2022]
Abstract
The incidence and number of deaths caused by melanoma have been increasing in recent years, and the pigment C-phycocyanin (C-PC) appears as a possible alternative to treat this disease. So, the objective of this study was to combine in silico and in vitro analysis to understand the main anti-melanoma pathways exerted by C-PC. We evaluated the ability of C-PC to bind to the main cellular targets related in the progression of melanoma through molecular docking, and the reflection of this bind in the biological effects in the B16F10 cell line through in vitro analysis. Our results showed that C-PC was able to bind BRAF and MEK, which are related to the signal transduction pathway for proliferation and survival. There was also an interaction between C-PC and cyclin-dependent kinase 4 and 6. In vitro analysis demonstrated that C-PC decreased B16F10 cell proliferation, as observed by cell viability and mitotic index assays. C-PC also interacted with matrix metalloproteinase 2 and 9 and N-cadherin, which may have caused the decrease in cell migration observed in vitro. Besides that, C-PC interacts with VEGF, a factor responsible for regulating the proliferation and cellular invasion pathways. Finally, C-PC did not alter the cell viability of the non-tumoral melanocytes. Therefore, C-PC is a strong anti-tumor candidate for the treatment of melanoma, since it acts in different cellular pathways of melanoma, without causing damage to non-tumoral cells.
Collapse
Affiliation(s)
| | | | - Andressa Mai Matsumoto
- Laboratório de Cultura Celular, ICB, FURG, RS, Brazil; Programa de Pós-Graduação em Ciências Fisiológicas, ICB, FURG, RS, Brazil
| | - Francielly Hafele Mattozo
- Laboratório de Cultura Celular, ICB, FURG, RS, Brazil; Programa de Pós-Graduação em Ciências Fisiológicas, ICB, FURG, RS, Brazil
| | | | | | - Ana Paula de Souza Votto
- Laboratório de Cultura Celular, ICB, FURG, RS, Brazil; Programa de Pós-Graduação em Ciências Fisiológicas, ICB, FURG, RS, Brazil.
| |
Collapse
|
23
|
Uthamacumaran A, Elouatik S, Abdouh M, Berteau-Rainville M, Gao ZH, Arena G. Machine learning characterization of cancer patients-derived extracellular vesicles using vibrational spectroscopies: results from a pilot study. APPL INTELL 2022. [DOI: 10.1007/s10489-022-03203-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
24
|
Lakshmi BA, Kim YJ. Modernistic and Emerging Developments of Nanotechnology in Glioblastoma-Targeted Theranostic Applications. Int J Mol Sci 2022; 23:ijms23031641. [PMID: 35163563 PMCID: PMC8836088 DOI: 10.3390/ijms23031641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/20/2022] [Accepted: 01/27/2022] [Indexed: 02/06/2023] Open
Abstract
Brain tumors such as glioblastoma are typically associated with an unstoppable cell proliferation with aggressive infiltration behavior and a shortened life span. Though treatment options such as chemotherapy and radiotherapy are available in combating glioblastoma, satisfactory therapeutics are still not available due to the high impermeability of the blood–brain barrier. To address these concerns, recently, multifarious theranostics based on nanotechnology have been developed, which can deal with diagnosis and therapy together. The multifunctional nanomaterials find a strategic path against glioblastoma by adjoining novel thermal and magnetic therapy approaches. Their convenient combination of specific features such as real-time tracking, in-depth tissue penetration, drug-loading capacity, and contrasting performance is of great demand in the clinical investigation of glioblastoma. The potential benefits of nanomaterials including specificity, surface tunability, biodegradability, non-toxicity, ligand functionalization, and near-infrared (NIR) and photoacoustic (PA) imaging are sufficient in developing effective theranostics. This review discusses the recent developments in nanotechnology toward the diagnosis, drug delivery, and therapy regarding glioblastoma.
Collapse
|
25
|
Morato NM, Hallett JE, Wang WH, Elzey BD, Cresswell GM, Cooper BR, Ferreira CR. Changes in Lipid Profile and SOX-2 Expression in RM-1 Cells after Co-Culture with Preimplantation Embryos or with Deproteinated Blastocyst Extracts. Mol Omics 2022; 18:480-489. [PMID: 35506630 DOI: 10.1039/d2mo00071g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The embryonic environment can modify cancer cell metabolism, and it is reported to induce the loss of tumorigenic properties and even affect the differentiation of cancer cells into normal tissues....
Collapse
Affiliation(s)
- Nicolás M Morato
- Department of Chemistry and Center for Analytical Instrumentation Development, Purdue University, West Lafayette, IN 47907, USA
| | - Judy E Hallett
- Transgenic and Genome Editing Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
| | - Wen-Hung Wang
- Gene Editing Core, Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
| | - Bennett D Elzey
- Department of Comparative Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Gregory M Cresswell
- Department of Comparative Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Bruce R Cooper
- Metabolite Profiling Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA.
| | - Christina R Ferreira
- Metabolite Profiling Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
26
|
Petrovsky DV, Kopylov AT, Rudnev VR, Stepanov AA, Kulikova LI, Malsagova KA, Kaysheva AL. Managing of Unassigned Mass Spectrometric Data by Neural Network for Cancer Phenotypes Classification. J Pers Med 2021; 11:1288. [PMID: 34945760 PMCID: PMC8707435 DOI: 10.3390/jpm11121288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 11/17/2022] Open
Abstract
Mass spectrometric profiling provides information on the protein and metabolic composition of biological samples. However, the weak efficiency of computational algorithms in correlating tandem spectra to molecular components (proteins and metabolites) dramatically limits the use of "omics" profiling for the classification of nosologies. The development of machine learning methods for the intelligent analysis of raw mass spectrometric (HPLC-MS/MS) measurements without involving the stages of preprocessing and data identification seems promising. In our study, we tested the application of neural networks of two types, a 1D residual convolutional neural network (CNN) and a 3D CNN, for the classification of three cancers by analyzing metabolomic-proteomic HPLC-MS/MS data. In this work, we showed that both neural networks could classify the phenotypes of gender-mixed oncology, kidney cancer, gender-specific oncology, ovarian cancer, and the phenotype of a healthy person by analyzing 'omics' data in 'mgf' data format. The created models effectively recognized oncopathologies with a model accuracy of 0.95. Information was obtained on the remoteness of the studied phenotypes. The closest in the experiment were ovarian cancer, kidney cancer, and prostate cancer/kidney cancer. In contrast, the healthy phenotype was the most distant from cancer phenotypes and ovarian and prostate cancers. The neural network makes it possible to not only classify the studied phenotypes, but also to determine their similarity (distance matrix), thus overcoming algorithmic barriers in identifying HPLC-MS/MS spectra. Neural networks are versatile and can be applied to standard experimental data formats obtained using different analytical platforms.
Collapse
Affiliation(s)
- Denis V. Petrovsky
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 109028 Moscow, Russia; (D.V.P.); (A.T.K.); (V.R.R.); (A.A.S.); (L.I.K.); (A.L.K.)
| | - Arthur T. Kopylov
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 109028 Moscow, Russia; (D.V.P.); (A.T.K.); (V.R.R.); (A.A.S.); (L.I.K.); (A.L.K.)
| | - Vladimir R. Rudnev
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 109028 Moscow, Russia; (D.V.P.); (A.T.K.); (V.R.R.); (A.A.S.); (L.I.K.); (A.L.K.)
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Moscow, Russia
| | - Alexander A. Stepanov
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 109028 Moscow, Russia; (D.V.P.); (A.T.K.); (V.R.R.); (A.A.S.); (L.I.K.); (A.L.K.)
| | - Liudmila I. Kulikova
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 109028 Moscow, Russia; (D.V.P.); (A.T.K.); (V.R.R.); (A.A.S.); (L.I.K.); (A.L.K.)
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Moscow, Russia
| | - Kristina A. Malsagova
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 109028 Moscow, Russia; (D.V.P.); (A.T.K.); (V.R.R.); (A.A.S.); (L.I.K.); (A.L.K.)
| | - Anna L. Kaysheva
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 109028 Moscow, Russia; (D.V.P.); (A.T.K.); (V.R.R.); (A.A.S.); (L.I.K.); (A.L.K.)
| |
Collapse
|
27
|
Liu J, Niu N, Li X, Zhang X, Sood AK. The life cycle of polyploid giant cancer cells and dormancy in cancer: Opportunities for novel therapeutic interventions. Semin Cancer Biol 2021; 81:132-144. [PMID: 34670140 DOI: 10.1016/j.semcancer.2021.10.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 01/10/2023]
Abstract
Recent data suggest that most genotoxic agents in cancer therapy can lead to shock of genome and increase in cell size, which leads whole genome duplication or multiplication, formation of polyploid giant cancer cells, activation of an early embryonic program, and dedifferentiation of somatic cells. This process is achieved via the giant cell life cycle, a recently proposed mechanism for malignant transformation of somatic cells. Increase in both cell size and ploidy allows cells to completely or partially restructures the genome and develop into a blastocyst-like structure, similar to that observed in blastomere-stage embryogenesis. Although blastocyst-like structures with reprogrammed genome can generate resistant or metastatic daughter cells or benign cells of different lineages, they also acquired ability to undergo embryonic diapause, a reversible state of suspended embryonic development in which cells enter dormancy for survival in response to environmental stress. Therapeutic agents can activate this evolutionarily conserved developmental program, and when cells awaken from embryonic diapause, this leads to recurrence or metastasis. Understanding of the key mechanisms that regulate the different stages of the giant cell life cycle offers new opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Jinsong Liu
- Departments of Anatomic Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA; Departments of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Na Niu
- Departments of Anatomic Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xiaoran Li
- Departments of Anatomic Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xudong Zhang
- Departments of Anatomic Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Anil K Sood
- Departments of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
28
|
Li A, Zhao Y, Li Y, Jiang L, Gu Y, Liu J. Cell-derived biomimetic nanocarriers for targeted cancer therapy: cell membranes and extracellular vesicles. Drug Deliv 2021; 28:1237-1255. [PMID: 34142930 PMCID: PMC8216268 DOI: 10.1080/10717544.2021.1938757] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nanotechnology provides synthetic carriers for cancer drug delivery that protect cargos from degradation, control drug release and increase local accumulation at tumors. However, these non-natural vehicles display poor tumor targeting and potential toxicity and are eliminated by the immune system. Recently, biomimetic nanocarriers have been widely developed based on the concept of ‘mimicking nature.’ Among them, cell-derived biomimetic vehicles have become the focus of bionics research because of their multiple natural functions, such as low immunogenicity, long circulation time and targeting ability. Cell membrane-coated carriers and extracellular vesicles are two widely used cell-based biomimetic materials. Here, this review summarizes the latest progress in the application of these two biomimetic carriers in targeted cancer therapy. Their properties and performance are compared, and their future challenges and development prospects are discussed.
Collapse
Affiliation(s)
- Aixue Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.,Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yunan Zhao
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yixiu Li
- Department of Pharmacy, Shanghai Integrated Traditional Chinese and Western Medicine Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liangdi Jiang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.,Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yongwei Gu
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiyong Liu
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
29
|
Liu C, Wu H, Mao Y, Chen W, Chen S. Exosomal microRNAs in hepatocellular carcinoma. Cancer Cell Int 2021; 21:254. [PMID: 33964930 PMCID: PMC8106840 DOI: 10.1186/s12935-021-01941-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/19/2021] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma is one of the most common malignant tumors worldwide and the fourth leading cause of cancer-related deaths. The prognosis of hepatocellular carcinoma patients is extremely poor due to the occult onset and high metastasis of hepatocellular carcinoma. Therefore, biomarkers with high specificity and sensitivity are of great importance in early screening, diagnosis prognosis, and treatment of hepatocellular carcinoma patients. Exosomes are tiny vesicles secreted by various types of cells, which can serve as mediators of intercellular communication to regulate the tumor microenvironment, and play a key role in the occurrence, development, prognosis, monitor and treatment of hepatocellular carcinoma. As microRNA deliverer, exosomes are involved in multiple life activities by regulating target genes of recipient cells such as proliferation, invasion, metastasis and apoptosis of cancer cells. In this review, we summarized the composition, active mechanism and function of exosomal microRNAs in hepatocellular carcinoma, and elaborated on their potential application value of early diagnosis and treatment in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Chenbin Liu
- School of Medicine, Shanghai Jiao Tong University, 227 Chongqing South Road, Shanghai, 200025, China
| | - Han Wu
- School of Medicine, Shanghai Jiao Tong University, 227 Chongqing South Road, Shanghai, 200025, China
| | - Yinqi Mao
- School of Medicine, Shanghai Jiao Tong University, 227 Chongqing South Road, Shanghai, 200025, China
| | - Wei Chen
- School of Medicine, Shanghai Jiao Tong University, 227 Chongqing South Road, Shanghai, 200025, China
| | - Shuying Chen
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040, China.
| |
Collapse
|
30
|
Wooten DJ, Gebru M, Wang HG, Albert R. Data-Driven Math Model of FLT3-ITD Acute Myeloid Leukemia Reveals Potential Therapeutic Targets. J Pers Med 2021; 11:jpm11030193. [PMID: 33799721 PMCID: PMC7998618 DOI: 10.3390/jpm11030193] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 02/06/2023] Open
Abstract
FLT3-mutant acute myeloid leukemia (AML) is an aggressive form of leukemia with poor prognosis. Treatment with FLT3 inhibitors frequently produces a clinical response, but the disease nevertheless often recurs. Recent studies have revealed system-wide gene expression changes in FLT3-mutant AML cell lines in response to drug treatment. Here we sought a systems-level understanding of how these cells mediate these drug-induced changes. Using RNAseq data from AML cells with an internal tandem duplication FLT3 mutation (FLT3-ITD) under six drug treatment conditions including quizartinib and dexamethasone, we identified seven distinct gene programs representing diverse biological processes involved in AML drug-induced changes. Based on the literature knowledge about genes from these modules, along with public gene regulatory network databases, we constructed a network of FLT3-ITD AML. Applying the BooleaBayes algorithm to this network and the RNAseq data, we created a probabilistic, data-driven dynamical model of acquired resistance to these drugs. Analysis of this model reveals several interventions that may disrupt targeted parts of the system-wide drug response. We anticipate co-targeting these points may result in synergistic treatments that can overcome resistance and prevent eventual recurrence.
Collapse
Affiliation(s)
- David J. Wooten
- Department of Physics, Pennsylvania State University, University Park, PA 16802, USA;
| | - Melat Gebru
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA 17033, USA; (M.G.); (H.-G.W.)
| | - Hong-Gang Wang
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA 17033, USA; (M.G.); (H.-G.W.)
| | - Réka Albert
- Department of Physics, Pennsylvania State University, University Park, PA 16802, USA;
- Correspondence:
| |
Collapse
|
31
|
Gonzalez MJ, Kweh MF, Biava PM, Olalde J, Toro AP, Goldschmidt-Clermont PJ, White IA. Evaluation of exosome derivatives as bio-informational reprogramming therapy for cancer. J Transl Med 2021; 19:103. [PMID: 33750417 PMCID: PMC7944634 DOI: 10.1186/s12967-021-02768-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/25/2021] [Indexed: 12/24/2022] Open
Abstract
Exosomes are nanoparticle sized (100 ± 50 nm) extracellular vesicles (ECVs) that play important roles in cell-to-cell communication. They do this by utilizing their natural ability to shuttle signaling molecules across the cellular microenvironment and promote paracrine signaling. Currently, exosomes are being explored for their potential as therapeutic agents for various degenerative diseases including cancer. The rationale behind their therapeutic ability is that they can transfer signaling biomolecules, and subsequently induce metabolic and physiological changes in diseased cells and tissues. In addition, exosomes can be used as a drug delivery system and may be very effective at reducing toxicity and increasing bioavailability of therapeutic molecules and drugs. Although exosomes were first believed to be a waste product of the cell, current research has demonstrated that these particles can serve as modulators of the immune system, act as cancer biomarkers, cause re-differentiation of cancer cells, and induce apoptosis in diseased cells. Extensive research has been performed specifically using amniotic fluid-derived extracellular vesicles, named "cytosomes". While the use of cytosomes in clinical application is still in the early stages, researchers have shown great potential for these EVs in regenerative medicine as immune modulators, in controlling microbial infection and by inducing tissue repair through the activation of endogenous, tissue-specific stem cells. This review emphasizes the capabilities of specific subsets of extracellular vesicles that can potentially be used for cancer therapy, principally as a source of bi-informational reprogramming for malignant cells.
Collapse
Affiliation(s)
- Michael J Gonzalez
- Medical Sciences Campus, School of Public Health, University of Puerto Rico, San Juan, Puerto Rico
- School of Medicine, Chiropractic Program, Universidad Central del Caribe, Bayamon, Puerto Rico
| | - Mercedes F Kweh
- Neobiosis, LLC, UF Innovate Biotech Building, Research Drive, Alachua, FL, 12085, USA
| | | | - Jose Olalde
- Centro Medicina Regenerativa (CMR), Bayamon, Puerto Rico
| | - Alondra P Toro
- Department of Biology, University of Puerto Rico, Mayagüez Campus, Mayagüez, Puerto Rico
| | | | - Ian A White
- Neobiosis, LLC, UF Innovate Biotech Building, Research Drive, Alachua, FL, 12085, USA.
| |
Collapse
|
32
|
Esfandyari S, Elkafas H, Chugh RM, Park HS, Navarro A, Al-Hendy A. Exosomes as Biomarkers for Female Reproductive Diseases Diagnosis and Therapy. Int J Mol Sci 2021; 22:ijms22042165. [PMID: 33671587 PMCID: PMC7926632 DOI: 10.3390/ijms22042165] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/14/2021] [Accepted: 02/18/2021] [Indexed: 12/12/2022] Open
Abstract
Cell-cell communication is an essential mechanism for the maintenance and development of various organs, including the female reproductive system. Today, it is well-known that the function of the female reproductive system and successful pregnancy are related to appropriate follicular growth, oogenesis, implantation, embryo development, and proper fertilization, dependent on the main regulators of cellular crosstalk, exosomes. During exosome synthesis, selective packaging of different factors into these vesicles happens within the originating cells. Therefore, exosomes contain both genetic and proteomic data that could be applied as biomarkers or therapeutic targets in pregnancy-associated disorders or placental functions. In this context, the present review aims to compile information about the potential exosomes with key molecular cargos that are dysregulated in female reproductive diseases which lead to infertility, including polycystic ovary syndrome (PCOS), premature ovarian failure (POF), Asherman syndrome, endometriosis, endometrial cancer, cervical cancer, ovarian cancer, and preeclampsia, as well as signaling pathways related to the regulation of the reproductive system and pregnancy outcome during these pathological conditions. This review might help us realize the etiology of reproductive dysfunction and improve the early diagnosis and treatment of the related complications.
Collapse
Affiliation(s)
- Sahar Esfandyari
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.E.); (H.E.); (R.M.C.)
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Hoda Elkafas
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.E.); (H.E.); (R.M.C.)
- Department of Pharmacology and Toxicology, Egyptian Drug Authority (EDA) Formally, (NODCAR), Cairo 35521, Egypt
| | - Rishi Man Chugh
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.E.); (H.E.); (R.M.C.)
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Hang-soo Park
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (H.-s.P.); (A.N.)
| | - Antonia Navarro
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (H.-s.P.); (A.N.)
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (H.-s.P.); (A.N.)
- Correspondence: ; Tel.: +1-773-832-0742
| |
Collapse
|
33
|
Barati M, Akhondi M, Mousavi NS, Haghparast N, Ghodsi A, Baharvand H, Ebrahimi M, Hassani SN. Pluripotent Stem Cells: Cancer Study, Therapy, and Vaccination. Stem Cell Rev Rep 2021; 17:1975-1992. [PMID: 34115316 PMCID: PMC8193020 DOI: 10.1007/s12015-021-10199-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2021] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Pluripotent stem cells (PSCs) are promising tools for modern regenerative medicine applications because of their stemness properties, which include unlimited self-renewal and the ability to differentiate into all cell types in the body. Evidence suggests that a rare population of cells within a tumor, termed cancer stem cells (CSCs), exhibit stemness and phenotypic plasticity properties that are primarily responsible for resistance to chemotherapy, radiotherapy, metastasis, cancer development, and tumor relapse. Different therapeutic approaches that target CSCs have been developed for tumor eradication. RESULTS AND DISCUSSION In this review, we first provide an overview of different viewpoints about the origin of CSCs. Particular attention has been paid to views believe that CSCs are probably appeared through dysregulation of very small embryonic-like stem cells (VSELs) which reside in various tissues as the main candidate for tissue-specific stem cells. The expression of pluripotency markers in these two types of cells can strengthen the validity of this theory. In this regard, we discuss the common properties of CSCs and PSCs, and highlight the potential of PSCs in cancer studies, therapeutic applications, as well as educating the immune system against CSCs. CONCLUSION In conclusion, the resemblance of CSCs to PSCs can provide an appropriate source of CSC-specific antigens through cultivation of PSCs which brings to light promising ideas for prophylactic and therapeutic cancer vaccine development.
Collapse
Affiliation(s)
- Mojgan Barati
- Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maryam Akhondi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Narges Sabahi Mousavi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Newsha Haghparast
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Asma Ghodsi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Seyedeh-Nafiseh Hassani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
34
|
Schweiger MW, Tannous BA. Small but Fierce: Tracking the Role of Extracellular Vesicles in Glioblastoma Progression and Therapeutic Resistance. ADVANCED BIOSYSTEMS 2020; 4:e2000035. [PMID: 32881418 PMCID: PMC7968117 DOI: 10.1002/adbi.202000035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 08/10/2020] [Indexed: 12/21/2022]
Abstract
Glioblastoma is the most common and aggressive brain tumor in adults. Most patients die within a year and long-term survival remains rare, owing to a combination of rapid progression/degeneration, lack of successful treatments, and high recurrence rates. Extracellular vesicles are cell-derived membranous structures involved in numerous physiological and pathological processes. In the context of cancer, these biological nanoparticles play an important role in intercellular communication, allowing cancer cells to exchange information with each other, the tumor microenvironment as well as distant cells. Here, light is shed on the role of extracellular vesicles in glioblastoma heterogeneity, tumor microenvironment interactions, and therapeutic resistance, and an overview on means to track their release, uptake, and cargo delivery is provided.
Collapse
Affiliation(s)
- Markus W Schweiger
- Experimental Therapeutics and Molecular Imaging Laboratory, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Boston, MA, 02129, USA
- Neuroscience Program, Harvard Medical School, Boston, MA, 02129, USA
- Department of Neurosurgery, Cancer Center Amsterdam, Brain Tumor Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, HV 1081, The Netherlands
| | - Bakhos A Tannous
- Experimental Therapeutics and Molecular Imaging Laboratory, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Boston, MA, 02129, USA
- Neuroscience Program, Harvard Medical School, Boston, MA, 02129, USA
| |
Collapse
|
35
|
Carcinoma-Associated Fibroblasts Promote Growth of Sox2-Expressing Breast Cancer Cells. Cancers (Basel) 2020; 12:cancers12113435. [PMID: 33228022 PMCID: PMC7699386 DOI: 10.3390/cancers12113435] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
Simple Summary The tumor microenvironment has a strong impact on the behavior of tumor cells. One major cell type residing in the tumor microenvironment is the carcinoma-associated fibroblast (CAF). We were interested in the effect of CAFs on Sox2 (sex determining region Y (SRY)-box 2), which not only is an essential embryonal stem cell transcription factor, but also plays a role in cancer stem cell activity. We found that long-term exposure of ERα-positive breast cancer cells to the cocktail of CAF-secreted factors strongly increased Sox2 expression involving tumor-related proteins and signaling pathways. However, Sox2 was not only present in those tumor cells that express stem cell markers, but was equally abundant in other tumor cells. By being widely expressed, Sox2 may have functions in non-stem cells. In fact, Sox2 was found to regulate ERα expression, to act anti-apoptotically, to promote cellular growth and to protect cells against the anti-estrogen fulvestrant. Abstract CAFs (Carcinoma-associated fibroblasts) play an important role in cancer progression. For instance, they promote resistance to anti-estrogens, such as fulvestrant. Here, we show that, in ERα-positive breast cancer cell lines, the cocktail of factors secreted by CAFs (CAF-CM) induce the expression of the embryonal stem cell transcription factor Sox2 (sex determining region Y (SRY)-box 2). Long-term exposure to CAF-CM was able to give rise to very high Sox2 levels both in the absence and presence of fulvestrant. IL-6 (interleukin-6), a major component of CAF-CM, failed to raise Sox2 expression. In MCF-7 sublines established in the presence of CAF-CM, almost all cells showed Sox2 expression, whereas long-term treatment of T47D cells with CAF-CM resulted in a ~60-fold increase in the proportions of two distinct populations of Sox2 high and low expresser cells. Exposure of BT474 cells to CAF-CM raised the fraction of Sox2 high expresser cells by ~3-fold. Cell sorting based on CD44 and CD24 expression or ALDH (aldehyde dehydrogenase) activity revealed that most Sox2 high expresser cells were not CD44hi/CD24lo- or ALDH-positive cells suggesting that they were not CSCs (cancer stem cells), though CD44 played a role in Sox2 expression. Functionally, Sox2 was found to protect CAF-CM-treated cells against apoptosis and to allow higher growth activity in the presence of fulvestrant. Mechanistically, the key drivers of Sox2 expression was found to be STAT3 (Signal transducer and activator of transcription 3), Bcl-3 (B-cell lymphoma 3) and the PI3K (Phosphoinositide 3-kinase)/AKT pathway, whose activities/expression can all be upregulated by CAF-CM. These data suggest that CAF-CM induces Sox2 expression in non-CSCs by activating proteins involved in growth control and drug resistance, leading to higher protection against apoptosis.
Collapse
|
36
|
Rossi F, Noren H, Jove R, Beljanski V, Grinnemo KH. Differences and similarities between cancer and somatic stem cells: therapeutic implications. Stem Cell Res Ther 2020; 11:489. [PMID: 33208173 PMCID: PMC7672862 DOI: 10.1186/s13287-020-02018-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023] Open
Abstract
Over the last decades, the cancer survival rate has increased due to personalized therapies, the discovery of targeted therapeutics and novel biological agents, and the application of palliative treatments. Despite these advances, tumor resistance to chemotherapy and radiation and rapid progression to metastatic disease are still seen in many patients. Evidence has shown that cancer stem cells (CSCs), a sub-population of cells that share many common characteristics with somatic stem cells (SSCs), contribute to this therapeutic failure. The most critical properties of CSCs are their self-renewal ability and their capacity for differentiation into heterogeneous populations of cancer cells. Although CSCs only constitute a low percentage of the total tumor mass, these cells can regrow the tumor mass on their own. Initially identified in leukemia, CSCs have subsequently been found in cancers of the breast, the colon, the pancreas, and the brain. Common genetic and phenotypic features found in both SSCs and CSCs, including upregulated signaling pathways such as Notch, Wnt, Hedgehog, and TGF-β. These pathways play fundamental roles in the development as well as in the control of cell survival and cell fate and are relevant to therapeutic targeting of CSCs. The differences in the expression of membrane proteins and exosome-delivered microRNAs between SSCs and CSCs are also important to specifically target the stem cells of the cancer. Further research efforts should be directed toward elucidation of the fundamental differences between SSCs and CSCs to improve existing therapies and generate new clinically relevant cancer treatments.
Collapse
Affiliation(s)
- Fiorella Rossi
- NSU Cell Therapy Institute, Nova Southeastern University, 3301 College Ave, 3200 South University Drive, Fort Lauderdale, FL, 33328, USA
| | - Hunter Noren
- NSU Cell Therapy Institute, Nova Southeastern University, 3301 College Ave, 3200 South University Drive, Fort Lauderdale, FL, 33328, USA
| | - Richard Jove
- NSU Cell Therapy Institute, Nova Southeastern University, 3301 College Ave, 3200 South University Drive, Fort Lauderdale, FL, 33328, USA
| | - Vladimir Beljanski
- NSU Cell Therapy Institute, Nova Southeastern University, 3301 College Ave, 3200 South University Drive, Fort Lauderdale, FL, 33328, USA.
| | - Karl-Henrik Grinnemo
- NSU Cell Therapy Institute, Nova Southeastern University, 3301 College Ave, 3200 South University Drive, Fort Lauderdale, FL, 33328, USA. .,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden. .,Department of Surgical Sciences, Division of Cardiothoracic Surgery and Anaesthesiology, Uppsala University, Akademiska University Hospital, Akademiska sjukhuset, ingång 50, 4 tr, 751 85, Uppsala, Sweden.
| |
Collapse
|
37
|
Bagherpoor AJ, Kučírek M, Fedr R, Sani SA, Štros M. Nonhistone Proteins HMGB1 and HMGB2 Differentially Modulate the Response of Human Embryonic Stem Cells and the Progenitor Cells to the Anticancer Drug Etoposide. Biomolecules 2020; 10:biom10101450. [PMID: 33076532 PMCID: PMC7602880 DOI: 10.3390/biom10101450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 12/15/2022] Open
Abstract
HMGB1 and HMGB2 proteins are abundantly expressed in human embryonic stem cells (hESCs) and hESC-derived progenitor cells (neuroectodermal cells, hNECs), though their functional roles in pluripotency and the mechanisms underlying their differentiation in response to the anticancer drug etoposide remain to be elucidated. Here, we show that HMGB1 and/or HMGB2 knockdown (KD) by shRNA in hESCs did not affect the cell stemness/pluripotency regardless of etoposide treatments, while in hESC-derived neuroectodermal cells, treatment resulted in differential effects on cell survival and the generation of rosette structures. The objective of this work was to determine whether HMGB1/2 proteins could modulate the sensitivity of hESCs and hESC-derived progenitor cells (hNECs) to etoposide. We observed that HMGB1 KD knockdown (KD) and, to a lesser extent, HMGB2 KD enhanced the sensitivity of hESCs to etoposide. Enhanced accumulation of 53BP1 on telomeres was detected by confocal microscopy in both untreated and etoposide-treated HMGB1 KD hESCs and hNECs, indicating that the loss of HMGB1 could destabilize telomeres. On the other hand, decreased accumulation of 53BP1 on telomeres in etoposide-treated HMGB2 KD hESCs (but not in HMGB2 KD hNECs) suggested that the loss of HMGB2 promoted the stability of telomeres. Etoposide treatment of hESCs resulted in a significant enhancement of telomerase activity, with the highest increase observed in the HMGB2 KD cells. Interestingly, no changes in telomerase activity were found in etoposide-treated control hNECs, but HMGB2 KD (unlike HMGB1 KD) markedly decreased telomerase activity in these cells. Changes in telomerase activity in the etoposide-treated HMGB2 KD hESCs or hNECs coincided with the appearance of DNA damage markers and could already be observed before the onset of apoptosis. Collectively, we have demonstrated that HMGB1 or HMGB2 differentially modulate the impact of etoposide treatment on human embryonic stem cells and their progenitor cells, suggesting possible strategies for the enhancement of the efficacy of this anticancer drug.
Collapse
|
38
|
Cheng YQ, Wang SB, Liu JH, Jin L, Liu Y, Li CY, Su YR, Liu YR, Sang X, Wan Q, Liu C, Yang L, Wang ZC. Modifying the tumour microenvironment and reverting tumour cells: New strategies for treating malignant tumours. Cell Prolif 2020; 53:e12865. [PMID: 32588948 PMCID: PMC7445401 DOI: 10.1111/cpr.12865] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/02/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
Abstract
The tumour microenvironment (TME) plays a pivotal role in tumour fate determination. The TME acts together with the genetic material of tumour cells to determine their initiation, metastasis and drug resistance. Stromal cells in the TME promote the growth and metastasis of tumour cells by secreting soluble molecules or exosomes. The abnormal microenvironment reduces immune surveillance and tumour killing. The TME causes low anti‐tumour drug penetration and reactivity and high drug resistance. Tumour angiogenesis and microenvironmental hypoxia limit the drug concentration within the TME and enhance the stemness of tumour cells. Therefore, modifying the TME to effectively attack tumour cells could represent a comprehensive and effective anti‐tumour strategy. Normal cells, such as stem cells and immune cells, can penetrate and disrupt the abnormal TME. Reconstruction of the TME with healthy cells is an exciting new direction for tumour treatment. We will elaborate on the mechanism of the TME to support tumours and the current cell therapies for targeting tumours and the TME—such as immune cell therapies, haematopoietic stem cell (HSC) transplantation therapies, mesenchymal stem cell (MSC) transfer and embryonic stem cell‐based microenvironment therapies—to provide novel ideas for producing breakthroughs in tumour therapy strategies.
Collapse
Affiliation(s)
- Ya Qi Cheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Shou Bi Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jia Hui Liu
- Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - Lin Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Ying Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Chao Yang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Ya Ru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yu Run Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xuan Sang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Qi Wan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Chang Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Liu Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zhi Chong Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
39
|
Brossa A, Fonsato V, Grange C, Tritta S, Tapparo M, Calvetti R, Cedrino M, Fallo S, Gontero P, Camussi G, Bussolati B. Extracellular vesicles from human liver stem cells inhibit renal cancer stem cell-derived tumor growth in vitro and in vivo. Int J Cancer 2020; 147:1694-1706. [PMID: 32064610 PMCID: PMC7496472 DOI: 10.1002/ijc.32925] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 01/28/2020] [Accepted: 02/04/2020] [Indexed: 12/16/2022]
Abstract
Cancer stem cells (CSCs) are considered as responsible for initiation, maintenance and recurrence of solid tumors, thus representing the key for tumor eradication. The antitumor activity of extracellular vesicles (EVs) derived from different stem cell sources has been investigated with conflicting results. In our study, we evaluated, both in vitro and in vivo, the effect of EVs derived from human bone marrow mesenchymal stromal cells (MSCs) and from a population of human liver stem cells (HLSCs) of mesenchymal origin on renal CSCs. In vitro, both EV sources displayed pro‐apoptotic, anti‐proliferative and anti‐invasive effects on renal CSCs, but not on differentiated tumor cells. Pre‐treatment of renal CSCs with EVs, before subcutaneous injection in SCID mice, delayed tumor onset. We subsequently investigated the in vivo effect of MSC‐ and HLSC‐EVs systemic administration on progression of CSC‐generated renal tumors. Tumor bio‐distribution analysis identified intravenous treatment as best route of administration. HLSC‐EVs, but not MSC‐EVs, significantly impaired subcutaneous tumor growth by reducing tumor vascularization and inducing tumor cell apoptosis. Moreover, intravenous treatment with HLSC‐EVs improved metastasis‐free survival. In EV treated tumor explants, we observed both the transfer and the induction of miR‐145 and of miR‐200 family members. In transfected CSCs, the same miRNAs affected cell growth, invasion and survival. In conclusion, our results showed a specific antitumor effect of HLSC‐EVs on CSC‐derived renal tumors in vivo, possibly ascribed to the transfer and induction of specific antitumor miRNAs. Our study provides further evidence for a possible clinical application of stem cell‐EVs in tumor treatment. What's new? Stem cell‐derived extracellular vesicles (EVs) can reprogram target cells and promote tissue repair by transferring their cargo. However, the anti‐tumor activity of EVs derived from different stem cell sources has been investigated with conflicting results. Here, the authors demonstrate for the first time the anti‐tumor effect of EVs from human liver stem cells (HLSC‐EVs) in a systemic intravenous administration model. HLSC‐EVs had a selective effect on cancer stem cells that could be ascribed to the transfer and induction of anti‐tumor miRNAs. This study highlights the potential clinical use of stem cell‐derived EVs, alone or in combination with other cancer therapies.
Collapse
Affiliation(s)
- Alessia Brossa
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Valentina Fonsato
- Molecular Biotechnology Center, University of Torino, Torino, Italy.,2i3T, Società per la Gestione dell'incubatore di Imprese e per il Trasferimento Tecnologico, University of Torino, Torino, Italy
| | - Cristina Grange
- Department of Medical Science, University of Torino, Torino, Italy
| | - Stefania Tritta
- Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Marta Tapparo
- Department of Medical Science, University of Torino, Torino, Italy
| | - Ruggero Calvetti
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Massimo Cedrino
- Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Sofia Fallo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Paolo Gontero
- Department of Surgical Sciences, University of Torino, Torino, Italy
| | - Giovanni Camussi
- Department of Medical Science, University of Torino, Torino, Italy
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Molecular Biotechnology Center, University of Torino, Torino, Italy
| |
Collapse
|
40
|
Gong L, Yan Q, Zhang Y, Fang X, Liu B, Guan X. Cancer cell reprogramming: a promising therapy converting malignancy to benignity. Cancer Commun (Lond) 2019; 39:48. [PMID: 31464654 PMCID: PMC6716904 DOI: 10.1186/s40880-019-0393-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023] Open
Abstract
In the past decade, remarkable progress has been made in reprogramming terminally differentiated somatic cells and cancer cells into induced pluripotent cells and cancer cells with benign phenotypes. Recent studies have explored various approaches to induce reprogramming from one cell type to another, including lineage-specific transcription factors-, combinatorial small molecules-, microRNAs- and embryonic microenvironment-derived exosome-mediated reprogramming. These reprogramming approaches have been proven to be technically feasible and versatile to enable re-activation of sequestered epigenetic regions, thus driving fate decisions of differentiated cells. One of the significant utilities of cancer cell reprogramming is the therapeutic potential of retrieving normal cell functions from various malignancies. However, there are several major obstacles to overcome in cancer cell reprogramming before clinical translation, including characterization of reprogramming mechanisms, improvement of reprogramming efficiency and safety, and development of delivery methods. Recently, several insights in reprogramming mechanism have been proposed, and determining progress has been achieved to promote reprogramming efficiency and feasibility, allowing it to emerge as a promising therapy against cancer in the near future. This review aims to discuss recent applications in cancer cell reprogramming, with a focus on the clinical significance and limitations of different reprogramming approaches, while summarizing vital roles played by transcription factors, small molecules, microRNAs and exosomes during the reprogramming process.
Collapse
Affiliation(s)
- Lanqi Gong
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, 999077, P.R. China.,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, 999077, P.R. China
| | - Qian Yan
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, 999077, P.R. China.,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, 999077, P.R. China
| | - Yu Zhang
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, 999077, P.R. China.,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, 999077, P.R. China
| | - Xiaona Fang
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, 999077, P.R. China.,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, 999077, P.R. China
| | - Beilei Liu
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, 999077, P.R. China.,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, 999077, P.R. China
| | - Xinyuan Guan
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, 999077, P.R. China. .,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, 999077, P.R. China.
| |
Collapse
|
41
|
Hromadnikova I, Dvorakova L, Kotlabova K, Krofta L. The Prediction of Gestational Hypertension, Preeclampsia and Fetal Growth Restriction via the First Trimester Screening of Plasma Exosomal C19MC microRNAs. Int J Mol Sci 2019; 20:ijms20122972. [PMID: 31216670 PMCID: PMC6627682 DOI: 10.3390/ijms20122972] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/11/2019] [Accepted: 06/15/2019] [Indexed: 12/21/2022] Open
Abstract
The aim of the study was to verify if quantification of placental specific C19MC microRNAs in plasma exosomes would be able to differentiate during the early stages of gestation between patients subsequently developing pregnancy-related complications and women with the normal course of gestation and if this differentiation would lead to the improvement of the diagnostical potential. The retrospective study on singleton Caucasian pregnancies was performed within 6/2011-2/2019. The case control study, nested in a cohort, involved women that later developed GH (n = 57), PE (n = 43), FGR (n = 63), and 102 controls. Maternal plasma exosome profiling was performed with the selection of C19MC microRNAs with diagnostical potential only (miR-516b-5p, miR-517-5p, miR-518b, miR-520a-5p, miR-520h, and miR-525-5p) using real-time RT-PCR. The down-regulation of miR-517-5p, miR-520a-5p, and miR-525-5p was observed in patients with later occurrence of GH and PE. Maternal plasma exosomal profiling of selected C19MC microRNAs also revealed a novel down-regulated biomarker during the first trimester of gestation (miR-520a-5p) for women destinated to develop FGR. First trimester circulating plasma exosomes possess the identical C19MC microRNA expression profile as placental tissues derived from patients with GH, PE and FGR after labor. The predictive accuracy of first trimester C19MC microRNA screening (miR-517-5p, miR-520a-5p, and miR-525-5p) for the diagnosis of GH and PE was significantly higher in the case of expression profiling of maternal plasma exosomes compared to expression profiling of the whole maternal plasma samples.
Collapse
Affiliation(s)
- Ilona Hromadnikova
- Department of Molecular Biology and Cell Pathology, Third Faculty of Medicine, Charles University, 10000 Prague, Czech Republic.
| | - Lenka Dvorakova
- Department of Molecular Biology and Cell Pathology, Third Faculty of Medicine, Charles University, 10000 Prague, Czech Republic.
| | - Katerina Kotlabova
- Department of Molecular Biology and Cell Pathology, Third Faculty of Medicine, Charles University, 10000 Prague, Czech Republic.
| | - Ladislav Krofta
- Institute for the Care of the Mother and Child, Third Faculty of Medicine, Charles University, 14700 Prague, Czech Republic.
| |
Collapse
|
42
|
Lan G, Lin Z, Zhang J, Liu L, Zhang J, Zheng L, Luo Q. Notch pathway is involved in the suppression of colorectal cancer by embryonic stem cell microenvironment. Onco Targets Ther 2019; 12:2869-2878. [PMID: 31114232 PMCID: PMC6489681 DOI: 10.2147/ott.s199046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/13/2019] [Indexed: 12/22/2022] Open
Abstract
Objectives: Recently, embryonic microenvironment is being known for its non-permissive property for tumor growth. However, the regulatory mechanism to maintain the balance between differentiation and tumorigenicity of cancer cell in microenvironment is not well understood. Materials and Methods: qRT-PCR was performed to detect the levels of gene expression in HT29, LoVo and Caco-2 colorectal cancer cells, and Western blot was used to measure the protein levels. Cell migration and apoptosis were measured by Transwell and flow cytometry assays. Cancer cell markers were detected using immunohistochemical staining. In vivo tumor formation assay was conducted by subcutaneous injection of embryonic microenvironment-treated cancer cells. Results: Colorectal cancer cell lines were treated with human embryonic stem cell conditioned culture and then collected for in vivo tumor formation assay and in vitro assays assessing the aggressive properties. We found exposure of cancer cells in human ES cultures resulted in inhibition of growth, migration of tumor cells. Moreover, we found that manipulation of Notch pathway in the ES cells microenvironment could influence the stemness of tumor. We specifically discovered that some factor in the embryonic microenvironment could suppress Notch1 pathway in the cancer cells, leading to a reduction in tumorigenesis and invasiveness. Conclusions: This study may provide another evidence to understand the crosstalk between tumor cells and embryonic environment and may offer new therapeutic strategies to inhibit colorectal cancer progression.
Collapse
Affiliation(s)
- Guanghui Lan
- Shenzhen Hospital, Southern Medical University, Shenzhen 518101, People's Republic of China
| | - Zongwei Lin
- Shenzhen Hospital, Southern Medical University, Shenzhen 518101, People's Republic of China
| | - Jinhui Zhang
- Shenzhen Hospital, Southern Medical University, Shenzhen 518101, People's Republic of China
| | - Li Liu
- GI Surgery, The People's Hospital of Nanshan District, Shenzhen, 518067, People's Republic of China
| | - Jianjun Zhang
- GI Surgery, The People's Hospital of Nanshan District, Shenzhen, 518067, People's Republic of China
| | - Lei Zheng
- Central Laboratory, Harrison International Peace Hospital, Hengshui 053000, People's Republic of China
| | - Qiong Luo
- Affiliated Hengyang Hospital, Southern Medical University (Hengyang Central Hospital), Hengyang 421000, People's Republic of China
| |
Collapse
|
43
|
Zhu Q, Ling X, Yang Y, Zhang J, Li Q, Niu X, Hu G, Chen B, Li H, Wang Y, Deng Z. Embryonic Stem Cells-Derived Exosomes Endowed with Targeting Properties as Chemotherapeutics Delivery Vehicles for Glioblastoma Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801899. [PMID: 30937268 PMCID: PMC6425428 DOI: 10.1002/advs.201801899] [Citation(s) in RCA: 201] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/24/2018] [Indexed: 05/16/2023]
Abstract
Exosomes are nanosized membrane vesicles (30-100 nm) that can easily penetrate the blood-brain barrier, safely deliver therapeutic drugs, and be modified with target ligands. Embryonic stem cells (ESCs) provide abundant exosome sources for clinical application due to their almost unlimited self-renewal. Previous studies show that exosomes secreted by ESCs (ESC-exos) have antitumor properties. However, it is not known whether ESC-exos inhibit glioblastoma (GBM) growth. In this study, the anti-GBM effect of ESC-exos is confirmed and then c(RGDyK)-modified and paclitaxel (PTX)-loaded ESC-exos, named cRGD-Exo-PTX are prepared. It is then investigated whether the engineered exosomes deliver more efficiently to GBM cells versus free drug alone and drug-loaded ESC-exos using an in vitro GBM model and in vivo subcutaneous and orthotopic xenografts model. The results show that cRGD-Exo-PTX significantly improves the curative effects of PTX in GBM via enhanced targeting. These data indicate that ESC-exos are potentially powerful therapeutic carriers for GBM and could have utility in many other diseases.
Collapse
Affiliation(s)
- Qingwei Zhu
- Department of NeurosurgeryShanghai Jiaotong University Affiliated Sixth People' HospitalNo. 600 Yishan RoadShanghai200233China
| | - Xiaozheng Ling
- Department of NeurosurgeryShanghai Jiaotong University Affiliated Sixth People' HospitalNo. 600 Yishan RoadShanghai200233China
| | - Yunlong Yang
- Institute of Microsurgery on ExtremitiesShanghai Jiaotong University Affiliated Sixth People' HospitalNo. 600 Yishan RoadShanghai200233China
| | - Juntao Zhang
- Institute of Microsurgery on ExtremitiesShanghai Jiaotong University Affiliated Sixth People' HospitalNo. 600 Yishan RoadShanghai200233China
| | - Qing Li
- Institute of Microsurgery on ExtremitiesShanghai Jiaotong University Affiliated Sixth People' HospitalNo. 600 Yishan RoadShanghai200233China
| | - Xin Niu
- Institute of Microsurgery on ExtremitiesShanghai Jiaotong University Affiliated Sixth People' HospitalNo. 600 Yishan RoadShanghai200233China
| | - Guowen Hu
- Department of NeurosurgeryShanghai Jiaotong University Affiliated Sixth People' HospitalNo. 600 Yishan RoadShanghai200233China
| | - Bi Chen
- Institute of Microsurgery on ExtremitiesShanghai Jiaotong University Affiliated Sixth People' HospitalNo. 600 Yishan RoadShanghai200233China
| | - Haiyan Li
- Med‐X Research Institute, School of Biomedical EngineeringShanghai Jiao Tong University1954 Huashan RoadShanghai200030China
| | - Yang Wang
- Institute of Microsurgery on ExtremitiesShanghai Jiaotong University Affiliated Sixth People' HospitalNo. 600 Yishan RoadShanghai200233China
| | - Zhifeng Deng
- Department of NeurosurgeryShanghai Jiaotong University Affiliated Sixth People' HospitalNo. 600 Yishan RoadShanghai200233China
| |
Collapse
|
44
|
Brossa A, Fonsato V, Bussolati B. Anti-tumor activity of stem cell-derived extracellular vesicles. Oncotarget 2019; 10:1872-1873. [PMID: 30956770 PMCID: PMC6443014 DOI: 10.18632/oncotarget.26759] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 02/24/2019] [Indexed: 12/13/2022] Open
Affiliation(s)
- Alessia Brossa
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Valentina Fonsato
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| |
Collapse
|
45
|
Abudoureyimu M, Zhou H, Zhi Y, Wang T, Feng B, Wang R, Chu X. Recent progress in the emerging role of exosome in hepatocellular carcinoma. Cell Prolif 2019; 52:e12541. [PMID: 30397975 PMCID: PMC6496614 DOI: 10.1111/cpr.12541] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/14/2018] [Accepted: 08/16/2018] [Indexed: 12/22/2022] Open
Abstract
Exosomes are small membrane vesicles 50-150 nm in diameter released by a variety of cells, which contain miRNAs, mRNAs and proteins with the potential to regulate signalling pathways in recipient cells. Exosomes deliver nucleic acids and proteins to participate in orchestrating cell-cell communication and microenvironment modulation. In this review, we summarize recent progress in our understanding of the role of exosomes in hepatocellular carcinoma (HCC). This review focuses on recent studies on HCC exosomes, considering biogenesis, cargo and their effects on the development and progression of HCC, including chemoresistance, epithelial-mesenchymal transition, angiogenesis, metastasis and immune response. Finally, we discuss the clinical application of exosomes as a therapeutic agent for HCC.
Collapse
Affiliation(s)
- Mubalake Abudoureyimu
- Department of Medical Oncology, School of Medicine, Jinling HospitalNanjing UniversityNanjingChina
| | - Hao Zhou
- Department of Medical Oncology, Jinling HospitalNanjing Medical UniversityNanjingChina
| | - Yingru Zhi
- Department of Medical Oncology, School of Medicine, Jinling HospitalNanjing UniversityNanjingChina
| | - Ting Wang
- Department of Medical OncologyJinling HospitalNanjingChina
| | - Bing Feng
- Department of Medical Oncology, School of Medicine, Jinling HospitalNanjing UniversityNanjingChina
| | - Rui Wang
- Department of Medical Oncology, School of Medicine, Jinling HospitalNanjing UniversityNanjingChina
| | - Xiaoyuan Chu
- Department of Medical Oncology, School of Medicine, Jinling HospitalNanjing UniversityNanjingChina
| |
Collapse
|
46
|
Lettnin AP, Wagner EF, Carrett-Dias M, Dos Santos Machado K, Werhli A, Cañedo AD, Trindade GS, de Souza Votto AP. Silencing the OCT4-PG1 pseudogene reduces OCT-4 protein levels and changes characteristics of the multidrug resistance phenotype in chronic myeloid leukemia. Mol Biol Rep 2019; 46:1873-1884. [PMID: 30721421 DOI: 10.1007/s11033-019-04639-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/23/2019] [Indexed: 12/31/2022]
Abstract
Cancer stem cells show epigenetic plasticity and intrinsic resistance to anti-cancer therapy, rendering capable of initiating cancer relapse and progression. Transcription factor OCT-4 regulates various pathways in stem cells, but its expression can be regulated by pseudogenes. This work evaluated how OCT4-PG1 pseudogene can affect OCT-4 expression and mechanisms related to the multidrug resistance (MDR) phenotype in FEPS cells. Considering that OCT-4 protein is a transcription factor that regulates expression of ABC transporters, level of gene expression, activity of ABC proteins and cell sensitivity to chemotherapy were evaluated after OCT4-PG1 silencing. Besides we set up a STRING network. Results showed that after OCT4-PG1 silencing, cells expressed OCT-4 gene and protein to a lesser extent than mock cells. The gene and protein expression of ABCB1, as well as its activity were reduced. On the other hand, ALOX5 and ABCC1 genes was increased even as the activity of this transporter. Moreover, the silencing cells become sensitive to two chemotherapics tested. The network structure demonstrated that OCT4-PG1 protein interacts directly with OCT-4, SOX2, and NANOG and indirectly with ABC transporters. We conclude that OCT4-PG1 pseudogene plays a key role in the regulation OCT-4 transcription factor, which alters MDR phenotype in the FEPS cell line.
Collapse
Affiliation(s)
- Aline Portantiolo Lettnin
- Post-Graduate Program in Physiological Sciences - PPGCF, Federal University of Rio Grande -FURG, Avenue Itália, Km 8, Rio Grande, RS, Zip Code 96203-900, Brazil.,Laboratory of Cell Culture, Institute of Biological Sciences - ICB, Federal University of Rio Grande -FURG, Avenue Itália, Km 8, Rio Grande, RS, Zip Code 96203-900, Brazil
| | - Eduardo Felipe Wagner
- Laboratory of Cell Culture, Institute of Biological Sciences - ICB, Federal University of Rio Grande -FURG, Avenue Itália, Km 8, Rio Grande, RS, Zip Code 96203-900, Brazil
| | - Michele Carrett-Dias
- Post-Graduate Program in Physiological Sciences - PPGCF, Federal University of Rio Grande -FURG, Avenue Itália, Km 8, Rio Grande, RS, Zip Code 96203-900, Brazil
| | - Karina Dos Santos Machado
- Center of Computational Sciences - C3, Federal University of Rio Grande -FURG, Avenue Itália, Km 8, Rio Grande, RS, Zip Code 96203-900, Brazil
| | - Adriano Werhli
- Center of Computational Sciences - C3, Federal University of Rio Grande -FURG, Avenue Itália, Km 8, Rio Grande, RS, Zip Code 96203-900, Brazil
| | - Andrés Delgado Cañedo
- Federal University of Pampa - UNIPAMPA, Avenue Antônio Trilha, 1847, São Gabriel, RS, Zip Code 97300-000, Brazil
| | - Gilma Santos Trindade
- Post-Graduate Program in Physiological Sciences - PPGCF, Federal University of Rio Grande -FURG, Avenue Itália, Km 8, Rio Grande, RS, Zip Code 96203-900, Brazil
| | - Ana Paula de Souza Votto
- Post-Graduate Program in Physiological Sciences - PPGCF, Federal University of Rio Grande -FURG, Avenue Itália, Km 8, Rio Grande, RS, Zip Code 96203-900, Brazil. .,Laboratory of Cell Culture, Institute of Biological Sciences - ICB, Federal University of Rio Grande -FURG, Avenue Itália, Km 8, Rio Grande, RS, Zip Code 96203-900, Brazil. .,Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Avenida Itália, Km 8, s/n, Rio Grande, RS, Zip Code 96203-900, Brazil.
| |
Collapse
|
47
|
Kerr CL, Bol GM, Vesuna F, Raman V. Targeting RNA helicase DDX3 in stem cell maintenance and teratoma formation. Genes Cancer 2019; 10:11-20. [PMID: 30899416 PMCID: PMC6420792 DOI: 10.18632/genesandcancer.187] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
DDX3 is an RNA helicase that has antiapoptotic properties, and promotes proliferation and transformation. Besides the role of DDX3 in transformed cells, there is evidence to indicate that DDX3 expression is at its highest levels during early embryonic development and is also expressed in germ cells of adults. Even though there is a distinct pattern of DDX3 expression during embryonic development and in adults, very little is known regarding its role in embryonic stem cells and pluripotency. In this work, we examined the relationship between DDX3 and human embryonic stem cells and its differentiated lineages. DDX3 expression was analyzed by immunohistochemistry in human embryonic stem cells and embryonal carcinoma cells. From the data obtained, it was evident that DDX3 was overexpressed in undifferentiated stem cells compared to differentiated cells. Moreover, when DDX3 expression was abrogated in multiple stem cells, proliferation was decreased, but differentiation was facilitated. Importantly, this resulted in reduced potency to induce teratoma formation. Taken together, these findings indicate a distinct role for DDX3 in stem cell maintenance.
Collapse
Affiliation(s)
- Candace L Kerr
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Guus M Bol
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, University Medical Center Utrecht Cancer Center, GA Utrecht, The Netherlands
| | - Farhad Vesuna
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, University Medical Center Utrecht Cancer Center, GA Utrecht, The Netherlands
| | - Venu Raman
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Pathology, University Medical Center Utrecht Cancer Center, GA Utrecht, The Netherlands
| |
Collapse
|
48
|
Poljsak B, Kovac V, Dahmane R, Levec T, Starc A. Cancer Etiology: A Metabolic Disease Originating from Life's Major Evolutionary Transition? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7831952. [PMID: 31687086 PMCID: PMC6800902 DOI: 10.1155/2019/7831952] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 07/21/2019] [Accepted: 08/27/2019] [Indexed: 12/30/2022]
Abstract
A clear understanding of the origins of cancer is the basis of successful strategies for effective cancer prevention and management. The origin of cancer at the molecular and cellular levels is not well understood. Is the primary cause of the origin of cancer the genomic instability or impaired energy metabolism? An attempt was made to present cancer etiology originating from life's major evolutionary transition. The first evolutionary transition went from simple to complex cells when eukaryotic cells with glycolytic energy production merged with the oxidative mitochondrion (The Endosymbiosis Theory first proposed by Lynn Margulis in the 1960s). The second transition went from single-celled to multicellular organisms once the cells obtained mitochondria, which enabled them to obtain a higher amount of energy. Evidence will be presented that these two transitions, as well as the decline of NAD+ and ATP levels, are the root of cancer diseases. Restoring redox homeostasis and reactivation of mitochondrial oxidative metabolism are important factors in cancer prevention.
Collapse
Affiliation(s)
- B. Poljsak
- 1Faculty of Health Sciences, University of Ljubljana, Laboratory of Oxidative Stress Research, Ljubljana, Slovenia
| | - V. Kovac
- 1Faculty of Health Sciences, University of Ljubljana, Laboratory of Oxidative Stress Research, Ljubljana, Slovenia
| | - R. Dahmane
- 2Faculty of Health Sciences, University of Ljubljana, Chair of Biomedicine in Health Care, Ljubljana, Slovenia
| | - T. Levec
- 3Faculty of Health Sciences, University of Ljubljana, Chair of Public Health, Ljubljana, Slovenia
| | - A. Starc
- 3Faculty of Health Sciences, University of Ljubljana, Chair of Public Health, Ljubljana, Slovenia
| |
Collapse
|
49
|
Fonsato V, De Lena M, Tritta S, Brossa A, Calvetti R, Tetta C, Camussi G, Bussolati B. Human liver stem cell-derived extracellular vesicles enhance cancer stem cell sensitivity to tyrosine kinase inhibitors through Akt/mTOR/PTEN combined modulation. Oncotarget 2018; 9:36151-36165. [PMID: 30546834 PMCID: PMC6281417 DOI: 10.18632/oncotarget.26319] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/24/2018] [Indexed: 01/18/2023] Open
Abstract
It is well recognized that Cancer Stem Cells (CSCs) sustain the initiation, the maintenance and the recurrence of tumors. We previously reported that extracellular vesicles (EVs) derived from human liver stem cells (HLSCs) were able to limit tumor development. In this study, we evaluated whether EV derived from HLSCs could act in synergy with tyrosine kinase inhibitors (TKIs) on apoptosis of CSCs isolated from renal carcinomas. For this purpose, we administered to renal CSCs, HLSC-EVs and TKIs, as co-incubation or sequential administration. We found that HLSC-EVs in combination with Sunitinb or Sorafenib significantly increased renal CSCs apoptosis induced by low TKI dose. At variance, no synergistic effect was observed when bone marrow mesenchymal stem cell-derived EVs were used. In particular, renal CSCs chemosensitivity to TKIs was enhanced when HLSC-EVs were either co-administered with TKIs or added after, but not before. CSC apoptosis was also incremented at a percentage comparable to that of co-administration when TKIs were loaded in HLSC-EVs. By a mechanistic point of view, Akt/mTOR and Erk and Creb intracellular pathways, known to be pivotal in the induction of tumor growth and survival, appeared modulated as consequence of TKIs/HLSC-EVs co-administration. Together, our results indicate that the synergistic effect of HLSC-EVs with TKIs may increase the response to TKIs at low doses, providing a rational for their combined use in the treatment of renal carcinoma.
Collapse
Affiliation(s)
- Valentina Fonsato
- 2i3T, Società per la gestione dell'incubatore di imprese e per il trasferimento tecnologico, Scarl University of Torino, Torino, Italy.,Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Michela De Lena
- 2i3T, Società per la gestione dell'incubatore di imprese e per il trasferimento tecnologico, Scarl University of Torino, Torino, Italy.,Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Stefania Tritta
- 2i3T, Società per la gestione dell'incubatore di imprese e per il trasferimento tecnologico, Scarl University of Torino, Torino, Italy.,Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Alessia Brossa
- 2i3T, Società per la gestione dell'incubatore di imprese e per il trasferimento tecnologico, Scarl University of Torino, Torino, Italy.,Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Ruggero Calvetti
- Department of Molecular Biotechnology and Health Sciences, Torino, Italy
| | | | - Giovanni Camussi
- Department of Medical Sciences, University of Torino, Torino, Italy
| | | |
Collapse
|
50
|
Pillay P, Moodley K, Moodley J, Mackraj I. Placenta-derived exosomes: potential biomarkers of preeclampsia. Int J Nanomedicine 2017; 12:8009-8023. [PMID: 29184401 PMCID: PMC5673050 DOI: 10.2147/ijn.s142732] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Preeclampsia remains a leading cause of maternal and fetal mortality, due to ineffective treatment and diagnostic strategies, compounded by the lack of clarity on the etiology of the disorder. Although several clinical and biological markers of preeclampsia have been evaluated, they have proven to be ineffective in providing a definitive diagnosis during the various stages of the disorder. Exosomes have emerged as ideal biomarkers of pathological states, such as cancer, and have more recently gained interest in pregnancy-related complications, due to their role in cellular communication in normal and complicated pregnancies. This occurs as a result of the specific placenta-derived exosomal molecular cargo, which may be involved in normal pregnancy-associated immunological events, such as the maintenance of maternal-fetal tolerance. This review provides perspectives on placenta-derived exosomes as possible biomarkers for the diagnosis/prognosis of preeclampsia. Using keywords, online databases were searched to identify relevant publications to review the potential use of placenta-derived exosomes as biomarkers of preeclampsia.
Collapse
Affiliation(s)
- Preenan Pillay
- Discipline of Human Physiology, Nelson R Mandela School of Medicine, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- Pearson Institute of Higher Education, Midrand, South Africa
| | - Kogi Moodley
- Discipline of Human Physiology, Nelson R Mandela School of Medicine, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Jagidesa Moodley
- Women’s Health and HIV Research Group, Nelson R Mandela School of Medicine, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Irene Mackraj
- Women’s Health and HIV Research Group, Nelson R Mandela School of Medicine, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|